1
|
Ahmad F, Ahmad S, Husain A, Pandey N, Khubaib M, Sharma R. Role of inflammatory cytokine burst in neuro-invasion of Japanese Encephalitis virus infection: an immunotherapeutic approaches. J Neurovirol 2024; 30:251-265. [PMID: 38842651 DOI: 10.1007/s13365-024-01212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Japanese Encephalitis remains a significant global health concern, contributing to millions of deaths annually worldwide. Microglial cells, as key innate immune cells within the central nervous system (CNS), exhibit intricate cellular structures and possess molecular phenotypic plasticity, playing pivotal roles in immune responses during CNS viral infections. Particularly under viral inflammatory conditions, microglial cells orchestrate innate and adaptive immune responses to mitigate viral invasion and dampen inflammatory reactions. This review article comprehensively summarizes the pathophysiology of viral invasion into the CNS and the cellular interactions involved, elucidating the roles of various immune mediators, including pro-inflammatory cytokines, in neuroinflammation. Leveraging this knowledge, strategies for modulating inflammatory responses and attenuating hyperactivation of glial cells to mitigate viral replication within the brain are discussed. Furthermore, current chemotherapeutic and antiviral drugs are examined, elucidating their mechanisms of action against viral replication. This review aims to provide insights into therapeutic interventions for Japanese Encephalitis and related viral infections, ultimately contributing to improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Firoz Ahmad
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, 224001 Uttar Pradesh, India., 224001, Faizabad, Uttar Pradesh, India
| | - Adil Husain
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226016, Uttar Pradesh, India
| | - Niharika Pandey
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Mohd Khubaib
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Rolee Sharma
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India.
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur, 228024, Uttar Pradesh, India.
| |
Collapse
|
2
|
Ohki CMY, Benazzato C, van der Linden V, França JV, Toledo CM, Machado RRG, Araujo DB, Oliveira DBL, Neris RS, Assunção-Miranda I, de Oliveira Souza IN, Nogueira CO, Leite PEC, van der Linden H, Figueiredo CP, Durigon EL, Clarke JR, Russo FB, Beltrão-Braga PCB. Zika virus infection impairs synaptogenesis, induces neuroinflammation, and could be an environmental risk factor for autism spectrum disorder outcome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167097. [PMID: 38408544 DOI: 10.1016/j.bbadis.2024.167097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Zika virus (ZIKV) infection was first associated with Central Nervous System (CNS) infections in Brazil in 2015, correlated with an increased number of newborns with microcephaly, which ended up characterizing the Congenital Zika Syndrome (CZS). Here, we investigated the impact of ZIKV infection on the functionality of iPSC-derived astrocytes. Besides, we extrapolated our findings to a Brazilian cohort of 136 CZS children and validated our results using a mouse model. Interestingly, ZIKV infection in neuroprogenitor cells compromises cell migration and causes apoptosis but does not interfere in astrocyte generation. Moreover, infected astrocytes lost their ability to uptake glutamate while expressing more glutamate transporters and secreted higher levels of IL-6. Besides, infected astrocytes secreted factors that impaired neuronal synaptogenesis. Since these biological endophenotypes were already related to Autism Spectrum Disorder (ASD), we extrapolated these results to a cohort of children, now 6-7 years old, and found seven children with ASD diagnosis (5.14 %). Additionally, mice infected by ZIKV revealed autistic-like behaviors, with a significant increase of IL-6 mRNA levels in the brain. Considering these evidence, we inferred that ZIKV infection during pregnancy might lead to synaptogenesis impairment and neuroinflammation, which could increase the risk for ASD.
Collapse
Affiliation(s)
| | - Cecília Benazzato
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Julia V França
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carmen M Toledo
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Romulo S Neris
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Clara O Nogueira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Emilio Corrêa Leite
- Clinical Research Unit of the Antonio Pedro Hospital, Federal Fluminense University, Rio de Janeiro, Brazil
| | | | - Claudia P Figueiredo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edison Luiz Durigon
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Institut Pasteur de São Paulo, São Paulo, Brazil
| | - Julia R Clarke
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
3
|
Singh A, Ghosh R, Guchhait P. CXCR3 antagonist rescues ER stress and reduces inflammation and JEV infection in mice brain. Cytokine 2023; 172:156380. [PMID: 37812996 DOI: 10.1016/j.cyto.2023.156380] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/29/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
The endoplasmic reticulum (ER) is crucial for maintaining cellular homeostasis, and synthesis and folding of proteins and lipids. The ER is sensitive to stresses including viral infection that perturb the intracellular energy level and redox state, and accumulating unfolded/misfolded proteins. Viruses including Japanese encephalitis virus (JEV) activates unfolded protein response (UPR) causing ER stress in host immune cells and promotes inflammation and apoptotic cell death. The chemokine receptor CXCR3 has been reported to play important role in the accumulation of inflammatory immune cells and neuronal cell death in several disease conditions. Recently we described the involvement of CXCR3 in regulating inflammation and JEV infection in mice brain. Supplementation with a CXCR3 antagonist AMG487 significantly reduced JEV infection in the mice brain in conjunction with the downregulation of UPR pathway via PERK:eIF2α:CHOP, and decreased mitochondrial ROS generation, inflammation and apoptotic cell death. Alongside, AMG487 treatment improved interferon (IFN)-α/β synthesis in JEV-infected mice brain. Thus, suggesting a potential therapeutic role of CXCR3 antagonist against JEV infection.
Collapse
Affiliation(s)
- Anamika Singh
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Riya Ghosh
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
4
|
Mohapatra S, Chakraborty T, Basu A. Japanese Encephalitis virus infection in astrocytes modulate microglial function: Correlation with inflammation and oxidative stress. Cytokine 2023; 170:156328. [PMID: 37567102 DOI: 10.1016/j.cyto.2023.156328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Japanese Encephalitis Virus (JEV) is a neurotropic virus which has the propensity to infect neuronal and glial cells of the brain. Astrocyte-microglia crosstalk leading to the secretion of various factors plays a major role in controlling encephalitis in brain. This study focused on understanding the role of astrocytic mediators that further shaped the microglial response towards JEV infection. METHODS After establishing JEV infection in C8D1A (mouse astrocyte cell line) and primary astrocyte enriched cultures (PAEC), astrocyte supernatant was used for preparation of conditioned media. Astrocyte supernatant was treated with UV to inactivate JEV and the supernatant was added to N9 culture media in ratio 1:1 for preparation of conditioned media. N9 microglial cells post treatment with astrocyte conditioned media and JEV infection were checked for expression of various inflammatory genes by qRT-PCR, levels of secreted cytokines in N9 cell supernatant were checked by cytometric bead array. N9 cell lysates were checked for expression of proteins - pNF-κβ, IBA-1, NS3 and RIG-I by western blotting. Viral titers were measured in N9 supernatant by plaque assays. Immunocytochemistry experiments were done to quantify the number of infected microglial cells after astrocyte conditioned medium treatment. Expression of different antioxidant enzymes was checked in N9 cells by western blotting, levels of reactive oxygen species (ROS) was detected by fluorimetry using DCFDA dye. RESULTS N9 microglial cells post treatment with JEV-infected astrocyte conditioned media and JEV infection were activated, showed an upsurge in expression of inflammatory genes and cytokines both at the transcript and protein levels. These N9 cells showed a decrease in quantity of viral titers and associated viral proteins in comparison to control cells (not treated with conditioned media but infected with JEV). Also, N9 cells upon conditioned media treatment and JEV infection were more prone to undergo oxidative stress as observed by the decreased expression of antioxidant enzymes SOD-1, TRX-1 and increased secretion of reactive oxygen species (ROS). CONCLUSION Astrocytic mediators like TNF-α, MCP-1 and IL-6 influence microglial response towards JEV infection by promoting inflammation and oxidative stress in them. As a result of increased microglial inflammation and secretion of ROS, viral replication is lessened in conditioned media treated and JEV infected microglial cells as compared to control cells with no conditioned media treatment but only JEV infection.
Collapse
Affiliation(s)
- Stuti Mohapatra
- National Brain Research Centre, Manesar, Haryana 122052, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India.
| |
Collapse
|
5
|
Nogueira CO, Rocha T, Messor DF, Souza INO, Clarke JR. Fundamental neurochemistry review: Glutamatergic dysfunction as a central mechanism underlying flavivirus-induced neurological damage. J Neurochem 2023; 166:915-927. [PMID: 37603368 DOI: 10.1111/jnc.15935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
The Flaviviridae family comprises positive-sense single-strand RNA viruses mainly transmitted by arthropods. Many of these pathogens are especially deleterious to the nervous system, and a myriad of neurological symptoms have been associated with infections by Zika virus (ZIKV), West Nile virus (WNV), and Japanese encephalitis virus (JEV) in humans. Studies suggest that viral replication in neural cells and the massive release of pro-inflammatory mediators lead to morphological alterations of synaptic spine structure and changes in the balance of excitatory/inhibitory neurotransmitters and receptors. Glutamate is the predominant excitatory neurotransmitter in the brain, and studies propose that either enhanced release or impaired uptake of this amino acid contributes to brain damage in several conditions. Here, we review existing evidence suggesting that glutamatergic dysfunction-induced by flaviviruses is a central mechanism for neurological damage and clinical outcomes of infection. We also discuss current data suggesting that pharmacological approaches that counteract glutamatergic dysfunction show benefits in animal models of such viral diseases.
Collapse
Affiliation(s)
- Clara O Nogueira
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tamires Rocha
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel F Messor
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isis N O Souza
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia R Clarke
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Frank JC, Song BH, Lee YM. Mice as an Animal Model for Japanese Encephalitis Virus Research: Mouse Susceptibility, Infection Route, and Viral Pathogenesis. Pathogens 2023; 12:pathogens12050715. [PMID: 37242385 DOI: 10.3390/pathogens12050715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Japanese encephalitis virus (JEV), a zoonotic flavivirus, is principally transmitted by hematophagous mosquitoes, continually between susceptible animals and incidentally from those animals to humans. For almost a century since its discovery, JEV was geographically confined to the Asia-Pacific region with recurrent sizable outbreaks involving wildlife, livestock, and people. However, over the past decade, it has been detected for the first time in Europe (Italy) and Africa (Angola) but has yet to cause any recognizable outbreaks in humans. JEV infection leads to a broad spectrum of clinical outcomes, ranging from asymptomatic conditions to self-limiting febrile illnesses to life-threatening neurological complications, particularly Japanese encephalitis (JE). No clinically proven antiviral drugs are available to treat the development and progression of JE. There are, however, several live and killed vaccines that have been commercialized to prevent the infection and transmission of JEV, yet this virus remains the main cause of acute encephalitis syndrome with high morbidity and mortality among children in the endemic regions. Therefore, significant research efforts have been directed toward understanding the neuropathogenesis of JE to facilitate the development of effective treatments for the disease. Thus far, multiple laboratory animal models have been established for the study of JEV infection. In this review, we focus on mice, the most extensively used animal model for JEV research, and summarize the major findings on mouse susceptibility, infection route, and viral pathogenesis reported in the past and present, and discuss some unanswered key questions for future studies.
Collapse
Affiliation(s)
- Jordan C Frank
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
7
|
McMillan RE, Wang E, Carlin AF, Coufal NG. Human microglial models to study host-virus interactions. Exp Neurol 2023; 363:114375. [PMID: 36907350 PMCID: PMC10521930 DOI: 10.1016/j.expneurol.2023.114375] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Microglia, the resident macrophage of the central nervous system, are increasingly recognized as contributing to diverse aspects of human development, health, and disease. In recent years, numerous studies in both mouse and human models have identified microglia as a "double edged sword" in the progression of neurotropic viral infections: protecting against viral replication and cell death in some contexts, while acting as viral reservoirs and promoting excess cellular stress and cytotoxicity in others. It is imperative to understand the diversity of human microglial responses in order to therapeutically modulate them; however, modeling human microglia has been historically challenging due to significant interspecies differences in innate immunity and rapid transformation upon in vitro culture. In this review, we discuss the contribution of microglia to the neuropathogenesis of key neurotropic viral infections: human immunodeficiency virus 1 (HIV-1), Zika virus (ZIKV), Japanese encephalitis virus (JEV), West Nile virus (WNV), Herpes simplex virus (HSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We pay special attention to recent work with human stem cell-derived microglia and propose strategies to leverage these powerful models to further uncover species- and disease-specific microglial responses and novel therapeutic interventions for neurotropic viral infections.
Collapse
Affiliation(s)
- Rachel E McMillan
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, United States of America; Department of Pathology and Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Ellen Wang
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, United States of America
| | - Aaron F Carlin
- Department of Pathology and Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America.
| | - Nicole G Coufal
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, United States of America.
| |
Collapse
|
8
|
Yang S, Shi Y, Wu J, Chen Q. Ultrastructural study of the duck brain infected with duck Tembusu virus. Front Microbiol 2023; 14:1086828. [PMID: 36891400 PMCID: PMC9987711 DOI: 10.3389/fmicb.2023.1086828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Duck Tembusu virus (DTMUV) is an emerging avian flavivirus characterized by causing severe ovaritis and neurological symptoms in ducks. The pathology of the central nervous system (CNS) caused by DTMUV is rarely studied. This study aimed to systematically investigate the ultrastructural pathology of the CNS of ducklings and adult ducks infected with DTMUV via transmission electron microscopy technology at a cytopathological level. The results showed that DTMUV caused extensive lesions in the brain parenchyma of ducklings and slight damage in adult ducks. The neuron was the target cell of DTMUV, and virions were mainly observed in their cisternae of rough endoplasmic reticulum and the saccules of Golgi apparatus. The neuron perikaryon showed degenerative changes where the membranous organelles gradually decomposed and disappeared with DTMUV infection. Besides neurons, DTMUV infection induced marked swelling in astrocytic foot processes in ducklings and evident myelin lesions in ducklings and adult ducks. The activated microglia were observed phagocytizing injured neurons, neuroglia cells, nerve fibers, and capillaries after the DTMUV infection. Affected brain microvascular endothelial cells were surrounded by edema and had increased pinocytotic vesicles and cytoplasmic lesions. In conclusion, the above results systematically describe the subcellular morphological changes of the CNS after DTMUV infection, providing an ultrastructural pathological research basis for DTMUV-induced neuropathy.
Collapse
Affiliation(s)
- Sheng Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yonghong Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jingxian Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| |
Collapse
|
9
|
Sharma KB, Chhabra S, Kalia M. Japanese Encephalitis Virus-Infected Cells. Subcell Biochem 2023; 106:251-281. [PMID: 38159231 DOI: 10.1007/978-3-031-40086-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
RNA virus infections have been a leading cause of pandemics. Aided by global warming and increased connectivity, their threat is likely to increase over time. The flaviviruses are one such RNA virus family, and its prototypes such as the Japanese encephalitis virus (JEV), Dengue virus, Zika virus, West Nile virus, etc., pose a significant health burden on several endemic countries. All viruses start off their life cycle with an infected cell, wherein a series of events are set in motion as the virus and host battle for autonomy. With their remarkable capacity to hijack cellular systems and, subvert/escape defence pathways, viruses are able to establish infection and disseminate in the body, causing disease. Using this strategy, JEV replicates and spreads through several cell types such as epithelial cells, fibroblasts, monocytes and macrophages, and ultimately breaches the blood-brain barrier to infect neurons and microglia. The neurotropic nature of JEV, its high burden on the paediatric population, and its lack of any specific antivirals/treatment strategies emphasise the need for biomedical research-driven solutions. Here, we highlight the latest research developments on Japanese encephalitis virus-infected cells and discuss how these can aid in the development of future therapies.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Simran Chhabra
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
10
|
Soltani Khaboushan A, Pahlevan-Fallahy MT, Shobeiri P, Teixeira AL, Rezaei N. Cytokines and chemokines profile in encephalitis patients: A meta-analysis. PLoS One 2022; 17:e0273920. [PMID: 36048783 PMCID: PMC9436077 DOI: 10.1371/journal.pone.0273920] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Encephalitis is caused by autoimmune or infectious agents marked by brain inflammation. Investigations have reported altered concentrations of the cytokines in encephalitis. This study was conducted to determine the relationship between encephalitis and alterations of cytokine levels in cerebrospinal fluid (CSF) and serum. METHODS We found possibly suitable studies by searching PubMed, Embase, Scopus, and Web of Science, systematically from inception to August 2021. 23 articles were included in the meta-analysis. To investigate sources of heterogeneity, subgroup analysis and sensitivity analysis were conducted. The protocol of the study has been registered in PROSPERO with a registration ID of CRD42021289298. RESULTS A total of 23 met our eligibility criteria to be included in the meta-analysis. A total of 12 cytokines were included in the meta-analysis of CSF concentration. Moreover, 5 cytokines were also included in the serum/plasma concentration meta-analysis. According to the analyses, patients with encephalitis had higher CSF amounts of IL-6, IL-8, IL-10, CXCL10, and TNF-α than healthy controls. The alteration in the concentration of IL-2, IL-4, IL-17, CCL2, CXCL9, CXCL13, and IFN-γ was not significant. In addition, the serum/plasma levels of the TNF-α were increased in encephalitis patients, but serum/plasma concentration of the IL-6, IL-10, CXCL10, and CXCL13 remained unchanged. CONCLUSIONS This meta-analysis provides evidence for higher CSF concentrations of IL-6, IL-8, IL-10, CXCL10, and TNF-α in encephalitis patients compared to controls. The diagnostic and prognostic value of these cytokines and chemokines should be investigated in future studies.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad-Taha Pahlevan-Fallahy
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Non–Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Antônio L. Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Nima Rezaei
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Nucleotide-Binding Oligomerization Domain 1 (NOD1) Positively Regulates Neuroinflammation during Japanese Encephalitis Virus Infection. Microbiol Spectr 2022; 10:e0258321. [PMID: 35638852 PMCID: PMC9241932 DOI: 10.1128/spectrum.02583-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a neurotropic flavivirus that invades the central nervous system and causes neuroinflammation and extensive neuronal cell death. Nucleotide-binding oligomerization domain 1 (NOD1) is a type of pattern recognition receptor that plays a regulatory role in both bacterial and nonbacterial infections. However, the role of NOD1 in JEV-induced neuroinflammation remains undisclosed. In this study, we evaluated the effect of NOD1 activation on the progression of JEV-induced neuroinflammation using a human astrocytic cell line and NOD1 knockout mice. The results showed that JEV infection upregulated the mRNA and protein expression of NOD1, ultimately leading to an enhanced neuroinflammatory response in vivo and in vitro. Inhibition of NOD1 in cultured cells or mice significantly abrogated the inflammatory response triggered by JEV infection. Moreover, compared to the wild-type mice, the NOD1 knockout mice showed resistance to JEV infection. Mechanistically, the NOD1-mediated neuroinflammatory response was found to be associated with increased expression or activation/phosphorylation of downstream receptor-interacting protein 2 (RIPK2), mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), Jun N-terminal protein kinase (JNK), and NF-κB signaling molecules. Thus, NOD1 targeting could be a therapeutic approach to treat Japanese encephalitis. IMPORTANCE Neuroinflammation is the main pathological manifestation of Japanese encephalitis (JE) and the most important factor leading to morbidity and death in humans and animals infected by JEV. An in-depth understanding of the basic mechanisms of neuroinflammation will contribute to research on JE treatment. This study proved that JEV infection can activate the NOD1-RIPK2 signal cascade to induce neuroinflammation through the proven downstream MAPK, ERK, JNK, and NF-κB signal pathway. Thus, our study unveiled NOD1 as a potential target for therapeutic intervention for JE.
Collapse
|
12
|
Siva Venkatesh IP, Bhaskar M, Basu A. Japanese encephalitis viral infection modulates proinflammatory cyto/chemokine profile in primary astrocyte and cell line of astrocytic origin. Metab Brain Dis 2022; 37:1487-1502. [PMID: 35486209 DOI: 10.1007/s11011-022-00991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Japanese Encephalitis Virus (JEV) is a neurotropic virus that invades Central Nervous System (CNS) and causes severe neuroinflammation. Given the abundance and the position of astrocytes in the CNS, we speculate that they might play a critical role in the process of neuroinflammation. Unfortunately, the role of astrocytes in JEV-mediated neuroinflammation has long been understated. In this study, we have attempted to assess the role of astrocyte-mediated neuroinflammation upon JEV infection. Mouse model of JEV infection, generated by intraperitoneal injection, showed severe reactive astrogliosis. To further address our hypothesis, we employed immortalized astrocytic cell line (in vitro) and primary astrocyte-enriched culture (ex vivo) as experimental models. JEV infection in the astrocytes induces proinflammatory cytokines like MCP1/CCL2 and IL6 in both ex vivo and in vitro cultures as observed from the cytometric bead array analysis. A significantly altered cytokine profile was observed using PCR analysis in in vitro and ex vivo models upon infection, with respect to control, validating our previous results. We also show that there exists a major inconsistency in the viral replication kinetics, wherein the cell line showed a robust rate of replication whereas the primary astrocyte-enriched culture showed negligibly low number of plaques, underlining the importance of the selection of appropriate experimental model system. In conclusion, we claim that astrocytes significantly contribute to JEV-mediated neuroinflammation, despite not being a CNS immune cell.
Collapse
Affiliation(s)
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, 122052, India.
| |
Collapse
|
13
|
Transcriptomic Analysis of Fish Hosts Responses to Nervous Necrosis Virus. Pathogens 2022; 11:pathogens11020201. [PMID: 35215144 PMCID: PMC8875540 DOI: 10.3390/pathogens11020201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
Nervous necrosis virus (NNV) has been responsible for mass mortalities in the aquaculture industry worldwide, with great economic and environmental impact. The present review aims to summarize the current knowledge of gene expression responses to nervous necrosis virus infection in different fish species based on transcriptomic analysis data. Four electronic databases, including PubMed, Web of Science, and SCOPUS were searched, and more than 500 publications on the subject were identified. Following the application of the appropriate testing, a total of 24 articles proved eligible for this review. NNV infection of different host species, in different developmental stages and tissues, presented in the eligible publications, are described in detail, revealing and highlighting genes and pathways that are most affected by the viral infection. Those transcriptome studies of NNV infected fish are oriented in elucidating the roles of genes/biomarkers for functions of special interest, depending on each study’s specific emphasis. This review presents a first attempt to provide an overview of universal host reaction mechanisms to viral infections, which will provide us with new perspectives to overcome NNV infection to build healthier and sustainable aquaculture systems.
Collapse
|
14
|
Tavčar P, Potokar M, Kolenc M, Korva M, Avšič-Županc T, Zorec R, Jorgačevski J. Neurotropic Viruses, Astrocytes, and COVID-19. Front Cell Neurosci 2021; 15:662578. [PMID: 33897376 PMCID: PMC8062881 DOI: 10.3389/fncel.2021.662578] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
At the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered in China, causing a new coronavirus disease, termed COVID-19 by the WHO on February 11, 2020. At the time of this paper (January 31, 2021), more than 100 million cases have been recorded, which have claimed over 2 million lives worldwide. The most important clinical presentation of COVID-19 is severe pneumonia; however, many patients present various neurological symptoms, ranging from loss of olfaction, nausea, dizziness, and headache to encephalopathy and stroke, with a high prevalence of inflammatory central nervous system (CNS) syndromes. SARS-CoV-2 may also target the respiratory center in the brainstem and cause silent hypoxemia. However, the neurotropic mechanism(s) by which SARS-CoV-2 affects the CNS remain(s) unclear. In this paper, we first address the involvement of astrocytes in COVID-19 and then elucidate the present knowledge on SARS-CoV-2 as a neurotropic virus as well as several other neurotropic flaviviruses (with a particular emphasis on the West Nile virus, tick-borne encephalitis virus, and Zika virus) to highlight the neurotropic mechanisms that target astroglial cells in the CNS. These key homeostasis-providing cells in the CNS exhibit many functions that act as a favorable milieu for virus replication and possibly a favorable environment for SARS-CoV-2 as well. The role of astrocytes in COVID-19 pathology, related to aging and neurodegenerative disorders, and environmental factors, is discussed. Understanding these mechanisms is key to better understanding the pathophysiology of COVID-19 and for developing new strategies to mitigate the neurotropic manifestations of COVID-19.
Collapse
Affiliation(s)
- Petra Tavčar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Marko Kolenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
15
|
Wang ZY, Zhen ZD, Fan DY, Wang PG, An J. Transcriptomic Analysis Suggests the M1 Polarization and Launch of Diverse Programmed Cell Death Pathways in Japanese Encephalitis Virus-Infected Macrophages. Viruses 2020; 12:v12030356. [PMID: 32213866 PMCID: PMC7150907 DOI: 10.3390/v12030356] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
The Japanese encephalitis virus (JEV) is a Culex mosquito-borne flavivirus and is the pathogenic agent of Japanese encephalitis, which is the most important type of viral encephalitis in the world. Macrophages are a type of pivotal innate immunocyte that serve as sentinels and respond quickly to pathogen invasions. However, some viruses like JEV can hijack macrophages as a refuge for viral replication and immune escape. Despite their crucial involvement in early JEV infection, the transcriptomic landscapes of JEV-infected macrophages are void. Here, by using an in situ JEV infection model, we investigate the transcriptomic alteration of JEV-infected peritoneal macrophages. We found that, upon JEV infection, the macrophages underwent M1 polarization and showed the drastic activation of innate immune and inflammatory pathways. Interestingly, almost all the programmed cell death (PCD) pathways were activated, especially the apoptosis, pyroptosis, and necroptosis pathways, which were verified by the immunofluorescent staining of specific markers. Further transcriptomic analysis and TUNEL staining revealed that JEV infection caused apparent DNA damage. The transcriptomic analysis also revealed that JEV infection promoted ROS and RNS generation and caused oxidative stress, which activated multiple cell death pathways. Our work uncovers the pivotal pathogenic roles of oxidative stress and multiple PCD pathways in JEV infection, providing a novel perspective on JEV–host interactions.
Collapse
Affiliation(s)
- Zhao-Yang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Z.-Y.W.); (Z.-D.Z.); (D.-Y.F.)
| | - Zi-Da Zhen
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Z.-Y.W.); (Z.-D.Z.); (D.-Y.F.)
| | - Dong-Ying Fan
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Z.-Y.W.); (Z.-D.Z.); (D.-Y.F.)
| | - Pei-Gang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Z.-Y.W.); (Z.-D.Z.); (D.-Y.F.)
- Correspondence: (P.-G.W.); or (J.A.)
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Z.-Y.W.); (Z.-D.Z.); (D.-Y.F.)
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100093, China
- Correspondence: (P.-G.W.); or (J.A.)
| |
Collapse
|
16
|
Flaviviridae Viruses and Oxidative Stress: Implications for Viral Pathogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1409582. [PMID: 31531178 PMCID: PMC6720866 DOI: 10.1155/2019/1409582] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
Oxidative stress is induced once the balance of generation and neutralization of reactive oxygen species (ROS) is broken in the cell, and it plays crucial roles in a variety of natural and diseased processes. Infections of Flaviviridae viruses trigger oxidative stress, which affects both the cellular metabolism and the life cycle of the viruses. Oxidative stress associated with specific viral proteins, experimental culture systems, and patient infections, as well as its correlations with the viral pathogenesis attracts much research attention. In this review, we primarily focus on hepatitis C virus (HCV), dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), West Nile virus (WNV), and tick-borne encephalitis virus (TBEV) as representatives of Flaviviridae viruses and we summarize the mechanisms involved in the relevance of oxidative stress for virus-associated pathogenesis. We discuss the current understanding of the pathogenic mechanisms of oxidative stress induced by Flaviviridae viruses and highlight the relevance of autophagy and DNA damage in the life cycle of viruses. Understanding the crosstalk between viral infection and oxidative stress-induced molecular events may offer new avenues for antiviral therapeutics.
Collapse
|
17
|
Calderón-Peláez MA, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE. Dengue Virus Infection of Blood-Brain Barrier Cells: Consequences of Severe Disease. Front Microbiol 2019; 10:1435. [PMID: 31293558 PMCID: PMC6606788 DOI: 10.3389/fmicb.2019.01435] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.
Collapse
|
18
|
Potokar M, Jorgačevski J, Zorec R. Astrocytes in Flavivirus Infections. Int J Mol Sci 2019; 20:ijms20030691. [PMID: 30736273 PMCID: PMC6386967 DOI: 10.3390/ijms20030691] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Virus infections of the central nervous system (CNS) can manifest in various forms of inflammation, including that of the brain (encephalitis) and spinal cord (myelitis), all of which may have long-lasting deleterious consequences. Although the knowledge of how different viruses affect neural cells is increasing, understanding of the mechanisms by which cells respond to neurotropic viruses remains fragmented. Several virus types have the ability to infect neural tissue, and astrocytes, an abundant and heterogeneous neuroglial cell type and a key element providing CNS homeostasis, are one of the first CNS cell types to get infected. Astrocytes are morphologically closely aligned with neuronal synapses, blood vessels, and ventricle cavities, and thereby have the capacity to functionally interact with neurons and endothelial cells. In this review, we focus on the responses of astrocytes to infection by neurotropic flaviviruses, including tick-borne encephalitis virus (TBEV), Zika virus (ZIKV), West Nile virus (WNV), and Japanese encephalitis virus (JEV), which have all been confirmed to infect astrocytes and cause multiple CNS defects. Understanding these mechanisms may help design new strategies to better contain and mitigate virus- and astrocyte-dependent neuroinflammation.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
- Celica BIOMEDICAL, Tehnološki park 24, 1000 Ljubljana, Slovenia.
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
- Celica BIOMEDICAL, Tehnološki park 24, 1000 Ljubljana, Slovenia.
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
- Celica BIOMEDICAL, Tehnološki park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
19
|
Pharmacologic Depletion of Microglia Increases Viral Load in the Brain and Enhances Mortality in Murine Models of Flavivirus-Induced Encephalitis. J Virol 2018; 92:JVI.00525-18. [PMID: 29899084 DOI: 10.1128/jvi.00525-18] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Flaviviruses account for most arthropod-borne cases of human encephalitis in the world. However, the exact mechanisms of injury to the central nervous system (CNS) during flavivirus infections remain poorly understood. Microglia are the resident immune cells of the CNS and are important for multiple functions, including control of viral pathogenesis. Utilizing a pharmacologic method of microglia depletion (PLX5622 [Plexxikon Inc.], an inhibitor of colony-stimulating factor 1 receptor), we sought to determine the role of microglia in flaviviral pathogenesis. Depletion of microglia resulted in increased mortality and viral titer in the brain following infection with either West Nile virus (WNV) or Japanese encephalitis virus (JEV). Interestingly, microglial depletion did not prevent virus-induced increases in the expression of relevant cytokines and chemokines at the mRNA level. In fact, the expression of several proinflammatory genes was increased in virus-infected, microglia-depleted mice compared to virus-infected, untreated controls. In contrast, and as expected, expression of the macrophage marker triggering receptor expressed on myeloid cells 2 (TREM2) was decreased in virus-infected, PLX5622-treated mice compared to virus-infected controls.IMPORTANCE As CNS invasion by flaviviruses is a rare but life-threatening event, it is critical to understand how brain-resident immune cells elicit protection or injury during disease progression. Microglia have been shown to be important in viral clearance but may also contribute to CNS injury as part of the neuroinflammatory process. By utilizing a microglial depletion model, we can begin to parse out the exact roles of microglia during flaviviral pathogenesis with hopes of understanding specific mechanisms as potential targets for therapeutics.
Collapse
|
20
|
Yu J, Wu Y, Wang J. Activation and Role of NACHT, LRR, and PYD Domains-Containing Protein 3 Inflammasome in RNA Viral Infection. Front Immunol 2017; 8:1420. [PMID: 29163496 PMCID: PMC5671583 DOI: 10.3389/fimmu.2017.01420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/12/2017] [Indexed: 11/29/2022] Open
Abstract
NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation and effects during ribonucleic acid (RNA) viral infection are the focus of a wide range of research currently. Both the pathogen-associated molecule pattern derived from virions and intracellular stress molecules involved in the process of viral infection lead to activation of the NLRP3 inflammasome, which in turn triggers inflammatory responses for antiviral defense and tissue healing. However, aberrant activation of the NLRP3 inflammasome can instead support viral pathogenesis and promote disease progression. Here, we summarize and expound upon the recent literature describing the molecular mechanisms underlying the activation and effects of the NLRP3 inflammasome in RNA viral infection to highlight how it provides protection against RNA viral infection.
Collapse
Affiliation(s)
- Junyang Yu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jingxue Wang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
21
|
Baxter VK, Glowinski R, Braxton AM, Potter MC, Slusher BS, Griffin DE. Glutamine antagonist-mediated immune suppression decreases pathology but delays virus clearance in mice during nonfatal alphavirus encephalomyelitis. Virology 2017; 508:134-149. [PMID: 28531865 PMCID: PMC5510753 DOI: 10.1016/j.virol.2017.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/14/2017] [Accepted: 05/17/2017] [Indexed: 01/21/2023]
Abstract
Infection of weanling C57BL/6 mice with the TE strain of Sindbis virus (SINV) causes nonfatal encephalomyelitis associated with hippocampal-based memory impairment that is partially prevented by treatment with 6-diazo-5-oxo-l-norleucine (DON), a glutamine antagonist (Potter et al., J Neurovirol 21:159, 2015). To determine the mechanism(s) of protection, lymph node and central nervous system (CNS) tissues from SINV-infected mice treated daily for 1 week with low (0.3mg/kg) or high (0.6mg/kg) dose DON were examined. DON treatment suppressed lymphocyte proliferation in cervical lymph nodes resulting in reduced CNS immune cell infiltration, inflammation, and cell death compared to untreated SINV-infected mice. Production of SINV-specific antibody and interferon-gamma were also impaired by DON treatment with a delay in virus clearance. Cessation of treatment allowed activation of the antiviral immune response and viral clearance, but revived CNS pathology, demonstrating the ability of the immune response to mediate both CNS damage and virus clearance.
Collapse
Affiliation(s)
- Victoria K Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Rebecca Glowinski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Alicia M Braxton
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Michelle C Potter
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
22
|
miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells. Arch Virol 2017; 162:1495-1505. [DOI: 10.1007/s00705-017-3226-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
|
23
|
Kim JO, Kim JO, Kim WS, Oh MJ. Characterization of the Transcriptome and Gene Expression of Brain Tissue in Sevenband Grouper (Hyporthodus septemfasciatus) in Response to NNV Infection. Genes (Basel) 2017; 8:genes8010031. [PMID: 28098800 PMCID: PMC5295026 DOI: 10.3390/genes8010031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
Grouper is one of the favorite sea food resources in Southeast Asia. However, the outbreaks of the viral nervous necrosis (VNN) disease due to nervous necrosis virus (NNV) infection have caused mass mortality of grouper larvae. Many aqua-farms have suffered substantial financial loss due to the occurrence of VNN. To better understand the infection mechanism of NNV, we performed the transcriptome analysis of sevenband grouper brain tissue, the main target of NNV infection. After artificial NNV challenge, transcriptome of brain tissues of sevenband grouper was subjected to next generation sequencing (NGS) using an Illumina Hi-seq 2500 system. Both mRNAs from pooled samples of mock and NNV-infected sevenband grouper brains were sequenced. Clean reads of mock and NNV-infected samples were de novo assembled and obtained 104,348 unigenes. In addition, 628 differentially expressed genes (DEGs) in response to NNV infection were identified. This result could provide critical information not only for the identification of genes involved in NNV infection, but for the understanding of the response of sevenband groupers to NNV infection.
Collapse
Affiliation(s)
- Jong-Oh Kim
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu 550-749, Korea.
| | - Jae-Ok Kim
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu 550-749, Korea.
| | - Wi-Sik Kim
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu 550-749, Korea.
| | - Myung-Joo Oh
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu 550-749, Korea.
| |
Collapse
|
24
|
Viral Infection of the Central Nervous System and Neuroinflammation Precede Blood-Brain Barrier Disruption during Japanese Encephalitis Virus Infection. J Virol 2015; 89:5602-14. [PMID: 25762733 DOI: 10.1128/jvi.00143-15] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Japanese encephalitis is an acute zoonotic, mosquito-borne disease caused by Japanese encephalitis virus (JEV). Japanese encephalitis is characterized by extensive inflammation in the central nervous system (CNS) and disruption of the blood-brain barrier (BBB). However, the pathogenic mechanisms contributing to the BBB disruption are not known. Here, using a mouse model of intravenous JEV infection, we show that virus titers increased exponentially in the brain from 2 to 5 days postinfection. This was accompanied by an early, dramatic increase in the level of inflammatory cytokines and chemokines in the brain. Enhancement of BBB permeability, however, was not observed until day 4, suggesting that viral entry and the onset of inflammation in the CNS occurred prior to BBB damage. In vitro studies revealed that direct infection with JEV could not induce changes in the permeability of brain microvascular endothelial cell monolayers. However, brain extracts derived from symptomatic JEV-infected mice, but not from mock-infected mice, induced significant permeability of the endothelial monolayer. Consistent with a role for inflammatory mediators in BBB disruption, the administration of gamma interferon-neutralizing antibody ameliorated the enhancement of BBB permeability in JEV-infected mice. Taken together, our data suggest that JEV enters the CNS, propagates in neurons, and induces the production of inflammatory cytokines and chemokines, which result in the disruption of the BBB. IMPORTANCE Japanese encephalitis (JE) is the leading cause of viral encephalitis in Asia, resulting in 70,000 cases each year, in which approximately 20 to 30% of cases are fatal, and a high proportion of patients survive with serious neurological and psychiatric sequelae. Pathologically, JEV infection causes an acute encephalopathy accompanied by BBB dysfunction; however, the mechanism is not clear. Thus, understanding the mechanisms of BBB disruption in JEV infection is important. Our data demonstrate that JEV gains entry into the CNS prior to BBB disruption. Furthermore, it is not JEV infection per se, but the inflammatory cytokines/chemokines induced by JEV infection that inhibit the expression of TJ proteins and ultimately result in the enhancement of BBB permeability. Neutralization of gamma interferon (IFN-γ) ameliorated the enhancement of BBB permeability in JEV-infected mice, suggesting that IFN-γ could be a potential therapeutic target. This study would lead to identification of potential therapeutic avenues for the treatment of JEV infection.
Collapse
|
25
|
Zhang Y, Wang Z, Chen H, Chen Z, Tian Y. Antioxidants: potential antiviral agents for Japanese encephalitis virus infection. Int J Infect Dis 2014; 24:30-6. [PMID: 24780919 DOI: 10.1016/j.ijid.2014.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/26/2022] Open
Abstract
Japanese encephalitis (JE) is prevalent throughout eastern and southern Asia and the Pacific Rim. It is caused by the JE virus (JEV), which belongs to the family Flaviviridae. Despite the importance of JE, little is known about its pathogenesis. The role of oxidative stress in the pathogenesis of viral infections has led to increased interest in its role in JEV infections. This review focuses mainly on the role of oxidative stress in the pathogenesis of JEV infection and the antiviral effect of antioxidant agents in inhibiting JEV production. First, this review summarizes the pathogenesis of JE. The pathological changes include neuronal death, astrocyte activation, and microglial proliferation. Second, the relationship between oxidative stress and JEV infection is explored. JEV infection induces the generation of oxidants and exhausts the supply of antioxidants, which activates specific signaling pathways. Finally, the therapeutic efficacy of a variety of antioxidants as antiviral agents, including minocycline, arctigenin, fenofibrate, and curcumin, was studied. In conclusion, antioxidants are likely to be developed into antiviral agents for the treatment of JE.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Histology and Embryology, School of Basic Medicine, Third Military Medical University, Chongqing 400038, PR China; Squadron 13 of Cadet Brigade, College of Medical Laboratory Technology, Third Military Medical University, Chongqing, PR China
| | - Zehua Wang
- Department of Histology and Embryology, School of Basic Medicine, Third Military Medical University, Chongqing 400038, PR China; Squadron 17, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Huan Chen
- Department of Histology and Embryology, School of Basic Medicine, Third Military Medical University, Chongqing 400038, PR China; Squadron 13 of Cadet Brigade, College of Medical Laboratory Technology, Third Military Medical University, Chongqing, PR China
| | - Zongtao Chen
- Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| | - Yanping Tian
- Department of Histology and Embryology, School of Basic Medicine, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
26
|
Pujhari SK, Prabhakar S, Ratho R, Mishra B, Modi M, Sharma S, Singh P. Th1 immune response takeover among patients with severe Japanese encephalitis infection. J Neuroimmunol 2013; 263:133-8. [PMID: 23993655 DOI: 10.1016/j.jneuroim.2013.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/26/2022]
Abstract
The present study was intended to explore the dynamics of viral and host factors determining the outcome of Japanese encephalitis viral infection. 223 patients with acute encephalitic syndrome, 126 with febrile illness suspected of JE and 79 apparently healthy individuals as control were enrolled. Elevated levels of TNF-α and IL-6 in encephalitis patients and IFN-γ in febrile JE patients without encephalitis were observed. A cutoff value of >55pg/ml of TNF-α and >370pg/ml of IL-6 in CSF was found as poor prognostic marker. Th1 shift (IFN-γ/IL-4: >1) was observed in encephalitis patients.
Collapse
Affiliation(s)
- Sujit Kumar Pujhari
- Department of Virology Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | | | | | | | | | | | | |
Collapse
|
27
|
Sheng WS, Hu S, Feng A, Rock RB. Reactive oxygen species from human astrocytes induced functional impairment and oxidative damage. Neurochem Res 2013; 38:2148-59. [PMID: 23918204 DOI: 10.1007/s11064-013-1123-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/19/2013] [Accepted: 07/30/2013] [Indexed: 12/28/2022]
Abstract
Reactive oxygen species (ROS) have been shown to be a contributor to aging and disease. ROS also serve as a trigger switch for signaling cascades leading to corresponding cellular and molecular events. In the central nervous system (CNS), microglial cells are likely the main source of ROS production. However, activated astrocytes also appear to be capable of generating ROS. In this study we investigated ROS production in human astrocytes stimulated with interleukin (IL)-1β and interferon (IFN)-γ and its potential harmful effects. Although IFN-γ alone had no effect, it potentiated IL-1β-induced ROS production in a time-dependent manner. One of the sources of ROS in IL-1β-activated astrocytes was from increased superoxide production in mitochondria accompanied by enhanced manganese superoxide dismutase and inhibited catalase expression. NADPH oxidase (NOX) may also contribute to ROS production as astrocytes express NOX isoforms. Glutamate uptake, which represents one of the most important methods of astrocytes to prevent excitotoxicity, was down-regulated in IL-1β-activated astrocytes, and was further suppressed in the presence of IFN-γ; IFN-γ itself exerted minimal effect. Elevated levels of 8-isoprostane in IL-1β ± IFN-γ-activated human astrocytes indicate downstream lipid peroxidation. Pretreatment with diphenyleneiodonium abolished the IL-1β ± IFN-γ-induced ROS production, restored glutamate uptake function and reduced 8-isoprostane to near control levels suggesting that ROS contributes to the dysfunction of activated astrocytes. These results support the notion that dampening activated human astrocytes to maintain the redox homeostasis is vital to preserve their neuroprotective potential in the CNS.
Collapse
Affiliation(s)
- Wen S Sheng
- Department of Medicine, The Center for Infectious Diseases & Microbiology Translational Research (CIDMTR), University of Minnesota Medical School, Minneapolis, MN, 55455, USA,
| | | | | | | |
Collapse
|
28
|
Ansari AW, Heiken H, Meyer-Olson D, Schmidt RE. CCL2: A potential prognostic marker and target of anti-inflammatory strategy in HIV/AIDS pathogenesis. Eur J Immunol 2011; 41:3412-8. [DOI: 10.1002/eji.201141676] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/15/2011] [Accepted: 10/05/2011] [Indexed: 12/29/2022]
|
29
|
Brain Iron Dysregulation and the Risk of Ageing White Matter Lesions. Neuromolecular Med 2011; 13:289-99. [DOI: 10.1007/s12017-011-8161-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 09/23/2011] [Indexed: 11/26/2022]
|
30
|
Chen CJ, Ou YC, Chang CY, Pan HC, Liao SL, Raung SL, Chen SY. TNF-α and IL-1β mediate Japanese encephalitis virus-induced RANTES gene expression in astrocytes. Neurochem Int 2010; 58:234-42. [PMID: 21167894 DOI: 10.1016/j.neuint.2010.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/04/2010] [Accepted: 12/08/2010] [Indexed: 01/20/2023]
Abstract
Infection with Japanese encephalitis virus (JEV) causes neuroinfection and neuroinflammation characterized by profound neuronal destruction/dysfunction, concomitant microgliosis/astrogliosis, and production of various molecules that initiate the recruitment of immune cells to the sites of infection. Previously, we reported that glial cells expressed RANTES (regulated upon activation, normal T cell expressed and secreted) with chemotactic activity in response to JEV infection. In this study, we further demonstrated that JEV-infected microglia had an additional activity in regulating RANTES production. Both astrocytes and microglia responded to JEV infection by releasing RANTES through a process likely related to viral replication. Independent of infectious virus, supernatants of JEV-infected microglia, but not JEV-infected astrocytes, caused additional RANTES production from astrocytes. Antibody neutralization studies suggested the potential involvement of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in mediating additional RANTES production. Treatment of astrocyte cultures with TNF-α and IL-1β caused activation of several signaling molecules and transcription factors crucial to RANTES gene expression, including reactive oxygen species, extracellular signal-regulated kinase, NF-κB, and NF-IL6, increased RANTES gene promoter activity, and provoked RANTES production. As with RANTES, neutralization of bioactive TNF-α and IL-1β caused an attenuation of chemotactic activity from supernatants of mixed glia containing astrocytes and microglia during the course of JEV infection. In conclusion, TNF-α and IL-1β produced by JEV-infected microglia might trigger another mechanism which induces a secondary wave of RANTES gene expression by activating astrocytes. The released RANTES from glial cells might play a role in the recruitment of immune cells during JEV infection.
Collapse
Affiliation(s)
- Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Chen CJ, Ou YC, Lin SY, Raung SL, Liao SL, Lai CY, Chen SY, Chen JH. Glial activation involvement in neuronal death by Japanese encephalitis virus infection. J Gen Virol 2010; 91:1028-1037. [DOI: 10.1099/vir.0.013565-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
|
32
|
Abstract
Japanese encephalitis (JE) is the leading form of viral encephalitis in Asia. It is caused by the JE virus (JEV), which belongs to the family Flaviviridae. JEV is endemic to many parts of Asia, where periodic outbreaks take hundreds of lives. Despite the catastrophes it causes, JE has remained a tropical disease uncommon in the West. With rapid globalization and climatic shift, JEV has started to emerge in areas where the threat was previously unknown. Scientific evidence predicts that JEV will soon become a global pathogen and cause of worldwide pandemics. Although some research documents JEV pathogenesis and drug discovery, worldwide awareness of the need for extensive research to deal with JE is still lacking. This review focuses on the exigency of developing a worldwide effort to acknowledge the prime importance of performing an extensive study of this thus far neglected tropical viral disease. This review also outlines the pathogenesis, the scientific efforts channeled into develop a therapy, and the outlook for a possible future breakthrough addressing this killer disease.
Collapse
Affiliation(s)
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|