1
|
Stolz V, de Freitas e Silva R, Rica R, Zhu C, Preglej T, Hamminger P, Hainberger D, Alteneder M, Müller L, Waldherr M, Waltenberger D, Hladik A, Agerer B, Schuster M, Frey T, Krausgruber T, Knapp S, Campbell C, Schmetterer K, Trauner M, Bergthaler A, Bock C, Boucheron N, Ellmeier W. Nuclear receptor corepressor 1 controls regulatory T cell subset differentiation and effector function. eLife 2024; 13:e78738. [PMID: 39466314 PMCID: PMC11517256 DOI: 10.7554/elife.78738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
FOXP3+ regulatory T cells (Treg cells) are key for immune homeostasis. Here, we reveal that nuclear receptor corepressor 1 (NCOR1) controls naïve and effector Treg cell states. Upon NCOR1 deletion in T cells, effector Treg cell frequencies were elevated in mice and in in vitro-generated human Treg cells. NCOR1-deficient Treg cells failed to protect mice from severe weight loss and intestinal inflammation associated with CD4+ T cell transfer colitis, indicating impaired suppressive function. NCOR1 controls the transcriptional integrity of Treg cells, since effector gene signatures were already upregulated in naïve NCOR1-deficient Treg cells while effector NCOR1-deficient Treg cells failed to repress genes associated with naïve Treg cells. Moreover, genes related to cholesterol homeostasis including targets of liver X receptor (LXR) were dysregulated in NCOR1-deficient Treg cells. However, genetic ablation of LXRβ in T cells did not revert the effects of NCOR1 deficiency, indicating that NCOR1 controls naïve and effector Treg cell subset composition independent from its ability to repress LXRβ-induced gene expression. Thus, our study reveals that NCOR1 maintains naïve and effector Treg cell states via regulating their transcriptional integrity. We also reveal a critical role for this epigenetic regulator in supporting the suppressive functions of Treg cells in vivo.
Collapse
Affiliation(s)
- Valentina Stolz
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Rafael de Freitas e Silva
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Ramona Rica
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Ci Zhu
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Teresa Preglej
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Patricia Hamminger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Daniela Hainberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Marlis Alteneder
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Lena Müller
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Monika Waldherr
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Darina Waltenberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Anastasiya Hladik
- Medical University of Vienna, Vienna, Department of Medicine I, Laboratory of Infection BiologyViennaAustria
| | - Benedikt Agerer
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Michael Schuster
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Tobias Frey
- Medical University of Vienna, Department of Laboratory MedicineViennaAustria
| | - Thomas Krausgruber
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Medical University of Vienna, Center for Medical Statistics, Informatics, and Intelligent Systems, Institute of Artificial IntelligenceViennaAustria
| | - Sylvia Knapp
- Medical University of Vienna, Vienna, Department of Medicine I, Laboratory of Infection BiologyViennaAustria
| | - Clarissa Campbell
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Klaus Schmetterer
- Medical University of Vienna, Department of Laboratory MedicineViennaAustria
| | - Michael Trauner
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Hans Popper Laboratory of Molecular HepatologyViennaAustria
| | - Andreas Bergthaler
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Medical University of Vienna, Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied ImmunologyViennaAustria
| | - Christoph Bock
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Medical University of Vienna, Center for Medical Statistics, Informatics, and Intelligent Systems, Institute of Artificial IntelligenceViennaAustria
| | - Nicole Boucheron
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| |
Collapse
|
2
|
Huynh TN, Havrda MC, Zanazzi GJ, Chang CCY, Chang TY. Inhibiting the Cholesterol Storage Enzyme ACAT1/SOAT1 in Myelin Debris-Treated Microglial Cell Lines Activates the Gene Expression of Cholesterol Efflux Transporter ABCA1. Biomolecules 2024; 14:1301. [PMID: 39456234 PMCID: PMC11505751 DOI: 10.3390/biom14101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Aging is the major risk factor for Alzheimer's disease (AD). In the aged brain, myelin debris accumulates and is cleared by microglia. Phagocytosed myelin debris increases neutral lipid droplet content in microglia. Neutral lipids include cholesteryl esters (CE) and triacylglycerol (TAG). To examine the effects of myelin debris on neutral lipid content in microglia, we added myelin debris to human HMC3 and mouse N9 cells. The results obtained when using 3H-oleate as a precursor in intact cells reveal that myelin debris significantly increases the biosynthesis of CE but not TAG. Mass analyses have shown that myelin debris increases both CE and TAG. The increase in CE biosynthesis was abolished using inhibitors of the cholesterol storage enzyme acyl-CoA:cholesterol acyltransferase 1 (ACAT1/SOAT1). ACAT1 inhibitors are promising drug candidates for AD treatment. In myelin debris-loaded microglia, treatment with two different ACAT1 inhibitors, K604 and F12511, increased the mRNA and protein content of ATP-binding cassette subfamily A1 (ABCA1), a protein that is located at the plasma membrane and which controls cellular cholesterol disposal. The effect of the ACAT1 inhibitor on ABCA1 was abolished by preincubating cells with the liver X receptor (LXR) antagonist GSK2033. We conclude that ACAT1 inhibitors prevent the accumulation of cholesterol and CE in myelin debris-treated microglia by activating ABCA1 gene expression via the LXR pathway.
Collapse
Affiliation(s)
- Thao N. Huynh
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - Matthew C. Havrda
- Department of Molecular and System Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - George J. Zanazzi
- Department of Pathology and Laboratory Medicine, Dartmouth–Hitchcock Medical Center, Lebanon, NH 03766, USA;
| | - Catherine C. Y. Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - Ta Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| |
Collapse
|
3
|
Hill KB, Mullen GP, Nagareddy PR, Zimmerman KA, Rudolph MC. Key questions and gaps in understanding adipose tissue macrophages and early-life metabolic programming. Am J Physiol Endocrinol Metab 2024; 327:E478-E497. [PMID: 39171752 PMCID: PMC11482221 DOI: 10.1152/ajpendo.00140.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
The global obesity epidemic, with its associated comorbidities and increased risk of early mortality, underscores the urgent need for enhancing our understanding of the origins of this complex disease. It is increasingly clear that metabolism is programmed early in life and that metabolic programming can have life-long health consequences. As a critical metabolic organ sensitive to early-life stimuli, proper development of adipose tissue (AT) is crucial for life-long energy homeostasis. Early-life nutrients, especially fatty acids (FAs), significantly influence the programming of AT and shape its function and metabolism. Of growing interest are the dynamic responses during pre- and postnatal development to proinflammatory omega-6 (n6) and anti-inflammatory omega-3 (n3) FA exposures in AT. In the US maternal diet, the ratio of "pro-inflammatory" n6- to "anti-inflammatory" n3-FAs has grown dramatically due to the greater prevalence of n6-FAs. Notably, AT macrophages (ATMs) form a significant population within adipose stromal cells, playing not only an instrumental role in AT formation and maintenance but also acting as key mediators of cell-to-cell lipid and cytokine signaling. Despite rapid advances in ATM and immunometabolism fields, research has focused on responses to obesogenic diets and during adulthood. Consequently, there is a significant gap in identifying the mechanisms contributing metabolic health, especially regarding lipid exposures during the establishment of ATM physiology. Our review highlights the current understanding of ATM diversity, their critical role in AT, their potential role in early-life metabolic programming, and the broader implications for metabolism and health.
Collapse
Affiliation(s)
- Kaitlyn B Hill
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Gregory P Mullen
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Cardiovascular Section, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Kurt A Zimmerman
- Department of Internal Medicine, Division of Nephrology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michael C Rudolph
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
4
|
Scholz R, Brösamle D, Yuan X, Beyer M, Neher JJ. Epigenetic control of microglial immune responses. Immunol Rev 2024; 323:209-226. [PMID: 38491845 DOI: 10.1111/imr.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
Microglia, the major population of brain-resident macrophages, are now recognized as a heterogeneous population comprising several cell subtypes with different (so far mostly supposed) functions in health and disease. A number of studies have performed molecular characterization of these different microglial activation states over the last years making use of "omics" technologies, that is transcriptomics, proteomics and, less frequently, epigenomics profiling. These approaches offer the possibility to identify disease mechanisms, discover novel diagnostic biomarkers, and develop new therapeutic strategies. Here, we focus on epigenetic profiling as a means to understand microglial immune responses beyond what other omics methods can offer, that is, revealing past and present molecular responses, gene regulatory networks and potential future response trajectories, and defining cell subtype-specific disease relevance through mapping non-coding genetic variants. We review the current knowledge in the field regarding epigenetic regulation of microglial identity and function, provide an exemplary analysis that demonstrates the advantages of performing joint transcriptomic and epigenomic profiling of single microglial cells and discuss how comprehensive epigenetic analyses may enhance our understanding of microglial pathophysiology.
Collapse
Affiliation(s)
- Rebekka Scholz
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Desirée Brösamle
- Biomedical Center (BMC), Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xidi Yuan
- Biomedical Center (BMC), Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marc Beyer
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE) and University of Bonn and West German Genome Center, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center (BMC), Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
5
|
Sun K, Wang YL, Hou CC, Shang D, Du LJ, Bai L, Zhang XY, Hao CM, Duan SZ. Collecting duct NCOR1 controls blood pressure by regulating mineralocorticoid receptor. J Adv Res 2024:S2090-1232(24)00053-5. [PMID: 38341030 DOI: 10.1016/j.jare.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/29/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Nuclear receptor corepressor 1(NCOR1) is reported to play crucial roles in cardiovascular diseases, but its function in the kidney has remained obscure. OBJECTIVE We aim to elucidate the role of collecting duct NCOR1 in blood pressure (BP) regulation. METHODS AND RESULTS Collecting duct NCOR1 knockout (KO) mice manifested increased BP and aggravated vascular and renal injury in an angiotensin II (Ang II)-induced hypertensive model. KO mice also showed significantly higher BP than littermate control (LC) mice in deoxycorticosterone acetate (DOCA)-salt model. Further study showed that collecting duct NCOR1 deficiency aggravated volume and sodium retention after saline challenge. Among the sodium transporter in the collecting duct, the expression of the three epithelial sodium channel (ENaC) subunits was markedly increased in the renal medulla of KO mice. Consistently, BP in Ang II-infused KO mice decreased significantly to the similar level as those in LC mice after amiloride treatment. ChIP analysis revealed that NCOR1 deficiency increased the enrichment of mineralocorticoid receptor (MR) on the promoters of the three ENaC genes in primary inner medulla collecting duct (IMCD) cells. Co-IP results showed interaction between NCOR1 and MR, and luciferase reporter results demonstrated that NCOR1 inhibited the transcriptional activity of MR. Knockdown of MR eliminated the increased ENaC expression in primary IMCD cells isolated from KO mice. Finally, BP was significantly decreased in Ang II-infused KO mice after treatment of MR antagonist spironolactone and the difference between LC and KO mice was abolished. CONCLUSIONS NCOR1 interacts with MR to control ENaC activity in the collecting duct and to regulate sodium reabsorption and ultimately BP. Targeting NCOR1 might be a promising tactic to interrupt the volume and sodium retention of the collecting duct in hypertension.
Collapse
Affiliation(s)
- Ke Sun
- Department of Nephrology, Zhejiang University Medical College Affiliated Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province 310016, China; Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yong-Li Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chen-Chen Hou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Da Shang
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Lan Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xing-Yu Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Sheng-Zhong Duan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine; State Key Laboratory of Transvascular Implantation Devices, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
6
|
Qiu S, Xian Z, Chen J, Huang P, Wang H, Wang H, Xu J. Microglia nuclear receptor corepressor 1 deficiency alleviates neuroinflammation in mice. Neurosci Lett 2024; 822:137643. [PMID: 38242347 DOI: 10.1016/j.neulet.2024.137643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Given the established role of nuclear receptor corepressor 1 (NCoR1) in sensing environmental cues and the importance of inflammation in neurodegenerative diseases, elucidation of NCoR1 involvement in neuroinflammation has notable implications. Yet, its regulatory mechanism remains largely unclear. Under in vitro conditions, NCoR1 expression peaked and then decreased at 12 h after lipopolysaccharides (LPS) stimulation in BV2 cells, However, NCoR1 knockdown using si-RNA attenuated microglial inflammation, evident by reduced the levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), phosphorylated-JNK and high mobility group box-1 (HMGB1). Furthermore, NCoR1 suppression could counteract the decline in mitochondrial membrane potential while simultaneously enhancing the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). Under in vivo conditions, microglia-specific NCoR1 knockout (MNKO) mice after LPS injections alleviated the symptoms of anhedonia, diminished autonomic activity and cognitive impairment. Additionally, MNKO mice showed attenuation of microglial activation, downregulated HMGB1 and COX2, and upregulated PGC-1α expression in the cortex. In conclusion, these findings suggest that NCoR1 deficiency leads to a modest reduction in neuroinflammation, possibly attributed to the increased expression of PGC-1α.
Collapse
Affiliation(s)
- Shuqin Qiu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zihong Xian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junyu Chen
- Department of Neurology, Guangzhou First People's Hospital Baiyun Hospital, Guangzhou 510450, China
| | - Peng Huang
- Women and Children Medical Research Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Honghao Wang
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510006, China
| | - Haitao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China
| | - Jiangping Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China.
| |
Collapse
|
7
|
Abe Y, Kofman ER, Ouyang Z, Cruz-Becerra G, Spann NJ, Seidman JS, Troutman TD, Stender JD, Taylor H, Fan W, Link VM, Shen Z, Sakai J, Downes M, Evans RM, Kadonaga JT, Rosenfeld MG, Glass CK. A TLR4/TRAF6-dependent signaling pathway mediates NCoR coactivator complex formation for inflammatory gene activation. Proc Natl Acad Sci U S A 2024; 121:e2316104121. [PMID: 38165941 PMCID: PMC10786282 DOI: 10.1073/pnas.2316104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 01/04/2024] Open
Abstract
The nuclear receptor corepressor (NCoR) forms a complex with histone deacetylase 3 (HDAC3) that mediates repressive functions of unliganded nuclear receptors and other transcriptional repressors by deacetylation of histone substrates. Recent studies provide evidence that NCoR/HDAC3 complexes can also exert coactivator functions in brown adipocytes by deacetylating and activating PPARγ coactivator 1α (PGC1α) and that signaling via receptor activator of nuclear factor kappa-B (RANK) promotes the formation of a stable NCoR/HDAC3/PGC1β complex that coactivates nuclear factor kappa-B (NFκB)- and activator protein 1 (AP-1)-dependent genes required for osteoclast differentiation. Here, we demonstrate that activation of Toll-like receptor (TLR) 4, but not TLR3, the interleukin 4 (IL4) receptor nor the Type I interferon receptor, also promotes assembly of an NCoR/HDAC3/PGC1β coactivator complex. Receptor-specific utilization of TNF receptor-associated factor 6 (TRAF6) and downstream activation of extracellular signal-regulated kinase 1 (ERK1) and TANK-binding kinase 1 (TBK1) accounts for the common ability of RANK and TLR4 to drive assembly of an NCoR/HDAC3/PGC1β complex in macrophages. ERK1, the p65 component of NFκB, and the p300 histone acetyltransferase (HAT) are also components of the induced complex and are associated with local histone acetylation and transcriptional activation of TLR4-dependent enhancers and promoters. These observations identify a TLR4/TRAF6-dependent signaling pathway that converts NCoR from a corepressor of nuclear receptors to a coactivator of NFκB and AP-1 that may be relevant to functions of NCoR in other developmental and homeostatic processes.
Collapse
Affiliation(s)
- Yohei Abe
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Eric R. Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Stem Cell Program, University of California San Diego, La Jolla, CA92093
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA92093
| | - Zhengyu Ouyang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Grisel Cruz-Becerra
- Department of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Nathanael J. Spann
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Jason S. Seidman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Ty D. Troutman
- Department of Medicine, University of California San Diego, La Jolla, CA92093
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH45229
| | - Joshua D. Stender
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Havilah Taylor
- Department and School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Weiwei Fan
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Verena M. Link
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Faculty of Biology, Department II, Ludwig-Maximilians Universität München, Munich82152, Germany
| | - Zeyang Shen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA92093
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo153-8904, Japan
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai980-8575, Japan
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - James T. Kadonaga
- Department of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Michael G. Rosenfeld
- Department and School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
8
|
Hou C, Yan L, Sun K, Zhou T, Zou Y, Xiong W, Duan SZ. Nuclear receptor corepressor 1 deficiency exacerbates asthma by modulating macrophage polarization. Cell Death Discov 2023; 9:429. [PMID: 38030614 PMCID: PMC10687133 DOI: 10.1038/s41420-023-01724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/02/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophage polarization plays an important role in asthma. Nuclear receptor corepressor 1 (NCOR1) plays an important role in metabolic and cardiovascular diseases by regulating the function of macrophages. The aim of this research was to examine the role and mechanism of macrophage NCOR1 in the development of asthma. We used ovalbumin (OVA) to induce macrophage NCOR1-deficient mice for asthma formation. Our results revealed that macrophage NCOR1 deficiency markedly enhanced allergic airway inflammation. In addition, NCOR1 deficiency in macrophages was found to enhance M2 polarization. Mechanistic studies suggested that NCOR1 promoted macrophage polarization by interacting with PPARγ, contributing to the pathogenesis of asthma. In conclusion, macrophage NCOR1 deficiency promoted the regulation of M2 programming by enhancing PPARγ expression to exacerbate asthma. Macrophage NCOR1 might be a potential target for the treatment of asthma.
Collapse
Affiliation(s)
- Chenchen Hou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lifeng Yan
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ke Sun
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200031, China
| | - Tianyu Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuxin Zou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
9
|
Abe Y, Kofman ER, Almeida M, Ouyang Z, Ponte F, Mueller JR, Cruz-Becerra G, Sakai M, Prohaska TA, Spann NJ, Resende-Coelho A, Seidman JS, Stender JD, Taylor H, Fan W, Link VM, Cobo I, Schlachetzki JCM, Hamakubo T, Jepsen K, Sakai J, Downes M, Evans RM, Yeo GW, Kadonaga JT, Manolagas SC, Rosenfeld MG, Glass CK. RANK ligand converts the NCoR/HDAC3 co-repressor to a PGC1β- and RNA-dependent co-activator of osteoclast gene expression. Mol Cell 2023; 83:3421-3437.e11. [PMID: 37751740 PMCID: PMC10591845 DOI: 10.1016/j.molcel.2023.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
The nuclear receptor co-repressor (NCoR) complex mediates transcriptional repression dependent on histone deacetylation by histone deacetylase 3 (HDAC3) as a component of the complex. Unexpectedly, we found that signaling by the receptor activator of nuclear factor κB (RANK) converts the NCoR/HDAC3 co-repressor complex to a co-activator of AP-1 and NF-κB target genes that are required for mouse osteoclast differentiation. Accordingly, the dominant function of NCoR/HDAC3 complexes in response to RANK signaling is to activate, rather than repress, gene expression. Mechanistically, RANK signaling promotes RNA-dependent interaction of the transcriptional co-activator PGC1β with the NCoR/HDAC3 complex, resulting in the activation of PGC1β and inhibition of HDAC3 activity for acetylated histone H3. Non-coding RNAs Dancr and Rnu12, which are associated with altered human bone homeostasis, promote NCoR/HDAC3 complex assembly and are necessary for RANKL-induced osteoclast differentiation in vitro. These findings may be prototypic for signal-dependent functions of NCoR in other biological contexts.
Collapse
Affiliation(s)
- Yohei Abe
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Eric R Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Zhengyu Ouyang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Filipa Ponte
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jasmine R Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Grisel Cruz-Becerra
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Biochemistry and Molecular Biology, Nippon Medical School Hospital, Tokyo 113-8602, Japan
| | - Thomas A Prohaska
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ana Resende-Coelho
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jason S Seidman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Joshua D Stender
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Havilah Taylor
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Fan
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Verena M Link
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Faculty of Biology, Department II, Ludwig-Maximilians Universität München, Planegg-Martinsried 82152, Germany
| | - Isidoro Cobo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Takao Hamakubo
- Department of Protein-Protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo 113-8602, Japan
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - James T Kadonaga
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Michael G Rosenfeld
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Liu R, Scimeca M, Sun Q, Melino G, Mauriello A, Shao C, Shi Y, Piacentini M, Tisone G, Agostini M. Harnessing metabolism of hepatic macrophages to aid liver regeneration. Cell Death Dis 2023; 14:574. [PMID: 37644019 PMCID: PMC10465526 DOI: 10.1038/s41419-023-06066-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Liver regeneration is a dynamic and regulated process that involves inflammation, granulation, and tissue remodeling. Hepatic macrophages, abundantly distributed in the liver, are essential components that actively participate in each step to orchestrate liver regeneration. In the homeostatic liver, resident macrophages (Kupffer cells) acquire a tolerogenic phenotype and contribute to immunological tolerance. Following toxicity-induced damage or physical resection, Kupffer cells as well as monocyte-derived macrophages can be activated and promote an inflammatory process that supports the survival and activation of hepatic myofibroblasts and thus promotes scar tissue formation. Subsequently, these macrophages, in turn, exhibit the anti-inflammatory effects critical to extracellular matrix remodeling during the resolution stage. However, continuous damage-induced chronic inflammation generally leads to hepatic macrophage dysfunction, which exacerbates hepatocellular injury and triggers further liver fibrosis and even cirrhosis. Emerging macrophage-targeting strategies have shown efficacy in both preclinical and clinical studies. Increasing evidence indicates that metabolic rewiring provides substrates for epigenetic modification, which endows monocytes/macrophages with prolonged "innate immune memory". Therefore, it is reasonable to conceive novel therapeutic strategies for metabolically reprogramming macrophages and thus mediate a homeostatic or reparative process for hepatic inflammation management and liver regeneration.
Collapse
Affiliation(s)
- Rui Liu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Qiang Sun
- Institute of Biotechnology, Academy of Military Medical Science; Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 100071, Beijing, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, 215123, Suzhou, China.
| | - Mauro Piacentini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Giuseppe Tisone
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
11
|
Yu L, Gao Y, Aaron N, Qiang L. A glimpse of the connection between PPARγ and macrophage. Front Pharmacol 2023; 14:1254317. [PMID: 37701041 PMCID: PMC10493289 DOI: 10.3389/fphar.2023.1254317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023] Open
Abstract
Nuclear receptors are ligand-regulated transcription factors that regulate vast cellular activities and serve as an important class of drug targets. Among them, peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family and have been extensively studied for their roles in metabolism, differentiation, development, and cancer, among others. Recently, there has been considerable interest in understanding and defining the function of PPARs and their agonists in regulating innate and adaptive immune responses and their pharmacological potential in combating chronic inflammatory diseases. In this review, we focus on emerging evidence for the potential role of PPARγ in macrophage biology, which is the prior innate immune executive in metabolic and tissue homeostasis. We also discuss the role of PPARγ as a regulator of macrophage function in inflammatory diseases. Lastly, we discuss the possible application of PPARγ antagonists in metabolic pathologies.
Collapse
Affiliation(s)
- Lexiang Yu
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Yuen Gao
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Nicole Aaron
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, United States
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
12
|
Paluvai H, Shanmukha KD, Tyedmers J, Backs J. Insights into the function of HDAC3 and NCoR1/NCoR2 co-repressor complex in metabolic diseases. Front Mol Biosci 2023; 10:1190094. [PMID: 37674539 PMCID: PMC10477789 DOI: 10.3389/fmolb.2023.1190094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
Histone deacetylase 3 (HDAC3) and nuclear receptor co-repressor (NCoR1/2) are epigenetic regulators that play a key role in gene expression and metabolism. HDAC3 is a class I histone deacetylase that functions as a transcriptional co-repressor, modulating gene expression by removing acetyl groups from histones and non-histone proteins. NCoR1, on the other hand, is a transcriptional co-repressor that interacts with nuclear hormone receptors, including peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor (LXR), to regulate metabolic gene expression. Recent research has revealed a functional link between HDAC3 and NCoR1 in the regulation of metabolic gene expression. Genetic deletion of HDAC3 in mouse models has been shown to improve glucose intolerance and insulin sensitivity in the liver, skeletal muscle, and adipose tissue. Similarly, genetic deletion of NCoR1 has improved insulin resistance and reduced adiposity in mouse models. Dysregulation of this interaction has been associated with the development of cardio-metabolic diseases such as cardiovascular diseases, obesity and type 2 diabetes, suggesting that targeting this pathway may hold promise for the development of novel therapeutic interventions. In this review, we summarize the current understanding of individual functions of HDAC3 and NCoR1/2 and the co-repressor complex formation (HDAC3/NCoR1/2) in different metabolic tissues. Further studies are needed to thoroughly understand the mechanisms through which HDAC3, and NCoR1/2 govern metabolic processes and the implications for treating metabolic diseases.
Collapse
Affiliation(s)
- Harikrishnareddy Paluvai
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Kumar D. Shanmukha
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Jens Tyedmers
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
13
|
Zhou E, Ge X, Nakashima H, Li R, van der Zande HJP, Liu C, Li Z, Müller C, Bracher F, Mohammed Y, de Boer JF, Kuipers F, Guigas B, Glass CK, Rensen PCN, Giera M, Wang Y. Inhibition of DHCR24 activates LXRα to ameliorate hepatic steatosis and inflammation. EMBO Mol Med 2023; 15:e16845. [PMID: 37357756 PMCID: PMC10405065 DOI: 10.15252/emmm.202216845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
Liver X receptor (LXR) agonism has theoretical potential for treating NAFLD/NASH, but synthetic agonists induce hyperlipidemia in preclinical models. Desmosterol, which is converted by Δ24-dehydrocholesterol reductase (DHCR24) into cholesterol, is a potent endogenous LXR agonist with anti-inflammatory properties. We aimed to investigate the effects of DHCR24 inhibition on NAFLD/NASH development. Here, by using APOE*3-Leiden. CETP mice, a well-established translational model that develops diet-induced human-like NAFLD/NASH characteristics, we report that SH42, a published DHCR24 inhibitor, markedly increases desmosterol levels in liver and plasma, reduces hepatic lipid content and the steatosis score, and decreases plasma fatty acid and cholesteryl ester concentrations. Flow cytometry showed that SH42 decreases liver inflammation by preventing Kupffer cell activation and monocyte infiltration. LXRα deficiency completely abolishes these beneficial effects of SH42. Together, the inhibition of DHCR24 by SH42 prevents diet-induced hepatic steatosis and inflammation in a strictly LXRα-dependent manner without causing hyperlipidemia. Finally, we also showed that SH42 treatment decreased liver collagen content and plasma alanine transaminase levels in an established NAFLD model. In conclusion, we anticipate that pharmacological DHCR24 inhibition may represent a novel therapeutic strategy for treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Enchen Zhou
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of Cellular and Molecular Medicine and Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Xiaoke Ge
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Hiroyuki Nakashima
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Rumei Li
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | | | - Cong Liu
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Zhuang Li
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Christoph Müller
- Department of Pharmacy, Center for Drug ResearchLudwig Maximilians UniversityMunichGermany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug ResearchLudwig Maximilians UniversityMunichGermany
| | - Yassene Mohammed
- The Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Jan Freark de Boer
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Laboratory MedicineUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Folkert Kuipers
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Laboratory MedicineUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Bruno Guigas
- Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine and Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
- Med‐X Institute, Center for Immunological and Metabolic Diseases, and Department of EndocrinologyFirst Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'anChina
| | - Martin Giera
- The Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Yanan Wang
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
- Med‐X Institute, Center for Immunological and Metabolic Diseases, and Department of EndocrinologyFirst Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
14
|
Biswas VK, Sen K, Ahad A, Ghosh A, Verma S, Pati R, Prusty S, Nayak SP, Podder S, Kumar D, Gupta B, Raghav SK. NCoR1 controls Mycobacterium tuberculosis growth in myeloid cells by regulating the AMPK-mTOR-TFEB axis. PLoS Biol 2023; 21:e3002231. [PMID: 37590294 PMCID: PMC10465006 DOI: 10.1371/journal.pbio.3002231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/29/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) defends host-mediated killing by repressing the autophagolysosome machinery. For the first time, we report NCoR1 co-repressor as a crucial host factor, controlling Mtb growth in myeloid cells by regulating both autophagosome maturation and lysosome biogenesis. We found that the dynamic expression of NCoR1 is compromised in human peripheral blood mononuclear cells (PBMCs) during active Mtb infection, which is rescued upon prolonged anti-mycobacterial therapy. In addition, a loss of function in myeloid-specific NCoR1 considerably exacerbates the growth of M. tuberculosis in vitro in THP1 differentiated macrophages, ex vivo in bone marrow-derived macrophages (BMDMs), and in vivo in NCoR1MyeKO mice. We showed that NCoR1 depletion controls the AMPK-mTOR-TFEB signalling axis by fine-tuning cellular adenosine triphosphate (ATP) homeostasis, which in turn changes the expression of proteins involved in autophagy and lysosomal biogenesis. Moreover, we also showed that the treatment of NCoR1 depleted cells by Rapamycin, Antimycin-A, or Metformin rescued the TFEB activity and LC3 levels, resulting in enhanced Mtb clearance. Similarly, expressing NCoR1 exogenously rescued the AMPK-mTOR-TFEB signalling axis and Mtb killing. Overall, our data revealed a central role of NCoR1 in Mtb pathogenesis in myeloid cells.
Collapse
Affiliation(s)
- Viplov Kumar Biswas
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Kaushik Sen
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Abdul Ahad
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
| | - Arup Ghosh
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Surbhi Verma
- Molecular Medicine: Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Rashmirekha Pati
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
| | - Subhasish Prusty
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sourya Prakash Nayak
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
| | - Sreeparna Podder
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Dhiraj Kumar
- Molecular Medicine: Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Bhawna Gupta
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Sunil Kumar Raghav
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| |
Collapse
|
15
|
Zhang H, Wang J, Sun J, Wang Q, Guo L, Ju X. Regulatory mechanism underlying liver X receptor effects on the tumor microenvironment, inflammation and tumorigenesis. Expert Opin Ther Targets 2023; 27:989-998. [PMID: 37753584 DOI: 10.1080/14728222.2023.2264513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Liver X receptors (LXRs) have emerged as novel targets for tumor treatment. LXRs within the tumor microenvironment show the capacity to impact tumorigenesis and tumor development by regulating the infiltration of immune cells and release of cytokines to moderate inflammation. AREAS COVERED In this review, we present a systematic description of recent progress in understanding the impact of LXRs on the tumor microenvironment and tumorigenesis. We also summarize the antitumor effects mediated by LXRs via their regulation of cytokine expression. Additionally, we discuss the limitations of LXR research in tumor studies to date. EXPERT OPINION Previous studies have demonstrated abnormal LXR expression in tumor tissues, and activation of LXRs has been shown to inhibit tumorigenesis and promote apoptosis in tumor cells. However, LXRs can also affect tumorigenesis by regulating immune cell functions within the tumor immune microenvironment. By summarizing the impact of LXRs on immune cells, we provide new insights into the multifaceted nature of LXRs as antitumor targets.
Collapse
Affiliation(s)
- Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jing Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiang Sun
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lanfang Guo
- Department of Clinical Laboratory Medicine, The Fourth People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
16
|
Geiger M, Oppi S, Nusser-Stein S, Costantino S, Mohammed SA, Gorica E, Hoogerland JA, Matter CM, Guillaumon AT, Ruschitzka F, Paneni F, Oosterveer MH, Stein S. Genetic deletion of hepatic NCOR1 protects from atherosclerosis by promoting alternative bile acid-metabolism and sterol excretion. Cardiovasc Diabetol 2023; 22:144. [PMID: 37349757 PMCID: PMC10288794 DOI: 10.1186/s12933-023-01865-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND The nuclear receptor corepressor 1 (NCOR1) plays an important role in the regulation of gene expression in immunometabolic conditions by connecting chromatin-modifying enzymes, coregulators and transcription factors. NCOR1 has been shown to be involved in cardiometabolic diseases. Recently, we demonstrated that the deletion of macrophage NCOR1 aggravates atherosclerosis by promoting CD36-triggered foam cell formation via PPARG derepression. PURPOSE Since NCOR1 modulates the function of several key regulators involved in hepatic lipid and bile acid metabolism, we hypothesized that its deletion in hepatocytes alters lipid metabolism and atherogenesis. METHODS To test this hypothesis, we generated hepatocyte-specific Ncor1 knockout mice on a Ldlr-/- background. Besides assessing the progression of the disease in thoracoabdominal aortae en face, we analyzed hepatic cholesterol and bile acid metabolism at expression and functional levels. RESULTS Our data demonstrate that liver-specific Ncor1 knockout mice on an atherosclerosis-prone background develop less atherosclerotic lesions than controls. Interestingly, under chow diet, plasma cholesterol levels of liver-specific Ncor1 knockout mice were slightly higher compared to control, but strongly reduced compared to control mice after feeding them an atherogenic diet for 12 weeks. Moreover, the hepatic cholesterol content was decreased in liver-specific Ncor1 knockout compared to control mice. Our mechanistic data revealed that NCOR1 reprograms the synthesis of bile acids towards the alternative pathway, which in turn reduce bile hydrophobicity and enhances fecal cholesterol excretion. CONCLUSIONS Our data suggest that hepatic Ncor1 deletion in mice decreases atherosclerosis development by reprograming bile acid metabolism and enhancing fecal cholesterol excretion.
Collapse
Affiliation(s)
- Martin Geiger
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland.
| | - Sara Oppi
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
| | - Stefanie Nusser-Stein
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
| | - Joanne A Hoogerland
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian M Matter
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Research and Education, University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Ana T Guillaumon
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, Campinas, Brazil
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, CH-8091, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Maaike H Oosterveer
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sokrates Stein
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland.
| |
Collapse
|
17
|
Tanriover C, Copur S, Gaipov A, Ozlusen B, Akcan RE, Kuwabara M, Hornum M, Van Raalte DH, Kanbay M. Metabolically healthy obesity: Misleading phrase or healthy phenotype? Eur J Intern Med 2023; 111:5-20. [PMID: 36890010 DOI: 10.1016/j.ejim.2023.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Obesity is a heterogenous condition with multiple different phenotypes. Among these a particular subtype exists named as metabolically healthy obesity (MHO). MHO has multiple definitions and its prevalence varies according to study. The potential mechanisms underlying the pathophysiology of MHO include the different types of adipose tissue and their distribution, the role of hormones, inflammation, diet, the intestinal microbiota and genetic factors. In contrast to the negative metabolic profile associated with metabolically unhealthy obesity (MUO), MHO has relatively favorable metabolic characteristics. Nevertheless, MHO is still associated with many important chronic diseases including cardiovascular disease, hypertension, type 2 diabetes, chronic kidney disease as well as certain types of cancer and has the risk of progression into the unhealthy phenotype. Therefore, it should not be considered as a benign condition. The major therapeutic alternatives include dietary modifications, exercise, bariatric surgery and certain medications including glucagon-like peptide-1 (GLP-1) analogs, sodium-glucose cotransporter-2 (SGLT-2) inhibitors and tirzepatide. In this review, we discuss the significance of MHO while comparing this phenotype with MUO.
Collapse
Affiliation(s)
- Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Abduzhappar Gaipov
- Department of Medicine, Nazarbayev University School of Medicine, Astana, Kazakhstan; Clinical Academic Department of Internal Medicine, CF "University Medical Center", Astana, Kazakhstan
| | - Batu Ozlusen
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Rustu E Akcan
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Mads Hornum
- Department of Nephrology, Rigshospitalet, Inge Lehmanns Vej 7, Copenhagen 2100, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel H Van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Loaction VUMC, Amsterdam, the Netherlands
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul 34010, Turkey.
| |
Collapse
|
18
|
Du LJ, Sun JY, Zhang WC, Liu Y, Liu Y, Lin WZ, Liu T, Zhu H, Wang YL, Shao S, Zhou LJ, Chen BY, Lu H, Li RG, Jia F, Duan SZ. NCOR1 maintains the homeostasis of vascular smooth muscle cells and protects against aortic aneurysm. Cell Death Differ 2023; 30:618-631. [PMID: 36151473 PMCID: PMC9984378 DOI: 10.1038/s41418-022-01065-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/08/2022] Open
Abstract
Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays critical roles in the pathogenesis of aortic aneurysm (AA). The function of nuclear receptor corepressor1 (NCOR1) in regulation of VSMC phenotype and AA is unclear. Herein, using smooth muscle NCOR1 knockout mice, we demonstrated that smooth muscle NCOR1 deficiency decreased both mRNA and protein levels of contractile genes, impaired stress fibers formation and RhoA pathway activation, reduced synthesis of elastin and collagens, and induced the expression and activity of MMPs, manifesting a switch from contractile to degradative phenotype of VSMCs. NCOR1 modulated VSMC phenotype through 3 different mechanisms. First, NCOR1 deficiency increased acetylated FOXO3a to inhibit the expression of Myocd, which downregulated contractile genes. Second, deletion of NCOR1 derepressed NFAT5 to induce the expression of Rgs1, thus impeding RhoA activation. Third, NCOR1 deficiency increased the expression of Mmp12 and Mmp13 by derepressing ATF3. Finally, a mouse model combined apoE knockout mice with angiotensin II was used to study the role of smooth muscle NCOR1 in the development of AA. The results showed that smooth muscle NCOR1 deficiency increased the incidence of aortic aneurysms and exacerbated medial degeneration in angiotensin II-induced AA mouse model. Collectively, our data illustrated that NCOR1 interacts with FOXO3a, NFAT5, and ATF3 to maintain contractile phenotype of VSMCs and suppress AA development. Manipulation of smooth muscle NCOR1 may be a potential approach for AA treatment.
Collapse
Affiliation(s)
- Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Jian-Yong Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wu-Chang Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yong-Li Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Shuai Shao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Hongjian Lu
- Department of Rehabilitation, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, 226001, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of Neurosurgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Matz AJ, Qu L, Karlinsey K, Vella AT, Zhou B. Capturing the multifaceted function of adipose tissue macrophages. Front Immunol 2023; 14:1148188. [PMID: 36875144 PMCID: PMC9977801 DOI: 10.3389/fimmu.2023.1148188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Adipose tissue macrophages (ATMs) bolster obesity-induced metabolic dysfunction and represent a targetable population to lessen obesity-associated health risks. However, ATMs also facilitate adipose tissue function through multiple actions, including adipocyte clearance, lipid scavenging and metabolism, extracellular remodeling, and supporting angiogenesis and adipogenesis. Thus, high-resolution methods are needed to capture macrophages' dynamic and multifaceted functions in adipose tissue. Herein, we review current knowledge on regulatory networks critical to macrophage plasticity and their multifaceted response in the complex adipose tissue microenvironment.
Collapse
Affiliation(s)
- Alyssa J. Matz
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
| | - Lili Qu
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
| | - Keaton Karlinsey
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
20
|
Huang Z, Efthymiadou A, Liang N, Fan R, Treuter E. Antagonistic action of GPS2 and KDM1A at enhancers governs alternative macrophage activation by interleukin 4. Nucleic Acids Res 2023; 51:1067-1086. [PMID: 36610795 PMCID: PMC9943668 DOI: 10.1093/nar/gkac1230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
The Th2 cytokine interleukin 4 (IL4) promotes macrophage differentiation into alternative subtypes and plays important roles in physiology, in metabolic and inflammatory diseases, in cancer and in tissue regeneration. While the regulatory transcription factor networks governing IL4 signaling are already well-characterized, it is currently less understood which transcriptional coregulators are involved and how they operate mechanistically. In this study, we discover that G protein pathway suppressor 2 (GPS2), a core subunit of the HDAC3 corepressor complex assembled by SMRT and NCOR, represses IL4-dependent enhancer activation in mouse macrophages. Our genome-wide and gene-specific characterization revealed that, instead of directly repressing STAT6, chromatin-bound GPS2 cooperates with SMRT and NCOR to antagonize enhancer activation by lysine demethylase 1A (KDM1A, LSD1). Mechanistically, corepressor depletion increased KDM1A recruitment to enhancers linked to IL4-induced genes, accompanied by demethylation of the repressive histone marks H3K9me2/3 without affecting H3K4me1/2, the classic KDM1A substrates for demethylation in other cellular contexts. This in turn caused enhancer and gene activation already in the absence of IL4/STAT6 and sensitized the STAT6-dependent IL4 responsiveness of macrophages. Thus, our work identified with the antagonistic action of a GPS2-containing corepressor complex and the lysine demethylase KDM1A a hitherto unknown epigenetic corepressor-coactivator switching mechanism that governs alternative macrophage activation.
Collapse
Affiliation(s)
- Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Astradeni Efthymiadou
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Ning Liang
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Rongrong Fan
- Correspondence may also be addressed to Rongrong Fan. Tel: +46 8 524 81161;
| | - Eckardt Treuter
- To whom correspondence should be addressed. Tel: +46 8 524 81060;
| |
Collapse
|
21
|
Ma XX, Meng XQ, Wang YL, Liu Y, Shi XR, Shao S, Duan SZ, Lu HX. Ncor1 Deficiency Promotes Osteoclastogenesis and Exacerbates Periodontitis. J Dent Res 2023; 102:72-81. [PMID: 35983582 DOI: 10.1177/00220345221116927] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nuclear receptor corepressor 1 (Ncor1) has been reported to regulate different transcription factors in different biological processes, including metabolism, inflammation, and circadian rhythms. However, the role of Ncor1 in periodontitis has not been elucidated. The aims of the present study were to investigate the role of Ncor1 in experimental periodontitis and to explore the underlying mechanisms through an experimental periodontitis model in myeloid cell-specific Ncor1-deficient mice. Myeloid cell-specific Ncor1 knockout (MNKO) mice were generated, and experimental periodontitis induced by ligation using 5-0 silk sutures was established. Ncor1 flox/flox mice were used as littermate controls (LC). Histological staining and micro-computed tomography scanning were used to evaluate osteoclastogenesis and alveolar bone resorption. Flow cytometry was conducted to observe the effect of Ncor1 on myeloid cells. RNA sequencing was used to explore the differentially targeted genes in osteoclastogenesis in the absence of Ncor1. Coimmunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP) experiments, and dual luciferase assays were performed to explore the relationship between NCoR1 and the targeted gene. Alveolar bone resorption in the MNKO mice was significantly greater than that in the LC mice after periodontitis induction and osteoclastogenesis in vitro. The percentage of CD11b+ cells, particularly CD11b+ Ly6G+ neutrophils, was substantially higher in gingival tissues in the MNKO mice than in the LC mice. Results of RNA sequencing demonstrated that CCAAT enhancer binding protein α (Cebpα) was one of the most differentially expressed genes between the MNKO and LC groups. Mechanistically, Co-IP assays, ChIP experiments, and dual luciferase assays revealed that NCOR1 interacted with peroxisome proliferator-activated receptor gamma (PPARγ) and cooperated with HDAC3 to control the transcription of Cebpα. In conclusion, Ncor1 deficiency promoted osteoclast and neutrophil formation in mice with experimental periodontitis. It regulated the transcription of Cebpα via PPARγ to promote osteoclast differentiation.
Collapse
Affiliation(s)
- X X Ma
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, 639 Zhizaoju Road, Shanghai, China
| | - X Q Meng
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, China
| | - Y L Wang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, China
| | - Y Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, China
| | - X R Shi
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, China
| | - S Shao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Z Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, China
| | - H X Lu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, 639 Zhizaoju Road, Shanghai, China
| |
Collapse
|
22
|
Röszer T. Metabolic impact of adipose tissue macrophages in the early postnatal life. J Leukoc Biol 2022; 112:1515-1524. [PMID: 35899927 PMCID: PMC9796690 DOI: 10.1002/jlb.3mr0722-201r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/02/2022] [Indexed: 01/07/2023] Open
Abstract
Adipose tissue macrophages (ATMs) play key roles in metabolic inflammation, insulin resistance, adipose tissue fibrosis, and immune disorders associated with obesity. Research on ATM biology has mostly been conducted in the setting of adult obesity, since adipocyte hypertrophy is associated with a significant increase in ATM number. Signals that control ATM activation toward a proinflammatory or a proresolving phenotype also determine the developmental program and lipid metabolism of adipocytes after birth. ATMs are present at birth and actively participate in the synthesis of mediators, which induce lipolysis, mitobiogenesis, and mitochondrial uncoupling in adipocytes. ATMs in the newborn and the infant promote a lipolytic and fatty acid oxidizing adipocyte phenotype, which is essential to support the lipid-fueled metabolism, to maintain nonshivering thermogenesis and counteract an excessive adipose tissue expansion. Since adipose tissue metabolism in the early postnatal life determines obesity status in adulthood, early-life ATM functions may have a life-long impact.
Collapse
Affiliation(s)
- Tamás Röszer
- Division of Pediatric Obesity, Children's Hospital and Institute of PediatricsUniversity of DebrecenDebrecenHungary,Institute of NeurobiologyUlm UniversityUlmGermany
| |
Collapse
|
23
|
Kulle A, Thanabalasuriar A, Cohen TS, Szydlowska M. Resident macrophages of the lung and liver: The guardians of our tissues. Front Immunol 2022; 13:1029085. [PMID: 36532044 PMCID: PMC9750759 DOI: 10.3389/fimmu.2022.1029085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
Resident macrophages play a unique role in the maintenance of tissue function. As phagocytes, they are an essential first line defenders against pathogens and much of the initial characterization of these cells was focused on their interaction with viral and bacterial pathogens. However, these cells are increasingly recognized as contributing to more than just host defense. Through cytokine production, receptor engagement and gap junction communication resident macrophages tune tissue inflammatory tone, influence adaptive immune cell phenotype and regulate tissue structure and function. This review highlights resident macrophages in the liver and lung as they hold unique roles in the maintenance of the interface between the circulatory system and the external environment. As such, we detail the developmental origin of these cells, their contribution to host defense and the array of tools these cells use to regulate tissue homeostasis.
Collapse
Affiliation(s)
- Amelia Kulle
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Taylor S. Cohen
- Late Stage Development, Vaccines and Immune Therapies (V&I), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Marta Szydlowska
- Bacteriology and Vaccine Discovery, Research and Early Development, Vaccines and Immune Therapies (V&I), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
24
|
Chen Y, Tang L. The crosstalk between parenchymal cells and macrophages: A keeper of tissue homeostasis. Front Immunol 2022; 13:1050188. [PMID: 36505488 PMCID: PMC9732730 DOI: 10.3389/fimmu.2022.1050188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Non-parenchymal cells (NPCs) and parenchymal cells (PCs) collectively perform tissue-specific functions. PCs play significant roles and continuously adjust the intrinsic functions and metabolism of organs. Tissue-resident macrophages (TRMs) are crucial members of native NPCs in tissues and are essential for immune defense, tissue repair and development, and homeostasis maintenance. As a plastic-phenotypic and prevalent cluster of NPCs, TRMs dynamically assist PCs in functioning by producing cytokines, inflammatory and anti-inflammatory signals, growth factors, and proteolytic enzymes. Furthermore, the PCs of tissues modulate the functional activity and polarization of TRMs. Dysregulation of the PC-TRM crosstalk axis profoundly impacts many essential physiological functions, including synaptogenesis, gastrointestinal motility and secretion, cardiac pulsation, gas exchange, blood filtration, and metabolic homeostasis. This review focuses on the PC-TRM crosstalk in mammalian vital tissues, along with their interactions with tissue homeostasis maintenance and disorders. Thus, this review highlights the fundamental biological significance of the regulatory network of PC-TRM in tissue homeostasis.
Collapse
|
25
|
Zhang W, Zhang C, Luo J, Xu H, Liu J, Loor JJ, Shi H. The LXRB-SREBP1 network regulates lipogenic homeostasis by controlling the synthesis of polyunsaturated fatty acids in goat mammary epithelial cells. J Anim Sci Biotechnol 2022; 13:120. [PMID: 36336695 PMCID: PMC9639257 DOI: 10.1186/s40104-022-00774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
Background In rodents, research has revealed a role of liver X receptors (LXR) in controlling lipid homeostasis and regulating the synthesis of polyunsaturated fatty acids (PUFA). Recent data suggest that LXRB is the predominant LXR subtype in ruminant mammary cells, but its role in lipid metabolism is unknown. It was hypothesized that LXRB plays a role in lipid homeostasis via altering the synthesis of PUFA in the ruminant mammary gland. We used overexpression and knockdown of LXRB in goat primary mammary epithelial cells (GMEC) to evaluate abundance of lipogenic enzymes, fatty acid profiles, content of lipid stores and activity of the stearoyl-CoA desaturase (SCD1) promoter. Results Overexpression of LXRB markedly upregulated the protein abundance of LXRB while incubation with siRNA targeting LXRB markedly decreased abundance of LXRB protein. Overexpression of LXRB plus T0901317 (T09, a ligand for LXR) dramatically upregulated SCD1 and elongation of very long chain fatty acid-like fatty acid elongases 5–7 (ELOVL 5–7), which are related to PUFA synthesis. Compared with the control, cells overexpressing LXRB and stimulated with T09 had greater concentrations of C16:0, 16:1, 18:1n7,18:1n9 and C18:2 as well as desaturation and elongation indices of C16:0. Furthermore, LXRB-overexpressing cells incubated with T09 had greater levels of triacylglycerol and cholesterol. Knockdown of LXRB in cells incubated with T09 led to downregulation of genes encoding elongases and desaturases. Knockdown of LXRB attenuated the increase in triacylglycerol and cholesterol that was induced by T09. In cells treated with dimethylsulfoxide, knockdown of LXRB increased the concentration of C16:0 at the expense of C18:0, while a significant decrease in C18:2 was observed in cells incubated with both siLXRB and T09. The abundance of sterol regulatory element binding transcription factor 1 precursor (pSREBP1) and its mature fragment (nSREBP1) was upregulated by T09, but not LXRB overexpression. In the cells cultured with T09, knockdown of LXRB downregulated the abundance for pSREBP1 and nSREBP1. Luciferase reporter assays revealed that the activities of wild type SCD1 promoter or fragment with SREBP1 response element (SRE) mutation were decreased markedly when LXRB was knocked down. Activity of the SCD1 promoter that was induced by T09 was blocked when the SRE mutation was introduced. Conclusion The current study provides evidence of a physiological link between the LXRB and SREBP1 in the ruminant mammary cell. An important role was revealed for the LXRB-SREBP1 network in the synthesis of PUFA via the regulation of genes encoding elongases and desaturases. Thus, targeting this network might elicit broad effects on lipid homeostasis in ruminant mammary gland. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00774-4.
Collapse
Affiliation(s)
- Wenying Zhang
- grid.13402.340000 0004 1759 700XInstitute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Changhui Zhang
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Jun Luo
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Huifen Xu
- grid.108266.b0000 0004 1803 0494College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
| | - Jianxin Liu
- grid.13402.340000 0004 1759 700XInstitute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Juan J. Loor
- grid.35403.310000 0004 1936 9991Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Hengbo Shi
- grid.13402.340000 0004 1759 700XInstitute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
| |
Collapse
|
26
|
The Mechanisms of Systemic Inflammatory and Immunosuppressive Acute-on-Chronic Liver Failure and Application Prospect of Single-Cell Sequencing. J Immunol Res 2022; 2022:5091275. [PMID: 36387424 PMCID: PMC9646330 DOI: 10.1155/2022/5091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a complex clinical syndrome, and patients often have high short-term mortality. It occurs with intense systemic inflammation, often accompanied by a proinflammatory event (such as infection or alcoholic hepatitis), and is closely related to single or multiple organ failure. Liver inflammation begins when innate immune cells (such as Kupffer cells (KCs)) are activated by binding of pathogen-associated molecular patterns (PAMPs) from pathogenic microorganisms or damage-associated molecular patterns (DAMPs) of host origin to their pattern recognition receptors (PRRs). Activated KCs can secrete inflammatory factors as well as chemokines and recruit bone marrow-derived cells such as neutrophils and monocytes to the liver to enhance the inflammatory process. Bacterial translocation may contribute to ACLF when there are no obvious precipitating events. Immunometabolism plays an important role in the process (including mitochondrial dysfunction, amino acid metabolism, and lipid metabolism). The late stage of ACLF is mainly characterized by immunosuppression. In this process, the dysfunction of monocyte and macrophage is reflected in the downregulation of HLA-DR and upregulation of MER tyrosine kinase (MERTK), which weakens the antigen presentation function and reduces the secretion of inflammatory cytokines. We also describe the specific function of bacterial translocation and the gut-liver axis in the process of ACLF. Finally, we also describe the transcriptomics in HBV-ACLF and the recent progress of single-cell RNA sequencing as well as its potential application in the study of ACLF in the future, in order to gain a deeper understanding of ACLF in terms of single-cell gene expression.
Collapse
|
27
|
Yuan J, Zhu Q, Zhang X, Wen Z, Zhang G, Li N, Pei Y, Wang Y, Pei S, Xu J, Jia P, Peng C, Lu W, Qin J, Cao Q, Xiao Y. Ezh2 competes with p53 to license lncRNA Neat1 transcription for inflammasome activation. Cell Death Differ 2022; 29:2009-2023. [PMID: 35568718 PMCID: PMC9525607 DOI: 10.1038/s41418-022-00992-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/08/2022] Open
Abstract
Inflammasome contributes to the pathogenesis of various inflammatory diseases, but the epigenetic mechanism controlling its activation remains elusive. Here, we found that the histone methyltransferase Ezh2 mediates the activation of multiple types of inflammasomes in macrophages/microglia independent of its methyltransferase activity and thus promotes inflammasome-related pathologies. Mechanistically, Ezh2 functions through its SANT2 domain to maintain the enrichment of H3K27 acetylation in the promoter region of the long noncoding RNA (lncRNA) Neat1, thereby promoting chromatin accessibility and facilitating p65-mediated transcription of Neat1, which is a critical mediator of inflammasome assembly and activation. In addition, the tumour suppressor protein p53 competes with Ezh2 for the same binding region in the Neat1 promoter and thus antagonises Ezh2-induced Neat1 transcription and inflammasome activation. Therefore, loss of Ezh2 strongly promotes the binding of p53, which recruits the deacetylase SIRT1 for H3K27 deacetylation of the Neat1 promoter and thus suppresses Neat1 transcription and inflammasome activation. Overall, our study demonstrates an epigenetic mechanism involved in modulating inflammasome activation through an Ezh2/p53 competition model and highlights a novel function of Ezh2 in maintaining H3K27 acetylation to support lncRNA Neat1 transcription.
Collapse
Affiliation(s)
- Jia Yuan
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xingli Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhenzhen Wen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China
| | - Guiheng Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yifei Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Pan Jia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai, 201210, China
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
28
|
Jha A, Ahad A, Mishra GP, Sen K, Smita S, Minz AP, Biswas VK, Tripathy A, Senapati S, Gupta B, Acha-Orbea H, Raghav SK. SMRT and NCoR1 fine-tune inflammatory versus tolerogenic balance in dendritic cells by differentially regulating STAT3 signaling. Front Immunol 2022; 13:910705. [PMID: 36238311 PMCID: PMC9552960 DOI: 10.3389/fimmu.2022.910705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cell (DC) fine-tunes inflammatory versus tolerogenic responses to protect from immune-pathology. However, the role of co-regulators in maintaining this balance is unexplored. NCoR1-mediated repression of DC immune-tolerance has been recently reported. Here we found that depletion of NCoR1 paralog SMRT (NCoR2) enhanced cDC1 activation and expression of IL-6, IL-12 and IL-23 while concomitantly decreasing IL-10 expression/secretion. Consequently, co-cultured CD4+ and CD8+ T-cells depicted enhanced Th1/Th17 frequency and cytotoxicity, respectively. Comparative genomic and transcriptomic analysis demonstrated differential regulation of IL-10 by SMRT and NCoR1. SMRT depletion represses mTOR-STAT3-IL10 signaling in cDC1 by down-regulating NR4A1. Besides, Nfkbia and Socs3 were down-regulated in Ncor2 (Smrt) depleted cDC1, supporting increased production of inflammatory cytokines. Moreover, studies in mice showed, adoptive transfer of SMRT depleted cDC1 in OVA-DTH induced footpad inflammation led to increased Th1/Th17 and reduced tumor burden after B16 melanoma injection by enhancing oncolytic CD8+ T-cell frequency, respectively. We also depicted decreased Ncor2 expression in Rheumatoid Arthritis, a Th1/Th17 disease.
Collapse
Affiliation(s)
- Atimukta Jha
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
| | - Abdul Ahad
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
| | - Gyan Prakash Mishra
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Kaushik Sen
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Haryana, India
| | - Shuchi Smita
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
| | - Aliva Prity Minz
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
| | - Viplov Kumar Biswas
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Archana Tripathy
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Shantibhushan Senapati
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
| | - Bhawna Gupta
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Hans Acha-Orbea
- Department of Biochemistry Center of Immunity and Infection Lausanne (CIIL), University of Lausanne (UNIL), Epalinges, Switzerland
| | - Sunil Kumar Raghav
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
- *Correspondence: Sunil Kumar Raghav, ;
| |
Collapse
|
29
|
Savla SR, Prabhavalkar KS, Bhatt LK. Liver X Receptor: a potential target in the treatment of atherosclerosis. Expert Opin Ther Targets 2022; 26:645-658. [PMID: 36003057 DOI: 10.1080/14728222.2022.2117610] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Liver X receptors (LXRs) are master regulators of atherogenesis. Their anti-atherogenic potential has been attributed to their role in the inhibition of macrophage-mediated inflammation and promotion of reverse cholesterol transport. Owing to the significance of their anti-atherogenic potential, it is essential to develop and test new generation LXR agonists, both synthetic and natural, to identify potential LXR-targeted therapeutics for the future. AREAS COVERED This review describes the role of LXRs in atherosclerotic development, provides a summary of LXR agonists and future directions for atherosclerosis research. We searched PubMed, Scopus and Google Scholar for relevant reports, from last 10 years, using atherosclerosis, liver X receptor, and LXR agonist as keywords. EXPERT OPINION LXRα has gained widespread recognition as a regulator of cholesterol homeostasis and expression of inflammatory genes. Further research using models of cell type-specific knockout and specific agonist-targeted LXR isoforms is warranted. Enthusiasm for therapeutic value of LXR agonists has been tempered due to LXRα-mediated induction of hepatic lipogenesis. LXRα agonism and LXRβ targeting, gut-specific inverse LXR agonists, investigations combining LXR agonists with other lipogenesis mitigating agents, like IDOL antagonists and synthetic HDL, and targeting ABCA1, M2 macrophages and LXRα phosphorylation, remain as promising possibilities.
Collapse
Affiliation(s)
- Shreya R Savla
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India
| | - Lokesh K Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India
| |
Collapse
|
30
|
Mishra GP, Jha A, Ahad A, Sen K, Sen A, Podder S, Prusty S, Biswas VK, Gupta B, Raghav SK. Epigenomics of conventional type-I dendritic cells depicted preferential control of TLR9 versus TLR3 response by NCoR1 through differential IRF3 activation. Cell Mol Life Sci 2022; 79:429. [PMID: 35849243 PMCID: PMC9293861 DOI: 10.1007/s00018-022-04424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Tight control of gene regulation in dendritic cells (DCs) is important to mount pathogen specific immune responses. Apart from transcription factor binding, dynamic regulation of enhancer activity through global transcriptional repressors like Nuclear Receptor Co-repressor 1 (NCoR1) plays a major role in fine-tuning of DC responses. However, how NCoR1 regulates enhancer activity and gene expression in individual or multiple Toll-like receptor (TLR) activation in DCs is largely unknown. In this study, we did a comprehensive epigenomic analysis of murine conventional type-I DCs (cDC1) across different TLR ligation conditions. We profiled gene expression changes along with H3K27ac active enhancers and NCoR1 binding in the TLR9, TLR3 and combined TLR9 + TLR3 activated cDC1. We observed spatio-temporal activity of TLR9 and TLR3 specific enhancers regulating signal specific target genes. Interestingly, we found that NCoR1 differentially controls the TLR9 and TLR3-specific responses. NCoR1 depletion specifically enhanced TLR9 responses as evident from increased enhancer activity as well as TLR9-specific gene expression, whereas TLR3-mediated antiviral response genes were negatively regulated. We validated that NCoR1 KD cDC1 showed significantly decreased TLR3 specific antiviral responses through decreased IRF3 activation. In addition, decreased IRF3 binding was observed at selected ISGs leading to their decreased expression upon NCoR1 depletion. Consequently, the NCoR1 depleted cDC1 showed reduced Sendai Virus (SeV) clearance and cytotoxic potential of CD8+ T cells upon TLR3 activation. NCoR1 directly controls the majority of these TLR specific enhancer activity and the gene expression. Overall, for the first time, we revealed NCoR1 mediates transcriptional control towards TLR9 as compared to TLR3 in cDC1.
Collapse
Affiliation(s)
- Gyan Prakash Mishra
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Atimukta Jha
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abdul Ahad
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
| | - Kaushik Sen
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Aishwarya Sen
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Sreeparna Podder
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Subhasish Prusty
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Viplov Kumar Biswas
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Bhawna Gupta
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Sunil Kumar Raghav
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India.
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India.
| |
Collapse
|
31
|
Macrophage Nuclear Receptor Corepressor 1 Deficiency Protects Against Ischemic Stroke in Mice. J Cardiovasc Transl Res 2022; 15:816-827. [PMID: 35040081 DOI: 10.1007/s12265-021-10187-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Microglia/macrophage activation plays an essential role in Ischemic stroke (IS). Nuclear receptor corepressor 1 (NCoR1) has been identified as a vital regulator in macrophages. The present study aims to explore the functions of macrophage NCoR1 in IS. Macrophage NCoR1 knockout (MNKO) mice and littermate control mice were subjected to middle cerebral artery occlusion (MCAO). Our data showed that macrophage NCoR1 deficiency significantly reduced the infarct size and infarct volume as well as brain edema after MCAO. Additionally, MNKO induced less microglia/macrophage infiltration and activation, neuroinflammation, apoptosis of neuronal cells, and BBB disruption in brains after IS. Mechanistic studies revealed that NCoR1 interacted with LXRβ in microglia and MNKO impaired the activation of the Nuclear factor-κB signaling pathway in brains after IS. Our data demonstrated that macrophage NCoR1 deficiency inhibited microglia/macrophage activation and protected against IS. Targeting NCoR1 in microglia/macrophage may be a potential approach for IS treatment.
Collapse
|
32
|
Zhang IW, López-Vicario C, Duran-Güell M, Clària J. Mitochondrial Dysfunction in Advanced Liver Disease: Emerging Concepts. Front Mol Biosci 2021; 8:772174. [PMID: 34888354 PMCID: PMC8650317 DOI: 10.3389/fmolb.2021.772174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are entrusted with the challenging task of providing energy through the generation of ATP, the universal cellular currency, thereby being highly flexible to different acute and chronic nutrient demands of the cell. The fact that mitochondrial diseases (genetic disorders caused by mutations in the nuclear or mitochondrial genome) manifest through a remarkable clinical variation of symptoms in affected individuals underlines the far-reaching implications of mitochondrial dysfunction. The study of mitochondrial function in genetic or non-genetic diseases therefore requires a multi-angled approach. Taking into account that the liver is among the organs richest in mitochondria, it stands to reason that in the process of unravelling the pathogenesis of liver-related diseases, researchers give special focus to characterizing mitochondrial function. However, mitochondrial dysfunction is not a uniformly defined term. It can refer to a decline in energy production, increase in reactive oxygen species and so forth. Therefore, any study on mitochondrial dysfunction first needs to define the dysfunction to be investigated. Here, we review the alterations of mitochondrial function in liver cirrhosis with emphasis on acutely decompensated liver cirrhosis and acute-on-chronic liver failure (ACLF), the latter being a form of acute decompensation characterized by a generalized state of systemic hyperinflammation/immunosuppression and high mortality rate. The studies that we discuss were either carried out in liver tissue itself of these patients, or in circulating leukocytes, whose mitochondrial alterations might reflect tissue and organ mitochondrial dysfunction. In addition, we present different methodological approaches that can be of utility to address the diverse aspects of hepatocyte and leukocyte mitochondrial function in liver disease. They include assays to measure metabolic fluxes using the comparatively novel Biolog’s MitoPlates in a 96-well format as well as assessment of mitochondrial respiration by high-resolution respirometry using Oroboros’ O2k-technology and Agilent Seahorse XF technology.
Collapse
Affiliation(s)
- Ingrid W Zhang
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Cristina López-Vicario
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain.,CIBERehd, Barcelona, Spain
| | - Marta Duran-Güell
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Joan Clària
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain.,CIBERehd, Barcelona, Spain.,Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Thibaut R, Laubert M, Ejlalmanesh T, Alzaid F. [Elongase 2 and polyunsaturated fatty acids: Key players in inflammation and type 2 diabetes]. Med Sci (Paris) 2021; 37:987-992. [PMID: 34851274 DOI: 10.1051/medsci/2021146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ronan Thibaut
- Centre de recherche des Cordeliers, Inserm U1138, IMMEDIAB (Immunity and Metabolism of Diabetes Laboratory), Sorbonne Université, Université de Paris, 15 rue de l'École de Médecine, 75006 Paris, France
| | - Mathilde Laubert
- Centre de recherche des Cordeliers, Inserm U1138, IMMEDIAB (Immunity and Metabolism of Diabetes Laboratory), Sorbonne Université, Université de Paris, 15 rue de l'École de Médecine, 75006 Paris, France
| | - Tina Ejlalmanesh
- Centre de recherche des Cordeliers, Inserm U1138, IMMEDIAB (Immunity and Metabolism of Diabetes Laboratory), Sorbonne Université, Université de Paris, 15 rue de l'École de Médecine, 75006 Paris, France
| | - Fawaz Alzaid
- Centre de recherche des Cordeliers, Inserm U1138, IMMEDIAB (Immunity and Metabolism of Diabetes Laboratory), Sorbonne Université, Université de Paris, 15 rue de l'École de Médecine, 75006 Paris, France
| |
Collapse
|
34
|
Troutman TD, Kofman E, Glass CK. Exploiting dynamic enhancer landscapes to decode macrophage and microglia phenotypes in health and disease. Mol Cell 2021; 81:3888-3903. [PMID: 34464593 PMCID: PMC8500948 DOI: 10.1016/j.molcel.2021.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022]
Abstract
The development and functional potential of metazoan cells is dependent on combinatorial roles of transcriptional enhancers and promoters. Macrophages provide exceptionally powerful model systems for investigation of mechanisms underlying the activation of cell-specific enhancers that drive transitions in cell fate and cell state. Here, we review recent advances that have expanded appreciation of the diversity of macrophage phenotypes in health and disease, emphasizing studies of liver, adipose tissue, and brain macrophages as paradigms for other tissue macrophages and cell types. Studies of normal tissue-resident macrophages and macrophages associated with cirrhosis, obese adipose tissue, and neurodegenerative disease illustrate the major roles of tissue environment in remodeling enhancer landscapes to specify the development and functions of distinct macrophage phenotypes. We discuss the utility of quantitative analysis of environment-dependent changes in enhancer activity states as an approach to discovery of regulatory transcription factors and upstream signaling pathways.
Collapse
Affiliation(s)
- Ty D Troutman
- Department of Medicine, University of California, San Diego, San Diego, CA, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eric Kofman
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, San Diego, CA, USA
| | - Christopher K Glass
- Department of Medicine, University of California, San Diego, San Diego, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
35
|
Targeting cholesterol homeostasis in hematopoietic malignancies. Blood 2021; 139:165-176. [PMID: 34610110 PMCID: PMC8814816 DOI: 10.1182/blood.2021012788] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/18/2021] [Indexed: 11/20/2022] Open
Abstract
Cholesterol is a vital lipid for cellular functions. It is necessary for membrane biogenesis, cell proliferation and differentiation. In addition to maintaining cell integrity and permeability, increasing evidence indicates a strict link between cholesterol homeostasis, inflammation and haematological tumors. This makes cholesterol homeostasis an optimal therapeutic target for hematopoietic malignancies. Manipulating cholesterol homeostasis either interfering with its synthesis or activating the reverse cholesterol transport via the engagement of liver X receptors (LXRs), affects the integrity of tumor cells both in vitro and in vivo. Cholesterol homeostasis has also been manipulated to restore antitumor immune responses in preclinical models. These observations have prompted clinical trials in acute myeloid leukemia (AML) to test the combination of chemotherapy with drugs interfering with cholesterol synthesis, i.e. statins. We review the role of cholesterol homeostasis in hematopoietic malignancies, as well as in cells of the tumor microenvironment, and discuss the potential use of lipid modulators for therapeutic purposes.
Collapse
|
36
|
NAD + augmentation with nicotinamide riboside improves lymphoid potential of Atm -/- and old mice HSCs. NPJ Aging Mech Dis 2021; 7:25. [PMID: 34548492 PMCID: PMC8455618 DOI: 10.1038/s41514-021-00078-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
NAD+ supplementation has significant benefits in compromised settings, acting largely through improved mitochondrial function and DNA repair. Elevating NAD+ to physiological levels has been shown to improve the function of some adult stem cells, with implications that these changes will lead to sustained improvement of the tissue or system. Here, we examined the effect of elevating NAD+ levels in models with reduced hematopoietic stem cell (HSC) potential, ATM-deficient and aged WT mice, and showed that supplementation of nicotinamide riboside (NR), a NAD+ precursor, improved lymphoid lineage potential during supplementation. In aged mice, this improved lymphoid potential was maintained in competitive transplants and was associated with transcriptional repression of myeloid gene signatures in stem and lineage-committed progenitor cells after NR treatment. However, the altered transcriptional priming of the stem cells toward lymphoid lineages was not sustained in the aged mice after NR removal. These data characterize significant alterations to the lineage potential of functionally compromised HSCs after short-term exposure to NR treatment.
Collapse
|
37
|
NCOR1 Sustains Colorectal Cancer Cell Growth and Protects against Cellular Senescence. Cancers (Basel) 2021; 13:cancers13174414. [PMID: 34503224 PMCID: PMC8430780 DOI: 10.3390/cancers13174414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary NCOR1 is a scaffold protein that interacts with multiple partners to repress gene transcription. NCOR1 controls immunometabolic functions in several tissues and has been recently shown to protect against experimental colitis in mice. Our laboratory has observed a pro-proliferative role of NCOR1 in normal intestinal epithelial cells. However, it is unclear whether NCOR1 is functionally involved in colon cancer. This study demonstrated that NCOR1 is required for colorectal cancer cell growth. Depletion of NCOR1 caused these cells to become senescent. Transcriptomic signatures confirmed these observations but also predicted the potential for these cells to become pro-invasive. Thus, NCOR1 plays a novel role in preventing cancer-associated senescence and could represent a target for controlling colon cancer progression. Abstract NCOR1 is a corepressor that mediates transcriptional repression through its association with nuclear receptors and specific transcription factors. Some evidence supports a role for NCOR1 in neonatal intestinal epithelium maturation and the maintenance of epithelial integrity during experimental colitis in mice. We hypothesized that NCOR1 could control colorectal cancer cell proliferation and tumorigenicity. Conditional intestinal epithelial deletion of Ncor1 in ApcMin/+ mice resulted in a significant reduction in polyposis. RNAi targeting of NCOR1 in Caco-2/15 and HT-29 cell lines led to a reduction in cell growth, characterized by cellular senescence associated with a secretory phenotype. Tumor growth of HT-29 cells was reduced in the absence of NCOR1 in the mouse xenografts. RNA-seq transcriptome profiling of colon cancer cells confirmed the senescence phenotype in the absence of NCOR1 and predicted the occurrence of a pro-migration cellular signature in this context. SOX2, a transcription factor essential for pluripotency of embryonic stem cells, was induced under these conditions. In conclusion, depletion of NCOR1 reduced intestinal polyposis in mice and caused growth arrest, leading to senescence in human colorectal cell lines. The acquisition of a pro-metastasis signature in the absence of NCOR1 could indicate long-term potential adverse consequences of colon-cancer-induced senescence.
Collapse
|
38
|
Bene K, Halasz L, Nagy L. Transcriptional repression shapes the identity and function of tissue macrophages. FEBS Open Bio 2021; 11:3218-3229. [PMID: 34358410 PMCID: PMC8634859 DOI: 10.1002/2211-5463.13269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
The changing extra‐ and intracellular microenvironment calls for rapid cell fate decisions that are precisely and primarily regulated at the transcriptional level. The cellular components of the immune system are excellent examples of how cells respond and adapt to different environmental stimuli. Innate immune cells such as macrophages are able to modulate their transcriptional programs and epigenetic regulatory networks through activation and repression of particular genes, allowing them to quickly respond to a rapidly changing environment. Tissue macrophages are essential components of different immune‐ and nonimmune cell‐mediated physiological mechanisms in mammals and are widely used models for investigating transcriptional regulatory mechanisms. Therefore, it is critical to unravel the distinct sets of transcription activators, repressors, and coregulators that play roles in determining tissue macrophage identity and functions during homeostasis, as well as in diseases affecting large human populations, such as metabolic syndromes, immune‐deficiencies, and tumor development. In this review, we will focus on transcriptional repressors that play roles in tissue macrophage development and function under physiological conditions.
Collapse
Affiliation(s)
- Krisztian Bene
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| |
Collapse
|
39
|
Ritter D, Goeritzer M, Thiele A, Blumrich A, Beyhoff N, Luettges K, Smeir E, Kasch J, Grune J, Müller OJ, Klopfleisch R, Jaeger C, Foryst-Ludwig A, Kintscher U. Liver X Receptor Agonist AZ876 Induces Beneficial Endogenous Cardiac Lipid Reprogramming and Protects Against Isoproterenol-Induced Cardiac Damage. J Am Heart Assoc 2021; 10:e019473. [PMID: 34227403 PMCID: PMC8483473 DOI: 10.1161/jaha.120.019473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background It is known that dietary intake of polyunsaturated fatty acids may improve cardiac function. However, relatively high daily doses are required to achieve sufficient cardiac concentrations of beneficial omega‐3 fatty acids. The liver X receptor (LXR) is a nuclear hormone receptor and a crucial regulator of lipid homeostasis in mammals. LXR activation has been shown to endogenously reprogram cellular lipid profiles toward increased polyunsaturated fatty acids levels. Here we studied whether LXR lipid reprogramming occurs in cardiac tissue and exerts cardioprotective actions. Methods and Results Male 129SV mice were treated with the LXR agonist AZ876 (20 µmol/kg per day) for 11 days. From day 6, the mice were injected with the nonselective β‐agonist isoproterenol for 4 consecutive days to induce diastolic dysfunction and subendocardial fibrosis while maintaining systolic function. Treatment with isoproterenol led to a marked impairment of global longitudinal strain and the E/e' ratio of transmitral flow to mitral annular velocity, which were both significantly improved by the LXR agonist. Histological examination showed a significant reduction in isoproterenol‐induced subendocardial fibrosis by AZ876. Analysis of the cardiac lipid composition by liquid chromatography‐high resolution mass spectrometry revealed a significant increase in cardiac polyunsaturated fatty acids levels and a significant reduction in saturated fatty acids by AZ876. Conclusions The present study provides evidence that the LXR agonist AZ876 prevents subendocardial damage, improves global longitudinal strain and E/e' in a mouse model of isoproterenol‐induced cardiac damage, accompanied by an upregulation of cardiac polyunsaturated fatty acids levels. Cardiac LXR activation and beneficial endogenous cardiac lipid reprogramming may provide a new therapeutic strategy in cardiac disease with diastolic dysfunction.
Collapse
Affiliation(s)
- Daniel Ritter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Madeleine Goeritzer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Arne Thiele
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Annelie Blumrich
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Niklas Beyhoff
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany.,Berlin Institute of Health Berlin Germany
| | - Katja Luettges
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Elia Smeir
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Juliane Kasch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Jana Grune
- DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany.,Charité -Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of Physiology Berlin Germany
| | - Oliver J Müller
- Department of Internal Medicine III University of Kiel Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck Kiel Germany
| | - Robert Klopfleisch
- Department of Veterinary Pathology College of Veterinary Medicine Freie Universität Berlin Berlin Germany
| | - Carsten Jaeger
- Federal Institute for Material Research and Testing Berlin Germany
| | - Anna Foryst-Ludwig
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Ulrich Kintscher
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinInstitute of PharmacologyCenter for Cardiovascular Research Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| |
Collapse
|
40
|
Mai CT, Zheng DC, Li XZ, Zhou H, Xie Y. Liver X receptors conserve the therapeutic target potential for the treatment of rheumatoid arthritis. Pharmacol Res 2021; 170:105747. [PMID: 34186192 DOI: 10.1016/j.phrs.2021.105747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic multi-system autoimmune disease with extremely complex pathogenesis. Significantly altered lipid paradox related to the inflammatory burden is reported in RA patients, inducing 50% higher cardiovascular risks. Recent studies have also demonstrated that lipid metabolism can regulate many functions of immune cells in which metabolic pathways have altered. The nuclear liver X receptors (LXRs), including LXRα and LXRβ, play a central role in regulating lipid homeostasis and inflammatory responses. Undoubtedly, LXRs have been considered as an attractive therapeutic target for the treatment of RA. However, there are some contradictory effects of LXRs agonists observed in previous animal studies where both pro-inflammatory role and anti-inflammatory role were revealed for LXRs activation in RA. Therefore, in addition to updating the knowledge of LXRs as the prominent regulators of lipid homeostasis, the purpose of this review is to summarize the effects of LXRs agonists in RA-associated immune cells, to explore the underlying reasons for the contradictory therapeutic effects of LXRs agonists observed in RA animal models, and to discuss future strategy for the treatment of RA with LXRs modulators.
Collapse
Affiliation(s)
- Chu-Tian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - De-Chong Zheng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Xin-Zhi Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
41
|
Dixon ED, Nardo AD, Claudel T, Trauner M. The Role of Lipid Sensing Nuclear Receptors (PPARs and LXR) and Metabolic Lipases in Obesity, Diabetes and NAFLD. Genes (Basel) 2021; 12:genes12050645. [PMID: 33926085 PMCID: PMC8145571 DOI: 10.3390/genes12050645] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are metabolic disorders characterized by metabolic inflexibility with multiple pathological organ manifestations, including non-alcoholic fatty liver disease (NAFLD). Nuclear receptors are ligand-dependent transcription factors with a multifaceted role in controlling many metabolic activities, such as regulation of genes involved in lipid and glucose metabolism and modulation of inflammatory genes. The activity of nuclear receptors is key in maintaining metabolic flexibility. Their activity depends on the availability of endogenous ligands, like fatty acids or oxysterols, and their derivatives produced by the catabolic action of metabolic lipases, most of which are under the control of nuclear receptors. For example, adipose triglyceride lipase (ATGL) is activated by peroxisome proliferator-activated receptor γ (PPARγ) and conversely releases fatty acids as ligands for PPARα, therefore, demonstrating the interdependency of nuclear receptors and lipases. The diverse biological functions and importance of nuclear receptors in metabolic syndrome and NAFLD has led to substantial effort to target them therapeutically. This review summarizes recent findings on the roles of lipases and selected nuclear receptors, PPARs, and liver X receptor (LXR) in obesity, diabetes, and NAFLD.
Collapse
Affiliation(s)
| | | | | | - Michael Trauner
- Correspondence: ; Tel.: +43-140-4004-7410; Fax: +43-14-0400-4735
| |
Collapse
|
42
|
Mao Z, Huang R, Xu J, Guo R, Wei X. Liver X Receptor α in Sciatic Nerve Exerts an Alleviating Effect on Neuropathic Pain Behaviors Induced by Crush Injury. Neurochem Res 2021; 46:358-366. [PMID: 33200264 DOI: 10.1007/s11064-020-03171-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/29/2022]
Abstract
Peripheral nerve injury often leads to neuropathic pain. In the present study, we assessed the role of liver x receptor alpha (LXRα), an oxysterol regulated nuclear transcription factor that promotes reverse cholesterol transport and alternative (M2) macrophage activation, in the development of neuropathic pain. We found that compared to WT mice, in LXRα knockout mice the development of mechanical allodynia following sciatic nerve crush was accelerated and the duration was prolonged. Furthermore, the expression of M1-like macrophage marker iNOS and M1-like macrophages inducer hydrogen peroxide (H2O2) was increased, whereas expression of M2 macrophage marker arginase-1 (Arg-1) and interleukin-10 (IL-10) was reduced in the sciatic nerve of LXRα knockout mice. Moreover, peri-sciatic administration of LXRs agonist GW3965, immediately after the nerve crush, into wild type mice, suppressed the mechanical allodynia induced by crush injury. GW3965 also suppressed the expression of iNOS and production of H2O2 in the injured nerve and enhanced the expression of IL-10 and Arg-1. Importantly, peri-sciatic administration of IL-10 neutralization antibody prevented the alleviating effect of GW3965 on mechanical allodynia. Altogether, these results indicates that the lack of LXRα in the sciatic nerve results in an augmented inflammatory profile of macrophages, which ultimately speed up the development of neuropathic pain and dampen its recovery following nerve injury. Activation of LXRα by its agonist might rebalance the neuroprotective and neurotoxic macrophage phenotypes, and thus alleviate the neuropathic pain behavior.
Collapse
Affiliation(s)
- Zuchao Mao
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ruizhen Huang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Jing Xu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
- Center for Laboratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruixian Guo
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Xuhong Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
43
|
The corepressors GPS2 and SMRT control enhancer and silencer remodeling via eRNA transcription during inflammatory activation of macrophages. Mol Cell 2021; 81:953-968.e9. [PMID: 33503407 DOI: 10.1016/j.molcel.2020.12.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/20/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023]
Abstract
While the role of transcription factors and coactivators in controlling enhancer activity and chromatin structure linked to gene expression is well established, the involvement of corepressors is not. Using inflammatory macrophage activation as a model, we investigate here a corepressor complex containing GPS2 and SMRT both genome-wide and at the Ccl2 locus, encoding the chemokine CCL2 (MCP-1). We report that corepressors co-occupy candidate enhancers along with the coactivators CBP (H3K27 acetylase) and MED1 (mediator) but act antagonistically by repressing eRNA transcription-coupled H3K27 acetylation. Genome editing, transcriptional interference, and cistrome analysis reveals that apparently related enhancer and silencer elements control Ccl2 transcription in opposite ways. 4C-seq indicates that corepressor depletion or inflammatory signaling functions mechanistically similarly to trigger enhancer activation. In ob/ob mice, adipose tissue macrophage-selective depletion of the Ccl2 enhancer-transcribed eRNA reduces metaflammation. Thus, the identified corepressor-eRNA-chemokine pathway operates in vivo and suggests therapeutic opportunities by targeting eRNAs in immuno-metabolic diseases.
Collapse
|
44
|
Kim HY, Hong MH, Kim KW, Yoon JJ, Lee JE, Kang DG, Lee HS. Improvement of Hypertriglyceridemia by Roasted Nelumbinis folium in High Fat/High Cholesterol Diet Rat Model. Nutrients 2020; 12:nu12123859. [PMID: 33348773 PMCID: PMC7766402 DOI: 10.3390/nu12123859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
Hypertriglyceridemia is a condition characterized by high triglyceride levels and is a major risk factor for the development of cardiovascular diseases. The present study was designed to investigate the inhibitory effect of roasted Nelumbinis folium (RN), which is a medicinal substance produced by heating lotus leaves, on lipid metabolism in high fat/cholesterol (HFC) diet-induced hypertriglyceridemia. Except for those in the control group, Sprague–Dawley rats were fed an HFC diet for four weeks to induce hypertriglyceridemia. During the next nine weeks, the control, regular diet; HFC, HFC diet, FLU, fluvastatin (3 mg/kg/day); RNL, RN (100 mg/kg/day); RNH, RN (200 mg/kg/day) were orally administered together with the diet, and the experiments were conducted for a total of 13 weeks. The weight of the epididymal adipose tissue, liver, and heart of rats in the HFC diet group significantly increased compared to those in the control group but improved in the RN-treated group. It was also confirmed that vascular function, which is damaged by an HFC diet, was improved after RN treatment. The levels of insulin, glucose, triglycerides, total cholesterol, and low-density lipoprotein increased in the HFC diet group compared to those in the control group, while the administration of RN attenuated these parameters. In addition, the administration of RN significantly reduced the gene expression of both LXR and SREBP-1, which indicated the inhibitory effect of the biosynthesis of triglycerides caused by RN. The results indicated that RN administration resulted in an improvement in the overall lipid metabolism and a decrease in the concentration of triglycerides in the HFC diet-induced rat model of hypertriglyceridemia. Therefore, our findings suggest that the RN can be a candidate material to provide a new direction for treating hypertriglyceridemia.
Collapse
Affiliation(s)
- Hye Yoom Kim
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
- Department of Physiology, College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
| | - Mi Hyeon Hong
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
- Department of Physiology, College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
| | - Kwan Woo Kim
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
| | - Jung Joo Yoon
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
- Department of Physiology, College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
| | - Jung Eun Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea;
| | - Dae Gill Kang
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
- Department of Physiology, College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
- Correspondence: (D.G.K.); (H.S.L.); Tel.: +82-63-6447 (D.G.K. & H.S.L.); Fax: +82-63-850-7260 (D.G.K. & H.S.L.)
| | - Ho Sub Lee
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
- Department of Physiology, College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
- Correspondence: (D.G.K.); (H.S.L.); Tel.: +82-63-6447 (D.G.K. & H.S.L.); Fax: +82-63-850-7260 (D.G.K. & H.S.L.)
| |
Collapse
|
45
|
Buñay J, Fouache A, Trousson A, de Joussineau C, Bouchareb E, Zhu Z, Kocer A, Morel L, Baron S, Lobaccaro JMA. Screening for liver X receptor modulators: Where are we and for what use? Br J Pharmacol 2020; 178:3277-3293. [PMID: 33080050 DOI: 10.1111/bph.15286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Liver X receptors (LXRs) are members of the nuclear receptor superfamily that are canonically activated by oxidized derivatives of cholesterol. Since the mid-90s, numerous groups have identified LXRs as endocrine receptors that are involved in the regulation of various physiological functions. As a result, when their expression is genetically modified in mice, phenotypic analyses reveal endocrine disorders ranging from infertility to diabetes and obesity, nervous system pathologies such Alzheimer's or Parkinson's disease, immunological disturbances, inflammatory response, and enhancement of tumour development. Based on such findings, it appears that LXRs could constitute good pharmacological targets to prevent and/or to treat these diseases. This review discusses the various aspects of LXR drug discovery, from the tools available for the screening of potential LXR modulators to the current situational analysis of the drugs in development. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Julio Buñay
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Allan Fouache
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Cyrille de Joussineau
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Erwan Bouchareb
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Zhekun Zhu
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Ayhan Kocer
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Laurent Morel
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Silvere Baron
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
46
|
Mia MM, Cibi DM, Abdul Ghani SAB, Song W, Tee N, Ghosh S, Mao J, Olson EN, Singh MK. YAP/TAZ deficiency reprograms macrophage phenotype and improves infarct healing and cardiac function after myocardial infarction. PLoS Biol 2020; 18:e3000941. [PMID: 33264286 PMCID: PMC7735680 DOI: 10.1371/journal.pbio.3000941] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/14/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Adverse cardiac remodeling after myocardial infarction (MI) causes structural and functional changes in the heart leading to heart failure. The initial post-MI pro-inflammatory response followed by reparative or anti-inflammatory response is essential for minimizing the myocardial damage, healing, and scar formation. Bone marrow–derived macrophages (BMDMs) are recruited to the injured myocardium and are essential for cardiac repair as they can adopt both pro-inflammatory or reparative phenotypes to modulate inflammatory and reparative responses, respectively. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the key mediators of the Hippo signaling pathway and are essential for cardiac regeneration and repair. However, their functions in macrophage polarization and post-MI inflammation, remodeling, and healing are not well established. Here, we demonstrate that expression of YAP and TAZ is increased in macrophages undergoing pro-inflammatory or reparative phenotype changes. Genetic deletion of YAP/TAZ leads to impaired pro-inflammatory and enhanced reparative response. Consistently, YAP activation enhanced pro-inflammatory and impaired reparative response. We show that YAP/TAZ promote pro-inflammatory response by increasing interleukin 6 (IL6) expression and impede reparative response by decreasing Arginase-I (Arg1) expression through interaction with the histone deacetylase 3 (HDAC3)-nuclear receptor corepressor 1 (NCoR1) repressor complex. These changes in macrophages polarization due to YAP/TAZ deletion results in reduced fibrosis, hypertrophy, and increased angiogenesis, leading to improved cardiac function after MI. Also, YAP activation augmented MI-induced cardiac fibrosis and remodeling. In summary, we identify YAP/TAZ as important regulators of macrophage-mediated pro-inflammatory or reparative responses post-MI. Adverse cardiac remodeling after myocardial infarction causes structural and functional changes in the heart, leading to heart failure. This study shows that the Hippo pathway influences post-injury cardiac inflammation by modulating macrophage polarization.
Collapse
Affiliation(s)
- Masum M. Mia
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School Singapore. Singapore
| | - Dasan Mary Cibi
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School Singapore. Singapore
| | | | - Weihua Song
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Nicole Tee
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Sujoy Ghosh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School Singapore. Singapore
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Manvendra K. Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School Singapore. Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- * E-mail:
| |
Collapse
|
47
|
Bilotta MT, Petillo S, Santoni A, Cippitelli M. Liver X Receptors: Regulators of Cholesterol Metabolism, Inflammation, Autoimmunity, and Cancer. Front Immunol 2020; 11:584303. [PMID: 33224146 PMCID: PMC7670053 DOI: 10.3389/fimmu.2020.584303] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
The interplay between cellular stress and immune response can be variable and sometimes contradictory. The mechanisms by which stress-activated pathways regulate the inflammatory response to a pathogen, in autoimmunity or during cancer progression remain unclear in many aspects, despite our recent knowledge of the signalling and transcriptional pathways involved in these diseases. In this context, over the last decade many studies demonstrated that cholesterol metabolism is an important checkpoint for immune homeostasis and cancer progression. Indeed, cholesterol is actively metabolized and can regulate, through its mobilization and/or production of active derivatives, many aspects of immunity and inflammation. Moreover, accumulation of cholesterol has been described in cancer cells, indicating metabolic addiction. The nuclear receptors liver-X-receptors (LXRs) are important regulators of intracellular cholesterol and lipids homeostasis. They have also key regulatory roles in immune response, as they can regulate inflammation, innate and adaptive immunity. Moreover, activation of LXRs has been reported to affect the proliferation and survival of different cancer cell types that show altered metabolic pathways and accumulation of cholesterol. In this minireview we will give an overview of the recent understandings about the mechanisms through which LXRs regulate inflammation, autoimmunity, and cancer, and the therapeutic potential for future treatment of these diseases through modulation of cholesterol metabolism.
Collapse
Affiliation(s)
| | - Sara Petillo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Istituto Mediterraneo di Neuroscienze Neuromed, Pozzilli, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
48
|
Goodson ML, Knotts TA, Campbell EL, Snyder CA, Young BM, Privalsky ML. Specific ablation of the NCoR corepressor δ splice variant reveals alternative RNA splicing as a key regulator of hepatic metabolism. PLoS One 2020; 15:e0241238. [PMID: 33104749 PMCID: PMC7588069 DOI: 10.1371/journal.pone.0241238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022] Open
Abstract
The NCoR corepressor plays critical roles in mediating transcriptional repression by both nuclear receptors and non-receptor transcription factors. Alternative mRNA splicing of NCoR produces a series of variants with differing molecular and biological properties. The NCoRω splice-variant inhibits adipogenesis whereas the NCoRδ splice-variant promotes it, and mice bearing a splice-specific knockout of NCoRω display enhanced hepatic steatosis and overall weight gain on a high fat diet as well as a greatly increased resistance to diet-induced glucose intolerance. We report here that the reciprocal NCoRδ splice-specific knock-out mice display the contrary phenotypes of reduced hepatic steatosis and reduced weight gain relative to the NCoRω-/- mice. The NCoRδ-/- mice also fail to demonstrate the strong resistance to diet-induced glucose intolerance exhibited by the NCoRω-/- animals. The NCoR δ and ω variants possess both unique and shared transcriptional targets, with expression of certain hepatic genes affected in opposite directions in the two mutants, others altered in one but not the other genotype, and yet others changed in parallel in both NCoRδ-/- and NCoRω-/- animals versus WT. Gene set expression analysis (GSEA) identified a series of lipid, carbohydrate, and amino acid metabolic pathways that are likely to contribute to their distinct steatosis and glucose tolerance phenotypes. We conclude that alternative-splicing of the NCoR corepressor plays a key role in the regulation of hepatic energy storage and utilization, with the NCoRδ and NCoRω variants exerting both opposing and shared functions in many aspects of this phenomenon and in the organism as a whole.
Collapse
Affiliation(s)
- Michael L. Goodson
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, California, United States of America
- * E-mail:
| | - Trina A. Knotts
- Department of Molecular Biosciences, School of Veterinary Medicine and Mouse Metabolic Phenotyping Center, Microbiome & Host Response Core, University of California at Davis, Davis, California, United States of America
| | - Elsie L. Campbell
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, California, United States of America
| | - Chelsea A. Snyder
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, California, United States of America
| | - Briana M. Young
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, California, United States of America
| | - Martin L. Privalsky
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, California, United States of America
| |
Collapse
|
49
|
Geiger MA, Guillaumon AT, Paneni F, Matter CM, Stein S. Role of the Nuclear Receptor Corepressor 1 (NCOR1) in Atherosclerosis and Associated Immunometabolic Diseases. Front Immunol 2020; 11:569358. [PMID: 33117357 PMCID: PMC7578257 DOI: 10.3389/fimmu.2020.569358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
Atherosclerotic cardiovascular disease is part of chronic immunometabolic disorders such as type 2 diabetes and nonalcoholic fatty liver disease. Their common risk factors comprise hypertension, insulin resistance, visceral obesity, and dyslipidemias, such as hypercholesterolemia and hypertriglyceridemia, which are part of the metabolic syndrome. Immunometabolic diseases include chronic pathologies that are affected by both metabolic and inflammatory triggers and mediators. Important and challenging questions in this context are to reveal how metabolic triggers and their downstream signaling affect inflammatory processes and vice-versa. Along these lines, specific nuclear receptors sense changes in lipid metabolism and in turn induce downstream inflammatory and metabolic processes. The transcriptional activity of these nuclear receptors is regulated by the nuclear receptor corepressors (NCORs), including NCOR1. In this review we describe the function of NCOR1 as a central immunometabolic regulator and focus on its role in atherosclerosis and associated immunometabolic diseases.
Collapse
Affiliation(s)
- Martin A Geiger
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, Campinas, Brazil
| | - Ana T Guillaumon
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, Campinas, Brazil
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Dahik VD, Frisdal E, Le Goff W. Rewiring of Lipid Metabolism in Adipose Tissue Macrophages in Obesity: Impact on Insulin Resistance and Type 2 Diabetes. Int J Mol Sci 2020; 21:ijms21155505. [PMID: 32752107 PMCID: PMC7432680 DOI: 10.3390/ijms21155505] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity and its two major comorbidities, insulin resistance and type 2 diabetes, represent worldwide health issues whose incidence is predicted to steadily rise in the coming years. Obesity is characterized by an accumulation of fat in metabolic tissues resulting in chronic inflammation. It is now largely accepted that adipose tissue inflammation underlies the etiology of these disorders. Adipose tissue macrophages (ATMs) represent the most enriched immune fraction in hypertrophic, chronically inflamed adipose tissue, and these cells play a key role in diet-induced type 2 diabetes and insulin resistance. ATMs are triggered by the continuous influx of dietary lipids, among other stimuli; however, how these lipids metabolically activate ATM depends on their nature, composition and localization. This review will discuss the fate and molecular programs elicited within obese ATMs by both exogenous and endogenous lipids, as they mediate the inflammatory response and promote or hamper the development of obesity-associated insulin resistance and type 2 diabetes.
Collapse
|