1
|
Kwon T, Trujillo JD, Carossino M, Lyoo EL, McDowell CD, Cool K, Matias-Ferreyra FS, Jeevan T, Morozov I, Gaudreault NN, Balasuriya UB, Webby RJ, Osterrieder N, Richt JA. Pigs are highly susceptible to but do not transmit mink-derived highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b. Emerg Microbes Infect 2024; 13:2353292. [PMID: 38712345 PMCID: PMC11132737 DOI: 10.1080/22221751.2024.2353292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
ABSTRACTRapid evolution of highly pathogenic avian influenza viruses (HPAIVs) is driven by antigenic drift but also by reassortment, which might result in robust replication in and transmission to mammals. Recently, spillover of clade 2.3.4.4b HPAIV to mammals including humans, and their transmission between mammalian species has been reported. This study aimed to evaluate the pathogenicity and transmissibility of a mink-derived clade 2.3.4.4b H5N1 HPAIV isolate from Spain in pigs. Experimental infection caused interstitial pneumonia with necrotizing bronchiolitis with high titers of virus present in the lower respiratory tract and 100% seroconversion. Infected pigs shed limited amount of virus, and importantly, there was no transmission to contact pigs. Notably, critical mammalian-like adaptations such as PB2-E627 K and HA-Q222L emerged at low frequencies in principal-infected pigs. It is concluded that pigs are highly susceptible to infection with the mink-derived clade 2.3.4.4b H5N1 HPAIV and provide a favorable environment for HPAIV to acquire mammalian-like adaptations.
Collapse
Affiliation(s)
- Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Eu Lim Lyoo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chester D. McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Franco S. Matias-Ferreyra
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Trushar Jeevan
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Udeni B.R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Nikolaus Osterrieder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
2
|
Zhang X, Wu J, Wang Y, Hao M, Liu H, Fan S, Li J, Sun J, He Y, Zhang Y, Chen J. Highly Pathogenic Avian Influenza A Virus in Wild Migratory Birds, Qinghai Lake, China, 2022. Emerg Infect Dis 2024; 30:2135-2139. [PMID: 39190545 PMCID: PMC11431930 DOI: 10.3201/eid3010.240460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
In July 2022, an outbreak of highly pathogenic avian influenza A(H5N1) virus clade 2.3.4.4b occurred among migratory birds at Qinghai Lake in China. The virus circulated in June, and reassortants emerged after its introduction into the area. Surveillance in 2023 showed that the virus did not establish a stable presence in wild waterfowl.
Collapse
|
3
|
Filaire F, Herfst S. The highly pathogenic H5N1 virus found in U.S. dairy cattle has some characteristics that could enhance infection and transmission among mammals. Lab Anim (NY) 2024; 53:224-225. [PMID: 39143355 DOI: 10.1038/s41684-024-01425-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
- Fabien Filaire
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.
- Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Chopra P, Page CK, Shepard JD, Ray SD, Kandeil A, Jeevan T, Bowman AS, Ellebedy AH, Webby RJ, de Vries RP, Tompkins SM, Boons GJ. Receptor Binding Specificity of a Bovine A(H5N1) Influenza Virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605893. [PMID: 39131339 PMCID: PMC11312569 DOI: 10.1101/2024.07.30.605893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Outbreaks in the US of highly pathogenic avian influenza virus (H5N1) in dairy cows have been occurring for months creating new possibilities for direct contact between the virus and humans. Eisfeld et al. examined the pathogenicity and transmissibility of a bovine HPAI H5N1 virus isolated from New Mexico in a series of in vitro and in vivo assays. They found the virus has a dual human- and avian virus-like receptor-binding specificity as measured in a solid phase glycan binding assay. Here, we examined the receptor specificity of a bovine HPAI H5N1 virus (A/bovine/OH/B24OSU-432/2024, H5N1, clade 2.3.4.4b) employing four different assays including glycan array technology, bio-layer interferometry (BLI), a solid phase capture assay and hemagglutination of glycan remodeled erythrocytes. As controls, well characterized avian (A/Vietnam/1203/2004, H5N1, clade 1) and human (A/CA/04/2009, H1N1) IAVs were included that bind α2,3- and α2,6-sialosides, respectively. We found that A/bovine/OH/B24OSU-432/2024 preferentially binds to "avian type" receptors (α2,3-sialosides). Furthermore, sequence alignments showed that A/bovine has maintained amino acids in its HA associated with α2,3-sialoside (avian) receptor specificity. We conclude that while we find no evidence that A/bovine has acquired human virus receptor binding specificity, ongoing efforts must be placed on monitoring for this trait.
Collapse
Affiliation(s)
- Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
| | - Caroline K. Page
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA and Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Justin D. Shepard
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA and Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Sean D. Ray
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA and Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Ahmed Kandeil
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, USA
- St. Jude Center of Excellence for Influenza Research and Response, Memphis, TN, USA
| | - Trushar Jeevan
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, USA
- St. Jude Center of Excellence for Influenza Research and Response, Memphis, TN, USA
| | - Andrew S. Bowman
- St. Jude Center of Excellence for Influenza Research and Response, Memphis, TN, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Richard J. Webby
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, USA
- St. Jude Center of Excellence for Influenza Research and Response, Memphis, TN, USA
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - S. Mark Tompkins
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA and Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Dadonaite B, Ahn JJ, Ort JT, Yu J, Furey C, Dosey A, Hannon WW, Baker AV, Webby RJ, King NP, Liu Y, Hensley SE, Peacock TP, Moncla LH, Bloom JD. Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595634. [PMID: 38826368 PMCID: PMC11142178 DOI: 10.1101/2024.05.23.595634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
H5 influenza is a potential pandemic threat. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic risk, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. Here we use pseudovirus deep mutational scanning to measure how all mutations to a clade 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind a2-6-linked sialic acids, and show that some viruses already carry mutations that stabilize HA. We also identify recent viral strains with reduced neutralization to sera elicited by candidate vaccine virus. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive characterization of mutations to inform surveillance of H5 influenza.
Collapse
|
6
|
Liu L, Wang F, Wu Y, Mi W, Zhang Y, Chen L, Wang D, Deng G, Shi J, Chen H, Kong H. The V223I substitution in hemagglutinin reduces the binding affinity to human-type receptors while enhancing the thermal stability of the H3N2 canine influenza virus. Front Microbiol 2024; 15:1442163. [PMID: 39104583 PMCID: PMC11299061 DOI: 10.3389/fmicb.2024.1442163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Given the intimate relationship between humans and dogs, the H3N2 canine influenza viruses (CIVs) pose a threat to public health. In our study, we isolated four H3N2 CIVs from 3,758 dog nasal swabs in China between 2018 and 2020, followed by genetic and biological analysis. Phylogenetic analysis revealed 15 genotypes among all available H3N2 CIVs, with genotype 15 prevailing among dogs since around 2017, indicating the establishment of a stable virus lineage in dogs. Molecular characterization identified many mammalian adaptive substitutions, including HA-G146S, HA-N188D, PB2-I292T, PB2-G590S, PB2-S714I, PB1-D154G, and NP-R293K, present across the four isolates. Notably, analysis of HA sequences uncovered a newly emerged adaptive mutation, HA-V223I, which is predominantly found in human and swine H3N2 viruses, suggesting its role in mammalian adaptation. Receptor-binding analysis revealed that the four H3N2 viruses bind both avian and human-type receptors. However, HA-V223I decreases the H3N2 virus's affinity for human-type receptors but enhances its thermal stability. Furthermore, attachment analysis confirmed the H3N2 virus binding to human tracheal tissues, albeit with reduced affinity when the virus carries HA-V223I. Antigenic analysis indicated that the current human H3N2 vaccines do not confer protection against H3N2 CIVs. Collectively, these findings underscore that the potential threat posed by H3N2 CIVs to human health still exists, emphasizing the necessity of close surveillance and monitoring of H3N2 CIVs in dogs.
Collapse
Affiliation(s)
- Liling Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Fujun Wang
- Department of Biotechnology, Heilongjiang Vocational College for Nationalities, Harbin, China
- Harbin Fuai Pet Hospital, Harbin, China
| | - Ying Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Weiyong Mi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Yaping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Lei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Dongxue Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Huihui Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| |
Collapse
|
7
|
Lee CY. Exploring Potential Intermediates in the Cross-Species Transmission of Influenza A Virus to Humans. Viruses 2024; 16:1129. [PMID: 39066291 PMCID: PMC11281536 DOI: 10.3390/v16071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The influenza A virus (IAV) has been a major cause of several pandemics, underscoring the importance of elucidating its transmission dynamics. This review investigates potential intermediate hosts in the cross-species transmission of IAV to humans, focusing on the factors that facilitate zoonotic events. We evaluate the roles of various animal hosts, including pigs, galliformes, companion animals, minks, marine mammals, and other animals, in the spread of IAV to humans.
Collapse
Affiliation(s)
- Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
8
|
Li T, Spruit CM, Wei N, Liu L, Wolfert MA, de Vries RP, Boons GJ. Chemoenzymatic Synthesis of Tri-antennary N-Glycans Terminating in Sialyl-Lewis x Reveals the Importance of Glycan Complexity for Influenza A Virus Receptor Binding. Chemistry 2024; 30:e202401108. [PMID: 38567703 PMCID: PMC11156558 DOI: 10.1002/chem.202401108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 05/09/2024]
Abstract
Sialyl-Lewisx (SLex) is involved in immune regulation, human fertilization, cancer, and bacterial and viral diseases. The influence of the complex glycan structures, which can present SLex epitopes, on binding is largely unknown. We report here a chemoenzymatic strategy for the preparation of a panel of twenty-two isomeric asymmetrical tri-antennary N-glycans presenting SLex-Lex epitopes on either the MGAT4 or MGAT5 arm that include putative high-affinity ligands for E-selectin. The N-glycans were prepared starting from a sialoglycopeptide isolated from egg yolk powder and took advantage of inherent substrate preferences of glycosyltransferases and the use of 5'-diphospho-N-trifluoracetylglucosamine (UDP-GlcNHTFA) that can be transferred by branching N-acetylglucosaminyltransferases to give, after base treatment, GlcNH2-containing glycans that temporarily disable an antenna from enzymatic modification. Glycan microarray binding studies showed that E-selectin bound equally well to linear glycans and tri-antennary N-glycans presenting SLex-Lex. On the other hand, it was found that hemagglutinins (HA) of H5 influenza A viruses (IAV) preferentially bound the tri-antennary N-glycans. Furthermore, several H5 HAs preferentially bound to N-glycan presenting SLex on the MGAT4 arm. SLex is displayed in the respiratory tract of several avian species, demonstrating the relevance of investigating the binding of, among others IAVs, to complex N-glycans presenting SLex.
Collapse
Affiliation(s)
- Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Present address: Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Cindy M Spruit
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Na Wei
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Margreet A Wolfert
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Chemistry Department, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Guo X, Zhou Y, Yan H, An Q, Liang C, Liu L, Qian J. Molecular Markers and Mechanisms of Influenza A Virus Cross-Species Transmission and New Host Adaptation. Viruses 2024; 16:883. [PMID: 38932174 PMCID: PMC11209369 DOI: 10.3390/v16060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza A viruses continue to be a serious health risk to people and result in a large-scale socio-economic loss. Avian influenza viruses typically do not replicate efficiently in mammals, but through the accumulation of mutations or genetic reassortment, they can overcome interspecies barriers, adapt to new hosts, and spread among them. Zoonotic influenza A viruses sporadically infect humans and exhibit limited human-to-human transmission. However, further adaptation of these viruses to humans may result in airborne transmissible viruses with pandemic potential. Therefore, we are beginning to understand genetic changes and mechanisms that may influence interspecific adaptation, cross-species transmission, and the pandemic potential of influenza A viruses. We also discuss the genetic and phenotypic traits associated with the airborne transmission of influenza A viruses in order to provide theoretical guidance for the surveillance of new strains with pandemic potential and the prevention of pandemics.
Collapse
Affiliation(s)
- Xinyi Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Yang Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
| | - Qing An
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
| | - Linna Liu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Jun Qian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
10
|
Restori KH, Septer KM, Field CJ, Patel DR, VanInsberghe D, Raghunathan V, Lowen AC, Sutton TC. Risk assessment of a highly pathogenic H5N1 influenza virus from mink. Nat Commun 2024; 15:4112. [PMID: 38750016 PMCID: PMC11096306 DOI: 10.1038/s41467-024-48475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Outbreaks of highly pathogenic H5N1 clade 2.3.4.4b viruses in farmed mink and seals combined with isolated human infections suggest these viruses pose a pandemic threat. To assess this threat, using the ferret model, we show an H5N1 isolate derived from mink transmits by direct contact to 75% of exposed ferrets and, in airborne transmission studies, the virus transmits to 37.5% of contacts. Sequence analyses show no mutations were associated with transmission. The H5N1 virus also has a low infectious dose and remains virulent at low doses. This isolate carries the adaptive mutation, PB2 T271A, and reversing this mutation reduces mortality and airborne transmission. This is the first report of a H5N1 clade 2.3.4.4b virus exhibiting direct contact and airborne transmissibility in ferrets. These data indicate heightened pandemic potential of the panzootic H5N1 viruses and emphasize the need for continued efforts to control outbreaks and monitor viral evolution.
Collapse
Affiliation(s)
- Katherine H Restori
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- Emory Center of Excellence of Influenza Research and Response (CEIRR), University Park, PA, USA
| | - Kayla M Septer
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Cassandra J Field
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- Emory Center of Excellence of Influenza Research and Response (CEIRR), University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Devanshi R Patel
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - David VanInsberghe
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence of Influenza Research and Response (CEIRR), Atlanta, GA, USA
| | - Vedhika Raghunathan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence of Influenza Research and Response (CEIRR), Atlanta, GA, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence of Influenza Research and Response (CEIRR), Atlanta, GA, USA
| | - Troy C Sutton
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA.
- Emory Center of Excellence of Influenza Research and Response (CEIRR), University Park, PA, USA.
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
11
|
Lipsitch M, Inglesby TV, Cicero A, Relman DA. Public role in research oversight. J Virol 2024; 98:e0006124. [PMID: 38477584 PMCID: PMC11019949 DOI: 10.1128/jvi.00061-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Affiliation(s)
- Marc Lipsitch
- Departments of Epidemiology and Immunology and Infectious Diseases, Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Thomas V. Inglesby
- Center for Health Security, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anita Cicero
- Center for Health Security, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - David A. Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for International Security and Cooperation, Freeman Spogli Institute for International Studies, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
12
|
Heider A, Wedde M, Weinheimer V, Döllinger S, Monazahian M, Dürrwald R, Wolff T, Schweiger B. Characteristics of two zoonotic swine influenza A(H1N1) viruses isolated in Germany from diseased patients. Int J Med Microbiol 2024; 314:151609. [PMID: 38286065 DOI: 10.1016/j.ijmm.2024.151609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Interspecies transmission of influenza A viruses (IAV) from pigs to humans is a concerning event as porcine IAV represent a reservoir of potentially pandemic IAV. We conducted a comprehensive analysis of two porcine A(H1N1)v viruses isolated from human cases by evaluating their genetic, antigenic and virological characteristics. The HA genes of those human isolates belonged to clades 1C.2.1 and 1C.2.2, respectively, of the A(H1N1) Eurasian avian-like swine influenza lineage. Antigenic profiling revealed substantial cross-reactivity between the two zoonotic H1N1 viruses and human A(H1N1)pdm09 virus and some swine viruses, but did not reveal cross-reactivity to H1N2 and earlier human seasonal A(H1N1) viruses. The solid-phase direct receptor binding assay analysis of both A(H1N1)v showed a predominant binding to α2-6-sialylated glycans similar to human-adapted IAV. Investigation of the replicative potential revealed that both A(H1N1)v viruses grow in human bronchial epithelial cells to similar high titers as the human A(H1N1)pdm09 virus. Cytokine induction was studied in human alveolar epithelial cells A549 and showed that both swine viruses isolated from human cases induced higher amounts of type I and type III IFN, as well as IL6 compared to a seasonal A(H1N1) or a A(H1N1)pdm09 virus. In summary, we demonstrate a remarkable adaptation of both zoonotic viruses to propagate in human cells. Our data emphasize the needs for continuous monitoring of people and regions at increased risk of such trans-species transmissions, as well as systematic studies to quantify the frequency of these events and to identify viral molecular determinants enhancing the zoonotic potential of porcine IAV.
Collapse
Affiliation(s)
- Alla Heider
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany.
| | - Marianne Wedde
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | - Viola Weinheimer
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | - Stephanie Döllinger
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | | | - Ralf Dürrwald
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | - Thorsten Wolff
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | - Brunhilde Schweiger
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| |
Collapse
|
13
|
Funk M, Spronken MI, Bestebroer TM, de Bruin AC, Gultyaev AP, Fouchier RA, te Velthuis AJ, Richard M. Transient RNA structures underlie highly pathogenic avian influenza virus genesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.574333. [PMID: 38370829 PMCID: PMC10871305 DOI: 10.1101/2024.01.11.574333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause severe disease and high fatality in poultry1. They emerge exclusively from H5 and H7 low pathogenic avian influenza viruses (LPAIVs)2. Although insertion of a furin-cleavable multibasic cleavage site (MBCS) in the hemagglutinin gene was identified decades ago as the genetic basis for LPAIV-to-HPAIV transition3,4, the exact mechanisms underlying said insertion have remained unknown. Here we used an innovative combination of bioinformatic models to predict RNA structures forming around the influenza virus RNA polymerase during replication, and circular sequencing5 to reliably detect nucleotide insertions. We show that transient H5 hemagglutinin RNA structures predicted to trap the polymerase on purine-rich sequences drive nucleotide insertions characteristic of MBCSs, providing the first strong empirical evidence of RNA structure involvement in MBCS acquisition. Insertion frequencies at the H5 cleavage site were strongly affected by substitutions in flanking genomic regions altering predicted transient RNA structures. Introduction of H5-like cleavage site sequences and structures into an H6 hemagglutinin resulted in MBCS-yielding insertions never observed before in H6 viruses. Our results demonstrate that nucleotide insertions that underlie H5 HPAIV emergence result from a previously unknown RNA-structure-driven diversity-generating mechanism, which could be shared with other RNA viruses.
Collapse
Affiliation(s)
- Mathis Funk
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Monique I. Spronken
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Anja C.M. de Bruin
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Alexander P. Gultyaev
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS); Leiden University, 2300 RA Leiden, The Netherlands
| | - Ron A.M. Fouchier
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Aartjan J.W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology; Princeton University, 08544 New Jersey, United States
| | - Mathilde Richard
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
14
|
Naiqing X, Tang X, Wang X, Cai M, Liu X, Lu X, Hu S, Gu M, Hu J, Gao R, Liu K, Chen Y, Liu X, Wang X. Hemagglutinin affects replication, stability and airborne transmission of the H9N2 subtype avian influenza virus. Virology 2024; 589:109926. [PMID: 37952465 DOI: 10.1016/j.virol.2023.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
H9N2 subtype avian influenza virus (AIV) can transmit by direct as well as airborne contacts. It has been widespread in poultry and continued to contribute to zoonotic spillover events by providing its six internal genes for the reassortment of novel influenza viruses (eg, H7N9) that infect poultry and humans. Compared to H7N9, H9N2 virus displays an efficient airborne transmissibility in poultry, but the mechanisms of transmission difference have been insufficiently studied. The Hemagglutinin (HA) and viral polymerase acidic protein (PA) have been implicated in the airborne transmission of influenza A viruses. Accordingly, we generated the reassortant viruses of circulating airborne transmissible H9N2 and non-airborne transmissible H7N9 viruses carrying HA and/or PA gene. The introduction of the PA gene from H7N9 into the genome of H9N2 virus resulted in a reduction in airborne transmission among chickens, while the isolated introduction of the HA gene segment completely eliminated airborne transmission among chickens. We further showed that introduction of HA gene of non-transmissible H7N9 did not influence the HA/NA balance of H9N2 virus, but increased the threshold for membrane fusion and decreased the acid stability. Thus, our results indicate that HA protein plays a key role in replication, stability, and airborne transmission of the H9N2 subtype AIV.
Collapse
Affiliation(s)
- Xu Naiqing
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xinen Tang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xin Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Miao Cai
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiaolong Lu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Kaituo Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
15
|
Liang Y. Pathogenicity and virulence of influenza. Virulence 2023; 14:2223057. [PMID: 37339323 DOI: 10.1080/21505594.2023.2223057] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
Influenza viruses, including four major types (A, B, C, and D), can cause mild-to-severe and lethal diseases in humans and animals. Influenza viruses evolve rapidly through antigenic drift (mutation) and shift (reassortment of the segmented viral genome). New variants, strains, and subtypes have emerged frequently, causing epidemic, zoonotic, and pandemic infections, despite currently available vaccines and antiviral drugs. In recent years, avian influenza viruses, such as H5 and H7 subtypes, have caused hundreds to thousands of zoonotic infections in humans with high case fatality rates. The likelihood of these animal influenza viruses acquiring airborne transmission in humans through viral evolution poses great concern for the next pandemic. Severe influenza viral disease is caused by both direct viral cytopathic effects and exacerbated host immune response against high viral loads. Studies have identified various mutations in viral genes that increase viral replication and transmission, alter tissue tropism or species specificity, and evade antivirals or pre-existing immunity. Significant progress has also been made in identifying and characterizing the host components that mediate antiviral responses, pro-viral functions, or immunopathogenesis following influenza viral infections. This review summarizes the current knowledge on viral determinants of influenza virulence and pathogenicity, protective and immunopathogenic aspects of host innate and adaptive immune responses, and antiviral and pro-viral roles of host factors and cellular signalling pathways. Understanding the molecular mechanisms of viral virulence factors and virus-host interactions is critical for the development of preventive and therapeutic measures against influenza diseases.
Collapse
Affiliation(s)
- Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
16
|
Barman S, Turner JCM, Kamrul Hasan M, Akhtar S, Jeevan T, Franks J, Walker D, Mukherjee N, Seiler P, Kercher L, McKenzie P, Webster RG, Feeroz MM, Webby RJ. Emergence of a new genotype of clade 2.3.4.4b H5N1 highly pathogenic avian influenza A viruses in Bangladesh. Emerg Microbes Infect 2023; 12:e2252510. [PMID: 37622753 PMCID: PMC10563617 DOI: 10.1080/22221751.2023.2252510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023]
Abstract
Influenza virological surveillance was conducted in Bangladesh from January to December 2021 in live poultry markets (LPMs) and in Tanguar Haor, a wetland region where domestic ducks have frequent contact with migratory birds. The predominant viruses circulating in LPMs were low pathogenic avian influenza (LPAI) H9N2 and clade 2.3.2.1a highly pathogenic avian influenza (HPAI) H5N1 viruses. Additional LPAIs were found in both LPM (H4N6) and Tanguar Haor wetlands (H7N7). Genetic analyses of these LPAIs strongly suggested long-distance movement of viruses along the Central Asian migratory bird flyway. We also detected a novel clade 2.3.4.4b H5N1 virus from ducks in free-range farms in Tanguar Haor that was similar to viruses first detected in October 2020 in The Netherlands but with a different PB2. Identification of clade 2.3.4.4b HPAI H5N1 viruses in Tanguar Haor provides continued support of the role of migratory birds in transboundary movement of influenza A viruses (IAV), including HPAI viruses. Domestic ducks in free range farm in wetland areas, like Tangua Haor, serve as a conduit for the introduction of LPAI and HPAI viruses into Bangladesh. Clade 2.3.4.4b viruses have dominated in many regions of the world since mid-2021, and it remains to be seen if these viruses will replace the endemic clade 2.3.2.1a H5N1 viruses in Bangladesh.
Collapse
Affiliation(s)
- Subrata Barman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jasmine C. M. Turner
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - M. Kamrul Hasan
- Department of Zoology, Jahangirnagar University, Dhaka, Bangladesh
| | - Sharmin Akhtar
- Department of Zoology, Jahangirnagar University, Dhaka, Bangladesh
| | - Trushar Jeevan
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John Franks
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - David Walker
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Nabanita Mukherjee
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Patrick Seiler
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Pamela McKenzie
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Robert G. Webster
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
17
|
Alasiri A, Soltane R, Hegazy A, Khalil AM, Mahmoud SH, Khalil AA, Martinez-Sobrido L, Mostafa A. Vaccination and Antiviral Treatment against Avian Influenza H5Nx Viruses: A Harbinger of Virus Control or Evolution. Vaccines (Basel) 2023; 11:1628. [PMID: 38005960 PMCID: PMC10675773 DOI: 10.3390/vaccines11111628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the panzootic nature of emergent highly pathogenic avian influenza H5Nx viruses in wild migratory birds and domestic poultry, only a limited number of human infections with H5Nx viruses have been identified since its emergence in 1996. Few countries with endemic avian influenza viruses (AIVs) have implemented vaccination as a control strategy, while most of the countries have adopted a culling strategy for the infected flocks. To date, China and Egypt are the two major sites where vaccination has been adopted to control avian influenza H5Nx infections, especially with the widespread circulation of clade 2.3.4.4b H5N1 viruses. This virus is currently circulating among birds and poultry, with occasional spillovers to mammals, including humans. Herein, we will discuss the history of AIVs in Egypt as one of the hotspots for infections and the improper implementation of prophylactic and therapeutic control strategies, leading to continuous flock outbreaks with remarkable virus evolution scenarios. Along with current pre-pandemic preparedness efforts, comprehensive surveillance of H5Nx viruses in wild birds, domestic poultry, and mammals, including humans, in endemic areas is critical to explore the public health risk of the newly emerging immune-evasive or drug-resistant H5Nx variants.
Collapse
Affiliation(s)
- Ahlam Alasiri
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, Giza 12613, Egypt;
| | - Ahmed Magdy Khalil
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| | - Ahmed A. Khalil
- Veterinary Sera and Vaccines Research Institute (VSVRI), Agriculture Research Center (ARC), Cairo 11435, Egypt;
| | | | - Ahmed Mostafa
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| |
Collapse
|
18
|
Morens DM, Park J, Taubenberger JK. Many potential pathways to future pandemic influenza. Sci Transl Med 2023; 15:eadj2379. [PMID: 37851826 DOI: 10.1126/scitranslmed.adj2379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Although influenza A viruses have caused pandemics for centuries, future pandemics cannot be predicted with our current understanding and resources. Concern about an H5N1 avian influenza pandemic has caused alarm since 1997, but there are many other possible routes to pandemic influenza.
Collapse
Affiliation(s)
- David M Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaekeun Park
- Department of Veterinary Medicine, VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Xie R, Edwards KM, Wille M, Wei X, Wong SS, Zanin M, El-Shesheny R, Ducatez M, Poon LLM, Kayali G, Webby RJ, Dhanasekaran V. The episodic resurgence of highly pathogenic avian influenza H5 virus. Nature 2023; 622:810-817. [PMID: 37853121 DOI: 10.1038/s41586-023-06631-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 activity has intensified globally since 2021, increasingly causing mass mortality in wild birds and poultry and incidental infections in mammals1-3. However, the ecological and virological properties that underscore future mitigation strategies still remain unclear. Using epidemiological, spatial and genomic approaches, we demonstrate changes in the origins of resurgent HPAI H5 and reveal significant shifts in virus ecology and evolution. Outbreak data show key resurgent events in 2016-2017 and 2020-2021, contributing to the emergence and panzootic spread of H5N1 in 2021-2022. Genomic analysis reveals that the 2016-2017 epizootics originated in Asia, where HPAI H5 reservoirs are endemic. In 2020-2021, 2.3.4.4b H5N8 viruses emerged in African poultry, featuring mutations altering HA structure and receptor binding. In 2021-2022, a new H5N1 virus evolved through reassortment in wild birds in Europe, undergoing further reassortment with low-pathogenic avian influenza in wild and domestic birds during global dissemination. These results highlight a shift in the HPAI H5 epicentre beyond Asia and indicate that increasing persistence of HPAI H5 in wild birds is facilitating geographic and host range expansion, accelerating dispersion velocity and increasing reassortment potential. As earlier outbreaks of H5N1 and H5N8 were caused by more stable genomic constellations, these recent changes reflect adaptation across the domestic-bird-wild-bird interface. Elimination strategies in domestic birds therefore remain a high priority to limit future epizootics.
Collapse
Affiliation(s)
- Ruopeng Xie
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kimberly M Edwards
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michelle Wille
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Xiaoman Wei
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sook-San Wong
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mark Zanin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mariette Ducatez
- IHAP, Université de Toulouse, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Vijaykrishna Dhanasekaran
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
20
|
Le Sage V, Lowen AC, Lakdawala SS. Block the Spread: Barriers to Transmission of Influenza Viruses. Annu Rev Virol 2023; 10:347-370. [PMID: 37308086 DOI: 10.1146/annurev-virology-111821-115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Respiratory viruses, such as influenza viruses, cause significant morbidity and mortality worldwide through seasonal epidemics and sporadic pandemics. Influenza viruses transmit through multiple modes including contact (either direct or through a contaminated surface) and inhalation of expelled aerosols. Successful human to human transmission requires an infected donor who expels virus into the environment, a susceptible recipient, and persistence of the expelled virus within the environment. The relative efficiency of each mode can be altered by viral features, environmental parameters, donor and recipient host characteristics, and viral persistence. Interventions to mitigate transmission of influenza viruses can target any of these factors. In this review, we discuss many aspects of influenza virus transmission, including the systems to study it, as well as the impact of natural barriers and various nonpharmaceutical and pharmaceutical interventions.
Collapse
Affiliation(s)
- Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| |
Collapse
|
21
|
Rabalski L, Kosinski M, Cybulski P, Stadejek T, Lepek K. Genetic Diversity of Type A Influenza Viruses Found in Swine Herds in Northwestern Poland from 2017 to 2019: The One Health Perspective. Viruses 2023; 15:1893. [PMID: 37766299 PMCID: PMC10536349 DOI: 10.3390/v15091893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Influenza A viruses (IAV) are still a cause of concern for public health and veterinary services worldwide. With (-) RNA-segmented genome architecture, influenza viruses are prone to reassortment and can generate a great variety of strains, some capable of crossing interspecies barriers. Seasonal IAV strains continuously spread from humans to pigs, leading to multiple reassortation events with strains endemic to swine. Due to its high adaptability to humans, a reassortant strain based on "human-like" genes could potentially be a carrier of avian origin segments responsible for high virulence, and hence become the next pandemic strain with unseen pathogenicity. The rapid evolution of sequencing methods has provided a fast and cost-efficient way to assess the genetic diversity of IAV. In this study, we investigated the genetic diversity of swine influenza viruses (swIAVs) collected from Polish farms. A total of 376 samples were collected from 11 farms. The infection was confirmed in 112 cases. The isolates were subjected to next-generation sequencing (NGS), resulting in 93 full genome sequences. Phylogenetic analysis classified 59 isolates as genotype T (H1avN2g) and 34 isolates as genotype P (H1pdmN1pdm), all of which had an internal gene cassette (IGC) derived from the H1N1pdm09-like strain. These data are consistent with evolutionary trends in European swIAVs. The applied methodology proved to be useful in monitoring the genetic diversity of IAV at the human-animal interface.
Collapse
Affiliation(s)
- Lukasz Rabalski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
- Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Lubelska 4 St, 24-100 Pulawy, Poland
| | - Maciej Kosinski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Piotr Cybulski
- Goodvalley Agro S.A., Dworcowa 25, 77-320 Przechlewo, Poland
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | - Krzysztof Lepek
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
22
|
Herfst S, Begeman L, Spronken MI, Poen MJ, Eggink D, de Meulder D, Lexmond P, Bestebroer TM, Koopmans MPG, Kuiken T, Richard M, Fouchier RAM. A Dutch highly pathogenic H5N6 avian influenza virus showed remarkable tropism for extra-respiratory organs and caused severe disease but was not transmissible via air in the ferret model. mSphere 2023; 8:e0020023. [PMID: 37428085 PMCID: PMC10449504 DOI: 10.1128/msphere.00200-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Continued circulation of A/H5N1 influenza viruses of the A/goose/Guangdong/1/96 lineage in poultry has resulted in the diversification in multiple genetic and antigenic clades. Since 2009, clade 2.3.4.4 hemagglutinin (HA) containing viruses harboring the internal and neuraminidase (NA) genes of other avian influenza A viruses have been detected. As a result, various HA-NA combinations, such as A/H5N1, A/H5N2, A/H5N3, A/H5N5, A/H5N6, and A/H5N8 have been identified. As of January 2023, 83 humans have been infected with A/H5N6 viruses, thereby posing an apparent risk for public health. Here, as part of a risk assessment, the in vitro and in vivo characterization of A/H5N6 A/black-headed gull/Netherlands/29/2017 is described. This A/H5N6 virus was not transmitted between ferrets via the air but was of unexpectedly high pathogenicity compared to other described A/H5N6 viruses. The virus replicated and caused severe lesions not only in respiratory tissues but also in multiple extra-respiratory tissues, including brain, liver, pancreas, spleen, lymph nodes, and adrenal gland. Sequence analyses demonstrated that the well-known mammalian adaptation substitution D701N was positively selected in almost all ferrets. In the in vitro experiments, no other known viral phenotypic properties associated with mammalian adaptation or increased pathogenicity were identified. The lack of transmission via the air and the absence of mammalian adaptation markers suggest that the public health risk of this virus is low. The high pathogenicity of this virus in ferrets could not be explained by the known mammalian pathogenicity factors and should be further studied. IMPORTANCE Avian influenza A/H5 viruses can cross the species barrier and infect humans. These infections can have a fatal outcome, but fortunately these influenza A/H5 viruses do not spread between humans. However, the extensive circulation and reassortment of A/H5N6 viruses in poultry and wild birds warrant risk assessments of circulating strains. Here an in-depth characterization of the properties of an avian A/H5N6 influenza virus isolated from a black-headed gull in the Netherlands was performed in vitro and in vivo, in ferrets. The virus was not transmissible via the air but caused severe disease and spread to extra-respiratory organs. Apart from the detection in ferrets of a mutation that increased virus replication, no other mammalian adaptation phenotypes were identified. Our results suggest that the risk of this avian A/H5N6 virus for public health is low. The underlying reasons for the high pathogenicity of this virus are unexplained and should be further studied.
Collapse
Affiliation(s)
- Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Lineke Begeman
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Monique I. Spronken
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marjolein J. Poen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dirk Eggink
- Academic Medical Center Amsterdam, Laboratory of Experimental Virology, Amsterdam, the Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
23
|
Kutter JS, Linster M, de Meulder D, Bestebroer TM, Lexmond P, Rosu ME, Richard M, de Vries RP, Fouchier RAM, Herfst S. Continued adaptation of A/H2N2 viruses during pandemic circulation in humans. J Gen Virol 2023; 104:001881. [PMID: 37650875 PMCID: PMC10721047 DOI: 10.1099/jgv.0.001881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023] Open
Abstract
Influenza A viruses of the H2N2 subtype sparked a pandemic in 1957 and circulated in humans until 1968. Because A/H2N2 viruses still circulate in wild birds worldwide and human population immunity is low, the transmissibility of six avian A/H2N2 viruses was investigated in the ferret model. None of the avian A/H2N2 viruses was transmitted between ferrets, suggesting that their pandemic risk may be low. The transmissibility, receptor binding preference and haemagglutinin (HA) stability of human A/H2N2 viruses were also investigated. Human A/H2N2 viruses from 1957 and 1958 bound to human-type α2,6-linked sialic acid receptors, but the 1958 virus had a more stable HA, indicating adaptation to replication and spread in the new host. This increased stability was caused by a previously unknown stability substitution G205S in the 1958 H2N2 HA, which became fixed in A/H2N2 viruses after 1958. Although individual substitutions were identified that affected the HA receptor binding and stability properties, they were not found to have a substantial effect on transmissibility of A/H2N2 viruses via the air in the ferret model. Our data demonstrate that A/H2N2 viruses continued to adapt during the first year of pandemic circulation in humans, similar to what was previously shown for the A/H1N1pdm09 virus.
Collapse
Affiliation(s)
- Jasmin S. Kutter
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Martin Linster
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
- Present address: Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Dennis de Meulder
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Miruna E. Rosu
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
24
|
Guo Y, Sun T, Bai X, Liang B, Deng L, Zheng Y, Yu M, Li Y, Ping J. Comprehensive analysis of the key amino acid substitutions in the polymerase and NP of avian influenza virus that enhance polymerase activity and affect adaptation to mammalian hosts. Vet Microbiol 2023; 282:109760. [PMID: 37120967 DOI: 10.1016/j.vetmic.2023.109760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023]
Abstract
Accumulation of adaptive mutations in the polymerase and NP genes is crucial for the adaptation of avian influenza A viruses (IAV) to a new host. Here, we identified residues in the polymerase and NP proteins for which the percentages were substantially different between avian and human influenza viruses, to screen for key mammalian adaptive markers. The top 10 human virus-like residues in each gene segment were then selected for analysis of polymerase activity. Our research revealed that the PA-M311I and PA-A343S mutations increased the polymerase activity among the 40 individual mutations that augmented viral transcription and genomic replication, leading to increased virus yields, pro-inflammatory cytokine/chemokine levels and pathogenicity in mice. We also investigated the accumulative mutations in multiple polymerase genes and discovered that a combination of PB2-E120D/V227I, PB1-K52R/L212V/R486K/V709I, PA-R204K/M311I, and NP-E18D/R65K (hereafter referred to as the ten-sites joint mutations) has been identified to generate the highest polymerase activity, which can to some extent make up for the highest polymerase activity caused by the PB2-627 K mutation. When the ten-sites joint mutations co-occur with 627 K, the polymerase activity was further enhanced, potentially resulting in a virus with an improved phenotype that can infect a broader range of hosts, including mammals. This could lead to a greater public health concern than the current epidemic, highlighting that continuous surveillance of the variations of these sites is utmost important.
Collapse
Affiliation(s)
- Yanna Guo
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongtong Sun
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuebing Bai
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Liang
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lulu Deng
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqing Zheng
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengqi Yu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinjing Li
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
25
|
Tosheva II, Saygan KS, Mijnhardt SM, Russell CJ, Fraaij PLA, Herfst S. Hemagglutinin stability as a key determinant of influenza A virus transmission via air. Curr Opin Virol 2023; 61:101335. [PMID: 37307646 DOI: 10.1016/j.coviro.2023.101335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/14/2023]
Abstract
To cause pandemics, zoonotic respiratory viruses need to adapt to replication in and spread between humans, either via (indirect or direct) contact or through the air via droplets and aerosols. To render influenza A viruses transmissible via air, three phenotypic viral properties must change, of which receptor-binding specificity and polymerase activity have been well studied. However, the third adaptive property, hemagglutinin (HA) acid stability, is less understood. Recent studies show that there may be a correlation between HA acid stability and virus survival in the air, suggesting that a premature conformational change of HA, triggered by low pH in the airways or droplets, may render viruses noninfectious before they can reach a new host. We here summarize available data from (animal) studies on the impact of HA acid stability on airborne transmission and hypothesize that the transmissibility of other respiratory viruses may also be impacted by an acidic environment in the airways.
Collapse
Affiliation(s)
- Ilona I Tosheva
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kain S Saygan
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
| | - Suzanne Ma Mijnhardt
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pieter LA Fraaij
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands; Department of Paediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands.
| |
Collapse
|
26
|
Liu Y, Zeng Q, Hu X, Xu Z, Pan C, Liu Q, Yu J, Wu S, Sun M, Liao M. Natural variant R246K in hemagglutinin increased zoonotic characteristics and renal inflammation in mice infected with H9N2 influenza virus. Vet Microbiol 2023; 279:109667. [PMID: 36804565 DOI: 10.1016/j.vetmic.2023.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
Considered a potential pandemic candidate, the widespread among poultry of H9N2 avian influenza viruses across Asia and North Africa pose an increasing threat to poultry and human health. The massive epidemic of H9N2 viruses has expanded the host range; however, the molecular basis and characteristic underlying the transmission to poultry and mammals remains unclear. Our previous study has proved that some natural mutations in the HA gene enhanced the binding ability of the H9N2 virus to α-2,6 SA receptors. Here, we systematically analyzed the impact of these natural mutations on zoonotic characteristics and the pathogenicity of H9N2 AIVs in poultry and mammals. Our study demonstrated that mutation R246K increased the replication in human lung epithelial cells in vitro. Mutation R246K increased the virus shedding of oropharyngeal swabs during early-stage infection in chickens. Moreover, mutation R246K displayed stronger pH stability and pathogenicity in mice. The strong renal tropism and inflammatory response may accelerate the pathogenicity. In summary, we found that natural variation R246K in HA of prevalent H9N2 in China promoted the transmissibility in chicken and accelerate the pathogenicity in mice, posing a great concern for zoonotic and pandemic emergence.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Qinghang Zeng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; College of Animal Science & Technology, Zhongkai University of Agricultural and Engineering, Guangzhou, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Xinyu Hu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; College of Animal Science & Technology, Zhongkai University of Agricultural and Engineering, Guangzhou, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Zhihong Xu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Chungen Pan
- Haid Research Institute, Guangdong HaidGroup Co., Ltd., Guangzhou, PR China
| | - Quan Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Jieshi Yu
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Siyu Wu
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Minhua Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China.
| |
Collapse
|
27
|
Hu M, Kackos C, Banoth B, Ojha CR, Jones JC, Lei S, Li L, Kercher L, Webby RJ, Russell CJ. Hemagglutinin destabilization in H3N2 vaccine reference viruses skews antigenicity and prevents airborne transmission in ferrets. SCIENCE ADVANCES 2023; 9:eadf5182. [PMID: 36989367 PMCID: PMC10058244 DOI: 10.1126/sciadv.adf5182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/28/2023] [Indexed: 06/14/2023]
Abstract
During influenza virus entry, the hemagglutinin (HA) protein binds receptors and causes membrane fusion after endosomal acid activation. To improve vaccine efficiency and pandemic risk assessment for currently-dominant H3N2 influenza viruses, we investigated HA stability of 6 vaccine reference viruses and 42 circulating viruses. Recent vaccine reference viruses had destabilized HA proteins due to egg-adaptive mutation HA1-L194P. Virus growth in cell culture was independent of HA stability. In ferrets, the vaccine reference viruses and circulating viruses required a relatively stable HA (activation and inactivation pH < 5.5) for airborne transmissibility. The recent vaccine reference viruses with destabilized HA proteins had reduced infectivity, had no airborne transmissibility unless reversion to HA1-P194L occurred, and had skewed antigenicity away from the studied viruses and circulating H3N2 viruses. Other vaccine reference viruses with stabilized HAs retained infectivity, transmissibility, and antigenicity. Therefore, HA stabilization should be prioritized over destabilization in vaccine reference virus selection to reduce mismatches between vaccine and circulating viruses.
Collapse
Affiliation(s)
- Meng Hu
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Christina Kackos
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
- St. Jude Children’s Research Hospital Graduate School of Biomedical Sciences, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Balaji Banoth
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Chet Raj Ojha
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Jeremy C. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Shaohua Lei
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Lei Li
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Charles J. Russell
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
28
|
Bordes L, Vreman S, Heutink R, Roose M, Venema S, Pritz-Verschuren SBE, Rijks JM, Gonzales JL, Germeraad EA, Engelsma M, Beerens N. Highly Pathogenic Avian Influenza H5N1 Virus Infections in Wild Red Foxes (Vulpes vulpes) Show Neurotropism and Adaptive Virus Mutations. Microbiol Spectr 2023; 11:e0286722. [PMID: 36688676 PMCID: PMC9927208 DOI: 10.1128/spectrum.02867-22] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/23/2022] [Indexed: 01/24/2023] Open
Abstract
During the 2020 to 2022 epizootic of highly pathogenic avian influenza virus (HPAI), several infections of mammalian species were reported in Europe. In the Netherlands, HPAI H5N1 virus infections were detected in three wild red foxes (Vulpes vulpes) that were submitted with neurological symptoms between December of 2021 and February of 2022. A histopathological analysis demonstrated that the virus was mainly present in the brain, with limited or no detection in the respiratory tract or other organs. Limited or no virus shedding was observed in throat and rectal swabs. A phylogenetic analysis showed that the three fox viruses were not closely related, but they were related to HPAI H5N1 clade 2.3.4.4b viruses that are found in wild birds. This suggests that the virus was not transmitted between the foxes. A genetic analysis demonstrated the presence of the mammalian adaptation E627K in the polymerase basic two (PB2) protein of the two fox viruses. In both foxes, the avian (PB2-627E) and the mammalian (PB2-627K) variants were present as a mixture in the virus population, which suggests that the mutation emerged in these specific animals. The two variant viruses were isolated, and virus replication and passaging experiments were performed. These experiments showed that the mutation PB2-627K increases the replication of the virus in mammalian cell lines, compared to the chicken cell line, and at the lower temperatures of the mammalian upper respiratory tract. This study showed that the HPAI H5N1 virus is capable of adaptation to mammals; however, more adaptive mutations are required to allow for efficient transmission between mammals. Therefore, surveillance in mammals should be expanded to closely monitor the emergence of zoonotic mutations for pandemic preparedness. IMPORTANCE Highly pathogenic avian influenza (HPAI) viruses caused high mortality among wild birds from 2021 to 2022 in the Netherlands. Recently, three wild foxes were found to be infected with HPAI H5N1 viruses, likely due to the foxes feeding on infected birds. Although HPAI is a respiratory virus, in these foxes, the viruses were mostly detected in the brain. Two viruses isolated from the foxes contained a mutation that is associated with adaptation to mammals. We show that the mutant virus replicates better in mammalian cells than in avian cells and at the lower body temperature of mammals. More mutations are required before viruses can transmit between mammals or can be transmitted to humans. However, infections in mammalian species should be closely monitored to swiftly detect mutations that may increase the zoonotic potential of HPAI H5N1 viruses, as these may threaten public health.
Collapse
Affiliation(s)
- Luca Bordes
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Sandra Vreman
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Rene Heutink
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Marit Roose
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Sandra Venema
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | | | - Jolianne M. Rijks
- Dutch Wildlife Health Centre, Utrecht University, Utrecht, the Netherlands
| | | | | | - Marc Engelsma
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Nancy Beerens
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| |
Collapse
|
29
|
Scheibner D, Salaheldin AH, Bagato O, Zaeck LM, Mostafa A, Blohm U, Müller C, Eweas AF, Franzke K, Karger A, Schäfer A, Gischke M, Hoffmann D, Lerolle S, Li X, Abd El-Hamid HS, Veits J, Breithaupt A, Boons GJ, Matrosovich M, Finke S, Pleschka S, Mettenleiter TC, de Vries RP, Abdelwhab EM. Phenotypic effects of mutations observed in the neuraminidase of human origin H5N1 influenza A viruses. PLoS Pathog 2023; 19:e1011135. [PMID: 36745654 PMCID: PMC9934401 DOI: 10.1371/journal.ppat.1011135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/16/2023] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Global spread and regional endemicity of H5Nx Goose/Guangdong avian influenza viruses (AIV) pose a continuous threat for poultry production and zoonotic, potentially pre-pandemic, transmission to humans. Little is known about the role of mutations in the viral neuraminidase (NA) that accompanied bird-to-human transmission to support AIV infection of mammals. Here, after detailed analysis of the NA sequence of human H5N1 viruses, we studied the role of A46D, L204M, S319F and S430G mutations in virus fitness in vitro and in vivo. Although H5N1 AIV carrying avian- or human-like NAs had similar replication efficiency in avian cells, human-like NA enhanced virus replication in human airway epithelia. The L204M substitution consistently reduced NA activity of H5N1 and nine other influenza viruses carrying NA of groups 1 and 2, indicating a universal effect. Compared to the avian ancestor, human-like H5N1 virus has less NA incorporated in the virion, reduced levels of viral NA RNA replication and NA expression. We also demonstrate increased accumulation of NA at the plasma membrane, reduced virus release and enhanced cell-to-cell spread. Furthermore, NA mutations increased virus binding to human-type receptors. While not affecting high virulence of H5N1 in chickens, the studied NA mutations modulated virulence and replication of H5N1 AIV in mice and to a lesser extent in ferrets. Together, mutations in the NA of human H5N1 viruses play different roles in infection of mammals without affecting virulence or transmission in chickens. These results are important to understand the genetic determinants for replication of AIV in mammals and should assist in the prediction of AIV with zoonotic potential.
Collapse
Affiliation(s)
- David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ahmed H. Salaheldin
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Alexandria University, El-Beheira, Egypt
| | - Ola Bagato
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Water Pollution Research Department, Dokki, Giza, Egypt
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Water Pollution Research Department, Dokki, Giza, Egypt
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Ahmed F. Eweas
- Department of Medicinal Chemistry, National Research Center, Dokki, Giza, Egypt; Department of Science, University of Technology and Applied Sciences-Rustaq, Rustaq, Sultanate of Oman
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Marcel Gischke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Solène Lerolle
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology and Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - Hatem S. Abd El-Hamid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Damanhur University, Al-Buheira, Egypt
| | - Jutta Veits
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Science, the Netherlands
| | | | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF) partner site Giessen-Marburg-Langen, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Science, the Netherlands
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- * E-mail:
| |
Collapse
|
30
|
Liu K, Guo Y, Zheng H, Ji Z, Cai M, Gao R, Zhang P, Liu X, Xu X, Wang X, Liu X. Enhanced pathogenicity and transmissibility of H9N2 avian influenza virus in mammals by hemagglutinin mutations combined with PB2-627K. Virol Sin 2023; 38:47-55. [PMID: 36103978 PMCID: PMC10006187 DOI: 10.1016/j.virs.2022.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022] Open
Abstract
H9N2 avian influenza viruses (AIVs) circulate globally in poultry and have become the dominant AIV subtype in China in recent years. Previously, we demonstrated that the H9N2 virus (A/chicken/Eastern China/SDKD1/2015) naturally harbors a mammalian-adaptive molecular factor (627K) in the PB2 protein and is weakly pathogenic in mice. Here, we focused on new markers for virulence in mammals. A mouse-adapted H9N2 virus was serially passaged in mice by infecting their lungs. As expected, infected mice showed clinical symptoms and died at passage six. A comparison between the wild-type and mouse-adapted virus sequences identified amino acid substitutions in the hemagglutinin (HA) protein. H9N2 viruses with the T187P + M227L double mutation exhibited an increased affinity to human-type (SAα2,6Gal) receptors and significantly enhanced viral attachment to mouse lung tissues, which contributed to enhancing viral replication and virulence in mice. Additionally, HA with the T187P + M227L mutation enabled H9N2 viral transmission in guinea pigs via direct contact. AIV pathogenicity in mice is a polygenic trait. Our results demonstrated that these HA mutations might be combined with PB2-627K to significantly increase H9N2 virulence in mice, and this enhanced virulence was achieved in other H9N2 AIVs by generating the same combination of mutations. In summary, our study identified novel key elements in the HA protein that are required for H9N2 pathogenicity in mice and provided valuable insights into pandemic preparedness against emerging H9N2 strains.
Collapse
Affiliation(s)
- Kaituo Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Yaqian Guo
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Huafen Zheng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhuxing Ji
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Miao Cai
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Pinghu Zhang
- Institute of Translational Medicine, Key Laboratory of Geriatric Disease Prevention and Control of Jiangsu Province, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Xiulong Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Xiaoquan Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China.
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China.
| |
Collapse
|
31
|
Vreman S, Kik M, Germeraad E, Heutink R, Harders F, Spierenburg M, Engelsma M, Rijks J, van den Brand J, Beerens N. Zoonotic Mutation of Highly Pathogenic Avian Influenza H5N1 Virus Identified in the Brain of Multiple Wild Carnivore Species. Pathogens 2023; 12:168. [PMID: 36839440 PMCID: PMC9961074 DOI: 10.3390/pathogens12020168] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Wild carnivore species infected with highly pathogenic avian influenza (HPAI) virus subtype H5N1 during the 2021-2022 outbreak in the Netherlands included red fox (Vulpes vulpes), polecat (Mustela putorius), otter (Lutra lutra), and badger (Meles meles). Most of the animals were submitted for testing because they showed neurological signs. In this study, the HPAI H5N1 virus was detected by PCR and/or immunohistochemistry in 11 animals and was primarily present in brain tissue, often associated with a (meningo) encephalitis in the cerebrum. In contrast, the virus was rarely detected in the respiratory tract and intestinal tract and associated lesions were minimal. Full genome sequencing followed by phylogenetic analysis demonstrated that these carnivore viruses were related to viruses detected in wild birds in the Netherlands. The carnivore viruses themselves were not closely related, and the infected carnivores did not cluster geographically, suggesting that they were infected separately. The mutation PB2-E627K was identified in most carnivore virus genomes, providing evidence for mammalian adaptation. This study showed that brain samples should be included in wild life surveillance programs for the reliable detection of the HPAI H5N1 virus in mammals. Surveillance of the wild carnivore population and notification to the Veterinary Authority are important from a one-heath perspective, and instrumental to pandemic preparedness.
Collapse
Affiliation(s)
- Sandra Vreman
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad 8221 RA, The Netherlands; (E.G.); (R.H.); (F.H.); (M.E.)
| | - Marja Kik
- Dutch Wildlife Health Centre, Utrecht University, Faculty of Veterinary Medicine, 3584 CL Utrecht, The Netherlands; (M.K.); (J.R.); (J.v.d.B.)
- Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Evelien Germeraad
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad 8221 RA, The Netherlands; (E.G.); (R.H.); (F.H.); (M.E.)
| | - Rene Heutink
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad 8221 RA, The Netherlands; (E.G.); (R.H.); (F.H.); (M.E.)
| | - Frank Harders
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad 8221 RA, The Netherlands; (E.G.); (R.H.); (F.H.); (M.E.)
| | - Marcel Spierenburg
- NVWA Incident- and Crisiscentre (NVIC), Netherlands Food and Consumer Product Safety Authority, 3511 GG Utrecht, The Netherlands;
| | - Marc Engelsma
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad 8221 RA, The Netherlands; (E.G.); (R.H.); (F.H.); (M.E.)
| | - Jolianne Rijks
- Dutch Wildlife Health Centre, Utrecht University, Faculty of Veterinary Medicine, 3584 CL Utrecht, The Netherlands; (M.K.); (J.R.); (J.v.d.B.)
| | - Judith van den Brand
- Dutch Wildlife Health Centre, Utrecht University, Faculty of Veterinary Medicine, 3584 CL Utrecht, The Netherlands; (M.K.); (J.R.); (J.v.d.B.)
- Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Nancy Beerens
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad 8221 RA, The Netherlands; (E.G.); (R.H.); (F.H.); (M.E.)
| |
Collapse
|
32
|
Braun KM, Haddock III LA, Crooks CM, Barry GL, Lalli J, Neumann G, Watanabe T, Imai M, Yamayoshi S, Ito M, Moncla LH, Koelle K, Kawaoka Y, Friedrich TC. Avian H7N9 influenza viruses are evolutionarily constrained by stochastic processes during replication and transmission in mammals. Virus Evol 2023; 9:vead004. [PMID: 36814938 PMCID: PMC9939568 DOI: 10.1093/ve/vead004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
H7N9 avian influenza viruses (AIVs) have caused over 1,500 documented human infections since emerging in 2013. Although wild-type H7N9 AIVs can be transmitted by respiratory droplets in ferrets, they have not yet caused widespread outbreaks in humans. Previous studies have revealed molecular determinants of H7N9 AIV host switching, but little is known about potential evolutionary constraints on this process. Here, we compare patterns of sequence evolution for H7N9 AIV and mammalian H1N1 viruses during replication and transmission in ferrets. We show that three main factors-purifying selection, stochasticity, and very narrow transmission bottlenecks-combine to severely constrain the ability of H7N9 AIV to effectively adapt to mammalian hosts in isolated, acute spillover events. We find rare evidence of natural selection favoring new, potentially mammal-adapting mutations within ferrets but no evidence of natural selection acting during transmission. We conclude that human-adapted H7N9 viruses are unlikely to emerge during typical spillover infections. Our findings are instead consistent with a model in which the emergence of a human-transmissible virus would be a rare and unpredictable, though highly consequential, 'jackpot' event. Strategies to control the total number of spillover infections will limit opportunities for the virus to win this evolutionary lottery.
Collapse
Affiliation(s)
| | | | - Chelsea M Crooks
- AIDS Vaccine Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, 585 Science Dr. Madison, WI 53711, USA
| | - Gabrielle L Barry
- AIDS Vaccine Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, 585 Science Dr. Madison, WI 53711, USA
| | - Joseph Lalli
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall Madison, WI 53706, US
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, 575 Science Dr. Madison, WI 53711, USA
| | - Tokiko Watanabe
- Division of Virology, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai Minato City, Tokyo 108-0071, Japan,Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka Suita City, Osaka 565-0871, Japan,Center for Infectious Disease Education and Research (CiDER), Osaka University, 2-8 Yamadaoka Suita City, Osaka 565-0871, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai Minato City, Tokyo 108-0071, Japan,The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, 1 Chome-21-1 Toyama Shinjuku City, Tokyo 162-8655, Japan
| | | | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai Minato City, Tokyo 108-0071, Japan
| | | | | | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, 575 Science Dr. Madison, WI 53711, USA,Division of Virology, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai Minato City, Tokyo 108-0071, Japan,The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, 1 Chome-21-1 Toyama Shinjuku City, Tokyo 162-8655, Japan
| | | |
Collapse
|
33
|
van de Ven K, Lanfermeijer J, van Dijken H, Muramatsu H, Vilas Boas de Melo C, Lenz S, Peters F, Beattie MB, Lin PJC, Ferreira JA, van den Brand J, van Baarle D, Pardi N, de Jonge J. A universal influenza mRNA vaccine candidate boosts T cell responses and reduces zoonotic influenza virus disease in ferrets. SCIENCE ADVANCES 2022; 8:eadc9937. [PMID: 36516261 PMCID: PMC9750153 DOI: 10.1126/sciadv.adc9937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Universal influenza vaccines should protect against continuously evolving and newly emerging influenza viruses. T cells may be an essential target of such vaccines, as they can clear infected cells through recognition of conserved influenza virus epitopes. We evaluated a novel T cell-inducing nucleoside-modified messenger RNA (mRNA) vaccine that encodes the conserved nucleoprotein, matrix protein 1, and polymerase basic protein 1 of an H1N1 influenza virus. To mimic the human situation, we applied the mRNA vaccine as a prime-boost regimen in naïve ferrets (mimicking young children) and as a booster in influenza-experienced ferrets (mimicking adults). The vaccine induced and boosted broadly reactive T cells in the circulation, bone marrow, and respiratory tract. Booster vaccination enhanced protection against heterosubtypic infection with a potential pandemic H7N9 influenza virus in influenza-experienced ferrets. Our findings show that mRNA vaccines encoding internal influenza virus proteins represent a promising strategy to induce broadly protective T cell immunity against influenza viruses.
Collapse
Affiliation(s)
- Koen van de Ven
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Josien Lanfermeijer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Harry van Dijken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline Vilas Boas de Melo
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Stefanie Lenz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Florence Peters
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | | | - José A. Ferreira
- Department of Statistics, Informatics and Modelling, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Judith van den Brand
- Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Debbie van Baarle
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Department of Medical Microbiology and Infection Prevention, Virology and Immunology Research Group, University Medical Center Groningen, Groningen, Netherlands
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jørgen de Jonge
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
34
|
Miao X, Feng M, Zhu O, Yang F, Yin Y, Yin Y, Chen S, Qin T, Peng D, Liu X. H5N8 Subtype avian influenza virus isolated from migratory birds emerging in Eastern China possessed a high pathogenicity in mammals. Transbound Emerg Dis 2022; 69:3325-3338. [PMID: 35989421 DOI: 10.1111/tbed.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 02/04/2023]
Abstract
Novel H5N8 highly pathogenic avian influenza viruses (HPAIVs) bearing the clade 2.3.4.4b HA gene have been widely spread through wild migratory birds since 2020. One H5N8 HPAIV (A/Wild bird/Cixi/Cixi02/2020; here after Cixi02) was isolated from migratory birds in Zhejiang Province, Eastern China in 25 November 2020. However, its pathogenicity in avian and mammal remains unknown. Hemagglutinin gene genetic analysis indicated that Cixi02 virus belonged to the branch II of H5 clade 2.3.4.4b originated from Iraq in May 2020. Cixi02 virus showed a binding affinity to both SA α-2, 3-galactose (Gal) and SA α-2, 6 Gal receptors, good pH stability, thermostability, and replication ability in both avian and mammal cells. The poultry pathogenicity indicated that Cixi02 virus was lethal to chickens. Moreover, the mammalian pathogenicity showed that the 50% mouse lethal dose (MLD50 ) is 2.14 lgEID50 /50 μl, indicating a high pathogenicity in mice. Meanwhile, Cixi02 virus was widely detected in multiple organs, including heart, liver, spleen, lung, kidney, turbinate, and brain after nasal infection. In addition, we found high level gene expressions of TNF-α, IL-12p70, CXCL10, and IFN-α in lungs, IL-8 and IL-1β in brains, and observed severe histopathological change in lungs and brains. Collectedly, this study provided new insights on the pathogenic and zoonotic features of an H5N8 subtype AIV isolated from migratory birds.
Collapse
Affiliation(s)
- Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Mingcan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Ouwen Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Fan Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Yinyan Yin
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, P.R. China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| |
Collapse
|
35
|
Strobel HM, Stuart EC, Meyer JR. A Trait-Based Approach to Predicting Viral Host-Range Evolvability. Annu Rev Virol 2022; 9:139-156. [PMID: 36173699 DOI: 10.1146/annurev-virology-091919-092003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting the evolution of virus host range has proven to be extremely difficult, in part because of the sheer diversity of viruses, each with unique biology and ecological interactions. We have not solved this problem, but to make the problem more tractable, we narrowed our focus to three traits intrinsic to all viruses that may play a role in host-range evolvability: mutation rate, recombination rate, and phenotypic heterogeneity. Although each trait should increase evolvability, they cannot do so unbounded because fitness trade-offs limit the ability of all three traits to maximize evolvability. By examining these constraints, we can begin to identify groups of viruses with suites of traits that make them especially concerning, as well as ecological and environmental conditions that might push evolution toward accelerating host-range expansion.
Collapse
Affiliation(s)
- Hannah M Strobel
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth C Stuart
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Justin R Meyer
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
36
|
Motahhar M, Keyvanfar H, Shoushtari A, Fallah Mehrabadi MH, Nikbakht Brujeni G. The arrival of highly pathogenic avian influenza viruses H5N8 in Iran through two windows, 2016. Virus Genes 2022; 58:527-539. [PMID: 36098944 DOI: 10.1007/s11262-022-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 virus has received considerable attention during the past 2 decades due to its zoonotic and mutative features. This Virus is of special importance due to to the possibility of causing infection in human populations. According to it's geographical location, Iran hosts a large number of aquatic migratory birds every year, and since these birds can be considered as the host of the H5 HPAI, the country is significantly at risk of this virus. the In this study, the molecular characteristics of hemagglutinin (HA) and neuraminidase (NA) genes of the H5N8 strain were identified in Malard county of Tehran province and Meighan wetland of Arak city, Markazi province were investigated. Based on the analysis of the amino acid sequence of the HA genes, the cleavage site of the gene includes the PLREKRRKR/GLF polybasic amino acid motif, which is a characteristic of highly pathogenic influenza viruses. The HA gene of two viruses had T156A, S123P, S133A mutations associated with the increased mammalian sialic acid-binding, and the NA gene of two viruses had H253Y mutations associated with the resistance to antiviral drugs. Phylogenetic analysis of the HA genes indicated the classification of these viruses in the 2.3.4.4 b subclade. Although the A/Goose/Iran/180/2016 virus was also an H5N8 2.3.4.4 b virus, its cluster was separated from the A/Chicken/Iran/162/2016 virus. This means that the entry of these viruses in to the country happened through more than one window. Furthermore, it seems that the introduction of these H5N8 HPAI strains in Iran probably occurred through the West Asia-East African flyway by wild migratory aquatic birds.
Collapse
Affiliation(s)
- Minoo Motahhar
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Keyvanfar
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Abdolhamid Shoushtari
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Mohammad Hossein Fallah Mehrabadi
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Gholamreza Nikbakht Brujeni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
37
|
Abstract
Past pandemic influenza viruses with sustained human-to-human transmissibility have emerged from animal influenza viruses. Employment of experimental models to assess the pandemic risk of emerging zoonotic influenza viruses provides critical information supporting public health efforts. Ferret transmission experiments have been utilized to predict the human-to-human transmission potential of novel influenza viruses. However, small sample sizes and a lack of standardized protocols can introduce interlaboratory variability, complicating interpretation of transmission experimental data. To assess the range of variation in ferret transmission experiments, a global exercise was conducted by 11 laboratories using two common stock H1N1 influenza viruses with different transmission characteristics in ferrets. Parameters known to affect transmission were standardized, including the inoculation route, dose, and volume, as well as a strict 1:1 donor/contact ratio for respiratory droplet transmission. Additional host and environmental parameters likely to affect influenza transmission kinetics were monitored and analyzed. The overall transmission outcomes for both viruses across 11 laboratories were concordant, suggesting the robustness of the ferret model for zoonotic influenza risk assessment. Among environmental parameters that varied across laboratories, donor-to-contact airflow directionality was associated with increased transmissibility. To attain high confidence in identifying viruses with moderate to high transmissibility or low transmissibility under a smaller number of participating laboratories, our analyses support the notion that as few as three but as many as five laboratories, respectively, would need to independently perform viral transmission experiments with concordant results. This exercise facilitates the development of a more homogenous protocol for ferret transmission experiments that are employed for the purposes of risk assessment.
Collapse
|
38
|
Peng C, Zhao P, Chu J, Zhu J, Li Q, Zhao H, Li Y, Xin L, Yang X, Xie S, Zhu C, Qi W, Xu G, Li J. Characterization of four novel H5N6 avian influenza viruses with the internal genes from H5N1 and H9N2 viruses and experimental challenge of chickens vaccinated with current commercially available H5 vaccines. Transbound Emerg Dis 2022; 69:1438-1448. [PMID: 33872465 DOI: 10.1111/tbed.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022]
Abstract
Since 2014, highly pathogenic avian influenza H5N6 viruses have been responsible for outbreaks in poultry. In this study, four H5N6 virus strains were isolated from faecal samples of sick white ducks and dead chickens in Shandong in 2019. These H5N6 viruses were triple-reassortant viruses that have not been previously characterized. Their HA genes were derived from the H5 viruses and were closely related to the vaccine strain Re-11. Their NA genes all fell into the N6-like lineage and the internal gene were derived from H5N1 and H9N2 viruses. They all showed high pathogenicity in mice and caused lethal infection with high rates of transmission in chickens. Moreover, the SPF chickens inoculated with the currently used H5 (Re-11 and Re-12 strains)/H7 (H7-Re-2 strain) trivalent inactivated vaccines in China were completely protected from these four H5N6 viruses. Our study indicated the necessity of continued surveillance for H5 influenza A viruses and the importance of timely update of vaccine strains in poultry industry.
Collapse
Affiliation(s)
- Chen Peng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pengwei Zhao
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Chu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junda Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiuchen Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haiyuan Zhao
- Jilin Guan Jie Biological Technology Co., LTD, Changchun, China
| | - Yujie Li
- Shandong Provincial Center for Animal Disease Control, Jinan, China
| | - Lingxiang Xin
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiaoyue Yang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Shijie Xie
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Changdong Zhu
- Jilin Guan Jie Biological Technology Co., LTD, Changchun, China
| | - Wenbao Qi
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guanlong Xu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Jinxiang Li
- Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Emerging of H5N6 Subtype Influenza Virus with 129-Glycosylation Site on Hemagglutinin in Poultry in China Acquires Immune Pressure Adaption. Microbiol Spectr 2022; 10:e0253721. [PMID: 35446114 PMCID: PMC9241720 DOI: 10.1128/spectrum.02537-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For an investigation into the effects of glycosylation site modification on hemagglutinin (HA) on the biological characteristics of the H5N6 subtype avian influenza virus (AIV), the HA sequences of H5N6 AIVs from Global Initiative on Sharing All Influenza Data (GISAID) and the isolates in China were analyzed for genetic evolution and glycosylation site patterns. Eight recombinant H5N6 AIVs with different glycosylation site patterns were constructed, and their biological characteristics were determined. The results showed that H5N6 AIVs containing a 129-glycosylation site on HA are becoming prevalent strains in China. Acquisition of the 129-glycosylation site on the HA of H5N6 AIVs increased thermostability, decreased pH stability, and attenuated pathogenicity and contact transmission in chickens. Most importantly, H5N6 AIVs escaped the neutralization activity of the Re-8-like serum antibody. Our findings reveal that H5N6 AIVs containing the 129-glycosylation site affect antigenicity and have become prevalent strains in China. IMPORTANCE H5N6 avian influenza viruses (AIVs) were first reported in 2013 and have spread throughout many countries. In China, compulsory vaccine inoculation has been adopted to control H5 subtype avian influenza. However, the effect of vaccination on the antigenic drift of H5N6 AIVs remains unknown. Here, we found that H5N6 AIVs with the 129-glycosylation site on hemagglutinin were the dominant strains in poultry in China. The neutralization assay of the serum antibody against the H5 subtype vaccine Re-8 showed a significantly lower neutralization activity against H5N6 AIVs with the 129-glycosylation site compared to that against H5N6 AIVs without the 129-glycosylation site, indicating that the 129-glycosylation site may be a crucial molecular marker for immune evasion.
Collapse
|
40
|
Yang JR, Kuo CY, Yu IL, Kung FY, Wu FT, Lin JS, Liu MT. Human infection with a reassortant swine-origin influenza A(H1N2)v virus in Taiwan, 2021. Virol J 2022; 19:63. [PMID: 35392932 PMCID: PMC8988477 DOI: 10.1186/s12985-022-01794-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Influenza A virus infections occur in different species, causing mild-to-severe symptoms that lead to a heavy disease burden. H1N1, H1N2 and H3N2 are major subtypes of swine influenza A viruses in pigs and occasionally infect humans. Methods A case infected by novel influenza virus was found through laboratory surveillance system for influenza viruses. Clinical specimens were tested by virus culture and/or real-time RT–PCR. The virus was identified and characterized by gene sequencing and phylogenetic analysis. Results In 2021, for the first time in Taiwan, an influenza A(H1N2)v virus was isolated from a 5-year old girl who was suffering from fever, runny nose and cough. The isolated virus was designated A/Taiwan/1/2021(H1N2)v. Full-genome sequencing and phylogenetic analyses revealed that A/Taiwan/1/2021(H1N2)v is a novel reassortant virus containing hemagglutinin (HA) and neuraminidase (NA) gene segments derived from swine influenza A(H1N2) viruses that may have been circulating in Taiwan for decades, and the other 6 internal genes (PB2, PB2, PA, NP, M and NS) are from human A(H1N1)pdm09 viruses. Conclusion Notably, the HA and NA genes of A/Taiwan/1/2021(H1N2)v separately belong to specific clades that are unique for Taiwanese swine and were proposed to be introduced from humans in different time periods. Bidirectional transmission between humans and swine contributes to influenza virus diversity and poses the next pandemic threat. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01794-2.
Collapse
Affiliation(s)
- Ji-Rong Yang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC
| | - Chuan-Yi Kuo
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC
| | - I-Ling Yu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC
| | - Fang-Yen Kung
- Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC
| | - Fang-Tzy Wu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC
| | - Jen-Shiou Lin
- Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC
| | - Ming-Tsan Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC.
| |
Collapse
|
41
|
Wang G, Zhao Y, Zhou Y, Jiang L, Liang L, Kong F, Yan Y, Wang X, Wang Y, Wen X, Zeng X, Tian G, Deng G, Shi J, Liu L, Chen H, Li C. PIAS1-mediated SUMOylation of influenza A virus PB2 restricts viral replication and virulence. PLoS Pathog 2022; 18:e1010446. [PMID: 35377920 PMCID: PMC9009768 DOI: 10.1371/journal.ppat.1010446] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/14/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
Host defense systems employ posttranslational modifications to protect against invading pathogens. Here, we found that protein inhibitor of activated STAT 1 (PIAS1) interacts with the nucleoprotein (NP), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) of influenza A virus (IAV). Lentiviral-mediated stable overexpression of PIAS1 dramatically suppressed the replication of IAV, whereas siRNA knockdown or CRISPR/Cas9 knockout of PIAS1 expression significantly increased virus growth. The expression of PIAS1 was significantly induced upon IAV infection in both cell culture and mice, and PIAS1 was involved in the overall increase in cellular SUMOylation induced by IAV infection. We found that PIAS1 inhibited the activity of the viral RNP complex, whereas the C351S or W372A mutant of PIAS1, which lacks the SUMO E3 ligase activity, lost the ability to suppress the activity of the viral RNP complex. Notably, the SUMO E3 ligase activity of PIAS1 catalyzed robust SUMOylation of PB2, but had no role in PB1 SUMOylation and a minimal role in NP SUMOylation. Moreover, PIAS1-mediated SUMOylation remarkably reduced the stability of IAV PB2. When tested in vivo, we found that the downregulation of Pias1 expression in mice enhanced the growth and virulence of IAV. Together, our findings define PIAS1 as a restriction factor for the replication and pathogenesis of IAV.
Collapse
Affiliation(s)
- Guangwen Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Yuhui Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Yuan Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Libin Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Fandi Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Ya Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Xuyuan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Yihan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Xia Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| |
Collapse
|
42
|
Swine H1N1 Influenza Virus Variants with Enhanced Polymerase Activity and HA Stability Promote Airborne Transmission in Ferrets. J Virol 2022; 96:e0010022. [DOI: 10.1128/jvi.00100-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diverse IAVs circulate in animals, yet few acquire the viral traits needed to start a human pandemic. A stabilized HA and mammalian-adapted polymerase have been shown to promote the adaptation of IAVs to humans and ferrets (the gold-standard model for IAV replication, pathogenicity, and transmissibility).
Collapse
|
43
|
Optimizing environmental safety and cell-killing potential of oncolytic Newcastle Disease virus with modifications of the V, F and HN genes. PLoS One 2022; 17:e0263707. [PMID: 35139115 PMCID: PMC8827430 DOI: 10.1371/journal.pone.0263707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Abstract
Newcastle Disease Virus (NDV) is an avian RNA virus, which was shown to be effective and safe for use in oncolytic viral therapy for several tumour malignancies. The presence of a multi basic cleavage site (MBCS) in the fusion protein improved its oncolytic efficacy in vitro and in vivo. However, NDV with a MBCS can be virulent in poultry. We aimed to develop an NDV with a MBCS but with reduced virulence for poultry while remaining effective in killing human tumour cells. To this end, the open reading frame of the V protein, an avian specific type I interferon antagonist, was disrupted by introducing multiple mutations. NDV with a mutated V gene was attenuated in avian cells and chicken and duck eggs. Although this virus still killed tumour cells, the efficacy was reduced compared to the virulent NDV. Introduction of various mutations in the fusion (F) and hemagglutinin-neuraminidase (HN) genes slightly improved this efficacy. Taken together, these data demonstrated that NDV with a MBCS but with abrogation of the V protein ORF and mutations in the F and HN genes can be safe for evaluation in oncolytic viral therapy.
Collapse
|
44
|
Hu J, Hu Z, Wei Y, Zhang M, Wang S, Tong Q, Sun H, Pu J, Liu J, Sun Y. Mutations in PB2 and HA are crucial for the increased virulence and transmissibility of H1N1 swine influenza virus in mammalian models. Vet Microbiol 2022; 265:109314. [PMID: 34963076 DOI: 10.1016/j.vetmic.2021.109314] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 01/08/2023]
Abstract
Genetic analyses indicated that the pandemic H1N1/2009 influenza virus originated from a swine influenza virus (SIV). However, SIVs bearing the same constellation of genetic features as H1N1/2009 have not been isolated. Understanding the adaptation of SIVs with such genotypes in a new host may provide clues regarding the emergence of pandemic strains such as H1N1/2009. In this study, an artificial SIV with the H1N1/2009 genotype (rH1N1) was sequentially passaged in mice through two independent series, yielding multiple mouse-adapted mutants with high genetic diversity and increased virulence. These experiments were meant to mimic genetic bottlenecks during adaptation of wild viruses with rH1N1 genotypes in a new host. Molecular substitutions in the mouse-adapted variants mainly occurred in genes encoding surface proteins (hemagglutinin [HA] and neuraminidase [NA]) and polymerase proteins (polymerase basic 2 [PB2], polymerase basic 1 [PB1], polymerase acid [PA] proteins and nucleoprotein [NP]). The PB2D309N and HAL425M substitutions were detected at high frequencies in both passage lines and enhanced the replication and pathogenicity of rH1N1 in mice. Moreover, these substitutions also enabled direct transmission of rH1N1 in other mammals such as guinea pigs. PB2D309N showed enhanced polymerase activity and HAL425M showed increased stability compared with the wild-type proteins. Our findings indicate that if SIVs with H1N1/2009 genotypes emerge in pigs, they could undergo rapid adaptive changes during infection of a new host, especially in the PB2 and HA genes. These changes may facilitate the emergence of pandemic strains such as H1N1/2009.
Collapse
Affiliation(s)
- Junyi Hu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhe Hu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yandi Wei
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Senlin Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qi Tong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
45
|
Abstract
The continuous emergence and reemergence of diverse subtypes of influenza A viruses, which are known as "HxNy" and are mediated through the reassortment of viral genomes, account for seasonal epidemics, occasional pandemics, and zoonotic outbreaks. We summarize and discuss the characteristics of historic human pandemic HxNy viruses and diverse subtypes of HxNy among wild birds, mammals, and live poultry markets. In addition, we summarize the key molecular features of emerging infectious HxNy influenza viruses from the perspectives of the receptor binding of Hx, the inhibitor-binding specificities and drug-resistance features of Ny, and the matching of the gene segments. Our work enhances our understanding of the potential threats of novel reassortant influenza viruses to public health and provides recommendations for effective prevention, control, and research of this pathogen.
Collapse
Affiliation(s)
- William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Weifeng Shi
- Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| |
Collapse
|
46
|
An SH, Son SE, Song JH, Hong SM, Lee CY, Lee NH, Jeong YJ, Choi JG, Lee YJ, Kang HM, Choi KS, Kwon HJ. Selection of an Optimal Recombinant Egyptian H9N2 Avian Influenza Vaccine Strain for Poultry with High Antigenicity and Safety. Vaccines (Basel) 2022; 10:vaccines10020162. [PMID: 35214621 PMCID: PMC8876024 DOI: 10.3390/vaccines10020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
For the development of an optimized Egyptian H9N2 vaccine candidate virus for poultry, various recombinant Egyptian H9N2 viruses generated by a PR8-based reverse genetics system were compared in terms of their productivity and biosafety since Egyptian H9N2 avian influenza viruses already possess mammalian pathogenicity-related mutations in the hemagglutinin (HA), neuraminidase (NA), and PB2 genes. The Egyptian HA and NA genes were more compatible with PR8 than with H9N2 AIV (01310) internal genes, and the 01310-derived recombinant H9N2 strains acquired the L226Q reverse mutation in HA after passages in eggs. Additionally, the introduction of a strong promoter at the 3′-ends of PB2 and PB1 genes induced an additional mutation of P221S. When recombinant Egyptian H9N2 viruses with intact or reverse mutated HA (L226Q and P221S) and NA (prototypic 2SBS) were compared, the virus with HA and NA mutations had high productivity in ECES but was lower in antigenicity when used as an inactivated vaccine due to its high binding affinity into non-specific inhibitors in eggs. Finally, we substituted the PB2 gene of PR8 with 01310 to remove the replication ability in mammalian hosts and successfully generated the best recombinant vaccine candidate in terms of immunogenicity, antigenicity, and biosafety.
Collapse
Affiliation(s)
- Se-Hee An
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea; (S.-H.A.); (S.-E.S.); (J.-H.S.); (S.-M.H.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 88026, Korea
| | - Seung-Eun Son
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea; (S.-H.A.); (S.-E.S.); (J.-H.S.); (S.-M.H.)
| | - Jin-Ha Song
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea; (S.-H.A.); (S.-E.S.); (J.-H.S.); (S.-M.H.)
| | - Seung-Min Hong
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea; (S.-H.A.); (S.-E.S.); (J.-H.S.); (S.-M.H.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 88026, Korea
| | - Chung-Young Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Nak-Hyung Lee
- KBNP, Inc., 235-9, Chusa-ro, Sinam-myeon, Yesan-gun 32417, Korea; (N.-H.L.); (Y.-J.J.)
| | - Young-Ju Jeong
- KBNP, Inc., 235-9, Chusa-ro, Sinam-myeon, Yesan-gun 32417, Korea; (N.-H.L.); (Y.-J.J.)
| | - Jun-Gu Choi
- Animal and Plant Quarantine Agency, Gimcheon-si 39960, Korea; (J.-G.C.); (Y.-J.L.); (H.-M.K.)
| | - Youn-Jeong Lee
- Animal and Plant Quarantine Agency, Gimcheon-si 39960, Korea; (J.-G.C.); (Y.-J.L.); (H.-M.K.)
| | - Hyun-Mi Kang
- Animal and Plant Quarantine Agency, Gimcheon-si 39960, Korea; (J.-G.C.); (Y.-J.L.); (H.-M.K.)
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea; (S.-H.A.); (S.-E.S.); (J.-H.S.); (S.-M.H.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 88026, Korea
- Correspondence: (K.-S.C.); (H.-J.K.); Tel.: +82-2-880-1266 (K.-S.C. & H.-J.K.); Fax: +82-2-885-6614 (H.-J.K.)
| | - Hyuk-Joon Kwon
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 88026, Korea
- Laboratory of Poultry Medicine, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea
- Farm Animal Clinical Training and Research Center (FACTRC), GBST, Seoul National University, Seoul 88026, Korea
- Correspondence: (K.-S.C.); (H.-J.K.); Tel.: +82-2-880-1266 (K.-S.C. & H.-J.K.); Fax: +82-2-885-6614 (H.-J.K.)
| |
Collapse
|
47
|
Kok A, Fouchier RAM, Richard M. Cross-Reactivity Conferred by Homologous and Heterologous Prime-Boost A/H5 Influenza Vaccination Strategies in Humans: A Literature Review. Vaccines (Basel) 2021; 9:vaccines9121465. [PMID: 34960210 PMCID: PMC8708856 DOI: 10.3390/vaccines9121465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Avian influenza viruses from the A/H5 A/goose/Guangdong/1/1996 (GsGd) lineage pose a continuing threat to animal and human health. Since their emergence in 1997, these viruses have spread across multiple continents and have become enzootic in poultry. Additionally, over 800 cases of human infection with A/H5 GsGd viruses have been reported to date, which raises concerns about the potential for a new influenza virus pandemic. The continuous circulation of A/H5 GsGd viruses for over 20 years has resulted in the genetic and antigenic diversification of their hemagglutinin (HA) surface glycoprotein, which poses a serious challenge to pandemic preparedness and vaccine design. In the present article, clinical studies on A/H5 influenza vaccination strategies were reviewed to evaluate the breadth of antibody responses induced upon homologous and heterologous prime-boost vaccination strategies. Clinical data on immunological endpoints were extracted from studies and compiled into a dataset, which was used for the visualization and analysis of the height and breadth of humoral immune responses. Several aspects leading to high immunogenicity and/or cross-reactivity were identified, although the analysis was limited by the heterogeneity in study design and vaccine type used in the included studies. Consequently, crucial questions remain to be addressed in future studies on A/H5 GsGd vaccination strategies.
Collapse
|
48
|
Waters K, Gao C, Ykema M, Han L, Voth L, Tao YJ, Wan XF. Triple reassortment increases compatibility among viral ribonucleoprotein genes of contemporary avian and human influenza A viruses. PLoS Pathog 2021; 17:e1009962. [PMID: 34618879 PMCID: PMC8525756 DOI: 10.1371/journal.ppat.1009962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/19/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Compatibility among the influenza A virus (IAV) ribonucleoprotein (RNP) genes affects viral replication efficiency and can limit the emergence of novel reassortants, including those with potential pandemic risks. In this study, we determined the polymerase activities of 2,451 RNP reassortants among three seasonal and eight enzootic IAVs by using a minigenome assay. Results showed that the 2009 H1N1 RNP are more compatible with the tested enzootic RNP than seasonal H3N2 RNP and that triple reassortment increased such compatibility. The RNP reassortants among 2009 H1N1, canine H3N8, and avian H4N6 IAVs had the highest polymerase activities. Residues in the RNA binding motifs and the contact regions among RNP proteins affected polymerase activities. Our data indicates that compatibility among seasonal and enzootic RNPs are selective, and enzoosis of multiple strains in the animal-human interface can facilitate emergence of an RNP with increased replication efficiency in mammals, including humans.
Collapse
Affiliation(s)
- Kaitlyn Waters
- Missouri University Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Cheng Gao
- Missouri University Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, United States of America
| | - Matthew Ykema
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Lei Han
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Lynden Voth
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Xiu-Feng Wan
- Missouri University Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
49
|
Yang G, Ojha CR, Russell CJ. Relationship between hemagglutinin stability and influenza virus persistence after exposure to low pH or supraphysiological heating. PLoS Pathog 2021; 17:e1009910. [PMID: 34478484 PMCID: PMC8445419 DOI: 10.1371/journal.ppat.1009910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/16/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
The hemagglutinin (HA) surface glycoprotein is triggered by endosomal low pH to cause membrane fusion during influenza A virus (IAV) entry yet must remain sufficiently stable to avoid premature activation during virion transit between cells and hosts. HA activation pH and/or virion inactivation pH values less than pH 5.6 are thought to be required for IAV airborne transmissibility and human pandemic potential. To enable higher-throughput screening of emerging IAV strains for "humanized" stability, we developed a luciferase reporter assay that measures the threshold pH at which IAVs are inactivated. The reporter assay yielded results similar to TCID50 assay yet required one-fourth the time and one-tenth the virus. For four A/TN/09 (H1N1) HA mutants and 73 IAVs of varying subtype, virion inactivation pH was compared to HA activation pH and the rate of inactivation during 55°C heating. HA stability values correlated highly with virion acid and thermal stability values for isogenic viruses containing HA point mutations. HA stability also correlated with virion acid stability for human isolates but did not correlate with thermal stability at 55°C, raising doubt in the use of supraphysiological heating assays. Some animal isolates had virion inactivation pH values lower than HA activation pH, suggesting factors beyond HA stability can modulate virion stability. The coupling of HA activation pH and virion inactivation pH, and at a value below 5.6, was associated with human adaptation. This suggests that both virologic properties should be considered in risk assessment algorithms for pandemic potential.
Collapse
Affiliation(s)
- Guohua Yang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Chet R Ojha
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America.,Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
50
|
Abstract
In early 2013, human infections caused by a novel H7N9 avian influenza virus (AIV) were first reported in China; these infections caused severe disease and death. The virus was initially low pathogenic to poultry, enabling it to spread widely in different provinces, especially in live poultry markets. Importantly, the H7N9 low pathogenic AIVs (LPAIVs) evolved into highly pathogenic AIVs (HPAIVs) in the beginning of 2017, causing a greater threat to human health and devastating losses to the poultry industry. Fortunately, nationwide vaccination of chickens with an H5/H7 bivalent inactivated avian influenza vaccine since September 2017 has successfully controlled H7N9 avian influenza infections in poultry and, importantly, has also prevented human infections. In this review, we summarize the biological properties of the H7N9 viruses, specifically their genetic evolution, adaptation, pathogenesis, receptor binding, transmission, drug resistance, and antigenic variation, as well as the prevention and control measures. The information obtained from investigating and managing the H7N9 viruses could improve our ability to understand other novel AIVs and formulate effective measures to control their threat to humans and animals.
Collapse
Affiliation(s)
- Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|