1
|
Zhao Y, Wang T, Liu J, Wang Z, Lu Y. Emerging brain organoids: 3D models to decipher, identify and revolutionize brain. Bioact Mater 2025; 47:378-402. [PMID: 40026825 PMCID: PMC11869974 DOI: 10.1016/j.bioactmat.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Brain organoids are an emerging in vitro 3D brain model that is integrated from pluripotent stem cells. This model mimics the human brain's developmental process and disease-related phenotypes to a certain extent while advancing the development of human brain-based biological intelligence. However, many limitations of brain organoid culture (e.g., lacking a functional vascular system, etc.) prevent in vitro-cultured organoids from truly replicating the human brain in terms of cell type and structure. To improve brain organoids' scalability, efficiency, and stability, this paper discusses important contributions of material biology and microprocessing technology in solving the related limitations of brain organoids and applying the latest imaging technology to make real-time imaging of brain organoids possible. In addition, the related applications of brain organoids, especially the development of organoid intelligence combined with artificial intelligence, are analyzed, which will help accelerate the rational design and guidance of brain organoids.
Collapse
Affiliation(s)
- Yuli Zhao
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, Liaoning, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Ting Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Jiajun Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ze Wang
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, Liaoning, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Aili Y, Maimaitiming N, Wang Z, Wang Y. Brain organoids: A new tool for modelling of neurodevelopmental disorders. J Cell Mol Med 2024; 28:e18560. [PMID: 39258535 PMCID: PMC11388061 DOI: 10.1111/jcmm.18560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 09/12/2024] Open
Abstract
Neurodevelopmental disorders are mostly studied using mice as models. However, the mouse brain lacks similar cell types and structures as those of the human brain. In recent years, emergence of three-dimensional brain organoids derived from human embryonic stem cells or induced pluripotent stem cells allows for controlled monitoring and evaluation of early neurodevelopmental processes and has opened a window for studying various aspects of human brain development. However, such organoids lack original anatomical structure of the brain during maturation, and neurodevelopmental maturation processes that rely on unique cellular interactions and neural network connections are limited. Consequently, organoids are difficult to be used extensively and effectively while modelling later stages of human brain development and disease progression. To address this problem, several methods and technologies have emerged that aim to enhance the sophisticated regulation of brain organoids developmental processes through bioengineering approaches, which may alleviate some of the current limitations. This review discusses recent advances and application areas of human brain organoid culture methods, aiming to generalize optimization strategies for organoid systems, improve the ability to mimic human brain development, and enhance the application value of organoids.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| | | | - Zengliang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| | - Yongxin Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| |
Collapse
|
3
|
Tenchov R, Sasso JM, Wang X, Zhou QA. Antiaging Strategies and Remedies: A Landscape of Research Progress and Promise. ACS Chem Neurosci 2024; 15:408-446. [PMID: 38214973 PMCID: PMC10853939 DOI: 10.1021/acschemneuro.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Aging is typified by a gradual loss of physiological fitness and accumulation of cellular damage, leading to deteriorated functions and enhanced vulnerability to diseases. Antiaging research has a long history throughout civilization, with many efforts put forth to understand and prevent the effects of aging. Multiple strategies aiming to promote healthy aging and extend the lifespan have been developed including lifestyle adjustments, medical treatments, and social programs. A multitude of antiaging medicines and remedies have also been explored. Here, we use data from the CAS Content Collection to analyze the publication landscape of recent research related to antiaging strategies and treatments. We review the recent advances and delineate trends in research headway of antiaging knowledge and practice across time, geography, and development pipelines. We further assess the state-of-the-art antiaging approaches and explore their correlations with age-related diseases. The landscape of antiaging drugs has been outlined and explored. Well-recognized and novel, currently evaluated antiaging agents have also been summarized. Finally, we review clinical applications of antiaging products with their development pipelines. The objective of this review is to summarize current knowledge on preventive strategies and treatment remedies in the field of aging, to outline challenges and evaluate growth opportunities, in order to further efforts to solve the problems that remain.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M. Sasso
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xinmei Wang
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
4
|
Eşiyok N, Heide M. The SVZ stem cell niche-components, functions, and in vitro modelling. Front Cell Dev Biol 2023; 11:1332901. [PMID: 38188021 PMCID: PMC10766702 DOI: 10.3389/fcell.2023.1332901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Neocortical development depends on the intrinsic ability of neural stem and progenitor cells to proliferate and differentiate to generate the different kinds of neurons in the adult brain. These progenitor cells can be distinguished into apical progenitors, which occupy a stem cell niche in the ventricular zone and basal progenitors, which occupy a stem cell niche in the subventricular zone (SVZ). During development, the stem cell niche provided in the subventricular zone enables the increased proliferation and self-renewal of basal progenitors, which likely underlie the expansion of the human neocortex. However, the components forming the SVZ stem cell niche in the developing neocortex have not yet been fully understood. In this review, we will discuss potential components of the SVZ stem cell niche, i.e., extracellular matrix composition and brain vasculature, and their possible key role in establishing and maintaining this niche during fetal neocortical development. We will also emphasize the potential role of basal progenitor morphology in maintaining their proliferative capacity within the stem cell niche of the SVZ. Finally, we will focus on the use of brain organoids to i) understand the unique features of basal progenitors, notably basal radial glia; ii) study components of the SVZ stem cell niche; and iii) provide future directions on how to improve brain organoids, notably the organoid SVZ, and make them more reliable models of human neocortical development and evolution studies.
Collapse
Affiliation(s)
| | - Michael Heide
- Research Group Brain Development and Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
5
|
Abdulla A, Chen S, Chen Z, Wang Y, Yan H, Chen R, Ahmad KZ, Liu K, Yan C, He J, Jiang L, Ding X. Three-dimensional microfluidics with dynamic fluidic perturbation promotes viability and uniformity of human cerebral organoids. Biosens Bioelectron 2023; 240:115635. [PMID: 37651948 DOI: 10.1016/j.bios.2023.115635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Human cerebral organoids (COs), generated from stem cells, are emerging animal alternatives for understanding brain development and neurodegeneration diseases. Long-term growth of COs is currently hindered by the limitation of efficient oxygen infiltration and continuous nutrient supply, leading to general inner hypoxia and cell death at the core region of the organoids. Here, we developed a three-dimensional (3D) microfluidic platform with dynamic fluidic perturbation and oxygen supply. We demonstrated COs cultured in the 3D microfluidic system grew continuously for over 50 days without cell death at the core region. Increased cell proliferation and enhanced cell differentiation were also observed and verified with immunofluorescence staining, proteomics and metabolomics. Time-lapse proteomics from 7 consecutive acquisitions between day 4 and day 30 identified 546 proteins differently expressed accompanying COs growth, which were mainly relevant to nervous system development, in utero embryonic development, brain development and neuron migration. Our 3D microfluidic platform provides potential utility for culturing high-homogeneous human organoids.
Collapse
Affiliation(s)
- Aynur Abdulla
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shujin Chen
- Ministry of Education, Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhecong Chen
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yukun Wang
- School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - Haoni Yan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Chen
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Khan Zara Ahmad
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chonghuai Yan
- Ministry of Education, Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Buchner F, Dokuzluoglu Z, Grass T, Rodriguez-Muela N. Spinal Cord Organoids to Study Motor Neuron Development and Disease. Life (Basel) 2023; 13:1254. [PMID: 37374039 PMCID: PMC10303776 DOI: 10.3390/life13061254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Motor neuron diseases (MNDs) are a heterogeneous group of disorders that affect the cranial and/or spinal motor neurons (spMNs), spinal sensory neurons and the muscular system. Although they have been investigated for decades, we still lack a comprehensive understanding of the underlying molecular mechanisms; and therefore, efficacious therapies are scarce. Model organisms and relatively simple two-dimensional cell culture systems have been instrumental in our current knowledge of neuromuscular disease pathology; however, in the recent years, human 3D in vitro models have transformed the disease-modeling landscape. While cerebral organoids have been pursued the most, interest in spinal cord organoids (SCOs) is now also increasing. Pluripotent stem cell (PSC)-based protocols to generate SpC-like structures, sometimes including the adjacent mesoderm and derived skeletal muscle, are constantly being refined and applied to study early human neuromuscular development and disease. In this review, we outline the evolution of human PSC-derived models for generating spMN and recapitulating SpC development. We also discuss how these models have been applied to exploring the basis of human neurodevelopmental and neurodegenerative diseases. Finally, we provide an overview of the main challenges to overcome in order to generate more physiologically relevant human SpC models and propose some exciting new perspectives.
Collapse
Affiliation(s)
- Felix Buchner
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Tobias Grass
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
7
|
Mulder LA, Depla JA, Sridhar A, Wolthers K, Pajkrt D, Vieira de Sá R. A beginner's guide on the use of brain organoids for neuroscientists: a systematic review. Stem Cell Res Ther 2023; 14:87. [PMID: 37061699 PMCID: PMC10105545 DOI: 10.1186/s13287-023-03302-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/27/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The first human brain organoid protocol was presented in the beginning of the previous decade, and since then, the field witnessed the development of many new brain region-specific models, and subsequent protocol adaptations and modifications. The vast amount of data available on brain organoid technology may be overwhelming for scientists new to the field and consequently decrease its accessibility. Here, we aimed at providing a practical guide for new researchers in the field by systematically reviewing human brain organoid publications. METHODS Articles published between 2010 and 2020 were selected and categorised for brain organoid applications. Those describing neurodevelopmental studies or protocols for novel organoid models were further analysed for culture duration of the brain organoids, protocol comparisons of key aspects of organoid generation, and performed functional characterisation assays. We then summarised the approaches taken for different models and analysed the application of small molecules and growth factors used to achieve organoid regionalisation. Finally, we analysed articles for organoid cell type compositions, the reported time points per cell type, and for immunofluorescence markers used to characterise different cell types. RESULTS Calcium imaging and patch clamp analysis were the most frequently used neuronal activity assays in brain organoids. Neural activity was shown in all analysed models, yet network activity was age, model, and assay dependent. Induction of dorsal forebrain organoids was primarily achieved through combined (dual) SMAD and Wnt signalling inhibition. Ventral forebrain organoid induction was performed with dual SMAD and Wnt signalling inhibition, together with additional activation of the Shh pathway. Cerebral organoids and dorsal forebrain model presented the most cell types between days 35 and 60. At 84 days, dorsal forebrain organoids contain astrocytes and potentially oligodendrocytes. Immunofluorescence analysis showed cell type-specific application of non-exclusive markers for multiple cell types. CONCLUSIONS We provide an easily accessible overview of human brain organoid cultures, which may help those working with brain organoids to define their choice of model, culture time, functional assay, differentiation, and characterisation strategies.
Collapse
Affiliation(s)
- Lance A Mulder
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Josse A Depla
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- uniQure Biopharma B.V., Amsterdam, The Netherlands
| | - Adithya Sridhar
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Katja Wolthers
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Dasja Pajkrt
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Renata Vieira de Sá
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- uniQure Biopharma B.V., Amsterdam, The Netherlands
| |
Collapse
|
8
|
Evolution and implications of de novo genes in humans. Nat Ecol Evol 2023:10.1038/s41559-023-02014-y. [PMID: 36928843 DOI: 10.1038/s41559-023-02014-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023]
Abstract
Genes and translated open reading frames (ORFs) that emerged de novo from previously non-coding sequences provide species with opportunities for adaptation. When aberrantly activated, some human-specific de novo genes and ORFs have disease-promoting properties-for instance, driving tumour growth. Thousands of putative de novo coding sequences have been described in humans, but we still do not know what fraction of those ORFs has readily acquired a function. Here, we discuss the challenges and controversies surrounding the detection, mechanisms of origin, annotation, validation and characterization of de novo genes and ORFs. Through manual curation of literature and databases, we provide a thorough table with most de novo genes reported for humans to date. We re-evaluate each locus by tracing the enabling mutations and list proposed disease associations, protein characteristics and supporting evidence for translation and protein detection. This work will support future explorations of de novo genes and ORFs in humans.
Collapse
|
9
|
Cuní-López C, Stewart R, White AR, Quek H. 3D in vitro modelling of human patient microglia: A focus on clinical translation and drug development in neurodegenerative diseases. J Neuroimmunol 2023; 375:578017. [PMID: 36657374 DOI: 10.1016/j.jneuroim.2023.578017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Microglia have an increasingly well-recognised role in the pathogenesis of neurodegenerative diseases, thereby becoming attractive therapeutic targets. However, the development of microglia-targeted therapeutics for neurodegeneration has had limited success. This stems partly from the lack of clinically relevant microglia model systems. To circumvent this translational gap, patient-derived microglial cell models established using conventional 2D in vitro techniques have emerged. Though promising, these models lack the microenvironment and multicellular interactions of the brain needed to maintain microglial homeostasis. In this review, we discuss the use of 3D in vitro platforms to improve microglia modelling and their potential benefits to fast-track drug development for neurodegenerative diseases.
Collapse
Affiliation(s)
- Carla Cuní-López
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4006, QLD, Australia.
| | - Romal Stewart
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; UQ Centre for Clinical Research, The University of Queensland, Brisbane 4006, QLD, Australia.
| | - Anthony R White
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; School of Biomedical Science, The University of Queensland, Brisbane 4072, QLD, Australia.
| | - Hazel Quek
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; School of Biomedical Science, The University of Queensland, Brisbane 4072, QLD, Australia; School of Biomedical Science, Queensland University of Technology, Brisbane 4059, QLD, Australia.
| |
Collapse
|
10
|
Li M, Gao L, Zhao L, Zou T, Xu H. Toward the next generation of vascularized human neural organoids. Med Res Rev 2023; 43:31-54. [PMID: 35993813 DOI: 10.1002/med.21922] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/22/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Thanks to progress in the development of three-dimensional (3D) culture technologies, human central nervous system (CNS) development and diseases have been gradually deciphered by using organoids derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs). Selforganized neural organoids (NOs) have been used to mimic morphogenesis and functions of specific organs in vitro. Many NOs have been reproduced in vitro, such as those mimicking the human brain, retina, and spinal cord. However, NOs fail to capitulate to the maturation and complexity of in vivo neural tissues. The persistent issues with current NO cultivation protocols are inadequate oxygen supply and nutrient diffusion due to the absence of vascular networks. In vivo, the developing CNS is interpenetrated by vasculature that not only supplies oxygen and nutrients but also provides a structural template for neuronal growth. To address these deficiencies, recent studies have begun to couple NO culture with bioengineering techniques and methodologies, including genetic engineering, coculture, multidifferentiation, microfluidics and 3D bioprinting, and transplantation, which might promote NO maturation and create more functional NOs. These cutting-edge methods could generate an ever more reliable NO model in vitro for deciphering the codes of human CNS development, disease progression, and translational application. In this review, we will summarize recent technological advances in culture strategies to generate vascularized NOs (vNOs), with a special focus on cerebral- and retinal-organoid models.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
11
|
Sullivan KM, Ko E, Kim EM, Ballance WC, Ito JD, Chalifoux M, Kim YJ, Bashir R, Kong H. Extracellular Microenvironmental Control for Organoid Assembly. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1209-1222. [PMID: 35451330 PMCID: PMC9836674 DOI: 10.1089/ten.teb.2021.0186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/04/2022] [Indexed: 01/22/2023]
Abstract
Organoids, which are multicellular clusters with similar physiological functions to living organs, have gained increasing attention in bioengineering. As organoids become more advanced, methods to form complex structures continue to develop. There is evidence that the extracellular microenvironment can regulate organoid quality. The extracellular microenvironment consists of soluble bioactive molecules, extracellular matrix, and biofluid flow. However, few efforts have been made to discuss the microenvironment optimal to engineer specific organoids. Therefore, this review article examines the extent to which engineered extracellular microenvironments regulate organoid quality. First, we summarize the natural tissue and organ's unique chemical and mechanical properties, guiding researchers to design an extracellular microenvironment used for organoid engineering. Then, we summarize how the microenvironments contribute to the formation and growth of the brain, lung, intestine, liver, retinal, and kidney organoids. The approaches to forming and evaluating the resulting organoids are also discussed in detail. Impact statement Organoids, which are multicellular clusters with similar physiological function to living organs, have been gaining increasing attention in bioengineering. As organoids become more advanced, methods to form complex structures continue to develop. This review article focuses on recent efforts to engineer the extracellular microenvironment in organoid research. We summarized the natural organ's microenvironment, which informs researchers of key factors that can influence organoid formation. Then, we summarize how these microenvironmental controls significantly contribute to the formation and growth of the corresponding brain, lung, intestine, liver, retinal, and kidney organoids. The approaches to forming and evaluating the resulting organoids are discussed in detail, including extracellular matrix choice and properties, culture methods, and the evaluation of the morphology and functionality through imaging and biochemical analysis.
Collapse
Affiliation(s)
- Kathryn M. Sullivan
- Department of Bioengineering, and University of Illinois at Urbana−Champaign, Urbana, Illinois, USA
| | - Eunkyung Ko
- Department of Bioengineering, and University of Illinois at Urbana−Champaign, Urbana, Illinois, USA
| | - Eun Mi Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois, USA
| | - William C. Ballance
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois, USA
| | - John D. Ito
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois, USA
| | - Madeleine Chalifoux
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois, USA
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST–Europe), Saarbrucken, Germany
| | - Rashid Bashir
- Department of Bioengineering, and University of Illinois at Urbana−Champaign, Urbana, Illinois, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois, USA
| |
Collapse
|
12
|
Fischer J, Fernández Ortuño E, Marsoner F, Artioli A, Peters J, Namba T, Eugster Oegema C, Huttner WB, Ladewig J, Heide M. Human-specific ARHGAP11B ensures human-like basal progenitor levels in hominid cerebral organoids. EMBO Rep 2022; 23:e54728. [PMID: 36098218 PMCID: PMC9646322 DOI: 10.15252/embr.202254728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 02/06/2023] Open
Abstract
The human-specific gene ARHGAP11B has been implicated in human neocortex expansion. However, the extent of ARHGAP11B's contribution to this expansion during hominid evolution is unknown. Here we address this issue by genetic manipulation of ARHGAP11B levels and function in chimpanzee and human cerebral organoids. ARHGAP11B expression in chimpanzee cerebral organoids doubles basal progenitor levels, the class of cortical progenitors with a key role in neocortex expansion. Conversely, interference with ARHGAP11B's function in human cerebral organoids decreases basal progenitors down to the chimpanzee level. Moreover, ARHGAP11A or ARHGAP11B rescue experiments in ARHGAP11A plus ARHGAP11B double-knockout human forebrain organoids indicate that lack of ARHGAP11B, but not of ARHGAP11A, decreases the abundance of basal radial glia-the basal progenitor type thought to be of particular relevance for neocortex expansion. Taken together, our findings demonstrate that ARHGAP11B is necessary and sufficient to ensure the elevated basal progenitor levels that characterize the fetal human neocortex, suggesting that this human-specific gene was a major contributor to neocortex expansion during human evolution.
Collapse
Affiliation(s)
- Jan Fischer
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- Present address:
Institute for Clinical GeneticsUniversity Hospital Carl Gustav CarusDresdenGermany
| | | | - Fabio Marsoner
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Annasara Artioli
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jula Peters
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- Present address:
Neuroscience Center, HiLIFE ‐ Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | | | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
| | - Julia Ladewig
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Michael Heide
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- German Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| |
Collapse
|
13
|
Fischer J, Fernández Ortuño E, Marsoner F, Artioli A, Peters J, Namba T, Eugster Oegema C, Huttner WB, Ladewig J, Heide M. Human-specific ARHGAP11B ensures human-like basal progenitor levels in hominid cerebral organoids. EMBO Rep 2022; 23:e54728. [PMID: 36381990 PMCID: PMC9646322 DOI: 10.1101/2020.10.01.322792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023] Open
Abstract
The human-specific gene ARHGAP11B has been implicated in human neocortex expansion. However, the extent of ARHGAP11B's contribution to this expansion during hominid evolution is unknown. Here we address this issue by genetic manipulation of ARHGAP11B levels and function in chimpanzee and human cerebral organoids. ARHGAP11B expression in chimpanzee cerebral organoids doubles basal progenitor levels, the class of cortical progenitors with a key role in neocortex expansion. Conversely, interference with ARHGAP11B's function in human cerebral organoids decreases basal progenitors down to the chimpanzee level. Moreover, ARHGAP11A or ARHGAP11B rescue experiments in ARHGAP11A plus ARHGAP11B double-knockout human forebrain organoids indicate that lack of ARHGAP11B, but not of ARHGAP11A, decreases the abundance of basal radial glia - the basal progenitor type thought to be of particular relevance for neocortex expansion. Taken together, our findings demonstrate that ARHGAP11B is necessary and sufficient to ensure the elevated basal progenitor levels that characterize the fetal human neocortex, suggesting that this human-specific gene was a major contributor to neocortex expansion during human evolution.
Collapse
Affiliation(s)
- Jan Fischer
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- Present address:
Institute for Clinical GeneticsUniversity Hospital Carl Gustav CarusDresdenGermany
| | | | - Fabio Marsoner
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Annasara Artioli
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jula Peters
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- Present address:
Neuroscience Center, HiLIFE ‐ Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | | | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
| | - Julia Ladewig
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Michael Heide
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- German Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| |
Collapse
|
14
|
Mora-Bermúdez F, Kanis P, Macak D, Peters J, Naumann R, Xing L, Sarov M, Winkler S, Oegema CE, Haffner C, Wimberger P, Riesenberg S, Maricic T, Huttner WB, Pääbo S. Longer metaphase and fewer chromosome segregation errors in modern human than Neanderthal brain development. SCIENCE ADVANCES 2022; 8:eabn7702. [PMID: 35905187 PMCID: PMC9337762 DOI: 10.1126/sciadv.abn7702] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Since the ancestors of modern humans separated from those of Neanderthals, around 100 amino acid substitutions spread to essentially all modern humans. The biological significance of these changes is largely unknown. Here, we examine all six such amino acid substitutions in three proteins known to have key roles in kinetochore function and chromosome segregation and to be highly expressed in the stem cells of the developing neocortex. When we introduce these modern human-specific substitutions in mice, three substitutions in two of these proteins, KIF18a and KNL1, cause metaphase prolongation and fewer chromosome segregation errors in apical progenitors of the developing neocortex. Conversely, the ancestral substitutions cause shorter metaphase length and more chromosome segregation errors in human brain organoids, similar to what we find in chimpanzee organoids. These results imply that the fidelity of chromosome segregation during neocortex development improved in modern humans after their divergence from Neanderthals.
Collapse
Affiliation(s)
- Felipe Mora-Bermúdez
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp Kanis
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dominik Macak
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jula Peters
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Christiane Haffner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Technische Universität Dresden, Dresden, Germany
| | | | - Tomislav Maricic
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Okinawa Institute of Science and Technology, Onna-son 904-0495, Japan
| |
Collapse
|
15
|
Kaluthantrige Don F, Kalebic N. Forebrain Organoids to Model the Cell Biology of Basal Radial Glia in Neurodevelopmental Disorders and Brain Evolution. Front Cell Dev Biol 2022; 10:917166. [PMID: 35774229 PMCID: PMC9237216 DOI: 10.3389/fcell.2022.917166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
The acquisition of higher intellectual abilities that distinguish humans from their closest relatives correlates greatly with the expansion of the cerebral cortex. This expansion is a consequence of an increase in neuronal cell production driven by the higher proliferative capacity of neural progenitor cells, in particular basal radial glia (bRG). Furthermore, when the proliferation of neural progenitor cells is impaired and the final neuronal output is altered, severe neurodevelopmental disorders can arise. To effectively study the cell biology of human bRG, genetically accessible human experimental models are needed. With the pioneering success to isolate and culture pluripotent stem cells in vitro, we can now routinely investigate the developing human cerebral cortex in a dish using three-dimensional multicellular structures called organoids. Here, we will review the molecular and cell biological features of bRG that have recently been elucidated using brain organoids. We will further focus on the application of this simple model system to study in a mechanistically actionable way the molecular and cellular events in bRG that can lead to the onset of various neurodevelopmental diseases.
Collapse
|
16
|
Mora-Bermúdez F, Huttner WB. What Are the Human-Specific Aspects of Neocortex Development? Front Neurosci 2022; 16:878950. [PMID: 35495057 PMCID: PMC9047014 DOI: 10.3389/fnins.2022.878950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
When considering what makes us human, the development of the neocortex, the seat of our higher cognitive abilities, is of central importance. Throughout this complex developmental process, neocortical stem and progenitor cells (NSPCs) exert a priming role in determining neocortical tissue fate, through a series of cellular and molecular events. In this Perspective article, we address five questions of relevance for potentially human-specific aspects of NSPCs, (i) Are there human-specific NSPC subtypes? (ii) What is the functional significance of the known temporal differences in NSPC dynamics between human and other great apes? (iii) Are there functional interactions between the human-specific genes preferentially expressed in NSPCs? (iv) Do humans amplify certain metabolic pathways for NSPC proliferation? and finally (v) Have differences evolved during human evolution, notably between modern humans and Neandertals, that affect the performance of key genes operating in NSPCs? We discuss potential implications inherent to these questions, and suggest experimental approaches on how to answer them, hoping to provide incentives to further understand key issues of human cortical development.
Collapse
Affiliation(s)
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
17
|
Long KR, Huttner WB. The Role of the Extracellular Matrix in Neural Progenitor Cell Proliferation and Cortical Folding During Human Neocortex Development. Front Cell Neurosci 2022; 15:804649. [PMID: 35140590 PMCID: PMC8818730 DOI: 10.3389/fncel.2021.804649] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular matrix (ECM) has long been known to regulate many aspects of neural development in many different species. However, the role of the ECM in the development of the human neocortex is not yet fully understood. In this review we discuss the role of the ECM in human neocortex development and the different model systems that can be used to investigate this. In particular, we will focus on how the ECM regulates human neural stem and progenitor cell proliferation and differentiation, how the ECM regulates the architecture of the developing human neocortex and the effect of mutations in ECM and ECM-associated genes in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Katherine R. Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
18
|
Taniguchi-Ikeda M, Koyanagi-Aoi M, Maruyama T, Takaori T, Hosoya A, Tezuka H, Nagase S, Ishihara T, Kadoshima T, Muguruma K, Ishigaki K, Sakurai H, Mizoguchi A, Novitch BG, Toda T, Watanabe M, Aoi T. Restoration of the defect in radial glial fiber migration and cortical plate organization in a brain organoid model of Fukuyama muscular dystrophy. iScience 2021; 24:103140. [PMID: 34632335 PMCID: PMC8487058 DOI: 10.1016/j.isci.2021.103140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 01/05/2023] Open
Abstract
Fukuyama congenital muscular dystrophy (FCMD) is a severe, intractable genetic disease that affects the skeletal muscle, eyes, and brain and is attributed to a defect in alpha dystroglycan (αDG) O-mannosyl glycosylation. We previously established disease models of FCMD; however, they did not fully recapitulate the phenotypes observed in human patients. In this study, we generated induced pluripotent stem cells (iPSCs) from a human FCMD patient and differentiated these cells into three-dimensional brain organoids and skeletal muscle. The brain organoids successfully mimicked patient phenotypes not reliably reproduced by existing models, including decreased αDG glycosylation and abnormal radial glial (RG) fiber migration. The basic polycyclic compound Mannan-007 (Mn007) restored αDG glycosylation in the brain and muscle models tested and partially rescued the abnormal RG fiber migration observed in cortical organoids. Therefore, our study underscores the importance of αDG O-mannosyl glycans for normal RG fiber architecture and proper neuronal migration in corticogenesis.
Collapse
Affiliation(s)
- Mariko Taniguchi-Ikeda
- Department of Clinical Genetics, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-chou, Toyoake, Aichi 470-1192, Japan
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo 650-0017, Japan
- Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Hyogo 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Hyogo 650-0017, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Toru Takaori
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akiko Hosoya
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo 650-0017, Japan
- Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Hyogo 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Hyogo 650-0017, Japan
| | - Hiroyuki Tezuka
- Department of Cellular Function Analysis, Research Promotion and Support Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | | | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Yanagido, Gifu 501-1194, Japan
| | | | - Keiko Muguruma
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
- Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Keiko Ishigaki
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akira Mizoguchi
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Bennett G. Novitch
- Department of Neurobiology, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA
- Intellectual and Developmental Disabilities Research Center, UCLA, Los Angeles, CA 90095, USA
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Momoko Watanabe
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
- Sue & Bill Gross Stem Cell Research Center, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Takashi Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo 650-0017, Japan
- Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Hyogo 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
19
|
Abstract
The human brain is characterized by the large size and intricate folding of its cerebral cortex, which are fundamental for our higher cognitive function and frequently altered in pathological dysfunction. Cortex folding is not unique to humans, nor even to primates, but is common across mammals. Cortical growth and folding are the result of complex developmental processes that involve neural stem and progenitor cells and their cellular lineages, the migration and differentiation of neurons, and the genetic programs that regulate and fine-tune these processes. All these factors combined generate mechanical stress and strain on the developing neural tissue, which ultimately drives orderly cortical deformation and folding. In this review we examine and summarize the current knowledge on the molecular, cellular, histogenic and mechanical mechanisms that are involved in and influence folding of the cerebral cortex, and how they emerged and changed during mammalian evolution. We discuss the main types of pathological malformations of human cortex folding, their specific developmental origin, and how investigating their genetic causes has illuminated our understanding of key events involved. We close our review by presenting the state-of-the-art animal and in vitro models of cortex folding that are currently used to study these devastating developmental brain disorders in children, and what are the main challenges that remain ahead of us to fully understand brain folding.
Collapse
Affiliation(s)
- Lucia Del Valle Anton
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Alicante, Spain
| | - Victor Borrell
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
20
|
De Los Angeles A, Fernando MB, Hall NAL, Brennand KJ, Harrison PJ, Maher BJ, Weinberger DR, Tunbridge EM. Induced Pluripotent Stem Cells in Psychiatry: An Overview and Critical Perspective. Biol Psychiatry 2021; 90:362-372. [PMID: 34176589 PMCID: PMC8375580 DOI: 10.1016/j.biopsych.2021.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023]
Abstract
A key challenge in psychiatry research is the development of high-fidelity model systems that can be experimentally manipulated to explore and test pathophysiological mechanisms of illness. In this respect, the emerging capacity to derive neural cells and circuits from human induced pluripotent stem cells (iPSCs) has generated significant excitement. This review aims to provide a critical appraisal of the potential for iPSCs in illuminating pathophysiological mechanisms in the context of other available technical approaches. We discuss the selection of iPSC phenotypes relevant to psychiatry, the information that researchers can draw on to help guide these decisions, and how researchers choose between the use of 2-dimensional cultures and the use of more complex 3-dimensional model systems. We discuss the strengths and limitations of current models and the challenges and opportunities that they present. Finally, we discuss the potential of iPSC-based model systems for clarifying the mechanisms underlying genetic risk for psychiatry and the steps that will be needed to ensure that robust and reliable conclusions can be drawn. We argue that while iPSC-based models are ideally placed to study fundamental processes occurring within and between neural cells, they are often less well suited for case-control studies, given issues relating to statistical power and the challenges in identifying which cellular phenotypes are meaningful at the level of the whole individual. Our aim is to highlight the importance of considering the hypotheses of a given study to guide decisions about which, if any, iPSC-based system is most appropriate to address it.
Collapse
Affiliation(s)
- Alejandro De Los Angeles
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Michael B Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicola A L Hall
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Brady J Maher
- Lieber Institute for Brain Development, Baltimore, Maryland; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, Maryland; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Tunbridge
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom.
| |
Collapse
|
21
|
Xu J, Wen Z. Brain Organoids: Studying Human Brain Development and Diseases in a Dish. Stem Cells Int 2021; 2021:5902824. [PMID: 34539790 PMCID: PMC8448601 DOI: 10.1155/2021/5902824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022] Open
Abstract
With the rapid development of stem cell technology, the advent of three-dimensional (3D) cultured brain organoids has opened a new avenue for studying human neurodevelopment and neurological disorders. Brain organoids are stem-cell-derived 3D suspension cultures that self-assemble into an organized structure with cell types and cytoarchitectures recapitulating the developing brain. In recent years, brain organoids have been utilized in various aspects, ranging from basic biology studies, to disease modeling, and high-throughput screening of pharmaceutical compounds. In this review, we overview the establishment and development of brain organoid technology, its recent progress, and translational applications, as well as existing limitations and future directions.
Collapse
Affiliation(s)
- Jie Xu
- The Graduate Program in Genetics and Molecular Biology, Laney Graduate School, Emory University, GA 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
22
|
Heide M, Huttner WB. Human-Specific Genes, Cortical Progenitor Cells, and Microcephaly. Cells 2021; 10:1209. [PMID: 34063381 PMCID: PMC8156310 DOI: 10.3390/cells10051209] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Over the past few years, human-specific genes have received increasing attention as potential major contributors responsible for the 3-fold difference in brain size between human and chimpanzee. Accordingly, mutations affecting these genes may lead to a reduction in human brain size and therefore, may cause or contribute to microcephaly. In this review, we will concentrate, within the brain, on the cerebral cortex, the seat of our higher cognitive abilities, and focus on the human-specific gene ARHGAP11B and on the gene family comprising the three human-specific genes NOTCH2NLA, -B, and -C. These genes are thought to have significantly contributed to the expansion of the cerebral cortex during human evolution. We will summarize the evolution of these genes, as well as their expression and functional role during human cortical development, and discuss their potential relevance for microcephaly. Furthermore, we will give an overview of other human-specific genes that are expressed during fetal human cortical development. We will discuss the potential involvement of these genes in microcephaly and how these genes could be studied functionally to identify a possible role in microcephaly.
Collapse
Affiliation(s)
- Michael Heide
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, D-01307 Dresden, Germany
| |
Collapse
|
23
|
Schörnig M, Taverna E. A Closer Look to the Evolution of Neurons in Humans and Apes Using Stem-Cell-Derived Model Systems. Front Cell Dev Biol 2021; 9:661113. [PMID: 33968936 PMCID: PMC8097028 DOI: 10.3389/fcell.2021.661113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
The cellular, molecular and functional comparison of neurons from closely related species is crucial in evolutionary neurobiology. The access to living tissue and post-mortem brains of humans and non-human primates is limited and the state of the tissue might not allow recapitulating important species-specific differences. A valid alternative is offered by neurons derived from induced pluripotent stem cells (iPSCs) obtained from humans and non-human apes and primates. We will review herein the contribution of iPSCs-derived neuronal models to the field of evolutionary neurobiology, focusing on species-specific aspects of neuron’s cell biology and timing of maturation. In addition, we will discuss the use of iPSCs for the study of ancient human traits.
Collapse
Affiliation(s)
- Maria Schörnig
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elena Taverna
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
24
|
Alle Q, Le Borgne E, Milhavet O, Lemaitre JM. Reprogramming: Emerging Strategies to Rejuvenate Aging Cells and Tissues. Int J Mol Sci 2021; 22:3990. [PMID: 33924362 PMCID: PMC8070588 DOI: 10.3390/ijms22083990] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is associated with a progressive and functional decline of all tissues and a striking increase in many "age-related diseases". Although aging has long been considered an inevitable process, strategies to delay and potentially even reverse the aging process have recently been developed. Here, we review emerging rejuvenation strategies that are based on reprogramming toward pluripotency. Some of these approaches may eventually lead to medical applications to improve healthspan and longevity.
Collapse
Affiliation(s)
- Quentin Alle
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (Q.A.); (E.L.B.)
| | - Enora Le Borgne
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (Q.A.); (E.L.B.)
| | - Ollivier Milhavet
- IRMB, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Jean-Marc Lemaitre
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (Q.A.); (E.L.B.)
| |
Collapse
|
25
|
Kumarasamy M, Sosnik A. Heterocellular spheroids of the neurovascular blood-brain barrier as a platform for personalized nanoneuromedicine. iScience 2021; 24:102183. [PMID: 33718835 PMCID: PMC7921813 DOI: 10.1016/j.isci.2021.102183] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/03/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Nanoneuromedicine investigates nanotechnology to target the brain and treat neurological diseases. In this work, we biofabricated heterocellular spheroids comprising human brain microvascular endothelial cells, brain vascular pericytes and astrocytes combined with primary cortical neurons and microglia isolated from neonate rats. The structure and function are characterized by confocal laser scanning and light sheet fluorescence microscopy, electron microscopy, western blotting, and RNA sequencing. The spheroid bulk is formed by neural cells and microglia and the surface by endothelial cells and they upregulate key structural and functional proteins of the blood-brain barrier. These cellular constructs are utilized to preliminary screen the permeability of polymeric, metallic, and ceramic nanoparticles (NPs). Findings reveal that penetration and distribution patterns depend on the NP type and that microglia would play a key role in this pathway, highlighting the promise of this platform to investigate the interaction of different nanomaterials with the central nervous system in nanomedicine, nanosafety and nanotoxicology.
Collapse
Affiliation(s)
- Murali Kumarasamy
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Bldg. Office 607, Technion City, 3200003 Haifa, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Bldg. Office 607, Technion City, 3200003 Haifa, Israel
| |
Collapse
|
26
|
Guyon J, Chapouly C, Andrique L, Bikfalvi A, Daubon T. The Normal and Brain Tumor Vasculature: Morphological and Functional Characteristics and Therapeutic Targeting. Front Physiol 2021; 12:622615. [PMID: 33746770 PMCID: PMC7973205 DOI: 10.3389/fphys.2021.622615] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma is among the most common tumor of the central nervous system in adults. Overall survival has not significantly improved over the last decade, even with optimizing standard therapeutic care including extent of resection and radio- and chemotherapy. In this article, we review features of the brain vasculature found in healthy cerebral tissue and in glioblastoma. Brain vessels are of various sizes and composed of several vascular cell types. Non-vascular cells such as astrocytes or microglia also interact with the vasculature and play important roles. We also discuss in vitro engineered artificial blood vessels which may represent useful models for better understanding the tumor-vessel interaction. Finally, we summarize results from clinical trials with anti-angiogenic therapy alone or in combination, and discuss the value of these approaches for targeting glioblastoma.
Collapse
Affiliation(s)
- Joris Guyon
- INSERM, LAMC, U1029, University Bordeaux, Pessac, France
| | - Candice Chapouly
- INSERM, Biology of Cardiovascular Diseases, U1034, University Bordeaux, Pessac, France
| | - Laetitia Andrique
- INSERM, LAMC, U1029, University Bordeaux, Pessac, France.,VoxCell 3D Plateform, UMS TBMcore 3427, Bordeaux, France
| | | | - Thomas Daubon
- University Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| |
Collapse
|
27
|
Mora-Bermúdez F, Taverna E, Huttner WB. From stem and progenitor cells to neurons in the developing neocortex: key differences among hominids. FEBS J 2021; 289:1524-1535. [PMID: 33638923 DOI: 10.1111/febs.15793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/05/2023]
Abstract
Comparing the biology of humans to that of other primates, and notably other hominids, is a useful path to learn more about what makes us human. Some of the most interesting differences among hominids are closely related to brain development and function, for example behaviour and cognition. This makes it particularly interesting to compare the hominid neural cells of the neocortex, a part of the brain that plays central roles in those processes. However, well-preserved tissue from great apes is usually extremely difficult to obtain. A variety of new alternative tools, for example brain organoids, are now beginning to make it possible to search for such differences and analyse their potential biological and biomedical meaning. Here, we present an overview of recent findings from comparisons of the neural stem and progenitor cells (NSPCs) and neurons of hominids. In addition to differences in proliferation and differentiation of NSPCs, and maturation of neurons, we highlight that the regulation of the timing of these processes is emerging as a general foundational difference in the development of the neocortex of hominids.
Collapse
Affiliation(s)
- Felipe Mora-Bermúdez
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elena Taverna
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
28
|
|
29
|
Sidhaye J, Knoblich JA. Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease. Cell Death Differ 2021; 28:52-67. [PMID: 32483384 PMCID: PMC7853143 DOI: 10.1038/s41418-020-0566-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding etiology of human neurological and psychiatric diseases is challenging. Genomic changes, protracted development, and histological features unique to human brain development limit the disease aspects that can be investigated using model organisms. Hence, in order to study phenotypes associated with human brain development, function, and disease, it is necessary to use alternative experimental systems that are accessible, ethically justified, and replicate human context. Human pluripotent stem cell (hPSC)-derived brain organoids offer such a system, which recapitulates features of early human neurodevelopment in vitro, including the generation, proliferation, and differentiation of neural progenitors into neurons and glial cells and the complex interactions among the diverse, emergent cell types of the developing brain in three-dimensions (3-D). In recent years, numerous brain organoid protocols and related techniques have been developed to recapitulate aspects of embryonic and fetal brain development in a reproducible and predictable manner. Altogether, these different organoid technologies provide distinct bioassays to unravel novel, disease-associated phenotypes and mechanisms. In this review, we summarize how the diverse brain organoid methods can be utilized to enhance our understanding of brain disorders. FACTS: Brain organoids offer an in vitro approach to study aspects of human brain development and disease. Diverse brain organoid techniques offer bioassays to investigate new phenotypes associated with human brain disorders that are difficult to study in monolayer cultures. Brain organoids have been particularly useful to study phenomena and diseases associated with neural progenitor morphology, survival, proliferation, and differentiation. OPEN QUESTION: Future brain organoid research needs to aim at later stages of neurodevelopment, linked with neuronal activity and connections, to unravel further disease-associated phenotypes. Continued improvement of existing organoid protocols is required to generate standardized methods that recapitulate in vivo-like spatial diversity and complexity.
Collapse
Affiliation(s)
- Jaydeep Sidhaye
- Institute of Molecular Biotechnology of Austrian academy of sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of Austrian academy of sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
30
|
Amin S, Borrell V. The Extracellular Matrix in the Evolution of Cortical Development and Folding. Front Cell Dev Biol 2020; 8:604448. [PMID: 33344456 PMCID: PMC7744631 DOI: 10.3389/fcell.2020.604448] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/12/2020] [Indexed: 02/02/2023] Open
Abstract
The evolution of the mammalian cerebral cortex leading to humans involved a remarkable sophistication of developmental mechanisms. Specific adaptations of progenitor cell proliferation and neuronal migration mechanisms have been proposed to play major roles in this evolution of neocortical development. One of the central elements influencing neocortex development is the extracellular matrix (ECM). The ECM provides both a structural framework during tissue formation and to present signaling molecules to cells, which directly influences cell behavior and movement. Here we review recent advances in the understanding of the role of ECM molecules on progenitor cell proliferation and neuronal migration, and how these contribute to cerebral cortex expansion and folding. We discuss how transcriptomic studies in human, ferret and mouse identify components of ECM as being candidate key players in cortex expansion during development and evolution. Then we focus on recent functional studies showing that ECM components regulate cortical progenitor cell proliferation, neuron migration and the mechanical properties of the developing cortex. Finally, we discuss how these features differ between lissencephalic and gyrencephalic species, and how the molecular evolution of ECM components and their expression profiles may have been fundamental in the emergence and evolution of cortex folding across mammalian phylogeny.
Collapse
Affiliation(s)
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| |
Collapse
|
31
|
The art of lineage tracing: From worm to human. Prog Neurobiol 2020; 199:101966. [PMID: 33249090 DOI: 10.1016/j.pneurobio.2020.101966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/03/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022]
Abstract
Reconstructing the genealogy of every cell that makes up an organism remains a long-standing challenge in developmental biology. Besides its relevance for understanding the mechanisms underlying normal and pathological development, resolving the lineage origin of cell types will be crucial to create these types on-demand. Multiple strategies have been deployed towards the problem of lineage tracing, ranging from direct observation to sophisticated genetic approaches. Here we discuss the achievements and limitations of past and current technology. Finally, we speculate about the future of lineage tracing and how to reach the next milestones in the field.
Collapse
|
32
|
Muckom RJ, Sampayo RG, Johnson HJ, Schaffer DV. Advanced Materials to Enhance Central Nervous System Tissue Modeling and Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002931. [PMID: 33510596 PMCID: PMC7840150 DOI: 10.1002/adfm.202002931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 05/04/2023]
Abstract
The progressively deeper understanding of mechanisms underlying stem cell fate decisions has enabled parallel advances in basic biology-such as the generation of organoid models that can further one's basic understanding of human development and disease-and in clinical translation-including stem cell based therapies to treat human disease. Both of these applications rely on tight control of the stem cell microenvironment to properly modulate cell fate, and materials that can be engineered to interface with cells in a controlled and tunable manner have therefore emerged as valuable tools for guiding stem cell growth and differentiation. With a focus on the central nervous system (CNS), a broad range of material solutions that have been engineered to overcome various hurdles in constructing advanced organoid models and developing effective stem cell therapeutics is reviewed. Finally, regulatory aspects of combined material-cell approaches for CNS therapies are considered.
Collapse
Affiliation(s)
- Riya J Muckom
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Rocío G Sampayo
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Hunter J Johnson
- Department of Bioengineering, UC Berkeley, Berkeley, CA 94704, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
33
|
Bordoni M, Muotri AR, Cereda C. Editorial: Brain Organoids: Modeling in Neuroscience. Front Cell Neurosci 2020; 14:602946. [PMID: 33192333 PMCID: PMC7609965 DOI: 10.3389/fncel.2020.602946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Matteo Bordoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milano, Italy
| | - Alysson R Muotri
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS: Istituto di Ricovero e cura a Carattere Scientifico Mondino Foundation, Pavia, Italy
| |
Collapse
|
34
|
Li YCE, Jodat YA, Samanipour R, Zorzi G, Zhu K, Hirano M, Chang K, Arnaout A, Hassan S, Matharu N, Khademhosseini A, Hoorfar M, Shin SR. Toward a neurospheroid niche model: optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs. Biofabrication 2020; 13:10.1088/1758-5090/abc1be. [PMID: 33059333 PMCID: PMC8387028 DOI: 10.1088/1758-5090/abc1be] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
A crucial step in creating reliablein vitroplatforms for neural development and disorder studies is the reproduction of the multicellular three-dimensional (3D) brain microenvironment and the capturing of cell-cell interactions within the model. The power of self-organization of diverse cell types into brain spheroids could be harnessed to study mechanisms underlying brain development trajectory and diseases. A challenge of current 3D organoid and spheroid models grown in petri-dishes is the lack of control over cellular localization and diversity. To overcome this limitation, neural spheroids can be patterned into customizable 3D structures using microfabrication. We developed a 3D brain-like co-culture construct using embedded 3D bioprinting as a flexible solution for composing heterogenous neural populations with neurospheroids and glia. Specifically, neurospheroid-laden free-standing 3D structures were fabricated in an engineered astrocyte-laden support bath resembling a neural stem cell niche environment. A photo-crosslinkable bioink and a thermal-healing supporting bath were engineered to mimic the mechanical modulus of soft tissue while supporting the formation of self-organizing neurospheroids within elaborate 3D networks. Moreover, bioprinted neurospheroid-laden structures exhibited the capability to differentiate into neuronal cells. These brain-like co-cultures could provide a reproducible platform for modeling neurological diseases, neural regeneration, and drug development and repurposing.
Collapse
Affiliation(s)
- Yi-Chen Ethan Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, United States of America
- Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan
| | - Yasamin A Jodat
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, United States of America
- Department of Mechanical Engineering, Stevens Institute of Technology, New Jersey 07030, United States of America
| | - Roya Samanipour
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, United States of America
- School of Engineering, University of British Columbia, Kelowna V1V 1V7, BC, Canada
| | - Giulio Zorzi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, United States of America
| | - Kai Zhu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, United States of America
- Department of Cardiac Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Minoru Hirano
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, United States of America
- Future Vehicle Research Department, Toyota Research Institute North America, Toyota Motor North America Inc. 1555 Woodridge Ave, Ann Arbor, MI 48105, United States of America
| | - Karen Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taiwan
| | - Adnan Arnaout
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, United States of America
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, United States of America
| | - Navneet Matharu
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States of America
- Institute for Human Genetics, University of California, San Francisco, CA 94158, United States of America
| | - Ali Khademhosseini
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, United States of America
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, California 90095, United States of America
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California 90095, United States of America
- Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California–Los Angeles, Los Angeles, California 90095, United States of America
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna V1V 1V7, BC, Canada
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, United States of America
| |
Collapse
|
35
|
Shou Y, Liang F, Xu S, Li X. The Application of Brain Organoids: From Neuronal Development to Neurological Diseases. Front Cell Dev Biol 2020; 8:579659. [PMID: 33195219 PMCID: PMC7642488 DOI: 10.3389/fcell.2020.579659] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Brain organoids are derived from induced pluripotent stem cells and embryonic stem cells under three-dimensional culture condition. The generation of an organoid requires the self-assembly of stem cells, progenitor cells, and multiple types of differentiated cells. Organoids display structures that resemble defined brain regions and simulate specific changes of neurological disorders; thus, organoids have become an excellent model for investigating brain development and neurological diseases. In the present review, we have summarized recent advances of the methods of culturing brain organoids and the applications of brain organoids in investigating neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yikai Shou
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Feng Liang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
36
|
|
37
|
Studying Human Neurodevelopment and Diseases Using 3D Brain Organoids. J Neurosci 2020; 40:1186-1193. [PMID: 32024767 DOI: 10.1523/jneurosci.0519-19.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/12/2019] [Accepted: 09/16/2019] [Indexed: 02/01/2023] Open
Abstract
In vitro differentiation of pluripotent stem cells provides a systematic platform to study development and disease. Recent advances in brain organoid technology have created new opportunities to investigate the formation and function of the human brain, under physiological and pathological conditions. Brain organoids can be generated to model the cellular and structural development of the human brain, and allow the investigation of the intricate interactions between resident neural and glial cell types. Combined with new advances in gene editing, imaging, and genomic analysis, brain organoid technology can be applied to address questions pertinent to human brain development, disease, and evolution. However, the current iterations of brain organoids also have limitations in faithfully recapitulating the in vivo processes. In this perspective, we evaluate the recent progress in brain organoid technology, and discuss the experimental considerations for its utilization.Dual Perspectives Companion Paper: Integrating CRISPR Engineering and hiPSC-Derived 2D Disease Modeling Systems, by Kristina Rehbach, Michael B. Fernando, and Kristen J. Brennand.
Collapse
|
38
|
Yadav A, Seth B, Chaturvedi RK. Brain Organoids: Tiny Mirrors of Human Neurodevelopment and Neurological Disorders. Neuroscientist 2020; 27:388-426. [PMID: 32723210 DOI: 10.1177/1073858420943192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Unravelling the complexity of the human brain is a challenging task. Nowadays, modern neurobiologists have developed 3D model systems called "brain organoids" to overcome the technical challenges in understanding human brain development and the limitations of animal models to study neurological diseases. Certainly like most model systems in neuroscience, brain organoids too have limitations, as these minuscule brains lack the complex neuronal circuitry required to begin the operational tasks of human brain. However, researchers are hopeful that future endeavors with these 3D brain tissues could provide mechanistic insights into the generation of circuit complexity as well as reproducible creation of different regions of the human brain. Herein, we have presented the contemporary state of brain organoids with special emphasis on their mode of generation and their utility in modelling neurological disorders, drug discovery, and clinical trials.
Collapse
Affiliation(s)
- Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
39
|
Axonal Extensions along Corticospinal Tracts from Transplanted Human Cerebral Organoids. Stem Cell Reports 2020; 15:467-481. [PMID: 32679062 PMCID: PMC7419717 DOI: 10.1016/j.stemcr.2020.06.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/23/2023] Open
Abstract
The reconstruction of lost neural circuits by cell replacement is a possible treatment for neurological deficits after cerebral cortex injury. Cerebral organoids can be a novel source for cell transplantation, but because the cellular composition of the organoids changes along the time course of the development, it remains unclear which developmental stage of the organoids is most suitable for reconstructing the corticospinal tract. Here, we transplanted human embryonic stem cell-derived cerebral organoids at 6 or 10 weeks after differentiation (6w- or 10w-organoids) into mouse cerebral cortices. 6w-organoids extended more axons along the corticospinal tract but caused graft overgrowth with a higher percentage of proliferative cells. Axonal extensions from 10w-organoids were smaller in number but were enhanced when the organoids were grafted 1 week after brain injury. Finally, 10w-organoids extended axons in cynomolgus monkey brains. These results contribute to the development of a cell-replacement therapy for brain injury and stroke.
Collapse
|
40
|
Little MH, Quinlan C. Advances in our understanding of genetic kidney disease using kidney organoids. Pediatr Nephrol 2020; 35:915-926. [PMID: 31065797 DOI: 10.1007/s00467-019-04259-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/27/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
Abstract
A significant proportion of kidney disease presenting in childhood is likely genetic in origin with a growing number of genes implicated in its development. However, many children may have changes in previously undescribed or unrecognised genes. The recent development of methods for generating human kidney organoids from human pluripotent stem cells has the potential to substantially change the rate of diagnosis and the development of new treatments for some forms of genetic kidney disease. In this review, we discuss how accurately a kidney organoid models the human kidney, identifying the strengths and weaknesses of these potentially patient-derived models of renal disease.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd., Parkville, VIC, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia. .,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.
| | - Catherine Quinlan
- Murdoch Children's Research Institute, Flemington Rd., Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Nephrology, Royal Children's Hospital, Flemington Rd., Parkville, VIC, Australia
| |
Collapse
|
41
|
Maranga C, Fernandes TG, Bekman E, da Rocha ST. Angelman syndrome: a journey through the brain. FEBS J 2020; 287:2154-2175. [PMID: 32087041 DOI: 10.1111/febs.15258] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/31/2022]
Abstract
Angelman syndrome (AS) is an incurable neurodevelopmental disease caused by loss of function of the maternally inherited UBE3A gene. AS is characterized by a defined set of symptoms, namely severe developmental delay, speech impairment, uncontrolled laughter, and ataxia. Current understanding of the pathophysiology of AS relies mostly on studies using the murine model of the disease, although alternative models based on patient-derived stem cells are now emerging. Here, we summarize the literature of the last decade concerning the three major brain areas that have been the subject of study in the context of AS: hippocampus, cortex, and the cerebellum. Our comprehensive analysis highlights the major phenotypes ascribed to the different brain areas. Moreover, we also discuss the major drawbacks of current models and point out future directions for research in the context of AS, which will hopefully lead us to an effective treatment of this condition in humans.
Collapse
Affiliation(s)
- Carina Maranga
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Evguenia Bekman
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Simão Teixeira da Rocha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
42
|
Wang Q, Dong X, Lu J, Hu T, Pei G. Constitutive activity of a G protein-coupled receptor, DRD1, contributes to human cerebral organoid formation. Stem Cells 2020; 38:653-665. [PMID: 32052915 PMCID: PMC7384186 DOI: 10.1002/stem.3156] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 01/12/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
The intricate balance of neural stem cell (NSC) amplification and neurogenesis is central to nervous system development. Dopamine D1 receptor (DRD1) is a typical G protein‐coupled receptor (GPCR) mainly expressed in neurogenic area, with high constitutive activity. The receptor appears in the embryonic period before the formation of mature synaptic contacts, which indicates that dopamine receptor and its constitutive activity play crucial roles in the embryonic brain development. Here, we found that DRD1 was enriched in human NSCs. Inhibition of the receptor activity by its inverse agonists promoted human NSCs proliferation and impeded its differentiation. These results were also mimicked by genetic knockdown of DRD1, which also blocked the effects of inverse agonists, suggesting a receptor‐dependent manner. More interestingly, knock‐in A229T mutant with reduced DRD1 constitutive activity by CRISPR‐Cas9 genome editing technology resulted into increased endogenous human NSCs proliferation. These results were well reproduced in human cerebral organoids, and inhibition of the DRD1 constitutive activity by its inverse agonists induced the expansion and folding of human cerebral organoids. The anatomic analysis uncovered that decreasing the constitutive activity of DRD1 by its inverse agonists promoted the NSCs proliferation and maintenance that led to hindered cortical neurogenesis. Further mechanistic studies revealed that the PKC‐CBP pathway was involved in the regulation by DRD1. Thus, our findings indicate that the constitutive activity of DRD1 and possibly other GPCRs plays an important role in the development of human nervous system.
Collapse
Affiliation(s)
- Qinying Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Xiaoxu Dong
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
- School of Life Science and Technology, Shanghai Tech UniversityShanghaiChina
| | - Jing Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Tingting Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
- Shanghai Key Laboratory of Signaling and Disease ResearchCollaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
43
|
Fischer J, Heide M, Huttner WB. Genetic Modification of Brain Organoids. Front Cell Neurosci 2019; 13:558. [PMID: 31920558 PMCID: PMC6928125 DOI: 10.3389/fncel.2019.00558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Brain organoids have become increasingly used systems allowing 3D-modeling of human brain development, evolution, and disease. To be able to make full use of these modeling systems, researchers have developed a growing toolkit of genetic modification techniques. These techniques can be applied to mature brain organoids or to the preceding embryoid bodies (EBs) and founding cells. This review will describe techniques used for transient and stable genetic modification of brain organoids and discuss their current use and respective advantages and disadvantages. Transient approaches include adeno-associated virus (AAV) and electroporation-based techniques, whereas stable genetic modification approaches make use of lentivirus (including viral stamping), transposon and CRISPR/Cas9 systems. Finally, an outlook as to likely future developments and applications regarding genetic modifications of brain organoids will be presented.
Collapse
Affiliation(s)
- Jan Fischer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Heide
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
44
|
Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang YJ, Chapeton K, Patterson B, Yuan Y, He CS, Raredon MSB, Dengelegi J, Kim KY, Sun P, Zhong M, Lee S, Patra P, Hyder F, Niklason LE, Lee SH, Yoon YS, Park IH. Engineering of human brain organoids with a functional vascular-like system. Nat Methods 2019; 16:1169-1175. [PMID: 31591580 PMCID: PMC6918722 DOI: 10.1038/s41592-019-0586-5] [Citation(s) in RCA: 546] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/26/2019] [Indexed: 12/27/2022]
Abstract
Human cortical organoids (hCOs), derived from human embryonic stem cells (hESCs), provide a platform to study human brain development and diseases in complex three-dimensional tissue. However, current hCOs lack microvasculature, resulting in limited oxygen and nutrient delivery to the inner-most parts of hCOs. We engineered hESCs to ectopically express human ETS variant 2 (ETV2). ETV2-expressing cells in hCOs contributed to forming a complex vascular-like network in hCOs. Importantly, the presence of vasculature-like structures resulted in enhanced functional maturation of organoids. We found that vascularized hCOs (vhCOs) acquired several blood-brain barrier characteristics, including an increase in the expression of tight junctions, nutrient transporters and trans-endothelial electrical resistance. Finally, ETV2-induced endothelium supported the formation of perfused blood vessels in vivo. These vhCOs form vasculature-like structures that resemble the vasculature in early prenatal brain, and they present a robust model to study brain disease in vitro.
Collapse
Affiliation(s)
- Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Mehmet H Kural
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Maxime Parent
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Young-Jin Kang
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Kayley Chapeton
- Department of Electrical Engineering, University of Bridgeport, Bridgeport, CT, USA
| | - Benjamin Patterson
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Yifan Yuan
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Chang-Shun He
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Micha Sam B Raredon
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jake Dengelegi
- Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT, USA
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Pingnan Sun
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Mei Zhong
- Department of Cell Biology, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Sangho Lee
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, USA
| | - Prabir Patra
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Laura E Niklason
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sang-Hun Lee
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Young-Sup Yoon
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
45
|
Pinson A, Namba T, Huttner WB. Malformations of Human Neocortex in Development - Their Progenitor Cell Basis and Experimental Model Systems. Front Cell Neurosci 2019; 13:305. [PMID: 31338027 PMCID: PMC6629864 DOI: 10.3389/fncel.2019.00305] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
Malformations of the human neocortex in development constitute a heterogeneous group of complex disorders, resulting in pathologies such as intellectual disability and abnormal neurological/psychiatric conditions such as epilepsy or autism. Advances in genomic sequencing and genetic techniques have allowed major breakthroughs in the field, revealing the molecular basis of several of these malformations. Here, we focus on those malformations of the human neocortex, notably microcephaly, and macrocephaly, where an underlying basis has been established at the level of the neural stem/progenitor cells (NPCs) from which neurons are directly or indirectly derived. Particular emphasis is placed on NPC cell biology and NPC markers. A second focus of this review is on experimental model systems used to dissect the underlying mechanisms of malformations of the human neocortex in development at the cellular and molecular level. The most commonly used model system have been genetically modified mice. However, although basic features of neocortical development are conserved across the various mammalian species, some important differences between mouse and human exist. These pertain to the abundance of specific NPC types and/or their proliferative capacity, as exemplified in the case of basal radial glia. These differences limit the ability of mouse models to fully recapitulate the phenotypes of malformations of the human neocortex. For this reason, additional experimental model systems, notably the ferret, non-human primates and cerebral organoids, have recently emerged as alternatives and shown to be of increasing relevance. It is therefore important to consider the benefits and limitations of each of these model systems for studying malformations of the human neocortex in development.
Collapse
Affiliation(s)
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
46
|
Chukwurah E, Osmundsen A, Davis SW, Lizarraga SB. All Together Now: Modeling the Interaction of Neural With Non-neural Systems Using Organoid Models. Front Neurosci 2019; 13:582. [PMID: 31293366 PMCID: PMC6598414 DOI: 10.3389/fnins.2019.00582] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/22/2019] [Indexed: 12/27/2022] Open
Abstract
The complex development of the human nervous system has been traditionally studied using a combination of animal models, human post-mortem brain tissue, and human genetics studies. However, there has been a lack of experimental human cellular models that would allow for a more precise elucidation of the intricate dynamics of early human brain development. The development of stem cell technologies, both embryonic and induced pluripotent stem cells (iPSCs), has given neuroscientists access to the previously inaccessible early stages of human brain development. In particular, the recent development of three-dimensional culturing methodologies provides a platform to study the differentiation of stem cells in both normal development and disease states in a more in vivo like context. Three-dimensional neural models or cerebral organoids possess an innate advantage over two-dimensional neural cultures as they can recapitulate tissue organization and cell type diversity that resemble the developing brain. Brain organoids also provide the exciting opportunity to model the integration of different brain regions in vitro. Furthermore, recent advances in the differentiation of non-neuronal tissue from stem cells provides the opportunity to study the interaction between the developing nervous system and other non-neuronal systems that impact neuronal function. In this review, we discuss the potential and limitations of the organoid system to study in vitro neurological diseases that arise in the neuroendocrine and the enteric nervous system or from interactions with the immune system.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Allison Osmundsen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Shannon W. Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Sofia B. Lizarraga
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
47
|
Shaily S, Upadhya A. Zika virus: Molecular responses and tissue tropism in the mammalian host. Rev Med Virol 2019; 29:e2050. [PMID: 31095819 DOI: 10.1002/rmv.2050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain-Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To study the molecular responses of viral infectivity in mammals, in vitro two-dimensional and three-dimensional cellular models have been employed. The in vivo models of mouse, pig, chicken, and nonhuman primates are primarily used to investigate the teratogenicity of the virus, to study effects of the virus on specific tissues, and to study the systemic effects of a proposed antiviral agent. The virus exhibits wide tissue tropism in the mammalian host. The major host tissues of viral persistence and propagation are neural tissue, ocular tissue, testicular tissue and placental tissue. An understanding of the function of viral components, viral replication cycle, and the molecular responses elicited in the host tissues is imperative for designing antiviral treatment strategies and for development of vaccines. This review provides an update on ZIKV research models and mammalian host responses with respect to ZIKV tissue infection.
Collapse
Affiliation(s)
- Sangya Shaily
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Archana Upadhya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Mumbai, India
| |
Collapse
|
48
|
Karzbrun E, Reiner O. Brain Organoids-A Bottom-Up Approach for Studying Human Neurodevelopment. Bioengineering (Basel) 2019; 6:E9. [PMID: 30669275 PMCID: PMC6466401 DOI: 10.3390/bioengineering6010009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Brain organoids have recently emerged as a three-dimensional tissue culture platform to study the principles of neurodevelopment and morphogenesis. Importantly, brain organoids can be derived from human stem cells, and thus offer a model system for early human brain development and human specific disorders. However, there are still major differences between the in vitro systems and in vivo development. This is in part due to the challenge of engineering a suitable culture platform that will support proper development. In this review, we discuss the similarities and differences of human brain organoid systems in comparison to embryonic development. We then describe how organoids are used to model neurodevelopmental diseases. Finally, we describe challenges in organoid systems and how to approach these challenges using complementary bioengineering techniques.
Collapse
Affiliation(s)
- Eyal Karzbrun
- Kavli Institute for Theoretical Physics and Department of Physics, University of California, Santa Barbara, CA 93106, USA.
| | - Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
49
|
Affiliation(s)
- Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA. .,Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Institut du Cerveau et de la Moelle Epinière, Paris, France
| |
Collapse
|
50
|
Vitrac A, Cloëz-Tayarani I. Induced pluripotent stem cells as a tool to study brain circuits in autism-related disorders. Stem Cell Res Ther 2018; 9:226. [PMID: 30139379 PMCID: PMC6107940 DOI: 10.1186/s13287-018-0966-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mammalian brain is a very complex organ containing an estimated 200 billion cells in humans. Therefore, studying human brain development has become very challenging given all the data that are available from different approaches, notably genetic studies.Recent pluripotent stem cell methods have given rise to the possibility of modeling neurodevelopmental diseases associated with genetic defects. Fibroblasts from patients have been reprogrammed into pluripotent stem cells to derive appropriate neuronal lineages. They specifically include different subtypes of cortical neurons that are at the core of human-specific cognitive abilities. The use of neurons derived from induced pluripotent stem cells (iPSC) has led to deciphering convergent and pleiotropic neuronal synaptic phenotypes found in neurodevelopmental disorders such as autism spectrum disorders (ASD) and their associated syndromes. In addition to these initial studies, remarkable progress has been made in the field of stem cells, with the major objective of reproducing the in vivo maturation steps of human neurons. Recently, several studies have demonstrated the ability of human progenitors to respond to guidance cues and signals in vivo that can direct neurons to their appropriate sites of differentiation where they become fully mature neurons.We provide a brief overview on research using human iPSC in ASD and associated syndromes and on the current understanding of new theories using the re-implantation of neural precursors in mouse brain.
Collapse
Affiliation(s)
- Aline Vitrac
- Human Genetics and Cognitive Functions, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
- CNRS UMR 3571, Institut Pasteur, 25 rue du Docteur Roux, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, 25 rue du Docteur Roux, Paris, France
| | - Isabelle Cloëz-Tayarani
- Human Genetics and Cognitive Functions, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
- CNRS UMR 3571, Institut Pasteur, 25 rue du Docteur Roux, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, 25 rue du Docteur Roux, Paris, France
| |
Collapse
|