1
|
Chen X, Su Q, Gong R, Ling X, Xu R, Feng Q, Ke J, Liu M, Kahaerjiang G, Liu Y, Yang Y, Jiang Z, Wu H, Qi Y. LC3-associated phagocytosis and human diseases: Insights from mechanisms to therapeutic potential. FASEB J 2024; 38:e70130. [PMID: 39446073 DOI: 10.1096/fj.202402126r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
LC3-associated phagocytosis (LAP) is a distinct type of autophagy that involves the sequestration of extracellular material by phagocytes. Beyond the removal of dead cells and cellular debris from eukaryotic cells, LAP is also involved in the removal of a variety of pathogens, including bacteria, fungi, and viruses. These events are integral to multiple physiological and pathological processes, such as host defense, inflammation, and tissue homeostasis. Dysregulation of LAP has been associated with the pathogenesis of several human diseases, including infectious diseases, autoimmune diseases, and neurodegenerative diseases. Thus, understanding the molecular mechanisms underlying LAP and its involvement in human diseases may provide new insights into the development of novel therapeutic strategies for these conditions. In this review, we summarize and highlight the current consensus on the role of LAP and its biological functions in disease progression to propose new therapeutic strategies. Further studies are needed to illustrate the precise role of LAP in human disease and to determine new therapeutic targets for LAP-associated pathologies.
Collapse
Affiliation(s)
- Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Ruize Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xing Ling
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Runxiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qijia Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jialiang Ke
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | | | - Yuhang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Rajendran P, Renu K, Ali EM, Genena MAM, Veeraraghavan V, Sekar R, Sekar AK, Tejavat S, Barik P, Abdallah BM. Promising and challenging phytochemicals targeting LC3 mediated autophagy signaling in cancer therapy. Immun Inflamm Dis 2024; 12:e70041. [PMID: 39436197 PMCID: PMC11494898 DOI: 10.1002/iid3.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Phytochemicals possess a wide range of anti-tumor properties, including the modulation of autophagy and regulation of programmed cell death. Autophagy is a critical process in cellular homeostasis and its dysregulation is associated with several pathological conditions, such as cancer, neurodegenerative diseases, and diabetes. In cancer, autophagy plays a dual role by either promoting tumor growth or suppressing it, depending on the cellular context. During autophagy, autophagosomes engulf cytoplasmic components such as proteins and organelles. LC3-II (microtubule-associated protein 1 light chain 3-II) is an established marker of autophagosome formation, making it central to autophagy monitoring in mammals. OBJECTIVE To explore the regulatory role of phytochemicals in LC3-mediated autophagy and their potential therapeutic impact on cancer. The review emphasizes the involvement of autophagy in tumor promotion and suppression, particularly focusing on autophagy-related signaling pathways like oxidative stress through the NRF2 pathway, and its implications for genomic stability in cancer development. METHODS The review focuses on a comprehensive analysis of bioactive compounds including Curcumin, Celastrol, Resveratrol, Kaempferol, Naringenin, Carvacrol, Farnesol, and Piperine. Literature on these compounds was examined to assess their influence on autophagy, LC3 expression, and tumor-related signaling pathways. A systematic literature search was conducted across databases including PubMed, Scopus, and Web of Science from inception to 2023. Studies were selected from prominent databases, focusing on their roles in cancer diagnosis and therapeutic interventions, particularly in relation to LC3-mediated mechanisms. RESULTS Phytochemicals have been shown to modulate autophagy through the regulation of LC3-II levels and autophagic flux in cancer cells. The interaction between autophagy and other cellular pathways such as oxidative stress, inflammation, and epigenetic modulation highlights the complex role of autophagy in tumor biology. For instance, Curcumin and Resveratrol have been reported to either induce or inhibit autophagy depending on cancer type, influencing tumor progression and therapeutic responses. CONCLUSION Targeting autophagy through LC3 modulation presents a promising strategy for cancer therapy. The dual role of autophagy in tumor suppression and promotion, however, necessitates careful consideration of the context in which autophagy is induced or inhibited. Future research should aim to delineate these context-specific roles and explore how phytochemicals can be optimized for therapeutic efficacy. Novel therapeutic strategies should focus on the use of bioactive compounds to fine-tune autophagy, thereby maximizing tumor suppression and inducing programmed cell death in cancer cells.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Enas M. Ali
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Botany and Microbiology, Faculty of ScienceCairo UniversityCairoEgypt
| | - Marwa Azmy M. Genena
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Agricultural Zoology Department, Faculty of AgricultureMansoura UniversityMansouraEgypt
| | - Vishnupriya Veeraraghavan
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Ramya Sekar
- Department of Oral & Maxillofacial Pathology and Oral MicrobiologyMeenakshi Ammal Dental College & Hospital, MAHERChennaiTamil NaduIndia
| | | | - Sujatha Tejavat
- Department of Biomedical Sciences, College of MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
| | | | - Basem M. Abdallah
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
| |
Collapse
|
5
|
Üffing A, Weiergräber OH, Schwarten M, Hoffmann S, Willbold D. GABARAP interacts with EGFR - supporting the unique role of this hAtg8 protein during receptor trafficking. FEBS Lett 2024. [PMID: 39160442 DOI: 10.1002/1873-3468.14997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
The human Atg8 family member GABARAP is involved in numerous autophagy-related and -unrelated processes. We recently observed that specifically the deficiency of GABARAP enhances epidermal growth factor receptor (EGFR) degradation upon ligand stimulation. Here, we report on two putative LC3-interacting regions (LIRs) within EGFR, the first of which (LIR1) is selected as a GABARAP binding site in silico. Indeed, in vitro interaction studies reveal preferential binding of LIR1 to GABARAP and GABARAPL1. Our X-ray data demonstrate interaction of core LIR1 residues FLPV with both hydrophobic pockets of GABARAP suggesting canonical binding. Although LIR1 occupies the LIR docking site, GABARAP Y49 and L50 appear dispensable in this case. Our data support the hypothesis that GABARAP affects the fate of EGFR at least in part through direct binding.
Collapse
Affiliation(s)
- Alina Üffing
- Heinrich-Heine-Universität Düsseldorf, Mathematisch-Naturwissenschaftliche Fakultät, Institut für Physikalische Biologie, Düsseldorf, Germany
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| | - Oliver H Weiergräber
- Heinrich-Heine-Universität Düsseldorf, Mathematisch-Naturwissenschaftliche Fakultät, Institut für Physikalische Biologie, Düsseldorf, Germany
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| | - Melanie Schwarten
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| | - Silke Hoffmann
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| | - Dieter Willbold
- Heinrich-Heine-Universität Düsseldorf, Mathematisch-Naturwissenschaftliche Fakultät, Institut für Physikalische Biologie, Düsseldorf, Germany
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| |
Collapse
|
6
|
Madan A, Kelly KP, Bahk P, Sullivan CE, Poling ME, Brent AE, Alassaf M, Dubrulle J, Rajan A. Atg8/LC3 controls systemic nutrient surplus signaling in flies and humans. Curr Biol 2024; 34:3327-3341.e9. [PMID: 38955177 PMCID: PMC11303106 DOI: 10.1016/j.cub.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
Organisms experience constant nutritional flux. Mechanisms at the interface of opposing nutritional states-scarcity and surplus-enable organismal energy homeostasis. Contingent on nutritional stores, adipocytes secrete adipokines, such as the fat hormone leptin, to signal nutrient status to the central brain. Increased leptin secretion underlies metabolic dysregulation during common obesity, but the molecular mechanisms regulating leptin secretion from human adipocytes are poorly understood. Here, we report that Atg8/LC3 family proteins, best known for their role in autophagy during nutrient scarcity, play an evolutionarily conserved role during nutrient surplus by promoting adipokine secretion. We show that in a well-fed state, Atg8/LC3 promotes the secretion of the Drosophila functional leptin ortholog unpaired 2 (Upd2) and leptin from human adipocytes. Proteomic analyses reveal that LC3 directs leptin to a secretory pathway in human cells. We identified LC3-dependent extracellular vesicle (EV) loading and secretion (LDELS) as a required step for leptin release, highlighting a unique secretory route adopted by leptin in human adipocytes. In Drosophila, mutations to Upd2's Atg8 interaction motif (AIM) result in constitutive adipokine retention. Atg8-mediated Upd2 retention alters lipid storage and hunger response and rewires the bulk organismal transcriptome in a manner conducive to starvation survival. Thus, Atg8/LC3's bidirectional role in nutrient sensing-conveying nutrient surplus and responding to nutrient deprivation-enables organisms to manage nutrient flux effectively. We posit that decoding how bidirectional molecular switches-such as Atg8/LC3-operate at the nexus of nutritional scarcity and surplus will inform therapeutic strategies to tackle chronic metabolic disorders.
Collapse
Affiliation(s)
- Aditi Madan
- Basic Sciences Division, Fred Hutch, Seattle, WA 98109, USA
| | - Kevin P Kelly
- Basic Sciences Division, Fred Hutch, Seattle, WA 98109, USA
| | - Patrick Bahk
- Basic Sciences Division, Fred Hutch, Seattle, WA 98109, USA
| | | | | | - Ava E Brent
- Basic Sciences Division, Fred Hutch, Seattle, WA 98109, USA
| | - Mroj Alassaf
- Basic Sciences Division, Fred Hutch, Seattle, WA 98109, USA
| | - Julien Dubrulle
- Cellular Imaging Core, Shared Resources, Fred Hutch, Seattle, WA 98109, USA
| | - Akhila Rajan
- Basic Sciences Division, Fred Hutch, Seattle, WA 98109, USA.
| |
Collapse
|
7
|
Wang Y, Wu L, Van Kaer L. Role of canonical and noncanonical autophagy pathways in shaping the life journey of B cells. Front Immunol 2024; 15:1426204. [PMID: 39139569 PMCID: PMC11319164 DOI: 10.3389/fimmu.2024.1426204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Autophagy is a regulated intracellular catabolic process by which invading pathogens, damaged organelles, aggregated proteins, and other macromolecules are degraded in lysosomes. It has been widely appreciated that autophagic activity plays an important role in regulating the development, fate determination, and function of cells in the immune system, including B lymphocytes. Autophagy encompasses several distinct pathways that have been linked to B cell homeostasis and function. While B cell presentation of major histocompatibility complex (MHC) class II-restricted cytosolic antigens to T cells involves both macroautophagy and chaperone-mediated autophagy (CMA), plasma cells and memory B cells mainly rely on macroautophagy for their survival. Emerging evidence indicates that core autophagy factors also participate in processes related to yet clearly distinct from classical autophagy. These autophagy-related pathways, referred to as noncanonical autophagy or conjugation of ATG8 to single membranes (CASM), contribute to B cell homeostasis and functions, including MHC class II-restricted antigen presentation to T cells, germinal center formation, plasma cell differentiation, and recall responses. Dysregulation of B cell autophagy has been identified in several autoimmune and autoinflammatory diseases such as systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. In this review, we discuss recent advances in understanding the role of canonical and noncanonical autophagy in B cells, including B cell development and maturation, antigen processing and presentation, pathogen-specific antibody responses, cytokine secretion, and autoimmunity. Unraveling the molecular mechanisms of canonical and noncanonical autophagy in B cells will improve our understanding of B cell biology, with implications for the development of autophagy-based immunotherapies.
Collapse
Affiliation(s)
| | | | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
8
|
Mari L, Boada-Romero E, Li Z, Magné J, Green DR. Assessment of Non-canonical Functions of the Autophagy Proteins in LC3-Associated Phagocytosis and LC3-Associated Endocytosis. Methods Mol Biol 2024. [PMID: 39046619 DOI: 10.1007/7651_2024_561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The identification and characterization of noncanonical functions within the autophagy pathway have unveiled intricate cellular processes, including LC3-associated phagocytosis (LAP) and LC3-associated endocytosis (LANDO). These phenomena play pivotal roles in the conjugation of ATG8 with single-membrane phagosomes and endosomes, shedding light on the dynamic interplay between autophagy and cellular homeostasis. Here, we present detailed protocols for both qualitative and quantitative assessment of LAP, including immunofluorescence, flow cytometry, and Western blotting of isolated LAPosomes. Additionally, the protocol for the evaluation of LANDO through immunofluorescent detection of receptor recycling is outlined. The methodologies presented herein serve as a practical guide for researchers seeking to unravel the intricacies of LAP and LANDO. By providing step-by-step instructions, accompanied by insights into potential challenges and optimization strategies, this chapter aims to empower investigators in the exploration of these noncanonical functions of autophagy proteins.
Collapse
Affiliation(s)
- Luigi Mari
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Emilio Boada-Romero
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhenrui Li
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joelle Magné
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
9
|
Choi J, Park G, Lee SSY, Dominici E, Becker L, Macleod KF, Kron SJ, Hwang S. Context-dependent roles for autophagy in myeloid cells in tumor progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603292. [PMID: 39071306 PMCID: PMC11275940 DOI: 10.1101/2024.07.12.603292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Autophagy is known to suppress tumor initiation by removing genotoxic stresses in normal cells. Conversely, autophagy is also known to support tumor progression by alleviating metabolic stresses in neoplastic cells. Centered on this pro-tumor role of autophagy, there have been many clinical trials to treat cancers through systemic blocking of autophagy. Such systemic inhibition affects both tumor cells and non-tumor cells, and the consequence of blocked autophagy in non-tumor cells in the context of tumor microenvironment is relatively understudied. Here, we examined the effect of autophagy-deficient myeloid cells on the progression of autophagy-competent tumors. We found that blocking autophagy only in myeloid cells modulated tumor progression markedly but such effects were context dependent. In a tumor implantation model, the growth of implanted tumor cells was substantially reduced in mice with autophagy-deficient myeloid cells; T cells infiltrated deeper into the tumors and were responsible for the reduced growth of the implanted tumor cells. In an oncogene-driven tumor induction model, however, tumors grew faster and metastasized more in mice with autophagy-deficient myeloid cells. These data demonstrate that the autophagy status of myeloid cells plays a critical role in tumor progression, promoting or suppressing tumor growth depending on the context of tumor-myeloid cell interactions. This study indicates that systemic use of autophagy inhibitors in cancer therapy may have differential effects on rates of tumor progression in patients due to effects on myeloid cells and that this warrants more targeted use of selective autophagy inhibitors in a cancer therapy in a clinical setting.
Collapse
Affiliation(s)
- Jayoung Choi
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Gayoung Park
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Steve Seung-Young Lee
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Erin Dominici
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Lev Becker
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen J Kron
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Seungmin Hwang
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Toledo B, Zhu Chen L, Paniagua-Sancho M, Marchal JA, Perán M, Giovannetti E. Deciphering the performance of macrophages in tumour microenvironment: a call for precision immunotherapy. J Hematol Oncol 2024; 17:44. [PMID: 38863020 PMCID: PMC11167803 DOI: 10.1186/s13045-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Macrophages infiltrating tumour tissues or residing in the microenvironment of solid tumours are known as tumour-associated macrophages (TAMs). These specialized immune cells play crucial roles in tumour growth, angiogenesis, immune regulation, metastasis, and chemoresistance. TAMs encompass various subpopulations, primarily classified into M1 and M2 subtypes based on their differentiation and activities. M1 macrophages, characterized by a pro-inflammatory phenotype, exert anti-tumoural effects, while M2 macrophages, with an anti-inflammatory phenotype, function as protumoural regulators. These highly versatile cells respond to stimuli from tumour cells and other constituents within the tumour microenvironment (TME), such as growth factors, cytokines, chemokines, and enzymes. These stimuli induce their polarization towards one phenotype or another, leading to complex interactions with TME components and influencing both pro-tumour and anti-tumour processes.This review comprehensively and deeply covers the literature on macrophages, their origin and function as well as the intricate interplay between macrophages and the TME, influencing the dual nature of TAMs in promoting both pro- and anti-tumour processes. Moreover, the review delves into the primary pathways implicated in macrophage polarization, examining the diverse stimuli that regulate this process. These stimuli play a crucial role in shaping the phenotype and functions of macrophages. In addition, the advantages and limitations of current macrophage based clinical interventions are reviewed, including enhancing TAM phagocytosis, inducing TAM exhaustion, inhibiting TAM recruitment, and polarizing TAMs towards an M1-like phenotype. In conclusion, while the treatment strategies targeting macrophages in precision medicine show promise, overcoming several obstacles is still necessary to achieve an accessible and efficient immunotherapy.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Linrui Zhu Chen
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - María Paniagua-Sancho
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain.
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, Pisa, 56017, Italy.
| |
Collapse
|
11
|
Gao Y, Chen S, Jiao S, Fan Y, Li X, Tan N, Fang J, Xu L, Huang Y, Zhao J, Guo S, Liu T, Xu W. ATG5-regulated CCL2/MCP-1 production in myeloid cells selectively modulates anti-malarial CD4 + Th1 responses. Autophagy 2024; 20:1398-1417. [PMID: 38368631 PMCID: PMC11210915 DOI: 10.1080/15548627.2024.2319512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
Parasite-specific CD4+ Th1 cell responses are the predominant immune effector for controlling malaria infection; however, the underlying regulatory mechanisms remain largely unknown. This study demonstrated that ATG5 deficiency in myeloid cells can significantly inhibit the growth of rodent blood-stage malarial parasites by selectively enhancing parasite-specific CD4+ Th1 cell responses. This effect was independent of ATG5-mediated canonical and non-canonical autophagy. Mechanistically, ATG5 deficiency suppressed FAS-mediated apoptosis of LY6G- ITGAM/CD11b+ ADGRE1/F4/80- cells and subsequently increased CCL2/MCP-1 production in parasite-infected mice. LY6G- ITGAM+ ADGRE1- cell-derived CCL2 selectively interacted with CCR2 on CD4+ Th1 cells for their optimized responses through the JAK2-STAT4 pathway. The administration of recombinant CCL2 significantly promoted parasite-specific CD4+ Th1 responses and suppressed malaria infection. Conclusively, our study highlights the previously unrecognized role of ATG5 in modulating myeloid cells apoptosis and sequentially affecting CCL2 production, which selectively promotes CD4+ Th1 cell responses. Our findings provide new insights into the development of immune interventions and effective anti-malarial vaccines.Abbreviations: ATG5: autophagy related 5; CBA: cytometric bead array; CCL2/MCP-1: C-C motif chemokine ligand 2; IgG: immunoglobulin G; IL6: interleukin 6; IL10: interleukin 10; IL12: interleukin 12; MFI: mean fluorescence intensity; JAK2: Janus kinase 2; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; pRBCs: parasitized red blood cells; RUBCN: RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein; STAT4: signal transducer and activator of transcription 4; Th1: T helper 1 cell; Tfh: follicular helper cell; ULK1: unc-51 like kinase 1.
Collapse
Affiliation(s)
- Yuanli Gao
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Suilin Chen
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Region, Urumqi, China
| | - Shiming Jiao
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yongling Fan
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiuxiu Li
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
- The School of Medicine, Chongqing University, Chongqing, China
| | - Nie Tan
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaqin Fang
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Luming Xu
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Zhao
- Biomedical Analysis Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuai Guo
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Taiping Liu
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
- The School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| |
Collapse
|
12
|
Tedesco G, Santarosa M, Maestro R. Beyond self‑eating: Emerging autophagy‑independent functions for the autophagy molecules in cancer (Review). Int J Oncol 2024; 64:57. [PMID: 38606507 PMCID: PMC11087037 DOI: 10.3892/ijo.2024.5645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Autophagy is a conserved catabolic process that controls organelle quality, removes misfolded or abnormally aggregated proteins and is part of the defense mechanisms against intracellular pathogens. Autophagy contributes to the suppression of tumor initiation by promoting genome stability, cellular integrity, redox balance and proteostasis. On the other hand, once a tumor is established, autophagy can support cancer cell survival and promote epithelial‑to‑mesenchymal transition. A growing number of molecules involved in autophagy have been identified. In addition to their key canonical activity, several of these molecules, such as ATG5, ATG12 and Beclin‑1, also exert autophagy‑independent functions in a variety of biological processes. The present review aimed to summarize autophagy‑independent functions of molecules of the autophagy machinery and how the activity of these molecules can influence signaling pathways that are deregulated in cancer progression.
Collapse
Affiliation(s)
- Giulia Tedesco
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| | - Manuela Santarosa
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| |
Collapse
|
13
|
Du M, Sun L, Guo J, Lv H. Macrophages and tumor-associated macrophages in the senescent microenvironment: From immunosuppressive TME to targeted tumor therapy. Pharmacol Res 2024; 204:107198. [PMID: 38692466 DOI: 10.1016/j.phrs.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
In-depth studies of the tumor microenvironment (TME) have helped to elucidate its cancer-promoting mechanisms and inherent characteristics. Cellular senescence, which acts as a response to injury and can the release of senescence-associated secretory phenotypes (SASPs). These SASPs release various cytokines, chemokines, and growth factors, remodeling the TME. This continual development of a senescent environment could be associated with chronic inflammation and immunosuppressive TME. Additionally, SASPs could influence the phenotype and function of macrophages, leading to the recruitment of tumor-associated macrophages (TAMs). This contributes to tumor proliferation and metastasis in the senescent microenvironment, working in tandem with immune regulation, angiogenesis, and therapeutic resistance. This comprehensive review covers the evolving nature of the senescent microenvironment, macrophages, and TAMs in tumor development. We also explored the links between chronic inflammation, immunosuppressive TME, cellular senescence, and macrophages. Moreover, we compiled various tumor-specific treatment strategies centered on cellular senescence and the current challenges in cellular senescence research. This study aimed to clarify the mechanism of macrophages and the senescent microenvironment in tumor progression and advance the development of targeted tumor therapies.
Collapse
Affiliation(s)
- Ming Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Lu Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jinshuai Guo
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Huina Lv
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
14
|
Yu Q, Ding J, Li S, Li Y. Autophagy in cancer immunotherapy: Perspective on immune evasion and cell death interactions. Cancer Lett 2024; 590:216856. [PMID: 38583651 DOI: 10.1016/j.canlet.2024.216856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiajun Ding
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
15
|
Hayes BH, Wang M, Zhu H, Phan SH, Dooling LJ, Andrechak JC, Chang AH, Tobin MP, Ontko NM, Marchena T, Discher DE. Chromosomal instability induced in cancer can enhance macrophage-initiated immune responses that include anti-tumor IgG. eLife 2024; 12:RP88054. [PMID: 38805560 PMCID: PMC11132682 DOI: 10.7554/elife.88054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Solid tumors generally exhibit chromosome copy number variation, which is typically caused by chromosomal instability (CIN) in mitosis. The resulting aneuploidy can drive evolution and associates with poor prognosis in various cancer types as well as poor response to T-cell checkpoint blockade in melanoma. Macrophages and the SIRPα-CD47 checkpoint are understudied in such contexts. Here, CIN is induced in poorly immunogenic B16F10 mouse melanoma cells using spindle assembly checkpoint MPS1 inhibitors that generate persistent micronuclei and diverse aneuploidy while skewing macrophages toward a tumoricidal 'M1-like' phenotype based on markers and short-term anti-tumor studies. Mice bearing CIN-afflicted tumors with wild-type CD47 levels succumb similar to controls, but long-term survival is maximized by SIRPα blockade on adoptively transferred myeloid cells plus anti-tumor monoclonal IgG. Such cells are the initiating effector cells, and survivors make de novo anti-cancer IgG that not only promote phagocytosis of CD47-null cells but also suppress tumor growth. CIN does not affect the IgG response, but pairing CIN with maximal macrophage anti-cancer activity increases durable cures that possess a vaccination-like response against recurrence.
Collapse
Affiliation(s)
- Brandon H Hayes
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
- Bioengineering Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Mai Wang
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Hui Zhu
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Steven H Phan
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Lawrence J Dooling
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Jason C Andrechak
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
- Bioengineering Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Alexander H Chang
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Michael P Tobin
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
- Bioengineering Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas M Ontko
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Tristan Marchena
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Dennis E Discher
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
- Bioengineering Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
16
|
Astuti Y, Raymant M, Quaranta V, Clarke K, Abudula M, Smith O, Bellomo G, Chandran-Gorner V, Nourse C, Halloran C, Ghaneh P, Palmer D, Jones RP, Campbell F, Pollard JW, Morton JP, Mielgo A, Schmid MC. Efferocytosis reprograms the tumor microenvironment to promote pancreatic cancer liver metastasis. NATURE CANCER 2024; 5:774-790. [PMID: 38355776 PMCID: PMC11136665 DOI: 10.1038/s43018-024-00731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Pancreatic ductal adenocarcinoma is a highly metastatic disease and macrophages support liver metastases. Efferocytosis, or engulfment of apoptotic cells by macrophages, is an essential process in tissue homeostasis and wound healing, but its role in metastasis is less well understood. Here, we found that the colonization of the hepatic metastatic site is accompanied by low-grade tissue injury and that efferocytosis-mediated clearance of parenchymal dead cells promotes macrophage reprogramming and liver metastasis. Mechanistically, progranulin expression in macrophages is necessary for efficient efferocytosis by controlling lysosomal acidification via cystic fibrosis transmembrane conductance regulator and the degradation of lysosomal cargo, resulting in LXRα/RXRα-mediated macrophage conversion and upregulation of arginase 1. Pharmacological blockade of efferocytosis or macrophage-specific genetic depletion of progranulin impairs macrophage conversion, improves CD8+ T cell functions, and reduces liver metastasis. Our findings reveal how hard-wired functions of macrophages in tissue repair contribute to liver metastasis and identify potential targets for prevention of pancreatic ductal adenocarcinoma liver metastasis.
Collapse
Affiliation(s)
- Yuliana Astuti
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Meirion Raymant
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Valeria Quaranta
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Kim Clarke
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Maidinaimu Abudula
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Olivia Smith
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Gaia Bellomo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | | | - Craig Nourse
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Christopher Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Daniel Palmer
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Robert P Jones
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Fiona Campbell
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | | | - Jennifer P Morton
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Michael C Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
17
|
Liu D, He W, Yang LL. Revitalizing antitumor immunity: Leveraging nucleic acid sensors as therapeutic targets. Cancer Lett 2024; 588:216729. [PMID: 38387757 DOI: 10.1016/j.canlet.2024.216729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Nucleic acid sensors play a critical role in recognizing and responding to pathogenic nucleic acids as danger signals. Upon activation, these sensors initiate downstream signaling cascades that lead to the production and release of pro-inflammatory cytokines, chemokines, and type I interferons. These immune mediators orchestrate diverse effector responses, including the activation of immune cells and the modulation of the tumor microenvironment. However, careful consideration must be given to balancing the activation of nucleic acid sensors to avoid unwanted autoimmune or inflammatory responses. In this review, we provide an overview of nucleic acid sensors and their role in combating cancer through the perception of various aberrant nucleic acids and activation of the immune system. We discuss the connections between different programmed cell death modes and nucleic acid sensors. Finally, we outline the development of nucleic acid sensor agonists, highlighting how their potential as therapeutic targets opens up new avenues for cancer immunotherapy.
Collapse
Affiliation(s)
- Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
18
|
Joshi S, López L, Morosi LG, Amadio R, Pachauri M, Bestagno M, Ogar IP, Giacca M, Piperno GM, Vorselen D, Benvenuti F. Tim4 enables large peritoneal macrophages to cross-present tumor antigens at early stages of tumorigenesis. Cell Rep 2024; 43:114096. [PMID: 38607919 DOI: 10.1016/j.celrep.2024.114096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/20/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Receptors controlling the cross-presentation of tumor antigens by macrophage subsets in cancer tissues are poorly explored. Here, we show that TIM4+ large peritoneal macrophages efficiently capture and cross-present tumor-associated antigens at early stages of peritoneal infiltration by ovarian cancer cells. The phosphatidylserine (PS) receptor TIM4 promotes maximal uptake of dead cells or PS-coated artificial targets and triggers inflammatory and metabolic gene programs in combination with cytoskeletal remodeling and upregulation of transcriptional signatures related to antigen processing. At the cellular level, TIM4-mediated engulfment induces nucleation of F-actin around nascent phagosomes, delaying the recruitment of vacuolar ATPase, acidification, and cargo degradation. In vivo, TIM4 deletion blunts induction of early anti-tumoral effector CD8 T cells and accelerates the progression of ovarian tumors. We conclude that TIM4-mediated uptake drives the formation of specialized phagosomes that prolong the integrity of ingested antigens and facilitate cross-presentation, contributing to immune surveillance of the peritoneum.
Collapse
Affiliation(s)
- Sonal Joshi
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Lucía López
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Luciano Gastón Morosi
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Roberto Amadio
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Manendra Pachauri
- Department of Medical, Surgical, and Health Sciences, University of Trieste and International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Marco Bestagno
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Ironya Paul Ogar
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, P.M.B. 1115 Calabar, Cross River State, Nigeria
| | - Mauro Giacca
- Department of Medical, Surgical, and Health Sciences, University of Trieste and International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; King's College London, British Heart Foundation Center of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Giulia Maria Piperno
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Daan Vorselen
- Department of Cell Biology & Immunology, Wageningen University & Research, 6708 PD Wageningen, the Netherlands
| | - Federica Benvenuti
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
19
|
Tang J, Fang D, Zhong J, Li M. Missing WD40 Repeats in ATG16L1 Delays Canonical Autophagy and Inhibits Noncanonical Autophagy. Int J Mol Sci 2024; 25:4493. [PMID: 38674078 PMCID: PMC11050548 DOI: 10.3390/ijms25084493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Canonical autophagy is an evolutionarily conserved process that forms double-membrane structures and mediates the degradation of long-lived proteins (LLPs). Noncanonical autophagy (NCA) is an important alternative pathway involving the formation of microtubule-associated protein 1 light chain 3 (LC3)-positive structures that are independent of partial core autophagy proteins. NCA has been defined by the conjugation of ATG8s to single membranes (CASM). During canonical autophagy and NCA/CASM, LC3 undergoes a lipidation modification, and ATG16L1 is a crucial protein in this process. Previous studies have reported that the WDR domain of ATG16L1 is not necessary for canonical autophagy. However, our study found that WDR domain deficiency significantly impaired LLP degradation in basal conditions and slowed down LC3-II accumulation in canonical autophagy. We further demonstrated that the observed effect was due to a reduced interaction between ATG16L1 and FIP200/WIPI2, without affecting lysosome function or fusion. Furthermore, we also found that the WDR domain of ATG16L1 is crucial for chemical-induced NCA/CASM. The results showed that removing the WDR domain or introducing the K490A mutation in ATG16L1 significantly inhibited the NCA/CASM, which interrupted the V-ATPase-ATG16L1 axis. In conclusion, this study highlights the significance of the WDR domain of ATG16L1 for both canonical autophagy and NCA functions, improving our understanding of its role in autophagy.
Collapse
Affiliation(s)
- Jiuge Tang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Dongmei Fang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Jialing Zhong
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Min Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| |
Collapse
|
20
|
Wu L, Jin W, Yu H, Liu B. Modulating autophagy to treat diseases: A revisited review on in silico methods. J Adv Res 2024; 58:175-191. [PMID: 37192730 PMCID: PMC10982871 DOI: 10.1016/j.jare.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Autophagy refers to the conserved cellular catabolic process relevant to lysosome activity and plays a vital role in maintaining the dynamic equilibrium of intracellular matter by degrading harmful and abnormally accumulated cellular components. Accumulating evidence has recently revealed that dysregulation of autophagy by genetic and exogenous interventions may disrupt cellular homeostasis in human diseases. In silico approaches as powerful aids to experiments have also been extensively reported to play their critical roles in the storage, prediction, and analysis of massive amounts of experimental data. Thus, modulating autophagy to treat diseases by in silico methods would be anticipated. AIM OF REVIEW Here, we focus on summarizing the updated in silico approaches including databases, systems biology network approaches, omics-based analyses, mathematical models, and artificial intelligence (AI) methods that sought to modulate autophagy for potential therapeutic purposes, which will provide a new insight into more promising therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW Autophagy-related databases are the data basis of the in silico method, storing a large amount of information about DNA, RNA, proteins, small molecules and diseases. The systems biology approach is a method to systematically study the interrelationships among biological processes including autophagy from a macroscopic perspective. Omics-based analyses are based on high-throughput data to analyze gene expression at different levels of biological processes involving autophagy. mathematical models are visualization methods to describe the dynamic process of autophagy, and its accuracy is related to the selection of parameters. AI methods use big data related to autophagy to predict autophagy targets, design targeted small molecules, and classify diverse human diseases for potential therapeutic applications.
Collapse
Affiliation(s)
- Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenke Jin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Hong SM, Lee A, Kim B, Lee J, Seon S, Ha Y, Ng JT, Yoon G, Lim SB, Morgan MJ, Cha J, Lee D, Kim Y. NAMPT-Driven M2 Polarization of Tumor-Associated Macrophages Leads to an Immunosuppressive Microenvironment in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303177. [PMID: 38308188 PMCID: PMC11005718 DOI: 10.1002/advs.202303177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/16/2023] [Indexed: 02/04/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a metabolic enzyme with key roles in inflammation. Previous studies have examined the consequences of its upregulated expression in cancer cells themselves, but studies are limited with respect to its role in the other cells within the tumor microenvironment (TME) during colorectal cancer (CRC) progression. Using single-cell RNA sequencing (scRNA-seq) data, it is founded that NAMPT is highly expressed in SPP1+ tumor-associated macrophages (TAMs), a unique subset of TAMs associated with immunosuppressive activity. A NAMPThigh gene signature in SPP1+ TAMs correlated with worse prognostic outcomes in CRC patients. The effect of Nampt deletion in the myeloid compartment of mice during CRC development is explored. NAMPT deficiency in macrophages resulted in HIF-1α destabilization, leading to reduction in M2-like TAM polarization. NAMPT deficiency caused significant decreases in the efferocytosis activity of macrophages, which enhanced STING signaling and the induction of type I IFN-response genes. Expression of these genes contributed to anti-tumoral immunity via potentiation of cytotoxic T cell activity in the TME. Overall, these findings suggest that NAMPT-initiated TAM-specific genes can be useful in predicting poor CRC patient outcomes; strategies aimed at targeting NAMPT may provide a promising therapeutic approach for building an immunostimulatory TME in CRC progression.
Collapse
Affiliation(s)
- Sun Mi Hong
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - A‐Yeon Lee
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Byeong‐Ju Kim
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Jeong‐Eun Lee
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Su‐Yeon Seon
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Yu‐Jin Ha
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Jestlin Tianthing Ng
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Gyesoon Yoon
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Su Bin Lim
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Michael J. Morgan
- Department of Natural SciencesNortheastern State UniversityTahlequahOK74464USA
| | - Jong‐Ho Cha
- Department of Biomedical SciencesCollege of MedicineInha UniversityIncheon22212South Korea
- Department of Biomedical Science and EngineeringGraduate SchoolInha UniversityIncheon22212South Korea
| | - Dakeun Lee
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of PathologyAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - You‐Sun Kim
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| |
Collapse
|
22
|
He J, Zhou Y, Sun L. Emerging mechanisms of the unfolded protein response in therapeutic resistance: from chemotherapy to Immunotherapy. Cell Commun Signal 2024; 22:89. [PMID: 38297380 PMCID: PMC10832166 DOI: 10.1186/s12964-023-01438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024] Open
Abstract
The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates the unfolded protein response (UPR). As an adaptive cellular response to hostile microenvironments, such as hypoxia, nutrient deprivation, oxidative stress, and chemotherapeutic drugs, the UPR is activated in diverse cancer types and functions as a dynamic tumour promoter in cancer development; this role of the UPR indicates that regulation of the UPR can be utilized as a target for tumour treatment. T-cell exhaustion mainly refers to effector T cells losing their effector functions and expressing inhibitory receptors, leading to tumour immune evasion and the loss of tumour control. Emerging evidence suggests that the UPR plays a crucial role in T-cell exhaustion, immune evasion, and resistance to immunotherapy. In this review, we summarize the molecular basis of UPR activation, the effect of the UPR on immune evasion, the emerging mechanisms of the UPR in chemotherapy and immunotherapy resistance, and agents that target the UPR for tumour therapeutics. An understanding of the role of the UPR in immune evasion and therapeutic resistance will be helpful to identify new therapeutic modalities for cancer treatment. Video Abstract.
Collapse
Affiliation(s)
- Jiang He
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Huan, China.
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, 410008, China.
- Center for Molecular Imaging of Central, South University, Xiangya Hospital, Changsha, 410008, China.
| | - You Zhou
- Department of Pathology, Tongji Medical College Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lunquan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Huan, China.
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, 410008, China.
- Center for Molecular Imaging of Central, South University, Xiangya Hospital, Changsha, 410008, China.
| |
Collapse
|
23
|
Ramos C, Oehler R. Clearance of apoptotic cells by neutrophils in inflammation and cancer. Cell Death Discov 2024; 10:26. [PMID: 38218739 PMCID: PMC10787834 DOI: 10.1038/s41420-024-01809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024] Open
Abstract
When a cell dies of apoptosis, it is eliminated either by neighbouring cells or by attracted professional phagocytes. Although it was generally believed that neutrophils also have the ability to perform efferocytosis, their contribution to the clearance of apoptotic cells was considered less important compared with macrophages. Therefore, this ability of neutrophils remained unexplored for a long time. Over the past decade, it has been shown that during inflammation, neutrophils contribute significantly to the clearance of apoptotic neutrophils that accumulate in large numbers at the site of tissue damage. This "neutrophil cannibalism" is accompanied by inhibition of pro-inflammatory activities of these cells, such as respiratory burst and formation of neutrophil extracellular traps (NETs). Furthermore, efferocytosing neutrophils secrete anti-inflammatory mediators and mitogens including hepatocyte growth factor (HGF), fibroblast growth factor 2 (FGF2), vascular endothelial growth factors (VEGF), and transforming growth factor beta (TGFβ). Thus, efferocytosis by neutrophils is involved in resolution of inflammation. Recent research indicates that it plays also a role in cancer. Many different solid tumours contain aggregates of dead tumour cells that have undergone spontaneous apoptosis. Their extent correlates with poor clinical outcome in most cancer types. These clusters of apoptotic tumour cells are strongly infiltrated by tumour-associated neutrophils (TANs) that acquired an anti-inflammatory and pro-resolving polarization state. This review summarizes the potential consequences discussed in the current literature. Although the picture of the role of efferocytosis by neutrophils in inflammation and cancer is becoming clearer, many questions are still unexplored.
Collapse
Affiliation(s)
- Cristiano Ramos
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Rudolf Oehler
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Hayes BH, Wang M, Zhu H, Phan SH, Dooling LJ, Andrechak JC, Chang AH, Tobin MP, Ontko NM, Marchena T, Discher DE. Chromosomal instability can favor macrophage-mediated immune response and induce a broad, vaccination-like anti-tumor IgG response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.02.535275. [PMID: 37066426 PMCID: PMC10103980 DOI: 10.1101/2023.04.02.535275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Chromosomal instability (CIN), a state in which cells undergo mitotic aberrations that generate chromosome copy number variations, generates aneuploidy and is thought to drive cancer evolution. Although associated with poor prognosis and reduced immune response, CIN generates aneuploidy-induced stresses that could be exploited for immunotherapies. In such contexts, macrophages and the CD47-SIRPα checkpoint are understudied. Here, CIN is induced pharmacologically induced in poorly immunogenic B16F10 mouse melanoma cells, generating persistent micronuclei and diverse aneuploidy while skewing macrophages towards an anti-cancer M1-like phenotype, based on RNA-sequencing profiling, surface marker expression and short-term antitumor studies. These results further translate to in vivo efficacy: Mice bearing CIN-afflicted tumors with wild-type CD47 levels survive only slightly longer relative to chromosomally stable controls, but long-term survival is maximized when combining macrophage-stimulating anti-tumor IgG opsonization and some form of disruption of the CD47-SIRPα checkpoint. Survivors make multi-epitope, de novo anti-cancer IgG that promote macrophage-mediated phagocytosis of CD47 knockout B16F10 cells and suppress tumoroids in vitro and growth of tumors in vivo . CIN does not greatly affect the level of the IgG response compared to previous studies but does significantly increase survival. These results highlight an unexpected therapeutic benefit from CIN when paired with maximal macrophage anti-cancer activity: an anti-cancer vaccination-like antibody response that can lead to more durable cures and further potentiate cell-mediated acquired immunity.
Collapse
|
25
|
Wang R, Liu SL, Guo QQ, Shi XH, Ma MM. Circadian Clock REV-ERBs Agonist SR9009 Induces Synergistic Antitumor Activity in Multiple Myeloma by Suppressing Glucose-Regulated Protein 78-Dependent Autophagy and Lipogenesis. World J Oncol 2023; 14:464-475. [PMID: 38022411 PMCID: PMC10681778 DOI: 10.14740/wjon1681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Background Proteasome inhibitors, such as bortezomib, have demonstrated efficacy in the therapeutic management of multiple myeloma (MM). However, it is important to note that these inhibitors also elicit endoplasmic reticulum stress, which subsequently triggers the unfolded protein response (UPR) and autophagy, which have been shown to facilitate the survival of tumor cells. The disruption of the circadian clock is considered a characteristic feature of cancer. However, how disrupted circadian clock intertwines with tumor metabolism and drug resistance is not clearly clarified. This work explores the antitumor effectiveness of bortezomib and the circadian clock agonist SR9009, elucidating their impact on glucose-regulated protein 78 (GRP78), the autophagy process, and lipogenesis. Methods The antitumor effects of bortezomib and SR9009 were evaluated using human MM cell lines (RPMI8226 and U266) in vitro and in vivo nonobese diabetic/severe combined immunodeficient (NOD/SCID) murine xenograft MM model. The assessment of cell viability was conducted using the cell counting kit-8 (CCK8) method, whereas the measurement of cell proliferation was performed with the inclusion of EdU (5-ethynyl-2'-deoxyuridine). Apoptosis was assessed by flow cytometry. The cells were transduced using adenovirus-tf-LC3, which was labeled with dual fluorescence. Subsequently, confocal imaging was employed to observe and examine the autophagosomes. REV-ERBα knockdown leads to upregulation of ATG5 and BENC1 at the protein level with immunoblot. Changes in the expression levels of GRP78, LC3, stearoyl-CoA desaturase 1 (SCD1), and fatty acid synthase (FASN) were assessed through the utilization of quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Results Our results showed that both bortezomib and circadian clock REV-ERBs agonist SR9009 decreased MM viability, proliferation rate and induced an apoptotic response in a dose-dependent manner in vitro. However, the two differ greatly in their mechanisms of action. Bortezomib upregulated GRP78 and autophagy LC3, while circadian clock agonist SR9009 inhibited GRP78 and autophagy LC3. Combined SR9009 with bortezomib induced synergistic cytotoxicity against MM cells. REV-ERBα knockdown lead to upregulation of ATG5, BENC1 and significant upregulation of FASN, and SCD1. Mechanically, SR9009 inhibited the core autophagy gene ATG5 and BECN1, and two essential enzymes for de novo lipogenesis FASN and SCD1. SR9009 had synergistic effect with bortezomib and slowed down murine xenograft models of human MM tumor growth in vivo. Conclusions Taken together, these results demonstrated that the circadian clock component REV-ERBs agonist SR9009 could inhibit GRP78-induced autophagy and de novo lipogenesis processes and had a synergistic effect with proteasome inhibitors in both in vitro and in vivo models of MM. Our findings shed light on how a disrupted circadian clock interacts with metabolic mechanisms to shape proteasome inhibitor drug resistance and suggest that SR9009 may be able to overcome the inherent drug resistance of proteasome inhibitors.
Collapse
Affiliation(s)
- Rui Wang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, No. 1055, San Xiang Road, Gu Su District, Su Zhou City, China
- Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, No. 138, Huanghe Road, Su Cheng District, Suqian City, China
- These authors contributed equally to this article
| | - Shu Ling Liu
- Department of Radiotherapy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No.305, Zhong Shan Road, Xuan wu District, Nanjing City, China
- These authors contributed equally to this article
| | - Quan Quan Guo
- Department of Hematology, The Second Affiliated Hospital of Soochow University, No. 1055, San Xiang Road, Gu Su District, Su Zhou City, China
- Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, No. 138, Huanghe Road, Su Cheng District, Suqian City, China
| | - Xiao Hong Shi
- Department of Pathology, Suqian Affiliated Hospital of Xuzhou Medical University, No. 138, Huanghe Road, Su Cheng District, Suqian City, China
| | - Mei Mei Ma
- Department of Pathology, Suqian Affiliated Hospital of Xuzhou Medical University, No. 138, Huanghe Road, Su Cheng District, Suqian City, China
| |
Collapse
|
26
|
Zhang W, Wei P, Liu L, Ding T, Yang Y, Jin P, Zhang L, Zhao Z, Wang M, Hu B, Jin X, Xu Z, Zhang H, Song Y, Wang L, Zhong S, Chen J, Yang Z, Chen Z, Wu Y, Ye Z, Xu Y, Zhang Y, Wen LP. AIE-enabled transfection-free identification and isolation of viable cell subpopulations differing in the level of autophagy. Autophagy 2023; 19:3062-3078. [PMID: 37533292 PMCID: PMC10621245 DOI: 10.1080/15548627.2023.2235197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
ABBREVIATIONS 3-MA, 3-methyladenine; AIE, aggregation-induced emission; AIEgens, aggregation-induced emission luminogens; ATG5, autophagy related 5; BMDM, bone marrow-derived macrophage; CQ, chloroquine; DiD, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate; DiO, 3,3'-dioctadecyloxacarbocyanine perchlorate; DMSO, dimethyl sulfoxide; d-THP-1, differentiated THP-1; FACS, fluorescence activated cell sorting; FBS, fetal bovine serum; FCCP, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; GABARAP, GABA type A receptor-associated protein; GFP, green fluorescent protein; HBSS, Hanks' balanced salt solution; HPLC, high-performance liquid chromatography; HRP, horseradish peroxidase; IL1B, interleukin 1 beta; KT, an AIE probe composed of a cell-penetrating peptide and an AIEgen tetraphenyl ethylene; LC3-II, lipidated LC3; LDH, lactate dehydrogenase; LIR, LC3-interacting region; LKR, engineered molecular probe composed of an LC3-interacting peptide, a cell-penetrating peptide and a non-AIE fluorescent molecule rhodamine; LKT, engineered molecular probe composed of an LC3-interacting peptide, a cell-penetrating peptide and an AIEgen tetraphenyl ethylene; LPS, lipopolysaccharide; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MEF, mouse embryonic fibroblast; mRFP, monomeric red fluorescent protein; NHS, N-hydroxysuccinimide; NLRP3, NLR family pyrin domain containing 3; PBS, phosphate-buffered saline; PCC, pearson's correlation coefficient; PL, photoluminescence; PMA, phorbol 12-myristate 13-acetate; RAP, rapamycin; RIM, restriction of intramolecular motions; s.e.m., standard error of the mean; SPR, surface plasmon resonance; SQSTM1/p62, sequestosome 1; TAX1BP1, Tax1 binding protein 1; TPE, tetraphenylethylene; TPE-yne, 1-(4-ethynylphenyl)-1,2,2-triphenylethene; Tre, trehalose; u-THP-1: undifferentiated THP-1; UV-Vis, ultraviolet visible.
Collapse
Affiliation(s)
- Wenbin Zhang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Pengfei Wei
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Liu Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Tao Ding
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
| | - Yinyin Yang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Peipei Jin
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhibin Zhao
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Meimei Wang
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
| | - Bochuan Hu
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
| | - Xin Jin
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
| | - Zeng Xu
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong, China
| | - Han Zhang
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong, China
| | - Yang Song
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
| | - Liansheng Wang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Suqin Zhong
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhenyu Yang
- China-Singapore International Joint Research Institute, Guangzhou, Guangdong, China
| | - Ziying Chen
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
| | - Yu Wu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiming Ye
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Youcui Xu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjiao Zhang
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
| | - Long-Ping Wen
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Asare PF, Hurtado PR, Tran HB, Perkins GB, Roscioli E, Hodge S. Reduction in Rubicon by cigarette smoke is associated with impaired phagocytosis and occurs through lysosomal degradation pathway. Clin Exp Med 2023; 23:4041-4055. [PMID: 37310658 DOI: 10.1007/s10238-023-01105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND A common feature of COPD is a defective lung macrophage phagocytic capacity that can contribute to chronic lung inflammation and infection. The precise mechanisms remain incompletely understood, although cigarette smoke is a known contributor. We previously showed deficiency of the LC3-associated phagocytosis (LAP) regulator, Rubicon, in macrophages from COPD subjects and in response to cigarette smoke. The current study investigated the molecular basis by which cigarette smoke extract (CSE) reduces Rubicon in THP-1, alveolar and blood monocyte-derived macrophages, and the relationship between Rubicon deficiency and CSE-impaired phagocytosis. METHODOLOGY Phagocytic capacity of CSE-treated macrophages was measured by flow cytometry, Rubicon expression by Western blot and real time polymerase chain reaction, and autophagic-flux by LC3 and p62 levels. The effect of CSE on Rubicon degradation was determined using cycloheximide inhibition and Rubicon protein synthesis and half-life assessment. RESULTS Phagocytosis was significantly impaired in CSE-exposed macrophages and strongly correlated with Rubicon expression. CSE-impaired autophagy, accelerated Rubicon degradation, and reduced its half-life. Lysosomal protease inhibitors, but not proteasome inhibitors, attenuated this effect. Autophagy induction did not significantly affect Rubicon expression. CONCLUSIONS CSE decreases Rubicon through the lysosomal degradation pathway. Rubicon degradation and/or LAP impairment may contribute to dysregulated phagocytosis perpetuated by CSE.
Collapse
Affiliation(s)
- Patrick F Asare
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.
- Department of Thoracic Medicine, Faculty of Health and Medical Science, The University of Adelaide, Adelaide, Australia.
| | - Plinio R Hurtado
- School of Medicine, University of Adelaide, Adelaide, Australia
- Department of Renal Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Hai B Tran
- School of Medicine, University of Adelaide, Adelaide, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Griffith B Perkins
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Eugene Roscioli
- School of Medicine, University of Adelaide, Adelaide, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Sandra Hodge
- School of Medicine, University of Adelaide, Adelaide, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
28
|
Yamamoto K, Iwadate D, Naito E, Tateishi K, Fujishiro M. Autophagy as a critical driver of metabolic adaptation, therapeutic resistance, and immune evasion of cancer. Curr Opin Biotechnol 2023; 84:103012. [PMID: 39492353 DOI: 10.1016/j.copbio.2023.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 11/05/2024]
Abstract
Autophagy is a well-conserved intracellular degradation pathway. Besides its physiological role in normal cells, autophagy is activated in various cancer types and protects cancer cells from stresses such as nutrient deprivation, therapeutic insults, and antitumor immunity. Autophagy in cancer cells as well as normal cells in the host supports tumor metabolism, allowing for tumor growth under a nutrient-limited tumor microenvironment. Autophagy also protects cancer cells from treatments such as radiation therapy, cytotoxic chemotherapy, and targeted therapy. Though the roles of autophagy in antitumor immunity are complex and highly context-dependent, accumulating evidence now supports the role of autophagy in mediating immunotherapy resistance. Based on these preclinical findings, multiple clinical trials are currently ongoing to test the therapeutic efficacy of autophagy inhibition in cancer. Here, we review recent findings on the tumor-promoting roles of autophagy in cancer and discuss advances in therapeutic approaches that target autophagy in cancer.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Dosuke Iwadate
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Eri Naito
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, St. Marianna University School of Medicine, 2-16-1 Sugao, Kawasaki city, Kanagawa 216-8511 Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
29
|
Quaresma TC, de Aguiar Valentim L, de Sousa JR, de Souza Aarão TL, Fuzii HT, Duarte MIS, de Souza J, Quaresma JAS. Immunohistochemical Characterization of M1, M2, and M4 Macrophages in Leprosy Skin Lesions. Pathogens 2023; 12:1225. [PMID: 37887741 PMCID: PMC10610015 DOI: 10.3390/pathogens12101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Mycobacterium leprae is the etiological agent of leprosy. Macrophages (Mφs) are key players involved in the pathogenesis of leprosy. In this study, immunohistochemical analysis was performed to examine the phenotype of Mφ subpopulations, namely M1, M2, and M4, in the skin lesions of patients diagnosed with leprosy. Based on the database of treatment-naïve patients treated between 2015 and 2019 at the Department of Dermatology of the University of the State of Pará, Belém, routine clinical screening samples were identified. The monolabeling protocol was used for M1 macrophages (iNOS, IL-6, TNF-α) and M2 macrophages (IL-10, IL-13, CD163, Arginase 1, TGF-β, FGFb), and the double-labeling protocol was used for M4 macrophages (IL-6, MMP7, MRP8, TNF-α e CD68). To confirm the M4 macrophage lineage, double labeling of the monoclonal antibodies CD68 and MRP8 was also performed. Our results demonstrated a statistically significant difference for the M1 phenotype among the Virchowian (VV) (4.5 ± 1.3, p < 0.0001), Borderline (1.6 ± 0.4, p < 0.0001), and tuberculoid (TT) (12.5 ± 1.8, p < 0.0001) clinical forms of leprosy. Additionally, the M2 phenotype showed a statistically significant difference among the VV (12.5 ± 2.3, p < 0.0001), Borderline (1.3 ± 0.2, p < 0.0001), and TT (3.2 ± 0.7, p < 0.0001) forms. For the M4 phenotype, a statistically significant difference was observed in the VV (9.8 ± 1.7, p < 0.0001), Borderline (1.2 ± 0.2, p < 0.0001), and TT (2.6 ± 0.7, p < 0.0001) forms. A significant correlation was observed between the VV M1 and M4 (r = 0.8712; p = 0.0000) and between the VV M2 × TT M1 (r = 0.834; p = 0.0002) phenotypes. The M1 Mφs constituted the predominant Mφ subpopulation in the TT and Borderline forms of leprosy, whereas the M2 Mφs showed increased immunoexpression and M4 was the predominant Mφ phenotype in VV leprosy. These results confirm the relationship of the Mφ profile with chronic pathological processes of the inflammatory response in leprosy.
Collapse
Affiliation(s)
- Tatiane Costa Quaresma
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Lívia de Aguiar Valentim
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Jorge Rodrigues de Sousa
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Tinara Leila de Souza Aarão
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
- School of Medicine, Federal University of Para-UFPA, Altamira 68440-000, Brazil
| | - Hellen Thais Fuzii
- Health Department, Tropical Medicine Center, Federal University of Para-NMT-UFPA, Belem 66055-240, Brazil
| | | | - Juarez de Souza
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Juarez Antônio Simões Quaresma
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
- School of Medicine, Federal University of Para-UFPA, Altamira 68440-000, Brazil
- Health Department, Tropical Medicine Center, Federal University of Para-NMT-UFPA, Belem 66055-240, Brazil
- School of Medicine, Sao Paulo University, Sao Paulo 01246-903, Brazil
| |
Collapse
|
30
|
Heron R, Amato C, Wood W, Davidson AJ. Understanding the diversity and dynamics of in vivo efferocytosis: Insights from the fly embryo. Immunol Rev 2023; 319:27-44. [PMID: 37589239 PMCID: PMC10952863 DOI: 10.1111/imr.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
The clearance of dead and dying cells, termed efferocytosis, is a rapid and efficient process and one that is critical for organismal health. The extraordinary speed and efficiency with which dead cells are detected and engulfed by immune cells within tissues presents a challenge to researchers who wish to unravel this fascinating process, since these fleeting moments of uptake are almost impossible to catch in vivo. In recent years, the fruit fly (Drosophila melanogaster) embryo has emerged as a powerful model to circumvent this problem. With its abundance of dying cells, specialist phagocytes and relative ease of live imaging, the humble fly embryo provides a unique opportunity to catch and study the moment of cell engulfment in real-time within a living animal. In this review, we explore the recent advances that have come from studies in the fly, and how live imaging and genetics have revealed a previously unappreciated level of diversity in the efferocytic program. A variety of efferocytic strategies across the phagocytic cell population ensure efficient and rapid clearance of corpses wherever death is encountered within the varied and complex setting of a multicellular living organism.
Collapse
Affiliation(s)
- Rosalind Heron
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Clelia Amato
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Will Wood
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Andrew J. Davidson
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
- School of Cancer SciencesWolfson Wohl Cancer Research Centre, University of GlasgowGlasgowUK
| |
Collapse
|
31
|
Khan SU, Fatima K, Malik F, Kalkavan H, Wani A. Cancer metastasis: Molecular mechanisms and clinical perspectives. Pharmacol Ther 2023; 250:108522. [PMID: 37661054 DOI: 10.1016/j.pharmthera.2023.108522] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Metastatic progression combined with non-responsiveness towards systemic therapy often shapes the course of disease for cancer patients and commonly determines its lethal outcome. The complex molecular events that promote metastasis are a combination of both, the acquired pro-metastatic properties of cancer cells and a metastasis-permissive or -supportive tumor micro-environment (TME). Yet, dissemination is a challenging process for cancer cells that requires a series of events to enable cancer cell survival and growth. Metastatic cancer cells have to initially detach themselves from primary tumors, overcome the challenges of their intravasal journey and colonize distant sites that are suited for their metastases. The implicated obstacles including anoikis and immune surveillance, can be overcome by intricate intra- and extracellular signaling pathways, which we will summarize and discuss in this review. Further, emerging modulators of metastasis, like the immune-microenvironment, microbiome, sublethal cell death engagement, or the nervous system will be integrated into the existing working model of metastasis.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- The University of Texas MD Anderson Cancer Center, Division of Genitourinary Medical Oncology, Holcombe Blvd, Houston, TX 77030, USA; Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India.
| | - Halime Kalkavan
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Abubakar Wani
- St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, United States.
| |
Collapse
|
32
|
Tsai CY, Sakakibara S, Kuan YD, Omori H, El Hussien MA, Okuzaki D, Lu SL, Noda T, Tabata K, Nakamura S, Yoshimori T, Kikutani H. Opposing roles of RUBCN isoforms in autophagy and memory B cell generation. Sci Signal 2023; 16:eade3599. [PMID: 37725663 DOI: 10.1126/scisignal.ade3599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
RUBCN (also known as Rubicon) was originally identified as a negative regulator of autophagy, a process by which cells degrade and recycle damaged components or organelles and that requires the activity of the class III PI3K VPS34 and the mTORC1 protein complex. Here, we characterized the role of a shorter isoform, RUBCN100, as an autophagy-promoting factor in B cells. RUBCN100 was translated from alternative translation initiation sites and lacked the RUN domain of the longer, previously characterized RUBCN130 isoform. Specific deficiency of RUBCN130 in B cells enhanced autophagy, which promoted memory B cell generation. In contrast to RUBCN130, which is localized in late endosomes and lysosomes and suppresses the enzymatic activity of VPS34, an effect thought to mediated by its RUN domain, RUBCN100 was preferentially located in early endosomes and enhanced VPS34 activity, presumably because of the absence of the RUN domain. Furthermore, RUBCN100, but not RUBCN130, enhanced autophagy and suppressed mTORC1 activation. Our findings reveal that the opposing roles of two RUBCN isoforms are critical for autophagy regulation and memory B cell differentiation.
Collapse
Affiliation(s)
- Chao-Yuan Tsai
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu-Diao Kuan
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroko Omori
- Core Instrumentation Facility, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Maruwa Ali El Hussien
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Single Cell Genomics, Human Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shiou-Ling Lu
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keisuke Tabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Hitoshi Kikutani
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Ou L, Zhang P, Huang Z, Cheng Y, Miao Q, Niu R, Hu Y, Chen Y. Targeting STING-mediated pro-inflammatory and pro-fibrotic effects of alveolar macrophages and fibroblasts blunts silicosis caused by silica particles. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131907. [PMID: 37379600 DOI: 10.1016/j.jhazmat.2023.131907] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Silica is utilized extensively in industrial and commercial applications as a chemical raw material, increasing its exposure and hazardous potential to populations, with silicosis serving as an important representative. Silicosis is characterized by persistent lung inflammation and fibrosis, for which the underlying pathogenesis of silicosis is unclear. Studies have shown that the stimulating interferon gene (STING) participates in various inflammatory and fibrotic lesions. Therefore, we speculated that STING might also play a key role in silicosis. Here we found that silica particles drove the double-stranded DNA (dsDNA) release to activate the STING signal pathway, contributing to alveolar macrophages (AMs) polarization by secreting diverse cytokines. Then, multiple cytokines could generate a micro-environment to exacerbate inflammation and promote the activation of lung fibroblasts, hastening fibrosis. Intriguingly, STING was also crucial for the fibrotic effects induced by lung fibroblasts. Loss of STING could effectively inhibit silica particles-induced pro-inflammatory and pro-fibrotic effects by regulating macrophages polarization and lung fibroblasts activation to alleviate silicosis. Collectively, our results have revealed a novel pathogenesis of silica particles-caused silicosis mediated by the STING signal pathway, indicating that STING may be regarded as a promising therapeutic target in the treatment of silicosis.
Collapse
Affiliation(s)
- Liang Ou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang 110122, China; Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Peng Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang 110122, China; Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Zhengpeng Huang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang 110122, China; Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Yuxing Cheng
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang 110122, China; Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Qianru Miao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang 110122, China; Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Ru Niu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang 110122, China; Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Yuxin Hu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang 110122, China; Experimental Teaching Center, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Ying Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang 110122, China; Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
34
|
Xie Y, Zhou Y, Wang J, Du L, Ren Y, Liu F. Ferroptosis, autophagy, tumor and immunity. Heliyon 2023; 9:e19799. [PMID: 37810047 PMCID: PMC10559173 DOI: 10.1016/j.heliyon.2023.e19799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/20/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Ferroptosis was first proposed in 2012, a new form of cell death. Autophagy plays a crucial role in cell clearance and maintaining homeostasis. Autophagy is involved in the initial step of ferroptosis under the action of histone elements such as NCOA4, RAB7A, and BECN1. Ferroptosis and autophagy are involved in tumor progression, treatment, and drug resistance in the tumor microenvironment. In this review, we described the mechanisms of ferroptosis, autophagy, and tumor and immunotherapy, respectively, and emphasized the relationship between autophagy-related ferroptosis and tumor.
Collapse
Affiliation(s)
| | | | - Jiale Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Lijuan Du
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yuanyuan Ren
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| |
Collapse
|
35
|
Abstract
Maintenance of protein homeostasis and organelle integrity and function is critical for cellular homeostasis and cell viability. Autophagy is the principal mechanism that mediates the delivery of various cellular cargoes to lysosomes for degradation and recycling. A myriad of studies demonstrate important protective roles for autophagy against disease. However, in cancer, seemingly opposing roles of autophagy are observed in the prevention of early tumour development versus the maintenance and metabolic adaptation of established and metastasizing tumours. Recent studies have addressed not only the tumour cell intrinsic functions of autophagy, but also the roles of autophagy in the tumour microenvironment and associated immune cells. In addition, various autophagy-related pathways have been described, which are distinct from classical autophagy, that utilize parts of the autophagic machinery and can potentially contribute to malignant disease. Growing evidence on how autophagy and related processes affect cancer development and progression has helped guide efforts to design anticancer treatments based on inhibition or promotion of autophagy. In this Review, we discuss and dissect these different functions of autophagy and autophagy-related processes during tumour development, maintenance and progression. We outline recent findings regarding the role of these processes in both the tumour cells and the tumour microenvironment and describe advances in therapy aimed at autophagy processes in cancer.
Collapse
Affiliation(s)
- Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
| | - Noor Gammoh
- MRC Institute of Genetics & Cancer, The University of Edinburgh, Edinburgh, UK.
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
36
|
Gan T, Qu S, Zhang H, Zhou X. Modulation of the immunity and inflammation by autophagy. MedComm (Beijing) 2023; 4:e311. [PMID: 37405276 PMCID: PMC10315166 DOI: 10.1002/mco2.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 07/06/2023] Open
Abstract
Autophagy, a highly conserved cellular self-degradation pathway, has emerged with novel roles in the realms of immunity and inflammation. Genome-wide association studies have unveiled a correlation between genetic variations in autophagy-related genes and heightened susceptibility to autoimmune and inflammatory diseases. Subsequently, substantial progress has been made in unraveling the intricate involvement of autophagy in immunity and inflammation through functional studies. The autophagy pathway plays a crucial role in both innate and adaptive immunity, encompassing various key functions such as pathogen clearance, antigen processing and presentation, cytokine production, and lymphocyte differentiation and survival. Recent research has identified novel approaches in which the autophagy pathway and its associated proteins modulate the immune response, including noncanonical autophagy. This review provides an overview of the latest advancements in understanding the regulation of immunity and inflammation through autophagy. It summarizes the genetic associations between variants in autophagy-related genes and a range of autoimmune and inflammatory diseases, while also examining studies utilizing transgenic animal models to uncover the in vivo functions of autophagy. Furthermore, the review delves into the mechanisms by which autophagy dysregulation contributes to the development of three common autoimmune and inflammatory diseases and highlights the potential for autophagy-targeted therapies.
Collapse
Affiliation(s)
- Ting Gan
- Renal DivisionPeking University First HospitalBeijingChina
- Peking University Institute of NephrologyBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)Ministry of EducationBeijingChina
| | - Shu Qu
- Renal DivisionPeking University First HospitalBeijingChina
- Peking University Institute of NephrologyBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)Ministry of EducationBeijingChina
| | - Hong Zhang
- Renal DivisionPeking University First HospitalBeijingChina
- Peking University Institute of NephrologyBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)Ministry of EducationBeijingChina
| | - Xu‐jie Zhou
- Renal DivisionPeking University First HospitalBeijingChina
- Peking University Institute of NephrologyBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)Ministry of EducationBeijingChina
| |
Collapse
|
37
|
Huntoon K, Lee D, Dong S, Antony A, Kim BYS, Jiang W. Targeting phagocytosis to enhance antitumor immunity. Trends Cancer 2023; 9:650-665. [PMID: 37150626 DOI: 10.1016/j.trecan.2023.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023]
Abstract
Many patients with metastatic or treatment-resistant cancer have experienced improved outcomes after immunotherapy that targets adaptive immune checkpoints. However, innate immune checkpoints, which can hinder the detection and clearance of malignant cells, are also crucial in tumor-mediated immune escape and may also serve as targets in cancer immunotherapy. In this review, we discuss the current understanding of immune evasion by cancer cells via disruption of phagocytic clearance, and the potential effects of blocking phagocytosis checkpoints on the activation of antitumor immune responses. We propose that a more effective combination immunotherapy strategy could be to exploit tumor-intrinsic processes that inhibit key innate immune surveillance processes, such as phagocytosis, and incorporate both innate and adaptive immune responses for treating patients with cancer.
Collapse
Affiliation(s)
- Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
38
|
Yang S, Rufo J, Zhong R, Rich J, Wang Z, Lee LP, Huang TJ. Acoustic tweezers for high-throughput single-cell analysis. Nat Protoc 2023; 18:2441-2458. [PMID: 37468650 PMCID: PMC11052649 DOI: 10.1038/s41596-023-00844-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/18/2023] [Indexed: 07/21/2023]
Abstract
Acoustic tweezers provide an effective means for manipulating single cells and particles in a high-throughput, precise, selective and contact-free manner. The adoption of acoustic tweezers in next-generation cellular assays may advance our understanding of biological systems. Here we present a comprehensive set of instructions that guide users through device fabrication, instrumentation setup and data acquisition to study single cells with an experimental throughput that surpasses traditional methods, such as atomic force microscopy and micropipette aspiration, by several orders of magnitude. With acoustic tweezers, users can conduct versatile experiments that require the trapping, patterning, pairing and separation of single cells in a myriad of applications ranging across the biological and biomedical sciences. This procedure is widely generalizable and adaptable for investigations in materials and physical sciences, such as the spinning motion of colloids or the development of acoustic-based quantum simulations. Overall, the device fabrication requires ~12 h, the experimental setup of the acoustic tweezers requires 1-2 h and the cell manipulation experiment requires ~30 min to complete. Our protocol is suitable for use by interdisciplinary researchers in biology, medicine, engineering and physics.
Collapse
Affiliation(s)
- Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Joseph Rufo
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Zeyu Wang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, South Korea.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
39
|
Chen XX, Tao T, Liu XZ, Wu W, Wang JW, Yue TT, Li XJ, Zhou Y, Gao S, Sheng B, Peng Z, Xu HJ, Ding PF, Wu LY, Zhang DD, Lu Y, Hang CH, Li W. P38-DAPK1 axis regulated LC3-associated phagocytosis (LAP) of microglia in an in vitro subarachnoid hemorrhage model. Cell Commun Signal 2023; 21:175. [PMID: 37480108 PMCID: PMC10362611 DOI: 10.1186/s12964-023-01173-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/22/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The phagocytosis and homeostasis of microglia play an important role in promoting blood clearance and improving prognosis after subarachnoid hemorrhage (SAH). LC3-assocaited phagocytosis (LAP) contributes to the microglial phagocytosis and homeostasis via autophagy-related components. With RNA-seq sequencing, we found potential signal pathways and genes which were important for the LAP of microglia. METHODS We used an in vitro model of oxyhemoglobin exposure as SAH model in the study. RNA-seq sequencing was performed to seek critical signal pathways and genes in regulating LAP. Bioparticles were used to access the phagocytic ability of microglia. Western blot (WB), immunoprecipitation, quantitative polymerase chain reaction (qPCR) and immunofluorescence were performed to detect the expression change of LAP-related components and investigate the potential mechanisms. RESULTS In vitro SAH model, there were increased inflammation and decreased phagocytosis in microglia. At the same time, we found that the LAP of microglia was inhibited in all stages. RNA-seq sequencing revealed the importance of P38 MAPK signal pathway and DAPK1 in regulating microglial LAP. P38 was found to regulate the expression of DAPK1, and P38-DAPK1 axis was identified to regulate the LAP and homeostasis of microglia after SAH. Finally, we found that P38-DAPK1 axis regulated expression of BECN1, which indicated the potential mechanism of P38-DAPK1 axis regulating microglial LAP. CONCLUSION P38-DAPK1 axis regulated the LAP of microglia via BECN1, affecting the phagocytosis and homeostasis of microglia in vitro SAH model. Video Abstract.
Collapse
Affiliation(s)
- Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Tao Tao
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xun-Zhi Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Wei Wu
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jin-Wei Wang
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
| | - Ting-Ting Yue
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiao-Jian Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Bin Sheng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Hua-Jie Xu
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peng-Fei Ding
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ding-Ding Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
40
|
Xie H, Qin Z, Ling Z, Ge X, Zhang H, Guo S, Liu L, Zheng K, Jiang H, Xu R. Oral pathogen aggravates atherosclerosis by inducing smooth muscle cell apoptosis and repressing macrophage efferocytosis. Int J Oral Sci 2023; 15:26. [PMID: 37380627 DOI: 10.1038/s41368-023-00232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Periodontitis imparting the increased risk of atherosclerotic cardiovascular diseases is partially due to the immune subversion of the oral pathogen, particularly the Porphyromonas gingivalis (P. gingivalis), by inducing apoptosis. However, it remains obscure whether accumulated apoptotic cells in P. gingivalis-accelerated plaque formation are associated with impaired macrophage clearance. Here, we show that smooth muscle cells (SMCs) have a greater susceptibility to P. gingivalis-induced apoptosis than endothelial cells through TLR2 pathway activation. Meanwhile, large amounts of miR-143/145 in P.gingivalis-infected SMCs are extracellularly released and captured by macrophages. Then, these miR-143/145 are translocated into the nucleus to promote Siglec-G transcription, which represses macrophage efferocytosis. By constructing three genetic mouse models, we further confirm the in vivo roles of TLR2 and miR-143/145 in P. gingivalis-accelerated atherosclerosis. Therapeutically, we develop P.gingivalis-pretreated macrophage membranes to coat metronidazole and anti-Siglec-G antibodies for treating atherosclerosis and periodontitis simultaneously. Our findings extend the knowledge of the mechanism and therapeutic strategy in oral pathogen-associated systemic diseases.
Collapse
Affiliation(s)
- Hanyu Xie
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ziyue Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ziji Ling
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiao Ge
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hang Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Laikui Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Kai Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Rongyao Xu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
41
|
Bi S, Zhang Y, Zhou J, Yao Y, Wang J, Fang M, Li B, Wu C, Ren C. miR-210 promotes hepatocellular carcinoma progression by modulating macrophage autophagy through PI3K/AKT/mTOR signaling. Biochem Biophys Res Commun 2023; 662:47-57. [PMID: 37099810 DOI: 10.1016/j.bbrc.2023.04.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) play an important role in tumor development. Increasing research suggests that miR-210 may promote the progression of tumor virulence, but whether its pro-carcinogenic effect in primary hepatocellular carcinoma (HCC) is via an action on M2 macrophages has not been examined. METHODS Differentiation of THP-1 monocytes into M2-polarized macrophages was induced with phorbol myristate acetate (PMA) and IL-4, IL-13. M2 macrophages were transfected with miR-210 mimics or miR-210 inhibitors. Flow cytometry was used to identify macrophage-related markers and apoptosis levels. The autophagy level of M2 macrophages, expression of PI3K/AKT/mTOR signaling pathway-related mRNAs and protein were detected by qRT-PCR and Western blot. HepG2 and MHCC-97H HCC cell lines were cultured with M2 macrophages conditioned medium to explore the effects of M2 macrophage-derived miR-210 on the proliferation, migration, invasion and apoptosis of HCC cells. RESULTS qRT-PCR showed increased expression of miR-210 in M2 macrophages. Autophagy-related gene and protein expression was enhanced in M2 macrophages transfected with miR-210 mimics, while apoptosis-related proteins were decreased. MDC staining and transmission electron microscopy observed the accumulation of MDC-labeled vesicles and autophagosomes in M2 macrophages in the miR-210 mimic group. The expression of PI3K/AKT/mTOR signaling pathway in M2 macrophages was reduced in miR-210 mimic group. HCC cells co-cultured with M2 macrophages transfected with miR-210 mimics exhibited enhanced proliferation and invasive ability as compared to the control group, while apoptosis levels were reduced. Moreover, promoting or inhibiting autophagy could enhance or abolish the above observed biological effects, respectively. CONCLUSIONS miR-210 can promote autophagy of M2 macrophages via PI3K/AKT/mTOR signaling pathway. M2 macrophage-derived miR-210 promotes the malignant progression of HCC via autophagy, suggesting that macrophage autophagy may serve as a new therapeutic target for HCC, and targeting miR-210 may reset the effect of M2 macrophages on HCC.
Collapse
Affiliation(s)
- Shumin Bi
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Yidan Zhang
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Jia Zhou
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Yuanyuan Yao
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Jiadong Wang
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Miaomiao Fang
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Baozhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | - Chunxia Ren
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China.
| |
Collapse
|
42
|
Bode K, Hauri-Hohl M, Jaquet V, Weyd H. Unlocking the power of NOX2: A comprehensive review on its role in immune regulation. Redox Biol 2023; 64:102795. [PMID: 37379662 DOI: 10.1016/j.redox.2023.102795] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Reactive oxygen species (ROS) are a family of highly reactive molecules with numerous, often pleiotropic functions within the cell and the organism. Due to their potential to destroy biological structures such as membranes, enzymes and organelles, ROS have long been recognized as harmful yet unavoidable by-products of cellular metabolism leading to "oxidative stress" unless counterbalanced by cellular anti-oxidative defense mechanisms. Phagocytes utilize this destructive potential of ROS released in high amounts to defend against invading pathogens. In contrast, a regulated and fine-tuned release of "signaling ROS" (sROS) provides essential intracellular second messengers to modulate central aspects of immunity, including antigen presentation, activation of antigen presenting cells (APC) as well as the APC:T cell interaction during T cell activation. This regulated release of sROS is foremost attributed to the specialized enzyme NADPH-oxidase (NOX) 2 expressed mainly in myeloid cells such as neutrophils, macrophages and dendritic cells (DC). NOX-2-derived sROS are primarily involved in immune regulation and mediate protection against autoimmunity as well as maintenance of self-tolerance. Consequently, deficiencies in NOX2 not only result in primary immune-deficiencies such as Chronic Granulomatous Disease (CGD) but also lead to auto-inflammatory diseases and autoimmunity. A comprehensive understanding of NOX2 activation and regulation will be key for successful pharmaceutical interventions of such ROS-related diseases in the future. In this review, we summarize recent progress regarding immune regulation by NOX2-derived ROS and the consequences of its deregulation on the development of immune disorders.
Collapse
Affiliation(s)
- Kevin Bode
- Section for Islet Cell & Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Mathias Hauri-Hohl
- Division of Stem Cell Transplantation, University Children's Hospital Zurich - Eleonore Foundation & Children`s Research Center (CRC), Zurich, Switzerland
| | - Vincent Jaquet
- Department of Pathology & Immunology, Centre Médical Universitaire, Rue Michel Servet 1, 1211, Genève 4, Switzerland
| | - Heiko Weyd
- Clinical Cooperation Unit Applied Tumor Immunity D120, German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
43
|
Hu Y, Chen Y, Liu T, Zhu C, Wan L, Yao W. The bidirectional roles of the cGAS-STING pathway in pain processing: Cellular and molecular mechanisms. Biomed Pharmacother 2023; 163:114869. [PMID: 37182515 DOI: 10.1016/j.biopha.2023.114869] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023] Open
Abstract
Pain is a common clinical condition. However, the mechanisms underlying pain are not yet fully understood. It is known that the neuroimmune system plays a critical role in the pathogenesis of pain. Recent studies indicated that the cyclic-GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway can activate the innate immune system by sensing both extrinsic and intrinsic double-stranded DNA in the cytoplasm, which is involved in pain processing. In this review, we summarise (1) the roles of the cGAS-STING pathway in different pain models, (2) the effect of the cGAS-STING pathway in different cells during pain regulation, and (3) the downstream molecular mechanisms of the cGAS-STING pathway in pain regulation. This review provides evidence that the cGAS-STING pathway has pro- and anti-nociceptive effects in pain models. It has different functions in neuron, microglia, macrophage, and T cells. Its downstream molecules include IFN-I, NF-κB, NLRP3, and eIF2α. The bidirectional roles of the cGAS-STING pathway in pain processing are mediated by regulating nociceptive neuronal sensitivity and neuroinflammatory responses. However, their effects in special brain regions, activation of astrocytes, and the different phases of pain require further exploration.
Collapse
Affiliation(s)
- Yingjie Hu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuye Chen
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongtong Liu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chang Zhu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Wan
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenlong Yao
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
44
|
Pizzimenti C, Fiorentino V, Franchina M, Martini M, Giuffrè G, Lentini M, Silvestris N, Di Pietro M, Fadda G, Tuccari G, Ieni A. Autophagic-Related Proteins in Brain Gliomas: Role, Mechanisms, and Targeting Agents. Cancers (Basel) 2023; 15:cancers15092622. [PMID: 37174088 PMCID: PMC10177137 DOI: 10.3390/cancers15092622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The present review focuses on the phenomenon of autophagy, a catabolic cellular process, which allows for the recycling of damaged organelles, macromolecules, and misfolded proteins. The different steps able to activate autophagy start with the formation of the autophagosome, mainly controlled by the action of several autophagy-related proteins. It is remarkable that autophagy may exert a double role as a tumour promoter and a tumour suppressor. Herein, we analyse the molecular mechanisms as well as the regulatory pathways of autophagy, mainly addressing their involvement in human astrocytic neoplasms. Moreover, the relationships between autophagy, the tumour immune microenvironment, and glioma stem cells are discussed. Finally, an excursus concerning autophagy-targeting agents is included in the present review in order to obtain additional information for the better treatment and management of therapy-resistant patients.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Translational Molecular Medicine and Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maria Lentini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Nicola Silvestris
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Martina Di Pietro
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| |
Collapse
|
45
|
Jain V, Singh MP, Amaravadi RK. Recent advances in targeting autophagy in cancer. Trends Pharmacol Sci 2023; 44:290-302. [PMID: 36931971 PMCID: PMC10106406 DOI: 10.1016/j.tips.2023.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/17/2023]
Abstract
Autophagy is a cellular homeostasis mechanism that fuels the proliferation and survival of advanced cancers by degrading and recycling organelles and proteins. Preclinical studies have identified that within an established tumor, tumor cell autophagy and host cell autophagy conspire to support tumor growth. A growing body of evidence suggests that autophagy inhibition can augment the efficacy of chemotherapy, targeted therapy, or immunotherapy to enhance tumor shrinkage. First-generation autophagy inhibition trials in cancer using the lysosomal inhibitor hydroxychloroquine (HCQ) have produced mixed results but have guided the way for the development of more potent and specific autophagy inhibitors in clinical trials. In this review, we will discuss the role of autophagy in cancer, newly discovered molecular mechanisms of the autophagy pathway, the effects of autophagy modulation in cancer and host cells, and novel autophagy inhibitors that are entering clinical trials.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mahendra Pal Singh
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Zuo H, Chen C, Sa Y. Therapeutic potential of autophagy in immunity and inflammation: current and future perspectives. Pharmacol Rep 2023; 75:499-510. [PMID: 37119445 PMCID: PMC10148586 DOI: 10.1007/s43440-023-00486-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/01/2023]
Abstract
Autophagy is recognized as a lysosomal degradation pathway important for cellular and organismal homeostasis. Accumulating evidence has demonstrated that autophagy is a paradoxical mechanism that regulates homeostasis and prevents stress under physiological and pathological conditions. Nevertheless, how autophagy is implicated in immune responses remains unclear. It is well established that autophagy bridges innate and adaptive immunity, while autophagic dysfunction is closely related to infection, inflammation, neurodegeneration, and tumorigenesis. Therefore, autophagy has attracted great attention from fundamental and translational fields due to its crucial role in inflammation and immunity. Inflammation is involved in the development and progression of various human diseases, and as a result, autophagy might be a potential target to prevent and treat inflammatory diseases. Nevertheless, insufficient autophagy might cause cell death, perpetrate inflammation, and trigger hereditary unsteadiness. Hence, targeting autophagy is a promising disease prevention and treatment strategy. To accomplish this safely, we should thoroughly understand the basic aspects of how autophagy works. Herein, we systematically summarized the correlation between autophagy and inflammation and its implication for human diseases.
Collapse
Affiliation(s)
- Hui Zuo
- Department of Pharmacology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan Province, China.
- Department of Pharmaceutical Science, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan Province, China.
| | - Cheng Chen
- Department of Pharmacology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan Province, China
| | - Yalian Sa
- Institute of Clinical and Basic Medical Sciences (Yunnan Provincial Key Laboratory of Clinical Virology), The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China.
| |
Collapse
|
47
|
Dhingra A, Tobias JW, Philp NJ, Boesze-Battaglia K. Transcriptomic Changes Predict Metabolic Alterations in LC3 Associated Phagocytosis in Aged Mice. Int J Mol Sci 2023; 24:6716. [PMID: 37047689 PMCID: PMC10095460 DOI: 10.3390/ijms24076716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
LC3b (Map1lc3b) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b to promote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes, such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells, utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis, and neuroprotection. In a mouse model of retinal lipid steatosis-mice lacking LC3b (LC3b-/-), we observed increased lipid deposition, metabolic dysregulation, and enhanced inflammation. Herein, we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b-/- mice revealed 1533 DEGs, with ~73% upregulated and 27% downregulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism, and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with a potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.
Collapse
Affiliation(s)
- Anuradha Dhingra
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John W. Tobias
- Penn Genomics and Sequencing Core, Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy J. Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Español-Rego M, Fernández-Martos C, Elez E, Foguet C, Pedrosa L, Rodríguez N, Ruiz-Casado A, Pineda E, Cid J, Cabezón R, Oliveres H, Lozano M, Ginés A, García-Criado A, Ayuso JR, Pagés M, Cuatrecasas M, Torres F, Thomson T, Cascante M, Benítez-Ribas D, Maurel J. A Phase I-II multicenter trial with Avelumab plus autologous dendritic cell vaccine in pre-treated mismatch repair-proficient (MSS) metastatic colorectal cancer patients; GEMCAD 1602 study. Cancer Immunol Immunother 2023; 72:827-840. [PMID: 36083313 PMCID: PMC10025226 DOI: 10.1007/s00262-022-03283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Immune check-point blockade (ICB) has shown clinical benefit in mismatch repair-deficient/microsatellite instability high metastatic colorectal cancer (mCRC) but not in mismatch repair-proficient/microsatellite stable patients. Cancer vaccines with autologous dendritic cells (ADC) could be a complementary therapeutic approach to ICB as this combination has the potential to achieve synergistic effects. METHODS This was a Phase I/II multicentric study with translational sub-studies, to evaluate the safety, pharmacodynamics and anti-tumor effects of Avelumab plus ADC vaccine in heavily pre-treated MSS mCRC patients. Primary objective was to determine the maximum tolerated dose and the efficacy of the combination. The primary end-point was 40% progression-free survival at 6 months with a 2 Simon Stage. RESULTS A total of 28 patients were screened and 19 pts were included. Combined therapy was safe and well tolerated. An interim analysis (Simon design first-stage) recommended early termination because only 2/19 (11%) patients were disease free at 6 months. Median PFS was 3.1 months [2.1-5.3 months] and overall survival was 12.2 months [3.2-23.2 months]. Stimulation of immune system was observed in vitro but not clinically. The evaluation of basal RNA-seq noted significant changes between pre and post-therapy liver biopsies related to lipid metabolism and transport, inflammation and oxidative stress pathways. CONCLUSIONS The combination of Avelumab plus ADC vaccine is safe and well tolerated but exhibited modest clinical activity. Our study describes, for the first-time, a de novo post-therapy metabolic rewiring, that could represent novel immunotherapy-induced tumor vulnerabilities.
Collapse
Affiliation(s)
| | | | - Elena Elez
- Medical Oncology Department, Vall d’Hebrón Barcelona Hospital Campus, Vall d’Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carles Foguet
- Department of Biochemistry and Molecular Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Leire Pedrosa
- Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Medical Oncology Department, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, C. Villarroel, 170. 08036 Barcelona, Spain
| | - Nuria Rodríguez
- Medical Oncology Department, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ana Ruiz-Casado
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Estela Pineda
- Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Medical Oncology Department, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, C. Villarroel, 170. 08036 Barcelona, Spain
| | - Joan Cid
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Raquel Cabezón
- Immunology Department, Hospital Clínic, Barcelona, Spain
| | - Helena Oliveres
- Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Medical Oncology Department, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, C. Villarroel, 170. 08036 Barcelona, Spain
| | - Miquel Lozano
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Angels Ginés
- Endoscopic Unit, Gastrointestinal Service, Hospital Clínic Barcelona, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
- Networked Center for Hepatic and Digestive Diseases (CIBER-EHD), Instituto Nacional de La Salud Carlos III, Madrid, Spain
| | | | - Juan Ramon Ayuso
- Radiology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Mario Pagés
- Radiology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Miriam Cuatrecasas
- Pathology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Networked Center for Hepatic and Digestive Diseases (CIBER-EHD), Instituto Nacional de La Salud Carlos III, Madrid, Spain
| | - Ferràn Torres
- Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Timothy Thomson
- Barcelona Institute for Molecular Biology, National Science Council (IBMB-CSIC), Barcelona, Spain
- Networked Center for Hepatic and Digestive Diseases (CIBER-EHD), Instituto Nacional de La Salud Carlos III, Madrid, Spain
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Cascante
- Department of Biochemistry and Molecular Medicine, Universitat de Barcelona, Barcelona, Spain
- Networked Center for Hepatic and Digestive Diseases (CIBER-EHD), Instituto Nacional de La Salud Carlos III, Madrid, Spain
| | | | - Joan Maurel
- Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Medical Oncology Department, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, C. Villarroel, 170. 08036 Barcelona, Spain
- Networked Center for Hepatic and Digestive Diseases (CIBER-EHD), Instituto Nacional de La Salud Carlos III, Madrid, Spain
| |
Collapse
|
49
|
Dhingra A, Tobias JW, Philp NJ, Boesze-Battaglia K. Transcriptomic changes predict metabolic alterations in LC3 associated phagocytosis in aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532586. [PMID: 36993501 PMCID: PMC10054970 DOI: 10.1101/2023.03.14.532586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
LC3b ( Map1lc3b ) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b, to pro-mote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis and neuroprotection. In a mouse model of retinal lipid steatosis - mice lacking LC3b ( LC3b -/- ), we observed increased lipid deposition, metabolic dysregulation and enhanced inflammation. Herein we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b -/- mice revealed 1533 DEGs, with ~73% upregulated and 27% down-regulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.
Collapse
|
50
|
Liton PB, Boesze-Battaglia K, Boulton ME, Boya P, Ferguson TA, Ganley IG, Kauppinnen A, Laurie GW, Mizushima N, Morishita H, Russo R, Sadda J, Shyam R, Sinha D, Thompson DA, Zacks DN. AUTOPHAGY IN THE EYE: FROM PHYSIOLOGY TO PATHOPHYSOLOGY. AUTOPHAGY REPORTS 2023; 2:2178996. [PMID: 37034386 PMCID: PMC10078619 DOI: 10.1080/27694127.2023.2178996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/26/2023] [Indexed: 03/05/2023]
Abstract
Autophagy is a catabolic self-degradative pathway that promotes the degradation and recycling of intracellular material through the lysosomal compartment. Although first believed to function in conditions of nutritional stress, autophagy is emerging as a critical cellular pathway, involved in a variety of physiological and pathophysiological processes. Autophagy dysregulation is associated with an increasing number of diseases, including ocular diseases. On one hand, mutations in autophagy-related genes have been linked to cataracts, glaucoma, and corneal dystrophy; on the other hand, alterations in autophagy and lysosomal pathways are a common finding in essentially all diseases of the eye. Moreover, LC3-associated phagocytosis, a form of non-canonical autophagy, is critical in promoting visual cycle function. This review collects the latest understanding of autophagy in the context of the eye. We will review and discuss the respective roles of autophagy in the physiology and/or pathophysiology of each of the ocular tissues, its diurnal/circadian variation, as well as its involvement in diseases of the eye.
Collapse
Affiliation(s)
- Paloma B. Liton
- Departments of Ophthalmology & Pathology, Duke School of Medicine, Duke University, Durham, NC 27705, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Patricia Boya
- Department of Neuroscience and Movement Science. Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Thomas A. Ferguson
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Anu Kauppinnen
- Faculty of Health and Sciences, School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Gordon W. Laurie
- Departments of Cell Biology, Ophthalmology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 113-0033, Japan
| | - Hideaki Morishita
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 113-0033, Japan
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Glaucoma Unit, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Jaya Sadda
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Debasish Sinha
- Department of Ophthalmology, Cell Biology, and Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debra A. Thompson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David N. Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|