1
|
Gan PY, Huang X, Liu WB, Gao FW, Su ZM. External electric field driven conformation transition between lithium salts and electride-like molecules: intriguing NLO switches in Li@corannulene. Phys Chem Chem Phys 2024; 26:22388-22394. [PMID: 39139147 DOI: 10.1039/d3cp04595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The external electric field has emerged as a powerful tool for building molecular switches with excellent properties. In this work, we investigate the impact of an external electric field on the transition between lithium salt and electride-like molecule conformations in Li@corannulene. Remarkably, the distance between the Li atom and the corannulene bottom displays a sharp increase under the influence of an external electric field strength of F-z = 110 × 10-4 a.u. As the external electric field strength increases, the Li atom brings about different directions of charge transfer (CT). The natural population analysis (NPA) charge and the molecular electrostatic potential (ESP) results show that the intermolecular CT occurs from the Li atom to the corannulene with the F-z ranging from 0 to 100 × 10-4 a.u. Interestingly, when the external electric field reaches F-z = 110 × 10-4 a.u., the CT is oriented from the corannulene to the Li atom. Moreover, electron localization function (ELF) basins are presented under an F-z of 110 × 10-4 a.u., which indicates that Li@corannulene exhibits electride-like (e-⋯[Li@corannulene]+) molecules and lithiation salt (Li+[corannulene]-) under an F-z of 0 to 100 × 10-4 a.u. Significantly, the differences in charge transfer also contribute to a significant improvement in hyperpolarizabilities (βtot) during the conformation transition from lithiation salt (Li+[corannulene]-) to electride-like (e-⋯[Li@corannulene]+) molecules. This study explores the potential of Li@corannulene as a promising second-order NLO material, and the external electric field provides an efficient strategy for designing and developing NLO switching devices.
Collapse
Affiliation(s)
- Ping-Yao Gan
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China.
| | - Xiao Huang
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China.
| | - Wen-Bo Liu
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China.
| | - Feng-Wei Gao
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China.
| | - Zhong-Min Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China.
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
2
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Moritaka SS, Lebedev VS. Orientational effects in the polarized absorption spectra of molecular aggregates. J Chem Phys 2024; 160:074901. [PMID: 38364011 DOI: 10.1063/5.0188128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
We present a detailed theoretical analysis of polarized absorption spectra and linear dichroism of cyanine dye aggregates whose unit cells contain two molecules. The studied threadlike ordered system with a molecular exciton delocalized along its axis can be treated as two chains of conventional molecular aggregates, rotated relative to each other at a certain angle around the aggregate axis. Our approach is based on the general formulas for the effective cross section of light absorption by a molecular aggregate and key points of the molecular exciton theory. We have developed a self-consistent theory for describing the orientational effects in the absorption and dichroic spectra of such supramolecular structures with nonplanar unit cell. It is shown that the spectral behavior of such systems exhibits considerable distinctions from that of conventional cyanine dye aggregates. They consist in the strong dependence of the relative intensities of the J- and H-type spectral bands of the aggregate with a nonplanar unit cell on the angles determining the mutual orientations of the transition dipole moments of constituting molecules and the aggregate axis as well as on the polarization direction of incident light. The derived formulas are reduced to the well-known analytical expressions in the particular case of aggregates with one molecule in the unit cell. The calculations performed within the framework of our excitonic theory combined with available vibronic theory allow us to quite reasonably explain the experimental data for the pseudoisocyanine bromide dye aggregate.
Collapse
Affiliation(s)
- S S Moritaka
- P. N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskiy Prosp., 119991 Moscow, Russian Federation
| | - V S Lebedev
- P. N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskiy Prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
4
|
Li K, Wang X, Li X, Wu F, Zhang F, Wei Q, Yue Z, Luo J, Liu X. Nonlinear Optical Switching in a Tin-Based Multilayered Halide Perovskite Activated by Stereoactive Lone Pairs and Confined Rotators. Inorg Chem 2024; 63:2275-2281. [PMID: 38226409 DOI: 10.1021/acs.inorgchem.3c04286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
In recent years, there has been a surge in research enthusiasm on searching for solid-state nonlinear optical (NLO) switching materials in halide perovskites owing to their exceptional structural flexibility, compositional diversity, and broad property tenability. However, the majority of reported halide perovskite NLO switching materials contain toxic elements (e.g., Pb), which raise significant environmental concerns. Herein, we present a novel lead-free multilayered halide perovskite NLO switching material, (BA)2(EA)2Sn3Br10 (1, where BA is butylammonium and EA is ethylammonium). Driven by the stereochemically active lone-pair electrons of the Sn2+ cation and the cage-confined effect of EA rotators, 1 undergoes a phase transition with symmetry breaking from P4/mnc to Cmc21, which gives rise to a highly efficient modulation of the quadratic NLO property (0.7 times that of KH2PO4) at a high temperature of 353 K. Furthermore, crystallographic investigation combined with theoretical calculations reveals that the efficient modulation of NLO properties in 1 stems from the synergistic effects between stereochemically active lone pair-induced octahedral distortions and order/disorder transformation of organic cations. This study opens up an instructive avenue for designing and advancing environmentally friendly solid-state NLO switches in halide perovskites.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Xinqiang Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Xiaoqi Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Fafa Wu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Fen Zhang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Qingyin Wei
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Zengshan Yue
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Xitao Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| |
Collapse
|
5
|
Du X, Zhang Z, Gao C, Li F, Li XL. Two pairs of chiral Yb III enantiomers presenting distinct NIR luminescence and circularly polarized luminescence performances with giant differences in second-harmonic generation responses. Dalton Trans 2023; 52:17758-17766. [PMID: 37974451 DOI: 10.1039/d3dt03324d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
By introducing enantiomerically pure mono-bidentate N-donor ligands (LR/LS) into Yb(btfa)3(H2O)2 and Yb(dbm)3(H2O), respectively, two pairs of chiral YbIII enantiomers, namely Yb(btfa)3LR/Yb(btfa)3LS (D-1/L-1) and [Yb(dbm)3LR]·[Yb(dbm)3(C2H5OH)]/[Yb(dbm)3LS]·[Yb(dbm)3(C2H5OH)] (D-2/L-2) were isolated, where btfa- = 3-benzoyl-1,1,1-trifluoroacetonate, dbm- = dibenzoylmethanate, and LR/LS = (-)/(+)-4,5-pinenepyridyl-2-pyrazine. D-1/L-1 possess mononuclear structures in which the YbIII ions are eight-coordinated, while D-2/L-2 show cocrystal structures containing Yb(dbm)3(LR/LS) and Yb(dbm)3(C2H5OH) moieties in which the two YbIII ions are eight and seven-coordinated, respectively. They not only feature different molecular structures but also present distinct linear and nonlinear optical performances. Chiral mononuclear D-1 has better near infrared photo-luminescence (NIR-PL) and circularly polarized luminescence (CPL) performances than chiral cocrystal D-2. More remarkably, D-1/L-1 show large second-harmonic generation (SHG) responses (up to 1.25/1.28 × KDP) 18/16 times those of D-2/L-2 (0.07/0.08 × KDP). In addition, D-2/L-2 represent the first examples of lanthanide cocrystal complexes with NIR-PL, NIR-CPL and SHG properties.
Collapse
Affiliation(s)
- Xiaodi Du
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, PR China.
| | - Zhiqiang Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| | - Congli Gao
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| | - Fengcai Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| | - Xi-Li Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| |
Collapse
|
6
|
Wu T, Pelc R, Bouř P. Molecular Properties of 3d and 4f Coordination Compounds Deciphered by Raman Optical Activity Spectroscopy. Chempluschem 2023; 88:e202300385. [PMID: 37665573 DOI: 10.1002/cplu.202300385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/05/2023]
Abstract
Molecular properties of coordination compounds can be efficiently studied by vibrational spectroscopy. The scope of Raman spectroscopy has been greatly enhanced by the introduction of Raman optical activity (ROA) sensitive to chirality. The present review describes some of its recent applications to study the coordination compounds. 3d and 4f metal complexes often absorb the excitation light, or exhibit luminescence. Therefore, effects caused in ROA spectra by electronic circular dichroism (ECD) and circularly polarized luminescence (CPL) must be taken into consideration.In 3d metal complexes ECD and circularly-polarized Raman scattering compete with the resonance ROA (RROA) signal. Pure RROA spectrum can thus be obtained by subtracting the so-called ECD-Raman component. CPL is frequently encountered in 4f systems. While it can mask the ROA spectra, it is useful to study molecular structure. These electronic effects can be reduced by using near-infrared excitation although vibrational ROA signal is much weaker compared to the usual green laser excitation scenario. The ROA methodology is thus complex, but capable of providing unique information about the molecules of interests and their interaction with light.
Collapse
Affiliation(s)
- Tao Wu
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Radek Pelc
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| |
Collapse
|
7
|
Liu Q, Peng H, Qi JC, Lu YZ, Yang SJ, Liao WQ. A photoluminescent chiral lead-free hybrid ferroelastic semiconductor with switchable second-harmonic generation. Chem Commun (Camb) 2023; 59:1793-1796. [PMID: 36722410 DOI: 10.1039/d2cc06575d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chiral organic-inorganic hybrid semiconductors (COIHSs) dominated by lead halides have recently gained tremendous interest. Here, we report a lead-free photoluminescent COIHS [R-3-hydroxylpiperidinium]2SbCl5 with a bandgap of 3.14 eV. It shows a ferroelastic phase transition at 341 K accompanied by a switchable second-harmonic generation response and presents clear ferroelastic domains, which are rarely found in lead-free COIHSs.
Collapse
Affiliation(s)
- Qin Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Jun-Chao Qi
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Yan-Zi Lu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Shu-Jing Yang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| |
Collapse
|
8
|
Khalid M, Shafiq I, Umm-e-Hani, Mahmood K, Hussain R, ur Rehman MF, Assiri MA, Imran M, Akram MS. Effect of different end-capped donor moieties on non-fullerenes based non-covalently fused-ring derivatives for achieving high-performance NLO properties. Sci Rep 2023; 13:1395. [PMID: 36697427 PMCID: PMC9876985 DOI: 10.1038/s41598-023-28118-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
A series of derivatives (DOCD2-DOCD6) with D-π-A configuration was designed by substituting various efficient donor moieties via the structural tailoring of o-DOC6-2F. Quantum-chemical approaches were used to analyze the optoelectronic properties of the designed chromophores. Particularly, M06/6-311G(d,p) functional was employed to investigate the non-linear optical (NLO) response (linear polarizability ⟨α⟩, first (βtot) and second ([Formula: see text]tot) order hyperpolarizabilities) of the designed derivatives. A variety of analyses such as frontier molecular orbital (FMO), absorption spectra, transition density matrix (TDMs), density of states (DOS), natural bond orbital (NBO) and global reactivity parameters (GRPs) were employed to explore the optoelectronic response of aforementioned chromophores. FMO investigation revealed that DOCD2 showed the least energy gap (1.657 eV) among all the compounds with an excellent transference of charge towards the acceptor from the donor. Further, DOS pictographs and TDMs heat maps also supported FMO results, corroborating the presence of charge separation states along with efficient charge transitions. NBO analysis showed that π-linker and donors possessed positive charges while acceptors retained negative charges confirming the D-π-A architecture of the studied compounds. The λmax values of designed chromophores (659.070-717.875 nm) were found to have broader spectra. The GRPs were also examined utilizing energy band gaps of EHOMO and ELUMO for the entitled compounds. Among all the derivatives, DOCD2 showed the highest values of βtot (7.184 × 10-27 esu) and [Formula: see text]tot (1.676 × 10-31 esu), in coherence with the reduced band gap (1.657 eV), indicating future potentiality for NLO materials.
Collapse
Affiliation(s)
- Muhammad Khalid
- grid.510450.5Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200 Pakistan ,grid.510450.5Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200 Pakistan
| | - Iqra Shafiq
- grid.510450.5Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200 Pakistan ,grid.510450.5Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200 Pakistan
| | - Umm-e-Hani
- grid.510450.5Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200 Pakistan ,grid.510450.5Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200 Pakistan
| | - Khalid Mahmood
- grid.411501.00000 0001 0228 333XInstitute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | - Riaz Hussain
- grid.440554.40000 0004 0609 0414Division of Science and Technology, Department of Chemistry, University of Education, Lahore, Pakistan
| | | | - Mohammed A. Assiri
- grid.412144.60000 0004 1790 7100Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413 Saudi Arabia ,grid.412144.60000 0004 1790 7100Research Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha, 61514 Saudi Arabia
| | - Muhammad Imran
- grid.412144.60000 0004 1790 7100Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413 Saudi Arabia ,grid.412144.60000 0004 1790 7100Research Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha, 61514 Saudi Arabia
| | - Muhammad Safwan Akram
- grid.26597.3f0000 0001 2325 1783National Horizons Centre, Teesside University, Darlington, DL11HG UK ,grid.26597.3f0000 0001 2325 1783School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX UK
| |
Collapse
|
9
|
Király N, Capková D, Gyepes R, Vargová N, Kazda T, Bednarčík J, Yudina D, Zelenka T, Čudek P, Zeleňák V, Sharma A, Meynen V, Hornebecq V, Straková Fedorková A, Almáši M. Sr(II) and Ba(II) Alkaline Earth Metal-Organic Frameworks (AE-MOFs) for Selective Gas Adsorption, Energy Storage, and Environmental Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:234. [PMID: 36677987 PMCID: PMC9866501 DOI: 10.3390/nano13020234] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Two new alkaline earth metal-organic frameworks (AE-MOFs) containing Sr(II) (UPJS-15) or Ba(II) (UPJS-16) cations and extended tetrahedral linker (MTA) were synthesized and characterized in detail (UPJS stands for University of Pavol Jozef Safarik). Single-crystal X-ray analysis (SC-XRD) revealed that the materials are isostructural and, in their frameworks, one-dimensional channels are present with the size of ~11 × 10 Å2. The activation process of the compounds was studied by the combination of in situ heating infrared spectroscopy (IR), thermal analysis (TA) and in situ high-energy powder X-ray diffraction (HE-PXRD), which confirmed the stability of compounds after desolvation. The prepared compounds were investigated as adsorbents of different gases (Ar, N2, CO2, and H2). Nitrogen and argon adsorption measurements showed that UPJS-15 has SBET area of 1321 m2 g-1 (Ar) / 1250 m2 g-1 (N2), and UPJS-16 does not adsorb mentioned gases. From the environmental application, the materials were studied as CO2 adsorbents, and both compounds adsorb CO2 with a maximum capacity of 22.4 wt.% @ 0 °C; 14.7 wt.% @ 20 °C and 101 kPa for UPJS-15 and 11.5 wt.% @ 0°C; 8.4 wt.% @ 20 °C and 101 kPa for UPJS-16. According to IAST calculations, UPJS-16 shows high selectivity (50 for CO2/N2 10:90 mixture and 455 for CO2/N2 50:50 mixture) and can be applied as CO2 adsorbent from the atmosphere even at low pressures. The increased affinity of materials for CO2 was also studied by DFT modelling, which revealed that the primary adsorption sites are coordinatively unsaturated sites on metal ions, azo bonds, and phenyl rings within the MTA linker. Regarding energy storage, the materials were studied as hydrogen adsorbents, but the materials showed low H2 adsorption properties: 0.19 wt.% for UPJS-15 and 0.04 wt.% for UPJS-16 @ -196 °C and 101 kPa. The enhanced CO2/H2 selectivity could be used to scavenge carbon dioxide from hydrogen in WGS and DSR reactions. The second method of applying samples in the area of energy storage was the use of UPJS-15 as an additive in a lithium-sulfur battery. Cyclic performance at a cycling rate of 0.2 C showed an initial discharge capacity of 337 mAh g-1, which decreased smoothly to 235 mAh g-1 after 100 charge/discharge cycles.
Collapse
Affiliation(s)
- Nikolas Király
- Department of Inorganic Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Dominika Capková
- Department of Physical Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Róbert Gyepes
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Albertov 8, CZ-128 43 Prague, Czech Republic
| | - Nikola Vargová
- Department of Inorganic Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Tomáš Kazda
- Department of Electrical and Electronic Technology, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, CZ-616 00 Brno, Czech Republic
| | - Jozef Bednarčík
- Department of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, SK-041 01 Košice, Slovakia
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, SK-040 01 Košice, Slovakia
| | - Daria Yudina
- Department of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, SK-041 01 Košice, Slovakia
| | - Tomáš Zelenka
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, CZ-702 00 Ostrava, Czech Republic
| | - Pavel Čudek
- Department of Electrical and Electronic Technology, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, CZ-616 00 Brno, Czech Republic
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology, Central University of Haryana, Mahendergarh 123031, India
| | - Vera Meynen
- Laboratory of Adsorption and Catalysis, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Virginie Hornebecq
- Centre National de la Recherche Scientifique (CNRS), Matériaux Divisé, Interfaces, Réactivité, Electrochimie (MADIREL), Centre de Saint Jérôme, Aix-Marseille University, Avenue Escadrille-Normandie-Niemen, F-133 97 Marseille, France
| | - Andrea Straková Fedorková
- Department of Physical Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| |
Collapse
|
10
|
Gowrisankar S, Hosier C, Schreiner PR, Dehnen S. Manipulating White‐Light Generation in Adamantane‐Like Molecules via Functional Group Substitution. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Christopher Hosier
- Philipps-Universität Marburg: Philipps-Universitat Marburg Chemistry GERMANY
| | | | - Stefanie Dehnen
- Philipps-Universität Marburg: Philipps-Universitat Marburg Fachbereich Chemie Hans-Meerwein-Strasse 4 35032 Marburg GERMANY
| |
Collapse
|
11
|
Han K, Ye X, Li B, Wei Z, Wei J, Wang P, Cai H. Organic–Inorganic Hybrid Compound [H 2-1,5-Diazabicyclo[3.3.0]octane]ZnBr 4 with Reverse Symmetry Breaking Shows a Switchable Dielectric Anomaly and Robust Second Harmonic Generation Effect. Inorg Chem 2022; 61:11859-11865. [DOI: 10.1021/acs.inorgchem.2c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keke Han
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Xing Ye
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Bo Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Jing Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Pan Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People’s Republic of China
| |
Collapse
|
12
|
Arshad M, Khalid M, Asad M, Braga AAC, Asiri AM, Alotaibi MM. Influence of Peripheral Modification of Electron Acceptors in Nonfullerene (O-IDTBR1)-Based Derivatives on Nonlinear Optical Response: DFT/TDDFT Study. ACS OMEGA 2022; 7:11631-11642. [PMID: 35449988 PMCID: PMC9017101 DOI: 10.1021/acsomega.1c06320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Fullerene-based organic compounds have been reported as useful materials with some limitations; nonetheless, fullerene-free compounds are primarily considered to be the most substantial materials for the development of modern technology. Therefore, in this study, a series of compounds (NFBC2-NFBC7) having an A-π-D architecture were designed for the first time from a synthesized nonfullerene (O-IDTBR) compound by changing different acceptor groups. The synthesized nonfullerene (O-IDTBR1) compound and its designed derivatives were optimized with frequency analyses at the M06/6-311G(d,p) level. These optimized structures were further characterized by different quantum chemical approaches. The study required that the designed compounds possess a low energy gap in comparison to that of O-IDTBR1 (2.385 eV). Moreover, density of state (DOS) calculations supported the FMO analysis and displayed charge transfers from the HOMO to the LUMO in an effective manner. The λmax values of the investigated chromophores were observed to be greater than that of the reference compound. Amazingly, the highest amplitude of linear polarizability ⟨α⟩ and first (βtot) and second hyperpolarizability values were achieved by NFBC6 at 1956.433, 2155888.013, and 7.868 × 108 au, respectively, among all other derivatives. Effective NLO findings revealed that nonfullerene-based derivatives may contribute significantly to NLO technology.
Collapse
Affiliation(s)
- Muhammad
Nadeem Arshad
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, P.O. Box 80203, Saudi
Arabia
- Center
of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box
80203, Saudi Arabia
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mohammad Asad
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, P.O. Box 80203, Saudi
Arabia
- Center
of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box
80203, Saudi Arabia
| | - Ataualpa A. C. Braga
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Abdullah M. Asiri
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, P.O. Box 80203, Saudi
Arabia
- Center
of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box
80203, Saudi Arabia
| | - Maha M. Alotaibi
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, P.O. Box 80203, Saudi
Arabia
| |
Collapse
|
13
|
Gao C, Zhou J, Cui M, Chen D, Zhou L, Li F, Li XL. Distinct nonlinear optical responses in three pairs of 2D homochiral Ag(i) enantiomers modulated by dicarboxylic acid ligands. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01321a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on three pairs of 2D homochiral Ag(i) enantiomers, we demonstrate that both the symmetry and degree of π-conjugation of the ligands have a significant effect on the type and intensity of their NLO responses.
Collapse
Affiliation(s)
- Congli Gao
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Jianya Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Minghui Cui
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Diming Chen
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Fengcai Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xi-Li Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| |
Collapse
|
14
|
Galangau O, Norel L, Rigaut S. Metal complexes bearing photochromic ligands: photocontrol of functions and processes. Dalton Trans 2021; 50:17879-17891. [PMID: 34792058 DOI: 10.1039/d1dt03397b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metal complexes associated with photochromic molecules are attractive platforms to achieve smart light-switching materials with innovative and exciting properties due to specific optical, electronic, magnetic or catalytic features of metal complexes and by perturbing the excited-state properties of both components to generate new reactivity and photochemical properties. In this overview, we focus on selected achievements in key domains dealing with optical, redox, magnetic properties, as well as application in catalysis or supramolecular chemistry. We also try to point out scientific challenges that are still faced for future developments and applications.
Collapse
Affiliation(s)
- Olivier Galangau
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Lucie Norel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Stéphane Rigaut
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
15
|
Anu, Srivastava A, Khan MS. Principle component analysis for nonlinear optical properties of thiophene-based metal complexes. J Mol Model 2021; 27:340. [PMID: 34731322 DOI: 10.1007/s00894-021-04967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022]
Abstract
The simulation of molecular descriptors of thiophene-based metal complexes has been performed using Gaussian 03 and Atomistic toolkit Virtual Nanolab (ATK-VNL) software. It is found that with respect to the obtained molecular descriptors, the molecules show distinct properties. The dimensions of the data set being large, the principal components (PC1 and PC2) have been obtained using principal component analysis (PCA). Analysis has been done for the Linear regression of principal components with first hyperpolarizability and second hyperpolarizability of the molecules. The results indicate that, of all the calculated molecular descriptors of thiophene-based metal complexes, the molecular energy (E), ionization energy (EI), and molecular dipole moment (D) plays a dominant role in determining their nonlinear optical properties i.e., the hyperpolarizability value, of the studied molecules. Also, the molecular descriptors, polarizability (P) and molar refractivity (MR), show considerable impact on the nonlinear optical properties of the studied molecules.
Collapse
Affiliation(s)
- Anu
- Department of Physics, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anurag Srivastava
- Advanced Material Research Group, CNT Lab, ABV-Indian Institute of Information Technology and Management, Gwalior, 474015, India
| | - Mohd Shahid Khan
- Department of Physics, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
16
|
Impact of film thickness on the structural and optical properties of thermally deposited N,N-dimethylquinacridone films. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Density Functional Theory Study of Substitution Effects on the Second-Order Nonlinear Optical Properties of Lindquist-Type Organo-Imido Polyoxometalates. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Density functional theory and time-dependent density functional theory have been enacted to investigate the effects of donor and acceptor on the first hyperpolarizability of Lindquist-type organo-imido polyoxometalates (POMs). These calculations employ a range-separated hybrid exchange-correlation functional (ωB97X-D), account for solvent effects using the implicit polarizable continuum model, and analyze the first hyperpolarizabilities by using the two-state approximation. They highlight the beneficial role of strong donors as well as of π-conjugated spacers (CH=CH rather than C≡C) on the first hyperpolarizabilities. Analysis based on the unit sphere representation confirms the one-dimensional push-pull π-conjugated character of the POMs substituted by donor groups and the corresponding value of the depolarization ratios close to 5. Furthermore, the use of the two-state approximation is demonstrated to be suitable for explaining the origin of the variations of the first hyperpolarizabilities as a function of the characteristics of a unique low-energy charge-transfer excited state and to attribute most of the first hyperpolarizability changes to the difference of dipole moment between the ground and that charge-transfer excited state.
Collapse
|
18
|
|
19
|
Karthika C, Das P, Samuelson A. Electro-switching of first hyperpolarizability of metallorganic complexes via ligand reduction/oxidation. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Chahal MK, Liyanage A, Alsaleh AZ, Karr PA, Hill JP, D'Souza F. Anion-enhanced excited state charge separation in a spiro-locked N-heterocycle-fused push-pull zinc porphyrin. Chem Sci 2021; 12:4925-4930. [PMID: 34168764 PMCID: PMC8179616 DOI: 10.1039/d1sc00038a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A new type of push–pull charge transfer complex, viz., a spiro-locked N-heterocycle-fused zinc porphyrin, ZnP-SQ, is shown to undergo excited state charge separation, which is enhanced by axial F− binding to the Zn center. In this push–pull design, the spiro-quinone group acts as a ‘lock’ promoting charge transfer interactions by constraining mutual coplanarity of the meso-phenol-substituted electron-rich Zn(ii) porphyrin and an electron deficient N-heterocycle, as revealed by electrochemical and computational studies. Spectroelectrochemical studies have been used to identify the spectra of charge separated states, and charge separation upon photoexcitation of ZnP has been unequivocally established by using transient absorption spectroscopic techniques covering wide spatial and temporal regions. Further, global target analysis of the transient data using GloTarAn software is used to obtain the lifetimes of different photochemical events and reveal that fluoride anion complexation stabilizes the charge separated state to an appreciable extent. A new type of push–pull charge transfer complex, viz., a spiro-locked N-heterocycle-fused zinc porphyrin, ZnP-SQ, is shown to undergo excited state charge separation, which is enhanced by axial F− binding to the Zn center.![]()
Collapse
Affiliation(s)
- Mandeep K Chahal
- International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) Namiki 1-1, Tsukuba Ibaraki 305-0044 Japan
| | - Anuradha Liyanage
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Ajyal Z Alsaleh
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College 111 Main Street Wayne Nebraska 68787 USA
| | - Jonathan P Hill
- International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) Namiki 1-1, Tsukuba Ibaraki 305-0044 Japan
| | - Francis D'Souza
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| |
Collapse
|
21
|
Zhu Y, Li DS, Zhang J, Zhang L. Sn 6 and Na 4 Oxo Clusters Based Non-centrosymmetric Framework for Solution Iodine Absorption and Second Harmonic Generation Response. Inorg Chem 2021; 60:1985-1990. [PMID: 33439625 DOI: 10.1021/acs.inorgchem.0c03448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A three-dimensional non-centrosymmetric cluster organic framework has successfully been built from the {Sn6} and {Na4} cluster units via the oxalate ligand, which belongs to the first 3D framework containing different cluster units in the field of tin-oxo clusters. Besides the interesting structural characteristics, the obtained 3D framework not only can efficiently adsorb the iodine molecules but also displays the second harmonic generation response under the 1064 nm Q-switch laser.
Collapse
Affiliation(s)
- Yu Zhu
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, People's Republic of China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Dong-Sheng Li
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| |
Collapse
|
22
|
Zhang L, Li H, He H, Yang Y, Cui Y, Qian G. Structural Variation and Switchable Nonlinear Optical Behavior of Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006649. [PMID: 33470526 DOI: 10.1002/smll.202006649] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Two europium metal-organic frameworks (MOFs) based on the same ligand, named as ZJU-23-Eu and ZJU-24-Eu, are selectively synthesized by fine-tuning solvent contents to tailor the coordination modes. Eu atoms are eight-coordinated and nine-coordinated in ZJU-23-Eu and ZJU-24-Eu respectively, and their frameworks vary in both spatial connectivity and symmetry. The ligand not only has multiphoton response but also suitable triplet energy level (19 998 cm-1 ) to sensitize Eu3+ . Thus ZJU-23-Eu exhibits characteristic emission of Eu3+ peaking at 614 nm via the energy transfer from the two-/three-photon excited ligand to Eu3+ , with its bidimensional layered structure benefiting this process. In contrast, the changed spatial connectivity in tridimensional ZJU-24-Eu narrows the distances between adjacent Eu3+ ions and reduces the density, resulting in poor two-photon excited fluorescence. Besides, noncentrosymmetric ZJU-24-Eu shows second harmonic generation (SHG) response with an intensity of ≈6.2 times relative to KH2 PO4 (KDP) microcrystalline powder while centrosymmetric ZJU-23-Eu cannot. These results have established two nonlinear optical (NLO) models based on MOFs to synchronously analyze the effects of two structural variables on different NLO behaviors, and provide ingenious ways to design MOF-based NLO devices with function on demand.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongjun Li
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huajun He
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yu Yang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
23
|
Celedon S, Roisnel T, Carrillo D, Ledoux-Rak I, Hamon JR, Manzur C. Transition metal(II) complexes featuring push-pull dianionic Schiff base ligands: synthesis, crystal structure, electrochemical, and NLO studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1827237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Salvador Celedon
- Laboratorio de Química Inorgánica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Thierry Roisnel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Rennes, France
| | - David Carrillo
- Laboratorio de Química Inorgánica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Isabelle Ledoux-Rak
- Laboratoire Lumière, Matière et Interfaces, ENS Paris Saclay, FRE CNRS 2036, CentraleSupelec, Gif-sur-Yvette, France
| | - Jean-Rene Hamon
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Rennes, France
| | - Carolina Manzur
- Laboratorio de Química Inorgánica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
24
|
Zhang Y, Shi M, Yan Z, Zhang S, Wang M, Xu H, Li H, Ying Y, Qiu S, Liu J, Yang H, Chen H, He H, Guo Z. Ultrastable Near-Infrared Nonlinear Organic Chromophore Nanoparticles with Intramolecular Charge Transfer for Dually Photoinduced Tumor Ablation. Adv Healthc Mater 2020; 9:e2001042. [PMID: 32935929 DOI: 10.1002/adhm.202001042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/28/2020] [Indexed: 01/01/2023]
Abstract
Near-infrared (NIR) light-responsive nanoparticles (NPs) of organic photosensitizers (PS) hold great promise as phototherapeutic agents for precision photoinduced cancer therapy. However, highly photostable PS nanoparticles with extraordinary photoconversion capacities are urgently desired to fully realize potent phototherapy. Here, NIR nonlinear organic chromophore nanoparticles (NOC-NPs) are shown as single-component PS for dually cooperative phototherapy. Upon 785 nm irradiation, excited NOC-NPs pass through intrinsic intramolecular charge transfer (ICT) channel to generate both abundant singlet oxygen and local hyperthermia, affording synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) for tumor ablation. Furthermore, NOC-NPs exhibit dramatic photostability, enhanced cellular uptake, effective cytoplasmic translocation, as well as preferable tumor accumulation, further ensuring favorable in vivo singlet oxygen generation and hyperthermia for photoinduced tumor ablation. Thus, NOC-NPs may represent novel high-performance PS for synergistic photoinduced cancer therapy, providing new insights into the development of potent PS for clinical translation.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Radiation Medicine and Protection Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Mengke Shi
- State Key Laboratory of Radiation Medicine and Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School of Radiation Medicine and Protection Soochow University Suzhou 215123 China
| | - Zhangren Yan
- Department of Dermatology Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine Nanchang 360001 China
| | - Shao Zhang
- State Key Laboratory of Radiation Medicine and Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School of Radiation Medicine and Protection Soochow University Suzhou 215123 China
| | - Mengya Wang
- State Key Laboratory of Radiation Medicine and Protection Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Han Xu
- State Key Laboratory of Radiation Medicine and Protection Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Hongyu Li
- State Key Laboratory of Radiation Medicine and Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School of Radiation Medicine and Protection Soochow University Suzhou 215123 China
| | - Yuchen Ying
- State Key Laboratory of Radiation Medicine and Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School of Radiation Medicine and Protection Soochow University Suzhou 215123 China
| | - Shihong Qiu
- State Key Laboratory of Radiation Medicine and Protection Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Jialei Liu
- Institute of Environment and Sustainable Development in Agriculture Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Hong Yang
- State Key Laboratory of Radiation Medicine and Protection Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Huabing Chen
- State Key Laboratory of Radiation Medicine and Protection Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
- State Key Laboratory of Radiation Medicine and Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School of Radiation Medicine and Protection Soochow University Suzhou 215123 China
| | - Hui He
- State Key Laboratory of Radiation Medicine and Protection Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Zhengqing Guo
- State Key Laboratory of Radiation Medicine and Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School of Radiation Medicine and Protection Soochow University Suzhou 215123 China
| |
Collapse
|
25
|
Göbel C, Hils C, Drechsler M, Baabe D, Greiner A, Schmalz H, Weber B. Confined Crystallization of Spin-Crossover Nanoparticles in Block-Copolymer Micelles. Angew Chem Int Ed Engl 2020; 59:5765-5770. [PMID: 31891660 PMCID: PMC7155125 DOI: 10.1002/anie.201914343] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Indexed: 12/31/2022]
Abstract
Nanoparticles of the spin-crossover coordination polymer [FeL(bipy)]n were synthesized by confined crystallization within the core of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymer micelles. The 4VP units in the micellar core act as coordination sites for the Fe complex. In the bulk material, the spin-crossover nanoparticles in the core are well isolated from each other allowing thermal treatment without disintegration of their structure. During annealing above the glass transition temperature of the PS block, the transition temperature is shifted gradually to higher temperatures from the as-synthesized product (T1/2 ↓=163 K and T1/2 ↑=170 K) to the annealed product (T1/2 ↓=203 K and T1/2 ↑=217 K) along with an increase in hysteresis width from 6 K to 14 K. Thus, the spin-crossover properties can be shifted towards the properties of the related bulk material. The stability of the nanocomposite allows further processing, such as electrospinning from solution.
Collapse
Affiliation(s)
- Christoph Göbel
- Department of Chemistry, Inorganic Chemistry IV, Unversität BayreuthUniversitätsstrasse 3095440BayreuthGermany
| | - Christian Hils
- Department of Chemistry, Macromolecular Chemistry IIUniversität BayreuthUniversitätsstr. 3095440BayreuthGermany
| | - Markus Drechsler
- Keylab Electron and Optical Microscopy, Bavarian Polymer InstituteUniversität BayreuthUniversitätsstrasse 3095440BayreuthGermany
| | - Dirk Baabe
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Andreas Greiner
- Department of Chemistry, Macromolecular Chemistry II and Keylab Synthesis and Molecular Characterization, Bavarian Polymer InstituteUniversität BayreuthUniversitätsstrasse 3095440BayreuthGermany
| | - Holger Schmalz
- Department of Chemistry, Macromolecular Chemistry II and Keylab Synthesis and Molecular Characterization, Bavarian Polymer InstituteUniversität BayreuthUniversitätsstrasse 3095440BayreuthGermany
| | - Birgit Weber
- Department of Chemistry, Inorganic Chemistry IV, Unversität BayreuthUniversitätsstrasse 3095440BayreuthGermany
| |
Collapse
|
26
|
Göbel C, Hils C, Drechsler M, Baabe D, Greiner A, Schmalz H, Weber B. Confined Crystallization of Spin‐Crossover Nanoparticles in Block‐Copolymer Micelles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christoph Göbel
- Department of Chemistry, Inorganic Chemistry IV, Unversität Bayreuth Universitätsstrasse 30 95440 Bayreuth Germany
| | - Christian Hils
- Department of Chemistry, Macromolecular Chemistry II Universität Bayreuth Universitätsstr. 30 95440 Bayreuth Germany
| | - Markus Drechsler
- Keylab Electron and Optical Microscopy, Bavarian Polymer Institute Universität Bayreuth Universitätsstrasse 30 95440 Bayreuth Germany
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Andreas Greiner
- Department of Chemistry, Macromolecular Chemistry II and Keylab Synthesis and Molecular Characterization, Bavarian Polymer Institute Universität Bayreuth Universitätsstrasse 30 95440 Bayreuth Germany
| | - Holger Schmalz
- Department of Chemistry, Macromolecular Chemistry II and Keylab Synthesis and Molecular Characterization, Bavarian Polymer Institute Universität Bayreuth Universitätsstrasse 30 95440 Bayreuth Germany
| | - Birgit Weber
- Department of Chemistry, Inorganic Chemistry IV, Unversität Bayreuth Universitätsstrasse 30 95440 Bayreuth Germany
| |
Collapse
|
27
|
He Y, Wang R, Sun C, Liu S, Zhou J, Zhang L, Jiao T, Peng Q. Facile Synthesis of Self-Assembled NiFe Layered Double Hydroxide-Based Azobenzene Composite Films with Photoisomerization and Chemical Gas Sensor Performances. ACS OMEGA 2020; 5:3689-3698. [PMID: 32118184 PMCID: PMC7045547 DOI: 10.1021/acsomega.9b04290] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/30/2020] [Indexed: 05/18/2023]
Abstract
Two kinds of layered double hydroxide (LDH) Langmuir composite films containing azobenzene (Azo) groups were successfully prepared by Langmuir-Blodgett (LB) technology. Then, an X-ray diffractometer (XRD), a transmission electron microscope (TEM), and an atomic force microscope (AFM) were used to investigate the structures of NiFe-LDH and the uniform morphologies of the composite LB films. The photoisomerization and acid-base gas sensor performances of the obtained thin film samples were tested by infrared visible (FTIR) spectroscropy and ultraviolet visible (UV-vis) spectroscropy. It is proved that the Azo dye molecules in the composite film are relatively stable to photoisomerization. In addition, the prepared composite films have high sensing sensitivity and good recyclability for acid-base response gases. The present research proposes a new clue for designing thin film materials for chemical gas response with good stability and sensitivity.
Collapse
Affiliation(s)
- Ying He
- Hebei
Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy
Metal Deep-Remediation in Water and Resource Reuse, School of Environmental
and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Ran Wang
- Hebei
Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy
Metal Deep-Remediation in Water and Resource Reuse, School of Environmental
and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Chenguang Sun
- National
Engineering Research Center for Equipment and Technology of Cold Strip
Rolling, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Shufeng Liu
- Key
Laboratory of Optic-electric Sensing and Analytical Chemistry for
Life Science, Ministry of Education, College of Chemistry and Molecular
Engineering, Qingdao University of Science
and Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China
| | - Jingxin Zhou
- Hebei
Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy
Metal Deep-Remediation in Water and Resource Reuse, School of Environmental
and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Lexin Zhang
- Hebei
Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy
Metal Deep-Remediation in Water and Resource Reuse, School of Environmental
and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Tifeng Jiao
- Hebei
Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy
Metal Deep-Remediation in Water and Resource Reuse, School of Environmental
and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P.
R. China
| | - Qiuming Peng
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P.
R. China
| |
Collapse
|
28
|
Raza A, Archer SA, Fairbanks SD, Smitten KL, Botchway SW, Thomas JA, MacNeil S, Haycock JW. A Dinuclear Ruthenium(II) Complex Excited by Near-Infrared Light through Two-Photon Absorption Induces Phototoxicity Deep within Hypoxic Regions of Melanoma Cancer Spheroids. J Am Chem Soc 2020; 142:4639-4647. [PMID: 32065521 PMCID: PMC7146853 DOI: 10.1021/jacs.9b11313] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The
dinuclear photo-oxidizing RuII complex [{Ru(TAP2)}2(tpphz)]4+ (TAP = 1,4,5,8- tetraazaphenanthrene,
tpphz = tetrapyrido[3,2-a:2′,3′-c:3″,2′′-h:2‴,3′′′-j]phenazine), 14+, is readily
taken up by live cells localizing in mitochondria and nuclei. In this
study, the two-photon absorption cross section of 14+ is quantified and its use as a two-photon absorbing phototherapeutic
is reported. It was confirmed that the complex is readily photoexcited
using near-infrared, NIR, and light through two-photon absorption,
TPA. In 2-D cell cultures, irradiation with NIR light at low power
results in precisely focused phototoxicity effects in which human
melanoma cells were killed after 5 min of light exposure. Similar
experiments were then carried out in human cancer spheroids that provide
a realistic tumor model for the development of therapeutics and phototherapeutics.
Using the characteristic emission of the complex as a probe, its uptake
into 280 μm spheroids was investigated and confirmed that the
spheroid takes up the complex. Notably TPA excitation results in more
intense luminescence being observed throughout the depth of the spheroids,
although emission intensity still drops off toward the necrotic core.
As 14+ can directly photo-oxidize DNA without
the mediation of singlet oxygen or other reactive oxygen species,
phototoxicity within the deeper, hypoxic layers of the spheroids was
also investigated. To quantify the penetration of these phototoxic
effects, 14+ was photoexcited through TPA
at a power of 60 mW, which was progressively focused in 10 μm
steps throughout the entire z-axis of individual
spheroids. These experiments revealed that, in irradiated spheroids
treated with 14+, acute and rapid photoinduced
cell death was observed throughout their depth, including the hypoxic
region.
Collapse
Affiliation(s)
- Ahtasham Raza
- Materials Science & Engineering, University of Sheffield, Mappin St, Sheffield S1 3JD, U.K
| | - Stuart A Archer
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, U.K
| | - Simon D Fairbanks
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, U.K
| | - Kirsty L Smitten
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, U.K
| | - Stanley W Botchway
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, U.K
| | - James A Thomas
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, U.K
| | - Sheila MacNeil
- Materials Science & Engineering, University of Sheffield, Mappin St, Sheffield S1 3JD, U.K
| | - John W Haycock
- Materials Science & Engineering, University of Sheffield, Mappin St, Sheffield S1 3JD, U.K
| |
Collapse
|
29
|
Roy S, Halder S, Dey A, Harms K, Ray PP, Chattopadhyay S. Representation of a photosensitive Schottky barrier diode made with hetero-dinuclear cobalt(iii)/sodium building blocks. NEW J CHEM 2020. [DOI: 10.1039/c9nj04542b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hetero-dinuclear cobalt(iii)/sodium complex has been synthesized and characterized. The complex which has been used to construct photosensitive Schottky devices, shows interesting C–H⋯π(N3) interactions in the solid state.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Chemistry
- Inorganic Section
- Jadavpur University
- Kolkata-700032
- India
| | - Soumi Halder
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| | - Arka Dey
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
- Department of Condensed Matter Physics and Material Sciences
| | - Klaus Harms
- Fachbereich Chemie
- Philipps-Universität Marburg
- D-35032 Marburg
- Germany
| | | | | |
Collapse
|
30
|
Celedón S, Roisnel T, Artigas V, Fuentealba M, Carrillo D, Ledoux-Rak I, Hamon JR, Manzur C. Palladium( ii) complexes of tetradentate donor–acceptor Schiff base ligands: synthesis and spectral, structural, thermal and NLO properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj01982h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Structural and NLO behavior of push–pull palladium(ii) complexes of metallocenyl-containing asymmetric Schiff base ligands.
Collapse
Affiliation(s)
- Salvador Celedón
- Laboratorio de Química Inorgánica
- Instituto de Química
- Facultad de Ciencias
- Pontificia Universidad Católica de Valparaíso
- Avenida Universidad 330
| | - Thierry Roisnel
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Vania Artigas
- Laboratorio de Cristalografía
- Instituto de Química
- Facultad de Ciencias
- Pontificia Universidad Católica de Valparaíso
- Curauma
| | - Mauricio Fuentealba
- Laboratorio de Cristalografía
- Instituto de Química
- Facultad de Ciencias
- Pontificia Universidad Católica de Valparaíso
- Curauma
| | - David Carrillo
- Laboratorio de Química Inorgánica
- Instituto de Química
- Facultad de Ciencias
- Pontificia Universidad Católica de Valparaíso
- Avenida Universidad 330
| | - Isabelle Ledoux-Rak
- Laboratoire Lumière
- Matière et Interfaces
- FRE 2036 CNRS 8537
- ENS Paris Saclay
- Institut d’Alembert
| | - Jean-René Hamon
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Carolina Manzur
- Laboratorio de Química Inorgánica
- Instituto de Química
- Facultad de Ciencias
- Pontificia Universidad Católica de Valparaíso
- Avenida Universidad 330
| |
Collapse
|
31
|
Solid-State Nonlinear Optical Properties of Mononuclear Copper(II) Complexes with Chiral Tridentate and Tetradentate Schiff Base Ligands. MATERIALS 2019; 12:ma12213595. [PMID: 31683804 PMCID: PMC6862439 DOI: 10.3390/ma12213595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023]
Abstract
Salen-type metal complexes have been actively studied for their nonlinear optical (NLO) properties, and push-pull compounds with charge asymmetry generated by electron releasing and withdrawing groups have shown promising results. As a continuation of our research in this field and aiming at solid-state features, herein we report on the synthesis of mononuclear copper(II) derivatives bearing either tridentate N2O Schiff bases L(a−c)− and pyridine as the forth ancillary ligand, [Cu(La−c)(py)](ClO4) (1a–c), or unsymmetrically-substituted push-pull tetradentate N2O2 Schiff base ligands, [Cu(5-A-5′-D-saldpen/chxn)] (2a–c), both derived from 5-substituted salicylaldehydes (sal) and the diamines (1R,2R)-1,2-diphenylethanediamine (dpen) and (1S,2S)-1,2-diaminocyclohexane (chxn). All compounds were characterized through elemental analysis, infrared and UV/visible spectroscopies, and mass spectrometry in order to guarantee their purity and assess their charge transfer properties. The structures of 1a–c were determined via single-crystal X-ray diffraction studies. The geometries of cations of 1a–c and of molecules 2a–c were optimized through DFT calculations. The solid-state NLO behavior was measured by the Kurtz–Perry powder technique @1.907 µm. All chiral derivatives possess non-zero quadratic electric susceptibility (χ(2)) and an efficiency of about 0.15–0.45 times that of standard urea.
Collapse
|
32
|
Praveen PA, Babu RR. Evaluation of nonlinear optical properties from molecular descriptors of benzimidazole metal complexes by principal component analysis. J Mol Graph Model 2019; 93:107447. [PMID: 31521880 DOI: 10.1016/j.jmgm.2019.107447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 11/19/2022]
Abstract
In the present work, semiempirical quantum chemical method (PM6) has been used for the simulation of molecular descriptors of first row transition metal ions incorporated benzimidazole metal complexes. Metal complexes with and without substituents are considered for the analysis. In both the cases, molecules show distinct properties with respect to the molecular descriptors. Since the dimension of the data set is large, principal component analysis has been used and the obtained principal components, PCA1 and PCA2, are linearly regressed with hyperpolarizability values. The obtained results indicate that molecular energy plays a dominant role in the nonlinear optical properties of benzimidazole metal complexes. Further, it is observed that the bond angle, global hardness and heat of formation of the molecules have considerable impact on the hyperpolarizability values.
Collapse
Affiliation(s)
- P A Praveen
- Department of Physics, Indian Institute of Science Education and Research, Tirupati, 517 507, Andhra Pradesh, India; Crystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India
| | - R Ramesh Babu
- Crystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India.
| |
Collapse
|
33
|
Abegão LMG, Fonseca RD, Santos FA, Rodrigues JJ, Kamada K, Mendonça CR, Piguel S, De Boni L. First molecular electronic hyperpolarizability of series of π-conjugated oxazole dyes in solution: an experimental and theoretical study. RSC Adv 2019; 9:26476-26482. [PMID: 35531011 PMCID: PMC9070536 DOI: 10.1039/c9ra05246a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/14/2019] [Indexed: 11/21/2022] Open
Abstract
In this work, we report the experimental and theoretical first molecular electronic hyperpolarizability (β HRS) of eleven π-conjugated oxazoles compounds in toluene medium. The Hyper-Rayleigh Scattering (HRS) technique allowed the determination of the experimental dynamic β HRS values, by exciting the compounds with a picosecond pulse trains from a Q-switched and mode-locked Nd:YAG laser tuned at 1064 nm. Theoretical predictions based on time-dependent density functional theory level using the Gaussian 09 program package were performed with three different functionals (B3LYP, CAM-B3LYP, and M06-2X), to calculate both static and dynamic theoretical β HRS values. Good accordance was found between the experimental and theoretical values, in particular for the CAM-B3LYP and M06-2X functionals.
Collapse
Affiliation(s)
- Luis M G Abegão
- Departamento de Física, Universidade Federal de Sergipe São Cristovão SE 49100-000 Brazil
- Department of Radiology and Bioimaging, School of Medicine, Yale University 300 Cedar Street New Haven Connecticut 06520 USA
| | - Ruben D Fonseca
- Instituto de Física de São Carlos, Universidade de São Paulo CP 369 13560-970 São Carlos SP Brazil
- Departamento de Fisica, Universidad Popular del Cesar Barrio Sabana Valledupar Cesar 2000004 Colombia
| | - Francisco A Santos
- Departamento de Física, Universidade Federal de Sergipe São Cristovão SE 49100-000 Brazil
| | - José J Rodrigues
- Departamento de Física, Universidade Federal de Sergipe São Cristovão SE 49100-000 Brazil
| | - Kenji Kamada
- National Institute of Advanced Industrial Science and Technology Ikeda Osaka 563-8577 Japan
| | - Cleber R Mendonça
- Instituto de Física de São Carlos, Universidade de São Paulo CP 369 13560-970 São Carlos SP Brazil
| | - Sandrine Piguel
- Institut Curie, PSL Research University, CNRS, INSERM, UMR9187-U1196 Orsay F-91405 France
- Université Paris Sud, Université Paris-Saclay Orsay F-91405 France
| | - Leonardo De Boni
- Instituto de Física de São Carlos, Universidade de São Paulo CP 369 13560-970 São Carlos SP Brazil
| |
Collapse
|
34
|
Rtibi E, Abderrabba M, Ayadi S, Champagne B. Theoretical Assessment of the Second-Order Nonlinear Optical Responses of Lindqvist-Type Organoimido Polyoxometalates. Inorg Chem 2019; 58:11210-11219. [PMID: 31390191 DOI: 10.1021/acs.inorgchem.9b01857] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The second-order nonlinear optical properties of Lindqvist-type organoimido polyoxometalates bearing donor and acceptor substituents are evaluated by employing density functional theory and time-dependent density functional theory using the ωB97X-D range-separated hybrid exchange-correlation functional to describe accurately the field-induced effects. The hyper-Rayleigh scattering responses, βHRS (-2ω; ω, ω), and the depolarization ratio are the targeted quantities. They are analyzed by resorting to the two-state model, which reduces the full summation-over-state expression to a single diagonal term and relates the response to a few spectroscopic quantities. The validity of this model is demonstrated by its ability to reproduce the βHRS variations as a function of the nature of the ligand, owing to the dominant 1D character of these organic-inorganic hybrids. The calculated values are in good agreement with the recent experimental work of Al-Yasari et al. (Inorg. Chem. 2017, 56, 10181-10194), which demonstrates that the hexamolybdate moiety plays the role of an electron acceptor group. On the contrary, they contradict previous studies, which attributed an electron donor character to the polyoxometalate moiety. Calculations highlight that (i) combining the hexamolybdate unit with an organic ligand bearing a strong donor substituent leads to an enhanced first hyperpolarizability, associated with a dominant low-energy excited state, characterized by a large excitation-induced electron transfer from the donating ligand to the hexamolybdate, therefore coupling the polyoxometalate (POM) and its substituted ligand; (ii) in the case of weaker donor substituents, the hexamolybdate still behaves as an electron acceptor, but the first hyperpolarizability is smaller and the coupling has a reduced spatial extension; and, on the contrary, (iii) in the presence of an acceptor substituent, there is a competition between the hexamolybdate and this group so that the first hyperpolarizability becomes very small. The whole set of results demonstrates that polyoxometalate moieties are good candidates to achieve large second-order nonlinear optical (NLO) responses while keeping a rather large transparency window and also that there remains space to improve their integration into NLO efficient organic-inorganic hybrids.
Collapse
Affiliation(s)
- Emna Rtibi
- Chemistry Department , University of Tunis El Manar, Faculty of Sciences of Tunis , B.P. 248 El Manar II , 2092 Tunis , Tunisia.,Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter , University of Namur , Rue de Bruxelles, 61 , 5000 Namur , Belgium
| | - Manef Abderrabba
- Laboratory of Materials Molecules and Applications, Preparatory Institute for Scientific and Technical Studies , Carthage University , B.P. 51, La Marsa , 2075 Tunis , Tunisia
| | - Sameh Ayadi
- Chemistry Department , University of Tunis El Manar, Faculty of Sciences of Tunis , B.P. 248 El Manar II , 2092 Tunis , Tunisia
| | - Benoît Champagne
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter , University of Namur , Rue de Bruxelles, 61 , 5000 Namur , Belgium
| |
Collapse
|
35
|
Zakrzewski JJ, Chorazy S, Nakabayashi K, Ohkoshi SI, Sieklucka B. Photoluminescent Lanthanide(III) Single-Molecule Magnets in Three-Dimensional Polycyanidocuprate(I)-Based Frameworks. Chemistry 2019; 25:11820-11825. [PMID: 31206906 DOI: 10.1002/chem.201902420] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Indexed: 01/01/2023]
Abstract
Three-dimensional bimetallic cyanido-bridged frameworks, [LnIII (2,2'-bipyridine N,N'-dioxide)2 (H2 O)][CuI 2 (CN)5 ]⋅5 H2 O (Ln=Dy, 1; Yb, 2), are reported. They exhibit the effect of slow relaxation of magnetization, leading to a magnetic hysteresis loop, and sensitized visible-to-near-infrared photoluminescence. Both physical properties are related to the eight-coordinated lanthanide(III) complexes embedded in the unprecedented coordination skeleton composed of symmetry-breaking polycyanidocuprate linkers. The three-dimensional d-f cyanido-bridged network was shown to serve as an efficient coordination scaffold to achieve emissive lanthanide single-molecule magnets.
Collapse
Affiliation(s)
- Jakub J Zakrzewski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.,Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
36
|
Li X, Lu J. Giant enhancement of electronic polarizability and the first hyperpolarizability of fluoride-decorated graphene versus graphyne and graphdiyne: insights from ab initio calculations. Phys Chem Chem Phys 2019; 21:13165-13175. [DOI: 10.1039/c9cp01118h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An effective strategy based on the adsorption of alkali-metal fluorides on graphene, graphyne, and graphdiyne is presented for exploring the strong electro-optical properties, which are correlated with the TDDFT two-level model.
Collapse
Affiliation(s)
- Xiaojun Li
- School of Science
- Xi’an University of Posts and Telecommunications
- Xi’an 710121
- P. R. China
| | - Jun Lu
- School of Life Science and Technology
- Inner Mongolia University of Science and Technology
- Baotou 014010
- P. R. China
| |
Collapse
|
37
|
Rigamonti L, Forni A, Righetto S, Pasini A. Push–pull unsymmetrical substitution in nickel(ii) complexes with tetradentate N2O2 Schiff base ligands: synthesis, structures and linear–nonlinear optical studies. Dalton Trans 2019; 48:11217-11234. [DOI: 10.1039/c9dt01216h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Push–pull unsymmetrical substitution efficiently modulates the electronic, linear and nonlinear optical properties of nickel(ii) complexes with salen-type ligands.
Collapse
Affiliation(s)
- Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Modena e Reggio Emilia
- 41125 Modena
- Italy
- Dipartimento di Chimica
| | - Alessandra Forni
- Istituto di Scienze e Tecnologie Molecolari
- Consiglio Nazionale delle Ricerche (ISTM-CNR)
- 20133 Milano
- Italy
- Dipartimento di Chimica
| | - Stefania Righetto
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Alessandro Pasini
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| |
Collapse
|
38
|
Vaganova TA, Gatilov YV, Benassi E, Chuikov IP, Pishchur DP, Malykhin EV. Impact of molecular packing rearrangement on solid-state fluorescence: polyhalogenated N-hetarylamines vs. their co-crystals with 18-crown-6. CrystEngComm 2019. [DOI: 10.1039/c9ce00645a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Relationship between the hetarylamine chemical structure, crystal packing in homo- and co-crystals, and fluorescence effects (quenching, bathochromic and hypsochromic shifts).
Collapse
Affiliation(s)
- Tamara A. Vaganova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 630090 Novosibirsk
- Russian Federation
| | - Yurij V. Gatilov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 630090 Novosibirsk
- Russian Federation
| | - Enrico Benassi
- Department of Chemistry
- Shihezi University
- Shihezi Shi
- China
- Lanzhou Institute of Chemical Physics
| | - Igor P. Chuikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 630090 Novosibirsk
- Russian Federation
| | - Denis P. Pishchur
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 630090 Novosibirsk
- Russian Federation
| | - Evgenij V. Malykhin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 630090 Novosibirsk
- Russian Federation
| |
Collapse
|
39
|
Novoa N, Manzur C, Roisnel T, Dorcet V, Cabon N, Robin-Le Guen F, Ledoux-Rak I, Kahlal S, Saillard JY, Carrillo D, Hamon JR. Redox-switching of ternary Ni(ii) and Cu(ii) complexes: synthesis, experimental and theoretical studies along with second-order nonlinear optical properties. NEW J CHEM 2019. [DOI: 10.1039/c9nj01774g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The redox-switching behavior of the title compounds has been probed for the Ni(ii) derivatives using time-resolved spectroelectrochemistry under thin-layer conditions.
Collapse
|
40
|
Cole JM, Ashcroft CM. Generic Classification Scheme for Second-Order Dipolar Nonlinear Optical Organometallic Complexes That Exhibit Second Harmonic Generation. J Phys Chem A 2018; 123:702-714. [DOI: 10.1021/acs.jpca.8b11687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jacqueline M. Cole
- Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0FS, U.K
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, U.K
- Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, U.K
| | - Christopher M. Ashcroft
- Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
41
|
Chorazy S, Zychowicz M, Ohkoshi SI, Sieklucka B. Wide-Range UV-to-Visible Excitation of Near-Infrared Emission and Slow Magnetic Relaxation in Ln III(4,4'-Azopyridine-1,1'-dioxide)[Co III(CN) 6] 3- Layered Frameworks. Inorg Chem 2018; 58:165-179. [PMID: 30565935 DOI: 10.1021/acs.inorgchem.8b02096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Trivalent lanthanide ions combined with two molecular linkers, organic 4,4'-azopyridine-1,1'-dioxide (apdo), and inorganic hexacyanidocobaltate(III), gave a series of magnetoluminescent coordination polymers, [{LnIII(apdo)(H2O)4}{CoIII(CN)6}]·2H2O (Ln = Nd, 1; Tb, 2; Dy, 3; Er, 4; Tm, 5; Yb, 6). They are hybrid organic-inorganic layered frameworks composed of cyanido-bridged {Ln2(μ-NC)4Co2} squares linked by Ln-apdo-Ln bridges into a coordination network of a mixed 4- and 8-metal ring topology. Lanthanide(III) complexes, [LnIII(μ-apdo)2(H2O)4(μ-NC)2]+, of a distorted dodecahedral geometry are isolated by diamagnetic [CoIII(CN)6]3- and apdo linkers. As a result, 1-6 reveal field-induced slow relaxation of magnetization, with typical temperature-dependent relaxation of a single-ion origin for NdIII-containing 1, DyIII-containing 3, and YbIII-containing 6. The related alternate-current magnetic data were precisely analyzed, indicating the multiple magnetic relaxation pathways, including a direct process, strong quantum tunneling of magnetization, non-negligible Raman processes, and crucial two-phonon Orbach thermal relaxation. The thermal energy barriers of the Orbach process, Δ E/ kB, are 15.1(9) K with τ0 = 9.8(9) × 10-6 s at Hdc = 4500 Oe, 16.1(8) K with τ0 = 9.0(9) × 10-5 s at Hdc = 1500 Oe, and 17.3(6) K with τ0 = 3.2(7) × 10-6 s at Hdc = 700 Oe, for 1, 3, and 6, respectively, proving the single-molecule magnet (SMM) behavior. Because of the presence of [Co(CN)6]3-, 1-6 show strong UV absorption, while the chromophoric apdo leads to the strong absorption in the visible range. As a result, the visible 4f/3d metal-centered emission is quenched, but the near-infrared luminescence from NdIII and YbIII is observed in 1 and 6, respectively. It is realized by Co-to-Ln metal-to-metal, and apdo-to-Ln ligand-to-metal energy transfers; thus, broad UV-to-visible excitation can be explored. Compounds 1-6 form a novel family of functional bimetallic assemblies, incorporating NIR-emissive SMMs as presented for NdCo (1) and YbCo (6) derivatives.
Collapse
Affiliation(s)
- Szymon Chorazy
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Krakow , Poland
| | - Mikolaj Zychowicz
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Krakow , Poland
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Barbara Sieklucka
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Krakow , Poland
| |
Collapse
|
42
|
|
43
|
Pan Y, Guo SP, Liu BW, Xue HG, Guo GC. Second-order nonlinear optical crystals with mixed anions. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.013] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Jiang Y, Wang D, Xu D, Zhang J, Wang Z. Dimerization of Metallofullerenes to Obtain Materials with Enhanced Nonlinear Optical Properties. Chemphyschem 2018; 19:2995-3000. [DOI: 10.1002/cphc.201800797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Yuhang Jiang
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Dongsheng Wang
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Dan Xu
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Jinying Zhang
- Center of Nanomaterials for Renewable Energy (CNRE); State Key Lab of Electrical Insulation and Power Equipment; School of Electrical Engineering; Xi'an Jiaotong University; Xi'an 710054 China
| | - Zhiyong Wang
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| |
Collapse
|
45
|
Cho D, Yang M, Shin N, Hong S. Mapping reversible photoswitching of molecular resistance fluctuations during the conformational transformation of azobenzene-terminated molecular switches. NANOTECHNOLOGY 2018; 29:365704. [PMID: 29877868 DOI: 10.1088/1361-6528/aacb17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report a direct mapping and analysis of electrical noise in azobenzene-terminated molecular monolayers, revealing reversible photoswitching of the molecular resistance fluctuations in the layers. In this work, a conducting atomic force microscope combined with a homemade spectrum analyzer was used to image electrical current and noise at patterned self-assembled monolayers (SAMs) of azobenzene-terminated molecular wires on a gold substrate. We analyzed the current and noise imaging data to obtain maps of molecular resistances and amount of mean-square fluctuations in the resistances of the regions of trans-azobenzene and a cis/trans-azobenzene mixture. We revealed that the fluctuations in the molecular resistances in the SAMs were enhanced after the trans-to-cis isomerization, while the resistances were reduced. This result could be attributed to enhanced disorders in the molecular arrangements in the cis-SAMs. Furthermore, we observed that the changes in the resistance fluctuations were reversible with respect to repeated trans-to-cis and cis-to-trans isomerizations, indicating that the effects originated from reversible photoswitching of the molecular structures rather than irreversible damages of the molecules. These findings provide valuable insights into the electrical fluctuations in photoswitchable molecules, which could be utilized in further studies on molecular switches and molecular electronics in general.
Collapse
Affiliation(s)
- Duckhyung Cho
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | | | | | | |
Collapse
|
46
|
Zhang J, Han S, Liu X, Wu Z, Ji C, Sun Z, Luo J. A lead-free perovskite-like hybrid with above-room-temperature switching of quadratic nonlinear optical properties. Chem Commun (Camb) 2018; 54:5614-5617. [PMID: 29770371 DOI: 10.1039/c8cc02496k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a new lead-free perovskite-like hybrid, composed of hexamethyleneimine and one-dimensional [SbCl5]n2- polyanionic zigzag chains, which shows above-room-temperature switching of quadratic nonlinear optical (NLO) properties induced by the unique order-disorder conformational changes of the organic cation.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Wang Y, Yang N, Liu Y. Organic conjugated small molecule materials based optical probe for rapid, colorimetric and UV-vis spectral detection of phosphorylated protein in placental tissue. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 194:45-49. [PMID: 29316483 DOI: 10.1016/j.saa.2018.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/27/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
A novel organic small molecule with D-Pi-A structure was prepared, which was found to be a promising colorimetric and ratiometric UV-vis spetral probe for detection of phosphorylated proteins with the help of tetravalent zirconium ion. Such optical probe based on chromophore WYF-1 shows a rapid response (within 10s) and high selectivity and sensitivity for phosphorylated proteins, giving distinct colorimetric and ratiometric UV-vis changes at 720 and 560nm. The detection limit for phosphorylated proteins was estimated to be 100nM. In addition, detection of phosphorylated proteins in placental tissue samples with this probe was successfully applied, which indicates that this probe holds great potential for phosphorylated proteins detection.
Collapse
Affiliation(s)
- Yanfang Wang
- Department of Obstetrics, Aviation General Hospital, Beijing 100012, China
| | - Na Yang
- Department of Obstetrics, Aviation General Hospital, Beijing 100012, China
| | - Yi Liu
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China; Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, Taiyuan 030051, China.
| |
Collapse
|
48
|
Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.030] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Enríquez-Cabrera A, Vega-Peñaloza A, Álvarez-Venicio V, Romero-Ávila M, Lacroix PG, Ramos-Ortiz G, Santillan R, Farfán N. Two-photon absorption properties of four new pentacoordinated diorganotin complexes derived from Schiff bases with fluorene. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
50
|
López-Mayorga B, Sandoval-Chávez CI, Carreón-Castro P, Ugalde-Saldívar VM, Cortés-Guzmán F, López-Cortés JG, Ortega-Alfaro MC. Ferrocene amphiphilic D–π–A dyes: synthesis, redox behavior and determination of band gaps. NEW J CHEM 2018. [DOI: 10.1039/c8nj00787j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We reported the synthesis, optical and redox behavior of six ferrocenyl D–π–A dyes. Optical and electrochemical band gaps were determined and corroborated by TD-DFT calculations. Compounds4exhibit the smallest band gap of this series.
Collapse
Affiliation(s)
- B. López-Mayorga
- Instituto de Ciencias Nucleares
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Cd. Mx
| | - C. I. Sandoval-Chávez
- Instituto de Ciencias Nucleares
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Cd. Mx
| | - P. Carreón-Castro
- Instituto de Ciencias Nucleares
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Cd. Mx
| | | | - F. Cortés-Guzmán
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Cd. Universitaria
- Cd. Mx
| | - J. G. López-Cortés
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Cd. Universitaria
- Cd. Mx
| | - M. C. Ortega-Alfaro
- Instituto de Ciencias Nucleares
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Cd. Mx
| |
Collapse
|