1
|
Ye C, Wang X, Lin J, Wu C, Gao Y, Guo C, Liao Y, Rao Z, Huang S, Chen W, Huang Y, Sun J, Zhao D, Jiang C. Systematical identification of regulatory GPCRs by single-cell trajectory inference reveals the role of ADGRD1 and GPR39 in adipogenesis. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2732-8. [PMID: 39821834 DOI: 10.1007/s11427-024-2732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/15/2024] [Indexed: 01/19/2025]
Abstract
Adipogenesis is the healthy expansion of white adipose tissue (WAT), serving as a compensatory response to maintain metabolic homeostasis in the presence of excess energy in the body. Therefore, the identification of novel regulatory molecules in adipogenesis, specifically membrane receptors such as G protein-coupled receptors (GPCRs), holds significant clinical promise. These receptors can serve as viable targets for pharmaceuticals, offering potential for restoring metabolic homeostasis in individuals with obesity. We utilized trajectory inference methods to analyze three distinct single-nucleus sequencing (sNuc-seq) datasets of adipose tissue and systematically identified GPCRs with the potential to regulate adipogenesis. Through verification in primary adipose progenitor cells (APCs) of mice, we discovered that ADGRD1 promoted the differentiation of APCs, while GPR39 inhibits this process. In the obese mouse model induced by a high-fat diet (HFD), both gain-of-function and loss-of-function studies validated that ADGRD1 promoted adipogenesis, thereby improving metabolic homeostasis, while GPR39 inhibited adipogenesis, leading to metabolic dysfunction. Additionally, through the analysis of 2,400 ChIP-seq data and 1,204 bulk RNA-seq data, we found that the transcription factors (TFs) MEF2D and TCF12 regulated the expression of ADGRD1 and GPR39, respectively. Our study revealed the regulatory role of GPCRs in adipogenesis, providing novel targets for clinical intervention of metabolic dysfunction in obese patients.
Collapse
Affiliation(s)
- Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xuemei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Chenyang Wu
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Yuhua Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Chenghao Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yunxi Liao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Ziyan Rao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Shaodong Huang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Weixuan Chen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Ying Huang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, 100191, China
| | - Jinpeng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
2
|
Wu M, Wang S, Chen X, Shen L, Ding J, Jiang H. Single-cell transcriptome analysis reveals cellular reprogramming and changes of immune cell subsets following tetramethylpyrazine treatment in LPS-induced acute lung injury. PeerJ 2025; 13:e18772. [PMID: 39822976 PMCID: PMC11737342 DOI: 10.7717/peerj.18772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/05/2024] [Indexed: 01/19/2025] Open
Abstract
Background Acute lung injury (ALI) is a disordered pulmonary disease characterized by acute respiratory insufficiency with tachypnea, cyanosis refractory to oxygen and diffuse alveolar infiltrates. Despite increased research into ALI, current clinical treatments lack effectiveness. Tetramethylpyrazine (TMP) has shown potential in ALI treatment, and understanding its effects on the pulmonary microenvironment and its underlying mechanisms is imperative. Methods We established a mouse model of lipopolysaccharide (LPS)-induced ALI and performed single cell RNA sequencing (scRNA-seq). Bioinformatic analyses of the immune, epithelial and endothelial cells were then performed to explore the dynamic changes of the lung tissue microenvironment. We also analyzed the effects of TMP on the cell subtypes, differential gene expression and potential regulation of transcriptional factors involved. Immunohistochemistry and enzyme-linked immunosorbent assay were performed to identify the effects of TMP on immune inflammatory response. Results We found that TMP efficiently protected against LPS-induced acute lung injury. Results of scRNA-seq showed that the cells were divided into seven major cell clusters, including immune cells, fibroblasts, endothelial cells and epithelial cells. Neither dexamethasone (Dex) nor TMP treatment showed any significant protective effects in these clusters. However, TMP treatment in the LPS-induced ALI model significantly increased follicular helper T cells and reduced CD8+ naive T cells, Vcan-positive monocytes and Siva-positive NK cells. In addition, TMP treatment increased the number of basal epithelial cells and lymphatic endothelial cells (LECs), indicating its protective effects on these cell types. Scenic analysis suggested that TMP likely mitigates LPS-induced injury in epithelial and endothelial cells by promoting FOSL1 in basal epithelial cells and JunB in LECs. Conclusions Our findings suggest that TMP appears to alleviate LPS-induced lung injury by regulating the immune response, promoting epithelial cell survival and boosting the antioxidant potential of endothelial cells. This study highlights the potential therapeutic use of TMP in the management of ALI.
Collapse
Affiliation(s)
- Mingyan Wu
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanmei Wang
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaolan Chen
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Shen
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jurong Ding
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongbin Jiang
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Sun XF, Luo WC, Huang SQ, Zheng YJ, Xiao L, Zhang ZW, Liu RH, Zhong ZW, Song JQ, Nan K, Qiu ZX, Zhong J, Miao CH. Immune-cell signatures of persistent inflammation, immunosuppression, and catabolism syndrome after sepsis. MED 2025:S2666-6340(24)00483-5. [PMID: 39824181 DOI: 10.1016/j.medj.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/13/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
BACKGROUND Management of persistent inflammation, immunosuppression, and catabolism syndrome (PICS) after sepsis remains challenging for patients in the intensive care unit, experiencing poor quality of life and death. However, immune-cell signatures in patients with PICS after sepsis remain unclear. METHODS We determined immune-cell signatures of PICS after sepsis at single-cell resolution. Murine cecal ligation and puncture models of PICS were applied for validation. FINDINGS Immune functions of two enriched monocyte subpopulations, Mono1 and Mono4, were suppressed substantially in patients with sepsis and were partially restored in patients with PICS after sepsis and exhibited immunosuppressive and pro-apoptotic effects on B and CD8T cells. Patients with PICS and sepsis had reduced naive and memory B cells and proliferated plasma cells. Besides, naive and memory B cells in patients with PICS showed an active antigen processing and presentation gene signature compared to those with sepsis. PICS patients with better prognoses exhibited more active memory B cells and IGHA1-plasma cells. CD8TEMRA displayed signs of proliferation and immune dysfunction in the PICS-death group in contrast with the PICS-alive group. Megakaryocytes proliferation was more pronounced in patients with PICS and sepsis than in healthy controls, with notable changes in the anti-inflammatory and immunomodulatory effects observed in patients with PICS and verified in mice models. CONCLUSIONS Our study evaluated PICS after sepsis at the single-cell level, identifying the heterogeneity present within immune-cell subsets, facilitating the prediction of disease progression and the development of effective intervention. FUNDING This work was supported by the National Natural Science Foundation of China, Shanghai Municipal Health Commission "Yiyuan New Star" Youth Medical Talent Cultivating Program, and Shanghai Clinical Research Center for Anesthesiology.
Collapse
Affiliation(s)
- Xing-Feng Sun
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200438, China
| | - Wen-Chen Luo
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Shao-Qiang Huang
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200438, China
| | - Yi-Jun Zheng
- Department of Critical Care and Pain Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Lei Xiao
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhong-Wei Zhang
- Department of Critical Care and Pain Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Rong-Hua Liu
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zi-Wen Zhong
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jie-Qiong Song
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Zhi-Xin Qiu
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China.
| | - Jing Zhong
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai 200032, China.
| | - Chang-Hong Miao
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; Laboratory of Perioperative Stress and Protection, Shanghai 200032, China.
| |
Collapse
|
4
|
Li YY, Zhou LW, Qian FC, Fang QL, Yu ZM, Cui T, Dong FJ, Cai FH, Yu TT, Li LD, Wang QY, Zhu YB, Tang HF, Hu BY, Li CQ. scImmOmics: a manually curated resource of single-cell multi-omics immune data. Nucleic Acids Res 2025; 53:D1162-D1172. [PMID: 39494524 PMCID: PMC11701750 DOI: 10.1093/nar/gkae985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Single-cell sequencing technology has enabled the discovery and characterization of subpopulations of immune cells with unique functions, which is critical for revealing immune responses under healthy or disease conditions. Efforts have been made to collect and curate single-cell RNA sequencing (scRNA-seq) data, yet an immune-specific single-cell multi-omics atlas with harmonized metadata is still lacking. Here, we present scImmOmics (https://bio.liclab.net/scImmOmics/home), a manually curated single-cell multi-omics immune database constructed based on high-quality immune cells with known immune cell labels. Currently, scImmOmics documents >2.9 million cell-type labeled immune cells derived from seven single-cell sequencing technologies, involving 131 immune cell types, 47 tissues and 4 species. To ensure data consistency, we standardized the nomenclature of immune cell types and presented them in a hierarchical tree structure to clearly describe the lineage relationships within the immune system. scImmOmics also provides comprehensive immune regulatory information, including T-cell/B-cell receptor sequencing clonotype information, cell-specific regulatory information (e.g. gene/chromatin accessibility/protein/transcription factor states within known cell types, cell-to-cell communication and co-expression networks) and immune cell responses to cytokines. Collectively, scImmOmics is a comprehensive and valuable platform for unraveling the heterogeneity and diversity of immune cells and elucidating the specific regulatory mechanisms at the single-cell level.
Collapse
Affiliation(s)
- Yan-Yu Li
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan 421001, China
| | - Li-Wei Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng-Cui Qian
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Qiao-Li Fang
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Zheng-Min Yu
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Ting Cui
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Fu-Juan Dong
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Fu-Hong Cai
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Ting-Ting Yu
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Li-Dong Li
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Qiu-Yu Wang
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yan-Bing Zhu
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Hui-Fang Tang
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan 421001, China
| | - Bao-Yang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chun-Quan Li
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan 421001, China
| |
Collapse
|
5
|
Zhou L, Peng X, Chen M, He X, Tian G, Yang J, Peng L. Unveiling patterns in spatial transcriptomics data: a novel approach utilizing graph attention autoencoder and multiscale deep subspace clustering network. Gigascience 2025; 14:giae103. [PMID: 39804726 PMCID: PMC11727722 DOI: 10.1093/gigascience/giae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/06/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The accurate deciphering of spatial domains, along with the identification of differentially expressed genes and the inference of cellular trajectory based on spatial transcriptomic (ST) data, holds significant potential for enhancing our understanding of tissue organization and biological functions. However, most of spatial clustering methods can neither decipher complex structures in ST data nor entirely employ features embedded in different layers. RESULTS This article introduces STMSGAL, a novel framework for analyzing ST data by incorporating graph attention autoencoder and multiscale deep subspace clustering. First, STMSGAL constructs ctaSNN, a cell type-aware shared nearest neighbor graph, using Louvian clustering exclusively based on gene expression profiles. Subsequently, it integrates expression profiles and ctaSNN to generate spot latent representations using a graph attention autoencoder and multiscale deep subspace clustering. Lastly, STMSGAL implements spatial clustering, differential expression analysis, and trajectory inference, providing comprehensive capabilities for thorough data exploration and interpretation. STMSGAL was evaluated against 7 methods, including SCANPY, SEDR, CCST, DeepST, GraphST, STAGATE, and SiGra, using four 10x Genomics Visium datasets, 1 mouse visual cortex STARmap dataset, and 2 Stereo-seq mouse embryo datasets. The comparison showcased STMSGAL's remarkable performance across Davies-Bouldin, Calinski-Harabasz, S_Dbw, and ARI values. STMSGAL significantly enhanced the identification of layer structures across ST data with different spatial resolutions and accurately delineated spatial domains in 2 breast cancer tissues, adult mouse brain (FFPE), and mouse embryos. CONCLUSIONS STMSGAL can serve as an essential tool for bridging the analysis of cellular spatial organization and disease pathology, offering valuable insights for researchers in the field.
Collapse
Affiliation(s)
- Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Xinhuai Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Min Chen
- School of Computer Science, Hunan Institute of Technology, Hengyang 421002, Hunan, China
| | - Xianzhi He
- School of Computer Science, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Geng Tian
- Geneis (Beijing) Co. Ltd., Beijing 100102, China
| | | | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou 412007, Hunan, China
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| |
Collapse
|
6
|
Xiao K, Cao Y, Han Z, Zhang Y, Luu LDW, Chen L, Yan P, Chen W, Wang J, Liang Y, Shi X, Wang X, Wang F, Hu Y, Wen Z, Chen Y, Yang Y, Yu H, Xie L, Wang Y. A pan-immune panorama of bacterial pneumonia revealed by a large-scale single-cell transcriptome atlas. Signal Transduct Target Ther 2025; 10:5. [PMID: 39757231 DOI: 10.1038/s41392-024-02093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Bacterial pneumonia is a significant public health burden, contributing to substantial morbidity, mortality, and healthcare costs. Current therapeutic strategies beyond antibiotics and adjuvant therapies are limited, highlighting the need for a deeper understanding of the disease pathogenesis. Here, we employed single-cell RNA sequencing of 444,146 bronchoalveolar lavage fluid cells (BALFs) from a large cohort of 74 individuals, including 58 patients with mild (n = 22) and severe (n = 36) diseases as well as 16 healthy donors. Enzyme-linked immunosorbent and histological assays were applied for validation within this cohort. The heterogeneity of immune responses in bacterial pneumonia was observed, with distinct immune cell profiles related to disease severity. Severe bacterial pneumonia was marked by an inflammatory cytokine storm resulting from systemic upregulation of S100A8/A9 and CXCL8, primarily due to specific macrophage and neutrophil subsets. In contrast, mild bacterial pneumonia exhibits an effective humoral immune response characterized by the expansion of T follicular helper and T helper 2 cells, facilitating B cell activation and antibody production. Although both disease groups display T cell exhaustion, mild cases maintained robust cytotoxic CD8+T cell function, potentially reflecting a compensatory mechanism. Dysregulated neutrophil and macrophage responses contributed significantly to the pathogenesis of severe disease. Immature neutrophils promote excessive inflammation and suppress T cell activation, while a specific macrophage subset (Macro_03_M1) displaying features akin to myeloid-derived suppressor cells (M-MDSCs) suppress T cells and promote inflammation. Together, these findings highlight potential therapeutic targets for modulating immune responses and improving clinical outcomes in bacterial pneumonia.
Collapse
Affiliation(s)
- Kun Xiao
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
| | - Yan Cao
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China
| | - Zhihai Han
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China
| | - Yuxiang Zhang
- Department of Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100037, P.R. China
| | - Laurence Don Wai Luu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Liang Chen
- Respiratory and Critical Care Medicine department, Beijing Jingmei Group, General Hospial, Beijing, 102308, P.R. China
| | - Peng Yan
- Department of Pulmonary and Critical Care Medicine, China Aerospace Science & Industry Corporation 731 hospital, Beijing, 100074, P.R. China
| | - Wei Chen
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China
- Department of Respiratory Medicine, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100037, P.R. China
| | - Jiaxing Wang
- Department of Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100037, P.R. China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Xin Shi
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China
- Medical School of Chinese PLA, Beijing, 100191, P.R. China
| | - Xiuli Wang
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China
- Medical School of Chinese PLA, Beijing, 100191, P.R. China
| | - Fan Wang
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China
| | - Ye Hu
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China
| | - Zhengjun Wen
- Respiratory and Critical Care Medicine department, Beijing Jingmei Group, General Hospial, Beijing, 102308, P.R. China
| | - Yong Chen
- Department of Pulmonary and Critical Care Medicine, Anzhen hospital afflicted to Capital medical university, Beijing, 100029, P.R. China
| | - Yuwei Yang
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China
| | - Haotian Yu
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P.R. China.
| |
Collapse
|
7
|
Zhang Y, Han S, Sun Q, Liu T, Wen Z, Yao M, Zhang S, Duan Q, Zhang X, Pang B, Kou Z, Jiang X. Single-cell transcriptome atlas of peripheral immune features to Omicron breakthrough infection under booster vaccination strategies. Front Immunol 2025; 15:1460442. [PMID: 39835127 PMCID: PMC11743671 DOI: 10.3389/fimmu.2024.1460442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction The high percentage of Omicron breakthrough infection in vaccinees is an emerging problem, of which we have a limited understanding of the phenomenon. Methods We performed single-cell transcriptome coupled with T-cell/B-cell receptor (TCR/BCR) sequencing in 15 peripheral blood mononuclear cell (PBMC) samples from Omicron infection and naïve with booster vaccination. Results We found that after breakthrough infection, multiple cell clusters showed activation of the type I IFN pathway and widespread expression of Interferon-stimulated genes (ISGs); T and B lymphocytes exhibited antiviral and proinflammatory-related differentiation features with pseudo-time trajectories; and large TCR clonal expansions were concentrated in effector CD8 T cells, and clonal expansions of BCRs showed a preference for IGHV3. In addition, myeloid cells in the BA.5.2 breakthrough infection with the fourth dose of aerosolized Ad5-nCoV were characterized by enhanced proliferation, chemotactic migration, and antigen presentation. Discussion Collectively, our study informs the comprehensive understandings of immune characterization for Omicron breakthrough infection, revealing the positive antiviral potential induced by booster doses of vaccine and the possible "trained immunity" phenomenon in the fourth dose of aerosolized Ad5-nCoV, providing a basis for the selection of vaccination strategies.
Collapse
MESH Headings
- Humans
- COVID-19/immunology
- COVID-19/prevention & control
- Immunization, Secondary
- COVID-19 Vaccines/immunology
- SARS-CoV-2/immunology
- Single-Cell Analysis
- Transcriptome
- Leukocytes, Mononuclear/immunology
- Male
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Female
- Adult
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/genetics
- Vaccination
- Gene Expression Profiling
- B-Lymphocytes/immunology
- Breakthrough Infections
Collapse
Affiliation(s)
- Yuwei Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Shanshan Han
- School of Public Health and Health Management, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qingshuai Sun
- School of Public Health and Health Management, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tao Liu
- Department of Infectious Disease Control, Yantai Center for Disease Control and Prevention, Yantai, Shandong, China
| | - Zixuan Wen
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Mingxiao Yao
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Shu Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Qing Duan
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Xiaomei Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Bo Pang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Zengqiang Kou
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Xiaolin Jiang
- School of Public Health and Health Management, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| |
Collapse
|
8
|
Chen J, Xie J, Deng F, Cai J, Chen S, Song X, Xia S, Shen Q, Guo X, Tang Y. Expansion of peripheral cytotoxic CD4+ T cells in Alzheimer's disease: New insights from multi-omics evidence. Genomics 2025; 117:110976. [PMID: 39657893 DOI: 10.1016/j.ygeno.2024.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
The significance of the adaptive immune response in Alzheimer's disease (AD) is increasingly recognized. We analyzed scRNA-Seq data from AD patients, revealing a notable rise in CD4 cytotoxic T cells (CD4-CTLs) in peripheral blood mononuclear cells (PBMCs), validated in vivo and in vitro. This rise correlates with cognitive decline in AD patients. We also identified transcription factors TBX21 and MYBL1 as key drivers of CD4-CTL expansion. Further analyses indicate these cells are terminally differentiated, showing clonal expansion, metabolic changes, and unique communication patterns. Mendelian randomization identified risk genes SRGN and ITGB1, suggesting their genetic regulation in CD4-CTLs may contribute to AD. To summarize, our findings characterize the expansion of CD4-CTLs in the PBMCs of AD patients, providing valuable understanding into the possible mechanisms involved in the expansion of CD4-CTLs in AD.
Collapse
Affiliation(s)
- Jiongxue Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Fuyin Deng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Sitai Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children Medical Center, Guangzhou 510623, China
| | - Shangzhou Xia
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Qingyu Shen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xinying Guo
- Department of Anesthesiology, Guangzhou Women and Children Medical Center, Guangzhou 510623, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-sen Memorial Hospital, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Zhu L, Zhang Z. Immunity hubs orchestrating antiviral defense. Cell Res 2025; 35:7-8. [PMID: 39415046 DOI: 10.1038/s41422-024-01036-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024] Open
Affiliation(s)
- Linnan Zhu
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
10
|
Gultom M, Lin L, Brandt CB, Milusev A, Despont A, Shaw J, Döring Y, Luo Y, Rieben R. Sustained Vascular Inflammatory Effects of SARS-CoV-2 Spike Protein on Human Endothelial Cells. Inflammation 2024:10.1007/s10753-024-02208-x. [PMID: 39739157 DOI: 10.1007/s10753-024-02208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been associated with systemic inflammation and vascular injury, which contribute to the development of acute respiratory syndrome (ARDS) and the mortality of COVID-19 infection. Moreover, multiorgan complications due to persistent endothelial dysfunction have been suspected as the cause of post-acute sequelae of SARS-CoV-2 infection. Therefore, elucidation of the vascular inflammatory effect of SARS-CoV-2 will increase our understanding of how endothelial cells (ECs) contribute to the short- and long-term consequences of SARS-CoV-2 infection. Here, we investigated the interaction of SARS-CoV-2 spike protein with human ECs from aortic (HAoEC) and pulmonary microvascular (HPMC) origins, cultured under physiological flow conditions. We showed that the SARS-CoV-2 spike protein triggers prolonged expression of cell adhesion markers in both ECs, similar to the effect of TNF-α. SARS-CoV-2 spike treatment also led to the release of various cytokines and chemokines observed in severe COVID-19 patients. Moreover, increased binding of leucocytes to the endothelial surface and a procoagulant state of the endothelium were observed. Transcriptomic profiles of SARS-CoV-2 spike-activated HPMC and HAoEC showed prolonged upregulation of genes and pathways associated with responses to virus, cytokine-mediated signaling, pattern recognition, as well as complement and coagulation pathways. Our findings support experimental and clinical observations of the vascular consequences of SARS-CoV-2 infection and highlight the importance of EC protection as one of the strategies to mitigate the severe effects as well as the possible post-acute complications of COVID-19 disease.
Collapse
Affiliation(s)
- Mitra Gultom
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Camilla Blunk Brandt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Anastasia Milusev
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Alain Despont
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Jane Shaw
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Yvonne Döring
- Department for Biomedical Research, University of Bern, Bern, Switzerland
- Department of Angiology, Inselspital, Bern University Hospital, Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum Für Herz-Kreislauf-Forschung, DZHK), Munich Heart Alliance Partner Site, Munich, Germany
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Robert Rieben
- Department for Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
11
|
Pickering S, Wilson H, Bravo E, Perera MR, Seow J, Graham C, Almeida N, Fotopoulos L, Williams T, Moitra A, Winstone H, Nissen TAD, Galão RP, Snell LB, Doores KJ, Malim MH, Neil SJD. Antibodies to the RBD of SARS-CoV-2 spike mediate productive infection of primary human macrophages. Nat Commun 2024; 15:10764. [PMID: 39737903 DOI: 10.1038/s41467-024-54458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/07/2024] [Indexed: 01/01/2025] Open
Abstract
The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages. mAbs with the most consistent potential to mediate infection were those targeting a conserved region of the receptor binding domain (RBD; group 1/class 4). Infection was closely related to the neutralising concentration of the mAbs, with peak infection occurring below the IC50, while pre-treating cells with remdesivir or FcγRI-blocking antibodies inhibited infection. Studies performed in primary macrophages demonstrated high-level and productive infection, with infected macrophages appearing multinucleated and syncytial. Infection was not seen in the absence of antibody with the same quantity of virus. Addition of ruxolitinib significantly increased infection, indicating restraint of infection through innate immune mechanisms rather than entry. High-level production of pro-inflammatory cytokines directly correlated with macrophage infection levels. We hypothesise that infection via antibody-FcR interactions could contribute to pathogenesis in primary infection, systemic virus spread or persistent infection.
Collapse
MESH Headings
- Humans
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Macrophages/immunology
- Macrophages/virology
- Macrophages/metabolism
- SARS-CoV-2/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- COVID-19/immunology
- COVID-19/virology
- Antibodies, Viral/immunology
- Nitriles/pharmacology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Pyrimidines/pharmacology
- Pyrazoles/pharmacology
- Alanine/analogs & derivatives
- Alanine/pharmacology
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Adenosine Monophosphate/analogs & derivatives
- Adenosine Monophosphate/pharmacology
- Protein Domains
- Cells, Cultured
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Suzanne Pickering
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Enrico Bravo
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Marianne R Perera
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Nathalia Almeida
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Lazaros Fotopoulos
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Thomas Williams
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Atlanta Moitra
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Tinne A D Nissen
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Rui Pedro Galão
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Luke B Snell
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
12
|
Gao KC, Mou T, Zhao Y, Liang D, Kuang YQ, Jia J. Single-cell sequencing reveals the heterogeneity of immune landscape in drug users with HIV infection. Int Immunopharmacol 2024; 143:113338. [PMID: 39405936 DOI: 10.1016/j.intimp.2024.113338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Injection drug use (IDU) leads to immune system dysfunction, thereby increasing the risk of opportunistic infection. There is a critical need to reveal the role of IDU in the immunopathogenesis of HIV infection. METHODS We performed single-cell RNA sequencing (scRNA-seq) on peripheral blood mononuclear cells (PBMCs) derived from healthy control (HC) individuals, HIV-infected patients with IDU (HIV-IDU) and without IDU (HIV-nIDU). In addition, the Gene Set Enrichment Analysis (GSEA) was used to analyze the immunomodulatory effects of differential immune cells. RESULTS Seven types of cells were identified with specific expressions of maker genes. Specific subsets such as CD14+ monocytes, plasmacytoid dendritic cells (pDCs), plasma cells, and CD8+ T cells displayed a high degree of heterogeneity among HC, HIV-nIDU, and HIV-IDU. We identified signature genes for each subset in distinct groups, including CFP+ CD14+ monocytes, PTPRCAP+ pDCs, IGHD+ plasma cells, and IFITM1+ CD8+T cells from HIV-IDU, whereas these genes were not expressed in such cells from HIV-nIDU. Moreover, considerable heterogeneity in the function of these immune cells was observed across different groups, especially the elevated IFN-α/β signaling for CD14+ monocytes, histone H2A/2B and H3/4 pathway for pDCs, the creation of C4 and C2 activators for plasma cells, and drug metabolism cytochrome p450 for CD8+ T cells in HIV-IDU individuals. CONCLUSION Our comprehensive analyses clarify the heterogeneous characteristics of the immune landscape between HIV-IDU and HIV-nIDU. These insights provide a deeper understanding of the IDU-mediated immunopathogenesis in HIV infection.
Collapse
Affiliation(s)
- Kai-Cheng Gao
- Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming 650500, China
| | - Tangwei Mou
- Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming 650500, China
| | - Yu Zhao
- Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming 650500, China
| | - Dan Liang
- Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming 650500, China
| | - Yi-Qun Kuang
- Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming 650500, China.
| | - Jie Jia
- Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
13
|
Kenney D, O’Connell AK, Tseng AE, Turcinovic J, Sheehan ML, Nitido AD, Montanaro P, Gertje HP, Ericsson M, Connor JH, Vrbanac V, Crossland NA, Harly C, Balazs AB, Douam F. Immune Signatures of SARS-CoV-2 Infection Resolution in Human Lung Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583965. [PMID: 38496468 PMCID: PMC10942442 DOI: 10.1101/2024.03.08.583965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
While human autopsy samples have provided insights into pulmonary immune mechanisms associated with severe viral respiratory diseases, the mechanisms that contribute to a clinically favorable resolution of viral respiratory infections remain unclear due to the lack of proper experimental systems. Using mice co-engrafted with a genetically matched human immune system and fetal lung xenograft (fLX), we mapped the immunological events defining successful resolution of SARS-CoV-2 infection in human lung tissues. Viral infection is rapidly cleared from fLX following a peak of viral replication, histopathological manifestations of lung disease and loss of AT2 program, as reported in human COVID-19 patients. Infection resolution is associated with the activation of a limited number of hematopoietic subsets, including inflammatory monocytes and non-canonical double-negative T-cells with cytotoxic functions, which are highly enriched in viral RNA and dissipate upon infection resolution. Activation of specific human fibroblast and endothelial subsets also elicit robust antiviral and monocyte chemotaxis signatures, respectively. Notably, systemic depletion of human CD4+ cells, but not CD3+ cells, abrogates infection resolution in fLX and induces persistent infection, supporting evidence that peripheral CD4+ monocytes are important contributors to SARS-CoV-2 infection resolution in lung tissues. Collectively, our findings unravel a comprehensive picture of the immunological events defining effective resolution of SARS-CoV-2 infection in human lung tissues, revealing markedly divergent immunological trajectories between resolving and fatal COVID-19 cases.
Collapse
Affiliation(s)
- Devin Kenney
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Aoife K. O’Connell
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Anna E. Tseng
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jacquelyn Turcinovic
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Maegan L. Sheehan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- These authors contributed equally to the work
| | - Adam D. Nitido
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- These authors contributed equally to the work
| | - Paige Montanaro
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Hans P. Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Maria Ericsson
- Electron Microscopy Core Facility, Harvard Medical School, Boston, MA, USA
| | - John H. Connor
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | | | - Nicholas A. Crossland
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Christelle Harly
- Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France
- LabEx IGO ‘Immunotherapy, Graft, Oncology’, Nantes, France
- These authors contributed equally to the work
| | - Alejandro B. Balazs
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- These authors contributed equally to the work
| | - Florian Douam
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- These authors contributed equally to the work
- Lead contact
| |
Collapse
|
14
|
Zhang Z, Ma X, La Y, Guo X, Chu M, Bao P, Yan P, Wu X, Liang C. Advancements in the Application of scRNA-Seq in Breast Research: A Review. Int J Mol Sci 2024; 25:13706. [PMID: 39769466 PMCID: PMC11677372 DOI: 10.3390/ijms252413706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Single-cell sequencing technology provides apparent advantages in cell population heterogeneity, allowing individuals to better comprehend tissues and organs. Sequencing technology is currently moving beyond the standard transcriptome to the single-cell level, which is likely to bring new insights into the function of breast cells. In this study, we examine the primary cell types involved in breast development, as well as achievements in the study of scRNA-seq in the microenvironment, stressing the finding of novel cell subsets using single-cell approaches and analyzing the problems and solutions to scRNA-seq. Furthermore, we are excited about the field's promising future.
Collapse
Affiliation(s)
- Zhenyu Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Xiaoming Ma
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Yongfu La
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Xian Guo
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Min Chu
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Pengjia Bao
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Ping Yan
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Xiaoyun Wu
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Chunnian Liang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| |
Collapse
|
15
|
Ghosh S, Chatterjee A, Maitra A. An insight into COVID-19 host immunity at single-cell resolution. Int Rev Immunol 2024:1-16. [PMID: 39707914 DOI: 10.1080/08830185.2024.2443420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/09/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Host immunity helps the body to fight against COVID-19. Single-cell transcriptomics has provided the scope of investigating cellular and molecular underpinnings of host immune response against SARS-CoV-2 infection at high resolution. In this review, we have systematically described the virus-induced dysregulation of relative abundance as well as molecular behavior of each innate and adaptive immune cell type and cell state during COVID-19 infection and for different vaccinations, based on single-cell studies published in last three-four years. Identification and characterization of these disease-associated specific cell populations might help to design better, efficient, and targeted therapeutic avenues.
Collapse
Affiliation(s)
- Supratim Ghosh
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics, Kalyani, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ankita Chatterjee
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics, Kalyani, India
- John C. Martin Center for Liver Research and Innovations, Kolkata, India
| | - Arindam Maitra
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
16
|
Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X, Xia Q, Xu Z, Fu Y, Zhang G, Wu H, Guo G, Guo H, Ruan Y, Wang Y, Xing D, Xu X, Zhang Z. Advances and applications in single-cell and spatial genomics. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2770-x. [PMID: 39792333 DOI: 10.1007/s11427-024-2770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics. We have reviewed the breakthroughs in single-cell multi-omics technologies, spatial genomics methods, and the computational strategies employed toward the analyses of single-cell atlas data. Furthermore, we have highlighted the advances made in constructing cellular atlases and their clinical applications, particularly in the context of disease. Finally, we have discussed the emerging trends, challenges, and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haoxi Chai
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Yujia Jiang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Teng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Ran
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziye Xu
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Hongshan Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Yijun Ruan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Yongcheng Wang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
17
|
Akimov VE, Tychinin DI, Antonova OA, Shaymardanov AM, Voronina MD, Deinichenko KA, Fateev OD, Yudin VS, Yudin SM, Mukhin VE, Romanova SV, Nekrasova AI, Zhdanova AS, Tsypkina AV, Vladimirov IS, Makhotenko AV, Keskinov AA, Kraevoy SA, Snigir EA, Svetlichnyy DV, Skvortsova VI. Remodeling of the chromatin landscape in peripheral blood cells in patients with severe Delta COVID-19. Front Immunol 2024; 15:1415317. [PMID: 39712003 PMCID: PMC11662282 DOI: 10.3389/fimmu.2024.1415317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 12/24/2024] Open
Abstract
COVID-19 is characterized by systemic pro-inflammatory shifts with the development of serious alterations in the functioning of the immune system. Investigations of the gene expression changes accompanying the infection state provide insight into the molecular and cellular processes depending on the sickness severity and virus variants. Severe Delta COVID-19 has been characterized by the appearance of a monocyte subset enriched for proinflammatory gene expression signatures and a shift in ligand-receptor interactions. We profiled the chromatin accessibility landscape of 140,000 nuclei in PBMC samples from healthy individuals or individuals with COVID-19. We investigated cis-regulatory elements and identified the core transcription factors governing gene expression in immune cells during COVID-19 infection. In severe cases, we discovered that regulome and chromatin co-accessibility modules were significantly altered across many cell types. Moreover, cases with the Delta variant were accompanied by a specific monocyte subtype discovered using scATAC-seq data. Our analysis showed that immune cells of individuals with severe Delta COVID-19 underwent significant remodeling of the chromatin accessibility landscape and development of the proinflammatory expression pattern. Using a gene regulatory network modeling approach, we investigated the core transcription factors governing the cell state and identified the most pronounced chromatin changes in CD14+ monocytes from individuals with severe Delta COVID-19. Together, our results provide novel insights into cis-regulatory module organization and its impact on gene activity in immune cells during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Vasiliy E. Akimov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Dmitriy I. Tychinin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Olga A. Antonova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Abusaid M. Shaymardanov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Maria D. Voronina
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Kseniia A. Deinichenko
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Oleg D. Fateev
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Vladimir S. Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Sergey M. Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Vladimir E. Mukhin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Svetlana V. Romanova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Aleksandra I. Nekrasova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Anastasia S. Zhdanova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Anastasia V. Tsypkina
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Ivan S. Vladimirov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Antonida V. Makhotenko
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Anton A. Keskinov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Sergey A. Kraevoy
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Ekaterina A. Snigir
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Dmitry V. Svetlichnyy
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | | |
Collapse
|
18
|
Topper MJ, Guarnieri JW, Haltom JA, Chadburn A, Cope H, Frere J, An J, Borczuk A, Sinha S, Kim J, Park J, Butler D, Meydan C, Foox J, Bram Y, Richard SA, Epsi NJ, Agan B, Chenoweth JG, Simons MP, Tribble D, Burgess T, Dalgard C, Heise MT, Moorman NJ, Baxter VK, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Beigel K, Widjaja GA, Janssen KA, Lie T, Murdock DG, Angelin A, Soto Albrecht YE, Olali AZ, Cen Z, Dybas J, Priebe W, Emmett MR, Best SM, Kelsey Johnson M, Trovao NS, Clark KB, Zaksas V, Meller R, Grabham P, Schisler JC, Moraes-Vieira PM, Pollett S, Mason CE, Syrkin Wurtele E, Taylor D, Schwartz RE, Beheshti A, Wallace DC, Baylin SB. Lethal COVID-19 associates with RAAS-induced inflammation for multiple organ damage including mediastinal lymph nodes. Proc Natl Acad Sci U S A 2024; 121:e2401968121. [PMID: 39602262 PMCID: PMC11626201 DOI: 10.1073/pnas.2401968121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024] Open
Abstract
Lethal COVID-19 outcomes are attributed to classic cytokine storm. We revisit this using RNA sequencing of nasopharyngeal and 40 autopsy samples from patients dying of SARS-CoV-2. Subsets of the 100 top-upregulated genes in nasal swabs are upregulated in the heart, lung, kidney, and liver, but not mediastinal lymph nodes. Twenty-two of these are "noncanonical" immune genes, which we link to components of the renin-angiotensin-activation-system that manifest as increased fibrin deposition, leaky vessels, thrombotic tendency, PANoptosis, and mitochondrial dysfunction. Immunohistochemistry of mediastinal lymph nodes reveals altered architecture, excess collagen deposition, and pathogenic fibroblast infiltration. Many of the above findings are paralleled in animal models of SARS-CoV-2 infection and human peripheral blood mononuclear and whole blood samples from individuals with early and later SARS-CoV-2 variants. We then redefine cytokine storm in lethal COVID-19 as driven by upstream immune gene and mitochondrial signaling producing downstream RAAS (renin-angiotensin-aldosterone system) overactivation and organ damage, including compromised mediastinal lymph node function.
Collapse
Affiliation(s)
- Michael J. Topper
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Joseph W. Guarnieri
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Jeffrey A. Haltom
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Amy Chadburn
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Henry Cope
- School of Medicine, University of Nottingham, DerbyDE22 3DT, United Kingdom
| | - Justin Frere
- Icahn School of Medicine, Mount Sinai, New York, NY10023
| | - Julia An
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | | | | | | | | | | | - Cem Meydan
- Weill Cornell Medicine, New York, NY10065
| | | | - Yaron Bram
- Weill Cornell Medicine, New York, NY10065
| | - Stephanie A. Richard
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Nusrat J. Epsi
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Brian Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Josh G. Chenoweth
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Mark P. Simons
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - David Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - Timothy Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - Clifton Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD20814
| | | | | | | | | | | | | | | | | | - Katherine Beigel
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Gabrielle A. Widjaja
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Kevin A. Janssen
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Timothy Lie
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Deborah G. Murdock
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Alessia Angelin
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Yentli E. Soto Albrecht
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- The University of Pennsylvania, Philadelphia, PA19104
| | - Arnold Z. Olali
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Zimu Cen
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Joseph Dybas
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Waldemar Priebe
- COVID-19 International Research Team, Medford, MA02155
- University of Texas Monroe Dunaway Anderson Cancer Center, Houston, TX77030
| | - Mark R. Emmett
- COVID-19 International Research Team, Medford, MA02155
- University of Texas Medical Branch, Galveston, TX77555
| | - Sonja M. Best
- COVID-19 International Research Team, Medford, MA02155
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT59840
| | - Maya Kelsey Johnson
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Nidia S. Trovao
- COVID-19 International Research Team, Medford, MA02155
- Fogarty International Center, NIH, Bethesda, MD20892
| | - Kevin B. Clark
- COVID-19 International Research Team, Medford, MA02155
- Cures Within Reach, Chicago, IL60602
- Champions Service, Computational Sciences Support Network, Multi-Tier Assistance, Training, and Computational Help Track, NSF's Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support, Carnegie-Mellon University, Pittsburgh, PA15213
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA02155
- Center for Translational Data Science, University of Chicago, Chicago, IL60615
- Clever Research Lab, Springfield, IL62704
| | - Robert Meller
- COVID-19 International Research Team, Medford, MA02155
- Morehouse School of Medicine, Atlanta, GA30310
| | - Peter Grabham
- COVID-19 International Research Team, Medford, MA02155
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY19103
| | - Jonathan C. Schisler
- COVID-19 International Research Team, Medford, MA02155
- University of North Carolina, Chapel Hill, NC27599
| | - Pedro M. Moraes-Vieira
- COVID-19 International Research Team, Medford, MA02155
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil13083-862
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Christopher E. Mason
- COVID-19 International Research Team, Medford, MA02155
- Weill Cornell Medicine, New York, NY10065
- New York Genome Center, New York, NY10013
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team, Medford, MA02155
- Center for Metabolic Biology, Bioinformatics and Computational Biology, and Genetics Development, and Cell Biology, Iowa State University, Ames, IA50011
- Center for Bioinformatics and Computational Biology Iowa State University, Ames, IA50011
- Center for Genetics Development, and Cell Biology Iowa State University, Ames, IA50011
| | - Deanne Taylor
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| | - Robert E. Schwartz
- COVID-19 International Research Team, Medford, MA02155
- Weill Cornell Medicine, New York, NY10065
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA02155
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Blue Marble Space Institute of Science, Seattle, WA98104
- McGowan Institute for Regenerative Medicine and Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA15219
| | - Douglas C. Wallace
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA19104
| | - Stephen B. Baylin
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Van Andel Institute, Grand Rapids, MI49503
| |
Collapse
|
19
|
Wang X, Almet AA, Nie Q. Detecting global and local hierarchical structures in cell-cell communication using CrossChat. Nat Commun 2024; 15:10542. [PMID: 39627184 PMCID: PMC11615294 DOI: 10.1038/s41467-024-54821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Cell-cell communication (CCC) occurs across different biological scales, ranging from interactions between large groups of cells to interactions between individual cells, forming a hierarchical structure. Globally, CCC may exist between clusters or only subgroups of a cluster with varying size, while locally, a group of cells as sender or receiver may exhibit distinct signaling properties. Current existing methods infer CCC from single-cell RNA-seq or Spatial Transcriptomics only between predefined cell groups, neglecting the existing hierarchical structure within CCC that are determined by signaling molecules, in particular, ligands and receptors. Here, we develop CrossChat, a novel computational framework designed to infer and analyze the hierarchical cell-cell communication structures using two complementary approaches: a global hierarchical structure using a multi-resolution clustering method, and multiple local hierarchical structures using a tree detection method. This framework provides a comprehensive approach to understand the hierarchical relationships within CCC that govern complex tissue functions. By applying our method to two nonspatial scRNA-seq datasets sampled from COVID-19 patients and mouse embryonic skin, and two spatial transcriptomics datasets generated from Stereo-seq of mouse embryo and 10x Visium of mouse wounded skin, we showcase CrossChat's functionalities for analyzing both global and local hierarchical structures within cell-cell communication.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Mathematics, University of California, Irvine, CA, USA
| | - Axel A Almet
- Department of Mathematics, University of California, Irvine, CA, USA.
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA.
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, USA.
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA.
| |
Collapse
|
20
|
Gray V, Chen W, Tan RJY, Teo JMN, Huang Z, Fong CHY, Law TWH, Ye ZW, Yuan S, Bao X, Hung IFN, Tan KCB, Lee CH, Ling GS. Hyperglycemia-triggered lipid peroxidation destabilizes STAT4 and impairs anti-viral Th1 responses in type 2 diabetes. Cell Metab 2024; 36:2511-2527.e7. [PMID: 39488214 DOI: 10.1016/j.cmet.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024]
Abstract
Patients with type 2 diabetes (T2D) are more susceptible to severe respiratory viral infections, but the underlying mechanisms remain elusive. Here, we show that patients with T2D and coronavirus disease 2019 (COVID-19) infections, and influenza-infected T2D mice, exhibit defective T helper 1 (Th1) responses, which are an essential component of anti-viral immunity. This defect stems from intrinsic metabolic perturbations in CD4+ T cells driven by hyperglycemia. Mechanistically, hyperglycemia triggers mitochondrial dysfunction and excessive fatty acid synthesis, leading to elevated oxidative stress and aberrant lipid accumulation within CD4+ T cells. These abnormalities promote lipid peroxidation (LPO), which drives carbonylation of signal transducer and activator of transcription 4 (STAT4), a crucial Th1-lineage-determining factor. Carbonylated STAT4 undergoes rapid degradation, causing reduced T-bet induction and diminished Th1 differentiation. LPO scavenger ameliorates Th1 defects in patients with T2D who have poor glycemic control and restores viral control in T2D mice. Thus, this hyperglycemia-LPO-STAT4 axis underpins reduced Th1 activity in T2D hosts, with important implications for managing T2D-related viral complications.
Collapse
Affiliation(s)
- Victor Gray
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Weixin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rachael Julia Yuenyinn Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jia Ming Nickolas Teo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhihao Huang
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Carol Ho-Yi Fong
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Tommy Wing Hang Law
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shuofeng Yuan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiucong Bao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Kathryn Choon-Beng Tan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | - Chi-Ho Lee
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
21
|
Zhang S, Fang X, Chang M, Zheng M, Guo L, Xu Y, Shu J, Nie Q, Li Z. Cross-species single-cell analysis reveals divergence and conservation of peripheral blood mononuclear cells. BMC Genomics 2024; 25:1169. [PMID: 39623297 PMCID: PMC11613757 DOI: 10.1186/s12864-024-11030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Single-cell transcriptome sequencing (scRNA-seq) has revolutionized the study of immune cells by overcoming the limitations of traditional antibody-based identification and isolation methods. This advancement allows us to obtain comprehensive gene expression profiles from a diverse array of vertebrate species, facilitating the identification of various cell types. Comparative immunology across vertebrates presents a promising approach to understanding the evolution of immune cell types. In this study, we conducted a comparative transcriptome analysis of peripheral blood mononuclear cells (PBMCs) at the single-cell level across 12 species. RESULTS Our findings shed light on the cellular compositional features of PBMCs, spanning from fish to mammals. Notably, we identified genes that exhibit vertebrate universality in characterizing immune cells. Moreover, our investigation revealed that monocytes have maintained a conserved transcriptional regulatory program throughout evolution, emphasizing their pivotal role in orchestrating immune cells to execute immune programs. CONCLUSIONS This comprehensive analysis provides valuable insights into the evolution of immune cells across vertebrates.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiang Fang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Mengyang Chang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, Liaoning, 266071, China
| | - Ming Zheng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Lijin Guo
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yibin Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, 225125, China.
| | - Qinghua Nie
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Zhenhui Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
22
|
Lucchini G, Cozma E, Jackson A, Gilmour K, Protheroe R, Wilson K, Peggs K, Potter V, Parker A, Peniket A, Tholouli E, Wynn R, Nicholson E, Craddock C, Marks DI, Parrish C, Paneesha S, Mirci-Danicar O, Martin AM, McIlroy G, Bishop R, Collings R, Williams E, Amrolia PJ. COVID-19 infection in adult and paediatric recipients of allogeneic stem cell transplantation: The UK experience. Leuk Res 2024; 147:107618. [PMID: 39536686 DOI: 10.1016/j.leukres.2024.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/22/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Giovanna Lucchini
- Bone Marrow Transplant Unit, Great Ormond Street Hospital, London, UK
| | - Elena Cozma
- Cancer Research UK Clinical Trials Unit, University of Birmingham, UK
| | - Aimee Jackson
- Cancer Research UK Clinical Trials Unit, University of Birmingham, UK
| | - Kimberly Gilmour
- Immunology and Cell Therapy Laboratory, Great Ormond Street Hospital, London, UK
| | | | | | | | | | - Anne Parker
- Queen Elizabeth University Hospital, Glasgow, UK
| | | | | | - Robert Wynn
- Manchester Children's Hospital, Manchester, UK
| | - Emma Nicholson
- Royal Marsden Hospital, Surrey, UK; Institute of Cancer Research, London, UK
| | - Charles Craddock
- Cancer Research UK Clinical Trials Unit, University of Birmingham, UK; Queen Elizabeth Hospital, Birmingham, UK
| | | | | | | | | | | | - Graham McIlroy
- Cancer Research UK Clinical Trials Unit, University of Birmingham, UK; Queen Elizabeth Hospital, Birmingham, UK
| | - Rebecca Bishop
- Cancer Research UK Clinical Trials Unit, University of Birmingham, UK
| | - Rebecca Collings
- Cancer Research UK Clinical Trials Unit, University of Birmingham, UK
| | - Ellie Williams
- Cancer Research UK Clinical Trials Unit, University of Birmingham, UK
| | - Persis J Amrolia
- Bone Marrow Transplant Unit, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
23
|
Song K, Xu H, Shi Y, Zou X, Da LT, Hao J. Investigating TCR-pMHC interactions for TCRs without identified epitopes by constructing a computational pipeline. Int J Biol Macromol 2024; 282:136502. [PMID: 39423970 DOI: 10.1016/j.ijbiomac.2024.136502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The molecular mechanisms underlying epitope recognition by T cell receptors (TCRs) are critical for activating T cell immune responses and rationally designing TCR-based therapeutics. Single-cell sequencing techniques vastly boost the accumulation of TCR sequences, while the limitation of available TCR-pMHC structures hampers further investigations. In this study, we proposed a computational pipeline that incorporates structural information and single-cell sequencing data to investigate the epitope-recognition mechanisms for TCRs without identified epitopes. By antigen specificity clustering, we mapped the epitope sequences between epitope-known and epitope-unknown TCRs from COVID-19 patients. One reported SARS-CoV-2 epitope, NQKLIANQF (S919-927), was identified for a TCR expressed by 614 T cells (TCR-614). Epitope screening also identified a potential cross-reactive epitope, KLKTLVATA (NSP31790-1798), for a TCR expressed by 204 T cells (TCR-204). By molecular dynamics (MD) simulations, we revealed the detailed epitope-recognition mechanisms for both TCRs. The structural motifs responsible for epitope recognition revealed by the MD simulations are consistent with the sequential features recognized by the sequence-based clustering method. We hope that this strategy could facilitate the discovery and optimization of TCR-based therapeutics.
Collapse
Affiliation(s)
- Kaiyuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Honglin Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Xin Zou
- Digital Diagnosis and Treatment Innovation Center for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; Ninth People's Hospital, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China.
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jie Hao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
24
|
Li Y, Qin S, Dong L, Xiao Y, Zhang Y, Hou Y, Qiao S, Zhang R, Li Y, Bao Y, Zhao X, Ma Y, Gao GF. Multi-omic characteristics of longitudinal immune profiling after breakthrough infections caused by Omicron BA.5 sublineages. EBioMedicine 2024; 110:105428. [PMID: 39536392 PMCID: PMC11605469 DOI: 10.1016/j.ebiom.2024.105428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Omicron sub-variants breakthrough infections (BTIs) have led to millions of coronavirus disease 2019 (COVID-19) cases worldwide. The acute-phase immune status is critical for prognosis, however, the dynamic immune profiling of COVID-19 during the first month after BTIs remains unclear. METHODS In this study, we monitored the immune dynamics at various timepoints in a longitudinal cohort during the first month post-BTIs through clinical evaluation, single-cell RNA sequencing (scRNA-seq), T cell receptor (TCR)/B cell receptor (BCR) sequencing, and antibody mass spectrometry. FINDINGS Serological analysis revealed limited impairment to functions of major organs, active cellular and humoral immunity at 2 weeks post-BTI, with significant increases in cytokines (CKs) and neutralizing antibody levels. However, 1 month post-BTI, organ function parameters and CK levels reverted to pre-infection levels, whereas neutralizing antibody levels remained high. Notably, scRNA-seq showed that lymphocytes maintained strong antiviral activity and cell depletion at 2 weeks and 1 month post-BTI, with genes CD81, ABHD17A, CXCR4, DUSP1, etc. upregulated, and genes PFDN5, DYNLRB1, CD52, etc. downregulated, indicating that lymphocytes status take longer to recover to normal levels than that routine blood tests revealed. Additionally, T cell-exhaustion associated genes, including LAG3, TIGIT, PDCD1, CTLA4, HAVCR2, and TOX, were upregulated after BTI. TCRs and BCRs exhibited higher clonotypes, mainly in CD8Tem or plasmablast cells, at 2 weeks post-BTI comparing 1 month. More IgG and IgA-type BCRs were found in the groups of 1 month post-BTI, with higher somatic hypermutation, indicating greater maturity. Verification of monoclonal antibodies corresponding to amplified BCRs highlighted the antigen-specific and broad-spectrum characteristics. INTERPRETATION Our study elucidated the dynamic immune profiling of individuals after Omicron BA.5 sublineages BTI. Strong immune activation, antiviral response, antibody maturation and class transition at 2 weeks and 1 month after BTI may provide essential insights into pathogenicity, sequential immune status, recovery mechanisms of Omicron sublineage BTI. FUNDING This study was supported by the National Key R&D Program of China, the China Postdoctoral Science Foundation, Guangdong Basic and Applied Basic Research Foundation, the National Natural Science Foundation of China, CAS Project for Young Scientists in Basic Research, and the Air Force Special Medical Center Science and Technology Booster Program.
Collapse
MESH Headings
- Humans
- COVID-19/immunology
- COVID-19/virology
- SARS-CoV-2/immunology
- Male
- Female
- Middle Aged
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Longitudinal Studies
- Adult
- Cytokines/metabolism
- Aged
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Single-Cell Analysis
- Breakthrough Infections
- Multiomics
Collapse
Affiliation(s)
- Yanhua Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shijie Qin
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Shenzhen Children's Hospital, Shenzhen, 518026, China; The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lei Dong
- Department of Clinical Laboratory, Air Force Medical Center, Beijing, 100142, China
| | - Yunfeng Xiao
- Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yanan Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Shenzhen Children's Hospital, Shenzhen, 518026, China
| | - Yali Hou
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shitong Qiao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rong Zhang
- Guangxi University State Key Laboratory for Conservation and Utilization of Subtropical Agro BioResources, Nanning, 53000, China
| | - Ying Li
- Department of Clinical Laboratory, Air Force Medical Center, Beijing, 100142, China
| | - Yanmin Bao
- Shenzhen Children's Hospital, Shenzhen, 518026, China.
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Life Science Academy, Beijing, 102209, China.
| | - Yueyun Ma
- Department of Clinical Laboratory, Air Force Medical Center, Beijing, 100142, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
25
|
Pawlik MT, Rinneberg G, Koch A, Meyringer H, Loew TH, Kjellberg A. Is there a rationale for hyperbaric oxygen therapy in the patients with Post COVID syndrome? : A critical review. Eur Arch Psychiatry Clin Neurosci 2024; 274:1797-1817. [PMID: 39545965 PMCID: PMC11579208 DOI: 10.1007/s00406-024-01911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
The SARS-CoV-2 pandemic has resulted in 762 million infections worldwide from 2020 to date, of which approximately ten percent are suffering from the effects after infection in 2019 (COVID-19) [1, 40]. In Germany, it is now assumed that at least one million people suffer from post-COVID condition with long-term consequences. These have been previously reported in diseases like Myalgic Encephalomyelitis (ME) and Chronic Fatigue Syndrome (CFS). Symptoms show a changing variability and recent surveys in the COVID context indicate that 10-30 % of outpatients, 50 to 70% of hospitalised patients suffer from sequelae. Recent data suggest that only 13% of all ill people were completely free of symptoms after recovery [3, 9]. Current hypotheses consider chronic inflammation, mitochondrial dysfunction, latent viral persistence, autoimmunity, changes of the human microbiome or multilocular sequelae in various organ system after infection. Hyperbaric oxygen therapy (HBOT) is applied since 1957 for heart surgery, scuba dive accidents, CO intoxication, air embolisms and infections with anaerobic pathogens. Under hyperbaric pressure, oxygen is physically dissolved in the blood in higher concentrations and reaches levels four times higher than under normobaric oxygen application. Moreover, the alternation of hyperoxia and normoxia induces a variety of processes at the cellular level, which improves oxygen supply in areas of locoregional hypoxia. Numerous target gene effects on new vessel formation, anti-inflammatory and anti-oedematous effects have been demonstrated [74]. The provision of intermittently high, local oxygen concentrations increases repair and regeneration processes and normalises the predominance of hyperinflammation. At present time only one prospective, randomized and placebo-controlled study exists with positive effects on global cognitive function, attention and executive function, psychiatric symptoms and pain interference. In conclusion, up to this date HBO is the only scientifically proven treatment in a prospective randomized controlled trial to be effective for cognitive improvement, regeneration of brain network and improvement of cardiac function. HBOT may have not only theoretical but also potential impact on targets of current pathophysiology of Post COVID condition, which warrants further scientific studies in patients.
Collapse
Affiliation(s)
- M T Pawlik
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany.
- Institute of Experimental Medicine, Christian-Albrechts-University of Kiel c/o German Naval Medical Institute, Kronshagen, Germany.
| | - G Rinneberg
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany
| | - A Koch
- Institute of Experimental Medicine, Christian-Albrechts-University of Kiel c/o German Naval Medical Institute, Kronshagen, Germany
| | - H Meyringer
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany
| | - T H Loew
- Department of Psychosomatic Medicine, University Hospital Regensburg, Regensburg, Germany
| | - A Kjellberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Perioperative Medicine and Intensive Care, Medical Unit Intensive Care and Thoracic surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
Shen Y, Voigt A, Bhattacharyya I, Nguyen CQ. Single-Cell Transcriptomics Reveals a Pivotal Role of DOCK2 in Sjögren Disease. ACR Open Rheumatol 2024; 6:927-943. [PMID: 39382155 PMCID: PMC11638132 DOI: 10.1002/acr2.11738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE Sjögren disease (SjD) is an autoimmune condition characterized by the dysfunction of the salivary and lacrimal glands. The study aimed to decipher the pathogenic cell populations and their immunologic pathways in the salivary glands. We further determined the therapeutic effect of inhibiting dedicator of cytokinesis 2 (DOCK2) shared by novel clusters of CD8+ T cells in an SjD mouse model. METHODS This study employed single-cell RNA sequencing to examine the composition and dynamics of immune cells in the salivary glands of SjD mice. By analyzing the transcriptomic data and employing clustering analysis, a specific target was identified, leading to the treatment of mice with a targeted inhibitor. RESULTS The results showed diverse immune cell types, including B cells, CD4+ T cells, CD8+ T cells, macrophages, and natural killer cells. We identified specific clusters possessing phenotypic characteristics of immune cell subpopulations, thereby showing specific genes/pathways associated with the disease. The most striking finding was the elevated expression of DOCK2 in CD8+ T cells in the SjD model. This discovery is significant because subsequent treatment with a DOCK2 inhibitor 4-[3-(2-Chlorophenyl)-2-propen-1-ylidene]-1-phenyl-3,5-pyrazolidinedione (CPYPP) led to a marked amelioration of SjD signs. CONCLUSION The effectiveness of DOCK2 inhibition in alleviating SjD signs highlights the potential of DOCK2 as a therapeutic target, opening new avenues for treatment strategies that could modulate the immune response more effectively in SjD.
Collapse
Affiliation(s)
- Yiran Shen
- University of Florida College of Veterinary MedicineGainesville
| | | | | | - Cuong Q. Nguyen
- University of Florida College of Veterinary Medicine and University of Florida College of Dentistry and University of Florida Center for Orphaned Autoimmune DiseasesGainesville
| |
Collapse
|
27
|
Wang Y, Zhang Y, Gong G, Liu Q, Li L, Zhang M, Shen S, Wang R, Wu J, Xu W. Single-cell analysis of human peripheral blood reveals high immune response activity in successful ageing individuals. Mech Ageing Dev 2024; 223:112011. [PMID: 39622417 DOI: 10.1016/j.mad.2024.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Beneficial remodeling of the immune system in successful ageing individuals (centenarians and supercentenarians) is critical for healthy ageing. However, mechanisms for dynamic regulation of immunity during ageing remain unclear. We use single-cell RNA sequencing (scRNA-seq) as an analytical strategy to study the dynamic regulation of immunity during aging and its molecular mechanisms at the single-cell level. We performed an integrative analysis of 87,215 peripheral blood mononuclear cells, from seven supercentenarians, three centenarians, and four elderly controls, generated by single-cell transcriptomics complemented with fluorescence-activated cell sorting. Animals experiments were also conducted to validate the makers of healthy aging found by our bioinformatic analysis and further explore the dynamic of immune changes during aging process. We found that CD8+ effector memory T cells and terminally differentiated B cells were enriched in the longevity group (centenarians and supercentenarians), whereas naïve T cells and Tregs were enriched in elderly controls. CD56dim NK cells in the longevity group activated Fc-γ receptor signaling. The higher antigen-presenting ability of CD14+ monocytes in the longevity group and the CellChat analysis indicated that CD14+ monocytes might assist active T and B cells. Here, we revealed the adaptive immune remodeling geromarkers of immunosenescence in centenarians and supercentenarians, which could be considered as biomarkers of healthy aging, and might help sustain immune responses and achieve exceptional longevity.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Geriatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210031, China
| | - Yuxing Zhang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ge Gong
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Quanzhong Liu
- Department of Bioinformatics, Nanjing Medical University, Nanjing 211166, China
| | - Liangyu Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing 211166, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Mingjiong Zhang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuping Shen
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ran Wang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jianqing Wu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Wei Xu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
28
|
Rodríguez-Ubreva J, Calafell-Segura J, Calvillo CL, Keller B, Ciudad L, Handfield LF, de la Calle-Fabregat C, Godoy-Tena G, Andrés-León E, Hoo R, Porter T, Prigmore E, Hofmann M, Decker A, Martín J, Vento-Tormo R, Warnatz K, Ballestar E. COVID-19 progression and convalescence in common variable immunodeficiency patients show dysregulated adaptive immune responses and persistent type I interferon and inflammasome activation. Nat Commun 2024; 15:10344. [PMID: 39609471 PMCID: PMC11605083 DOI: 10.1038/s41467-024-54732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Common variable immunodeficiency (CVID) is the most prevalent primary immunodeficiency, marked by hypogammaglobulinemia, poor antibody responses, and increased infection susceptibility. The COVID-19 pandemic provided a unique opportunity to study the effects of prolonged viral infections on the immune responses of CVID patients. Here we use single-cell RNA-seq and spectral flow cytometry of peripheral blood samples before, during, and after SARS-CoV-2 infection showing that COVID-19 CVID patients display a persistent type I interferon signature at convalescence across immune compartments. Alterations in adaptive immunity include sustained activation of naïve B cells, increased CD21low B cells, impaired Th1 polarization, CD4+ T central memory exhaustion, and increased CD8+ T cell cytotoxicity. NK cell differentiation is defective, although cytotoxicity remains intact. Monocytes show persistent activation of inflammasome-related genes. These findings suggest the involvement of intact humoral immunity in regulating these processes and might indicate the need for early intervention to manage viral infections in CVID patients.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain.
| | - Josep Calafell-Segura
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | | | - Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Eduardo Andrés-León
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Regina Hoo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Tarryn Porter
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Maike Hofmann
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annegrit Decker
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | | | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain.
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
29
|
Martorell-Marugán J, López-Domínguez R, Villatoro-García JA, Toro-Domínguez D, Chierici M, Jurman G, Carmona-Sáez P. Explainable deep neural networks for predicting sample phenotypes from single-cell transcriptomics. Brief Bioinform 2024; 26:bbae673. [PMID: 39814561 PMCID: PMC11735047 DOI: 10.1093/bib/bbae673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/14/2024] [Indexed: 01/18/2025] Open
Abstract
Recent advances in single-cell RNA-Sequencing (scRNA-Seq) technologies have revolutionized our ability to gather molecular insights into different phenotypes at the level of individual cells. The analysis of the resulting data poses significant challenges, and proper statistical methods are required to analyze and extract information from scRNA-Seq datasets. Sample classification based on gene expression data has proven effective and valuable for precision medicine applications. However, standard classification schemas are often not suitable for scRNA-Seq due to their unique characteristics, and new algorithms are required to effectively analyze and classify samples at the single-cell level. Furthermore, existing methods for this purpose have limitations in their usability. Those reasons motivated us to develop singleDeep, an end-to-end pipeline that streamlines the analysis of scRNA-Seq data training deep neural networks, enabling robust prediction and characterization of sample phenotypes. We used singleDeep to make predictions on scRNA-Seq datasets from different conditions, including systemic lupus erythematosus, Alzheimer's disease and coronavirus disease 2019. Our results demonstrate strong diagnostic performance, validated both internally and externally. Moreover, singleDeep outperformed traditional machine learning methods and alternative single-cell approaches. In addition to prediction accuracy, singleDeep provides valuable insights into cell types and gene importance estimation for phenotypic characterization. This functionality provided additional and valuable information in our use cases. For instance, we corroborated that some interferon signature genes are consistently relevant for autoimmunity across all immune cell types in lupus. On the other hand, we discovered that genes linked to dementia have relevant roles in specific brain cell populations, such as APOE in astrocytes.
Collapse
Affiliation(s)
- Jordi Martorell-Marugán
- GENYO, Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain
- Fundación para la Investigación Biosanitaria de Andalucía Oriental-Alejandro Otero (FIBAO), Avenida de Madrid 15, Granada 18012, Spain
| | - Raúl López-Domínguez
- GENYO, Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain
| | - Juan Antonio Villatoro-García
- GENYO, Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain
- Department of Statistics and Operational Research, University of Granada, Avenida de la Fuente Nueva S/N, Granada 18071, Spain
| | - Daniel Toro-Domínguez
- Unit of Inflammatory Diseases, Department of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Solna 171 77, Sweden
| | - Marco Chierici
- Data Science for Health Research Unit, Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123, Italy
| | - Giuseppe Jurman
- Data Science for Health Research Unit, Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123, Italy
| | - Pedro Carmona-Sáez
- GENYO, Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain
- Department of Statistics and Operational Research, University of Granada, Avenida de la Fuente Nueva S/N, Granada 18071, Spain
| |
Collapse
|
30
|
Wu Y, Xu P, Wang L, Liu S, Hou Y, Lu H, Hu P, Li X, Yu X. scGO: interpretable deep neural network for cell status annotation and disease diagnosis. Brief Bioinform 2024; 26:bbaf018. [PMID: 39820437 PMCID: PMC11737892 DOI: 10.1093/bib/bbaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 01/10/2025] [Indexed: 01/19/2025] Open
Abstract
Machine learning has emerged as a transformative tool for elucidating cellular heterogeneity in single-cell RNA sequencing. However, a significant challenge lies in the "black box" nature of deep learning models, which obscures the decision-making process and limits interpretability in cell status annotation. In this study, we introduced scGO, a Gene Ontology (GO)-inspired deep learning framework designed to provide interpretable cell status annotation for scRNA-seq data. scGO employs sparse neural networks to leverage the intrinsic biological relationships among genes, transcription factors, and GO terms, significantly augmenting interpretability and reducing computational cost. scGO outperforms state-of-the-art methods in the precise characterization of cell subtypes across diverse datasets. Our extensive experimentation across a spectrum of scRNA-seq datasets underscored the remarkable efficacy of scGO in disease diagnosis, prediction of developmental stages, and evaluation of disease severity and cellular senescence status. Furthermore, we incorporated in silico individual gene manipulations into the scGO model, introducing an additional layer for discovering therapeutic targets. Our results provide an interpretable model for accurately annotating cell status, capturing latent biological knowledge, and informing clinical practice.
Collapse
Affiliation(s)
- You Wu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dong Chuan Road, Shanghai 200240, China
| | - Pengfei Xu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dong Chuan Road, Shanghai 200240, China
| | - Liyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dong Chuan Road, Shanghai 200240, China
| | - Shuai Liu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dong Chuan Road, Shanghai 200240, China
| | - Yingnan Hou
- School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dong Chuan Road, Shanghai 200240, China
| | - Hui Lu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dong Chuan Road, Shanghai 200240, China
| | - Peng Hu
- Ministry of Education, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, China
| | - Xiaofei Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dong Chuan Road, Shanghai 200240, China
- Shanghai Pudong New Area People’s Hospital, No. 490, Chuanhuan South Road, Shanghai 201299, China
| | - Xiang Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dong Chuan Road, Shanghai 200240, China
| |
Collapse
|
31
|
Wang Z, Zhan Q, Yang S, Mu S, Chen J, Garai S, Orzechowski P, Wagenaar J, Shen L. QOT: Quantized Optimal Transport for sample-level distance matrix in single-cell omics. Brief Bioinform 2024; 26:bbae713. [PMID: 39808114 DOI: 10.1093/bib/bbae713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
Single-cell technologies have enabled the high-dimensional characterization of cell populations at an unprecedented scale. The innate complexity and increasing volume of data pose significant computational and analytical challenges, especially in comparative studies delineating cellular architectures across various biological conditions (i.e. generation of sample-level distance matrices). Optimal Transport is a mathematical tool that captures the intrinsic structure of data geometrically and has been applied to many bioinformatics tasks. In this paper, we propose QOT (Quantized Optimal Transport), a new method enabling efficient computation of sample-level distance matrix from large-scale single-cell omics data through a quantization step. We apply our algorithm to real-world single-cell genomics and pathomics datasets, aiming to extrapolate cell-level insights to inform sample-level categorizations. Our empirical study shows that QOT outperforms existing two OT-based algorithms in accuracy and robustness when obtaining a distance matrix from high throughput single-cell measures at the sample level. Moreover, the sample level distance matrix could be used in the downstream analysis (i.e. uncover the trajectory of disease progression), highlighting its usage in biomedical informatics and data science.
Collapse
Affiliation(s)
- Zexuan Wang
- Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Qipeng Zhan
- Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Shu Yang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Shizhuo Mu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jiong Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Sumita Garai
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Patryk Orzechowski
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Automatics and Robotics, AGH University, 30-059 Krakow, Poland
| | - Joost Wagenaar
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
32
|
Huang Z, Zheng Y, Wang W, Zhou W, Zhang Y, Wei C, Zhang X, Jin X, Yin J. Uncovering disease-related multicellular pathway modules on large-scale single-cell transcriptomes with scPAFA. Commun Biol 2024; 7:1523. [PMID: 39550507 PMCID: PMC11569158 DOI: 10.1038/s42003-024-07238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
Pathway analysis is a crucial analytical phase in disease research on single-cell RNA sequencing (scRNA-seq) data, offering biological interpretations based on prior knowledge. However, currently available tools for generating cell-level pathway activity scores (PAS) exhibit computational inefficacy in large-scale scRNA-seq datasets. Additionally, disease-related pathways are often identified through cross-condition comparisons within specific cell types, overlooking potential patterns that involve multiple cell types. Here, we present single-cell pathway activity factor analysis (scPAFA), a Python library designed for large-scale single-cell datasets allowing rapid PAS computation and uncovering biologically interpretable disease-related multicellular pathway modules, which are low-dimensional representations of disease-related PAS alterations in multiple cell types. Application on colorectal cancer (CRC) datasets and large-scale lupus atlas over 1.2 million cells demonstrated that scPAFA can achieve over 40-fold reductions in the runtime of PAS computation and further identified reliable and interpretable multicellular pathway modules that capture the heterogeneity of CRC and transcriptional abnormalities in lupus patients, respectively. Overall, scPAFA presents a valuable addition to existing research tools in disease research, with the potential to reveal complex disease mechanisms and support biomarker discovery at the pathway level.
Collapse
Affiliation(s)
- Zhuoli Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Yuhui Zheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Weikai Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Wenwen Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Yanbo Zhang
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Chen Wei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Xiuqing Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Xin Jin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- BGI Research, Shenzhen, 518083, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jianhua Yin
- BGI Research, Shenzhen, 518083, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
33
|
Zhou F, Chen M, Liu Y, Xia X, Zhao P. Serum mitochondrial-encoded NADH dehydrogenase 6 and Annexin A1 as novel biomarkers for mortality prediction in critically ill patients with sepsis. Front Immunol 2024; 15:1486322. [PMID: 39611143 PMCID: PMC11602424 DOI: 10.3389/fimmu.2024.1486322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Objectives Formyl peptide receptor 1 (FPR1) is a member of G protein-coupled receptor (GPCR) family that detects potentially danger signals characterized by the appearance of N-formylated peptides which originate from either bacteria or host mitochondria during organ injury, including sepsis. Mitochondrial-encoded NADH dehydrogenase 6 (MT-ND6) and Annexin A1 (ANXA1), as mitochondrial damage-associated molecular patterns (mtDAMPs) agonist and endogenous agonist of FPR1 respectively, interact with FPR1 regulating polymorphonuclear leukocytes (PMNs) function and inflammatory response during sepsis. However, there is no direct evidence of MT-ND6 or ANXA1 in the circulation of patients with sepsis and their potential role in clinical significance, including diagnosis and mortality prediction during sepsis. Methods A prospective cohort study was conducted in ICU within a large academic hospital. We measured serum MT-ND6 or ANXA1 in a cohort of patients with sepsis in ICU (n=180) and patients with non-sepsis in ICU (n=60) by Enzyme-linked immunosorbent assays (ELISA). The ROC curve and Kaplan Meier analysis was used to evaluate the diagnostic and prognostic ability of two biomarkers for patients with sepsis. Results The concentration of MT-ND6 and ANXA1 were significantly elevated in the patients with sepsis, and the diagnostic values of MT-ND6 (0.789) for sepsis patients was second only to SOFA scores (AUC = 0.870). Higher serum concentrations of MT-ND6 (>1.41 ng/ml) and lower concentrations of ANXA1 (< 8.09 ng/mL) were closely related to the higher mortality in patients with sepsis, with the predictive values were 0.705 and 0.694, respectively. When patients with sepsis classified based on four pro-inflammation and two anti-inflammation cytokines, it was shown that combination of MT-ND6 and ANXA1 obviously improved the predictive values in the septic patients with mixed hyperinflammation or immunosuppression phenotypes. Conclusion Our findings provide valuable models testing patient risk prediction and strengthen the evidence for agonists of FPR1, MT-ND6 and ANXA1, as novel biomarker for patient selection for novel therapeutic agents to target mtDAMPs and regulator of GPCRs in sepsis.
Collapse
Affiliation(s)
- Fan Zhou
- Department of Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Research Center for Interdisciplinary & High-Quality Innovative Development in Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, China
| | - Meiling Chen
- Department of Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Research Center for Interdisciplinary & High-Quality Innovative Development in Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, China
| | - Yilin Liu
- Intensive Care Medicine Department, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
| | - Xianzhu Xia
- Department of Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Research Center for Interdisciplinary & High-Quality Innovative Development in Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
| | - Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Research Center for Interdisciplinary & High-Quality Innovative Development in Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, China
| |
Collapse
|
34
|
Fan X, Liu J, Yang Y, Gu C, Han Y, Wu B, Jiang Y, Chen G, Heng PA. scGraphformer: unveiling cellular heterogeneity and interactions in scRNA-seq data using a scalable graph transformer network. Commun Biol 2024; 7:1463. [PMID: 39511415 PMCID: PMC11543810 DOI: 10.1038/s42003-024-07154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
The precise classification of cell types from single-cell RNA sequencing (scRNA-seq) data is pivotal for dissecting cellular heterogeneity in biological research. Traditional graph neural network (GNN) models are constrained by reliance on predefined graphs, limiting the exploration of complex cell-to-cell relationships. We introduce scGraphformer, a transformer-based GNN that transcends these limitations by learning an all-encompassing cell-cell relational network directly from scRNA-seq data. Through an iterative refinement process, scGraphformer constructs a dense graph structure that captures the full spectrum of cellular interactions. This comprehensive approach enables the identification of subtle and previously obscured cellular patterns and relationships. Evaluated on multiple datasets, scGraphformer demonstrates superior performance in cell type identification compared to existing methods and showcases its scalability with large-scale datasets. Our method not only provides enhanced cell type classification ability but also reveals the underlying cell interactions, offering deeper insights into functional cellular relationships. The scGraphformer thus holds the potential to significantly advance the field of single-cell analysis and contribute to a more nuanced understanding of cellular behavior.
Collapse
Affiliation(s)
- Xingyu Fan
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiacheng Liu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yaodong Yang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Chunbin Gu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuqiang Han
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Bian Wu
- Zhejiang Lab, Hangzhou, China
| | - Yirong Jiang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | | | - Pheng-Ann Heng
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
35
|
Song HW, Jo HY, Kim SC, Choi SS. Immunopathological markers and cell types linked to COVID-19 symptom manifestation. BMC Infect Dis 2024; 24:1237. [PMID: 39497098 PMCID: PMC11533414 DOI: 10.1186/s12879-024-10139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Numerous studies have investigated the molecular properties that contribute to the symptoms of COVID-19, such as the virus's genetic makeup, its replication mechanisms, and how it interacts with host cells. However, identifying the immunopathological properties, such as the immune system's response, cytokine levels, and the presence of specific biomarkers, that are associated with the severity of the infection remains crucial for developing effective treatments and preventions. METHODS We analyzed blood protein factor profiles from 420 individuals to identify features differentiating between test-negative healthy, asymptomatic, and symptomatic individuals using statistical comparison and the least absolute shrinkage and selection operator (i.e., LASSO) algorithm. Additionally, we examined single-cell RNA sequencing data from 141 individuals to identify specific cell types associated with the COVID-19 symptoms. RESULTS Healthy individuals who tested negative had distinct blood protein factor levels compared to asymptomatic individuals. We identified two key protein factors, Serpin A10 and Complement C9, that differentiate between asymptomatic and symptomatic patients. Symptomatic patients showed lower levels of CD4+ T naïve, CD4+ T effector & memory, and CD8+ T naïve cells, along with higher levels of CD14+ classical monocytes compared to asymptomatic patients. Additionally, CD16+ non-classical monocytes, major producers of C1QA/B/C, appeared to contribute to the observed Complement C9 levels. CONCLUSIONS These findings advance our understanding of the immunopathological mechanisms underlying COVID-19 and may inform the development of targeted therapies and preventative measures. Future research should focus on further elucidating these mechanisms and exploring their potential clinical applications in managing COVID-19 severity.
Collapse
Affiliation(s)
- Ha Won Song
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Hye-Yeong Jo
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Osong, 28159, Korea
| | - Sang Cheol Kim
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Osong, 28159, Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
36
|
Zeng Y, Ma Q, Chen J, Kong X, Chen Z, Liu H, Liu L, Qian Y, Wang X, Lu S. Single-cell sequencing: Current applications in various tuberculosis specimen types. Cell Prolif 2024; 57:e13698. [PMID: 38956399 PMCID: PMC11533074 DOI: 10.1111/cpr.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Tuberculosis (TB) is a chronic disease caused by Mycobacterium tuberculosis (M.tb) and responsible for millions of deaths worldwide each year. It has a complex pathogenesis that primarily affects the lungs but can also impact systemic organs. In recent years, single-cell sequencing technology has been utilized to characterize the composition and proportion of immune cell subpopulations associated with the pathogenesis of TB disease since it has a high resolution that surpasses conventional techniques. This paper reviews the current use of single-cell sequencing technologies in TB research and their application in analysing specimens from various sources of TB, primarily peripheral blood and lung specimens. The focus is on how these technologies can reveal dynamic changes in immune cell subpopulations, genes and proteins during disease progression after M.tb infection. Based on the current findings, single-cell sequencing has significant potential clinical value in the field of TB research. Next, we will focus on the real-world applications of the potential targets identified through single-cell sequencing for diagnostics, therapeutics and the development of effective vaccines.
Collapse
Affiliation(s)
- Yuqin Zeng
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Quan Ma
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Jinyun Chen
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Xingxing Kong
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Zhanpeng Chen
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Huazhen Liu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Lanlan Liu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Yan Qian
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Xiaomin Wang
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Shuihua Lu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| |
Collapse
|
37
|
Medina MA, Fuentes-Villalobos F, Quevedo C, Aguilera F, Riquelme R, Rioseco ML, Barria S, Pinos Y, Calvo M, Burbulis I, Kossack C, Alvarez RA, Garrido JL, Barria MI. Longitudinal transcriptional changes reveal genes from the natural killer cell-mediated cytotoxicity pathway as critical players underlying COVID-19 progression. eLife 2024; 13:RP94242. [PMID: 39470726 PMCID: PMC11521369 DOI: 10.7554/elife.94242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Patients present a wide range of clinical severities in response severe acute respiratory syndrome coronavirus 2 infection, but the underlying molecular and cellular reasons why clinical outcomes vary so greatly within the population remains unknown. Here, we report that negative clinical outcomes in severely ill patients were associated with divergent RNA transcriptome profiles in peripheral immune cells compared with mild cases during the first weeks after disease onset. Protein-protein interaction analysis indicated that early-responding cytotoxic natural killer cells were associated with an effective clearance of the virus and a less severe outcome. This innate immune response was associated with the activation of select cytokine-cytokine receptor pathways and robust Th1/Th2 cell differentiation profiles. In contrast, severely ill patients exhibited a dysregulation between innate and adaptive responses affiliated with divergent Th1/Th2 profiles and negative outcomes. This knowledge forms the basis of clinical triage that may be used to preemptively detect high-risk patients before life-threatening outcomes ensue.
Collapse
Affiliation(s)
- Matias A Medina
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | | | - Claudio Quevedo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepciónChile
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepciónChile
| | - Raul Riquelme
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | - Maria Luisa Rioseco
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | - Sebastian Barria
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | | | - Mario Calvo
- Instituto de Medicina, Facultad de Medicina, Universidad AustralValdiviaChile
| | - Ian Burbulis
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Camila Kossack
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Raymond A Alvarez
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jose Luis Garrido
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Maria Ines Barria
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| |
Collapse
|
38
|
Paran FJ, Oyama R, Khasawneh A, Ai T, Ismanto HS, Sherif AA, Saputri DS, Ono C, Saita M, Takei S, Horiuchi Y, Yagi K, Matsuura Y, Okazaki Y, Takahashi K, Standley DM, Tabe Y, Naito T. BCR, not TCR, repertoire diversity is associated with favorable COVID-19 prognosis. Front Immunol 2024; 15:1405013. [PMID: 39530088 PMCID: PMC11550956 DOI: 10.3389/fimmu.2024.1405013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction The SARS-CoV-2 pandemic has had a widespread and severe impact on society, yet there have also been instances of remarkable recovery, even in critically ill patients. Materials and methods In this study, we used single-cell RNA sequencing to analyze the immune responses in recovered and deceased COVID-19 patients during moderate and critical stages. Results Expanded T cell receptor (TCR) clones were predominantly SARS-CoV-2-specific, but represented only a small fraction of the total repertoire in all patients. In contrast, while deceased patients exhibited monoclonal B cell receptor (BCR) expansions without COVID-19 specificity, survivors demonstrated diverse and specific BCR clones. These findings suggest that neither TCR diversity nor BCR monoclonal expansions are sufficient for viral clearance and subsequent recovery. Differential gene expression analysis revealed that protein biosynthetic processes were enriched in survivors, but that potentially damaging mitochondrial ATP metabolism was activated in the deceased. Conclusion This study underscores that BCR repertoire diversity, but not TCR diversity, correlates with favorable outcomes in COVID-19.
Collapse
MESH Headings
- Humans
- COVID-19/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- SARS-CoV-2/immunology
- Prognosis
- Male
- Female
- Middle Aged
- Aged
- Single-Cell Analysis
- Adult
- B-Lymphocytes/immunology
Collapse
Affiliation(s)
- Faith Jessica Paran
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Rieko Oyama
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Abdullah Khasawneh
- Leading Center for the Development and Research of Cancer Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University, Urayasu Hospital, Chiba, Japan
| | - Hendra Saputra Ismanto
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Aalaa Alrahman Sherif
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Dianita Susilo Saputri
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Mizue Saita
- Department of General Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Satomi Takei
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuki Horiuchi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ken Yagi
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN, Yokohama, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN, Yokohama, Japan
| | - Kazuhisa Takahashi
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Daron M. Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoko Tabe
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshio Naito
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of General Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
39
|
Yang M, Chen Y, Feng C, Zhang M, Wang H, Zheng Y, Li X. Single-cell RNA sequencing uncovers molecular mechanisms of intravenous immunoglobulin plus methylprednisolone in Kawasaki disease: attenuated monocyte-driven inflammation and improved NK cell cytotoxicity. Front Immunol 2024; 15:1455925. [PMID: 39524437 PMCID: PMC11543420 DOI: 10.3389/fimmu.2024.1455925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Intravenous immunoglobulin (IVIG) plus methylprednisolone as initial intensive therapy or additional therapy in Kawasaki disease (KD) has been used in clinical practice. However, its molecular and cellular mechanism is unclear. Methods We performed single-cell analysis on 14 peripheral blood mononuclear cell (PBMC) samples obtained from 7 KD patients who received either IVIG monotherapy or IVIG plus methylprednisolone therapy. This encompassed 4 samples from KD patients collected before and after IVIG treatment, as well as 3 samples from KD patients before and after IVIG plus methylprednisolone therapy. Results Both IVIG monotherapy and IVIG plus methylprednisolone therapy can increase lymphocyte counts (e.g. CD4+T, CD8+T, and gdT cells) to address lymphopenia. They can also decrease monocyte counts and repress the expression of S100A12, NLRP3, and genes associated with immune-cell migration in monocytes. IVIG combined with methylprednisolone downregulates more monocyte-driven inflammatory pathways than IVIG alone. Additionally, this combination uniquely enhances NK cell cytotoxicity by modulating receptor homeostasis, while significantly upregulating interferon-related genes in CD4+ T cells, CD8+ T cells, and B cells, particularly type I interferons. Conclusion The combination of IVIG with methylprednisolone attenuated monocyte-driven inflammation and improved NK cell cytotoxicity which might provide clues for pediatricians to consider treatment options for children with KD. Whether the monocyte-driven hyperinflammatory state and NK cell function can be indicators for the clinical choice of IVIG with methylprednisolone therapy in KD needs further investigation.
Collapse
Affiliation(s)
- Minna Yang
- Department of Cardiovascular Medicine, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Yeshi Chen
- Department of Cardiovascular Medicine, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Chenhui Feng
- Department of Cardiovascular Medicine, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Mingming Zhang
- Department of Cardiovascular Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Hongmao Wang
- Department of Cardiovascular Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Yang Zheng
- Department of Cardiovascular Medicine, Peking Union Medical College Graduate School, Beijing, China
| | - Xiaohui Li
- Department of Cardiovascular Medicine, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
- Department of Cardiovascular Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
- Department of Cardiovascular Medicine, Peking Union Medical College Graduate School, Beijing, China
| |
Collapse
|
40
|
Wen J, Li H, Zhou Y, Du H, Hu G, Wen Z, Tang D, Wang Y, Cui X, Zhou Z, Wang DW, Chen C. Immunoglobin attenuates fulminant myocarditis by inhibiting overactivated innate immune response. Br J Pharmacol 2024. [PMID: 39442535 DOI: 10.1111/bph.17372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Fulminant myocarditis (FM) is a myocardial inflammatory disease that can result from either viral diseases or autoimmune diseases. In this study, we have determined the treatment effects of immunomodulatory drugs on FM. EXPERIMENTAL APPROACH FM was induced in A/JGpt mice by intraperitoneal administration of coxsackievirus B3, after which immunoglobins were administered daily by intraperitoneal injection. On the seventh day, the cardiac structure and function were determined using echocardiography and cardiac catheterisation. Single-cell RNA sequencing (scRNA-seq) was performed to evaluate CD45+ cells in the heart. KEY RESULTS Immunoglobin, a typical immunomodulatory drug, dramatically reduced mortality and significantly improved cardiac function in mice with FM. ScRNA-seq revealed that immunoglobin treatment effectively modulated cardiac immune homeostasis, particularly by attenuating overactivated innate immune responses. At the cellular level, immunoglobin predominantly targeted Plac8+ monocytes and S100a8+ neutrophils, suppressing their proinflammatory activities, and enhancing antigen processing and presentation capabilities, thereby amplifying the efficiency and potency of the immune response against the virus. Immunoglobin benefits are mediated by the modulation of multiple signalling pathways, including relevant receptors on immune cells, direction of inflammatory cell chemotaxis, antigen presentation and anti-viral effects. Subsequently, Bst2-ILT7 ligand-receptor-mediated cellular interactions manipulated by immunoglobin were further confirmed in vivo. CONCLUSIONS AND IMPLICATIONS Immunoglobin treatment significantly attenuated FM-induced cardiac inflammation and improved cardiac function by inhibiting overactivated innate immune responses.
Collapse
Affiliation(s)
- Jianpei Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Huihui Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yufei Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Hengzhi Du
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Hu
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Du Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yanwen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Zhou
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
41
|
Hellman U, Rosendal E, Lehrstrand J, Henriksson J, Björsell T, Wennemo A, Hahn M, Österberg B, Dorofte L, Nilsson E, Forsell MNE, Smed-Sörensen A, Lange A, Karlsson MG, Ahlm C, Blomberg A, Cajander S, Ahlgren U, Lind A, Normark J, Överby AK, Lenman A. SARS-CoV-2 infection induces hyaluronan production in vitro and hyaluronan levels in COVID-19 patients relate to morbidity and long-term lung impairment: a prospective cohort study. mBio 2024; 15:e0130324. [PMID: 39302125 PMCID: PMC11492986 DOI: 10.1128/mbio.01303-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
We previously demonstrated that the lungs of deceased COVID-19 patients were filled with a clear hydrogel consisting of hyaluronan (HA). In this translational study, we investigated the role of HA at all stages of COVID-19 disease to map the consequences of elevated HA on morbidity and identify the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced HA production. A reduced alveolar surface area was observed in the lungs of deceased COVID-19 patients compared to healthy controls, as visualized by a 3D rendering of lung morphology using light-sheet fluorescence microscopy. We confirmed the presence of HA in lung biopsies and found large quantities of proinflammatory fragmented HA. The association of systemic HA in blood plasma and disease severity was assessed in patients with mild (WHO Clinical Progression Scale, WHO-CPS, 1-5) and severe COVID-19 (WHO-CPS, 6-9) during the acute and convalescent phases and related to lung function. We found that systemic levels of HA were high during acute COVID-19 disease, remained elevated during convalescence, and were associated with a reduced diffusion capacity. In vitro 3D-lung models, differentiated from primary human bronchial epithelial cells, were used to study the effects of SARS-CoV-2 infection on HA metabolism, and transcriptomic analyses revealed a dysregulation of HA synthases and hyaluronidases, both contributing to increased HA in apical secretions. Furthermore, corticosteroid treatment reduced the inflammation and downregulated HA synthases. Our findings demonstrate that HA plays a role in COVID-19 morbidity and that sustained elevated HA concentrations may contribute to long-term respiratory impairment.IMPORTANCEThis study provides insights into the role of hyaluronan (HA) in the severity and long-term impact of COVID-19 on lung function. Through extensive morphological examination of lung tissues and a multicenter study, we identified that HA levels are significantly elevated in COVID-19 patients, correlating with a reduced lung diffusion capacity during convalescence. Using a 3D-lung model, we further uncovered how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 infection causes a dysregulated HA metabolism, leading to increased HA production. Our findings provide valuable insights into the pathogenesis of SARS-CoV-2 and suggest that targeting HA metabolism could offer new therapeutic avenues for managing COVID-19, particularly to prevent long-term lung impairment. Additionally, HA holds potential as a biomarker for predicting disease severity, which could guide personalized treatment strategies.
Collapse
Affiliation(s)
- Urban Hellman
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- Department of Public
Health and Clinical Medicine, Umeå
University, Umeå,
Sweden
| | - Ebba Rosendal
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- The Laboratory for
Molecular Infection Medicine Sweden (MIMS), Umeå
University, Umeå,
Sweden
| | - Joakim Lehrstrand
- Umeå Centre for
Molecular Medicine (UCMM), Umeå
University, Umeå,
Sweden
| | - Johan Henriksson
- The Laboratory for
Molecular Infection Medicine Sweden (MIMS), Umeå
University, Umeå,
Sweden
- Department of
Molecular Biology, Umeå Centre for Microbial Research (UCMR),
Umeå University,
Umeå, Sweden
- IceLab, Umeå
University, Umeå,
Sweden
| | - Tove Björsell
- Centre for Clinical
Research and Education, Region
Värmland, Karlstad,
Sweden
| | - Alfred Wennemo
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
| | - Max Hahn
- Umeå Centre for
Molecular Medicine (UCMM), Umeå
University, Umeå,
Sweden
| | - Björn Österberg
- Division of Immunology
and Allergy, Department of Medicine Solna, Karolinska Institutet,
Karolinska University Hospital,
Stockholm, Sweden
| | - Luiza Dorofte
- Department of
Laboratory Medicine, Faculty of Medicine and Health, Örebro
University, Örebro,
Sweden
| | - Emma Nilsson
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- The Laboratory for
Molecular Infection Medicine Sweden (MIMS), Umeå
University, Umeå,
Sweden
| | | | - Anna Smed-Sörensen
- Division of Immunology
and Allergy, Department of Medicine Solna, Karolinska Institutet,
Karolinska University Hospital,
Stockholm, Sweden
| | - Anna Lange
- Department of
Infectious Diseases, Faculty of Medicine and Health, Örebro
University, Örebro,
Sweden
| | - Mats G. Karlsson
- Department of
Laboratory Medicine, Faculty of Medicine and Health, Örebro
University, Örebro,
Sweden
| | - Clas Ahlm
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
| | - Anders Blomberg
- Department of Public
Health and Clinical Medicine, Umeå
University, Umeå,
Sweden
| | - Sara Cajander
- Department of
Infectious Diseases, Faculty of Medicine and Health, Örebro
University, Örebro,
Sweden
| | - Ulf Ahlgren
- Umeå Centre for
Molecular Medicine (UCMM), Umeå
University, Umeå,
Sweden
| | - Alicia Lind
- Department of
Surgical and Perioperative Sciences, Umeå
University, Umeå,
Sweden
| | - Johan Normark
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- Wallenberg Centre
for Molecular Medicine, Umeå
University, Umeå,
Sweden
| | - Anna K. Överby
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- The Laboratory for
Molecular Infection Medicine Sweden (MIMS), Umeå
University, Umeå,
Sweden
| | - Annasara Lenman
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
| |
Collapse
|
42
|
Cong B, Dong X, Yang Z, Yu P, Chai Y, Liu J, Zhang M, Zang Y, Kang J, Feng Y, Liu Y, Feng W, Wang D, Deng W, Li F, Song Z, Wang Z, Chen X, Qin H, Yu Q, Li Z, Liu S, Xu X, Zhong N, Ren X, Qin C, Liu L, Wang J, Cao X. Single-cell spatiotemporal analysis of the lungs reveals Slamf9 + macrophages involved in viral clearance and inflammation resolution. Cell Discov 2024; 10:104. [PMID: 39414783 PMCID: PMC11484945 DOI: 10.1038/s41421-024-00734-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/08/2024] [Indexed: 10/18/2024] Open
Abstract
How the lung achieves immune homeostasis after a pulmonary infection is not fully understood. Here, we analyzed the spatiotemporal changes in the lungs over a 2-week natural recovery from severe pneumonia in a Syrian hamster model of SARS-CoV-2 infection. We find that SARS-CoV-2 infects multiple cell types and causes massive cell death at the early stage, including alveolar macrophages. We identify a group of monocyte-derived Slamf9+ macrophages, which are induced after SARS-CoV-2 infection and resistant to impairment caused by SARS-CoV-2. Slamf9+ macrophages contain SARS-CoV-2, recruit and interact with Isg12+Cst7+ neutrophils to clear the viruses. After viral clearance, Slamf9+ macrophages differentiate into Trem2+ and Fbp1+ macrophages, contributing to inflammation resolution at the late stage, and finally replenish alveolar macrophages. These findings are validated in a SARS-CoV-2-infected hACE2 mouse model and confirmed with publicly available human autopsy single-cell RNA-seq data, demonstrating the potential role of Slamf9+ macrophages and their coordination with neutrophils in post-injury tissue repair and inflammation resolution.
Collapse
Affiliation(s)
- Boyi Cong
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Zongheng Yang
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Pin Yu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Yangyang Chai
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaqi Liu
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Meihan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | - Yu Feng
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yi Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | - Dehe Wang
- Changping Laboratory, Beijing, China
| | - Wei Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Fengdi Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiqi Song
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziqiao Wang
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaosu Chen
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hua Qin
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qinyi Yu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiqing Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Shuxun Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | | | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China.
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China.
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, Guangdong, China.
| | - Xuetao Cao
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China.
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
43
|
Li Y, Li J, Li W, Liang S, Wei W, Chu J, Lai J, Lin Y, Chen H, Su J, Hu X, Wang G, Meng J, Jiang J, Ye L, An S. Scm6A: A Fast and Low-cost Method for Quantifying m6A Modifications at the Single-cell Level. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae039. [PMID: 39436235 DOI: 10.1093/gpbjnl/qzae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/03/2024] [Accepted: 05/24/2024] [Indexed: 10/23/2024]
Abstract
It is widely accepted that N6-methyladenosine (m6A) exhibits significant intercellular specificity, which poses challenges for its detection using existing m6A quantitative methods. In this study, we introduced Single-cell m6A Analysis (Scm6A), a machine learning-based approach for single-cell m6A quantification. Scm6A leverages input features derived from the expression levels of m6A trans regulators and cis sequence features, and offers remarkable prediction efficiency and reliability. To further validate the robustness and precision of Scm6A, we first applied Scm6A to single-cell RNA sequencing (scRNA-seq) data from peripheral blood mononuclear cells (PBMCs) and calculated the m6A levels in CD4+ and CD8+ T cells. We also applied a winscore-based m6A calculation method to conduct N6-methyladenosine sequencing (m6A-seq) analysis on CD4+ and CD8+ T cells isolated through magnetic-activated cell sorting (MACS) from the same samples. Notably, the m6A levels calculated by Scm6A exhibited a significant positive correlation with those quantified through m6A-seq in different cells isolated by MACS, providing compelling evidence for Scm6A's reliability. Additionally, we performed single-cell-level m6A analysis on lung cancer tissues as well as blood samples from patients with coronavirus disease 2019 (COVID-19), and demonstrated the landscape and regulatory mechanisms of m6A in different T cell subtypes from these diseases. In summary, Scm6A is a novel, dependable, and accurate method for single-cell m6A detection and has broad applications in the realm of m6A-related research.
Collapse
Affiliation(s)
- Yueqi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine Sciences, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Jingyi Li
- Department of Pathology, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
- Life Sciences Institute & Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning 530021, China
| | - Wenxing Li
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Shuaiyi Liang
- Department of Bioinformatics, Anjin Biotechnology Co., Ltd., Guangzhou 510000, China
| | - Wudi Wei
- Life Sciences Institute & Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Guangxi Medical University, Nanning 530021, China
| | - Jiemei Chu
- Life Sciences Institute & Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning 530021, China
| | - Jingzhen Lai
- Life Sciences Institute & Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning 530021, China
| | - Yao Lin
- Life Sciences Institute & Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning 530021, China
| | - Hubin Chen
- Life Sciences Institute & Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning 530021, China
| | - Jinming Su
- Life Sciences Institute & Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning 530021, China
| | - Xiaopeng Hu
- Life Sciences Institute & Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning 530021, China
| | - Gang Wang
- Life Sciences Institute & Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning 530021, China
| | - Jun Meng
- Life Sciences Institute & Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning 530021, China
| | - Junjun Jiang
- Life Sciences Institute & Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning 530021, China
| | - Li Ye
- Life Sciences Institute & Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning 530021, China
| | - Sanqi An
- Department of Biochemistry and Molecular Biology, School of Basic Medicine Sciences, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
- Life Sciences Institute & Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
44
|
Liu Z, Petinrin OO, Chen N, Toseef M, Liu F, Zhu Z, Qi F, Wong KC. Identification and evaluation of candidate COVID-19 critical genes and medicinal drugs related to plasma cells. BMC Infect Dis 2024; 24:1099. [PMID: 39363208 PMCID: PMC11451256 DOI: 10.1186/s12879-024-10000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus, represents one of the most significant global health crises in recent history. Despite extensive research into the immune mechanisms and therapeutic options for COVID-19, there remains a paucity of studies focusing on plasma cells. In this study, we utilized the DESeq2 package to identify differentially expressed genes (DEGs) between COVID-19 patients and controls using datasets GSE157103 and GSE152641. We employed the xCell algorithm to perform immune infiltration analyses, revealing notably elevated levels of plasma cells in COVID-19 patients compared to healthy individuals. Subsequently, we applied the Weighted Gene Co-expression Network Analysis (WGCNA) algorithm to identify COVID-19 related plasma cell module genes. Further, positive cluster biomarker genes for plasma cells were extracted from single-cell RNA sequencing data (GSE171524), leading to the identification of 122 shared genes implicated in critical biological processes such as cell cycle regulation and viral infection pathways. We constructed a robust protein-protein interaction (PPI) network comprising 89 genes using Cytoscape, and identified 20 hub genes through cytoHubba. These genes were validated in external datasets (GSE152418 and GSE179627). Additionally, we identified three potential small molecules (GSK-1070916, BRD-K89997465, and idarubicin) that target key hub genes in the network, suggesting a novel therapeutic approach. These compounds were characterized by their ability to down-regulate AURKB, KIF11, and TOP2A effectively, as evidenced by their low free binding energies determined through computational analyses using cMAP and AutoDock. This study marks the first comprehensive exploration of plasma cells' role in COVID-19, offering new insights and potential therapeutic targets. It underscores the importance of a systematic approach to understanding and treating COVID-19, expanding the current body of knowledge and providing a foundation for future research.
Collapse
Affiliation(s)
- Zhe Liu
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Muhammad Toseef
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fang Liu
- Rocgene (Beijing) Technology Co., Ltd, Beijing, Beijing, 102200, China
| | - Zhongxu Zhu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Furong Qi
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China.
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
45
|
Loeb K, Lemaille C, Frederick C, Wallace HL, Kindrachuk J. Harnessing high-throughput OMICS in emerging zoonotic virus preparedness and response activities. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167337. [PMID: 38986821 DOI: 10.1016/j.bbadis.2024.167337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Emerging and re-emerging viruses pose unpredictable and significant challenges to global health. Emerging zoonotic infectious diseases, which are transmitted between humans and non-human animals, have been estimated to be responsible for nearly two-thirds of emerging infectious disease events and emergence events attributed to these pathogens have been increasing in frequency with the potential for high global health and economic burdens. In this review we will focus on the application of highthroughput OMICS approaches to emerging zoonotic virus investigtations. We highlight the key contributions of transcriptome and proteome investigations to emerging zoonotic virus preparedness and response activities with a focus on SARS-CoV-2, avian influenza virus subtype H5N1, and Orthoebolavirus investigations.
Collapse
Affiliation(s)
- Kristi Loeb
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Candice Lemaille
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Christina Frederick
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Hannah L Wallace
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jason Kindrachuk
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Manitoba Centre for Proteomics and Systems Biology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
46
|
Castro JP, Shindyapina AV, Barbieri A, Ying K, Strelkova OS, Paulo JA, Tyshkovskiy A, Meinl R, Kerepesi C, Petrashen AP, Mariotti M, Meer MV, Hu Y, Karamyshev A, Losyev G, Galhardo M, Logarinho E, Indzhykulian AA, Gygi SP, Sedivy JM, Manis JP, Gladyshev VN. Age-associated clonal B cells drive B cell lymphoma in mice. NATURE AGING 2024; 4:1403-1417. [PMID: 39117982 DOI: 10.1038/s43587-024-00671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/19/2024] [Indexed: 08/10/2024]
Abstract
Although cancer is an age-related disease, how the processes of aging contribute to cancer progression is not well understood. In this study, we uncovered how mouse B cell lymphoma develops as a consequence of a naturally aged system. We show here that this malignancy is associated with an age-associated clonal B cell (ACBC) population that likely originates from age-associated B cells. Driven by c-Myc activation, promoter hypermethylation and somatic mutations, IgM+ ACBCs clonally expand independently of germinal centers and show increased biological age. ACBCs become self-sufficient and support malignancy when transferred into young recipients. Inhibition of mTOR or c-Myc in old mice attenuates pre-malignant changes in B cells during aging. Although the etiology of mouse and human B cell lymphomas is considered distinct, epigenetic changes in transformed mouse B cells are enriched for changes observed in human B cell lymphomas. Together, our findings characterize the spontaneous progression of cancer during aging through both cell-intrinsic and microenvironmental changes and suggest interventions for its prevention.
Collapse
Affiliation(s)
- José P Castro
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Aging and Aneuploidy Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | - Kejun Ying
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olga S Strelkova
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - João A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Rico Meinl
- Retro Biosciences, Redwood City, CA, USA
| | - Csaba Kerepesi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Computer Science and Control (SZTAKI), Loránd Eötvös Research Network, Budapest, Hungary
| | - Anna P Petrashen
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Marco Mariotti
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Margarita V Meer
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- San Diego Institute of Sciences, Altos Labs, San Diego, CA, USA
| | - Yan Hu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Grigoriy Losyev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mafalda Galhardo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Elsa Logarinho
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Artur A Indzhykulian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - John P Manis
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Zhang Y, Tang T, Wang B, Wen Y, Feng Y, Yin Q, Jiang W, Zhang Y, Li Z, Wu M, Wu Q, Song J, Crowley SD, Lan H, Lv L, Liu B. Identification of a Novel ECM Remodeling Macrophage Subset in AKI to CKD Transition by Integrative Spatial and Single-Cell Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309752. [PMID: 39119903 PMCID: PMC11481374 DOI: 10.1002/advs.202309752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/14/2024] [Indexed: 08/10/2024]
Abstract
The transition from acute kidney injury (AKI) to chronic kidney disease (CKD) is a critical clinical issue. Although previous studies have suggested macrophages as a key player in promoting inflammation and fibrosis during this transition, the heterogeneity and dynamic characterization of macrophages are still poorly understood. Here, we used integrated single-cell RNA sequencing and spatial transcriptomic to characterize the spatiotemporal heterogeneity of macrophages in murine AKI-to-CKD model of unilateral ischemia-reperfusion injury. A marked increase in macrophage infiltration at day 1 was followed by a second peak at day 14 post AKI. Spatiotemporal profiling revealed that injured tubules and macrophages co-localized early after AKI, whereas in late chronic stages had spatial proximity to fibroblasts. Further pseudotime analysis revealed two distinct lineages of macrophages in this transition: renal resident macrophages differentiated into the pro-repair subsets, whereas infiltrating monocyte-derived macrophages contributed to chronic inflammation and fibrosis. A novel macrophage subset, extracellular matrix remodeling-associated macrophages (EAMs) originating from monocytes, linked to renal fibrogenesis and communicated with fibroblasts via insulin-like growth factors (IGF) signalling. In sum, our study identified the spatiotemporal dynamics of macrophage heterogeneity with a unique subset of EAMs in AKI-to-CKD transition, which could be a potential therapeutic target for preventing CKD development.
Collapse
Affiliation(s)
- Yi‐Lin Zhang
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Tao‐Tao Tang
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Bin Wang
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Yi Wen
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Ye Feng
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
- Department of MedicineDivision of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Qing Yin
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Wei Jiang
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Yue Zhang
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Zuo‐Lin Li
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Min Wu
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Qiu‐Li Wu
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Jing Song
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Steven D. Crowley
- Division of NephrologyDepartment of MedicineDuke University and Durham VA Medical CentersDurhamNC27705USA
| | - Hui‐Yao Lan
- Departments of Medicine & TherapeuticsLi Ka Shing Institute of Health Sciencesand Lui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong999077China
| | - Lin‐Li Lv
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Bi‐Cheng Liu
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| |
Collapse
|
48
|
Wu Z, Wang S, Wu Z, Tao J, Li L, Zheng C, Xu Z, Du Z, Zhao C, Liang P, Xu A, Wang Z. Altered immune cell in human severe acute pancreatitis revealed by single-cell RNA sequencing. Front Immunol 2024; 15:1354926. [PMID: 39372399 PMCID: PMC11449708 DOI: 10.3389/fimmu.2024.1354926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Background Severe acute pancreatitis (SAP) is characterized by inflammation, with inflammatory immune cells playing a pivotal role in disease progression. This study aims to understand variations in specific immune cell subtypes in SAP, uncover their mechanisms of action, and identify potential biological markers for predicting Acute Pancreatitis (AP) severity. Methods We collected peripheral blood from 7 untreated SAP patients and employed single-cell RNA sequencing for the first time to construct a transcriptome atlas of peripheral blood mononuclear cells (PBMCs) in SAP. Integrating SAP transcriptomic data with 6 healthy controls from the GEO database facilitated the analysis of immune cell roles in SAP. We obtained comprehensive transcriptomic datasets from AP samples in the GEO database and identified potential biomarkers associated with AP severity using the "Scissor" tool in single-cell transcriptomic data. Results This study presents the inaugural construction of a peripheral blood single-cell atlas for SAP patients, identifying 20 cell subtypes. Notably, there was a significant decrease in effector T cell subsets and a noteworthy increase in monocytes compared to healthy controls. Moreover, we identified a novel monocyte subpopulation expressing high levels of PPBP and PF4 which was significantly elevated in SAP. The proportion of monocyte subpopulations with high CCL3 expression was also markedly increased compared to healthy controls, as verified by flow cytometry. Additionally, cell communication analysis revealed insights into immune and inflammation-related signaling pathways in SAP patient monocytes. Finally, our findings suggest that the subpopulation with high CCL3 expression, along with upregulated pro-inflammatory genes such as S100A12, IL1B, and CCL3, holds promise as biomarkers for predicting AP severity. Conclusion This study reveals monocytes' crucial role in SAP initiation and progression, characterized by distinct pro-inflammatory features intricately linked to AP severity. A monocyte subpopulation with elevated PPBP and CCL3 levels emerges as a potential biomarker and therapeutic target.
Collapse
Affiliation(s)
- Zheyi Wu
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of General Surgery, Huangshan City People’s Hospital, Huangshan, China
| | - Shijie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhiheng Wu
- Department of General Surgery, Huangshan City People’s Hospital, Huangshan, China
| | - Junjie Tao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lei Li
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chuanming Zheng
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhipeng Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhaohui Du
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chengpu Zhao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Pengzhen Liang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Aman Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenjie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Institute of Acute and Critical Care, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
49
|
Xiong X, Wang X, Liu CC, Shao ZM, Yu KD. Deciphering breast cancer dynamics: insights from single-cell and spatial profiling in the multi-omics era. Biomark Res 2024; 12:107. [PMID: 39294728 PMCID: PMC11411917 DOI: 10.1186/s40364-024-00654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
As one of the most common tumors in women, the pathogenesis and tumor heterogeneity of breast cancer have long been the focal point of research, with the emergence of tumor metastasis and drug resistance posing persistent clinical challenges. The emergence of single-cell sequencing (SCS) technology has introduced novel approaches for gaining comprehensive insights into the biological behavior of malignant tumors. SCS is a high-throughput technology that has rapidly developed in the past decade, providing high-throughput molecular insights at the individual cell level. Furthermore, the advent of multitemporal point sampling and spatial omics also greatly enhances our understanding of cellular dynamics at both temporal and spatial levels. The paper provides a comprehensive overview of the historical development of SCS, and highlights the most recent advancements in utilizing SCS and spatial omics for breast cancer research. The findings from these studies will serve as valuable references for future advancements in basic research, clinical diagnosis, and treatment of breast cancer.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cui-Cui Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
50
|
Li Y, Li H, Peng C, Meng G, Lu Y, Liu H, Cui L, Zhou H, Xu Z, Sun L, Liu L, Xiong Q, Sun B, Jiao S. Unraveling the spatial organization and development of human thymocytes through integration of spatial transcriptomics and single-cell multi-omics profiling. Nat Commun 2024; 15:7784. [PMID: 39237503 PMCID: PMC11377774 DOI: 10.1038/s41467-024-51767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
The structural components of the thymus are essential for guiding T cell development, but a thorough spatial view is still absent. Here we develop the TSO-his tool, designed to integrate multimodal data from single-cell and spatial transcriptomics to decipher the intricate structure of human thymus. Specifically, we characterize dynamic changes in cell types and critical markers, identifying ELOVL4 as a mediator of CD4+ T cell positive selection in the cortex. Utilizing the mapping function of TSO-his, we reconstruct thymic spatial architecture at single-cell resolution and recapitulates classical cell types and their essential co-localization for T cell development; additionally, previously unknown co-localization relationships such as that of CD8αα with memory B cells and monocytes are identified. Incorporating VDJ sequencing data, we also delineate distinct intermediate thymocyte states during αβ T cell development. Overall, these insights enhance our understanding of thymic biology and may inform therapeutic interventions targeting T cell-mediated immune responses.
Collapse
Affiliation(s)
- Yanchuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Huamei Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cheng Peng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ge Meng
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
- TCRX (KeShiHua) Therapeutics Co, Ltd. Beijing & Yunnan Pilot Free Trade Zone (Dehong Area), Beijing, China
- Department of Oncology, Department of Rheumatology and Immunology, Ruili JingCheng Hospital, Ruili, China
| | - Yijun Lu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Honglin Liu
- Department of Pharmacy, Organoid and Regenerative Medicine Center, China-Japan Friendship Hospital, Beijing, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Huan Zhou
- National Institute of Drug Clinical Trial, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhu Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lihong Liu
- Department of Pharmacy, Organoid and Regenerative Medicine Center, China-Japan Friendship Hospital, Beijing, China.
| | - Qing Xiong
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Shiping Jiao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.
- TCRX (KeShiHua) Therapeutics Co, Ltd. Beijing & Yunnan Pilot Free Trade Zone (Dehong Area), Beijing, China.
- Department of Oncology, Department of Rheumatology and Immunology, Ruili JingCheng Hospital, Ruili, China.
| |
Collapse
|