1
|
Cyrta J, Dermawan JK, Tauziède-Espariat A, Liu T, Rosenblum M, Shroff S, Katabi N, Cardoen L, Guillemot D, Masliah-Planchon J, Hoare O, Delattre O, Bale T, Bourdeaut F, Antonescu CR. Expanding the clinicopathologic spectrum and genomic landscape of tumors with SMARCA2/4::CREM fusions. J Pathol 2024; 264:305-317. [PMID: 39344423 DOI: 10.1002/path.6350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/13/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024]
Abstract
CREB gene family (ATF1, CREB1, CREM) fusions with either EWSR1 or FUS gene partners drive the pathogenesis of a wide range of neoplasms, including various soft tissue tumors, intracranial myxoid mesenchymal tumors (IMMTs), hyalinizing clear cell carcinoma (HCCC), and rare mesotheliomas. Recently, a SMARCA2::CREM fusion was reported in one case each of IMMT and HCCC. In this study, we expand the clinicopathologic and molecular spectrum of these neoplasms by describing three additional cases with SMARCA2::CREM and one with a novel SMARCA4::CREM fusion, highlighting the recurrent potential of additional CREB gene fusion partners beyond FET family members. To evaluate if these fusions define a new pathologic entity, we performed a comprehensive genomic and methylation analysis and compared the results to other related tumors. Tumors occurred in children and young adults (median age 20 years) and spanned a broad anatomic distribution, including soft tissue, intracranial, head and neck, and prostatic urethra. Microscopically, the tumors shared an undifferentiated round to epithelioid cell phenotype and a hyalinized fibrous stroma. Immunohistochemically, a polyphenotypic profile was observed, with variable expression of SOX10, desmin, and/or epithelial markers. No targetable genomic alterations were found using panel-based DNA sequencing. By DNA methylation and transcriptomic analyses, tumors grouped closely to FET::CREB entities, but not with SMARCA4/SMARCB1-deficient tumors. High expression of CREM by immunohistochemistry was also documented in these tumors. Patients experienced local recurrence (n = 2), locoregional lymph node metastases (n = 2), and an isolated visceral metastasis (n = 1). Overall, our study suggests that SMARCA2/4::CREM fusions define a distinct group of neoplasms with round cell to epithelioid histology, a variable immunoprofile, and a definite risk of malignancy. Larger studies are needed to further explore the pathogenetic relationship with the FET::CREB family of tumors. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Joanna Cyrta
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - Josephine K Dermawan
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Ting Liu
- Department of Pathology, University of Utah/ARUP Laboratories, Salt Lake City, UT, USA
| | - Marc Rosenblum
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Seema Shroff
- Department of Pathology, Advent Health, Orlando, FL, USA
| | - Nora Katabi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Delphine Guillemot
- Genetics Unit, Department of Tumor Biology, Institut Curie, PSL Research University, Paris, France
| | - Julien Masliah-Planchon
- Genetics Unit, Department of Tumor Biology, Institut Curie, PSL Research University, Paris, France
| | - Owen Hoare
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris Cité University, Paris, France
| | - Olivier Delattre
- Genetics Unit, Department of Tumor Biology, Institut Curie, PSL Research University, Paris, France
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris Cité University, Paris, France
| | - Tejus Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Franck Bourdeaut
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris Cité University, Paris, France
| | - Cristina R Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
Osaki J, Noguchi R, Ono T, Adachi Y, Iwata S, Toda Y, Funada T, Iwata S, Kojima N, Yoshida A, Kawai A, Kondo T. Establishment and characterization of NCC-SS6-C1: a novel patient-derived cell line of synovial sarcoma. Hum Cell 2024; 37:1734-1741. [PMID: 39174825 DOI: 10.1007/s13577-024-01122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Synovial sarcoma (SS) is identified as a sarcoma with monomorphic blue spindle cells that display variable epithelial differentiation and is characterized by the SS18::SSX fusion gene. SS accounts for approximately 5-10% of all soft tissue sarcomas, making it a relatively common type within this group of tumors. Since SS is generally sensitive to chemotherapy, the standard treatment for SS includes extensive surgical resection, complemented by neoadjuvant chemotherapy with several approved anticancer drugs. However, in advanced and metastatic cases, the efficacy of these drugs is limited, resulting in poor prognoses. This underscores the need for innovative therapeutic strategies. Patient-derived cancer cell lines are essential tools for basic and preclinical research, yet only four SS cell lines are publicly available. To facilitate the studies of SS, we have developed a novel SS cell line, named NCC-SS6-C1, derived from surgically excised tumor tissue of an SS patient. NCC-SS6-C1 cells preserve the SS18::SSX1 fusion gene, consistent with the genetic characteristics of the original tumor. The cells exhibit continuous proliferation, invasiveness, and the ability to form spheroids. Additionally, we confirmed that this cell line was useful for evaluating the efficacy of anticancer drugs. Our results suggest that NCC-SS6-C1 is a useful tool for basic and pre-clinical studies of SS.
Collapse
Affiliation(s)
- Julia Osaki
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Adachi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shuhei Iwata
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yu Toda
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takaya Funada
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Naoki Kojima
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
3
|
Chen Y, Su Y, Cao X, Siavelis I, Leo IR, Zeng J, Tsagkozis P, Hesla AC, Papakonstantinou A, Liu X, Huang WK, Zhao B, Haglund C, Ehnman M, Johansson H, Lin Y, Lehtiö J, Zhang Y, Larsson O, Li X, de Flon FH. Molecular Profiling Defines Three Subtypes of Synovial Sarcoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404510. [PMID: 39257029 DOI: 10.1002/advs.202404510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/11/2024] [Indexed: 09/12/2024]
Abstract
Synovial Sarcomas (SS) are characterized by the presence of the SS18::SSX fusion gene, which protein product induce chromatin changes through remodeling of the BAF complex. To elucidate the genomic events that drive phenotypic diversity in SS, we performed RNA and targeted DNA sequencing on 91 tumors from 55 patients. Our results were verified by proteomic analysis, public gene expression cohorts and single-cell RNA sequencing. Transcriptome profiling identified three distinct SS subtypes resembling the known histological subtypes: SS subtype I and was characterized by hyperproliferation, evasion of immune detection and a poor prognosis. SS subtype II and was dominated by a vascular-stromal component and had a significantly better outcome. SS Subtype III was characterized by biphasic differentiation, increased genomic complexity and immune suppression mediated by checkpoint inhibition, and poor prognosis despite good responses to neoadjuvant therapy. Chromosomal abnormalities were an independent significant risk factor for metastasis. KRT8 was identified as a key component for epithelial differentiation in biphasic tumors, potentially controlled by OVOL1 regulation. Our findings explain the histological grounds for SS classification and indicate that a significantly larger proportion of patients have high risk tumors (corresponding to SS subtype I) than previously believed.
Collapse
Affiliation(s)
- Yi Chen
- Division of Hematology and Oncology, Department of Medicine, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, 10032, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, 10032, USA
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Yanhong Su
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Xiaofang Cao
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Ioannis Siavelis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Isabelle Rose Leo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Jianming Zeng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Panagiotis Tsagkozis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, 17176, Sweden
- Department of Clinical Orthopedics, Karolinska University Hospital, Stockholm, 17176, Sweden
| | - Asle C Hesla
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, 17176, Sweden
- Department of Clinical Orthopedics, Karolinska University Hospital, Stockholm, 17176, Sweden
| | - Andri Papakonstantinou
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Breast Cancer, Endocrine Tumors and Sarcomas, Karolinska University Hospital, Stockholm, 17176, Sweden
| | - Xiao Liu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 33305, Taiwan
| | - Binbin Zhao
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Cecilia Haglund
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176, Sweden
| | - Monika Ehnman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Henrik Johansson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17165, Sweden
| | - Yifan Zhang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176, Sweden
| | - Olle Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176, Sweden
| | - Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, 110122, China
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Stockholm, 17165, Sweden
| | - Felix Haglund de Flon
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176, Sweden
| |
Collapse
|
4
|
Li P, Zhai Z, Fan Y, Li W, Ke M, Li X, Gao H, Fu Y, Ma Z, Zhang W, Yi H, Ming J, Qin Y, Wang B, Kuang J, Pei D. Condensate remodeling reorganizes innate SS18 in synovial sarcomagenesis. Oncogenesis 2024; 13:38. [PMID: 39468035 PMCID: PMC11519567 DOI: 10.1038/s41389-024-00539-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
SS18-SSX onco-fusion protein formed through aberrant chromosomal translocation t (X, 18; p11, q11), is the hallmark and plays a critical role in synovial sarcomagenesis. The recent works indicated that both the pathological SS18-SSX tumorigenic fusion and the corresponding intrinsic physiological SS18 protein can form condensates but appear to have disparate properties. The underlying regulatory mechanism and the consequent biological significance remain largely unknown. We show that the physical properties of oncogenic fusion protein SS18-SSX condensates within cells undergo alterations compared to the proto-oncogene protein SS18. By small-molecule screening and mutant assay, we identified the recognition of H2AK119ub histone modification could account for the distinctive properties of SS18-SSX1 condensates. Notably, we show that SS18-SSX1 condensates have impact on SS18 condensates and hijack that in a phase separation manner, resulting in the relocation of protein SS18 to the H2AK119ub modification targeted by SS18-SSX1. Consequently, this leads to the downregulation of tumor suppressor genes occupied by SS18 physiologically, like CAV1 and DAB2. These results reveal the underlying mechanism of genomic disorder and tumorigenesis caused by the remodeling of oncoprotein SS18-SSX1 condensates at the macroscopic level.
Collapse
Affiliation(s)
- Pengli Li
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziwei Zhai
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Fan
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Minjing Ke
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxi Li
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiru Gao
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Fu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zhaoyi Ma
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wenhui Zhang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Hongyan Yi
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jin Ming
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Qin
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
5
|
Fang M, Lin Y, Xue C, Sheng K, Guo Z, Han Y, Lin H, Wu Y, Sang Y, Chen X, Howell SB, Lin X, Lin X. The AKT inhibitor AZD5363 elicits synthetic lethality in ARID1A-deficient gastric cancer cells via induction of pyroptosis. Br J Cancer 2024; 131:1080-1091. [PMID: 39003371 PMCID: PMC11405682 DOI: 10.1038/s41416-024-02778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a deadly disease with poor overall survival and limited therapeutic options. Genetic alterations such as mutations and/or deletions in chromatin remodeling gene AT-rich interactive domain 1 A (ARID1A) occur frequently in GC. Although ARID1A mutations/deletions are not a druggable target for conventional treatments, novel therapeutic strategies based on a synthetic lethal approach may be effective for the treatment of ARID1A-deficient cancers. METHODS A kinase inhibitor library containing 551 compounds was screened in ARID1A isogenic GC cells for the ability to induce synthetic lethality effect. Selected hits' activity was validated, and the mechanism of the most potent candidate drug, AKT inhibitor AD5363 (capivasertib), on induction of the synthetic lethality with ARID1A deficiency was investigated. RESULTS After robust vulnerability screening of 551 diverse protein kinase inhibitors, we identified the AKT inhibitor AZD5363 as being the most potent lead compound in inhibiting viability of ARID1A-/- cells. A synthetic lethality between loss of ARID1A expression and AKT inhibition by AZD5363 was validated in both GC cell model system and xenograft model. Mechanistically, AZD5363 treatment induced pyroptotic cell death in ARID1A-deficient GC cells through activation of the Caspase-3/GSDME pathway. Furthermore, ARID1A occupied the AKT gene promoter and regulated its transcription negatively, thus the GC cells deficient in ARID1A showed increased expression and phosphorylation of AKT. CONCLUSIONS Our study demonstrates a novel synthetic lethality interaction and unique mechanism between ARID1A loss and AKT inhibition, which may provide a therapeutic and mechanistic rationale for targeted therapy on patients with ARID1A-defective GC who are most likely to be beneficial to AZD5363 treatment.
Collapse
Affiliation(s)
- Menghan Fang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Youfen Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Department of Endocrinology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chaorong Xue
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Kaiqin Sheng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zegeng Guo
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Yuting Han
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Hanbin Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Yuecheng Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Yuchao Sang
- Scientific Research Center, Anxi County Hospital, Quanzhou, China
| | - Xintan Chen
- Scientific Research Center, Anxi County Hospital, Quanzhou, China
| | - Stephen B Howell
- Department of Medicine and the Moores Cancer Center, University of California, San Diego, CA, USA
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.
| | - Xinjian Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
- Scientific Research Center, Anxi County Hospital, Quanzhou, China.
| |
Collapse
|
6
|
Iyer R, Deshpande A, Pedgaonkar A, Bala PA, Kim T, Brien GL, Finlay D, Vuori K, Soragni A, Murad R, Deshpande AJ. SUMO2 Inhibition Reverses Aberrant Epigenetic Rewiring Driven by Synovial Sarcoma Fusion Oncoproteins and Impairs Sarcomagenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614593. [PMID: 39386552 PMCID: PMC11463515 DOI: 10.1101/2024.09.23.614593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Synovial Sarcoma (SySa) is an aggressive soft tissue sarcoma that accounts for 5 - 10% of all soft tissue sarcomas. Current treatment involves radiation and radical surgery including limb amputation, highlighting the urgent need to develop targeted therapies. We reasoned that transcriptional rewiring by the fusion protein SS18-SSX, the sole oncogenic driver in SySa, creates specific vulnerabilities that can be exploited for treatment. To uncover genes that are selectively essential for SySa, we mined The Cancer Dependency Map (DepMap) data to identify genes that specifically impact the fitness of SySa compared to other tumor cell lines. Targeted CRISPR library screening of SySa-selective candidates revealed that the small ubiquitin-like modifier 2 (SUMO2) was one of the strongest dependencies both in vitro as well as in vivo. TAK-981, a clinical-stage small molecule SUMO2 inhibitor potently inhibited growth and colony-forming ability. Strikingly, transcriptomic studies showed that pharmacological SUMO2 inhibition with TAK-981 treatment elicited a profound reversal of a gene expression program orchestrated by SS18-SSX fusions. Of note, genetic or pharmacological SUMO2 inhibition reduced global and chromatin levels of the SS18-SSX fusion protein with a concomitant reduction in histone 2A lysine 119 ubiquitination (H2AK119ub), an epigenetic mark that plays an important role in SySa pathogenesis. Taken together, our studies identify SUMO2 as a novel, selective vulnerability in SySa. Since SUMO2 inhibitors are currently in Phase 1/2 clinical trials for other cancers, our findings present a novel avenue for targeted treatment of synovial sarcoma.
Collapse
Affiliation(s)
- Rema Iyer
- Cancer Genome and Epigenetics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Anagha Deshpande
- Cancer Genome and Epigenetics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Aditi Pedgaonkar
- Cancer Genome and Epigenetics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Pramod Akula Bala
- Computational Biology Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Taehee Kim
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gerard L. Brien
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom
| | - Darren Finlay
- Cancer Molecular Therapeutics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kristiina Vuori
- Cancer Molecular Therapeutics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alice Soragni
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rabi Murad
- Computational Biology Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Aniruddha J. Deshpande
- Cancer Genome and Epigenetics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Radaelli S, Merlini A, Khan M, Gronchi A. Progress in histology specific treatments in soft tissue sarcoma. Expert Rev Anticancer Ther 2024; 24:845-868. [PMID: 39099398 DOI: 10.1080/14737140.2024.2384584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Soft tissue sarcomas (STS) represent a heterogenous group of rare tumors, primarily treated with surgery. Preoperative radiotherapy is often recommended for extremity high-risk STS. Neoadjuvant chemotherapy, typically based on doxorubicin with ifosfamide, has shown efficacy in limbs and trunk wall STS. Second-line chemotherapy, commonly utilized in the metastatic setting, is mostly histology-driven. Molecular targeted agents are used across various histologies, and although the use of immunotherapy in STS is still in its early stages, there is increasing interest in exploring its potential. AREAS COVERED This article involved an extensive recent search on PubMed. It explored the current treatment landscape for localized and metastatic STS, focusing on the combined use of radiotherapy and chemotherapy for both extremity and retroperitoneal tumors, and with a particular emphasis on the most innovative histopathology driven therapeutic approaches. Additionally, ongoing clinical trials identified via clinicaltrials.gov are included. EXPERT OPINION Recently there have been advancements in the treatment of STS, largely driven by the outcomes of clinical trials. However further research is imperative to comprehend the effect of chemotherapy, targeted therapy and immunotherapy in various STS, as well as to identify biomarkers able to predict which patients are most likely to benefit from these treatments.
Collapse
Affiliation(s)
- Stefano Radaelli
- Sarcoma Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, Orbassano, Italy
- Department of Oncology, San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Misbah Khan
- Surgery, East Sussex NHS Healthcare, East Sussex, UK
| | - Alessandro Gronchi
- Sarcoma Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
8
|
Yuan J, Yu S. Development of a nomogram for predicting cancer-specific survival in synovial sarcoma: Insights from SEER and a Chinese cohort study. Asian J Surg 2024; 47:4055-4057. [PMID: 38724380 DOI: 10.1016/j.asjsur.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 09/05/2024] Open
Affiliation(s)
- Jin Yuan
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Malone HA, Roberts CWM. Chromatin remodellers as therapeutic targets. Nat Rev Drug Discov 2024; 23:661-681. [PMID: 39014081 PMCID: PMC11534152 DOI: 10.1038/s41573-024-00978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 07/18/2024]
Abstract
Large-scale cancer genome sequencing studies have revealed that chromatin regulators are frequently mutated in cancer. In particular, more than 20% of cancers harbour mutations in genes that encode subunits of SWI/SNF (BAF) chromatin remodelling complexes. Additional links of SWI/SNF complexes to disease have emerged with the findings that some oncogenes drive transformation by co-opting SWI/SNF function and that germline mutations in select SWI/SNF subunits are the basis of several neurodevelopmental disorders. Other chromatin remodellers, including members of the ISWI, CHD and INO80/SWR complexes, have also been linked to cancer and developmental disorders. Consequently, therapeutic manipulation of SWI/SNF and other remodelling complexes has become of great interest, and drugs that target SWI/SNF subunits have entered clinical trials. Genome-wide perturbation screens in cancer cell lines with SWI/SNF mutations have identified additional synthetic lethal targets and led to further compounds in clinical trials, including one that has progressed to FDA approval. Here, we review the progress in understanding the structure and function of SWI/SNF and other chromatin remodelling complexes, mechanisms by which SWI/SNF mutations cause cancer and neurological diseases, vulnerabilities that arise because of these mutations and efforts to target SWI/SNF complexes and synthetic lethal targets for therapeutic benefit.
Collapse
Affiliation(s)
- Hayden A Malone
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
10
|
Wang C, Wang M, Wang Y, Rej RK, Aguilar A, Xu T, Bai L, Tošović J, McEachern D, Li Q, Sarkari F, Wen B, Sun D, Wang S. Discovery of CW-3308 as a Potent, Selective, and Orally Efficacious PROTAC Degrader of BRD9. J Med Chem 2024; 67:14125-14154. [PMID: 39132814 DOI: 10.1021/acs.jmedchem.4c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The bromodomain-containing protein BRD9 has emerged as an attractive therapeutic target. In the present study, we successfully identified a number of highly potent BRD9 degraders by using two different cereblon ligands developed in our laboratory. Further optimization led to the discovery of CW-3308 as a potent, selective, and orally bioavailable BRD9 degrader. It displayed degradation potency (DC50) < 10 nM and efficiency (Dmax) > 90% against BRD9 in the G401 rhabdoid tumor and HS-SY-II synovial sarcoma cell lines and had a high degradation selectivity over BRD7 and BRD4 proteins. CW-3308 achieved 91% of oral bioavailability in mice. A single oral dose efficiently reduced the BRD9 protein by >90% in the synovial sarcoma HS-SY-II xenograft tumor tissue. Oral administration effectively inhibited HS-SY-II xenograft tumor growth in mice. CW-3308 is a promising lead compound for further optimization and extensive evaluation for the treatment of synovial sarcoma, rhabdoid tumor, and other BRD9-dependent human diseases.
Collapse
Affiliation(s)
- Changwei Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mi Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rohan Kalyan Rej
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Angelo Aguilar
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tianfeng Xu
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jelena Tošović
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Qiuxia Li
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Farzad Sarkari
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy,, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Grove J, Naous R. Extra-Acral Minute Synovial Sarcoma: A Case Report With Literature Review. Cureus 2024; 16:e67505. [PMID: 39310653 PMCID: PMC11416138 DOI: 10.7759/cureus.67505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Synovial sarcoma is a malignant soft tissue tumor of uncertain differentiation. It is typically seen in the deep soft tissue of the extremities; however, it has been reported to occur anywhere in the body. Synovial sarcoma by histomorphology has multiple subtypes, including monophasic spindle cell, biphasic and poorly differentiated subtypes. Synovial sarcomas measuring less than one centimeter in diameter are termed "minute" synovial sarcomas. "Minute" synovial sarcomas have only been reported so far in the acral region of the hands and feet. They are extremely rare and can often be misinterpreted as benign neoplasms. Herein, we report the findings in a 30-year-old female presenting with a palpable mass within the deep subcutaneous tissue along the anterior aspect of her right rectus abdominis muscle. The mass was excised and measured 0.6 cm in greatest dimension with histomorphology findings, immunohistochemical and molecular workup confirming the diagnosis of "minute" synovial sarcoma. Our findings represent the first documented case of a "minute" synovial sarcoma occurring at an extra-acral site. With such unique finding not yet reported in the literature, this case highlights the importance of considering synovial sarcoma in the differential diagnosis of subcutaneous abdominal masses.
Collapse
Affiliation(s)
- John Grove
- Pathology and Laboratory Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Rana Naous
- Pathology, University of Pittsburgh Medical Center, Pittsburgh, USA
| |
Collapse
|
12
|
Parker K, Zhang Y, Anchondo G, Smith A, Guerrero Pacheco S, Kondo T, Su L. Combination of HDAC and FYN inhibitors in synovial sarcoma treatment. Front Cell Dev Biol 2024; 12:1422452. [PMID: 39045458 PMCID: PMC11264242 DOI: 10.3389/fcell.2024.1422452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The SS18-SSX fusion protein is an oncogenic driver in synovial sarcoma. At the molecular level, SS18-SSX functions as both an activator and a repressor to coordinate transcription of different genes responsible for tumorigenesis. Here, we identify the proto-oncogene FYN as a new SS18-SSX target gene and examine its relation to synovial sarcoma therapy. FYN is a tyrosine kinase that promotes cancer growth, metastasis and therapeutic resistance, but SS18-SSX appears to negatively regulate FYN expression in synovial sarcoma cells. Using both genetic and histone deacetylase inhibitor (HDACi)-based pharmacologic approaches, we show that suppression of SS18-SSX leads to FYN reactivation. In support of this notion, we find that blockade of FYN activity synergistically enhances HDACi action to reduce synovial sarcoma cell proliferation and migration. Our results support a role for FYN in attenuation of anti-cancer activity upon inhibition of SS18-SSX function and demonstrate the feasibility of targeting FYN to improve the effectiveness of HDACi treatment against synovial sarcoma.
Collapse
Affiliation(s)
- Kyra Parker
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| | - Yanfeng Zhang
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gavin Anchondo
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| | - Ashlyn Smith
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| | | | | | - Le Su
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| |
Collapse
|
13
|
Pagliuca F, Carraturo E, De Chiara A, Vallese S, Giovannoni I, Alaggio R, Cannella L, Tafuto S, Franco R. Synovial Sarcoma of the Kidney: Diagnostic Pitfalls in a Case with Myxoid Monophasic Differentiation and No Epithelial Biomarkers Expression. Int J Mol Sci 2024; 25:7382. [PMID: 39000489 PMCID: PMC11242046 DOI: 10.3390/ijms25137382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Synovial sarcomas are soft tissue tumours of uncertain origin, most commonly found in the upper or lower extremities. They are characterised by distinctive chromosomal rearrangements involving the gene SS18. Synovial sarcomas can occasionally arise also in visceral sites, but retroperitoneal SSs are very unusual. Among them, a few primary renal synovial sarcomas have been described in the scientific literature. Primary renal synovial sarcomas tend to be monophasic and often show cystic changes. Histologically, they can closely resemble other primary kidney tumours, mainly paediatric tumours such as nephroblastoma and clear cell sarcoma of the kidney. In the current work, a primary synovial sarcoma of the kidney with unusual morphological features (extensively myxoid stroma and immunohistochemical positivity for BCOR) is described. Molecular analysis, through targeted RNA sequencing, was of invaluable help in reaching the correct diagnosis. Despite locally advanced disease at presentation, the patient showed an unexpectedly brilliant response to chemotherapy.
Collapse
Affiliation(s)
| | - Emma Carraturo
- Pathology Unit, Vanvitelli University Hospital, 80138 Naples, Italy
| | - Anna De Chiara
- Histopathology of Lymphomas and Sarcomas SSD, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", 80131 Naples, Italy
| | - Silvia Vallese
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | | | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Lucia Cannella
- S.C. Sarcomas and Rare Tumors, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", 80131 Naples, Italy
| | - Salvatore Tafuto
- S.C. Sarcomas and Rare Tumors, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", 80131 Naples, Italy
| | - Renato Franco
- Pathology Unit, Vanvitelli University Hospital, 80138 Naples, Italy
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
14
|
Stanton BZ, Pomella S. Epigenetic determinants of fusion-driven sarcomas: paradigms and challenges. Front Cell Dev Biol 2024; 12:1416946. [PMID: 38946804 PMCID: PMC11211607 DOI: 10.3389/fcell.2024.1416946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024] Open
Abstract
We describe exciting recent advances in fusion-driven sarcoma etiology, from an epigenetics perspective. By exploring the current state of the field, we identify and describe the central mechanisms that determine sarcomagenesis. Further, we discuss seminal studies in translational genomics, which enabled epigenetic characterization of fusion-driven sarcomas. Important context for epigenetic mechanisms include, but are not limited to, cell cycle and metabolism, core regulatory circuitry, 3-dimensional chromatin architectural dysregulation, integration with ATP-dependent chromatin remodeling, and translational animal modeling. Paradoxically, while the genetic requirements for oncogenic transformation are highly specific for the fusion partners, the epigenetic mechanisms we as a community have uncovered are categorically very broad. This dichotomy prompts the question of whether the investigation of rare disease epigenomics should prioritize studying individual cell populations, thereby examining whether the mechanisms of chromatin dysregulation are specific to a particular tumor. We review recent advances focusing on rhabdomyosarcoma, synovial sarcoma, alveolar soft part sarcoma, clear cell sarcoma, undifferentiated round cell sarcoma, Ewing sarcoma, myxoid/round liposarcoma, epithelioid hemangioendothelioma and desmoplastic round cell tumor. The growing number of groundbreaking discoveries in the field, motivated us to anticipate further exciting advances in the area of mechanistic epigenomics and direct targeting of fusion transcription factors in the years ahead.
Collapse
Affiliation(s)
- Benjamin Z. Stanton
- Nationwide Children’s Hospital, Center for Childhood Cancer Research, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Silvia Pomella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
15
|
Floros KV, Fairchild CK, Li J, Zhang K, Roberts JL, Kurupi R, Hu B, Kraskauskiene V, Hosseini N, Shen S, Inge MM, Smith-Fry K, Li L, Sotiriou A, Dalton KM, Jose A, Abdelfadiel EI, Xing Y, Hill RD, Slaughter JM, Shende M, Lorenz MR, Hinojosa MR, Belvin BR, Lai Z, Boikos SA, Stamatouli AM, Lewis JP, Manjili MH, Valerie K, Li R, Banito A, Poklepovic A, Koblinski JE, Siggers T, Dozmorov MG, Jones KB, Radhakrishnan SK, Faber AC. Targeting of SUMOylation leads to cBAF complex stabilization and disruption of the SS18::SSX transcriptome in Synovial Sarcoma. RESEARCH SQUARE 2024:rs.3.rs-4362092. [PMID: 38883782 PMCID: PMC11177989 DOI: 10.21203/rs.3.rs-4362092/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Synovial Sarcoma (SS) is driven by the SS18::SSX fusion oncoprotein and is ultimately refractory to therapeutic approaches. SS18::SSX alters ATP-dependent chromatin remodeling BAF (mammalian SWI/SNF) complexes, leading to the degradation of canonical (cBAF) complex and amplified presence of an SS18::SSX-containing non-canonical BAF (ncBAF or GBAF) that drives an SS-specific transcription program and tumorigenesis. We demonstrate that SS18::SSX activates the SUMOylation program and SSs are sensitive to the small molecule SAE1/2 inhibitor, TAK-981. Mechanistically, TAK-981 de-SUMOylates the cBAF subunit SMARCE1, stabilizing and restoring cBAF on chromatin, shifting away from SS18::SSX-ncBAF-driven transcription, associated with DNA damage and cell death and resulting in tumor inhibition across both human and mouse SS tumor models. TAK-981 synergized with cytotoxic chemotherapy through increased DNA damage, leading to tumor regression. Targeting the SUMOylation pathway in SS restores cBAF complexes and blocks the SS18::SSX-ncBAF transcriptome, identifying a therapeutic vulnerability in SS, positioning the in-clinic TAK-981 to treat SS.
Collapse
Affiliation(s)
- Konstantinos V. Floros
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Carter K. Fairchild
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jinxiu Li
- University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT 84112 USA
| | - Kun Zhang
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Jane L. Roberts
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Richard Kurupi
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine Saint Louis, MO 63110 USA
| | - Bin Hu
- Department of Pathology, Virginia Commonwealth University and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
| | - Vita Kraskauskiene
- Department of Pathology, Virginia Commonwealth University and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
| | - Nayyerehalsadat Hosseini
- Department of Pathology, Virginia Commonwealth University and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
| | - Shanwei Shen
- Department of Pathology, Virginia Commonwealth University and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
| | - Melissa M. Inge
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Kyllie Smith-Fry
- University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT 84112 USA
| | - Li Li
- University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT 84112 USA
| | - Afroditi Sotiriou
- Soft Tissue Sarcoma Research Group, Hopp Children’s Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Krista M. Dalton
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Asha Jose
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Elsamani I. Abdelfadiel
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Yanli Xing
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Ronald D. Hill
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Jamie M. Slaughter
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| | - Mayuri Shende
- Department of Pathology, Virginia Commonwealth University and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
| | - Madelyn R Lorenz
- Department of Pathology, Virginia Commonwealth University and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
| | - Mandy R. Hinojosa
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Benjamin R. Belvin
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Sosipatros A. Boikos
- Department of Hematology and Oncology, Georgetown Lombardi Comprehensive Cancer Center, 3800 Reservoir Rd NW Ste E501, Washington, DC 20007 USA
| | - Angeliki M. Stamatouli
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia USA
| | - Janina P. Lewis
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Microbiology & Immunology and Massey Cancer Center, Richmond VA, USA
| | - Masoud H. Manjili
- Department of Microbiology & Immunology and Massey Cancer Center, Richmond VA, USA
| | - Kristoffer Valerie
- Department of Radiation Oncology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond VA, 23298 USA
| | - Renfeng Li
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Ana Banito
- Soft Tissue Sarcoma Research Group, Hopp Children’s Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew Poklepovic
- Department of Internal Medicine, Division of Oncology, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer E. Koblinski
- Department of Pathology, Virginia Commonwealth University and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
| | - Trevor Siggers
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond VA, 23298 USA
| | - Kevin B. Jones
- University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT 84112 USA
| | - Senthil K. Radhakrishnan
- Department of Pathology, Virginia Commonwealth University and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
| | - Anthony C. Faber
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond VA, 23298 USA
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298 USA
| |
Collapse
|
16
|
Kucinski JP, Calderon D, Kendall GC. Biological and therapeutic insights from animal modeling of fusion-driven pediatric soft tissue sarcomas. Dis Model Mech 2024; 17:dmm050704. [PMID: 38916046 PMCID: PMC11225592 DOI: 10.1242/dmm.050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Survival for children with cancer has primarily improved over the past decades due to refinements in surgery, radiation and chemotherapy. Although these general therapies are sometimes curative, the cancer often recurs, resulting in poor outcomes for patients. Fusion-driven pediatric soft tissue sarcomas are genetically defined by chromosomal translocations that create a chimeric oncogene. This distinctive, almost 'monogenic', genetic feature supports the generation of animal models to study the respective diseases in vivo. This Review focuses on a subset of fusion-driven pediatric soft tissue sarcomas that have transgenic animal tumor models, which includes fusion-positive and infantile rhabdomyosarcoma, synovial sarcoma, undifferentiated small round cell sarcoma, alveolar soft part sarcoma and clear cell sarcoma. Studies using the animal models of these sarcomas have highlighted that pediatric cancers require a specific cellular state or developmental stage to drive tumorigenesis, as the fusion oncogenes cause different outcomes depending on their lineage and timing of expression. Therefore, understanding these context-specific activities could identify targetable activities and mechanisms critical for tumorigenesis. Broadly, these cancers show dependencies on chromatin regulators to support oncogenic gene expression and co-opting of developmental pathways. Comparative analyses across lineages and tumor models will further provide biological and therapeutic insights to improve outcomes for these children.
Collapse
Affiliation(s)
- Jack P. Kucinski
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
| | - Delia Calderon
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
| | - Genevieve C. Kendall
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| |
Collapse
|
17
|
Hofvander J, Qiu A, Lee K, Bilenky M, Carles A, Cao Q, Moksa M, Steif J, Su E, Sotiriou A, Goytain A, Hill LA, Singer S, Andrulis IL, Wunder JS, Mertens F, Banito A, Jones KB, Underhill TM, Nielsen TO, Hirst M. Synovial Sarcoma Chromatin Dynamics Reveal a Continuum in SS18:SSX Reprograming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594262. [PMID: 38798672 PMCID: PMC11118320 DOI: 10.1101/2024.05.14.594262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Synovial sarcoma (SyS) is an aggressive soft-tissue malignancy characterized by a pathognomonic chromosomal translocation leading to the formation of the SS18::SSX fusion oncoprotein. SS18::SSX associates with mammalian BAF complexes suggesting deregulation of chromatin architecture as the oncogenic driver in this tumour type. To examine the epigenomic state of SyS we performed comprehensive multi-omics analysis on 52 primary pre-treatment human SyS tumours. Our analysis revealed a continuum of epigenomic states across the cohort at fusion target genes independent of rare somatic genetic lesions. We identify cell-of-origin signatures defined by enhancer states and reveal unexpected relationships between H2AK119Ub1 and active marks. The number of bivalent promoters, dually marked by the repressive H3K27me3 and activating H3K4me3 marks, has strong prognostic value and outperforms tumor grade in predicting patient outcome. Finally, we identify SyS defining epigenomic features including H3K4me3 expansion associated with striking promoter DNA hypomethylation in which SyS displays the lowest mean methylation level of any sarcoma subtype. We explore these distinctive features as potential vulnerabilities in SyS and identify H3K4me3 inhibition as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Jakob Hofvander
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alvin Qiu
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada
| | - Kiera Lee
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada
| | - Misha Bilenky
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Annaïck Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Qi Cao
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Jonathan Steif
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Edmund Su
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Afroditi Sotiriou
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, Germany
- Soft-Tissue Sarcoma Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Germany
| | - Angela Goytain
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada
| | - Lesley A Hill
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sam Singer
- Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Irene L Andrulis
- University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Canada
| | - Jay S Wunder
- Lunefeld-Tanenbaum Research Institute, Sinai Health System and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Fredrik Mertens
- Division of Clinical Genetics, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ana Banito
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, Germany
- Soft-Tissue Sarcoma Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kevin B Jones
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, United States of America
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| |
Collapse
|
18
|
Gourisankar S, Krokhotin A, Wenderski W, Crabtree GR. Context-specific functions of chromatin remodellers in development and disease. Nat Rev Genet 2024; 25:340-361. [PMID: 38001317 DOI: 10.1038/s41576-023-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/26/2023]
Abstract
Chromatin remodellers were once thought to be highly redundant and nonspecific in their actions. However, recent human genetic studies demonstrate remarkable biological specificity and dosage sensitivity of the thirty-two adenosine triphosphate (ATP)-dependent chromatin remodellers encoded in the human genome. Mutations in remodellers produce many human developmental disorders and cancers, motivating efforts to investigate their distinct functions in biologically relevant settings. Exquisitely specific biological functions seem to be an emergent property in mammals, and in many cases are based on the combinatorial assembly of subunits and the generation of stable, composite surfaces. Critical interactions between remodelling complex subunits, the nucleosome and other transcriptional regulators are now being defined from structural and biochemical studies. In addition, in vivo analyses of remodellers at relevant genetic loci have provided minute-by-minute insights into their dynamics. These studies are proposing new models for the determinants of remodeller localization and function on chromatin.
Collapse
Affiliation(s)
- Sai Gourisankar
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Andrey Krokhotin
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Wendy Wenderski
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
19
|
Brockman QR, Rytlewski JD, Milhem M, Monga V, Dodd RD. Integrated Epigenetic and Transcriptomic Analysis Identifies Interleukin 17 DNA Methylation Signature of Malignant Peripheral Nerve Sheath Tumor Progression and Metastasis. JCO Precis Oncol 2024; 8:e2300325. [PMID: 38820476 DOI: 10.1200/po.23.00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 06/02/2024] Open
Abstract
PURPOSE Sarcomas are a complex group of highly aggressive and metastatic tumors with over 100 distinct subtypes. Because of their diversity and rarity, it is challenging to generate multisarcoma signatures that are predictive of patient outcomes. MATERIALS AND METHODS Here, we identify a DNA methylation signature for progression and metastasis of numerous sarcoma subtypes using multiple epigenetic and genomic patient data sets. Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are highly metastatic sarcomas with frequent loss of the histone methyltransferase, PRC2. Loss of PRC2 is associated with MPNST metastasis and plays a critical noncanonical role in DNA methylation. RESULTS We found that over 900 5'-C-phosphate-G-3' (CpGs) were hypermethylated in MPNSTs with PRC2 loss. Furthermore, we identified eight differentially methylated CpGs in the IL17D/RD family that correlate with the progression and metastasis of MPNSTs in two independent patient data sets. Similar trends were identified in other sarcoma subtypes, including osteosarcoma, rhabdomyosarcoma, and synovial sarcoma. Analysis of scRNAseq data sets determined that IL17D/RD expression occurs in both the tumor cells and the surrounding stromal populations. CONCLUSION These results might have broad implications for the clinical management and surveillance of sarcoma.
Collapse
Affiliation(s)
- Qierra R Brockman
- Department of Internal Medicine, University of Iowa, Iowa City, IA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Jeffrey D Rytlewski
- Department of Internal Medicine, University of Iowa, Iowa City, IA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Mohammed Milhem
- Department of Internal Medicine, University of Iowa, Iowa City, IA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Varun Monga
- Division of Hematology/Oncology, University of California, San Francisco, CA
| | - Rebecca D Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, IA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| |
Collapse
|
20
|
Floros KV, Fairchild CK, Li J, Zhang K, Roberts JL, Kurupi R, Hu B, Kraskauskiene V, Hosseini N, Shen S, Inge MM, Smith-Fry K, Li L, Sotiriou A, Dalton KM, Jose A, Abdelfadiel EI, Xing Y, Hill RD, Slaughter JM, Shende M, Lorenz MR, Hinojosa MR, Belvin BR, Lai Z, Boikos SA, Stamatouli AM, Lewis JP, Manjili MH, Valerie K, Li R, Banito A, Poklepovic A, Koblinski JE, Siggers T, Dozmorov MG, Jones KB, Radhakrishnan SK, Faber AC. Targeting of SUMOylation leads to cBAF complex stabilization and disruption of the SS18::SSX transcriptome in Synovial Sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591023. [PMID: 38712286 PMCID: PMC11071469 DOI: 10.1101/2024.04.25.591023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Synovial Sarcoma (SS) is driven by the SS18::SSX fusion oncoprotein. and is ultimately refractory to therapeutic approaches. SS18::SSX alters ATP-dependent chromatin remodeling BAF (mammalian SWI/SNF) complexes, leading to the degradation of canonical (cBAF) complex and amplified presence of an SS18::SSX-containing non-canonical BAF (ncBAF or GBAF) that drives an SS-specific transcription program and tumorigenesis. We demonstrate that SS18::SSX activates the SUMOylation program and SSs are sensitive to the small molecule SAE1/2 inhibitor, TAK-981. Mechanistically, TAK-981 de-SUMOylates the cBAF subunit SMARCE1, stabilizing and restoring cBAF on chromatin, shifting away from SS18::SSX-ncBAF-driven transcription, associated with DNA damage and cell death and resulting in tumor inhibition across both human and mouse SS tumor models. TAK-981 synergized with cytotoxic chemotherapy through increased DNA damage, leading to tumor regression. Targeting the SUMOylation pathway in SS restores cBAF complexes and blocks the SS18::SSX-ncBAF transcriptome, identifying a therapeutic vulnerability in SS, positioning the in-clinic TAK-981 to treat SS.
Collapse
|
21
|
Kuang J, Li P, Zhai Z, Fan Y, Xu H, Zhao C, Li W, Li X, Liang Z, Huang T, Qin Y, Gao H, Ma Z, Liu D, Zhong G, Wang B, Liu J, Wang J, Tortorella MD, Liao B, Pei D. Exclusion of HDAC1/2 complexes by oncogenic nuclear condensates. Mol Cancer 2024; 23:85. [PMID: 38678233 PMCID: PMC11055323 DOI: 10.1186/s12943-024-02002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Nuclear condensates have been shown to regulate cell fate control, but its role in oncogenic transformation remains largely unknown. Here we show acquisition of oncogenic potential by nuclear condensate remodeling. The proto-oncogene SS18 and its oncogenic fusion SS18-SSX1 can both form condensates, but with drastically different properties and impact on 3D genome architecture. The oncogenic condensates, not wild type ones, readily exclude HDAC1 and 2 complexes, thus, allowing aberrant accumulation of H3K27ac on chromatin loci, leading to oncogenic expression of key target genes. These results provide the first case for condensate remodeling as a transforming event to generate oncogene and such condensates can be targeted for therapy. One sentence summary: Expulsion of HDACs complexes leads to oncogenic transformation.
Collapse
Affiliation(s)
- Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Pengli Li
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziwei Zhai
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Fan
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - HuaiYuan Xu
- Department of Musculoskeletal Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wei Li
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxi Li
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zechuan Liang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tao Huang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yue Qin
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Huiru Gao
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoyi Ma
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Dong Liu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Guifa Zhong
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences 5/F, 15 Science Park West Ave., Hong Kong Science Park, Park Shek Kok, New Territories, Hong Kong SAR, China
| | - Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jin Wang
- Department of Musculoskeletal Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Micky D Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences 5/F, 15 Science Park West Ave., Hong Kong Science Park, Park Shek Kok, New Territories, Hong Kong SAR, China.
| | - Baojian Liao
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Laboratory of Stem Cell and Regenerative Biology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China.
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
22
|
Hill CM, Indeglia A, Picone F, Murphy ME, Cipriano C, Maki RG, Gardini A. NAB2-STAT6 drives an EGR1-dependent neuroendocrine program in Solitary Fibrous Tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589533. [PMID: 38659891 PMCID: PMC11042251 DOI: 10.1101/2024.04.15.589533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The pathogenesis of many rare tumor types is poorly understood, preventing the design of effective treatments. Solitary fibrous tumors (SFTs) are neoplasms of mesenchymal origin that affect 1/1,000,000 individuals every year and are clinically assimilated to soft tissue sarcomas. SFTs can arise throughout the body and are usually managed surgically. However, 30-40% of SFTs will relapse local-regionally or metastasize. There are no systemic therapies with durable activity for malignant SFTs to date. The molecular hallmark of SFTs is a gene fusion between the NAB2 and STAT6 loci on chromosome 12, resulting in a chimeric protein of poorly characterized function called NAB2-STAT6. We use primary samples and an inducible cell model to discover that NAB2-STAT6 operates as a transcriptional coactivator for a specific set of enhancers and promoters that are normally targeted by the EGR1 transcription factor. In physiological conditions, NAB2 is primarily localized to the cytoplasm and only a small nuclear fraction is available to operate as a co-activator of EGR1 targets. NAB2-STAT6 redirects NAB1, NAB2, and additional EGR1 to the nucleus and bolster the expression of neuronal EGR1 targets. The STAT6 moiety of the fusion protein is a major driver of its nuclear localization and further contributes to NAB2's co-activating abilities. In primary tumors, NAB2-STAT6 activates a neuroendocrine gene signature that sets it apart from most sarcomas. These discoveries provide new insight into the pathogenesis of SFTs and reveal new targets with therapeutic potential.
Collapse
Affiliation(s)
- Connor M Hill
- The Wistar Institute, Philadelphia, PA, US
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S
| | - Alexandra Indeglia
- The Wistar Institute, Philadelphia, PA, US
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S
| | | | | | - Cara Cipriano
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, U.S
| | - Robert G Maki
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, U.S
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S
| | | |
Collapse
|
23
|
Chaudhri A, Lizee G, Hwu P, Rai K. Chromatin Remodelers Are Regulators of the Tumor Immune Microenvironment. Cancer Res 2024; 84:965-976. [PMID: 38266066 DOI: 10.1158/0008-5472.can-23-2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Immune checkpoint inhibitors show remarkable responses in a wide range of cancers, yet patients develop adaptive resistance. This necessitates the identification of alternate therapies that synergize with immunotherapies. Epigenetic modifiers are potent mediators of tumor-intrinsic mechanisms and have been shown to regulate immune response genes, making them prime targets for therapeutic combinations with immune checkpoint inhibitors. Some success has been observed in early clinical studies that combined immunotherapy with agents targeting DNA methylation and histone modification; however, less is known about chromatin remodeler-targeted therapies. Here, we provide a discussion on the regulation of tumor immunogenicity by the chromatin remodeling SWI/SNF complex through multiple mechanisms associated with immunotherapy response that broadly include IFN signaling, DNA damage, mismatch repair, regulation of oncogenic programs, and polycomb-repressive complex antagonism. Context-dependent targeting of SWI/SNF subunits can elicit opportunities for synthetic lethality and reduce T-cell exhaustion. In summary, alongside the significance of SWI/SNF subunits in predicting immunotherapy outcomes, their ability to modulate the tumor immune landscape offers opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
24
|
Sasagawa S, Kumai J, Wakamatsu T, Yui Y. Improvement of histone deacetylase inhibitor efficacy by SN38 through TWIST1 suppression in synovial sarcoma. CANCER INNOVATION 2024; 3:e113. [PMID: 38946933 PMCID: PMC11212284 DOI: 10.1002/cai2.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 12/22/2023] [Indexed: 07/02/2024]
Abstract
Background Synovial sarcoma (SS) is an SS18-SSX fusion gene-driven soft tissue sarcoma with mesenchymal characteristics, associated with a poor prognosis due to frequent metastasis to a distant organ, such as the lung. Histone deacetylase (HDAC) inhibitors (HDACis) are arising as potent molecular targeted drugs, as HDACi treatment disrupts the SS oncoprotein complex, which includes HDACs, in addition to general HDACi effects. To provide further molecular evidence for the advantages of HDACi treatment and its limitations due to drug resistance induced by the microenvironment in SS cells, we examined cellular responses to HDACi treatment in combination with two-dimensional (2D) and 3D culture conditions. Methods Using several SS cell lines, biochemical and cell biological assays were performed with romidepsin, an HDAC1/2 selective inhibitor. SN38 was concomitantly used as an ameliorant drug with romidepsin treatment. Cytostasis, apoptosis induction, and MHC class I polypeptide-related sequence A/B (MICA/B) induction were monitored to evaluate the drug efficacy. In addition to the conventional 2D culture condition, spheroid culture was adopted to evaluate the influence of cell-mass microenvironment on chemoresistance. Results By monitoring the cellular behavior with romidepsin and/or SN38 in SS cells, we observed that responsiveness is diverse in each cell line. In the apoptotic inducible cells, co-treatment with SN38 enhanced cell death. In nonapoptotic inducible cells, cytostasis and MICA/B induction were observed, and SN38 improved MICA/B induction further. As a novel efficacy of SN38, we revealed TWIST1 suppression in SS cells. In the spheroid (3D) condition, romidepsin efficacy was severely restricted in TWIST1-positive cells. We demonstrated that TWIST1 downregulation restored romidepsin efficacy even in spheroid form, and concomitant SN38 treatment along with romidepsin reproduced the reaction. Conclusions The current study demonstrated the benefits and concerns of using HDACi for SS treatment in 2D and 3D culture conditions and provided molecular evidence that concomitant treatment with SN38 can overcome drug resistance to HDACi by suppressing TWIST1 expression.
Collapse
Affiliation(s)
- Satoru Sasagawa
- Molecular Biology Laboratory, Research InstituteNozaki Tokushukai HospitalDaitoOsakaJapan
| | - Jun Kumai
- Sarcoma Treatment Laboratory, Research InstituteNozaki Tokushukai HospitalDaitoOsakaJapan
| | - Toru Wakamatsu
- Department of Musculoskeletal Oncology ServiceOsaka International Cancer InstituteOsakaJapan
| | - Yoshihiro Yui
- Sarcoma Treatment Laboratory, Research InstituteNozaki Tokushukai HospitalDaitoOsakaJapan
| |
Collapse
|
25
|
Eustermann S, Patel AB, Hopfner KP, He Y, Korber P. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol 2024; 25:309-332. [PMID: 38081975 DOI: 10.1038/s41580-023-00683-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 03/28/2024]
Abstract
The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone-DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation - for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input-output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.
Collapse
Affiliation(s)
- Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Avinash B Patel
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Yuan He
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| | - Philipp Korber
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
26
|
Wachtel M, Surdez D, Grünewald TGP, Schäfer BW. Functional Classification of Fusion Proteins in Sarcoma. Cancers (Basel) 2024; 16:1355. [PMID: 38611033 PMCID: PMC11010897 DOI: 10.3390/cancers16071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Sarcomas comprise a heterogeneous group of malignant tumors of mesenchymal origin. More than 80 entities are associated with different mesenchymal lineages. Sarcomas with fibroblastic, muscle, bone, vascular, adipocytic, and other characteristics are distinguished. Nearly half of all entities contain specific chromosomal translocations that give rise to fusion proteins. These are mostly pathognomonic, and their detection by various molecular techniques supports histopathologic classification. Moreover, the fusion proteins act as oncogenic drivers, and their blockade represents a promising therapeutic approach. This review summarizes the current knowledge on fusion proteins in sarcoma. We categorize the different fusion proteins into functional classes, including kinases, epigenetic regulators, and transcription factors, and describe their mechanisms of action. Interestingly, while fusion proteins acting as transcription factors are found in all mesenchymal lineages, the others have a more restricted pattern. Most kinase-driven sarcomas belong to the fibroblastic/myofibroblastic lineage. Fusion proteins with an epigenetic function are mainly associated with sarcomas of unclear differentiation, suggesting that epigenetic dysregulation leads to a major change in cell identity. Comparison of mechanisms of action reveals recurrent functional modes, including antagonism of Polycomb activity by fusion proteins with epigenetic activity and recruitment of histone acetyltransferases by fusion transcription factors of the myogenic lineage. Finally, based on their biology, we describe potential approaches to block the activity of fusion proteins for therapeutic intervention. Overall, our work highlights differences as well as similarities in the biology of fusion proteins from different sarcomas and provides the basis for a functional classification.
Collapse
Affiliation(s)
- Marco Wachtel
- Department of Oncology and Children’s Research Center, University Children’s Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), CH-8008 Zurich, Switzerland
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Hopp-Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership between DKFZ and Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Beat W. Schäfer
- Department of Oncology and Children’s Research Center, University Children’s Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| |
Collapse
|
27
|
Tong Z, Ai H, Xu Z, He K, Chu GC, Shi Q, Deng Z, Xue Q, Sun M, Du Y, Liang L, Li JB, Pan M, Liu L. Synovial sarcoma X breakpoint 1 protein uses a cryptic groove to selectively recognize H2AK119Ub nucleosomes. Nat Struct Mol Biol 2024; 31:300-310. [PMID: 38177667 DOI: 10.1038/s41594-023-01141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/27/2023] [Indexed: 01/06/2024]
Abstract
The cancer-specific fusion oncoprotein SS18-SSX1 disturbs chromatin accessibility by hijacking the BAF complex from the promoters and enhancers to the Polycomb-repressed chromatin regions. This process relies on the selective recognition of H2AK119Ub nucleosomes by synovial sarcoma X breakpoint 1 (SSX1). However, the mechanism underlying the selective recognition of H2AK119Ub nucleosomes by SSX1 in the absence of ubiquitin (Ub)-binding capacity remains unknown. Here we report the cryo-EM structure of SSX1 bound to H2AK119Ub nucleosomes at 3.1-Å resolution. Combined in vitro biochemical and cellular assays revealed that the Ub recognition by SSX1 is unique and depends on a cryptic basic groove formed by H3 and the Ub motif on the H2AK119 site. Moreover, this unorthodox binding mode of SSX1 induces DNA unwrapping at the entry/exit sites. Together, our results describe a unique mode of site-specific ubiquitinated nucleosome recognition that underlies the specific hijacking of the BAF complex to Polycomb regions by SS18-SSX1 in synovial sarcoma.
Collapse
Affiliation(s)
- Zebin Tong
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Huasong Ai
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China.
| | - Ziyu Xu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Kezhang He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Guo-Chao Chu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Qiang Shi
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhiheng Deng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Qiaomei Xue
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Maoshen Sun
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Yunxiang Du
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Lujun Liang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Man Pan
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China.
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
28
|
Bakaric A, Cironi L, Praz V, Sanalkumar R, Broye LC, Favre-Bulle K, Letovanec I, Digklia A, Renella R, Stamenkovic I, Ott CJ, Nakamura T, Antonescu CR, Rivera MN, Riggi N. CIC-DUX4 Chromatin Profiling Reveals New Epigenetic Dependencies and Actionable Therapeutic Targets in CIC-Rearranged Sarcomas. Cancers (Basel) 2024; 16:457. [PMID: 38275898 PMCID: PMC10814785 DOI: 10.3390/cancers16020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
CIC-DUX4-rearranged sarcoma (CDS) is a rare and aggressive soft tissue tumor that occurs most frequently in young adults. The key oncogenic driver of this disease is the expression of the CIC-DUX4 fusion protein as a result of chromosomal rearrangements. CIC-DUX4 displays chromatin binding properties, and is therefore believed to function as an aberrant transcription factor. However, the chromatin remodeling events induced by CIC-DUX4 are not well understood, limiting our ability to identify new mechanism-based therapeutic strategies for these patients. Here, we generated a genome-wide profile of CIC-DUX4 DNA occupancy and associated chromatin states in human CDS cell models and primary tumors. Combining chromatin profiling, proximity ligation assays, as well as genetic and pharmacological perturbations, we show that CIC-DUX4 operates as a potent transcriptional activator at its binding sites. This property is in contrast with the repressive function of the wild-type CIC protein, and is mainly mediated through the direct interaction of CIC-DUX4 with the acetyltransferase p300. In keeping with this, we show p300 to be essential for CDS tumor cell proliferation; additionally, we find its pharmacological inhibition to significantly impact tumor growth in vitro and in vivo. Taken together, our study elucidates the mechanisms underpinning CIC-DUX4-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Arnaud Bakaric
- Clinical Pathology Service, Department of Diagnostics, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Luisa Cironi
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Viviane Praz
- Platform Genomics Technologies, Center for Integrative Genomics, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Rajendran Sanalkumar
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
- Department of Cell and Tissue Genomics, Genentech. Inc., South San Francisco, CA 94103, USA
| | - Liliane C. Broye
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
| | - Kerria Favre-Bulle
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
| | - Igor Letovanec
- Department of Histopathology, Central Institute, Valais Hospital, 1951 Sion, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Raffaele Renella
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Ivan Stamenkovic
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
| | - Christopher J. Ott
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; (C.J.O.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Takuro Nakamura
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Cristina R. Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Miguel N. Rivera
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; (C.J.O.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicolò Riggi
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
- Department of Cell and Tissue Genomics, Genentech. Inc., South San Francisco, CA 94103, USA
| |
Collapse
|
29
|
Yuan J, Li X, Yu S. The efficacy of re-excision after unplanned excision for synovial sarcoma. Heliyon 2024; 10:e23437. [PMID: 38173500 PMCID: PMC10761562 DOI: 10.1016/j.heliyon.2023.e23437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Background This investigation studied the clinical features and outcomes of synovial sarcoma (SS) patients from a single institution. Methods A retrospective clinicopathologic study was conducted on 129 postoperative SS patients during 2003-2018. Kaplan-Meier curves and Cox proportional hazards regression (Cox) models were performed to determine the parameters associated with recurrence-free survival (RFS), metastasis-free survival (MFS), and cancer-specific survival (CSS) via univariate and multivariate analysis. The impact of unplanned excision (UE) and residual tumor in re-excision specimens was evaluated. Results The 3-year RFS, MFS and 5-year CSS were 72 %, 70 %, and 76 %, respectively. Independent factors associated with significantly inferior survival included older age, UE without re-excision, UE with residual tumors, high grade, and deep tumor for RFS, trunk-related tumor, UE without re-excision, UE with residual tumors, and deep tumor for MFS, UE with residual tumors, high grade, and deep tumor for CSS. Re-excision after UE was significantly associated with better RFS (P < 0.001). Residual tumors were remarkably correlated with inferior RFS (P = 0.0012), MFS (P = 0.0016), and CSS (P = 0.048), especially in patients at stage II (MFS: P < 0.001, CSS: P = 0.0014). Conclusion UE and residual tumors have a marked impact on the long-term survival of SS patients. Primary wide excision and re-excision is especially essential for patients at stage II.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Merlini A, Rabino M, Brusco S, Pavese V, Masci D, Sangiolo D, Bironzo P, Scagliotti GV, Novello S, D'Ambrosio L. Epigenetic determinants in soft tissue sarcomas: molecular mechanisms and therapeutic targets. Expert Opin Ther Targets 2024; 28:17-28. [PMID: 38234142 DOI: 10.1080/14728222.2024.2306344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION Soft tissue sarcomas are a group of rare, mesenchymal tumors characterized by dismal prognosis in advanced/metastatic stages. Knowledge of their molecular determinants is still rather limited. However, in recent years, epigenetic regulation - the modification of gene expression/function without DNA sequence variation - has emerged as a key player both in sarcomagenesis and sarcoma progression. AREAS COVERED Herein, we describe and review the main epigenetic mechanisms involved in chromatin remodeling and their role as disease drivers in different soft tissue sarcoma histotypes, focusing on epithelioid sarcoma, synovial sarcoma, and malignant peripheral nerve sheath tumors. Focusing on chromatin-remodeling complexes, we provide an in-depth on the role of BAF complex alterations in these soft tissue sarcoma histotypes. In parallel, we highlight current state-of-the-art and future perspectives in the development of rational, innovative treatments leveraging on epigenetic dysregulation in soft tissue sarcomas. EXPERT OPINION Therapeutic options for metastatic/advanced sarcomas are to date very limited and largely represented by cytotoxic agents, with only modest results. In the continuous attempt to find novel targets and innovative, effective drugs, epigenetic mechanisms represent an emerging and promising field of research, especially for malignant peripheral nerve sheath tumors, epithelioid and synovial sarcoma.
Collapse
Affiliation(s)
| | - Martina Rabino
- Department of Oncology, University of Turin, Orbassano (TO), Italy
| | - Silvia Brusco
- Department of Oncology, University of Turin, Orbassano (TO), Italy
- Division of Molecular Pathology, The Institute of Cancer Research Royal Cancer Hospital, London, UK
| | - Valeria Pavese
- Department of Oncology, University of Turin, Orbassano (TO), Italy
| | - Debora Masci
- Department of Oncology, University of Turin, Orbassano (TO), Italy
| | - Dario Sangiolo
- Department of Oncology, University of Turin, Orbassano (TO), Italy
| | - Paolo Bironzo
- Department of Oncology, University of Turin, Orbassano (TO), Italy
- Medical Oncology, S. Luigi Gonzaga University Hospital, Orbassano (TO), Italy
| | - Giorgio Vittorio Scagliotti
- Department of Oncology, University of Turin, Orbassano (TO), Italy
- Medical Oncology, S. Luigi Gonzaga University Hospital, Orbassano (TO), Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, Orbassano (TO), Italy
- Medical Oncology, S. Luigi Gonzaga University Hospital, Orbassano (TO), Italy
| | - Lorenzo D'Ambrosio
- Department of Oncology, University of Turin, Orbassano (TO), Italy
- Medical Oncology, S. Luigi Gonzaga University Hospital, Orbassano (TO), Italy
| |
Collapse
|
31
|
Xiao M, Kondo S, Nomura M, Kato S, Nishimura K, Zang W, Zhang Y, Akashi T, Viny A, Shigehiro T, Ikawa T, Yamazaki H, Fukumoto M, Tanaka A, Hayashi Y, Koike Y, Aoyama Y, Ito H, Nishikawa H, Kitamura T, Kanai A, Yokoyama A, Fujiwara T, Goyama S, Noguchi H, Lee SC, Toyoda A, Hinohara K, Abdel-Wahab O, Inoue D. BRD9 determines the cell fate of hematopoietic stem cells by regulating chromatin state. Nat Commun 2023; 14:8372. [PMID: 38102116 PMCID: PMC10724271 DOI: 10.1038/s41467-023-44081-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
ATP-dependent chromatin remodeling SWI/SNF complexes exist in three subcomplexes: canonical BAF (cBAF), polybromo BAF (PBAF), and a newly described non-canonical BAF (ncBAF). While cBAF and PBAF regulate fates of multiple cell types, roles for ncBAF in hematopoietic stem cells (HSCs) have not been investigated. Motivated by recent discovery of disrupted expression of BRD9, an essential component of ncBAF, in multiple cancers, including clonal hematopoietic disorders, we evaluate here the role of BRD9 in normal and malignant HSCs. BRD9 loss enhances chromatin accessibility, promoting myeloid lineage skewing while impairing B cell development. BRD9 significantly colocalizes with CTCF, whose chromatin recruitment is augmented by BRD9 loss, leading to altered chromatin state and expression of myeloid-related genes within intact topologically associating domains. These data uncover ncBAF as critical for cell fate specification in HSCs via three-dimensional regulation of gene expression and illuminate roles for ncBAF in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Muran Xiao
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinji Kondo
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, National Institute of Genetics, Mishima, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Masaki Nomura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Facility for iPS Cell Therapy, CiRA Foundation, Kyoto, Japan
| | - Shinichiro Kato
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Study, Nagoya University, Nagoya, Japan
- Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Weijia Zang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yifan Zhang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Akashi
- Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Systems Biology, Center for Neurological Diseases and Cancer, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Aaron Viny
- Department of Medicine, Division of Hematology and Oncology, and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Tsukasa Shigehiro
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Tomokatsu Ikawa
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiromi Yamazaki
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Miki Fukumoto
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Atsushi Tanaka
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasutaka Hayashi
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Yui Koike
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Yumi Aoyama
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Ito
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Study, Nagoya University, Nagoya, Japan
- Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
| | - Toshio Kitamura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akinori Kanai
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, Japan
| | - Tohru Fujiwara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Laboratory Diagnostics, Tohoku University Hospital, Sendai, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, National Institute of Genetics, Mishima, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Stanley C Lee
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Kunihiko Hinohara
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Study, Nagoya University, Nagoya, Japan
- Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
32
|
Benabdallah NS, Dalal V, Scott RW, Marcous F, Sotiriou A, Kommoss FKF, Pejkovska A, Gaspar L, Wagner L, Sánchez-Rivera FJ, Ta M, Thornton S, Nielsen TO, Underhill TM, Banito A. Aberrant gene activation in synovial sarcoma relies on SSX specificity and increased PRC1.1 stability. Nat Struct Mol Biol 2023; 30:1640-1652. [PMID: 37735617 PMCID: PMC10643139 DOI: 10.1038/s41594-023-01096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
The SS18-SSX fusion drives oncogenic transformation in synovial sarcoma by bridging SS18, a member of the mSWI/SNF (BAF) complex, to Polycomb repressive complex 1 (PRC1) target genes. Here we show that the ability of SS18-SSX to occupy H2AK119ub1-rich regions is an intrinsic property of its SSX C terminus, which can be exploited by fusion to transcriptional regulators beyond SS18. Accordingly, SS18-SSX recruitment occurs in a manner that is independent of the core components and catalytic activity of BAF. Alternative SSX fusions are also recruited to H2AK119ub1-rich chromatin and reproduce the expression signatures of SS18-SSX by engaging with transcriptional activators. Variant Polycomb repressive complex 1.1 (PRC1.1) acts as the main depositor of H2AK119ub1 and is therefore required for SS18-SSX occupancy. Importantly, the SSX C terminus not only depends on H2AK119ub1 for localization, but also further increases it by promoting PRC1.1 complex stability. Consequently, high H2AK119ub1 levels are a feature of murine and human synovial sarcomas. These results uncover a critical role for SSX-C in mediating gene deregulation in synovial sarcoma by providing specificity to chromatin and further enabling oncofusion binding by enhancing PRC1.1 stability and H2AK119ub1 deposition.
Collapse
Affiliation(s)
- Nezha S Benabdallah
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vineet Dalal
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - R Wilder Scott
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Fady Marcous
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Afroditi Sotiriou
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix K F Kommoss
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Anastasija Pejkovska
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ludmila Gaspar
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Wagner
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Francisco J Sánchez-Rivera
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, USA
| | - Monica Ta
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shelby Thornton
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ana Banito
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
33
|
Ferrari A, Berlanga P, Gatz SA, Schoot RA, van Noesel MM, Hovsepyan S, Chiaravalli S, Bergamaschi L, Minard-Colin V, Corradini N, Alaggio R, Gasparini P, Brennan B, Casanova M, Pasquali S, Orbach D. Treatment at Relapse for Synovial Sarcoma of Children, Adolescents and Young Adults: From the State of Art to Future Clinical Perspectives. Cancer Manag Res 2023; 15:1183-1196. [PMID: 37920695 PMCID: PMC10618684 DOI: 10.2147/cmar.s404371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
While the overall prognosis is generally quite satisfactory in children, adolescents and young adults with localised synovial sarcoma at first diagnosis, the outcome remains poor for patients after relapse. Conversely to the front-line standardised treatment options, patients with relapse generally have an individualised approach and to date, there is still a lack of consensus regarding standard treatment approaches. Studies on relapsed synovial sarcoma were able to identify some prognostic variables that influence post-relapse survival, in order to plan risk-adapted salvage protocols. Treatment proposals must consider previous first-line treatments, potential toxicities, and the possibility of achieving an adequate local treatment by new surgery and/or re-irradiation. Effective second-line drug therapies are urgently needed. Notably, experimental treatments such as adoptive engineered TCR-T cell immunotherapy seem promising in adults and are currently under validation also in paediatric patients.
Collapse
Affiliation(s)
- Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Susanne Andrea Gatz
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Reineke A Schoot
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Division Imaging & Cancer, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Shushan Hovsepyan
- Pediatric Cancer and Blood Disorders Center of Armenia, Yerevan, Armenia
| | - Stefano Chiaravalli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Bergamaschi
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronique Minard-Colin
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Nadege Corradini
- Department of Pediatric Hematology and Oncology-IHOPe, Léon Bérard Center, Lyon, France
| | - Rita Alaggio
- Pathology Department, Ospedale Pediatrico Bambino Gesù IRCCS, Roma, Italy
| | - Patrizia Gasparini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Bernadette Brennan
- Pediatric Oncology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Sarcoma Service, Department of Surgery, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniel Orbach
- SIREDO Oncology Center(Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institut Curie, PSL University, Paris, France
| |
Collapse
|
34
|
GAO L, XIE Z, LIN S, LV Z, ZHOU W, CHEN J, ZHU L, ZHANG L, ZENG P, HUANG X, YAN W, CHEN Y, LU D, ZHANG S, GUO W, LI P, ZHANG X. [SWI/SNF Complex Gene Mutations Promote the Liver Metastasis
of Non-small Cell Lung Cancer Cells in NSI Mice]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:753-764. [PMID: 37989338 PMCID: PMC10663775 DOI: 10.3779/j.issn.1009-3419.2023.102.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND The switch/sucrose nonfermentable chromatin-remodeling (SWI/SNF) complex is a pivotal chromatin remodeling complex, and the genomic alterations (GAs) of the SWI/SNF complex are observed in several cancer types, correlating with multiple biological features of tumor cells. However, their role in liver metastasis of non-small cell lung cancer (NSCLC) remains unclear. Our study aims to investigate the role and potential mechanisms underlying NSCLC liver metastasis induced by the GAs of SWI/SNF complex. METHODS The GAs of SWI/SNF complex in NSCLC cell lines (H1299, H23 and H460) were identified by whole-exome sequencing (WES). ARID1A knockout H1299 cell was constructed with the CRISPR/Cas9 technology. The mouse model of liver metastasis from NSCLC was established to simulate lung cancer liver metastasis and observe the metastasis rate under different gene mutation conditions. RNA sequencing and Western blot were conducted for differential gene expression analysis. Immunohistochemistry (IHC) analysis was used to assess protein expression levels of SWI/SNF-regulated target molecules in mouse liver metastases. RESULTS WES analysis revealed intracellular gene mutations. The animal experiments demonstrated a correlation between the GAs of SWI/SNF complex and a higher liver metastasis rate in immunodeficient mice. Transcriptome sequencing and Western blot analysis showed upregulated expression of ALDH1A1 and APOBEC3B in SWI/SNF-mut cells, particularly in ARID1A-deficient H460 and H1299 sgARID1A cells. IHC staining of mouse liver metastases further demonstrated elevated expression of ALDH1A1 in the H460 and H1299 sgARID1A group. CONCLUSIONS This study underscores the critical role of the GAs of SWI/SNF complex, such as ARID1A and SMARCA4, in promoting liver metastasis of lung cancer cells. The GAs of SWI/SNF complex may promote liver-specific metastasis by upregulating ALDH1A1 and APOBEC3B expression, providing novel insights into the molecular mechanisms underlying lung cancer liver metastasis.
Collapse
|
35
|
Blay JY, von Mehren M, Jones RL, Martin-Broto J, Stacchiotti S, Bauer S, Gelderblom H, Orbach D, Hindi N, Dei Tos A, Nathenson M. Synovial sarcoma: characteristics, challenges, and evolving therapeutic strategies. ESMO Open 2023; 8:101618. [PMID: 37625194 PMCID: PMC10470271 DOI: 10.1016/j.esmoop.2023.101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Synovial sarcoma (SS) is a rare and aggressive disease that accounts for 5%-10% of all soft tissue sarcomas. Although it can occur at any age, it typically affects younger adults and children, with a peak incidence in the fourth decade of life. In >95% of cases, the oncogenic driver is a translocation between chromosomes X and 18 that leads to the formation of the SS18::SSX fusion oncogenes. Early and accurate diagnosis is often a challenge; optimal outcomes are achieved by referral to a specialist center for diagnosis and management by a multidisciplinary team as soon as SS is suspected. Surgery with or without radiotherapy and/or chemotherapy can be effective in localized disease, especially in children. However, the prognosis in the advanced stages is poor, with treatment strategies that have relied heavily on traditional cytotoxic chemotherapies. Therefore, there is an unmet need for novel effective management strategies for advanced disease. An improved understanding of disease pathology and its molecular basis has paved the way for novel targeted agents and immunotherapies that are being investigated in clinical trials. This review provides an overview of the epidemiology and characteristics of SS in children and adults, as well as the patient journey from diagnosis to treatment. Current and future management strategies, focusing particularly on the potential of immunotherapies to improve clinical outcomes, are also summarized.
Collapse
Affiliation(s)
- J-Y Blay
- Department of Medicine, Centre Léon Bérard & University Claude Bernard Lyon I & UNICANCER Lyon, France.
| | - M von Mehren
- Department of Hematology and Medical Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - R L Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK
| | - J Martin-Broto
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, Madrid; Department of Oncology, University Hospital General de Villalba, Madrid; Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain
| | - S Stacchiotti
- Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - S Bauer
- Department of Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - D Orbach
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institut Curie, PSL University, Paris, France
| | - N Hindi
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, Madrid; Department of Oncology, University Hospital General de Villalba, Madrid; Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain
| | - A Dei Tos
- Department of Medicine, University of Padua School of Medicine and Department of Integrated Diagnostics, Azienda Ospedale-Università Padova, Padua, Italy
| | - M Nathenson
- Oncology Clinical Development, Cell and Gene Therapy, GSK, Waltham, USA
| |
Collapse
|
36
|
de Nigris F, Meo C, Palinski W. Combination of Genomic Landsscape and 3D Culture Functional Assays Bridges Sarcoma Phenotype to Target and Immunotherapy. Cells 2023; 12:2204. [PMID: 37681936 PMCID: PMC10486752 DOI: 10.3390/cells12172204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Genomic-based precision medicine has not only improved tumour therapy but has also shown its weaknesses. Genomic profiling and mutation analysis have identified alterations that play a major role in sarcoma pathogenesis and evolution. However, they have not been sufficient in predicting tumour vulnerability and advancing treatment. The relative rarity of sarcomas and the genetic heterogeneity between subtypes also stand in the way of gaining statistically significant results from clinical trials. Personalized three-dimensional tumour models that reflect the specific histologic subtype are emerging as functional assays to test anticancer drugs, complementing genomic screening. Here, we provide an overview of current target therapy for sarcomas and discuss functional assays based on 3D models that, by recapitulating the molecular pathways and tumour microenvironment, may predict patient response to treatments. This approach opens new avenues to improve precision medicine when genomic and pathway alterations are not sufficient to guide the choice of the most promising treatment. Furthermore, we discuss the aspects of the 3D culture assays that need to be improved, such as the standardisation of growth conditions and the definition of in vitro responses that can be used as a cut-off for clinical implementation.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Concetta Meo
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Wulf Palinski
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA;
| |
Collapse
|
37
|
Lanzi C, Arrighetti N, Pasquali S, Cassinelli G. Targeting EZH2 in SMARCB1-deficient sarcomas: Advances and opportunities to potentiate the efficacy of EZH2 inhibitors. Biochem Pharmacol 2023; 215:115727. [PMID: 37541451 DOI: 10.1016/j.bcp.2023.115727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Soft tissue sarcomas (STSs) are rare mesechymal malignancies characterized by distintive molecular, histological and clinical features. Many STSs are considered as predominatly epigenetic diseases due to underlying chromatin deregulation. Discovery of deregulated functional antagonism between the chromatin remodeling BRG1/BRM-associated (BAFs) and the histone modifying Polycomb repressor complexes (PRCs) has provided novel actionable targets. In epithelioid sarcoma (ES), extracranial, extrarenal malignant rhabdoid tumors (eMRTs) and synovial sarcoma (SS), the total or partial loss of the BAF core subunit SMARCB1, driven by different alterations, is associated with PRC2 deregulation and dependency on its enzymatic subunit, EZH2. In these SMARCB1-deficient STSs, aberrant EZH2 expression and/or activity emerged as a druggable vulnerability. Although preclinical investigation supported EZH2 targeting as a promising therapeutic option, clinical studies demonstrated a variable response to EZH2 inhibitors. Actually, whereas the clinical benefit recorded in ES patients prompted the FDA approval of the EZH2 inhibitor tazemetostat, the modest and sporadic responses observed in eMRT and SS patients highlighted the need to deepen mechanistic as well as pharmacological investigations to improve drug effectiveness. We summarize the current knowledge of different mechanisms driving SMARCB1 deficiency and EZH2 deregulation in ES, eMRT and SS along with preclinical and clinical studies of EZH2-targeting agents. Possible implication of the PRC2- and enzymatic-independent functions of EZH2 and of its homolog, EZH1, in the response to anti-EZH2 agents will be discussed together with combinatorial strategies under investigation to improve the efficacy of EZH2 targeting in these tumors.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
38
|
Fountain DM, Sauka-Spengler T. The SWI/SNF Complex in Neural Crest Cell Development and Disease. Annu Rev Genomics Hum Genet 2023; 24:203-223. [PMID: 37624665 DOI: 10.1146/annurev-genom-011723-082913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
While the neural crest cell population gives rise to an extraordinary array of derivatives, including elements of the craniofacial skeleton, skin pigmentation, and peripheral nervous system, it is today increasingly recognized that Schwann cell precursors are also multipotent. Two mammalian paralogs of the SWI/SNF (switch/sucrose nonfermentable) chromatin-remodeling complexes, BAF (Brg1-associated factors) and PBAF (polybromo-associated BAF), are critical for neural crest specification during normal mammalian development. There is increasing evidence that pathogenic variants in components of the BAF and PBAF complexes play central roles in the pathogenesis of neural crest-derived tumors. Transgenic mouse models demonstrate a temporal window early in development where pathogenic variants in Smarcb1 result in the formation of aggressive, poorly differentiated tumors, such as rhabdoid tumors. By contrast, later in development, homozygous inactivation of Smarcb1 requires additional pathogenic variants in tumor suppressor genes to drive the development of differentiated adult neoplasms derived from the neural crest, which have a comparatively good prognosis in humans.
Collapse
Affiliation(s)
- Daniel M Fountain
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| |
Collapse
|
39
|
Dermawan JK, Rubin BP. The spectrum and significance of secondary (co-occurring) genetic alterations in sarcomas: the hallmarks of sarcomagenesis. J Pathol 2023; 260:637-648. [PMID: 37345731 DOI: 10.1002/path.6140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
Bone and soft tissue tumors are generally classified into complex karyotype sarcomas versus those with recurrent genetic alterations, often in the form of gene fusions. In this review, we provide an overview of important co-occurring genomic alterations, organized by biological mechanisms and covering a spectrum of genomic alteration types: mutations (single-nucleotide variations or indels) in oncogenes or tumor suppressor genes, copy number alterations, transcriptomic signatures, genomic complexity indices (e.g. CINSARC), and complex genomic structural variants. We discuss the biological and prognostic roles of these so-called secondary or co-occurring alterations, arguing that recognition and detection of these alterations may be significant for our understanding and management of mesenchymal tumors. On a related note, we also discuss major recurrent alterations in so-called complex karyotype sarcomas. These secondary alterations are essential to sarcomagenesis via a variety of mechanisms, such as inactivation of tumor suppressors, activation of proliferative signal transduction, telomere maintenance, and aberrant regulation of epigenomic/chromatin remodeling players. The use of comprehensive genomic profiling, including targeted next-generation sequencing panels or whole-exome sequencing, may be incorporated into clinical workflows to offer more comprehensive, potentially clinically actionable information. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
40
|
Imajo I, Yamada T, Chikui T, Kiyoshima T, Ito M, Kohashi K, Sakamoto E, Oda Y. Intraosseous synovial sarcoma of the mandible: A case report and review of the literature. Oncol Lett 2023; 26:318. [PMID: 37332332 PMCID: PMC10272957 DOI: 10.3892/ol.2023.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/27/2023] [Indexed: 06/20/2023] Open
Abstract
Synovial sarcoma (SS) is a malignant soft tissue tumor that usually arises in the para-articular regions of the extremities. Only nine cases of SS in the mandible have been reported to date. The present study described a case of SS arising from the left mandible. A 54-year-old woman was referred to Kyushu University Hospital (Fukuoka, Japan) with a complaint of numbness in the left mental nerve area. Computed tomography revealed replacement of the left mandibular bone marrow with soft tissue and destruction of the mandibular canal. Magnetic resonance imaging revealed an isointense mass on T1-weighted images and hyperintensity on T2-weighted images. The tumor showed homogeneous enhancement. A biopsy was performed, and monophasic SS was diagnosed based on immunohistochemical staining features and genetic analysis. Hemimandible dissection and supraomophyoid neck resection were performed with fibular osteocutaneous flap reconstruction, followed by adjuvant chemotherapy. There was no evidence of recurrence or distant metastases. The present study also reviewed the clinical, imaging, histological, and immunohistochemical features of the SS in the mandible.
Collapse
Affiliation(s)
- Ikumi Imajo
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohiro Yamada
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Toru Chikui
- Oral and Maxillofacial Radiology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mamoru Ito
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Pathological Science, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eiji Sakamoto
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Science, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
41
|
Reddy D, Bhattacharya S, Workman JL. (mis)-Targeting of SWI/SNF complex(es) in cancer. Cancer Metastasis Rev 2023; 42:455-470. [PMID: 37093326 PMCID: PMC10349013 DOI: 10.1007/s10555-023-10102-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Abstract
The ATP-dependent chromatin remodeling complex SWI/SNF (also called BAF) is critical for the regulation of gene expression. During the evolution from yeast to mammals, the BAF complex has evolved an enormous complexity that contains a high number of subunits encoded by various genes. Emerging studies highlight the frequent involvement of altered mammalian SWI/SNF chromatin-remodeling complexes in human cancers. Here, we discuss the recent advances in determining the structure of SWI/SNF complexes, highlight the mechanisms by which mutations affecting these complexes promote cancer, and describe the promising emerging opportunities for targeted therapies.
Collapse
Affiliation(s)
- Divya Reddy
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | | | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
| |
Collapse
|
42
|
Sadaf H, Ambroziak M, Binkowski R, Kluebsoongnoen J, Paszkiewicz-Kozik E, Steciuk J, Markowicz S, Walewski J, Sarnowska E, Sarnowski TJ, Konopinski R. New molecular targets in Hodgkin and Reed-Sternberg cells. Front Immunol 2023; 14:1155468. [PMID: 37266436 PMCID: PMC10230546 DOI: 10.3389/fimmu.2023.1155468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Recent discoveries shed light on molecular mechanisms responsible for classical Hodgkin lymphoma (HL) development and progression, along with features of Hodgkin - Reed and Sternberg cells (HRS). Here, we summarize current knowledge on characteristic molecular alterations in HL, as well as existing targeted therapies and potential novel treatments for this disease. We discuss the importance of cluster of differentiation molecule 30 (CD30) and the programmed cell death-1 protein (PD-1) and ligands (PD-L1/2), and other molecules involved in immune modulation in HL. We highlight emerging evidence indicating that the altered function of SWI/SNF-type chromatin remodeling complexes, PRC2, and other epigenetic modifiers, contribute to variations in chromatin status, which are typical for HL. We postulate that despite of the existence of plentiful molecular data, the understanding of HL development remains incomplete. We therefore propose research directions involving analysis of reverse signaling in the PD-1/PD-L1 mechanism, chromatin remodeling, and epigenetics-related alterations, in order to identify HL features at the molecular level. Such attempts may lead to the identification of new molecular targets, and thus will likely substantially contribute to the future development of more effective targeted therapies.
Collapse
Affiliation(s)
- Hummaira Sadaf
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Biotechnology, Sardar Bahadur Khan Womens’ University, Balochistan, Pakistan
| | - Maciej Ambroziak
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Robert Binkowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | | | - Ewa Paszkiewicz-Kozik
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jaroslaw Steciuk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Sergiusz Markowicz
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Elzbieta Sarnowska
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Ryszard Konopinski
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
43
|
Pan M, Jiang C, Zhang Z, Achacoso N, Solorzano-Pinto AV, Tse P, Chung E, Suga JM, Thomas S, Habel LA. Sex- and Co-Mutation-Dependent Prognosis in Patients with SMARCA4-Mutated Malignancies. Cancers (Basel) 2023; 15:2665. [PMID: 37345003 DOI: 10.3390/cancers15102665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Whether sex and co-mutations impact prognosis of patients with SMARCA4-mutated (mutSMARCA4) malignancies is not clear. METHODS This cohort included patients from Northern California Kaiser Permanente with next-generation sequencing (NGS) performed from August 2020 to October 2022. We used Cox regression modeling to examine the association between sex and overall survival (OS), adjusting for demographics, performance status, Charlson comorbidity index, receipt of treatment, tumor mutation burden (TMB), and TP53, KRAS, CDKN2A, STK11, and Keap1 co-mutations. RESULTS Out of 9221 cases with NGS performed, 125 cases (1.4%) had a mutSMARCA4. The most common malignancies with a mutSMARCA4 were non-small cell lung cancer (NSCLC, 35.2%), esophageal and stomach adenocarcinoma (12.8%), and cancer of unknown primary (11.2%). The most common co-mutations were p53 (mutp53, 59.2%), KRAS (mutKRAS, 28.8%), CDKN2A (mutCDKN2A, 31.2%), STK11 (mutSTK11, 12.8%), and Keap1 (mutKeap1, 8.8%) mutations. Male patients had substantially worse OS than female patients both among the entire mutSMARCA4 cohort (HR = 1.71, [95% CI 0.92-3.18]) with a median OS of 3.0 versus 43.3 months (p < 0.001), and among the NSCLC subgroup (HR = 14.2, [95% CI 2.76-73.4]) with a median OS of 2.75 months versus un-estimable (p = 0.02). Among all patients with mutSMARCA4, mutp53 versus wtp53 (HR = 2.12, [95% CI 1.04-4.29]) and mutSTK11 versus wtSTK11 (HR = 2.59, [95% CI 0.87-7.73]) were associated with worse OS. Among the NSCLC subgroup, mutp53 versus wtp53 (HR = 0.35, [0.06-1.97]) and mutKRAS versus wtKRAS (HR = 0.04, [0.003-.45]) were associated with better OS, while mutCDKN2A versus wtCDKN2A (HR = 5.04, [1.12-22.32]), mutSTK11 versus wtSTK11 (HR = 13.10, [95% CI 1.16-148.26]), and mutKeap1 versus wtKeap1 (HR = 5.06, [95% CI 0.89-26.61}) were associated with worse OS. CONCLUSION In our cohort of patients with mutSMARCA4, males had substantially worse prognosis than females, while mutTP53, mutKRAS, mutCDKN2A, mutSTK11 and mutKeap1were differentially associated with prognosis among all patients and among the NSCLC subgroup. Our results, if confirmed, could suggest potentially unidentified mechanisms that underly this sex and co-mutation-dependent prognostic disparity among patients whose tumor bears a mutSMARCA4.
Collapse
Affiliation(s)
- Minggui Pan
- Department of Oncology and Hematology, Kaiser Permanente, Santa Clara, CA 94051, USA
- Division of Research, Kaiser Permanente, Oakland, CA 94612, USA
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Chen Jiang
- Division of Research, Kaiser Permanente, Oakland, CA 94612, USA
| | - Zheyang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, and National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
| | - Ninah Achacoso
- Division of Research, Kaiser Permanente, Oakland, CA 94612, USA
| | | | - Pam Tse
- Division of Research, Kaiser Permanente, Oakland, CA 94612, USA
| | - Elaine Chung
- Division of Research, Kaiser Permanente, Oakland, CA 94612, USA
| | - Jennifer Marie Suga
- Department of Oncology and Hematology, Kaiser Permanente, Vallejo, CA 94589, USA
| | - Sachdev Thomas
- Department of Oncology and Hematology, Kaiser Permanente, Vallejo, CA 94589, USA
| | - Laurel A Habel
- Division of Research, Kaiser Permanente, Oakland, CA 94612, USA
| |
Collapse
|
44
|
Bure IV, Nemtsova MV. Mutual Regulation of ncRNAs and Chromatin Remodeling Complexes in Normal and Pathological Conditions. Int J Mol Sci 2023; 24:ijms24097848. [PMID: 37175555 PMCID: PMC10178202 DOI: 10.3390/ijms24097848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Chromatin remodeling is the one of the main epigenetic mechanisms of gene expression regulation both in normal cells and in pathological conditions. In recent years, a growing number of investigations have confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. Genes encoding protein subunits of chromatin remodeling complexes are often mutated and change their expression in diseases, as well as non-coding RNAs (ncRNAs). Moreover, different mechanisms of their mutual regulation have already been described. Further understanding of these processes may help apply their clinical potential for establishment of the diagnosis, prognosis, and treatment of the diseases. The therapeutic targeting of the chromatin structure has many limitations because of the complexity of its regulation, with the involvement of a large number of genes, proteins, non-coding transcripts, and other intermediary molecules. However, several successful strategies have been proposed to target subunits of chromatin remodeling complexes and genes encoding them, as well as the ncRNAs that regulate the operation of these complexes and direct them to the target gene regions. In our review, we focus on chromatin remodeling complexes and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
Affiliation(s)
- Irina V Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Marina V Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
45
|
Fuchs JW, Schulte BC, Fuchs JR, Agulnik M. Targeted therapies for the treatment of soft tissue sarcoma. Front Oncol 2023; 13:1122508. [PMID: 36969064 PMCID: PMC10034045 DOI: 10.3389/fonc.2023.1122508] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Soft tissue sarcomas are rare malignant tumors derived from mesenchymal cells that have a high morbidity and mortality related to frequent occurrence of advanced and metastatic disease. Over the past two decades there have been significant advances in the use of targeted therapies for the treatment of soft tissue sarcoma. The ability to study various cellular markers and pathways related to sarcomagenesis has led to the creation and approval of multiple novel therapies. Herein, we describe the current landscape of targeted medications used in the management of advanced or metastatic soft tissue sarcomas, excluding GIST. We distinguish three categories: targeted therapies that have current US Food and Drug Administration (FDA) approval for treatment of soft tissue sarcoma, non-FDA approved targeted therapies, and medications in development for treatment of patients with soft tissue sarcoma.
Collapse
Affiliation(s)
- Jeffrey W. Fuchs
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United States
| | - Brian C. Schulte
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Joseph R. Fuchs
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United States
| | - Mark Agulnik
- Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
- *Correspondence: Mark Agulnik,
| |
Collapse
|
46
|
Agnoletto C, Pignochino Y, Caruso C, Garofalo C. Exosome-Based Liquid Biopsy Approaches in Bone and Soft Tissue Sarcomas: Review of the Literature, Prospectives, and Hopes for Clinical Application. Int J Mol Sci 2023; 24:ijms24065159. [PMID: 36982236 PMCID: PMC10048895 DOI: 10.3390/ijms24065159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The knowledge of exosome impact on sarcoma development and progression has been implemented in preclinical studies thanks to technological advances in exosome isolation. Moreover, the clinical relevance of liquid biopsy is well established in early diagnosis, prognosis prediction, tumor burden assessment, therapeutic responsiveness, and recurrence monitoring of tumors. In this review, we aimed to comprehensively summarize the existing literature pointing out the clinical relevance of detecting exosomes in liquid biopsy from sarcoma patients. Presently, the clinical utility of liquid biopsy based on exosomes in patients affected by sarcoma is under debate. The present manuscript collects evidence on the clinical impact of exosome detection in circulation of sarcoma patients. The majority of these data are not conclusive and the relevance of liquid biopsy-based approaches in some types of sarcoma is still insufficient. Nevertheless, the utility of circulating exosomes in precision medicine clearly emerged and further validation in larger and homogeneous cohorts of sarcoma patients is clearly needed, requiring collaborative projects between clinicians and translational researchers for these rare cancers.
Collapse
Affiliation(s)
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy
- Candiolo Cancer Instute, FPO-IRCCS, 10060 Torino, Italy
| | - Chiara Caruso
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Cecilia Garofalo
- Advanced Translational Research Laboratory, Immunology and Molecular Oncology Diagnostic Unit, Veneto Institute of Oncology IOV-IRCCS, 35127 Padua, Italy
| |
Collapse
|
47
|
Weiss MC, Van Tine BA. Relapsed Synovial Sarcoma: Treatment Options. Curr Treat Options Oncol 2023; 24:229-239. [PMID: 36867389 DOI: 10.1007/s11864-023-01056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 03/04/2023]
Abstract
OPINION STATEMENT Synovial sarcoma (SS) is a fusion-driven subtype of sarcoma that is a more chemo-sensitive subtype of soft tissue sarcoma. While chemotherapy options are currently standard of care, our fundamental understanding of the biology of SS is driving new therapies. We will review the current standard of care, as well as the current therapies showing promise in a clinical trial. It is our hope that by encouraging participation in clinical trials, the fundamental therapies available for SS will change the current treatment paradigm.
Collapse
Affiliation(s)
- Mia C Weiss
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, St. Louis, MO, USA.
| | - Brian A Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, St. Louis, MO, USA.
- Division of Pediatric Hematology and Oncology, St. Louis Children's Hospital, St. Louis, MO, USA.
| |
Collapse
|
48
|
Epigenetic regulation of T cell lineages in skin and blood following hematopoietic stem cell transplantation. Clin Immunol 2023; 248:109245. [PMID: 36702179 DOI: 10.1016/j.clim.2023.109245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Allogeneic hematopoietic stem-cell transplantation (HSCT) seeks to reconstitute the host's immune system from donor stem cells. The success of HSCT is threatened by complications including leukemia relapse or graft-versus-host-disease (GvHD). To investigate the underlying regulatory processes in central and peripheral T cell recovery, we performed sequential multi-omics analysis of T cells of the skin and blood during HSCT. We detected rapid effector T cell reconstitution, while emergence of regulatory T cells was delayed. Epigenetic and gene-regulatory programs were associated with recovering T cells and diverged greatly between skin and blood T cells. The BRG1/BRM-associated factor chromatin remodeling complex and histone deacetylases (HDACs) were epigenetic regulators involved in restoration of T cell homeostasis after transplantation. In isolated T cells of patients after HSCT, we observed class I HDAC-inhibitors to modulate their dysbalance. The present study highlights the importance of epigenetic regulation in the recovery of T cells following HSCT.
Collapse
|
49
|
SMARCA4: Current status and future perspectives in non-small-cell lung cancer. Cancer Lett 2023; 554:216022. [PMID: 36450331 DOI: 10.1016/j.canlet.2022.216022] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
SMARCA4, also known as transcription activator, is an ATP-dependent catalytic subunit of SWI/SNF (SWItch/Sucrose NonFermentable) chromatin-remodeling complexes that participates in the regulation of chromatin structure and gene expression by supplying energy. As a tumor suppressor that has aberrant expression in ∼10% of non-small-cell lung cancers (NSCLCs), SMARCA4 possesses many biological functions, including regulating gene expression, differentiation and transcription. Furthermore, NSCLC patients with SMARCA4 alterations have a weak response to conventional chemotherapy and poor prognosis. Therefore, the mechanisms of SMARCA4 in NSCLC development urgently need to be explored to identify novel biomarkers and precise therapeutic strategies for this subtype. This review systematically describes the biological functions of SMARCA4 and its role in NSCLC development, metastasis, functional epigenetics and potential therapeutic approaches for NSCLCs with SMARCA4 alterations. Additionally, this paper explores the relationship and regulatory mechanisms shared by SMARCA4 and its mutually exclusive catalytic subunit SMARCA2. We aim to provide innovative treatment strategies and improve clinical outcomes for NSCLC patients with SMARCA4 alterations.
Collapse
|
50
|
Ferdous Z, Clément JE, Gong JP, Tanaka S, Komatsuzaki T, Tsuda M. Geometrical analysis identified morphological features of hydrogel-induced cancer stem cells in synovial sarcoma model cells. Biochem Biophys Res Commun 2023; 642:41-49. [PMID: 36549099 DOI: 10.1016/j.bbrc.2022.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) has been a key target to cure cancer patients completely. Although many CSC markers have been identified, they are frequently cancer type-specific and those expressions are occasionally variable, which becomes an obstacle to elucidate the characteristics of the CSCs. Here we scrutinized the relationship between stemness elevation and geometrical features of single cells. The PAMPS hydrogel was utilized to create the CSCs from mouse myoblast C2C12 and its synovial sarcoma model cells. qRT-PCR analysis confirmed the significant increase in expression levels of Sox2, Nanog, and Oct3/4 on the PAMPS gel, which was higher in the synovial sarcoma model cells. Of note, the morphological heterogeneity was appeared on the PAMPS gel, mainly including flat spreading, elongated spindle, and small round cells, and the Sox2 expression was highest in the small round cells. To examine the role of morphological differences in the elevation of stemness, over 6,400 cells were segmented along with the Sox2 intensity, and 12 geometrical features were extracted at single cell level. A nonlinear mapping of the geometrical features by using uniform manifold approximation and projection (UMAP) clearly revealed the existence of relationship between morphological differences and the stemness elevation, especially for C2C12 and its synovial sarcoma model on the PAMPS gel in which the small round cells possess relatively high Sox2 expression on the PAMPS gel, which supports the strong relationship between morphological changes and the stemness elevation. Taken together, these geometrical features can be useful for morphological profiling of CSCs to classify and distinguish them for understanding of their role in disease progression and drug discovery.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Jean-Emmanuel Clément
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan; World Premier International Research Center Initiative, Institute for Chemical Reaction, Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Jian Ping Gong
- World Premier International Research Center Initiative, Institute for Chemical Reaction, Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; World Premier International Research Center Initiative, Institute for Chemical Reaction, Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Tamiki Komatsuzaki
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan; World Premier International Research Center Initiative, Institute for Chemical Reaction, Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Masumi Tsuda
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; World Premier International Research Center Initiative, Institute for Chemical Reaction, Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|