1
|
Kirk NM, Liang Y, Ly H. Pathogenesis and virulence of coronavirus disease: Comparative pathology of animal models for COVID-19. Virulence 2024; 15:2316438. [PMID: 38362881 PMCID: PMC10878030 DOI: 10.1080/21505594.2024.2316438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
Animal models that can replicate clinical and pathologic features of severe human coronavirus infections have been instrumental in the development of novel vaccines and therapeutics. The goal of this review is to summarize our current understanding of the pathogenesis of coronavirus disease 2019 (COVID-19) and the pathologic features that can be observed in several currently available animal models. Knowledge gained from studying these animal models of SARS-CoV-2 infection can help inform appropriate model selection for disease modelling as well as for vaccine and therapeutic developments.
Collapse
Affiliation(s)
- Natalie M. Kirk
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
2
|
Zhao C, Bai Y, Wang W, Amonkar GM, Mou H, Olejnik J, Hume AJ, Mühlberger E, Lukacs NW, Fearns R, Lerou PH, Ai X. Activation of STAT3-mediated ciliated cell survival protects against severe infection by respiratory syncytial virus. J Clin Invest 2024; 134:e183978. [PMID: 39484716 PMCID: PMC11527452 DOI: 10.1172/jci183978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/15/2024] [Indexed: 11/03/2024] Open
Abstract
Respiratory syncytial virus (RSV) selectively targets ciliated cells in human bronchial epithelium and can cause bronchiolitis and pneumonia, mostly in infants. To identify molecular targets of intervention during RSV infection in infants, we investigated how age regulates RSV interaction with the bronchial epithelium barrier. Employing precision-cut lung slices and air-liquid interface cultures generated from infant and adult human donors, we found robust RSV virus spread and extensive apoptotic cell death only in infant bronchial epithelium. In contrast, adult bronchial epithelium showed no barrier damage and limited RSV infection. Single nuclear RNA-Seq revealed age-related insufficiency of an antiapoptotic STAT3 activation response to RSV infection in infant ciliated cells, which was exploited to facilitate virus spread via the extruded apoptotic ciliated cells carrying RSV. Activation of STAT3 and blockade of apoptosis rendered protection against severe RSV infection in infant bronchial epithelium. Lastly, apoptotic inhibitor treatment of a neonatal mouse model of RSV infection mitigated infection and inflammation in the lung. Taken together, our findings identify a STAT3-mediated antiapoptosis pathway as a target to battle severe RSV disease in infants.
Collapse
Affiliation(s)
- Caiqi Zhao
- Division of Newborn Medicine, Department of Pediatrics and
| | - Yan Bai
- Division of Newborn Medicine, Department of Pediatrics and
| | - Wei Wang
- Division of Newborn Medicine, Department of Pediatrics and
| | | | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Judith Olejnik
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Adam J. Hume
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Elke Mühlberger
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Nicholas W. Lukacs
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Paul H. Lerou
- Division of Newborn Medicine, Department of Pediatrics and
| | - Xingbin Ai
- Division of Newborn Medicine, Department of Pediatrics and
| |
Collapse
|
3
|
Spottiswoode N, Tsitsiklis A, Chu VT, Phan HV, DeVoe C, Love C, Ghale R, Bloomstein J, Zha BS, Maguire CP, Glascock A, Sarma A, Mourani PM, Kalantar KL, Detweiler A, Neff N, Haller SC, DeRisi JL, Erle DJ, Hendrickson CM, Kangelaris KN, Krummel MF, Matthay MA, Woodruff PG, Calfee CS, Langelier CR. Microbial dynamics and pulmonary immune responses in COVID-19 secondary bacterial pneumonia. Nat Commun 2024; 15:9339. [PMID: 39472555 PMCID: PMC11522429 DOI: 10.1038/s41467-024-53566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Secondary bacterial pneumonia (2°BP) is associated with significant morbidity following respiratory viral infection, yet remains incompletely understood. In a prospective cohort of 112 critically ill adults intubated for COVID-19, we comparatively assess longitudinal airway microbiome dynamics and the pulmonary transcriptome of patients who developed 2°BP versus controls who did not. We find that 2°BP is significantly associated with both mortality and corticosteroid treatment. The pulmonary microbiome in 2°BP is characterized by increased bacterial RNA mass and dominance of culture-confirmed pathogens, detectable days prior to 2°BP clinical diagnosis, and frequently also present in nasal swabs. Assessment of the pulmonary transcriptome reveals suppressed TNFα signaling in patients with 2°BP, and sensitivity analyses suggest this finding is mediated by corticosteroid treatment. Further, we find that increased bacterial RNA mass correlates with reduced expression of innate and adaptive immunity genes in both 2°BP patients and controls. Taken together, our findings provide fresh insights into the microbial dynamics and host immune features of COVID-19-associated 2°BP, and suggest that suppressed immune signaling, potentially mediated by corticosteroid treatment, permits expansion of opportunistic bacterial pathogens.
Collapse
Affiliation(s)
- Natasha Spottiswoode
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Alexandra Tsitsiklis
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Victoria T Chu
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Hoang Van Phan
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Catherine DeVoe
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Christina Love
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Rajani Ghale
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | | | - Beth Shoshana Zha
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | | | | | - Aartik Sarma
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Peter M Mourani
- Department of Pediatrics, Arkansas Children's, Little Rock, AR, USA
| | | | | | - Norma Neff
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Sidney C Haller
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Joseph L DeRisi
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - David J Erle
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, CA, USA
- Lung Biology Center, University of California, San Francisco, CA, USA
| | - Carolyn M Hendrickson
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | | | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Michael A Matthay
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
- Lung Biology Center, University of California, San Francisco, CA, USA
| | - Carolyn S Calfee
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Charles R Langelier
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Maiti AK. MDA5 Is a Major Determinant of Developing Symptoms in Critically Ill COVID-19 Patients. Clin Rev Allergy Immunol 2024:10.1007/s12016-024-09008-z. [PMID: 39460899 DOI: 10.1007/s12016-024-09008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Apart from the skin and mucosal immune barrier, the first line of defense of the human immune system includes MDA5 (ifih1 gene) which acts as a cellular sensor protein for certain viruses including SARS-CoV-2. Upon binding with viral RNA, MDA5 activates cell-intrinsic innate immunity, humoral responses, and MAVS (mitochondrial antiviral signaling). MAVS signaling induces type I and III interferon (IFN) expressions that further induce ISGs (interferon stimulatory genes) expressions to initiate human cell-mediated immune responses and attenuate viral replication. SARS-CoV-2 counteracts by producing NSP1, NSP2, NSP3, NSP5, NSP7, NSP12, ORF3A, ORF9, N, and M protein and directs anti-MDA5 antibody production presumably to antagonize IFN signaling. Furthermore, COVID-19 resembles several diseases that carry anti-MDA5 antibodies and the current COVID-19 vaccines induced anti-MDA5 phenotypes in healthy individuals. GWAS (genome-wide association studies) identified several polymorphisms (SNPs) in the ifih1-ifn pathway genes including rs1990760 in ifih1 that are strongly associated with COVID-19, and the associated risk allele is correlated with reduced IFN production. The genetic association of SNPs in ifih1 and ifih1-ifn pathway genes reinforces the molecular findings of the critical roles of MDA5 in sensing SARS-CoV-2 and subsequently the IFN responses to inhibit viral replication and host immune evasion. Thus, MDA5 or its pathway genes could be targeted for therapeutic development of COVID-19.
Collapse
Affiliation(s)
- Amit K Maiti
- Mydnavar, Department of Genetics and Genomics, 28475 Greenfield Rd, Southfield, MI, USA.
| |
Collapse
|
5
|
Bagheri V, Khorramdelazad H, Kafi M, Abbasifard M. Chemokine CCL2 and its receptor CCR2 in different age groups of patients with COVID-19. BMC Immunol 2024; 25:72. [PMID: 39455952 PMCID: PMC11515099 DOI: 10.1186/s12865-024-00662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Despite the development of various antiviral drugs, most of them are not effective in the treatment of coronavirus disease 2019 (COVID-19) as a hyperinflammatory disorder. Chemokine (C-C motif) ligand 2 (CCL2) is one of the critical CC chemokines involved in the pathogenesis and severity of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. This study aimed to investigate the expression of CCL2 and CC chemokine receptor 2 (CCR2) in COVID-19 patients. METHODS Peripheral blood samples were collected from 60 confirmed COVID-19 patients and 60 age-matched healthy subjects. The ages of the subjects were categorized as follows: up to 20 years, 20 to 40 years, 40 to 60 years, and more than 60 years. CCL2 serum levels were measured using the enzyme-linked immunosorbent assay (ELISA). CCR2 gene expression in peripheral blood mononuclear cells (PBMCs) was measured employing real-time polymerase chain reaction (PCR). RESULTS In all age groups, CCL2 serum levels were significantly elevated in patients compared to healthy controls (P < 0.0001). CCL2 levels were higher in severe patients than in moderate patients. Moreover, CCR2 expression by PBMCs was higher in patients compared to control subjects. However, a significant difference between patients and controls over 60 years of age was identified (P = 0.0353). There was no significant difference in CCR2 expression between moderate and severe COVID-19 patients. CONCLUSIONS Taken together, the findings demonstrate that CCL2 and CCR2 are upregulated in COVID-19 patients at protein and mRNA levels, respectively. Therefore, the CCL2/CCR2 axis may be a potential therapeutic target in order to improve patient outcomes.
Collapse
Affiliation(s)
- Vahid Bagheri
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Kafi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
6
|
Rowe T, Fletcher A, Svoboda P, Pohl J, Hatta Y, Jasso G, Wentworth DE, Ross TM. Interferon as an immunoadjuvant to enhance antibodies following influenza B infection and vaccination in ferrets. NPJ Vaccines 2024; 9:199. [PMID: 39448628 PMCID: PMC11502657 DOI: 10.1038/s41541-024-00973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Despite annual vaccination, influenza B viruses (IBV) continue to cause significant morbidity and mortality in humans. We have found that IBV infection resulted in a weaker innate and adaptive immune response than influenza A viruses (IAV) in ferrets. To understand and overcome the weak immune responses to IBV in ferrets, we administered type-I or type-III interferon (IFN) to ferrets following infection or vaccination and evaluated their effects on the immune response. IFN signaling following viral infection plays an important role in the initial innate immune response and affects subsequent adaptive immune responses. In the respiratory tract, IFN lambda (IFNL) has regulatory effects on adaptive immunity indirectly through thymic stromal lymphopoietin (TSLP), which then acts on immune cells to stimulate the adaptive response. Following IBV infection or vaccination, IFN treatment (IFN-Tx) upregulated gene expression of early inflammatory responses in the upper respiratory tract and robust IFN, TSLP, and inflammatory responses in peripheral blood cells. These responses were sustained following challenge or vaccination in IFN-Tx animals. Serum IFNL and TSLP levels were enhanced in IFN-Tx animals following challenge/rechallenge over mock-Tx; however, this difference was not observed following vaccination. Antibody responses in serum of IFN-Tx animals following IBV infection or vaccination increased more quickly and to higher titers and were sustained longer than mock-Tx animals over 3 months. Following rechallenge of infected animals 3 months post treatment, antibody levels remained higher than mock-Tx. However, IFN-Tx did not have an effect on antibody responses following challenge of vaccinated animals. A strong direct correlation was found between TSLP levels and antibody responses following challenge-rechallenge and vaccination-challenge indicating it as a useful tool for predicting adaptive immune responses following IBV infection or vaccination. The effects of IFN on strengthening both innate and adaptive responses to IBV may aid in development of more effective treatments following infection and improved influenza vaccines.
Collapse
Affiliation(s)
- Thomas Rowe
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| | | | - Pavel Svoboda
- Division of Core Laboratory Services and Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jan Pohl
- Division of Core Laboratory Services and Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yasuko Hatta
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gabriela Jasso
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - David E Wentworth
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ted M Ross
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
- Department of Infection Biology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
7
|
de Los Rios Kobara I, Jayewickreme R, Lee MJ, Wilk AJ, Blomkalns AL, Nadeau KC, Yang S, Rogers AJ, Blish CA. Interferon-mediated NK cell activation is associated with limited neutralization breadth during SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619639. [PMID: 39484382 PMCID: PMC11527016 DOI: 10.1101/2024.10.22.619639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Best known for their ability to kill infected or malignant cells, natural killer (NK) cells are also underappreciated regulators of the antibody response to viral infection. In mice, NK cells can kill T follicular helper (Tfh) cells, decreasing somatic hypermutation and vaccine responses. Although human NK cell activation correlates with poor vaccine response, the mechanisms of human NK cell regulation of adaptive immunity are poorly understood. We found that in human ancestral SARS-CoV-2 infection, broad neutralizers, who were capable of neutralizing Alpha, Beta, and Delta, had fewer NK cells that expressed inhibitory and immaturity markers whereas NK cells from narrow neutralizers were highly activated and expressed interferon-stimulated genes (ISGs). ISG-mediated activation in NK cells from healthy donors increased cytotoxicity and functional responses to induced Tfh-like cells. This work reveals that NK cell activation and dysregulated inflammation may play a role in poor antibody response to SARS-CoV-2 and opens exciting avenues for designing improved vaccines and adjuvants to target emerging pathogens.
Collapse
|
8
|
Brooks K, Nelson CE, Aguilar C, Hoang TN, Ortiz AM, Langner CA, Yee DS, Flynn JK, Vrba S, Laidlaw E, Vannella KM, Grazioli A, Saharia KK, Purcell M, Singireddy S, Wu J, Stankiewicz J, Chertow DS, Sereti I, Paiardini M, Hickman HD, Via LE, Barber DL, Brenchley JM. SARS-CoV-2 infection perturbs the gastrointestinal tract and induces modest microbial translocation across the intestinal barrier. J Virol 2024; 98:e0128824. [PMID: 39264207 PMCID: PMC11495055 DOI: 10.1128/jvi.01288-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
SARS-CoV-2 infects via the respiratory tract, but COVID-19 includes an array of non-respiratory symptoms, among them gastrointestinal (GI) manifestations such as vomiting and diarrhea. Here we investigated the GI pathology of SARS-CoV-2 infections in rhesus macaques and humans. Macaques experienced mild infection with USA-WA1/2020 and shed viral RNA in the respiratory tract and stool, including subgenomic RNA indicative of replication in the GI tract. Intestinal immune cell populations were disturbed, with significantly fewer proliferating (Ki67+) jejunal B cells in SARS-CoV-2-infected macaques than uninfected ones. Modest translocation of bacteria/bacterial antigen was observed across the colonic epithelium, with a corresponding significant increase in plasma soluble CD14 (sCD14) that may be induced by LPS. Human plasma demonstrated significant decreases in interleukin (IL)-6 and sCD14 upon recovery from COVID-19, suggesting resolution of inflammation and response to translocated bacteria. sCD14 significantly positively correlated with zonulin, an indicator of gut barrier integrity, and IL-6. These results demonstrate that GI perturbations such as microbial translocation can occur in even mild SARS-CoV-2 infections and may contribute to the COVID-19 inflammatory state.IMPORTANCEThis study investigates gastrointestinal (GI) barrier disruption in SARS-CoV-2 infections and how it may contribute to disease. We observed bacteria or bacterial products crossing from the colon interior (the lumen) to the lamina propria during SARS-CoV-2 infection in macaques. Bacteria/bacterial products are tolerated in the lumen but may induce immune responses if they translocate to the lamina propria. We also observed a significant increase in soluble CD14, which is associated with an immune response to bacterial products. In addition, we observed that humans recovering from COVID-19 experienced a significant decrease in soluble CD14, as well as the inflammatory marker interleukin (IL)-6. IL-6 and sCD14 correlated significantly across macaque and human samples. These findings suggest that SARS-CoV-2 infection results in GI barrier disruption that permits microbial translocation and a corresponding immune response. These findings could aid in developing interventions to improve COVID-19 patient outcomes.
Collapse
Affiliation(s)
- Kelsie Brooks
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christine E. Nelson
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cynthia Aguilar
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Timothy N. Hoang
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Alexandra M. Ortiz
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Charlotte A. Langner
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Debra S. Yee
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacob K. Flynn
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sophia Vrba
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Laidlaw
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin M. Vannella
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Critical Care Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Alison Grazioli
- Department of Medicine and Program in Trauma, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kapil K. Saharia
- Division of Infectious Diseases, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Madeleine Purcell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shreya Singireddy
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jocelyn Wu
- Department of Radiology and Imagining Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jason Stankiewicz
- Department of Pulmonary and Critical Care Medicine, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Daniel S. Chertow
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Critical Care Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Heather D. Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura E. Via
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Tuberculosis Imaging Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel L. Barber
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason M. Brenchley
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Hofmann N, Bartkuhn M, Becker S, Biedenkopf N, Böttcher-Friebertshäuser E, Brinkrolf K, Dietzel E, Fehling SK, Goesmann A, Heindl MR, Hoffmann S, Karl N, Maisner A, Mostafa A, Kornecki L, Müller-Kräuter H, Müller-Ruttloff C, Nist A, Pleschka S, Sauerhering L, Stiewe T, Strecker T, Wilhelm J, Wuerth JD, Ziebuhr J, Weber F, Schmitz ML. Distinct negative-sense RNA viruses induce a common set of transcripts encoding proteins forming an extensive network. J Virol 2024; 98:e0093524. [PMID: 39283124 PMCID: PMC11494938 DOI: 10.1128/jvi.00935-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 10/23/2024] Open
Abstract
The large group of negative-strand RNA viruses (NSVs) comprises many important pathogens. To identify conserved patterns in host responses, we systematically compared changes in the cellular RNA levels after infection of human hepatoma cells with nine different NSVs of different virulence degrees. RNA sequencing experiments indicated that the amount of viral RNA in host cells correlates with the number of differentially expressed host cell transcripts. Time-resolved differential gene expression analysis revealed a common set of 178 RNAs that are regulated by all NSVs analyzed. A newly developed open access web application allows downloads and visualizations of all gene expression comparisons for individual viruses over time or between several viruses. Most of the genes included in the core set of commonly differentially expressed genes (DEGs) encode proteins that serve as membrane receptors, signaling proteins and regulators of transcription. They mainly function in signal transduction and control immunity, metabolism, and cell survival. One hundred sixty-five of the DEGs encode host proteins from which 47 have already been linked to the regulation of viral infections in previous studies and 89 proteins form a complex interaction network that may function as a core hub to control NSV infections.IMPORTANCEThe infection of cells with negative-strand RNA viruses leads to the differential expression of many host cell RNAs. The differential spectrum of virus-regulated RNAs reflects a large variety of events including anti-viral responses, cell remodeling, and cell damage. Here, these virus-specific differences and similarities in the regulated RNAs were measured in a highly standardized model. A newly developed app allows interested scientists a wide range of comparisons and visualizations.
Collapse
Affiliation(s)
- Nina Hofmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | | | - Karina Brinkrolf
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Erik Dietzel
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | | | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Miriam Ruth Heindl
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Simone Hoffmann
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Nadja Karl
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Ahmed Mostafa
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Laura Kornecki
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Helena Müller-Kräuter
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Christin Müller-Ruttloff
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Lucie Sauerhering
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Jennifer D. Wuerth
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - M. Lienhard Schmitz
- Institute of Biochemistry, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
10
|
Madsen AMR, Gehrt L, Schaltz-Buchholzer F, Möller S, Christiansen R, Schellerup L, Norberg LA, Krause TG, Nielsen S, Bliddal M, Aaby P, Benn CS. Evaluating the effect of BCG vaccination for non-specific protection from infection in senior citizens during the COVID-19 pandemic: A randomised clinical trial. J Infect 2024; 89:106319. [PMID: 39423874 DOI: 10.1016/j.jinf.2024.106319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES The Bacillus Calmette-Guérin (BCG) vaccine may induce non-specific protection against unrelated infections. We tested the effect of BCG on the risk of infections among Danish senior citizens. METHODS Single-blinded randomised controlled trial including 1676 volunteers >65 years. Participants were randomised 1:1 to BCG or placebo and followed for 12 months. The primary outcome was acute infection leading to medical contact. Secondary outcomes were verified SARS-CoV-2 infection, self-reported respiratory symptoms, and all-cause hospitalisation. Data was analysed using Cox regression models, estimating hazard ratios (HR) with 95% confidence intervals (CI). RESULTS The incidence of acute infection was 52.1 and 58.2 per 100 person-years for BCG and placebo, respectively (HR=0.89, 95% CI=0.78-1.02). There was no effect of BCG on SARS-CoV-2 infections (0.97, 0.75-1.26) or all-cause hospitalisations (1.10, 0.80-1.50), but BCG was associated with more respiratory symptoms (1.21, 1.10-1.33). BCG reduced the incidence of acute infections among participants <75 years (0.82, 0.70-0.95) but not among those >75 years (1.14, 0.88-1.47). In participants, who were COVID-19 vaccinated before enrolment, BCG was associated with lower incidence of acute infections (0.65, 0.50-0.85). CONCLUSION BCG did not reduce risk of acute infections among Danish seniors overall, but the effect was modified by age group and COVID-19 vaccination. TRIAL REGISTRATION ClinicalTrials.gov (NCT04542330) and EU Clinical Trials Register (EudraCT number 2020-003904-15). Full trial protocol is available at ClinicalTrials.gov. SUMMARY In a randomised clinical trial among Danish senior citizens, BCG vaccination did not reduce the overall risk of acute infection, but BCG was associated with reduced risk in participants <75 years and participants who received COVID-19 vaccines prior to enrolment.
Collapse
Affiliation(s)
- Anne Marie Rosendahl Madsen
- Bandim Health Project, Open Patient Data Explorative Network (OPEN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark.
| | - Lise Gehrt
- Bandim Health Project, Open Patient Data Explorative Network (OPEN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark; Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Frederik Schaltz-Buchholzer
- Bandim Health Project, Open Patient Data Explorative Network (OPEN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Bandim Health Project, INDEPTH Network, 8611004 Bissau, Guinea-Bissau
| | - Sören Möller
- Research unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Open Patient Data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Rikke Christiansen
- Bandim Health Project, Open Patient Data Explorative Network (OPEN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lars Schellerup
- Bandim Health Project, Open Patient Data Explorative Network (OPEN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Tyra Grove Krause
- Department of Infectious Disease Epidemiology, Statens Serum Institut, Copenhagen, Denmark
| | - Sebastian Nielsen
- Bandim Health Project, Open Patient Data Explorative Network (OPEN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mette Bliddal
- Research unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Peter Aaby
- Bandim Health Project, Open Patient Data Explorative Network (OPEN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Bandim Health Project, INDEPTH Network, 8611004 Bissau, Guinea-Bissau
| | - Christine Stabell Benn
- Bandim Health Project, Open Patient Data Explorative Network (OPEN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
11
|
Hsieh LL, Looney M, Figueroa A, Massaccesi G, Stavrakis G, Anaya EU, D'Alessio FR, Ordonez AA, Pekosz AS, DeFilippis VR, Karakousis PC, Karaba AH, Cox AL. Bystander monocytic cells drive infection-independent NLRP3 inflammasome response to SARS-CoV-2. mBio 2024; 15:e0081024. [PMID: 39240187 PMCID: PMC11481483 DOI: 10.1128/mbio.00810-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 09/07/2024] Open
Abstract
The pathogenesis of COVID-19 is associated with a hyperinflammatory immune response. Monocytes and macrophages play a central role in this hyperinflammatory response to SARS-CoV-2. NLRP3 inflammasome activation has been observed in monocytes of patients with COVID-19, but the mechanism and consequences of inflammasome activation require further investigation. In this study, we inoculated a macrophage-like THP-1 cell line, primary differentiated human nasal epithelial cell (hNEC) cultures, and primary monocytes with SARS-CoV-2. We found that the activation of the NLRP3 inflammasome in macrophages does not rely on viral replication, receptor-mediated entry, or actin-dependent entry. SARS-CoV-2 productively infected hNEC cultures without triggering the production of inflammasome cytokines IL-18 and IL-1β. Importantly, these cytokines did not inhibit viral replication in hNEC cultures. SARS-CoV-2 inoculation of primary monocytes led to inflammasome activation and induced a macrophage phenotype in these cells. Monocytic cells from bronchoalveolar lavage (BAL) fluid, but not from peripheral blood, of patients with COVID-19, showed evidence of inflammasome activation, expressed the proinflammatory marker CD11b, and displayed oxidative burst. These findings highlight the central role of activated macrophages, as a result of direct viral sensing, in COVID-19 and support the inhibition of IL-1β and IL-18 as potential therapeutic strategies to reduce immunopathology without increasing viral replication. IMPORTANCE Inflammasome activation is associated with severe COVID-19. The impact of inflammasome activation on viral replication and mechanistic details of this activation are not clarified. This study advances our understanding of the role of inflammasome activation in macrophages by identifying TLR2, NLRP3, ASC, and caspase-1 as dependent factors in this activation. Further, it highlights that SARS-CoV-2 inflammasome activation is not a feature of nasal epithelial cells but rather activation of bystander macrophages in the airway. Finally, we demonstrate that two pro inflammatory cytokines produced by inflammasome activation, IL-18 and IL-1β, do not restrict viral replication and are potential targets to ameliorate pathological inflammation in severe COVID-19.
Collapse
Affiliation(s)
- Leon L. Hsieh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Monika Looney
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexis Figueroa
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guido Massaccesi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Georgia Stavrakis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Eduardo U. Anaya
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Franco R. D'Alessio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alvaro A. Ordonez
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew S. Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Victor R. DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Petros C. Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew H. Karaba
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Hamidah B, Pakpahan C, Wulandari L, Tinduh D, Wibawa T, Prakoeswa CRS, Oceandy D. Expression of interferon-stimulated genes, but not polymorphisms in the interferon α/β receptor 2 gene, is associated with coronavirus disease 2019 mortality. Heliyon 2024; 10:e39002. [PMID: 39435115 PMCID: PMC11492585 DOI: 10.1016/j.heliyon.2024.e39002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Excessive inflammatory response is a hallmark of severe COVID-19. This study investigated the associations between interferon-stimulated genes (ISGs) expression, genetic variation in the interferon α/β receptor 2 (IFNAR2) gene, and COVID-19 mortality. We investigated 67 patients with moderate-to-severe COVID-19. Of them, 22 patients (32.8 %) died because of COVID-19. We examined the expression of ISGs in total RNA of peripheral whole blood. We observed a significant increase in the expression of all ISGs examined in non-surviving patients, indicating a heightened interferon type I signaling activation in non-survived patients. Subsequently, we analyzed whether the increase in ISGs expression was correlated with polymorphism within the IFNAR2 gene. Intriguingly, no significant association was observed between IFNAR2 gene polymorphism and COVID-19 mortality. Similarly, no association was noted between the IFNAR2 and ISGs expression levels. Overall, our data showed that higher ISGs expression, which presumably indicates heightened interferon type I activation, is associated with COVID-19 mortality.
Collapse
Affiliation(s)
- Berliana Hamidah
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Cennikon Pakpahan
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Laksmi Wulandari
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga/Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Damayanti Tinduh
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universitas Airlangga/Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Cita Rosita Sigit Prakoeswa
- Department of Dermatology, Venerology and Aesthetics, Faculty of Medicine, Universitas Airlangga / Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Weckman AM, Guagliardo SAJ, Crowley VM, Moro L, Piubelli C, Ursini T, van Ierssel SH, Gobbi FG, Emetulu H, Rizwan A, Angelo KM, Licitra C, Connor BA, Barkati S, Ngai M, Zhong K, Huits R, Hamer DH, Libman M, Kain KC. Host Response Markers of Inflammation and Endothelial Activation Associated with COVID-19 Severity and Mortality: A GeoSentinel Prospective Observational Cohort. Viruses 2024; 16:1615. [PMID: 39459948 PMCID: PMC11512287 DOI: 10.3390/v16101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The effect of the COVID-19 pandemic on healthcare systems emphasized the need for rapid and effective triage tools to identify patients at risk of severe or fatal infection. Measuring host response markers of inflammation and endothelial activation at clinical presentation may help to inform appropriate triage and care practices in patients with SARS-CoV-2 infection. METHODS We enrolled patients with COVID-19 across five GeoSentinel clinical sites (in Italy, Belgium, Canada, and the United States) from September 2020 to December 2021, and analyzed the association of plasma markers, including soluble urokinase-type plasminogen activator receptor (suPAR), soluble tumor necrosis factor receptor-1 (sTREM-1), interleukin-6 (IL-6), interleukin-8 (IL-8), complement component C5a (C5a), von Willebrand factor (VWF-a2), and interleukin-1 receptor antagonist (IL-1Ra), with 28-day (D28) mortality and 7-day (D7) severity (discharged, hospitalized on ward, or died/admitted to the ICU). RESULTS Of 193 patients, 8.9% (16 of 180) died by D28. Higher concentrations of suPAR were associated with increased odds of mortality at D28 and severity at D7 in univariable and multivariable regression models. The biomarkers sTREM-1 and IL-1Ra showed bivariate associations with mortality at D28 and severity at D7. IL-6, VWF, C5a, and IL-8 were not as indicative of progression to severe disease or death. Conclusions: Our findings confirm previous studies' assertions that point-of-care tests for suPAR and sTREM-1 could facilitate the triage of patients with SARS-CoV-2 infection, which may help guide hospital resource allocation.
Collapse
Affiliation(s)
- Andrea M. Weckman
- UHN-Toronto General Hospital, University of Toronto, Toronto, ON M5G 1L7, Canada; (A.M.W.)
| | | | - Valerie M. Crowley
- UHN-Toronto General Hospital, University of Toronto, Toronto, ON M5G 1L7, Canada; (A.M.W.)
| | - Lucia Moro
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy
| | - Chiara Piubelli
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy
| | - Tamara Ursini
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy
| | - Sabrina H. van Ierssel
- Department of Internal Medicine, Antwerp University Hospital (UZA), 2650 Antwerp, Belgium
| | - Federico G. Gobbi
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Hannah Emetulu
- International Society of Travel Medicine, Atlanta, GA 30338, USA
| | - Aisha Rizwan
- International Society of Travel Medicine, Atlanta, GA 30338, USA
| | - Kristina M. Angelo
- Division of Global Migration and Quarantine, Travelers’ Health Branch, Atlanta, GA 30322, USA
| | - Carmelo Licitra
- Orlando Health Travel Medicine and Infectious Disease, Orlando, FL 34761, USA
| | - Bradley A. Connor
- Weill Cornell Medical College and the New York Center for Travel and Tropical Medicine, New York, NY 10022, USA
| | - Sapha Barkati
- J.D. MacLean Centre for Tropical Diseases, McGill University, Montreal, QC H3A 0G4, Canada
| | - Michelle Ngai
- UHN-Toronto General Hospital, University of Toronto, Toronto, ON M5G 1L7, Canada; (A.M.W.)
| | - Kathleen Zhong
- UHN-Toronto General Hospital, University of Toronto, Toronto, ON M5G 1L7, Canada; (A.M.W.)
| | - Ralph Huits
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy
- Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Davidson H. Hamer
- Section of Infectious Diseases, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Center on Emerging Infectious Diseases, Boston University, Boston, MA 02118, USA
- Department of Global Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Michael Libman
- J.D. MacLean Centre for Tropical Diseases, McGill University, Montreal, QC H3A 0G4, Canada
| | - Kevin C. Kain
- UHN-Toronto General Hospital, University of Toronto, Toronto, ON M5G 1L7, Canada; (A.M.W.)
- Division of Infectious Diseases, Department of Medicine, MaRS Centre, TMDT, University of Toronto, 10th Floor 10-351, Toronto, QC M5G 1L7, Canada
| |
Collapse
|
14
|
Liang Y, Chang C, Ding Y, Gai X, Chu H, Zeng L, Zhou Q, Sun Y. SARS-CoV-2 RNAemia as a reliable predictor of long-term mortality among older adults hospitalized in pulmonary intermediate care units: a prospective cohort study. Virol J 2024; 21:247. [PMID: 39375723 PMCID: PMC11457408 DOI: 10.1186/s12985-024-02526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND SARS-CoV-2 viremia is associated with disease severity and high risk for in-hospital mortality. However, the impact of SARS-CoV-2 viremia on long-term outcomes in hospitalized patients with COVID-19 is poorly understood. METHODS We conducted a prospective cohort study and recruited a group of older adult patients with COVID-19 admitted to pulmonary intermediate care units of Peking University Third Hospital during December 2022 and January 2023. The plasma level of SARS-CoV-2 RNA was determined by a standardized RT-PCR technique, and SARS-CoV-2 RNAemia was defined as a plasma viral load ≥ 50 copies/ml. In-hospital and follow-up (180-day) outcome data were collected. RESULTS A total of 101 patients with an average of 80.4 years were recruited, and 63.4% of them were severe or very severe cases. Twenty-eight patients (27.7%) had SARS-CoV-2 RNAemia, with a median viral RNA load of 422.1 [261.3, 1085.6] copies/ml. Patients with SARS-CoV-2 RNAemia were more likely to develop critical cases and had a higher incidence of sepsis. Accordingly, they had a higher 180-day mortality (57.1% vs. 19.7%, P < 0.001), as well as in-hospital mortality (50.0% vs. 13.7%, P < 0.001), independent of age, disease severity, sepsis, lymphocyte count and C-Reactive protein. In addition, the risk for 180-day mortality increased with the SARS-CoV-2 RNA load in plasma. Plasma cytokines, including IL-6, IL-8 and IL-10, were higher in patients with SARS-CoV-2 RNAemia. CONCLUSIONS Our study indicates that SARS-CoV-2 RNAemia serves as a useful biomarker for predicting mortality, especially long-term mortality, in older adult patients hospitalized in pulmonary intermediate care units. TRIAL REGISTRATION Chinese Clinical Trial Registry website (No. ChiCTR2300067434).
Collapse
Affiliation(s)
- Ying Liang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, North Garden Rd. 49, Haidian District, Beijing, 100191, China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, North Garden Rd. 49, Haidian District, Beijing, 100191, China
| | - Yanling Ding
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, North Garden Rd. 49, Haidian District, Beijing, 100191, China
| | - Xiaoyan Gai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, North Garden Rd. 49, Haidian District, Beijing, 100191, China
| | - Hongling Chu
- Clinical Epidemiology Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Lin Zeng
- Clinical Epidemiology Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Qingtao Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, North Garden Rd. 49, Haidian District, Beijing, 100191, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, North Garden Rd. 49, Haidian District, Beijing, 100191, China.
| |
Collapse
|
15
|
Zahaf A, Lajmi H, Kamoun A, Sioud S, Abdelkafi I, Bourguiba R, Ben Achour B. [Myelin oligodendrocyte glycoprotein antibody-associated optic neuritis after SARS-CoV-2 infection: Fifteen-month follow-up]. J Fr Ophtalmol 2024:104307. [PMID: 39379187 DOI: 10.1016/j.jfo.2024.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 10/10/2024]
Affiliation(s)
- A Zahaf
- Service d'ophtalmologie, hôpital des forces de sécurité intérieure, 2078 La Marsa, Tunisie; Faculté de médecine de Tunis, université Tunis El Manar, 15, rue Djebel Lakhdhar, 1007 Tunis, Tunisie.
| | - H Lajmi
- Service d'ophtalmologie, hôpital des forces de sécurité intérieure, 2078 La Marsa, Tunisie; Faculté de médecine de Tunis, université Tunis El Manar, 15, rue Djebel Lakhdhar, 1007 Tunis, Tunisie
| | - A Kamoun
- Service d'ophtalmologie, hôpital des forces de sécurité intérieure, 2078 La Marsa, Tunisie; Faculté de médecine de Tunis, université Tunis El Manar, 15, rue Djebel Lakhdhar, 1007 Tunis, Tunisie
| | - S Sioud
- Service d'ophtalmologie, hôpital des forces de sécurité intérieure, 2078 La Marsa, Tunisie; Faculté de médecine de Tunis, université Tunis El Manar, 15, rue Djebel Lakhdhar, 1007 Tunis, Tunisie
| | - I Abdelkafi
- Service d'ophtalmologie, hôpital des forces de sécurité intérieure, 2078 La Marsa, Tunisie; Faculté de médecine de Tunis, université Tunis El Manar, 15, rue Djebel Lakhdhar, 1007 Tunis, Tunisie
| | - R Bourguiba
- Service d'ophtalmologie, hôpital des forces de sécurité intérieure, 2078 La Marsa, Tunisie; Faculté de médecine de Tunis, université Tunis El Manar, 15, rue Djebel Lakhdhar, 1007 Tunis, Tunisie
| | - B Ben Achour
- Service d'ophtalmologie, hôpital des forces de sécurité intérieure, 2078 La Marsa, Tunisie; Faculté de médecine de Tunis, université Tunis El Manar, 15, rue Djebel Lakhdhar, 1007 Tunis, Tunisie
| |
Collapse
|
16
|
Xie S, Song Z, Chen R, Zhang X, Wu S, Chen J, Huang P, Liu H, Yu K, Zhang Y, Tan S, Liu J, Ma X, Zhang H, He X, Pan T. The SARS-unique domain (SUD) of SARS-CoV-2 nsp3 protein inhibits the antiviral immune responses through the NF-κB pathway. J Med Virol 2024; 96:e70007. [PMID: 39400381 DOI: 10.1002/jmv.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/14/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Nuclear factor κB (NF-κB) plays a crucial role in various cellular processes, including inflammatory and immune responses. Its activation is tightly regulated by the IKK (IκB kinase) complex. Upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the virus is initially recognized by the innate immune system and typically activates the NF-κB pathway, leading to a severe inflammatory response. However, the influence of viral proteins upon pro-inflammatory pathway is complicated. Here, we demonstrated that the viral protein nsp3 of SARS-CoV-2 exhibits an unusual function, which attenuated the NF-κB-mediated inflammatory response against SARS-CoV-2 infection in a unique manner. nsp3 interacted with the essential NF-κB modulator NEMO/IKKγ and promoted its polyubiquitylation via the E3 ubiquitin ligase CBL (Cbl Proto-Oncogene). Consequently, polyubiquitylated NEMO undergoes proteasome-dependent degradation, which disrupts NF-κB activation. Moreover, we found that the SARS unique domain (SUD) in nsp3 of SARS-CoV-2 is essential for inducing NEMO degradation, whereas this function is absent in SUD of SARS-CoV. The reduced activation of pro-inflammatory response at an early stage could mask the host immune response and faciliate excessive viral replication. Conversely, this finding may partially explain why SARS-CoV-2 causes a less inflammatory reaction than SARS-CoV, resulting in more mild or moderate COVID-19 cases and greater transmissibility. Given that NEMO is important for NF-κB activation, we propose that inhibiting polyubiquitylation and degradation of NEMO upon SARS-CoV-2 infection is a novel strategy to modulate the host inflammatory response.
Collapse
Affiliation(s)
- Siyi Xie
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Zheng Song
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ran Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xu Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuangxin Wu
- Medical Research Center, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jingliang Chen
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peiming Huang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Hanxin Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Kaixin Yu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yixin Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Siyu Tan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jun Liu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiancai Ma
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Xin He
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Pan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Halter S, Rosenzwajg M, Klatzmann D, Sitbon A, Monsel A. Regulatory T Cells in Acute Respiratory Distress Syndrome: Current Status and Potential for Future Immunotherapies. Anesthesiology 2024; 141:755-764. [PMID: 39037703 DOI: 10.1097/aln.0000000000005047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
This Clinical Focus Review aims to comprehensively assess current knowledge regarding the biology of Tregs and their role in COVID-19–associated and nonassociated ARDS, focusing on their involvement during the acute and resolution phases of the disease. The authors discuss the potential of Treg-based cell therapies and drugs targeting Tregs as therapeutic strategies in ARDS.
Collapse
Affiliation(s)
- Sébastien Halter
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris Sorbonne University, Paris, France; Sorbonne University-INSERM UMRS_959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; and Biotherapy (CIC-BTi), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Michelle Rosenzwajg
- Sorbonne University-INSERM UMRS_959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; Biotherapy (CIC-BTi), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - David Klatzmann
- Sorbonne University-INSERM UMRS_959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; Biotherapy (CIC-BTi), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandre Sitbon
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris Sorbonne University, Paris, France; Sorbonne University, INSERM, Centre de Recherche de Saint-Antoine, UMRS-938, Paris, France
| | - Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris Sorbonne University, Paris, France; Sorbonne University-INSERM UMRS_959, Immunology-Immunopathology-Immunotherapy (I3), 75013 Paris, France; Biotherapy (CIC-BTi), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
18
|
Loeb K, Lemaille C, Frederick C, Wallace HL, Kindrachuk J. Harnessing high-throughput OMICS in emerging zoonotic virus preparedness and response activities. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167337. [PMID: 38986821 DOI: 10.1016/j.bbadis.2024.167337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Emerging and re-emerging viruses pose unpredictable and significant challenges to global health. Emerging zoonotic infectious diseases, which are transmitted between humans and non-human animals, have been estimated to be responsible for nearly two-thirds of emerging infectious disease events and emergence events attributed to these pathogens have been increasing in frequency with the potential for high global health and economic burdens. In this review we will focus on the application of highthroughput OMICS approaches to emerging zoonotic virus investigtations. We highlight the key contributions of transcriptome and proteome investigations to emerging zoonotic virus preparedness and response activities with a focus on SARS-CoV-2, avian influenza virus subtype H5N1, and Orthoebolavirus investigations.
Collapse
Affiliation(s)
- Kristi Loeb
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Candice Lemaille
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Christina Frederick
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Hannah L Wallace
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jason Kindrachuk
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Manitoba Centre for Proteomics and Systems Biology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
19
|
Guo M, Shang S, Li M, Cai G, Li P, Chen X, Li Q. Understanding autoimmune response after SARS-CoV-2 infection and the pathogenesis/mechanisms of long COVID. MEDICAL REVIEW (2021) 2024; 4:367-383. [PMID: 39444797 PMCID: PMC11495526 DOI: 10.1515/mr-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/04/2024] [Indexed: 10/25/2024]
Abstract
COVID-19 posed a major challenge to the healthcare system and resources worldwide. The popularization of vaccines and the adoption of numerous prevention and control measures enabled the gradual end of the COVID-19 pandemic. However, successive occurrence of autoimmune diseases in patients with COVID-19 cannot be overlooked. Long COVID has been the major focus of research due to the long duration of different symptoms and the variety of systems involved. Autoimmunity may play a crucial role in the pathogenesis of long COVID. Here, we reviewed several autoimmune disorders occurring after COVID-19 infection and the pathogenesis of long COVID.
Collapse
Affiliation(s)
- Ming Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Shunlai Shang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Mengfei Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Haihe Laboratory of CellEcosystem, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| |
Collapse
|
20
|
Wang MM, Zhao Y, Liu J, Fan RR, Tang YQ, Guo ZY, Li T. The role of the cGAS-STING signaling pathway in viral infections, inflammatory and autoimmune diseases. Acta Pharmacol Sin 2024; 45:1997-2010. [PMID: 38822084 PMCID: PMC11420349 DOI: 10.1038/s41401-023-01185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/18/2023] [Indexed: 06/02/2024] Open
Abstract
Pattern recognition receptors are an essential part of the immune system, which detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and help shape both innate and adaptive immune responses. When dsDNA is present, cyclic GMP-AMP Synthase (cGAS) produces a second messenger called cyclic GMP-AMP (cGAMP), which then triggers an adaptor protein called STING, and eventually activates the expression of type I interferon (IFN) and pro-inflammatory cytokines in immune cells. The cGAS-STING signaling pathway has been receiving a lot of attention lately as a key immune-surveillance mediator. In this review, we summarize the present circumstances of the cGAS-STING signaling pathway in viral infections and inflammatory diseases, as well as autoimmune diseases. Modulation of the cGAS-STING signaling pathway provides potential strategies for treating viral infections, inflammatory diseases, and autoimmune diseases.
Collapse
Affiliation(s)
- Ming-Ming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Yue Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Rong-Rong Fan
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden
| | - Yan-Qing Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Zheng-Yang Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China.
| |
Collapse
|
21
|
Zaleska A, Dor-Wojnarowska A, Radlińska A, Rorat M, Szymański W, Gajewski A, Chałubiński M. IFN Lambda Deficiency Contributes to Severe COVID-19 Outcomes. Int J Mol Sci 2024; 25:10530. [PMID: 39408857 PMCID: PMC11476353 DOI: 10.3390/ijms251910530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Interferons (IFNs) produced by airway epithelial cells are crucial in defending against pathogens. Fluctuations in IFN-λ levels may influence coronavirus disease 19 (COVID-19) severity. However, conflicting data have been reported regarding serum IFN-λ concentrations in COVID-19 patients. To address this, we evaluated serum IFN-λ levels over time in moderate and severe COVID-19 patients and their association with cytokine production and clinical parameters using the enzyme-linked immunosorbent assay (ELISA) and the Bio-Plex Pro Human Cytokine 17-plex Assay. Results from testing 51 COVID-19 patients showed that 68% lacked detectable serum IFN-λ. Among non-IFN-λ secretors, severe COVID-19 predominated. In contrast, IFN-λ secretors displayed stable IFN-λ levels in moderate cases, while severe cases showed a decline over time, which persisted even after recovery. A negative correlation was observed between IFN-λ levels and inflammatory markers. This, combined with an increase in tumor necrosis factor alpha (TNF-α) and clinical improvement, suggests a regulatory role for IFN-λ in promoting faster recovery. Despite this, survival rates were similar between the groups, indicating that while IFN-λ influences the course of the disease, it does not directly affect overall survival. In conclusion, IFN-λ is vital, but not unique, for the antiviral response and COVID-19 recovery. Simultaneously, serum IFN-λ deficiency signifies severe COVID-19.
Collapse
Affiliation(s)
- Anna Zaleska
- Department of Allergology and Internal Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.D.-W.); (A.R.)
| | - Anna Dor-Wojnarowska
- Department of Allergology and Internal Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.D.-W.); (A.R.)
| | - Anna Radlińska
- Department of Allergology and Internal Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.D.-W.); (A.R.)
| | - Marta Rorat
- Department of Social Sciences and Infectious Diseases, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
| | - Wojciech Szymański
- Department of Infectious Diseases and Hepatology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, 92-213 Lodz, Poland; (A.G.); (M.C.)
| | - Maciej Chałubiński
- Department of Immunology and Allergy, Medical University of Lodz, 92-213 Lodz, Poland; (A.G.); (M.C.)
| |
Collapse
|
22
|
Notarbartolo S. T-Cell Immune Responses to SARS-CoV-2 Infection and Vaccination. Vaccines (Basel) 2024; 12:1126. [PMID: 39460293 PMCID: PMC11511197 DOI: 10.3390/vaccines12101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The innate and adaptive immune systems collaborate to detect SARS-CoV-2 infection, minimize the viral spread, and kill infected cells, ultimately leading to the resolution of the infection. The adaptive immune system develops a memory of previous encounters with the virus, providing enhanced responses when rechallenged by the same pathogen. Such immunological memory is the basis of vaccine function. Here, we review the current knowledge on the immune response to SARS-CoV-2 infection and vaccination, focusing on the pivotal role of T cells in establishing protective immunity against the virus. After providing an overview of the immune response to SARS-CoV-2 infection, we describe the main features of SARS-CoV-2-specific CD4+ and CD8+ T cells, including cross-reactive T cells, generated in patients with different degrees of COVID-19 severity, and of Spike-specific CD4+ and CD8+ T cells induced by vaccines. Finally, we discuss T-cell responses to SARS-CoV-2 variants and hybrid immunity and conclude by highlighting possible strategies to improve the efficacy of COVID-19 vaccination.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
23
|
Schultz IC, Dos Santos Pereira Andrade AC, Dubuc I, Laroche A, Allaeys I, Doré E, Bertrand N, Vallières L, Fradette J, Flamand L, Wink MR, Boilard E. Targeting Cytokines: Evaluating the Potential of Mesenchymal Stem Cell Derived Extracellular Vesicles in the Management of COVID-19. Stem Cell Rev Rep 2024:10.1007/s12015-024-10794-4. [PMID: 39340739 DOI: 10.1007/s12015-024-10794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19), caused by virus SARS-CoV-2, is characterized by massive inflammation and immune system imbalance. Despite the implementation of vaccination protocols, the accessibility of treatment remains uneven. Furthermore, the persistent threat of new variants underscores the urgent need for expanded research into therapeutic options for SARS-CoV-2. Mesenchymal stem cells (MSCs) are known for their immunomodulatory potential through the release of molecules into the extracellular space, either as soluble elements or carried by extracellular vesicles (EVs). The aim of this study was to evaluate the anti-inflammatory potential of EVs obtained from human adipose tissue (ASC-EVs) against SARS-CoV-2 infection. ASC-EVs were purified by size-exclusion chromatography, and co-culture assays confirmed that ASC-EVs were internalized by human lung cells and could colocalize with SARS-CoV-2 into early and late endosomes. To determine the functionality of ASC-EVs, lung cells were infected with SARS-CoV-2 in the presence of increasing concentrations of ASC-EVs, and the release of cytokines, chemokines and viruses were measured. While SARS-CoV-2 replication was significantly reduced only at the highest concentrations tested, multiplex analysis highlighted that lower concentrations of ASC-EV sufficed to prevent the production of immune modulators. Importantly, ASC-EVs did not contain detectable inflammatory cytokines, nor did they trigger inflammatory mediators, nor affect cellular viability. In conclusion, this work suggests that ASC-EVs have the potential to attenuate inflammation by decreasing the production of pro-inflammatory cytokines in lung cells following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Iago Carvalho Schultz
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ana Claudia Dos Santos Pereira Andrade
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Isabelle Dubuc
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Audrée Laroche
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Isabelle Allaeys
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Etienne Doré
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Nicolas Bertrand
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Luc Vallières
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Julie Fradette
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de Chirurgie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
- Division of Regenerative Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Louis Flamand
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Marcia Rosangela Wink
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Eric Boilard
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada.
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada.
| |
Collapse
|
24
|
Puray-Chavez M, Eschbach JE, Xia M, LaPak KM, Zhou Q, Jasuja R, Pan J, Xu J, Zhou Z, Mohammed S, Wang Q, Lawson DQ, Djokic S, Hou G, Ding S, Brody SL, Major MB, Goldfarb D, Kutluay SB. A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models. Nat Commun 2024; 15:8394. [PMID: 39333139 PMCID: PMC11437049 DOI: 10.1038/s41467-024-52803-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024] Open
Abstract
Host factors that define the cellular tropism of SARS-CoV-2 beyond the cognate ACE2 receptor are poorly defined. Here we report that SARS-CoV-2 replication is restricted at a post-entry step in a number of ACE2-positive airway-derived cell lines due to tonic activation of the cGAS-STING pathway mediated by mitochondrial DNA leakage and naturally occurring cGAS and STING variants. Genetic and pharmacological inhibition of the cGAS-STING and type I/III IFN pathways as well as ACE2 overexpression overcome these blocks. SARS-CoV-2 replication in STING knockout cell lines and primary airway cultures induces ISG expression but only in uninfected bystander cells, demonstrating efficient antagonism of the type I/III IFN-pathway in productively infected cells. Pharmacological inhibition of STING in primary airway cells enhances SARS-CoV-2 replication and reduces virus-induced innate immune activation. Together, our study highlights that tonic activation of the cGAS-STING and IFN pathways can impact SARS-CoV-2 cellular tropism in a manner dependent on ACE2 expression levels.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna E Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ming Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle M LaPak
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qianzi Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ria Jasuja
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiehong Pan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zixiang Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shawn Mohammed
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qibo Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dana Q Lawson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanja Djokic
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven L Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
25
|
Bhat MF, Srdanović S, Sundberg LR, Einarsdóttir HK, Marjomäki V, Dekker FJ. Impact of HDAC inhibitors on macrophage polarization to enhance innate immunity against infections. Drug Discov Today 2024; 29:104193. [PMID: 39332483 DOI: 10.1016/j.drudis.2024.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Innate immunity plays an important role in host defense against pathogenic infections. It involves macrophage polarization into either the pro-inflammatory M1 or the anti-inflammatory M2 phenotype, influencing immune stimulation or suppression, respectively. Epigenetic changes during immune reactions contribute to long-term innate immunity imprinting on macrophage polarization. It is becoming increasingly evident that epigenetic modulators, such as histone deacetylase (HDAC) inhibitors (HDACi), enable the enhancement of innate immunity by tailoring macrophage polarization in response to immune stressors. In this review, we summarize current literature on the impact of HDACi and other epigenetic modulators on the functioning of macrophages during diseases that have a strong immune component, such as infections. Depending on the disease context and the chosen therapeutic intervention, HDAC1, HDAC2, HDAC3, HDAC6, or HDAC8 are particularly important in influencing macrophage polarization towards either M1 or M2 phenotypes. We anticipate that therapeutic strategies based on HDAC epigenetic mechanisms will provide a unique approach to boost immunity against disease challenges, including resistant infections.
Collapse
Affiliation(s)
- Mohammad Faizan Bhat
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Sonja Srdanović
- Akthelia Pharmaceuticals, Grandagardi 16, 101 Reykjavik, Iceland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Sciences and Nanoscience Center, 40014 University of Jyväskylä, Jyväskylä, Finland
| | | | - Varpu Marjomäki
- Department of Biological and Environmental Sciences and Nanoscience Center, 40014 University of Jyväskylä, Jyväskylä, Finland
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
26
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
27
|
Ortega-Prieto AM, Jimenez-Guardeño JM. Interferon-stimulated genes and their antiviral activity against SARS-CoV-2. mBio 2024; 15:e0210024. [PMID: 39171921 PMCID: PMC11389394 DOI: 10.1128/mbio.02100-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic remains an international health problem caused by the recent emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of May 2024, SARS-CoV-2 has caused more than 775 million cases and over 7 million deaths globally. Despite current vaccination programs, infections are still rapidly increasing, mainly due to the appearance and spread of new variants, variations in immunization rates, and limitations of current vaccines in preventing transmission. This underscores the need for pan-variant antivirals and treatments. The interferon (IFN) system is a critical element of the innate immune response and serves as a frontline defense against viruses. It induces a generalized antiviral state by transiently upregulating hundreds of IFN-stimulated genes (ISGs). To gain a deeper comprehension of the innate immune response to SARS-CoV-2, its connection to COVID-19 pathogenesis, and the potential therapeutic implications, this review provides a detailed overview of fundamental aspects of the diverse ISGs identified for their antiviral properties against SARS-CoV-2. It emphasizes the importance of these proteins in controlling viral replication and spread. Furthermore, we explore methodological approaches for the identification of ISGs and conduct a comparative analysis with other viruses. Deciphering the roles of ISGs and their interactions with viral pathogens can help identify novel targets for antiviral therapies and enhance our preparedness to confront current and future viral threats.
Collapse
Affiliation(s)
- Ana Maria Ortega-Prieto
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Jose M Jimenez-Guardeño
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
28
|
Venit T, Blavier J, Maseko SB, Shu S, Espada L, Breunig C, Holthoff HP, Desbordes SC, Lohse M, Esposito G, Twizere JC, Percipalle P. Nanobody against SARS-CoV-2 non-structural protein Nsp9 inhibits viral replication in human airway epithelia. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102304. [PMID: 39281707 PMCID: PMC11401216 DOI: 10.1016/j.omtn.2024.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/12/2024] [Indexed: 09/18/2024]
Abstract
Nanobodies are emerging as critical tools for drug design. Several have been recently created to serve as inhibitors of severe acute respiratory syndrome coronavirus s (SARS-CoV-2) entry in the host cell by targeting surface-exposed spike protein. Here we have established a pipeline that instead targets highly conserved viral proteins made only after viral entry into the host cell when the SARS-CoV-2 RNA-based genome is translated. As proof of principle, we designed nanobodies against the SARS-CoV-2 non-structural protein (Nsp)9, which is required for viral genome replication. One of these anti-Nsp9 nanobodies, 2NSP23, previously characterized using immunoassays and nuclear magnetic resonance spectroscopy for epitope mapping, was expressed and found to block SARS-CoV-2 replication specifically. We next encapsulated 2NSP23 nanobody into lipid nanoparticles (LNPs) as mRNA. We show that this nanobody, hereby referred to as LNP-mRNA-2NSP23, is internalized and translated in cells and suppresses multiple SARS-CoV-2 variants, as seen by qPCR and RNA deep sequencing. These results are corroborated in three-dimensional reconstituted human epithelium kept at air-liquid interface to mimic the outer surface of lung tissue. These observations indicate that LNP-mRNA-2NSP23 is internalized and, after translation, it inhibits viral replication by targeting Nsp9 in living cells. We speculate that LNP-mRNA-2NSP23 may be translated into an innovative strategy to generate novel antiviral drugs highly efficient across coronaviruses.
Collapse
Affiliation(s)
- Tomas Venit
- Division of Science and Mathematics, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jeremy Blavier
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Sibusiso B Maseko
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Sam Shu
- Division of Science and Mathematics, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Lilia Espada
- ISAR Bioscience GmbH, Semmelweisstrasse 5, 82152 Planegg, Germany
| | | | | | | | - Martin Lohse
- ISAR Bioscience GmbH, Semmelweisstrasse 5, 82152 Planegg, Germany
| | - Gennaro Esposito
- Division of Science and Mathematics, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Roma, Italy
| | - Jean-Claude Twizere
- Division of Science and Mathematics, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Piergiorgio Percipalle
- Division of Science and Mathematics, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
29
|
Gupta P, Dev K, Kaur G. Phytoconstituents as modulator of inflammatory pathways for COVID-19: A comprehensive review and recommendations. Phytother Res 2024. [PMID: 39246209 DOI: 10.1002/ptr.8302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 09/10/2024]
Abstract
SARS-CoV-2 infection causes disruptions in inflammatory pathways, which fundamentally contribute to COVID-19 pathophysiology. The present review critically evaluates the gaps in scientific literature and presents the current status regarding the inflammatory signaling pathways in COVID-19. We propose that phytoconstituents can be used to treat COVID-19 associated inflammation, several already formulated in traditional medications. For this purpose, extensive literature analysis was conducted in the PubMed database to collect relevant in vitro, in vivo, and human patient studies where inflammation pathways were shown to be upregulated in COVID-19. Parallelly, scientific literature was screened for phytoconstituents with known cellular mechanisms implicated for inflammation or COVID-19 associated inflammation. Studies with insufficient evidence on cellular pathways for autophagy and mitophagy were considered out of scope and excluded from the study. The final analysis was visualized in figures and evaluated for accuracy. Our findings demonstrate the frequent participation of NF-κB, a transcription factor, in inflammatory signaling pathways linked to COVID-19. Moreover, the MAPK signaling pathway is also implicated in producing inflammatory molecules. Furthermore, it was also analyzed that the phytoconstituents with flavonoid and phenolic backbones could inhibit either the TLR4 receptor or its consecutive signaling molecules, thereby, decreasing NF-κB activity and suppressing cytokine production. Although, allopathy has treated the early phase of COVID-19, anti-inflammatory phytoconstituents and existing ayurvedic formulations may act on the COVID-19 associated inflammatory pathways and provide an additional treatment strategy. Therefore, we recommend the usage of flavonoids and phenolic phytoconstituents for the treatment of inflammation associated with COVID-19 infection and similar viral ailments.
Collapse
Affiliation(s)
- Pragati Gupta
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Kamal Dev
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
- Department of Pharmacology & Toxicology, Wright State University, Dayton, Ohio, USA
| | - Gurjot Kaur
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
- National Center cum Department of Human Genome Research Center and Studies, Panjab University, Chandigarh, Punjab, India
| |
Collapse
|
30
|
Allahverdiyeva S, Geyer CE, Veth J, de Vries LM, de Taeye SW, van Gils MJ, den Dunnen J, Chen HJ. Testosterone and estradiol reduce inflammation of human macrophages induced by anti-SARS-CoV-2 IgG. Eur J Immunol 2024:e2451226. [PMID: 39246165 DOI: 10.1002/eji.202451226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
COVID-19, the disease caused by SARS-CoV-2, particularly causes severe inflammatory disease in elderly, obese, and male patients. Since both aging and obesity are associated with decreased testosterone and estradiol expression, we hypothesized that decreased hormone levels contribute to excessive inflammation in the context of COVID-19. Previously, we and others have shown that hyperinflammation in severe COVID-19 patients is induced by the production of pathogenic anti-spike IgG antibodies that activate alveolar macrophages. Therefore, we developed an in vitro assay in which we stimulated human macrophages with viral stimuli, anti-spike IgG immune complexes, and different sex hormones. Treatment with levels of testosterone reflecting young adults led to a significant reduction in TNF and IFN-γ production by human macrophages. In addition, estradiol significantly attenuated the production of a very broad panel of cytokines, including TNF, IL-1β, IL-6, IL-10, and IFN-γ. Both testosterone and estradiol reduced the expression of Fc gamma receptors IIa and III, the two main receptors responsible for anti-spike IgG-induced inflammation. Combined, these findings indicate that sex hormones reduce the inflammatory response of human alveolar macrophages to specific COVID-19-associated stimuli, thereby providing a potential immunological mechanism for the development of severe COVID-19 in both older male and female patients.
Collapse
Affiliation(s)
- Sona Allahverdiyeva
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Chiara E Geyer
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jennifer Veth
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Laura M de Vries
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Steven W de Taeye
- Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Marit J van Gils
- Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Hung-Jen Chen
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Puray-Chavez M, Eschbach JE, Xia M, LaPak KM, Zhou Q, Jasuja R, Pan J, Xu J, Zhou Z, Mohammed S, Wang Q, Lawson DQ, Djokic S, Hou G, Ding S, Brody SL, Major MB, Goldfarb D, Kutluay SB. A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574522. [PMID: 38260460 PMCID: PMC10802478 DOI: 10.1101/2024.01.07.574522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Host factors that define the cellular tropism of SARS-CoV-2 beyond the cognate ACE2 receptor are poorly defined. Here we report that SARS-CoV-2 replication is restricted at a post-entry step in a number of ACE2-positive airway-derived cell lines due to tonic activation of the cGAS-STING pathway mediated by mitochondrial DNA leakage and naturally occurring cGAS and STING variants. Genetic and pharmacological inhibition of the cGAS-STING and type I/III IFN pathways as well as ACE2 overexpression overcome these blocks. SARS-CoV-2 replication in STING knockout cell lines and primary airway cultures induces ISG expression but only in uninfected bystander cells, demonstrating efficient antagonism of the type I/III IFN-pathway in productively infected cells. Pharmacological inhibition of STING in primary airway cells enhances SARS-CoV-2 replication and reduces virus-induced innate immune activation. Together, our study highlights that tonic activation of the cGAS-STING and IFN pathways can impact SARS-CoV-2 cellular tropism in a manner dependent on ACE2 expression levels.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna E. Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ming Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle M. LaPak
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qianzi Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ria Jasuja
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiehong Pan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zixiang Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shawn Mohammed
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qibo Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dana Q. Lawson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanja Djokic
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael B. Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
32
|
Delgado-Wicke P, Fernández de Córdoba-Oñate S, Roy-Vallejo E, Alegría-Carrasco E, Rodríguez-Serrano DA, Lamana A, Montes N, Nicolao-Gómez A, Carracedo-Rodríguez R, Marcos-Jiménez A, Díaz-Fernández P, Galván-Román JM, Rabes-Rodríguez L, Sanz-Alba M, Álvarez-Rodríguez J, Villa-Martí A, Rodríguez-Franco C, Villapalos-García G, Zubiaur P, Abad-Santos F, de Los Santos I, Gomariz RP, García-Vicuña R, Muñoz-Calleja C, González-Álvaro I, Fernández-Ruiz E. Genetic variants regulating the immune response improve the prediction of COVID-19 severity provided by clinical variables. Sci Rep 2024; 14:20728. [PMID: 39237611 PMCID: PMC11377536 DOI: 10.1038/s41598-024-71476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
The characteristics of the host are crucial in the final outcome of COVID-19. Herein, the influence of genetic and clinical variants in COVID-19 severity was investigated in a total of 1350 patients. Twenty-one single nucleotide polymorphisms of genes involved in SARS-CoV-2 sensing as Toll-like-Receptor 7, antiviral immunity as the type I interferon signalling pathway (TYK2, STAT1, STAT4, OAS1, SOCS) and the vasoactive intestinal peptide and its receptors (VIP/VIPR1,2) were studied. To analyse the association between polymorphisms and severity, a model adjusted by age, sex and different comorbidities was generated by ordinal logistic regression. The genotypes rs8108236-AA (OR 0.12 [95% CI 0.02-0.53]; p = 0.007) and rs280519-AG (OR 0.74 [95% CI 0.56-0.99]; p = 0.03) in TYK2, and rs688136-CC (OR 0.7 [95% CI 0.5-0.99]; p = 0.046) in VIP, were associated with lower severity; in contrast, rs3853839-GG in TLR7 (OR 1.44 [95% CI 1.07-1.94]; p = 0.016), rs280500-AG (OR 1.33 [95% CI 0.97-1.82]; p = 0.078) in TYK2 and rs1131454-AA in OAS1 (OR 1.29 [95% CI 0.95-1.75]; p = 0.110) were associated with higher severity. Therefore, these variants could influence the risk of severe COVID-19.
Collapse
Affiliation(s)
- Pablo Delgado-Wicke
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain
| | - Sara Fernández de Córdoba-Oñate
- Rheumathology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Hematology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Emilia Roy-Vallejo
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Estíbaliz Alegría-Carrasco
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain
| | | | - Amalia Lamana
- Cell Biology Department, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria Montes
- Rheumathology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, Boadilla del Monte, Spain
- Methodology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Ana Nicolao-Gómez
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain
| | - Rosa Carracedo-Rodríguez
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain
| | - Ana Marcos-Jiménez
- Immunology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Paula Díaz-Fernández
- Immunology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - José M Galván-Román
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Laura Rabes-Rodríguez
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Marta Sanz-Alba
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Jesús Álvarez-Rodríguez
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Almudena Villa-Martí
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Rodríguez-Franco
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Gonzalo Villapalos-García
- Clinical Pharmacology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ignacio de Los Santos
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa P Gomariz
- Cell Biology Department, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosario García-Vicuña
- Rheumathology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Elena Fernández-Ruiz
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain.
- Medicine Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
33
|
Chiu HP, Yeo YY, Lai TY, Hung CT, Kowdle S, Haas GD, Jiang S, Sun W, Lee B. SARS-CoV-2 Nsp15 antagonizes the cGAS-STING-mediated antiviral innate immune responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611469. [PMID: 39282446 PMCID: PMC11398466 DOI: 10.1101/2024.09.05.611469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Coronavirus (CoV) Nsp15 is a viral endoribonuclease (EndoU) with a preference for uridine residues. CoV Nsp15 is an innate immune antagonist which prevents dsRNA sensor recognition and stress granule formation by targeting viral and host RNAs. SARS-CoV-2 restricts and delays the host antiviral innate immune responses through multiple viral proteins, but the role of SARS-CoV-2 Nsp15 in innate immune evasion is not completely understood. Here, we generate an EndoU activity knockout rSARS-CoV-2Nsp15-H234A to elucidate the biological functions of Nsp15. Relative to wild-type rSARS-CoV-2, replication of rSARS-CoV-2Nsp15-H234A was significantly decreased in IFN-responsive A549-ACE2 cells but not in its STAT1 knockout counterpart. Transcriptomic analysis revealed upregulation of innate immune response genes in cells infected with rSARS-CoV-2Nsp15-H234A relative to wild-type virus, including cGAS-STING, cytosolic DNA sensors activated by both DNA and RNA viruses. Treatment with STING inhibitors H-151 and SN-011 rescued the attenuated phenotype of rSARS-CoV-2Nsp15-H234A. SARS-CoV-2 Nsp15 inhibited cGAS-STING-mediated IFN-β promoter and NF-κB reporter activity, as well as facilitated the replication of EV-D68 and NDV by diminishing cGAS and STING expression and downstream innate immune responses. Notably, the decline in cGAS and STING was also apparent during SARS-CoV-2 infection. The EndoU activity was essential for SARS-CoV-2 Nsp15-mediated cGAS and STING downregulation, but not all HCoV Nsp15 share the consistent substrate selectivity. In the hamster model, rSARS-CoV-2Nsp15-H234A replicated to lower titers in the nasal turbinates and lungs and induced higher innate immune responses. Collectively, our findings exhibit that SARS-CoV-2 Nsp15 serves as a host innate immune antagonist by targeting host cGAS and STING.
Collapse
Affiliation(s)
- Hsin-Ping Chiu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yao Yu Yeo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
| | - Tsoi Ying Lai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Chuan-Tien Hung
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Griffin D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sizun Jiang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Dana Farber Cancer Institute, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
34
|
Chen M, Corless EI, Engelward BP, Swager TM. Optical Detection of Interleukin-6 Using Liquid Janus Emulsions Using Hyperthermophilic Affinity Proteins. ACS OMEGA 2024; 9:37076-37085. [PMID: 39246480 PMCID: PMC11375700 DOI: 10.1021/acsomega.4c03959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
When equal volumes of two immiscible liquids are mixed (e.g., a hydrocarbon and a fluorocarbon), Janus droplets can form in an aqueous solution. In a gravity-aligned Janus droplet, the boundary between the two phases is flat and thus optically transparent when viewed from above. When tipped due to interactions with an analyte (i.e., agglutination), the resulting change in refraction and reflection yields an optical signal that can be detected and quantified. This study reports the detection and quantitation of interleukin-6 (IL-6) using emulsions functionalized at the hydrocarbon:aqueous interface with engineered proteins that bind IL-6 at high affinity and specificity. Hyperthermophilic affinity proteins (rcSso7d) are derived from thermophiles, giving them excellent thermal stability. Two rcSso7d affinity protein variants were synthesized with a noncanonical azide-functionalized amino acid to enable click chemistry to novel polymeric anchors embedded in the hydrocarbon phase. The two binding proteins recognize different epitopes, enabling the detection of both monomeric and dimeric IL-6 via agglutination. It is noteworthy that the rsSso7d protein variants, in addition to having superior thermal stability and facile recombinant synthesis in E. coli, show superior performance when compared to commercial antibodies for IL-6.
Collapse
Affiliation(s)
- Michelle Chen
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Elliot I. Corless
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bevin P. Engelward
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Swager
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Ngo C, Garrec C, Tomasello E, Dalod M. The role of plasmacytoid dendritic cells (pDCs) in immunity during viral infections and beyond. Cell Mol Immunol 2024; 21:1008-1035. [PMID: 38777879 PMCID: PMC11364676 DOI: 10.1038/s41423-024-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Type I and III interferons (IFNs) are essential for antiviral immunity and act through two different but complimentary pathways. First, IFNs activate intracellular antimicrobial programs by triggering the upregulation of a broad repertoire of viral restriction factors. Second, IFNs activate innate and adaptive immunity. Dysregulation of IFN production can lead to severe immune system dysfunction. It is thus crucial to identify and characterize the cellular sources of IFNs, their effects, and their regulation to promote their beneficial effects and limit their detrimental effects, which can depend on the nature of the infected or diseased tissues, as we will discuss. Plasmacytoid dendritic cells (pDCs) can produce large amounts of all IFN subtypes during viral infection. pDCs are resistant to infection by many different viruses, thus inhibiting the immune evasion mechanisms of viruses that target IFN production or their downstream responses. Therefore, pDCs are considered essential for the control of viral infections and the establishment of protective immunity. A thorough bibliographical survey showed that, in most viral infections, despite being major IFN producers, pDCs are actually dispensable for host resistance, which is achieved by multiple IFN sources depending on the tissue. Moreover, primary innate and adaptive antiviral immune responses are only transiently affected in the absence of pDCs. More surprisingly, pDCs and their IFNs can be detrimental in some viral infections or autoimmune diseases. This makes the conservation of pDCs during vertebrate evolution an enigma and thus raises outstanding questions about their role not only in viral infections but also in other diseases and under physiological conditions.
Collapse
Affiliation(s)
- Clémence Ngo
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Clémence Garrec
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Elena Tomasello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
36
|
Xu L, Yu D, Xu M, Liu Y, Yang LX, Zou QC, Feng XL, Li MH, Sheng N, Yao YG. Primate-specific BTN3A2 protects against SARS-CoV-2 infection by interacting with and reducing ACE2. EBioMedicine 2024; 107:105281. [PMID: 39142074 PMCID: PMC11367481 DOI: 10.1016/j.ebiom.2024.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is an immune-related disorder caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The complete pathogenesis of the virus remains to be determined. Unraveling the molecular mechanisms governing SARS-CoV-2 interactions with host cells is crucial for the formulation of effective prophylactic measures and the advancement of COVID-19 therapeutics. METHODS We analyzed human lung single-cell RNA sequencing dataset to discern the association of butyrophilin subfamily 3 member A2 (BTN3A2) expression with COVID-19. The BTN3A2 gene edited cell lines and transgenic mice were infected by live SARS-CoV-2 in a biosafety level 3 (BSL-3) laboratory. Immunoprecipitation, flow cytometry, biolayer interferometry and competition ELISA assays were performed in BTN3A2 gene edited cells. We performed quantitative real-time PCR, histological and/or immunohistochemical analyses for tissue samples from mice with or without SARS-CoV-2 infection. FINDINGS The BTN3A2 mRNA level was correlated with COVID-19 severity. BTN3A2 expression was predominantly identified in epithelial cells, elevated in pathological epithelial cells from COVID-19 patients and co-occurred with ACE2 expression in the same lung cell subtypes. BTN3A2 targeted the early stage of the viral life cycle by inhibiting SARS-CoV-2 attachment through interactions with the receptor-binding domain (RBD) of the Spike protein and ACE2. BTN3A2 inhibited ACE2-mediated SARS-CoV-2 infection by reducing ACE2 in vitro and in vivo. INTERPRETATION These results reveal a key role of BTN3A2 in the fight against COVID-19. Identifying potential monoclonal antibodies which mimic BTN3A2 may facilitate disruption of SARS-CoV-2 infection, providing a therapeutic avenue for COVID-19. FUNDING This study was supported by the National Natural Science Foundation of China (32070569, U1902215, and 32371017), the CAS "Light of West China" Program, and Yunnan Province (202305AH340006).
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China.
| | - Dandan Yu
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Min Xu
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yamin Liu
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Lu-Xiu Yang
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China
| | - Qing-Cui Zou
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Xiao-Li Feng
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Ming-Hua Li
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Nengyin Sheng
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.
| | - Yong-Gang Yao
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China; National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China.
| |
Collapse
|
37
|
Guo ZY, Tang YQ, Zhang ZB, Liu J, Zhuang YX, Li T. COVID-19: from immune response to clinical intervention. PRECISION CLINICAL MEDICINE 2024; 7:pbae015. [PMID: 39139990 PMCID: PMC11319938 DOI: 10.1093/pcmedi/pbae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the pivotal role of the immune response in determining the progression and severity of viral infections. In this paper, we review the most recent studies on the complicated dynamics between SARS-CoV-2 and the host immune system, highlight the importance of understanding these dynamics in developing effective treatments and formulate potent management strategies for COVID-19. We describe the activation of the host's innate immunity and the subsequent adaptive immune response following infection with SARS-CoV-2. In addition, the review emphasizes the immune evasion strategies of the SARS-CoV-2, including inhibition of interferon production and induction of cytokine storms, along with the resulting clinical outcomes. Finally, we assess the efficacy of current treatment strategies, including antiviral drugs, monoclonal antibodies, and anti-inflammatory treatments, and discuss their role in providing immunity and preventing severe disease.
Collapse
Affiliation(s)
- Zheng-yang Guo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yan-qing Tang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Zi-bo Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yu-xin Zhuang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
38
|
Ansari AW, Ahmad F, Alam MA, Raheed T, Zaqout A, Al-Maslamani M, Ahmad A, Buddenkotte J, Al-Khal A, Steinhoff M. Virus-Induced Host Chemokine CCL2 in COVID-19 Pathogenesis: Potential Prognostic Marker and Target of Anti-Inflammatory Strategy. Rev Med Virol 2024; 34:e2578. [PMID: 39192485 DOI: 10.1002/rmv.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
A wide variety of inflammatory mediators, mainly cytokines and chemokines, are induced during SARS CoV-2 infection. Among these proinflammatory mediators, chemokines tend to play a pivotal role in virus-mediated immunopathology. The C-C chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1) is a potent proinflammatory cytokine and strong chemoattractant of monocytes, macrophages and CD4+ T cells bearing C-C chemokine receptor type-2 (CCR2). Besides controlling immune cell trafficking, CCL2 is also involved in multiple pathophysiological processes including systemic hyperinflammation associated cytokine release syndrome (CRS), organ fibrosis and blood coagulation. These pathological features are commonly manifested in severe and fatal cases of COVID-19. Given the crucial role of CCL2 in COVID-19 pathogenesis, the CCL2:CCR2 axis may constitute a potential therapeutic target to control virus-induced hyperinflammation and multi-organ dysfunction. Herein we describe recent advances on elucidating the role of CCL2 in COVID-19 pathogenesis, prognosis, and a potential target of anti-inflammatory interventions.
Collapse
Affiliation(s)
- Abdul Wahid Ansari
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Thesni Raheed
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Zaqout
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Muna Al-Maslamani
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Abdullatif Al-Khal
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Dermatology, Weill Cornell University, New York, New York, USA
- College of Medicine, Qatar University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
39
|
Davidson AJ, Heron R, Das J, Overholtzer M, Wood W. Ferroptosis-like cell death promotes and prolongs inflammation in Drosophila. Nat Cell Biol 2024; 26:1535-1544. [PMID: 38918597 PMCID: PMC11392819 DOI: 10.1038/s41556-024-01450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
Ferroptosis is a distinct form of necrotic cell death caused by overwhelming lipid peroxidation, and emerging evidence indicates a major contribution to organ damage in multiple pathologies. However, ferroptosis has not yet been visualized in vivo due to a lack of specific probes, which has severely limited the study of how the immune system interacts with ferroptotic cells and how this process contributes to inflammation. Consequently, whether ferroptosis has a physiological role has remained a key outstanding question. Here we identify a distinct, ferroptotic-like, necrotic cell death occurring in vivo during wounding of the Drosophila embryo using live imaging. We further demonstrate that macrophages rapidly engage these necrotic cells within the embryo but struggle to engulf them, leading to prolonged, frustrated phagocytosis and frequent corpse disintegration. Conversely, suppression of the ferroptotic programme during wounding delays macrophage recruitment to the injury site, pointing to conflicting roles for ferroptosis during inflammation in vivo.
Collapse
Affiliation(s)
- Andrew J Davidson
- Wolfson Wohl Centre for Cancer Research, School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Rosalind Heron
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Jyotirekha Das
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Will Wood
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
40
|
Frasson I, Diamante L, Zangrossi M, Carbognin E, Pietà AD, Penna A, Rosato A, Verin R, Torrigiani F, Salata C, Dizanzo MP, Vaccaro L, Cacchiarelli D, Richter SN, Montagner M, Martello G. Identification of druggable host dependency factors shared by multiple SARS-CoV-2 variants of concern. J Mol Cell Biol 2024; 16:mjae004. [PMID: 38305139 PMCID: PMC11411213 DOI: 10.1093/jmcb/mjae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/23/2023] [Accepted: 01/31/2024] [Indexed: 02/03/2024] Open
Abstract
The high mutation rate of SARS-CoV-2 leads to the emergence of multiple variants, some of which are resistant to vaccines and drugs targeting viral elements. Targeting host dependency factors, e.g. cellular proteins required for viral replication, would help prevent the development of resistance. However, it remains unclear whether different SARS-CoV-2 variants induce conserved cellular responses and exploit the same core host factors. To this end, we compared three variants of concern and found that the host transcriptional response was conserved, differing only in kinetics and magnitude. Clustered regularly interspaced short palindromic repeats screening identified host genes required for each variant during infection. Most of the genes were shared by multiple variants. We validated our hits with small molecules and repurposed the US Food and Drug Administration-approved drugs. All the drugs were highly active against all the tested variants, including new variants that emerged during the study (Delta and Omicron). Mechanistically, we identified reactive oxygen species production as a key step in early viral replication. Antioxidants such as N-acetyl cysteine (NAC) were effective against all the variants in both human lung cells and a humanized mouse model. Our study supports the use of available antioxidant drugs, such as NAC, as a general and effective anti-COVID-19 approach.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Linda Diamante
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
- Department of Biology, Armenise/Harvard Pluripotent Stem Cell Biology Laboratory, University of Padua, Padua 35131, Italy
| | - Manuela Zangrossi
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Elena Carbognin
- Department of Biology, Armenise/Harvard Pluripotent Stem Cell Biology Laboratory, University of Padua, Padua 35131, Italy
| | - Anna Dalla Pietà
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua 35128, Italy
| | - Alessandro Penna
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua 35128, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua 35128, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua 35128, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua 35020, Italy
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua 35020, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | | | - Lorenzo Vaccaro
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli 80078, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples 80138, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli 80078, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples 80138, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples Federico II, Naples 80138, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
- Microbiology and Virology Unit, Padua University Hospital, Padua 35128, Italy
| | - Marco Montagner
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Graziano Martello
- Department of Biology, Armenise/Harvard Pluripotent Stem Cell Biology Laboratory, University of Padua, Padua 35131, Italy
| |
Collapse
|
41
|
Leno-Duran E, Serrano-Conde E, Salas-Rodríguez A, Salcedo-Bellido I, Barrios-Rodríguez R, Fuentes A, Viñuela L, García F, Requena P. Evaluation of inflammatory biomarkers and their association with anti-SARS-CoV-2 antibody titers in healthcare workers vaccinated with BNT162B2. Front Immunol 2024; 15:1447317. [PMID: 39247198 PMCID: PMC11377239 DOI: 10.3389/fimmu.2024.1447317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Vaccine-induced immunity against COVID-19 generates antibody and lymphocyte responses. However, variability in antibody titers has been observed after vaccination, and the determinants of a better response should be studied. The main objective of this investigation was to analyze the inflammatory biomarker response induced in healthcare workers vaccinated with BNT162b2, and its association with anti-Spike (a SARS-CoV-2 antigen) antibodies measured throughout a 1-year follow-up. Methods Anti-spike antibodies and 92 biomarkers were analyzed in serum, along with socio-demographic and clinical variables collected by interview or exploration. Results In our study, four biomarkers (ADA, IL-17C, CCL25 and CD8α) increased their expression after the first vaccine dose; and 8 others (uPA, IL-18R1, EN-RAGE, CASP-8, MCP-2, TNFβ, CD5 and CXCL10) decreased their expression. Age, body mass index (BMI), smoking, alcohol consumption, and prevalent diseases were associated with some of these biomarkers. Furthermore, higher baseline levels of T-cell surface glycoprotein CD6 and hepatocyte growth factor (HGF) were associated with lower mean antibody titers at follow-up, while levels of monocyte chemotactic protein 2 (MCP-2) had a positive association with antibody levels. Age and BMI were positively related to baseline levels of MCP-2 (β=0.02, 95%CI 0.00-0.04, p=0.036) and HGF (β=0.03, 95%CI 0.00-0.06, p=0.039), respectively. Conclusion Our findings indicate that primary BNT162b2 vaccination had a positive effect on the levels of several biomarkers related to T cell function, and a negative one on some others related to cancer or inflammatory processes. In addition, a higher level of MCP-2 and lower levels of HGF and CD6 were found to be associated with higher anti-Spike antibody titer following vaccination.
Collapse
Affiliation(s)
- Ester Leno-Duran
- Universidad de Granada, Departamento de Obstetricia y Ginecología, Granada, Spain
| | - Esther Serrano-Conde
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Ana Salas-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rocío Barrios-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ana Fuentes
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Laura Viñuela
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Federico García
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Pilar Requena
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
42
|
Cha H, Lee CM, Kim S, Kang CK, Choe PG, Jeon YK, Jo HJ, Kim NJ, Park WB, Kim HJ. Innate immune signatures in the nasopharynx after SARS-CoV-2 infection and links with the clinical outcome of COVID-19 in Omicron-dominant period. Cell Mol Life Sci 2024; 81:364. [PMID: 39172244 PMCID: PMC11342914 DOI: 10.1007/s00018-024-05401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/04/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
While severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is characterized by impaired induction of interferons (IFNs) and IFN-stimulated genes (ISGs), the IFNs and ISGs in upper airway is essential to restrict the spread of respiratory virus. Here, we identified the prominent IFN and ISG upregulation in the nasopharynx (NP) of mild and even severe coronavirus disease 2019 (COVID-19) patients (CoV2+) in Omicron era and to compare their clinical outcome depending on the level of IFNs and ISGs. Whereas the induction of IFNB was minimal, transcription of IFNA, IFNG, and IFNLs was significantly increased in the NP of CoV2 + patients. IFNs and ISGs may be more upregulated in the NP of CoV2 + patients at early phases of infection according to viral RNA levels and this is observed even in severe cases. IFN-related innate immune response might be characteristic in macrophages and monocytes at the NP and the CoV2 + patients with higher transcription of IFNs and ISGs in the NP showed a correlation with good prognosis of COVID-19. This study presents that IFNs and ISGs may be upregulated in the NP, even in severe CoV2 + patients depending on viral replication during Omicron-dominant period and the unique IFN-responsiveness in the NP links with COVID-19 clinical outcomes.
Collapse
Affiliation(s)
- Hyunkyung Cha
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Chan Mi Lee
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Sujin Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyeon Jae Jo
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| | - Hyun Jik Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
43
|
Abdolmohammadi-Vahid S, Baradaran B, Adcock IM, Mortaz E. Immune checkpoint inhibitors and SARS-CoV2 infection. Int Immunopharmacol 2024; 137:112419. [PMID: 38865755 DOI: 10.1016/j.intimp.2024.112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) triggers coronavirus disease 2019 (COVID-19), which predominantly targets the respiratory tract. SARS-CoV-2 infection, especially severe COVID-19, is associated with dysregulated immune responses against the virus, including exaggerated inflammatory responses known as the cytokine storm, together with lymphocyte and NK cell dysfunction known as immune cell exhaustion. Overexpression of negative immune checkpoints such as PD-1 and CTLA-4 plays a considerable role in the dysfunction of immune cells upon SARS-CoV-2 infection. Blockade of these checkpoints has been suggested to improve the clinical outcome of COVID-19 patients by promoting potent immune responses against the virus. In the current review, we provide an overview of the potential of checkpoint inhibitors to induce potent immune responses against SARS-CoV-2 and improving the clinical outcome of severe COVID-19 patients.
Collapse
Affiliation(s)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ian M Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA; Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
44
|
Almubarak HF, Tan W, Hoffmann AD, Sun Y, Wei J, El-Shennawy L, Squires JR, Dashzeveg NK, Simonton B, Jia Y, Iyer R, Xu Y, Nicolaescu V, Elli D, Randall GC, Schipma MJ, Swaminathan S, Ison MG, Liu H, Fang D, Shen Y. Novel antibody language model accelerates IgG screening and design for broad-spectrum antiviral therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582176. [PMID: 38496411 PMCID: PMC10942297 DOI: 10.1101/2024.03.01.582176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Therapeutic antibodies have become one of the most influential therapeutics in modern medicine to fight against infectious pathogens, cancer, and many other diseases. However, experimental screening for highly efficacious targeting antibodies is labor-intensive and of high cost, which is exacerbated by evolving antigen targets under selective pressure such as fast-mutating viral variants. As a proof-of-concept, we developed a machine learning-assisted antibody generation pipeline AbGen that greatly accelerates the screening and re-design of immunoglobulins G (IgGs) against a broad spectrum of SARS-CoV-2 coronavirus variant strains. Our AbGen centers around a novel antibody language model (AbLM) that is pretrained on 12 million generic protein domain sequences and fine-tuned on 4,000+ paired VH-VL sequences, with IgG-specific CDR-masking and VH-VL cross-attention. AbLM provides a latent space of IgG sequence embeddings for AbGen, including (a) landscapes of IgGs' activities in neutralizing the wild-type virus are analyzed through structure prediction for IgG and IgG-antigen (viral protein spike's receptor binding domain, RBD) interactions; and (b) landscapes of IgGs' susceptibility in neutralizing variant viruses are predicted through Gaussian process regression, despite that as few as 14 clinical antibodies' responses to variants of concern are available. The AbGen pipeline was applied to over 1300 IgG sequences we collected from RBD-binding B cells of convalescent patients. With experimental validations, AbGen efficiently prioritized IgG candidates against a broad spectrum of viral variants (wildtype, Delta, and Omicron), preventing the infection of host cells in vitro and hACE2 transgenic mice in vivo. Compared to other existing protein language models that require 10-100 times more model parameters, AbLM improved the precision from around 50% to 75% to predict IgGs with low variant susceptibility. Furthermore, AbGen enables structure-based computational protein redesign for selected IgG clones with single amino acid substitutions at the RBD-binding interface that doubled the IgG blockade efficacy for one of the severe, therapy-resistant strains - Delta (B.1.617). Our work expedites applications of artificial intelligence in antibody screen and re-design combining data-driven protein language models and Kriging for antibody sequence analysis and activity prediction, in synergy with physics-driven protein docking and design for antibody-antigen interface analyses and functional optimization.
Collapse
Affiliation(s)
- Hannah Faisal Almubarak
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
- Driskill Graduate Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Wuwei Tan
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843
| | - Andrew D. Hoffmann
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Yuanfei Sun
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Lamiaa El-Shennawy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Joshua R. Squires
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Nurmaa K. Dashzeveg
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Brooke Simonton
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Radhika Iyer
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Yanan Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Vlad Nicolaescu
- Howard T. Ricketts Laboratory and Department of Microbiology, the University of Chicago, Chicago, IL 60637
| | - Derek Elli
- Howard T. Ricketts Laboratory and Department of Microbiology, the University of Chicago, Chicago, IL 60637
| | - Glenn C. Randall
- Howard T. Ricketts Laboratory and Department of Microbiology, the University of Chicago, Chicago, IL 60637
| | - Matthew J. Schipma
- NUseq Core Facility, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Suchitra Swaminathan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | | | - Huiping Liu
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843
| |
Collapse
|
45
|
Kim H, Kang Y, Kim S, Park D, Heo SY, Yoo JS, Choi I, N MPA, Ahn JW, Yang JS, Bak N, Kim KK, Lee JY, Choi YK. The host protease KLK5 primes and activates spike proteins to promote human betacoronavirus replication and lung inflammation. Sci Signal 2024; 17:eadn3785. [PMID: 39163389 DOI: 10.1126/scisignal.adn3785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/03/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024]
Abstract
Coronaviruses rely on host proteases to activate the viral spike protein, which facilitates fusion with the host cell membrane and the release of viral genomic RNAs into the host cell cytoplasm. The distribution of specific host proteases in the host determines the host, tissue, and cellular tropism of these viruses. Here, we identified the kallikrein (KLK) family member KLK5 as a major host protease secreted by human airway cells and exploited by multiple human betacoronaviruses. KLK5 cleaved both the priming (S1/S2) and activation (S2') sites of spike proteins from various human betacoronaviruses in vitro. In contrast, KLK12 and KLK13 displayed preferences for either the S2' or S1/S2 site, respectively. Whereas KLK12 and KLK13 worked in concert to activate SARS-CoV-2 and MERS-CoV spike proteins, KLK5 by itself efficiently activated spike proteins from several human betacoronaviruses, including SARS-CoV-2. Infection of differentiated human bronchial epithelial cells (HBECs) with human betacoronaviruses induced an increase in KLK5 that promoted virus replication. Furthermore, ursolic acid and other related plant-derived triterpenoids that inhibit KLK5 effectively suppressed the replication of SARS-CoV, MERS-CoV, and SARS-CoV-2 in HBECs and mitigated lung inflammation in mice infected with MERS-CoV or SARS-CoV-2. We propose that KLK5 is a pancoronavirus host factor and a promising therapeutic target for current and future coronavirus-induced diseases.
Collapse
Affiliation(s)
- Hyunjoon Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Yeonglim Kang
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Semi Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Dongbin Park
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Seo-Young Heo
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Ji-Seung Yoo
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Isaac Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Monford Paul Abishek N
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Jae-Woo Ahn
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Jeong-Sun Yang
- Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health (KNIH), 187 Osongsaengmyeong2-ro, Heungdeok-gu, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Nayeon Bak
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health (KNIH), 187 Osongsaengmyeong2-ro, Heungdeok-gu, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Young Ki Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
46
|
Strunz B, Maucourant C, Mehta A, Wan H, Du L, Sun D, Chen P, Nordlander A, Gao Y, Cornillet M, Bister J, Kvedaraite E, Christ W, Klingström J, Geanon D, Parke Å, Ekwall-Larson A, Rivino L, MacAry PA, Aleman S, Buggert M, Ljunggren HG, Pan-Hammarström Q, Lund-Johansen F, Strålin K, Björkström NK. Type I Interferon Autoantibodies Correlate With Cellular Immune Alterations in Severe COVID-19. J Infect Dis 2024; 230:e318-e326. [PMID: 38421006 PMCID: PMC11326830 DOI: 10.1093/infdis/jiae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to severe disease with increased morbidity and mortality among certain risk groups. The presence of autoantibodies against type I interferons (aIFN-Abs) is one mechanism that contributes to severe coronavirus disease 2019 (COVID-19). METHODS This study aimed to investigate the presence of aIFN-Abs in relation to the soluble proteome, circulating immune cell numbers, and cellular phenotypes, as well as development of adaptive immunity. RESULTS aIFN-Abs were more prevalent in critical compared to severe COVID-19 but largely absent in the other viral and bacterial infections studied here. The antibody and T-cell response to SARS-CoV-2 remained largely unaffected by the presence aIFN-Abs. Similarly, the inflammatory response in COVID-19 was comparable in individuals with and without aIFN-Abs. Instead, presence of aIFN-Abs had an impact on cellular immune system composition and skewing of cellular immune pathways. CONCLUSIONS Our data suggest that aIFN-Abs do not significantly influence development of adaptive immunity but covary with alterations in immune cell numbers.
Collapse
Affiliation(s)
- Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Maucourant
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Adi Mehta
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Hui Wan
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Likun Du
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Dan Sun
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Puran Chen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Nordlander
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonna Bister
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Egle Kvedaraite
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Wanda Christ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Geanon
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Åsa Parke
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Ekwall-Larson
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Rivino
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Paul A MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Kristoffer Strålin
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
47
|
Rajaiah R, Pandey K, Acharya A, Ambikan A, Kumar N, Guda R, Avedissian SN, Montaner LJ, Cohen SM, Neogi U, Byrareddy SN. Differential immunometabolic responses to Delta and Omicron SARS-CoV-2 variants in golden syrian hamsters. iScience 2024; 27:110501. [PMID: 39171289 PMCID: PMC11338146 DOI: 10.1016/j.isci.2024.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Delta (B.1.617.2) and Omicron (B.1.1.529) variants of SARS-CoV-2 represents unique clinical characteristics. However, their role in altering immunometabolic regulations during acute infection remains convoluted. Here, we evaluated the differential immunopathogenesis of Delta vs. Omicron variants in Golden Syrian hamsters (GSH). The Delta variant resulted in higher virus titers in throat swabs and the lungs and exhibited higher lung damage with immune cell infiltration than the Omicron variant. The gene expression levels of immune mediators and metabolic enzymes, Arg-1 and IDO1 in the Delta-infected lungs were significantly higher compared to Omicron. Further, Delta/Omicron infection perturbed carbohydrates, amino acids, nucleotides, and TCA cycle metabolites and was differentially regulated compared to uninfected lungs. Collectively, our data provide a novel insight into immunometabolic/pathogenic outcomes for Delta vs. Omicron infection in the GSH displaying concordance with COVID-19 patients associated with inflammation and tissue injury during acute infection that offered possible new targets to develop potential therapeutics.
Collapse
Affiliation(s)
- Rajesh Rajaiah
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anoop Ambikan
- The Systems Virology Lab, Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Narendra Kumar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Reema Guda
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sean N. Avedissian
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Luis J. Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Samuel M. Cohen
- Havlik Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ujjwal Neogi
- The Systems Virology Lab, Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Havlik Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
48
|
Vu Manh TP, Gouin C, De Wolf J, Jouneau L, Pascale F, Bevilacqua C, Ar Gouilh M, Da Costa B, Chevalier C, Glorion M, Hannouche L, Urien C, Estephan J, Magnan A, Le Guen M, Marquant Q, Descamps D, Dalod M, Schwartz-Cornil I, Sage E. SARS-CoV2 infection in whole lung primarily targets macrophages that display subset-specific responses. Cell Mol Life Sci 2024; 81:351. [PMID: 39147987 PMCID: PMC11335275 DOI: 10.1007/s00018-024-05322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 08/17/2024]
Abstract
Deciphering the initial steps of SARS-CoV-2 infection, that influence COVID-19 outcomes, is challenging because animal models do not always reproduce human biological processes and in vitro systems do not recapitulate the histoarchitecture and cellular composition of respiratory tissues. To address this, we developed an innovative ex vivo model of whole human lung infection with SARS-CoV-2, leveraging a lung transplantation technique. Through single-cell RNA-seq, we identified that alveolar and monocyte-derived macrophages (AMs and MoMacs) were initial targets of the virus. Exposure of isolated lung AMs, MoMacs, classical monocytes and non-classical monocytes (ncMos) to SARS-CoV-2 variants revealed that while all subsets responded, MoMacs produced higher levels of inflammatory cytokines than AMs, and ncMos contributed the least. A Wuhan lineage appeared to be more potent than a D614G virus, in a dose-dependent manner. Amidst the ambiguity in the literature regarding the initial SARS-CoV-2 cell target, our study reveals that AMs and MoMacs are dominant primary entry points for the virus, and suggests that their responses may conduct subsequent injury, depending on their abundance, the viral strain and dose. Interfering on virus interaction with lung macrophages should be considered in prophylactic strategies.
Collapse
Affiliation(s)
- Thien-Phong Vu Manh
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13009, Marseille, France.
| | - Carla Gouin
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Julien De Wolf
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, 92150, Suresnes, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Florentina Pascale
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, 92150, Suresnes, France
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Meriadeg Ar Gouilh
- Department of Virology, Univ Caen Normandie, Dynamicure INSERM UMR 1311, CHU Caen, 14000, Caen, France
| | - Bruno Da Costa
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | - Matthieu Glorion
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, 92150, Suresnes, France
| | - Laurent Hannouche
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13009, Marseille, France
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Céline Urien
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Jérôme Estephan
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Antoine Magnan
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, 92150, Suresnes, France
| | - Morgan Le Guen
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Anesthesiology, Foch Hospital, 92150, Suresnes, France
| | - Quentin Marquant
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, 92150, Suresnes, France
- Delegation to Clinical Research and Innovation, Foch Hospital, 92150, Suresnes, France
| | - Delphyne Descamps
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13009, Marseille, France
| | | | - Edouard Sage
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, 92150, Suresnes, France
| |
Collapse
|
49
|
Al-Saigh NN, Harb AA, Abdalla S. Receptors Involved in COVID-19-Related Anosmia: An Update on the Pathophysiology and the Mechanistic Aspects. Int J Mol Sci 2024; 25:8527. [PMID: 39126095 PMCID: PMC11313362 DOI: 10.3390/ijms25158527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Olfactory perception is an important physiological function for human well-being and health. Loss of olfaction, or anosmia, caused by viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has received considerable attention, especially in persistent cases that take a long time to recover. This review discusses the integration of different components of the olfactory epithelium to serve as a structural and functional unit and explores how they are affected during viral infections, leading to the development of olfactory dysfunction. The review mainly focused on the role of receptors mediating the disruption of olfactory signal transduction pathways such as angiotensin converting enzyme 2 (ACE2), transmembrane protease serine type 2 (TMPRSS2), neuropilin 1 (NRP1), basigin (CD147), olfactory, transient receptor potential vanilloid 1 (TRPV1), purinergic, and interferon gamma receptors. Furthermore, the compromised function of the epithelial sodium channel (ENaC) induced by SARS-CoV-2 infection and its contribution to olfactory dysfunction are also discussed. Collectively, this review provides fundamental information about the many types of receptors that may modulate olfaction and participate in olfactory dysfunction. It will help to understand the underlying pathophysiology of virus-induced anosmia, which may help in finding and designing effective therapies targeting molecules involved in viral invasion and olfaction. To the best of our knowledge, this is the only review that covered all the receptors potentially involved in, or mediating, the disruption of olfactory signal transduction pathways during COVID-19 infection. This wide and complex spectrum of receptors that mediates the pathophysiology of olfactory dysfunction reflects the many ways in which anosmia can be therapeutically managed.
Collapse
Affiliation(s)
- Noor N. Al-Saigh
- Department of Basic Medical Sciences, Faculty of Medicine, Ibn Sina University for Medical Sciences, Amman 16197, Jordan;
| | - Amani A. Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman 19111, Jordan;
| | - Shtaywy Abdalla
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
50
|
de Souza Goncalves B, Sangani D, Nayyar A, Puri R, Irtiza M, Nayyar A, Khalyfa A, Sodhi K, Pillai SS. COVID-19-Associated Sepsis: Potential Role of Phytochemicals as Functional Foods and Nutraceuticals. Int J Mol Sci 2024; 25:8481. [PMID: 39126050 PMCID: PMC11312872 DOI: 10.3390/ijms25158481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The acute manifestations of coronavirus disease 2019 (COVID-19) exhibit the hallmarks of sepsis-associated complications that reflect multiple organ failure. The inflammatory cytokine storm accompanied by an imbalance in the pro-inflammatory and anti-inflammatory host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to severe and critical septic shock. The sepsis signature in severely afflicted COVID-19 patients includes cellular reprogramming and organ dysfunction that leads to high mortality rates, emphasizing the importance of improved clinical care and advanced therapeutic interventions for sepsis associated with COVID-19. Phytochemicals of functional foods and nutraceutical importance have an incredible impact on the healthcare system, which includes the prevention and/or treatment of chronic diseases. Hence, in the present review, we aim to explore the pathogenesis of sepsis associated with COVID-19 that disrupts the physiological homeostasis of the body, resulting in severe organ damage. Furthermore, we have summarized the diverse pharmacological properties of some potent phytochemicals, which can be used as functional foods as well as nutraceuticals against sepsis-associated complications of SARS-CoV-2 infection. The phytochemicals explored in this article include quercetin, curcumin, luteolin, apigenin, resveratrol, and naringenin, which are the major phytoconstituents of our daily food intake. We have compiled the findings from various studies, including clinical trials in humans, to explore more into the therapeutic potential of each phytochemical against sepsis and COVID-19, which highlights their possible importance in sepsis-associated COVID-19 pathogenesis. We conclude that our review will open a new research avenue for exploring phytochemical-derived therapeutic agents for preventing or treating the life-threatening complications of sepsis associated with COVID-19.
Collapse
Affiliation(s)
- Bruno de Souza Goncalves
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Darshan Sangani
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Aleen Nayyar
- Department of Medicine, Sharif Medical and Dental College, Lahore 55150, Pakistan;
| | - Raghav Puri
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Mahir Irtiza
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Asma Nayyar
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Abdelnaby Khalyfa
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Komal Sodhi
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Sneha S. Pillai
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| |
Collapse
|