1
|
Cheng HY, Chu J, Limjunyawong N, Chen J, Ye Y, Chen KH, Koylass N, Sun S, Dong X, Qiu Z. The phagosome-mediated anti-bacterial immunity is governed by the proton-activated chloride channel in peritoneal macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640612. [PMID: 40060571 PMCID: PMC11888413 DOI: 10.1101/2025.02.27.640612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Phagosome degradation is an evolutionally conserved and highly effective innate immune response against pathogen infections. The success of this process relies on the ability of phagocytes to regulate the maturation of phagosomes. However, the underlying molecular mechanisms and its roles in shaping downstream immune activation remain poorly understood. Here, we identify the proton-activated chloride (PAC) channel as a key negative regulator of phagosome maturation. PAC deletion enhanced phagosomal acidification and protease activities, leading to augmented bacterial killing in large peritoneal macrophages (LPMs) upon peritoneal Escherichia coli infection in mice. Surprisingly, phagosome bacterial degradation also stimulated STING-IRF3-interferon responses and inflammasome activation in LPMs, both of which are enhanced upon PAC deletion. The increased inflammasome activation and pyroptosis induced an unexpected release of cleaved gasdermin D, which localized to the surface of bacteria in the peritoneum and further contributed to their killing. Finally, enhanced bacterial clearance by PAC-deficient LPMs reduced proinflammatory immune cell infiltration and overall peritoneal inflammation, resulting in improved survival in mice. Our study thus provides new insights into the molecular mechanism of phagosome maturation and the dynamics of host defense response following phagosome-mediated bacterial degradation in peritoneal macrophages. It also highlights the potential of targeting the PAC channel as a therapeutic strategy for treating bacterial infections.
Collapse
Affiliation(s)
- Henry Yi Cheng
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiachen Chu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathachit Limjunyawong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jianan Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kevin Hong Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas Koylass
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Hu M, Xu Y, Wang Y, Huang Z, Wang L, Zeng F, Qiu B, Liu Z, Yuan P, Wan Y, Ge S, Zhong D, Xiao S, Luo R, He J, Sun M, Zhuang X, Guo N, Cui C, Gao J, Zhou H, He X. Gut microbial-derived N-acetylmuramic acid alleviates colorectal cancer via the AKT1 pathway. Gut 2025:gutjnl-2024-332891. [PMID: 40015949 DOI: 10.1136/gutjnl-2024-332891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Gut microbial metabolites are recognised as critical effector molecules that influence the development of colorectal cancer (CRC). Peptidoglycan fragments (PGFs) produced by microbiota play a crucial role in maintaining intestinal homeostasis, but their role in CRC remains unclear. OBJECTIVE Here, we aimed to explore the potential contribution of PGFs in intestinal tumourigenesis. DESIGN The relative abundance of peptidoglycan synthase and hydrolase genes was assessed by metagenomic analysis. Specific PGFs in the faeces and serum of CRC patients were quantified using targeted mass spectrometry. The effects of PGF on intestinal tumourigenesis were systematically evaluated using various murine models of CRC and organoids derived from CRC patients. Downstream molecular targets were screened and evaluated using proteome microarray, transcriptome sequencing and rescue assays. RESULTS Metagenomic analysis across seven independent cohorts (n=1121) revealed a comprehensive reduction in peptidoglycan synthase gene relative abundance in CRC patients. Targeted mass spectrometry identified significant depletion of a specific PGF, N-acetylmuramic acid (NAM) in CRC patients, which decreased as tumours progressed (p<0.001). NAM significantly inhibits intestinal tumourigenesis in various models, including Apc Min/+, AOM/DSS-treated and MC38 tumour-bearing mice. Additionally, NAM inhibits the growth of patient-derived CRC organoids in a concentration-dependent manner. Mechanistically, NAM inhibits the activation of AKT1 by directly binding to it and blocking its phosphorylation, which is a partial mediator of NAM's anticancer effects. CONCLUSION The PGF NAM protects against intestinal tumourigenesis by targeting the AKT1 signalling pathway. NAM may serve as a novel potential preventive and therapeutic biomarker against CRC.
Collapse
Affiliation(s)
- Mengyao Hu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Xu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuqing Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenhe Huang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Fanan Zeng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bowen Qiu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zefeng Liu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peibo Yuan
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Wan
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuang Ge
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dian Zhong
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Siyu Xiao
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rongrong Luo
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaqi He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiling Sun
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoduan Zhuang
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nannan Guo
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Gao
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaolong He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Southern Medical University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Min K, Park A. Shape-Shifting Mechanisms: Integrative Multi-Omics Insights Into Candida albicans Morphogenesis. MYCOBIOLOGY 2025; 53:250-257. [PMID: 40098942 PMCID: PMC11912286 DOI: 10.1080/12298093.2025.2460304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 03/19/2025]
Abstract
The ability of Candida albicans to switch among yeast, hyphal, and pseudohyphal forms underlies its adaptability and pathogenicity. While cAMP-dependent signaling has long been considered central to hyphal growth, recent multi-omics studies show that cAMP-independent mechanisms also drive morphological changes. Basal PKA activity, cyclin-dependent kinases (e.g., Cdc28), and other regulators can promote shape-shifting even without classical cAMP pathways. In addition, N-acetylglucosamine (GlcNAc) acts as a potent signal that induces hyphal growth independently of its metabolic role, directly connecting environmental cues to morphological states. By integrating transcriptomic, proteomic, and phosphoproteomic data, this review exposes the intricate networks controlling C. albicans morphogenesis. A clearer understanding of these complex regulatory circuits lays the groundwork for future studies that employ advanced multi-omics analyses. Such approaches will help elucidate how these pathways converge, how they respond to changing environments, and how they might be harnessed or disrupted to influence fungal behavior.
Collapse
Affiliation(s)
- Kyunghun Min
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Aerin Park
- Department of Wellness Bio Industry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
4
|
Kuriakose BB, Zwamel AH, Mutar AA, Uthirapathy S, Bishoyi AK, Naidu KS, Hjazi A, Nakash P, Arya R, Almalki SG. The critical role of NLRP3 in drug resistance of cancers: Focus on the molecular mechanisms and possible therapeutics. Semin Oncol 2025; 52:27-40. [PMID: 40037148 DOI: 10.1016/j.seminoncol.2025.152337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
Nod-like receptor protein 3 (NLRP3) is a member of the leucine-rich repeat-containing protein (NLR) canonical inflammasome family. It regulates the pathophysiology of cancer by facilitating immune responses and apoptotic proteins. Furthermore, it has been observed that chemotherapy activates NLRP3 in human malignancies. The secretion of IL-1β and IL-22 to promote cancer spread may be triggered by NLRP3 activation. Furthermore, earlier studies have exhibited that NLRP3 may cause medication resistance when used in cancer treatments given that cell viability may be regulated by NLRP3 depletion. Additionally, clinical studies have demonstrated correlation between NLRP3 expression, lymphogenesis, and cancer metastasis. Various NLRP3 agonists may cause the EMT process, stimulate IL-1β and Wnt/β-catenin signaling, and alter miRNA function in drug-resistant cells. This review seeks to clarify the possibility involvement of NLRP3-related pathways in the control of cancer cells' resistance to widely used treatment approaches, such as chemotherapy. In the end, an improved perception of the corresponding mechanisms behind NLRP3's tumor-supporting activities will help NLRP3-based treatments advance in the future.
Collapse
Affiliation(s)
- Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King khalid University, Khamis Mushayt, Kingdom of Saudi Arabia
| | - Ahmed Hussein Zwamel
- Department of medical analysis, Medical laboratory technique college, the Islamic University, Najaf, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | - Ayad Abdulrazzaq Mutar
- Medical Laboratory Techniques department, College of Health and medical technology, Al-maarif University, Anbar, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Princse Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Prashant Nakash
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
5
|
Yang T, Lu Z, Song H, Chen Y, Jiang M, Zhan K, Zhao G. Knockout of hexokinase 2 regulates mitochondrial dysfunction and activates the NLRP3 signal pathway in the rumen epithelial cells of dairy cows. Int J Biol Macromol 2025; 289:138831. [PMID: 39701238 DOI: 10.1016/j.ijbiomac.2024.138831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Hexokinase 2 (HK2) plays a vital role in mitochondrial homeostasis; however, the molecular mechanisms underlying its involvement in high-concentrate diet-induced damage in the ruminal epithelium of dairy cows are poorly understood. This study aimed to explore the regulatory role of HK2 in mitochondrial function and responses to inflammation in the rumen of dairy cows fed a high-concentrate diet. Our results showed that, compared with a low-concentrate (LC) diet, feeding a high-concentrate (HC) diet increased oxidative stress and reduced relative antioxidant gene expression levels and enzyme activities in the ruminal epithelium. Furthermore, the expression of genes related to mitochondrial biosynthesis and structure decreased in the HC group, concomitant with nuclear oligomerization domain (NOD)-like receptor 3 (NLRP3) signaling pathway activation, which compromised normal rumen epithelium function. Meanwhile, transcription results showed the same trend in HK2-knockout bovine rumen epithelial cells (HK2KO BRECs) related to wild-type (WT) BRECs. Notably, the knockout of HK2 aggravated mitochondrial dysfunction, resulting in the impairment of mitochondrial morphology and quality, a reduction in mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (MPTP) opening, increased reactive oxygen species (ROS) generation, and decreased expression of antioxidant genes. These changes led to upregulating genes and proteins in the NLRP3 pathway and activating proinflammatory response. In addition, metabolomic results showed that knockout HK2 altered the glycerophospholipid metabolic pathway. This study provides new strategies for mitigating high-concentrate diet-induced injury in the ruminal epithelium of dairy cows.
Collapse
Affiliation(s)
- Tianyu Yang
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou, China; Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhiqi Lu
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Ningxia Dairy Science and Innovation Center of Bright Farming Company Limited, Zhongwei, China
| | - Han Song
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuhang Chen
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Maocheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
6
|
Wan X, Zhang Y, Zhang K, Mou Y, Jin X, Huang X. The alterations of ocular surface metabolism and the related immunity inflammation in dry eye. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2025; 5:1-12. [PMID: 39758836 PMCID: PMC11699629 DOI: 10.1016/j.aopr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 01/07/2025]
Abstract
Background Dry eye disease (DED) stands as a prominent ocular condition of global prevalence, emerging as a growing concern within public health. However, the underlying mechanisms involved in its pathogenesis remain largely unknown. In recent years, with the development of metabolomics, numerous studies have reported alterations in ocular surface metabolism in DED and offered fresh perspectives on the development of DED. Main text The metabolic changes of the ocular surface of DED patients are closely intertwined with the cellular metabolism process and immune inflammation changes. This article expounds upon the correlation between ocular surface metabolism and immune inflammation alterations in DED in terms of glycolysis, lipid metabolism, amino acid metabolism, cellular signaling pathways, and immune inflammation regulation. Conclusions The alterations in ocular surface metabolism of patients with dry eye are closely associated with their inflammatory status. Our work contributes novel insights into the pathogenesis of dry eye diseases and offers innovative molecular targets for diagnosing, detecting, and managing DED patients.
Collapse
Affiliation(s)
- Xiaojie Wan
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yu Zhang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Kaiye Zhang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yujie Mou
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xiaodan Huang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| |
Collapse
|
7
|
Stoolman JS, Grant RA, Billingham LK, Poor TA, Weinberg SE, Harding MC, Lu Z, Miska J, Szibor M, Budinger GRS, Chandel NS. Mitochondria complex III-generated superoxide is essential for IL-10 secretion in macrophages. SCIENCE ADVANCES 2025; 11:eadu4369. [PMID: 39841842 PMCID: PMC11753406 DOI: 10.1126/sciadv.adu4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Mitochondrial electron transport chain (ETC) function modulates macrophage biology; however, mechanisms underlying mitochondria ETC control of macrophage immune responses are not fully understood. Here, we report that mutant mice with mitochondria ETC complex III (CIII)-deficient macrophages exhibit increased susceptibility to influenza A virus (IAV) and LPS-induced endotoxic shock. Cultured bone marrow-derived macrophages (BMDMs) isolated from these mitochondria CIII-deficient mice released less IL-10 than controls following TLR3 or TLR4 stimulation. Unexpectedly, restoring mitochondrial respiration without generating superoxide using alternative oxidase (AOX) was not sufficient to reverse LPS-induced endotoxic shock susceptibility or restore IL-10 release. However, activation of protein kinase A (PKA) rescued IL-10 release in mitochondria CIII-deficient BMDMs following LPS stimulation. In addition, mitochondria CIII deficiency did not affect BMDM responses to interleukin-4 (IL-4) stimulation. Thus, our results highlight the essential role of mitochondria CIII-generated superoxide in the release of anti-inflammatory IL-10 in response to TLR stimulation.
Collapse
Affiliation(s)
- Joshua S. Stoolman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rogan A. Grant
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leah K. Billingham
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Taylor A. Poor
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel E. Weinberg
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Madeline C. Harding
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyan Lu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marten Szibor
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, Am Klinikum 1, 07747 Jena, Germany
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Tampere, Finland
| | - GR Scott Budinger
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S. Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
8
|
Saller BS, Wöhrle S, Fischer L, Dufossez C, Ingerl IL, Kessler S, Mateo-Tortola M, Gorka O, Lange F, Cheng Y, Neuwirt E, Marada A, Koentges C, Urban C, Aktories P, Reuther P, Giese S, Kirschnek S, Mayer C, Pilic J, Falquez-Medina H, Oelgeklaus A, Deepagan VG, Shojaee F, Zimmermann JA, Weber D, Tai YH, Crois A, Ciminski K, Peyronnet R, Brandenburg KS, Wu G, Baumeister R, Heimbucher T, Rizzi M, Riedel D, Helmstädter M, Buescher J, Neumann K, Misgeld T, Kerschensteiner M, Walentek P, Kreutz C, Maurer U, Rambold AS, Vince JE, Edlich F, Malli R, Häcker G, Kierdorf K, Meisinger C, Köttgen A, Jakobs S, Weber ANR, Schwemmle M, Groß CJ, Groß O. Acute suppression of mitochondrial ATP production prevents apoptosis and provides an essential signal for NLRP3 inflammasome activation. Immunity 2025; 58:90-107.e11. [PMID: 39571574 DOI: 10.1016/j.immuni.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/15/2024] [Accepted: 10/24/2024] [Indexed: 01/18/2025]
Abstract
How mitochondria reconcile roles in functionally divergent cell death pathways of apoptosis and NLRP3 inflammasome-mediated pyroptosis remains elusive, as is their precise role in NLRP3 activation and the evolutionarily conserved physiological function of NLRP3. Here, we have shown that when cells were challenged simultaneously, apoptosis was inhibited and NLRP3 activation prevailed. Apoptosis inhibition by structurally diverse NLRP3 activators, including nigericin, imiquimod, extracellular ATP, particles, and viruses, was not a consequence of inflammasome activation but rather of their effects on mitochondria. NLRP3 activators turned out as oxidative phosphorylation (OXPHOS) inhibitors, which we found to disrupt mitochondrial cristae architecture, leading to trapping of cytochrome c. Although this effect was alone not sufficient for NLRP3 activation, OXPHOS inhibitors became triggers of NLRP3 when combined with resiquimod or Yoda-1, suggesting that NLRP3 activation requires two simultaneous cellular signals, one of mitochondrial origin. Therefore, OXPHOS and apoptosis inhibition by NLRP3 activators provide stringency in cell death decisions.
Collapse
Affiliation(s)
- Benedikt S Saller
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Svenja Wöhrle
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Larissa Fischer
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Clara Dufossez
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Isabella L Ingerl
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Kessler
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Maria Mateo-Tortola
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Felix Lange
- Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Clinic for Neurology, University Medical Center of Göttingen, Göttingen, Germany
| | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Emilia Neuwirt
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Koentges
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Chiara Urban
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Philipp Aktories
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Peter Reuther
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Sebastian Giese
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Kirschnek
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Carolin Mayer
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Johannes Pilic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Hugo Falquez-Medina
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Veterinary Physiological Chemical Institute, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Aline Oelgeklaus
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Veterinary Physiological Chemical Institute, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Veerasikku Gopal Deepagan
- The Walter and Eliza Hall Institute of Medical Research, The Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Farzaneh Shojaee
- The Walter and Eliza Hall Institute of Medical Research, The Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Julia A Zimmermann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Damian Weber
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Internal Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Yi-Heng Tai
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany; Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Anna Crois
- Faculty of Biology, University of Freiburg, Freiburg, Germany; Institute for Molecular Medicine and Cell Research, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kevin Ciminski
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Remi Peyronnet
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center Freiburg - Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Katharina S Brandenburg
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Gang Wu
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ralf Baumeister
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thomas Heimbucher
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology and Center for Chronic Immunodeficiency, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Riedel
- Laboratory for Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin Helmstädter
- EMcore, Internal Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Joerg Buescher
- Metabolomics and FACS Core Facilities, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Konstantin Neumann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Walentek
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Internal Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Clemens Kreutz
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ulrich Maurer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute for Molecular Medicine and Cell Research, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Angelika S Rambold
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, The Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Frank Edlich
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Veterinary Physiological Chemical Institute, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Chris Meisinger
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Genetic Epidemiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Stefan Jakobs
- Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Clinic for Neurology, University Medical Center of Göttingen, Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, Göttingen, Germany
| | - Alexander N R Weber
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany; Clusters of Excellence EXC-2180 (iFIT) and -2124 (CMFI), University of Tübingen, Tübingen, Germany
| | - Martin Schwemmle
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Christina J Groß
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Gao H, Sun M, Gao H, Sun Y, Chen W, Dong N. Genome-wide screen based on 2DG activated NLRP3 inflammasome reveals the priming signal of TLR2/4 to IKKβ but not IKKα. Int Immunopharmacol 2025; 145:113781. [PMID: 39657538 DOI: 10.1016/j.intimp.2024.113781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
NLRP3 inflammasome activation is a pivotal area of research in innate immunity, yet the precise priming and activation signal remain unclear. In this study, we demonstrate that glycolysis inhibitor 2-Deoxy-D-glucose (2DG) triggers NLRP3-driven pyroptosis in human leukemia monocyte THP-1 cells by interfering glycosylation rather than glycolysis, which occurs independent of potassium efflux but requires the involvement of glycolysis rate-limiting enzyme PFKP. Using a CRISPR-Cas9 mediated large-scale screen, with 2DG as a new tool for probing NLRP3 activation, we identified that TLR2, rather than TLR4, initiates a rapid and robust priming signal for NLRP3 inflammasome activation. Importantly, both TLR2 and TLR4 depend entirely on MyD88, but not TRIF, for signal transduction. Furthermore, we discovered that TAK1, IKKβ and NEMO, but not IKKα, are essential for the priming signal. Additionally, we observed that deficiency in the linear ubiquitin assembly complex (LUBAC) subunits HOIP and HOIL-1, but not SHARPIN, is sufficient to inhibit 2DG-induced pyroptotic cell death. Collectively, our study reveals some common mechanism in the NLRP3 priming signals, as well as specific mechanisms upstream of NLRP3 triggered by 2DG, and underscores the potential of 2DG as a trigger to facilitate further detailed analysis of the underlying mechanisms of NLRP3 inflammasome activation. One Sentence Summary: Priming signal by IKKβ is essential for NLRP3 activation.
Collapse
Affiliation(s)
- Hui Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Mengning Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Hang Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Yi Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Wenjuan Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Na Dong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| |
Collapse
|
10
|
Yao X, Yi Z, Xu M, Han Y. A Review on the Extraction, Structural Characterization, Function, and Applications of Peptidoglycan. Macromol Rapid Commun 2025:e2400654. [PMID: 39748598 DOI: 10.1002/marc.202400654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/07/2024] [Indexed: 01/04/2025]
Abstract
Peptidoglycan (PGN) is the primary component of bacterial cell walls, consisting of linear glycan chains formed by alternating linkages of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) through glycosidic bonds. It exhibits biological activity in various aspects, making it a biologically significant macromolecule with extensive industrial application. This review aims to explore the latest research advancements in the extraction techniques, structural characterization, functions, and applications of PGN. The review compares the advantages and limitations of traditional chemical lysis methods with modern mechanical-assisted and bio-assisted extraction techniques, discusses chemical composition analysis techniques and structural characterization methods of PGN. The review emphasizes the potential of PGN in immune modulation, specific recognition, and adsorption functions. Furthermore, the review examines potential applications of PGN in vaccine development, the livestock industry, the removal of harmful substances, and protein bioprocessing. In the end, based on the current development trend, future research directions for PGN are proposed, including in-depth studies on the mechanisms of PGN in different hosts and its immunomodulatory effects in various disease models. It is expected that a comprehensive reference framework for the research and application of PGN will be provided through this review, offering ideas and directions for further development and utilization.
Collapse
Affiliation(s)
- Xu Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Zhongkai Yi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Min Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| |
Collapse
|
11
|
Lu Y, Wang T, Yu B, Xia K, Guo J, Liu Y, Ma X, Zhang L, Zou J, Chen Z, Zhou J, Qiu T. Mechanism of action of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome and its regulation in liver injury. Chin Med J (Engl) 2024:00029330-990000000-01373. [PMID: 39719693 DOI: 10.1097/cm9.0000000000003309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 12/26/2024] Open
Abstract
ABSTRACT Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) is a cytosolic pattern recognition receptor that recognizes multiple pathogen-associated molecular patterns and damage-associated molecular patterns. It is a cytoplasmic immune factor that responds to cellular stress signals, and it is usually activated after infection or inflammation, forming an NLRP3 inflammasome to protect the body. Aberrant NLRP3 inflammasome activation is reportedly associated with some inflammatory diseases and metabolic diseases. Recently, there have been mounting indications that NLRP3 inflammasomes play an important role in liver injuries caused by a variety of diseases, specifically hepatic ischemia/reperfusion injury, hepatitis, and liver failure. Herein, we summarize new research pertaining to NLRP3 inflammasomes in hepatic injury, hepatitis, and liver failure. The review addresses the potential mechanisms of action of the NLRP3 inflammasome, and its regulation in these liver diseases.
Collapse
Affiliation(s)
- Yifan Lu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bo Yu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Kang Xia
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yiting Liu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiaoxiong Ma
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Long Zhang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jilin Zou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhongbao Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
12
|
Popescu NI, Kluza J, Reidy MA, Duggan E, Lambris JD, Thompson LF, Coggeshall KM. Monocyte uptake of polymeric peptidoglycan is bimodal and governed by complement C3 and C4 opsonins. JCI Insight 2024; 10:e186346. [PMID: 39656526 PMCID: PMC11790019 DOI: 10.1172/jci.insight.186346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/03/2024] [Indexed: 01/24/2025] Open
Abstract
Peptidoglycans (PGNs) are structural polymers of the bacterial cell wall and a common microbial molecular pattern encountered by the immune system daily. Low levels of PGNs are constitutively present in the systemic circulation in humans and rise during inflammatory pathologies. Since all known PGN sensors are intracellular, PGN internalization is a prerequisite for the initiation of cellular immune responses. Here, we report the mechanisms controlling the recognition and uptake of polymeric PGNs by circulating human mononuclear phagocytes. We found that complement C3 and C4 opsonins govern PGN recognition and internalization, but no single opsonin is indispensable because of multiple uptake redundancies. We observed a bimodal internalization of polymeric PGNs with distinct requirements for complement C4. At low PGN concentrations, C3 mediated PGN recognition by surface receptors while the efficient internalization of PGN polymers critically required C4. Supraphysiologic PGN concentrations triggered a secondary uptake modality that was insensitive to C4 and mediated instead by C3 engagement of complement receptors 1 and 3. To our knowledge, this is the first description of nonoverlapping C3 and C4 opsonophagocytoses working in parallel. Controlling these uptake mechanisms has the potential to modulate PGN clearance or the dysregulated immune responses during bacterial infections.
Collapse
Affiliation(s)
- Narcis I. Popescu
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jędrzej Kluza
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Megan A. Reidy
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Elizabeth Duggan
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Linda F. Thompson
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - K. Mark Coggeshall
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| |
Collapse
|
13
|
Yipeng Z, Chao C, Ranran L, Tingting P, Hongping Q. Metabolism: a potential regulator of neutrophil fate. Front Immunol 2024; 15:1500676. [PMID: 39697327 PMCID: PMC11652355 DOI: 10.3389/fimmu.2024.1500676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Neutrophils are essential components of the innate immune system that defend against the invading pathogens, such as bacteria, viruses, and fungi, as well as having regulatory roles in various conditions, including tissue repair, cancer immunity, and inflammation modulation. The function of neutrophils is strongly related to their mode of cell death, as different types of cell death involve various cellular and molecular alterations. Apoptosis, a non-inflammatory and programmed type of cell death, is the most common in neutrophils, while other modes of cell death, including NETOsis, necrosis, necroptosis, autophagy, pyroptosis, and ferroptosis, have specific roles in neutrophil function regulation. Immunometabolism refers to energy and substance metabolism in immune cells, and profoundly influences immune cell fate and immune system function. Intercellular and intracellular signal transduction modulate neutrophil metabolism, which can, in turn, alter their activities by influencing various cell signaling pathways. In this review, we compile an extensive body of evidence demonstrating the role of neutrophil metabolism in their various forms of cell death. The review highlights the intricate metabolic characteristics of neutrophils and their interplay with various types of cell death.
Collapse
Affiliation(s)
| | | | | | - Pan Tingting
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| | - Qu Hongping
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Luo L, Zhuang X, Fu L, Dong Z, Yi S, Wang K, Jiang Y, Zhao J, Yang X, Hei F. The role of the interplay between macrophage glycolytic reprogramming and NLRP3 inflammasome activation in acute lung injury/acute respiratory distress syndrome. Clin Transl Med 2024; 14:e70098. [PMID: 39623879 PMCID: PMC11612265 DOI: 10.1002/ctm2.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a severe respiratory condition associated with elevated morbidity and mortality. Understanding their complex pathophysiological mechanisms is crucial for developing new preventive and therapeutic strategies. Recent studies highlight the significant role of inflammation involved in ALI/ARDS, particularly the hyperactivation of the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome in macrophages. This activation drives pulmonary inflammation by releasing inflammatory signalling molecules and is linked to metabolic reprogramming, marked by increased glycolysis and reduced oxidative phosphorylation. However, the relationship between NLRP3 inflammasome activation and macrophage glycolytic reprogramming in ALI/ARDS, as well as the molecular mechanisms regulating these processes, remain elusive. This review provides a detailed description of the interactions and potential mechanisms linking NLRP3 inflammasome activation with macrophage glycolytic reprogramming, proposing that glycolytic reprogramming may represent a promising therapeutic target for mitigating inflammatory responses in ALI/ARDS. KEY POINTS: NLRP3 inflammasome activation is pivotal in mediating the excessive inflammatory response in ALI/ARDS. Glycolytic reprogramming regulates NLRP3 inflammasome activation. Therapeutic potential of targeting glycolytic reprogramming to inhibit NLRP3 inflammasome activation in ALI/ARDS.
Collapse
Affiliation(s)
- Lan Luo
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Xiaoli Zhuang
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Lin Fu
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Ziyuan Dong
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Shuyuan Yi
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Kan Wang
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yu Jiang
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Ju Zhao
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Xiaofang Yang
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Feilong Hei
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
15
|
Vizuete AFK, Fróes F, Seady M, Caurio AC, Ramires Junior OV, Leite AKO, Farias CP, Wyse AT, Gonçalves CA. Targeting glycolysis for neuroprotection in early LPS-induced neuroinflammation. Brain Behav Immun Health 2024; 42:100901. [PMID: 39583162 PMCID: PMC11582448 DOI: 10.1016/j.bbih.2024.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/21/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024] Open
Abstract
Neuroinflammation is a pathophysiological feature of numerous neurological and psychiatric disorders. The immune response in the central nervous system, driven by microglia and astrocytes, leads to metabolic reprogramming towards aerobic glycolysis, a phenomenon known as the Warburg effect. The control of metabolic reprogramming via immunomodulation may represent a potential therapeutic target for providing protection against neuroinflammation, which contributes to neuronal dysfunction and death in several neurological disorders. For this purpose, we investigated putative neuroprotective effects of the downregulation of aerobic glycolysis using the 3PO inhibitor, and the downregulation of neuroinflammation using MCC950, in the early LPS-induced neuroinflammation model. The LPS-induced shift towards glycolysis, inflammatory and glial changes (IL-1β, NF-κB, COX2, Iba1, GFAP) were reversed by 3PO, which improved animal behavior. Additionally, MCC950 (an NLRP3 inhibitor) downregulated TLR4/Akt/p38 MAPK/NF-κB/STAT3 signaling, expressions of COX2 and IL-1β, and the astrocyte reactivity (decreasing GFAP) induced by early neuroinflammation, resulting in low glucose uptake. Our data support the occurrence of the Warburg effect during early neuroinflammation and suggest potential new approaches for the treatment of brain injury, given the role of neuroinflammation in such events.
Collapse
Affiliation(s)
- Adriana Fernanda K. Vizuete
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Fróes
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Seady
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Aline Castro Caurio
- Post Graduate Program in Biochemistry, Unipampa (Universidade Federal do Pampa) Campus Uruguaiana, Uruguaina, Rio Grande do Sul, Brazil
| | - Osmar Vieira Ramires Junior
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Karla Oliveira Leite
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Translational Neuroscience (PGNET), National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Clarissa Penha Farias
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Translational Neuroscience (PGNET), National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Angela T.S. Wyse
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos-Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
16
|
Cordani M, Michetti F, Zarrabi A, Zarepour A, Rumio C, Strippoli R, Marcucci F. The role of glycolysis in tumorigenesis: From biological aspects to therapeutic opportunities. Neoplasia 2024; 58:101076. [PMID: 39476482 PMCID: PMC11555605 DOI: 10.1016/j.neo.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/11/2024]
Abstract
Glycolytic metabolism generates energy and intermediates for biomass production. Tumor-associated glycolysis is upregulated compared to normal tissues in response to tumor cell-autonomous or non-autonomous stimuli. The consequences of this upregulation are twofold. First, the metabolic effects of glycolysis become predominant over those mediated by oxidative metabolism. Second, overexpressed components of the glycolytic pathway (i.e. enzymes or metabolites) acquire new functions unrelated to their metabolic effects and which are referred to as "moonlighting" functions. These functions include induction of mutations and other tumor-initiating events, effects on cancer stem cells, induction of increased expression and/or activity of oncoproteins, epigenetic and transcriptional modifications, bypassing of senescence and induction of proliferation, promotion of DNA damage repair and prevention of DNA damage, antiapoptotic effects, inhibition of drug influx or increase of drug efflux. Upregulated metabolic functions and acquisition of new, non-metabolic functions lead to biological effects that support tumorigenesis: promotion of tumor initiation, stimulation of tumor cell proliferation and primary tumor growth, induction of epithelial-mesenchymal transition, autophagy and metastasis, immunosuppressive effects, induction of drug resistance and effects on tumor accessory cells. These effects have negative consequences on the prognosis of tumor patients. On these grounds, it does not come to surprise that tumor-associated glycolysis has become a target of interest in antitumor drug discovery. So far, however, clinical results with glycolysis inhibitors have fallen short of expectations. In this review we propose approaches that may allow to bypass some of the difficulties that have been encountered so far with the therapeutic use of glycolysis inhibitors.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - Federica Michetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy.
| |
Collapse
|
17
|
Caielli S, Balasubramanian P, Rodriguez-Alcazar J, Balaji U, Robinson L, Wan Z, Baisch J, Smitherman C, Walters L, Sparagana P, Nehar-Belaid D, Marches R, Nassi L, Stewart K, Fuller J, Banchereau JF, Gu J, Wright T, Pascual V. Type I IFN drives unconventional IL-1β secretion in lupus monocytes. Immunity 2024; 57:2497-2513.e12. [PMID: 39378884 PMCID: PMC11563874 DOI: 10.1016/j.immuni.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Opsonization of red blood cells that retain mitochondria (Mito+ RBCs), a feature of systemic lupus erythematosus (SLE), triggers type I interferon (IFN) production in macrophages. We report that monocytes (Mos) co-produce IFN and mature interleukin-1β (mIL-1β) upon Mito+ RBC opsonization. IFN expression depended on cyclic GMP-AMP synthase (cGAS) and RIG-I-like receptors' (RLRs) sensing of Mito+ RBC-derived mitochondrial DNA (mtDNA) and mtRNA, respectively. Interleukin-1β (IL-1β) production was initiated by the RLR antiviral signaling adaptor (MAVS) pathway recognition of Mito+ RBC-derived mtRNA. This led to the cytosolic release of Mo mtDNA, which activated the inflammasome. Importantly, mIL-1β secretion was independent of gasdermin D (GSDMD) and pyroptosis but relied on IFN-inducible myxovirus-resistant protein 1 (MxA), which facilitated the incorporation of mIL-1β into a trans-Golgi network (TGN)-mediated secretory pathway. RBC internalization identified a subset of blood Mo expressing IFN-stimulated genes (ISGs) that released mIL-1β and expanded in SLE patients with active disease.
Collapse
Affiliation(s)
- Simone Caielli
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| | - Preetha Balasubramanian
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Juan Rodriguez-Alcazar
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Uthra Balaji
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Lauren Robinson
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Division of Pediatric Rheumatology, Hospital for Special Surgery, New York, NY, USA
| | - Zurong Wan
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Jeanine Baisch
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Cynthia Smitherman
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Lorien Nassi
- Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Children's Medical Center, Dallas, TX, USA
| | - Katie Stewart
- Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Children's Medical Center, Dallas, TX, USA
| | - Julie Fuller
- Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Children's Medical Center, Dallas, TX, USA
| | | | - Jinghua Gu
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Tracey Wright
- Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Children's Medical Center, Dallas, TX, USA
| | - Virginia Pascual
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Chen F, Wang N, Liao J, Jin M, Qu F, Wang C, Lin M, Cui H, Wen W, Chen F. Esculetin rebalances M1/M2 macrophage polarization to treat sepsis-induced acute lung injury through regulating metabolic reprogramming. J Cell Mol Med 2024; 28:e70178. [PMID: 39535339 PMCID: PMC11558263 DOI: 10.1111/jcmm.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Sepsis-induced acute lung injury (SALI) is characterized by a high incidence and mortality rate, which has caused a serious medical burden. The pharmacological effects of esculetin (ELT), such as antibacterial and anti-inflammatory actions, have been widely confirmed. However, the therapeutic effects and mechanisms of ELT on SALI still need to be further clarified. In this study, we first evaluated the therapeutic potential of ELT on a caecal ligation and puncture (CLP) induced septic rat model, particularly in the treatment of acute lung injury. Afterwards, we explored the effect of ELT on macrophage polarization in vivo and in vitro. Then, we investigated the anti-inflammatory mechanism of ELT based on modulating the metabolic reprogramming of macrophage (the effect on glycolysis in M1, and the effect on fatty acid β-oxidation in M2). In addition, macrophage metabolic inhibitors (glycolysis inhibitor: 2-DG, and fatty acid β-oxidation inhibitor: etomoxir) were used to verify the regulatory effect of ELT on macrophage metabolic reprogramming. Our results proved that ELT intervention could effectively improve the survival rate of SALI rats and ameliorate pathological injury. Next, we found that ELT intervention inhibited M1 polarization and promoted M2 polarization of macrophages in vivo and in vitro, including the downregulation of M1-related markers (CD86, iNOS), the decrease of pro-inflammatory factors (nitric oxide, IL-1β, IL-6, and TNF-α), the upregulation of M2-related markers (CD206, ARG-1), the increase of immunomodulatory factors (IL-4 and IL-10). Subsequently, seahorse analysis showed that ELT intervention inhibited the glycolytic capacity in M1, and promoted the ability of fatty acid β-oxidation in M2. Besides, ELT intervention inhibited the level of glycolysis product (lactic acid), and the expression of glycolysis-related genes (Glut1, Hk2, Pfkfb1, Pkm and Ldha) and promoted the expression of fatty acid β-oxidation related genes (Cpt1a, Cpt2, Acox1). In addition, we found that the inhibitory effect of ELT on M1 polarization was comparable to that of 2-DG, while intervention with etomoxir abolished the promoting effect of ELT on M2 polarization. ELT inhibited the inflammatory response in SALI by correcting macrophage polarization (inhibiting M1 and promoting M2). The mechanism of ELT on macrophage polarization was associated with regulating metabolic reprogramming (inhibiting glycolysis in M1 and promoting fatty acid β-oxidation in M2).
Collapse
Affiliation(s)
- Feng Chen
- Department of Critical Care MedicineJiaxing Hospital of Traditional Chinese MedicineJiaxingZhejiangChina
| | - Ning Wang
- Yunnan University of Chinese MedicineKunmingYunnanChina
| | - Jiabao Liao
- Yunnan University of Chinese MedicineKunmingYunnanChina
| | - Mengxue Jin
- Kunming Municipal Hospital of Traditional Chinese MedicineKunmingYunnanChina
| | - Fei Qu
- Department of Critical Care MedicineJiaxing Hospital of Traditional Chinese MedicineJiaxingZhejiangChina
| | - Chengxin Wang
- Department of Critical Care MedicineJiaxing Hospital of Traditional Chinese MedicineJiaxingZhejiangChina
| | - Min Lin
- Department of Critical Care MedicineJiaxing Hospital of Traditional Chinese MedicineJiaxingZhejiangChina
| | - Huantian Cui
- Yunnan University of Chinese MedicineKunmingYunnanChina
| | - Weibo Wen
- Yunnan University of Chinese MedicineKunmingYunnanChina
| | - Fengjuan Chen
- Department of Critical Care MedicineJiaxing Hospital of Traditional Chinese MedicineJiaxingZhejiangChina
| |
Collapse
|
19
|
Zheng Y, Zhang X, Wang Z, Zhang R, Wei H, Yan X, Jiang X, Yang L. MCC950 as a promising candidate for blocking NLRP3 inflammasome activation: A review of preclinical research and future directions. Arch Pharm (Weinheim) 2024; 357:e2400459. [PMID: 39180246 DOI: 10.1002/ardp.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is a key component of the innate immune system that triggers inflammation and pyroptosis and contributes to the development of several diseases. Therefore, blocking the activation of the NLRP3 inflammasome has therapeutic potential for the treatment of these diseases. MCC950, a selective small molecule inhibitor, has emerged as a promising candidate for blocking NLRP3 inflammasome activation. Ongoing research is focused on elucidating the specific targets of MCC950 as well as assessfing its metabolism and safety profile. This review discusses the diseases that have been studied in relation to MCC950, with a focus on stroke, Alzheimer's disease, liver injury, atherosclerosis, diabetes mellitus, and sepsis, using bibliometric analysis. It then summarizes the potential pharmacological targets of MCC950 and discusses its toxicity. Furthermore, it traces the progression from preclinical to clinical research for the treatment of these diseases. Overall, this review provides a solid foundation for the clinical therapeutic potential of MCC950 and offers insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lin Yang
- School of Medicial Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, Jinghai, China
| |
Collapse
|
20
|
Wang H, Liu S, Sun Y, Chen C, Hu Z, Li Q, Long J, Yan Q, Liang J, Lin Y, Yang S, Lin M, Liu X, Wang H, Yu J, Yi F, Tan Y, Yang Y, Chen N, Ai Q. Target modulation of glycolytic pathways as a new strategy for the treatment of neuroinflammatory diseases. Ageing Res Rev 2024; 101:102472. [PMID: 39233146 DOI: 10.1016/j.arr.2024.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
Neuroinflammation is an innate and adaptive immune response initiated by the release of inflammatory mediators from various immune cells in response to harmful stimuli. While initially beneficial and protective, prolonged or excessive neuroinflammation has been identified in clinical and experimental studies as a key pathological driver of numerous neurological diseases and an accelerant of the aging process. Glycolysis, the metabolic process that converts glucose to pyruvate or lactate to produce adenosine 5'-triphosphate (ATP), is often dysregulated in many neuroinflammatory disorders and in the affected nerve cells. Enhancing glucose availability and uptake, as well as increasing glycolytic flux through pharmacological or genetic manipulation of glycolytic enzymes, has shown potential protective effects in several animal models of neuroinflammatory diseases. Modulating the glycolytic pathway to improve glucose metabolism and ATP production may help alleviate energy deficiencies associated with these conditions. In this review, we examine six neuroinflammatory diseases-stroke, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and depression-and provide evidence supporting the role of glycolysis in their treatment. We also explore the potential link between inflammation-induced aging and glycolysis. Additionally, we briefly discuss the critical role of glycolysis in three types of neuronal cells-neurons, microglia, and astrocytes-within physiological processes. This review highlights the significance of glycolysis in the pathology of neuroinflammatory diseases and its relevance to the aging process.
Collapse
Affiliation(s)
- Hanlong Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ziyi Hu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qinqin Li
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingbo Yu
- Technology Innovation Center/National Key Laboratory Breeding Base of Chinese Medicine Powders and Innovative Drugs, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
21
|
Hou N, Zhou H, Li J, Xiong X, Deng H, Xiong S. Macrophage polarization and metabolic reprogramming in abdominal aortic aneurysm. Immun Inflamm Dis 2024; 12:e1268. [PMID: 39530309 PMCID: PMC11555488 DOI: 10.1002/iid3.1268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a macrovascular disease with high morbidity and mortality in the elderly. The limitation of the current management is that most patients can only be followed up until the AAA diameter increases to a threshold, and surgical intervention is recommended. The development of preventive and curative drugs for AAA is urgently needed. Macrophage-mediated immune inflammation is one of the key pathological links in the occurrence and development of AAA. AIMS This review article aims to evaluate the impact of immunometabolism on macrophage biology and its role in AAA. METHODS We analyze publications focusing on the polarization and metabolic reprogramming in macrophages as well as their potential impact on AAA, and summarize the potential interventions that are currently available to regulate these processes. RESULTS The phenotypic and functional changes in macrophages are accompanied by significant alterations in metabolic pathways. The interaction between macrophage polarization and metabolic pathways significantly influences the progression of AAA. CONCLUSION Macrophage polarization is a manifestation of the gross dichotomy of macrophage function into pro-inflammatory killing and tissue repair, that is, classically activated M1 macrophages and alternatively activated M2 macrophages. Macrophage functions are closely linked to metabolic changes, and the emerging field of immunometabolism is providing unique insights into the role of macrophages in AAA. It is essential to further investigate the precise metabolic changes and their functional consequences in AAA-associated macrophages.
Collapse
Affiliation(s)
- Ningxin Hou
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongmin Zhou
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jun Li
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hongping Deng
- Department of Vascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Sizheng Xiong
- Department of Vascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
22
|
Kho K, Cheng T, Buddelmeijer N, Boneca IG. When the Host Encounters the Cell Wall and Vice Versa. Annu Rev Microbiol 2024; 78:233-253. [PMID: 39018459 DOI: 10.1146/annurev-micro-041522-094053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Peptidoglycan (PGN) and associated surface structures such as secondary polymers and capsules have a central role in the physiology of bacteria. The exoskeletal PGN heteropolymer is the major determinant of cell shape and allows bacteria to withstand cytoplasmic turgor pressure. Thus, its assembly, expansion, and remodeling during cell growth and division need to be highly regulated to avoid compromising cell survival. Similarly, regulation of the assembly impacts bacterial cell shape; distinct shapes enhance fitness in different ecological niches, such as the host. Because bacterial cell wall components, in particular PGN, are exposed to the environment and unique to bacteria, these have been coopted during evolution by eukaryotes to detect bacteria. Furthermore, the essential role of the cell wall in bacterial survival has made PGN an important signaling molecule in the dialog between host and microbes and a target of many host responses. Millions of years of coevolution have resulted in a pivotal role for PGN fragments in shaping host physiology and in establishing a long-lasting symbiosis between microbes and the host. Thus, perturbations of this dialog can lead to pathologies such as chronic inflammatory diseases. Similarly, pathogens have devised sophisticated strategies to manipulate the system to enhance their survival and growth.
Collapse
Affiliation(s)
- Kelvin Kho
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Thimoro Cheng
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Nienke Buddelmeijer
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Ivo G Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| |
Collapse
|
23
|
Weber-Stiehl S, Taubenheim J, Järke L, Röcken C, Schreiber S, Aden K, Kaleta C, Rosenstiel P, Sommer F. Hexokinase 2 expression in apical enterocytes correlates with inflammation severity in patients with inflammatory bowel disease. BMC Med 2024; 22:490. [PMID: 39444028 PMCID: PMC11515617 DOI: 10.1186/s12916-024-03710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Inflammation is characterized by a metabolic switch promoting glycolysis and lactate production. Hexokinases (HK) catalyze the first reaction of glycolysis and inhibition of epithelial HK2 protected from colitis in mice. HK2 expression has been described as elevated in patients with intestinal inflammation; however, there is conflicting data from few cohorts especially with severely inflamed individuals; thus, systematic studies linking disease activity with HK2 levels are needed. METHODS We examined the relationship between HK2 expression and inflammation severity using bulk transcriptome data derived from the mucosa of thoroughly phenotyped inflammatory bowel disease (IBD) patients of two independent cohorts including both subtypes Crohn's disease (CD) and ulcerative colitis (UC). Publicly available single-cell RNA sequencing data were analyzed, and immunofluorescence staining on colonic biopsies of unrelated patients with intestinal inflammation was performed to confirm the RNA-based findings on cellular and protein level. RESULTS HK2 expression gradually increased from mild to intermediate inflammation, yet strongly declined at high inflammation scores. Expression of epithelial marker genes also declined at high inflammation scores, whereas that of candidate immune marker genes increased, indicating a cellular remodeling of the mucosa during inflammation with an infiltration of HK2-negative immune cells and a loss of terminal differentiated epithelial cells in the apical epithelium-the main site of HK2 expression. Normalizing for the enterocyte loss clearly identified epithelial HK2 expression as gradually increasing with disease activity and remaining elevated at high inflammation scores. HK2 protein expression was mostly restricted to brush border enterocytes, and these cells along with HK2 levels vanished with increasing disease severity. CONCLUSIONS Our findings clearly define dysregulated epithelial HK2 expression as an indicator of disease activity in intestinal inflammation and suggest targeted HK2-inhibition as a potential therapeutic avenue.
Collapse
Affiliation(s)
- Saskia Weber-Stiehl
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
| | - Jan Taubenheim
- Institute of Experimental Medicine, University of Kiel & University Hospital Schleswig-Holstein, Michaelisstr. 5, Kiel, 24105, Germany
| | - Lea Järke
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3/House U33, Kiel, 24105, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Christoph Kaleta
- Institute of Experimental Medicine, University of Kiel & University Hospital Schleswig-Holstein, Michaelisstr. 5, Kiel, 24105, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany.
| |
Collapse
|
24
|
Arif T, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Decoding Cancer through Silencing the Mitochondrial Gatekeeper VDAC1. Biomolecules 2024; 14:1304. [PMID: 39456237 PMCID: PMC11506819 DOI: 10.3390/biom14101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Mitochondria serve as central hubs for regulating numerous cellular processes that include metabolism, apoptosis, cell cycle progression, proliferation, differentiation, epigenetics, immune signaling, and aging. The voltage-dependent anion channel 1 (VDAC1) functions as a crucial mitochondrial gatekeeper, controlling the flow of ions, such as Ca2+, nucleotides, and metabolites across the outer mitochondrial membrane, and is also integral to mitochondria-mediated apoptosis. VDAC1 functions in regulating ATP production, Ca2+ homeostasis, and apoptosis, which are essential for maintaining mitochondrial function and overall cellular health. Most cancer cells undergo metabolic reprogramming, often referred to as the "Warburg effect", supplying tumors with energy and precursors for the biosynthesis of nucleic acids, phospholipids, fatty acids, cholesterol, and porphyrins. Given its multifunctional nature and overexpression in many cancers, VDAC1 presents an attractive target for therapeutic intervention. Our research has demonstrated that silencing VDAC1 expression using specific siRNA in various tumor types leads to a metabolic rewiring of the malignant cancer phenotype. This results in a reversal of oncogenic properties that include reduced tumor growth, invasiveness, stemness, epithelial-mesenchymal transition. Additionally, VDAC1 depletion alters the tumor microenvironment by reducing angiogenesis and modifying the expression of extracellular matrix- and structure-related genes, such as collagens and glycoproteins. Furthermore, VDAC1 depletion affects several epigenetic-related enzymes and substrates, including the acetylation-related enzymes SIRT1, SIRT6, and HDAC2, which in turn modify the acetylation and methylation profiles of histone 3 and histone 4. These epigenetic changes can explain the altered expression levels of approximately 4000 genes that are associated with reversing cancer cells oncogenic properties. Given VDAC1's critical role in regulating metabolic and energy processes, targeting it offers a promising strategy for anti-cancer therapy. We also highlight the role of VDAC1 expression in various disease pathologies, including cardiovascular, neurodegenerative, and viral and bacterial infections, as explored through siRNA targeting VDAC1. Thus, this review underscores the potential of targeting VDAC1 as a strategy for addressing high-energy-demand cancers. By thoroughly understanding VDAC1's diverse roles in metabolism, energy regulation, mitochondrial functions, and other cellular processes, silencing VDAC1 emerges as a novel and strategic approach to combat cancer.
Collapse
Affiliation(s)
- Tasleem Arif
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
25
|
Amo-Aparicio J, Dinarello CA, Lopez-Vales R. Metabolic reprogramming of the inflammatory response in the nervous system: the crossover between inflammation and metabolism. Neural Regen Res 2024; 19:2189-2201. [PMID: 38488552 PMCID: PMC11034585 DOI: 10.4103/1673-5374.391330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 04/24/2024] Open
Abstract
Metabolism is a fundamental process by which biochemicals are broken down to produce energy (catabolism) or used to build macromolecules (anabolism). Metabolism has received renewed attention as a mechanism that generates molecules that modulate multiple cellular responses. This was first identified in cancer cells as the Warburg effect, but it is also present in immunocompetent cells. Studies have revealed a bidirectional influence of cellular metabolism and immune cell function, highlighting the significance of metabolic reprogramming in immune cell activation and effector functions. Metabolic processes such as glycolysis, oxidative phosphorylation, and fatty acid oxidation have been shown to undergo dynamic changes during immune cell response, facilitating the energetic and biosynthetic demands. This review aims to provide a better understanding of the metabolic reprogramming that occurs in different immune cells upon activation, with a special focus on central nervous system disorders. Understanding the metabolic changes of the immune response not only provides insights into the fundamental mechanisms that regulate immune cell function but also opens new approaches for therapeutic strategies aimed at manipulating the immune system.
Collapse
Affiliation(s)
| | | | - Ruben Lopez-Vales
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain
| |
Collapse
|
26
|
Sharma A, Vikramdeo KS, Sudan SK, Anand S, Deshmukh SK, Singh AP, Singh S. Cortisol affects macrophage polarization by inducing miR-143/145 cluster to reprogram glucose metabolism and by promoting TCA cycle anaplerosis. J Biol Chem 2024; 300:107753. [PMID: 39260692 PMCID: PMC11470657 DOI: 10.1016/j.jbc.2024.107753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Chronic stress can have adverse consequences on human health by disrupting the hormonal balance in our body. Earlier, we observed elevated levels of cortisol, a primary stress hormone, and some exosomal microRNAs in the serum of patients with breast cancer. Here, we investigated the role of cortisol in microRNA induction and its functional consequences. We found that cortisol induced the expression of miR-143/145 cluster in human monocyte (THP1 and U937)-derived macrophages but not in breast cancer cells. In silico analysis identified glucocorticoid-response element in the upstream CARMN promoter utilized by the miR-143/145 cluster. Enhanced binding of glucocorticoid-receptor (GR) upon cortisol exposure and its regulatory significance was confirmed by chromatin-immunoprecipitation and promoter-reporter assays. Further, cortisol inhibited IFNγ-induced M1 polarization and promoted M2 polarization, and these effects were suppressed by miR-143-3p and miR-145-5p inhibitors pretreatment. Cortisol-treated macrophages exhibited increased oxygen-consumption rate (OCR) to extracellular-acidification rate (ECAR) ratio, and this change was neutralized by functional inhibition of miR-143-3p and miR-145-5p. HK2 and ADPGK were confirmed as the direct targets of miR-143-3p and miR-145-5p, respectively. Interestingly, silencing of HK2 and ADPGK inhibited IFNγ-induced M1 polarization but failed to induce M2 polarization, since it suppressed both ECAR and OCR, while OCR was largely sustained in cortisol-treated M2-polarized macrophages. We found that cortisol treatment sustained OCR by enhancing fatty acid and glutamine metabolism through upregulation of CPT2 and GLS, respectively, to support M2 polarization. Thus, our findings unfold a novel mechanism of immune suppression by cortisol and open avenues for preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Amod Sharma
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Kunwar Somesh Vikramdeo
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sarabjeet Kour Sudan
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Shashi Anand
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sachin Kumar Deshmukh
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA; Department of Pathology, University of South Alabama, Mobile, Alabama, USA
| | - Ajay Pratap Singh
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Seema Singh
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| |
Collapse
|
27
|
Stanton C, Buasakdi C, Sun J, Levitan I, Bora P, Kutseikin S, Wiseman RL, Bollong MJ. The glycolytic metabolite methylglyoxal covalently inactivates the NLRP3 inflammasome. Cell Rep 2024; 43:114688. [PMID: 39196782 DOI: 10.1016/j.celrep.2024.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/11/2024] [Accepted: 08/12/2024] [Indexed: 08/30/2024] Open
Abstract
The NLRP3 inflammasome promotes inflammation in disease, yet the full repertoire of mechanisms regulating its activity is not well delineated. Among established regulatory mechanisms, covalent modification of NLRP3 has emerged as a common route for the pharmacological inactivation of this protein. Here, we show that inhibition of the glycolytic enzyme phosphoglycerate kinase 1 (PGK1) results in the accumulation of methylglyoxal, a reactive metabolite whose increased levels decrease NLRP3 assembly and inflammatory signaling in cells. We find that methylglyoxal inactivates NLRP3 via a non-enzymatic, covalent-crosslinking-based mechanism, promoting inter- and intraprotein MICA (methyl imidazole crosslink between cysteine and arginine) posttranslational linkages within NLRP3. This work establishes NLRP3 as capable of sensing a host of electrophilic chemicals, both exogenous small molecules and endogenous reactive metabolites, and suggests a mechanism by which glycolytic flux can moderate the activation status of a central inflammatory signaling pathway.
Collapse
Affiliation(s)
- Caroline Stanton
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chavin Buasakdi
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jie Sun
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian Levitan
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Prerona Bora
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sergei Kutseikin
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
28
|
Verlinden SF. The genetic advantage of healthy centenarians: unraveling the central role of NLRP3 in exceptional healthspan. FRONTIERS IN AGING 2024; 5:1452453. [PMID: 39301197 PMCID: PMC11410711 DOI: 10.3389/fragi.2024.1452453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Despite extensive research into extending human healthspan (HS) and compressing morbidity, the mechanisms underlying aging remain elusive. However, a better understanding of the genetic advantages responsible for the exceptional HS of healthy centenarians (HC), who live in good physical and mental health for one hundred or more years, could lead to innovative health-extending strategies. This review explores the role of NLRP3, a critical component of innate immunity that significantly impacts aging. It is activated by pathogen-associated signals and self-derived signals that increase with age, leading to low-grade inflammation implicated in age-related diseases. Furthermore, NLRP3 functions upstream in several molecular aging pathways, regulates cellular senescence, and may underlie the robust health observed in HC. By targeting NLRP3, mice exhibit a phenotype akin to that of HC, the HS of monkeys is extended, and aging symptoms are reversed in humans. Thus, targeting NLRP3 could offer a promising approach to extend HS. Additionally, a paradigm shift is proposed. Given that the HS of the broader population is 30 years shorter than that of HC, it is postulated that they suffer from a form of accelerated aging. The term 'auto-aging' is suggested to describe accelerated aging driven by NLRP3.
Collapse
|
29
|
Aublin-Gex A, Jacolin F, Diaz O, Jacquemin C, Marçais A, Walzer T, Lotteau V, Vidalain PO, Perrin-Cocon L. Tethering of hexokinase 2 to mitochondria promotes resistance of liver cancer cells to natural killer cell cytotoxicity. Eur J Immunol 2024; 54:e2350954. [PMID: 38837415 DOI: 10.1002/eji.202350954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Hexokinases (HKs) control the first step of glucose catabolism. A switch of expression from liver HK (glucokinase, GCK) to the tumor isoenzyme HK2 is observed in hepatocellular carcinoma progression. Our prior work revealed that HK isoenzyme switch in hepatocytes not only regulates hepatic metabolic functions but also modulates innate immunity and sensitivity to Natural Killer (NK) cell cytotoxicity. This study investigates the impact of HK2 expression and its mitochondrial binding on the resistance of human liver cancer cells to NK-cell-induced cytolysis. We have shown that HK2 expression induces resistance to NK cell cytotoxicity in a process requiring mitochondrial binding of HK2. Neither HK2 nor GCK expression affects target cells' ability to activate NK cells. In contrast, mitochondrial binding of HK2 reduces effector caspase 3/7 activity both at baseline and upon NK-cell activation. Furthermore, HK2 tethering to mitochondria enhances their resistance to cytochrome c release triggered by tBID. These findings indicate that HK2 mitochondrial binding in liver cancer cells is an intrinsic resistance factor to cytolysis and an escape mechanism from immune surveillance.
Collapse
Affiliation(s)
- Anne Aublin-Gex
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Florentine Jacolin
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Olivier Diaz
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Clémence Jacquemin
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, Team Lymphocyte activation and signaling, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, Team Lymphocyte activation and signaling, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
30
|
Ran M, Yang W, Faryad Khan MU, Li T, Pan G. Microsporidia secretory effectors and their roles in pathogenesis. J Eukaryot Microbiol 2024; 71:e13046. [PMID: 39228342 DOI: 10.1111/jeu.13046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 09/05/2024]
Abstract
Microsporidia, a group of unicellular eukaryotic parasites, rely intensely on secretory effectors for successful invasion and proliferation within host cells. This review focuses on the identification, characterization, and functional roles of effectors, including secretory proteins and microRNAs. The adhesion proteins like the Ricin-B-lectin facilitate initial invasion, which binds to the host cell surface. Once inside, microsporidia deploy a range of effectors to modulate host immune responses, such as serpin proteins, and redirect host cell metabolism to meet the parasite's nutritional needs through hexokinase. Some effectors such as microRNAs, alter the host gene expression to create a more favorable intracellular parasitic environment. In conclusion, the secretory effectors of microsporidia play a pivotal role spanning from host cell invasion to intracellular establishment. In the future, more effectors secreted by microsporidia will be studied, which will not only help to elucidate the molecular mechanism of pathogenic manipulation of the host but also help to provide the potential targets for anti-parasitic treatments.
Collapse
Affiliation(s)
- Maoshuang Ran
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Wenxin Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Muhammad Usman Faryad Khan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| |
Collapse
|
31
|
Gao Y, Yang L, Li Z, Peng X, Li H. mRNA vaccines in tumor targeted therapy: mechanism, clinical application, and development trends. Biomark Res 2024; 12:93. [PMID: 39217377 PMCID: PMC11366172 DOI: 10.1186/s40364-024-00644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Malignant tumors remain a primary cause of human mortality. Among the various treatment modalities for neoplasms, tumor vaccines have consistently shown efficacy and promising potential. These vaccines offer advantages such as specificity, safety, and tolerability, with mRNA vaccines representing promising platforms. By introducing exogenous mRNAs encoding antigens into somatic cells and subsequently synthesizing antigens through gene expression systems, mRNA vaccines can effectively induce immune responses. Katalin Karikó and Drew Weissman were awarded the 2023 Nobel Prize in Physiology or Medicine for their great contributions to mRNA vaccine research. Compared with traditional tumor vaccines, mRNA vaccines have several advantages, including rapid preparation, reduced contamination, nonintegrability, and high biodegradability. Tumor-targeted therapy is an innovative treatment modality that enables precise targeting of tumor cells, minimizes damage to normal tissues, is safe at high doses, and demonstrates great efficacy. Currently, targeted therapy has become an important treatment option for malignant tumors. The application of mRNA vaccines in tumor-targeted therapy is expanding, with numerous clinical trials underway. We systematically outline the targeted delivery mechanism of mRNA vaccines and the mechanism by which mRNA vaccines induce anti-tumor immune responses, describe the current research and clinical applications of mRNA vaccines in tumor-targeted therapy, and forecast the future development trends of mRNA vaccine application in tumor-targeted therapy.
Collapse
Affiliation(s)
- Yu Gao
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Zhenning Li
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, 110001, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
32
|
Leishman S, Aljadeed NM, Qian L, Cockcroft S, Behmoaras J, Anand PK. Fatty acid synthesis promotes inflammasome activation through NLRP3 palmitoylation. Cell Rep 2024; 43:114516. [PMID: 39024103 DOI: 10.1016/j.celrep.2024.114516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Despite its significance, the role of lipid metabolism in NLRP3 inflammasome remains elusive. Here, we reveal a critical role for fatty acid synthase (FASN) in NLRP3 inflammasome activation. We demonstrate that pharmacological or genetic depletion of FASN dampens NLRP3 activation in primary mouse and human macrophages and in mice. This disruption in NLRP3 activation is contingent upon FASN activity. Accordingly, abolishing cellular palmitoylation, a post-translational modification in which the FASN product palmitate is reversibly conjugated to cysteine residues of target proteins, blunts inflammasome signaling. Correspondingly, an acyl-biotin exchange assay corroborated NLRP3 palmitoylation. Mechanistically, Toll-like receptor (TLR) ligation introduces palmitoylation at NLRP3 Cys898, permitting NLRP3 translocation to dispersed trans-Golgi network (dTGN) vesicles, the site of inflammasome assembly, upon NLRP3 activation. Accordingly, the NLRP3 Cys898 mutant exhibits reduced palmitoylation, limited translocation to the dTGN compartment, and diminished inflammasome activation. These results underscore mechanistic insights through which lipid metabolism licenses NLRP3 inflammasome assembly and activation.
Collapse
Affiliation(s)
- Stuart Leishman
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Najd M Aljadeed
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Liyunhe Qian
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Jacques Behmoaras
- Programme in Cardiovascular and Metabolic Disorders and Centre for Computational Biology, Duke-NUS Medical School Singapore, Singapore
| | - Paras K Anand
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
33
|
Li Y, Zhou H, He X, Jin L, Zhu Y, Hu L, Feng M, Zhu J, Wang L, Zheng Y, Li S, Yan Z, Cen P, Hu J, Chen Z, Yu X, Fu X, Xu C, Cao S, Cao Y, Chen G, Wang L. Impaired microglial glycolysis promotes inflammatory responses after intracerebral haemorrhage via HK2-dependent mitochondrial dysfunction. J Adv Res 2024:S2090-1232(24)00359-X. [PMID: 39142439 DOI: 10.1016/j.jare.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/28/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024] Open
Abstract
INTRODUCTION Intracerebral haemorrhage (ICH) is a devastating disease that leads to severe neurological deficits. Microglia are the first line of defence in the brain and play a crucial role in neurological recovery after ICH, whose activities are primarily driven by glucose metabolism. However, little is known regarding the status of glucose metabolism in microglia and its interactions with inflammatory responses after ICH. OBJECTIVES This study investigated microglial glycolysis and its mechanistic effects on microglial inflammation after ICH. METHODS We explored the status of glucose metabolism in the ipsilateral region and in fluorescence-activated-cell-sorting-isolated (FACS-isolated) microglia via 2-deoxy-[18F]fluoro-D-glucose positron emission tomography (FDG-PET) analyses and gamma emission, respectively. Energy-related targeted metabolomics, along with 13C-glucose isotope tracing, was utilised to analyse glycolytic products in microglia. Mitochondrial membrane potential and mitochondrial reactive oxygen species (MitoROS) accumulation was assessed by flow cytometry. Behavioural, western blotting, gene regulation, and enzymatic activity analyses were conducted with a focus on microglia. RESULTS Neurological dysfunction was strongly correlated with decreased FDG-PET signals in the perihaematomal region, where microglial uptake of FDG was reduced. The decreased quantity of glucose-6-phosphate (G-6-P) in microglia was attributed to the downregulation of glucose transporter 1 (GLUT1) and hexokinase 2 (HK2). Enhanced inflammatory responses were driven by HK2 suppression via decreased mitochondrial membrane potential, which could be rescued by MitoROS scavengers. HK inhibitors aggravated neurological injury by suppressing FDG uptake and enhancing microglial inflammation in ICH mice. CONCLUSION These findings indicate an unexpected metabolic status in pro-inflammatory microglia after ICH, consisting of glycolysis impairment caused by the downregulation of GLUT1 and HK2. Additionally, HK2 suppression promotes inflammatory responses by disrupting mitochondrial function, providing insight into the mechanisms by which inflammation may be facilitated after ICH and indicating that metabolic enzymes as potential targets for ICH treatment.
Collapse
Affiliation(s)
- Yin Li
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hang Zhou
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuchao He
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingji Jin
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuhan Zhu
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Libin Hu
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Majing Feng
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Zhu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yonghe Zheng
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiwei Li
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiyuan Yan
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Peili Cen
- Department of Nuclear Medicine and PET-CT Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junwen Hu
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zihang Chen
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobo Yu
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| | - Gao Chen
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Lin Wang
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Khan S, Bano N, Ahamad S, John U, Dar NJ, Bhat SA. Excitotoxicity, Oxytosis/Ferroptosis, and Neurodegeneration: Emerging Insights into Mitochondrial Mechanisms. Aging Dis 2024:AD.2024.0125-1. [PMID: 39122453 DOI: 10.14336/ad.2024.0125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the development of age-related diseases, particularly neurodegenerative disorders. The etiology of mitochondrial dysfunction involves a multitude of factors that remain elusive. This review centers on elucidating the role(s) of excitotoxicity, oxytosis/ferroptosis and neurodegeneration within the context of mitochondrial bioenergetics, biogenesis, mitophagy and oxidative stress and explores their intricate interplay in the pathogenesis of neurodegenerative diseases. The effective coordination of mitochondrial turnover processes, notably mitophagy and biogenesis, is assumed to be critically important for cellular resilience and longevity. However, the age-associated decrease in mitophagy impedes the elimination of dysfunctional mitochondria, consequently impairing mitochondrial biogenesis. This deleterious cascade results in the accumulation of damaged mitochondria and deterioration of cellular functions. Both excitotoxicity and oxytosis/ferroptosis have been demonstrated to contribute significantly to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS). Excitotoxicity, characterized by excessive glutamate signaling, initiates a cascade of events involving calcium dysregulation, energy depletion, and oxidative stress and is intricately linked to mitochondrial dysfunction. Furthermore, emerging concepts surrounding oxytosis/ferroptosis underscore the importance of iron-dependent lipid peroxidation and mitochondrial engagement in the pathogenesis of neurodegeneration. This review not only discusses the individual contributions of excitotoxicity and ferroptosis but also emphasizes their convergence with mitochondrial dysfunction, a key driver of neurodegenerative diseases. Understanding the intricate crosstalk between excitotoxicity, oxytosis/ferroptosis, and mitochondrial dysfunction holds potential to pave the way for mitochondrion-targeted therapeutic strategies. Such strategies, with a focus on bioenergetics, biogenesis, mitophagy, and oxidative stress, emerge as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | | |
Collapse
|
35
|
Kawakami S, Johmura Y, Nakanishi M. Intracellular acidification and glycolysis modulate inflammatory pathway in senescent cells. J Biochem 2024; 176:97-108. [PMID: 38564227 PMCID: PMC11289320 DOI: 10.1093/jb/mvae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Senescent cells accumulate in various organs with ageing, and its accumulation induces chronic inflammation and age-related physiological dysfunctions. Several remodelling of intracellular environments have been identified in senescent cells, including enlargement of cell/nuclear size and intracellular acidification. Although these alterations of intracellular environments were reported to be involved in the unique characteristics of senescent cells, the contribution of intracellular acidification to senescence-associated cellular phenotypes is poorly understood. Here, we identified that the upregulation of TXNIP and its paralog ARRDC4 as a hallmark of intracellular acidification in addition to KGA-type GLS1. These genes were also upregulated in response to senescence-associated intracellular acidification. Neutralization of the intracellular acidic environment ameliorated not only senescence-related upregulation of TXNIP, ARRDC4 and KGA but also inflammation-related genes, possibly through suppression of PDK-dependent anaerobic glycolysis. Furthermore, we found that expression of the intracellular acidification-induced genes, TXNIP and ARRDC4, correlated with inflammatory gene expression in heterogeneous senescent cell population in vitro and even in vivo, implying that the contribution of intracellular pH to senescence-associated cellular features, such as SASP.
Collapse
Affiliation(s)
- Satoshi Kawakami
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
36
|
Codocedo JF, Mera-Reina C, Bor-Chian Lin P, Fallen PB, Puntambekar SS, Casali BT, Jury-Garfe N, Martinez P, Lasagna-Reeves CA, Landreth GE. Therapeutic targeting of immunometabolism reveals a critical reliance on hexokinase 2 dosage for microglial activation and Alzheimer's progression. Cell Rep 2024; 43:114488. [PMID: 39002124 PMCID: PMC11398604 DOI: 10.1016/j.celrep.2024.114488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
Neuroinflammation is a prominent feature of Alzheimer's disease (AD). Activated microglia undergo a reprogramming of cellular metabolism necessary to power their cellular activities during disease. Thus, selective targeting of microglial immunometabolism might be of therapeutic benefit for treating AD. In the AD brain, the levels of microglial hexokinase 2 (HK2), an enzyme that supports inflammatory responses by promoting glycolysis, are significantly increased. In addition, HK2 displays non-metabolic activities that extend its inflammatory role beyond glycolysis. The antagonism of HK2 affects microglial phenotypes and disease progression in a gene-dose-dependent manner. HK2 complete loss fails to improve pathology by exacerbating inflammation, while its haploinsufficiency reduces pathology in 5xFAD mice. We propose that the partial antagonism of HK2 is effective in slowing disease progression by modulating NF-κB signaling through its cytosolic target, IKBα. The complete loss of HK2 affects additional inflammatory mechanisms related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Juan F Codocedo
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Claudia Mera-Reina
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Peter Bor-Chian Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Paul B Fallen
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shweta S Puntambekar
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brad T Casali
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nur Jury-Garfe
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pablo Martinez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gary E Landreth
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
37
|
McManus RM, Latz E. NLRP3 inflammasome signalling in Alzheimer's disease. Neuropharmacology 2024; 252:109941. [PMID: 38565393 DOI: 10.1016/j.neuropharm.2024.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Every year, 10 million people develop dementia, the most common of which is Alzheimer's disease (AD). To date, there is no way to prevent cognitive decline and therapies are limited. This review provides a neuroimmunological perspective on the progression of AD, and discusses the immune-targeted therapies that are in preclinical and clinical trials that may impact the development of this disease. Specifically, we look to the role of the NLRP3 inflammasome, its triggers in the brain and how its activation can contribute to the progression of dementia. We summarise the range of inhibitors targeting the NLRP3 inflammasome and its downstream pathways that are under investigation, and discuss future therapeutic perspectives for this devastating condition.
Collapse
Affiliation(s)
- Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127, Bonn, Germany; Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany.
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, 01605, USA; Deutsches Rheuma-Forschungszentrum (DRFZ), Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
38
|
Vizuete AFK, Gonçalves CA. Is Methylglyoxal a Potential Biomarker for the Warburg Effect Induced by the Lipopolysaccharide Neuroinflammation Model? Neurochem Res 2024; 49:1823-1837. [PMID: 38727985 DOI: 10.1007/s11064-024-04142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024]
Abstract
Methylglyoxal (MG) is considered a classical biomarker of diabetes mellitus and its comorbidities. However, a role for this compound in exacerbated immune responses, such as septicemia, is being increasingly observed and requires clarification, particularly in the context of neuroinflammatory responses. Herein, we used two different approaches (in vivo and acute hippocampal slice models) to investigate MG as a biomarker of neuroinflammation and the neuroimmunometabolic shift to glycolysis in lipopolysaccharide (LPS) inflammation models. Our data reinforce the hypothesis that LPS-induced neuroinflammation stimulates the cerebral innate immune response by increasing IL-1β, a classical pro-inflammatory cytokine, and the astrocyte reactive response, via elevating S100B secretion and GFAP levels. Acute neuroinflammation promotes an early neuroimmunometabolic shift to glycolysis by elevating glucose uptake, lactate release, PFK1, and PK activities. We observed high serum and cerebral MG levels, in association with a reduction in glyoxalase 1 detoxification activity, and a close correlation between serum and hippocampus MG levels with the systemic and neuroinflammatory responses to LPS. Findings strongly suggest a role for MG in immune responses.
Collapse
Affiliation(s)
- Adriana Fernanda Kuckartz Vizuete
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Ramio Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
| | - Carlos-Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Ramio Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
39
|
Jangholi E, Tehran HA, Ghasemi A, Hoseinian M, Firoozi S, Ghodsi SM, Tamaddon M, Bereimipour A, Hadjighassem M. Evaluation of secretome biomarkers in glioblastoma cancer stem cells: A bioinformatics analysis. Cancer Rep (Hoboken) 2024; 7:e2080. [PMID: 38967113 PMCID: PMC11224916 DOI: 10.1002/cnr2.2080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a malignant brain tumor that frequently occurs alongside other central nervous system (CNS) conditions. The secretome of GBM cells contains a diverse array of proteins released into the extracellular space, influencing the tumor microenvironment. These proteins can serve as potential biomarkers for GBM due to their involvement in key biological processes, exploring the secretome biomarkers in GBM research represents a cutting-edge strategy with significant potential for advancing diagnostic precision, treatment monitoring, and ultimately improving outcomes for patients with this challenging brain cancer. AIM This study was aimed to investigate the roles of secretome biomarkers and their pathwayes in GBM through bioinformatics analysis. METHODS AND RESULTS Using data from the Gene Expression Omnibus and the Cancer Genome Atlas datasets-where both healthy and cancerous samples were analyzed-we used a quantitative analytical framework to identify differentially expressed genes (DEGs) and cell signaling pathways that might be related to GBM. Then, we performed gene ontology studies and hub protein identifications to estimate the roles of these DEGs after finding disease-gene connection networks and signaling pathways. Using the GEPIA Proportional Hazard Model and the Kaplan-Meier estimator, we widened our analysis to identify the important genes that may play a role in both progression and the survival of patients with GBM. In total, 890 DEGs, including 475 and 415 upregulated and downregulated were identified, respectively. Our results revealed that SQLE, DHCR7, delta-1 phospholipase C (PLCD1), and MINPP1 genes are highly expressed, and the Enolase 2 (ENO2) and hexokinase-1 (HK1) genes are low expressions. CONCLUSION Hence, our findings suggest novel mechanisms that affect the occurrence of GBM development, growth, and/or establishment and may also serve as secretory biomarkers for GBM prognosis and possible targets for therapy. So, continued research in this field may uncover new avenues for therapeutic interventions and contribute to the ongoing efforts to combat GBM effectively.
Collapse
Affiliation(s)
- Ehsan Jangholi
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical SciencesTehranIran
- Department of NeurosurgeryShariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Hoda Ahmari Tehran
- Department of Medical EducationQom University of Medical SciencesQomIran
| | - Afsaneh Ghasemi
- Department of Public HealthSchool of Health, Fasa University of Medical SciencesFasaIran
| | - Mohammad Hoseinian
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical SciencesTehranIran
| | - Sina Firoozi
- School of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Seyed Mohammad Ghodsi
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical SciencesTehranIran
- Department of NeurosurgeryShariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Mona Tamaddon
- Chronic Disease Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Ahmad Bereimipour
- Department of Biological Sciences and BioDiscovery InstituteUniversity of North TexasDentonTexasUSA
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
40
|
Bauer R, Dang HH, Neureiter D, Unger MS, Neuper T, Jensen M, Taliento AE, Strandt H, Gratz I, Weiss R, Sales A, Horejs-Hoeck J. NLRP3 promotes allergic responses to birch pollen extract in a model of intranasal sensitization. Front Immunol 2024; 15:1393819. [PMID: 38933263 PMCID: PMC11199694 DOI: 10.3389/fimmu.2024.1393819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction & Objective Allergic sensitization is an essential step in the development of allergic airway inflammation to birch pollen (BP); however, this process remains to be fully elucidated. Recent scientific advances have highlighted the importance of the allergen context. In this regard, microbial patterns (PAMPs) present on BP have attracted increasing interest. As these PAMPs are recognized by specialized pattern recognition receptors (PRRs), this study aims at investigating the roles of intracellular PRRs and the inflammasome regulator NLRP3. Methods We established a physiologically relevant intranasal and adjuvant-free sensitization procedure to study BP-induced systemic and local lung inflammation. Results Strikingly, BP-sensitized Nlrp3-deficient mice showed significantly lower IgE levels, Th2-associated cytokines, cell infiltration into the lung, mucin production and epithelial thickening than their wild-type counterparts, which appears to be independent of inflammasome formation. Intriguingly, bone-marrow chimera revealed that expression of NLRP3 in the hematopoietic system is required to trigger an allergic response. Conclusion Overall, this study identifies NLRP3 as an important driver of BP-induced allergic immune responses.
Collapse
Affiliation(s)
- Renate Bauer
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
| | - Michael Stefan Unger
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Melanie Jensen
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Alice Emma Taliento
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| | - Helen Strandt
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
- Department of Dermatology, Venerology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iris Gratz
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Angelika Sales
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
41
|
Xu S, Deng KQ, Lu C, Fu X, Zhu Q, Wan S, Zhang L, Huang Y, Nie L, Cai H, Wang Q, Zeng H, Zhang Y, Wang F, Ren H, Chen Y, Yan H, Xu K, Zhou L, Lu M, Zhu Y, Liu S, Lu Z. Interleukin-6 classic and trans-signaling utilize glucose metabolism reprogramming to achieve anti- or pro-inflammatory effects. Metabolism 2024; 155:155832. [PMID: 38438106 DOI: 10.1016/j.metabol.2024.155832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Interleukin (IL)-6 has anti- and pro-inflammatory functions, controlled by IL-6 classic and trans-signaling, respectively. Differences in the downstream signaling mechanism between IL-6 classic and trans-signaling have not been identified. Here, we report that IL-6 activates glycolysis to regulate the inflammatory response. IL-6 regulates glucose metabolism by forming a complex containing signal-transducing activators of transcription 3 (STAT3), hexokinase 2 (HK2), and voltage-dependent anion channel 1 (VDAC1). The IL-6 classic signaling directs glucose flux to oxidative phosphorylation (OxPhos), while IL-6 trans-signaling directs glucose flux to anaerobic glycolysis. Classic IL-6 signaling promotes STAT3 translocation into mitochondria to interact with pyruvate dehydrogenase kinase-1 (PDK1), leading to pyruvate dehydrogenase α (PDHA) dissociation from PDK1. As a result, PDHA is dephosphorylated, and STAT3 is phosphorylated at Ser727. By contrast, IL-6 trans-signaling promotes the interaction of sirtuin 2 (SIRT2) and lactate dehydrogenase A (LDHA), leading to the dissociation of STAT3 from SIRT2. As a result, LDHA is deacetylated, and STAT3 is acetylated and phosphorylated at Tyr705. IL-6 classic signaling promotes the differentiation of regulatory T cells via the PDK1/STAT3/PDHA axis, whereas IL-6 trans-signaling promotes the differentiation of Th17 cells via the SIRT2/STAT3/LDHA axis. Conclusion: IL-6 classic signaling generates anti-inflammatory functions by shifting energy metabolism to OxPhos, while IL-6 trans-signaling generates pro-inflammatory functions by shifting energy metabolism to anaerobic glycolysis.
Collapse
Affiliation(s)
- Shilei Xu
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510530, China.
| | - Ke-Qiong Deng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430072, China.
| | - Chengbo Lu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Xin Fu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Qingmei Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China.
| | - Shiqi Wan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China.
| | - Lin Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430072, China
| | - Yu Huang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China.
| | - Longyu Nie
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China.
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430072, China.
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Human Province, China
| | - Hao Zeng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China.
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China.
| | - Fubing Wang
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430072, China
| | - Hong Ren
- Shanghai Children's Medical Center, Affiliated Hospital to Shanghai Jiao Tong University School of Medicine, China.
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China.
| | - Huan Yan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China.
| | - Ke Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China.
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China.
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany.
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China.
| | - Shi Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430072, China; State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Taikang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Human Province, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
42
|
Li K, Chatterjee A, Qian C, Lagree K, Wang Y, Becker CA, Freeman MR, Murali R, Yang W, Underhill DM. Profiling phagosome proteins identifies PD-L1 as a fungal-binding receptor. Nature 2024; 630:736-743. [PMID: 38839956 DOI: 10.1038/s41586-024-07499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Phagocytosis is the process by which myeloid phagocytes bind to and internalize potentially dangerous microorganisms1. During phagocytosis, innate immune receptors and associated signalling proteins are localized to the maturing phagosome compartment, forming an immune information processing hub brimming with microorganism-sensing features2-8. Here we developed proximity labelling of phagosomal contents (PhagoPL) to identify proteins localizing to phagosomes containing model yeast and bacteria. By comparing the protein composition of phagosomes containing evolutionarily and biochemically distinct microorganisms, we unexpectedly identified programmed death-ligand 1 (PD-L1) as a protein that specifically enriches in phagosomes containing yeast. We found that PD-L1 directly binds to yeast upon processing in phagosomes. By surface display library screening, we identified the ribosomal protein Rpl20b as a fungal protein ligand for PD-L1. Using an auxin-inducible depletion system, we found that detection of Rpl20b by macrophages cross-regulates production of distinct cytokines including interleukin-10 (IL-10) induced by the activation of other innate immune receptors. Thus, this study establishes PhagoPL as a useful approach to quantifying the collection of proteins enriched in phagosomes during host-microorganism interactions, exemplified by identifying PD-L1 as a receptor that binds to fungi.
Collapse
Affiliation(s)
- Kai Li
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Avradip Chatterjee
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chen Qian
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Katherine Lagree
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yang Wang
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Courtney A Becker
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wei Yang
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David M Underhill
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Medicine, Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Marques E, Kramer R, Ryan DG. Multifaceted mitochondria in innate immunity. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:6. [PMID: 38812744 PMCID: PMC11129950 DOI: 10.1038/s44324-024-00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024]
Abstract
The ability of mitochondria to transform the energy we obtain from food into cell phosphorylation potential has long been appreciated. However, recent decades have seen an evolution in our understanding of mitochondria, highlighting their significance as key signal-transducing organelles with essential roles in immunity that extend beyond their bioenergetic function. Importantly, mitochondria retain bacterial motifs as a remnant of their endosymbiotic origin that are recognised by innate immune cells to trigger inflammation and participate in anti-microbial defence. This review aims to explore how mitochondrial physiology, spanning from oxidative phosphorylation (OxPhos) to signalling of mitochondrial nucleic acids, metabolites, and lipids, influences the effector functions of phagocytes. These myriad effector functions include macrophage polarisation, efferocytosis, anti-bactericidal activity, antigen presentation, immune signalling, and cytokine regulation. Strict regulation of these processes is critical for organismal homeostasis that when disrupted may cause injury or contribute to disease. Thus, the expanding body of literature, which continues to highlight the central role of mitochondria in the innate immune system, may provide insights for the development of the next generation of therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Eloïse Marques
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Robbin Kramer
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Dylan G. Ryan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
44
|
Holley CL, Emming S, Monteleone MM, Mellacheruvu M, Kenney KM, Lawrence GMEP, Coombs JR, Burgener SS, Schroder K. The septin modifier, forchlorfenuron, activates NLRP3 via a potassium-independent mitochondrial axis. Cell Chem Biol 2024; 31:962-972.e4. [PMID: 38759620 DOI: 10.1016/j.chembiol.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
The Nod-like receptor protein 3 (NLRP3) inflammasome is activated by stimuli that induce perturbations in cell homeostasis, which commonly converge on cellular potassium efflux. NLRP3 has thus emerged as a sensor for ionic flux. Here, we identify forchlorfenuron (FCF) as an inflammasome activator that triggers NLRP3 signaling independently of potassium efflux. FCF triggers the rearrangement of septins, key cytoskeletal proteins that regulate mitochondrial function. We report that FCF triggered the rearrangement of SEPT2 into tubular aggregates and stimulated SEPT2-independent NLRP3 inflammasome signaling. Similar to imiquimod, FCF induced the collapse of the mitochondrial membrane potential and mitochondrial respiration. FCF thereby joins the imidazoquinolines as a structurally distinct class of molecules that triggers NLRP3 inflammasome signaling independent of potassium efflux, likely by inducing mitochondrial damage.
Collapse
Affiliation(s)
- Caroline L Holley
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Stefan Emming
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mercedes M Monteleone
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Manasa Mellacheruvu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kirsten M Kenney
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Grace M E P Lawrence
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jared R Coombs
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sabrina S Burgener
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
45
|
Wu J, Sun X, Jiang P. Metabolism-inflammasome crosstalk shapes innate and adaptive immunity. Cell Chem Biol 2024; 31:884-903. [PMID: 38759617 DOI: 10.1016/j.chembiol.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Inflammasomes are a central component of innate immunity and play a vital role in regulating innate immune response. Activation of inflammasomes is also indispensable for adaptive immunity, modulating the development and response of adaptive immunity. Recently, increasing studies have shown that metabolic alterations and adaptations strongly influence and regulate the differentiation and function of the immune system. In this review, we will take a holistic view of how inflammasomes bridge innate and adaptive (especially T cell) immunity and how inflammasomes crosstalk with metabolic signals during the immune responses. And, special attention will be paid to the metabolic control of inflammasome-mediated interactions between innate and adaptive immunity in disease. Understanding the metabolic regulatory functions of inflammasomes would provide new insights into future research directions in this area and may help to identify potential targets for inflammasome-associated diseases and broaden therapeutic avenues.
Collapse
Affiliation(s)
- Jun Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xuan Sun
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
46
|
Jastrab JB, Kagan JC. Strategies of bacterial detection by inflammasomes. Cell Chem Biol 2024; 31:835-850. [PMID: 38636521 PMCID: PMC11103797 DOI: 10.1016/j.chembiol.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation. Inflammasome-mediated immune responses are crucial for host defense against many bacterial pathogens and prevent invasion by non-pathogenic organisms. In this review, we discuss the mechanisms by which inflammasomes are stimulated by PRRs and guards during bacterial infection, and the strategies used by virulent bacteria to evade inflammasome-mediated immunity.
Collapse
Affiliation(s)
- Jordan B Jastrab
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Kumar V, Stewart Iv JH. Pattern-Recognition Receptors and Immunometabolic Reprogramming: What We Know and What to Explore. J Innate Immun 2024; 16:295-323. [PMID: 38740018 PMCID: PMC11250681 DOI: 10.1159/000539278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Evolutionarily, immune response is a complex mechanism that protects the host from internal and external threats. Pattern-recognition receptors (PRRs) recognize MAMPs, PAMPs, and DAMPs to initiate a protective pro-inflammatory immune response. PRRs are expressed on the cell membranes by TLR1, 2, 4, and 6 and in the cytosolic organelles by TLR3, 7, 8, and 9, NLRs, ALRs, and cGLRs. We know their downstream signaling pathways controlling immunoregulatory and pro-inflammatory immune response. However, the impact of PRRs on metabolic control of immune cells to control their pro- and anti-inflammatory activity has not been discussed extensively. SUMMARY Immune cell metabolism or immunometabolism critically determines immune cells' pro-inflammatory phenotype and function. The current article discusses immunometabolic reprogramming (IR) upon activation of different PRRs, such as TLRs, NLRs, cGLRs, and RLRs. The duration and type of PRR activated, species studied, and location of immune cells to specific organ are critical factors to determine the IR-induced immune response. KEY MESSAGE The work herein describes IR upon TLR, NLR, cGLR, and RLR activation. Understanding IR upon activating different PRRs is critical for designing better immune cell-specific immunotherapeutics and immunomodulators targeting inflammation and inflammatory diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
48
|
Bej E, Cesare P, Volpe AR, d’Angelo M, Castelli V. Oxidative Stress and Neurodegeneration: Insights and Therapeutic Strategies for Parkinson's Disease. Neurol Int 2024; 16:502-517. [PMID: 38804477 PMCID: PMC11130796 DOI: 10.3390/neurolint16030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition marked by the gradual deterioration of dopaminergic neurons in the substantia nigra. Oxidative stress has been identified as a key player in the development of PD in recent studies. In the first part, we discuss the sources of oxidative stress in PD, including mitochondrial dysfunction, dopamine metabolism, and neuroinflammation. This paper delves into the possibility of mitigating oxidative stress as a potential treatment approach for PD. In addition, we examine the hurdles and potential of antioxidant therapy, including the challenge of delivering antioxidants to the brain and the requirement for biomarkers to track oxidative stress in PD patients. However, even if antioxidant therapy holds promise, further investigation is needed to determine its efficacy and safety in PD treatment.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (A.R.V.); (M.d.)
| |
Collapse
|
49
|
Stanton C, Buasakdi C, Sun J, Levitan I, Bora P, Kutseikin S, Wiseman RL, Bollong MJ. The Glycolytic Metabolite Methylglyoxal Covalently Inactivates the NLRP3 Inflammasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.589802. [PMID: 38659753 PMCID: PMC11042358 DOI: 10.1101/2024.04.19.589802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The NLRP3 inflammasome promotes inflammation in disease, yet the full repertoire of mechanisms regulating its activity are not well delineated. Among established regulatory mechanisms, covalent modification of NLRP3 has emerged as a common route for pharmacological inactivation of this protein. Here, we show that inhibition of the glycolytic enzyme PGK1 results in the accumulation of methylglyoxal, a reactive metabolite whose increased levels decrease NLRP3 assembly and inflammatory signaling in cells. We find that methylglyoxal inactivates NLRP3 via a non-enzymatic, covalent crosslinking-based mechanism, promoting inter- and intra-protein MICA posttranslational linkages within NLRP3. This work establishes NLRP3 as capable of sensing a host of electrophilic chemicals, both exogenous small molecules and endogenous reactive metabolites, and suggests a mechanism by which glycolytic flux can moderate the activation status of a central inflammatory signaling pathway.
Collapse
Affiliation(s)
- Caroline Stanton
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chavin Buasakdi
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jie Sun
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ian Levitan
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Prerona Bora
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sergei Kutseikin
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - R. Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael J. Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
50
|
Hao F, Liu H, Qi B. Bacterial peptidoglycan acts as a digestive signal mediating host adaptation to diverse food resources in C. elegans. Nat Commun 2024; 15:3286. [PMID: 38627398 PMCID: PMC11021419 DOI: 10.1038/s41467-024-47530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Food availability and usage is a major adaptive force for the successful survival of animals in nature, yet little is known about the specific signals that activate the host digestive system to allow for the consumption of varied foods. Here, by using a food digestion system in C. elegans, we discover that bacterial peptidoglycan (PGN) is a unique food signal that activates animals to digest inedible food. We identified that a glycosylated protein, Bacterial Colonization Factor-1 (BCF-1), in the gut interacts with bacterial PGN, leading to the inhibition of the mitochondrial unfolded protein response (UPRmt) by regulating the release of Neuropeptide-Like Protein (NLP-3). Interestingly, activating UPRmt was found to hinder food digestion, which depends on the innate immune p38 MAPK/PMK-1 pathway. Conversely, inhibiting PMK-1 was able to alleviate digestion defects in bcf-1 mutants. Furthermore, we demonstrate that animals with digestion defects experience reduced natural adaptation capabilities. This study reveals that PGN-BCF-1 interaction acts as "good-food signal" to promote food digestion and animal growth, which facilitates adaptation of the host animals by increasing ability to consume a wide range of foods in their natural environment.
Collapse
Affiliation(s)
- Fanrui Hao
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Huimin Liu
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Bin Qi
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|