1
|
Hamasy A, Hussain A, Mohammad DK, Wang Q, Sfetcovici MG, Nore BF, Mohamed AJ, Zain R, Smith CIE. Differential regulatory effects of the N-terminal region in SYK-fusion kinases reveal unique activation-inducible nuclear translocation of ITK-SYK. Sci Rep 2025; 15:814. [PMID: 39755731 DOI: 10.1038/s41598-024-83962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
ITK-SYK and TEL-SYK (also known as ETV6-SYK) are human tumor-causing chimeric proteins containing the kinase region of SYK, and the membrane-targeting, N-terminal, PH-TH domain-doublet of ITK or the dimerizing SAM-PNT domain of TEL, respectively. ITK-SYK causes peripheral T cell lymphoma, while TEL-SYK was reported in myelodysplastic syndrome. BTK is a kinase highly related to ITK and to further delineate the role of the N-terminus, we generated the corresponding fusion-kinase BTK-SYK. By generating and analyzing these fusion kinases, we aim to understand the contribution of N-terminal domains to their distinct cellular behavior and oncogenic properties. The fusion kinases were found to behave differently. TEL-SYK showed stronger oncogenic capacity when compared with ITK-SYK and BTK-SYK. Furthermore, ITK-SYK and BTK-SYK triggered IL-3-independent growth of BAF3 pro-B cells. In contrast to BTK-SYK and TEL-SYK, which predominantly localized in perinuclear region and cytoplasm respectively, ITK-SYK exhibits a more diverse cellular distribution, being present in the nucleus, cytoplasm and membrane-bound compartments. Notably, we observed that ITK-SYK undergoes activation-mediated nuclear translocation, a phenomenon that is uncommon among kinases. This unique feature of ITK-SYK is therefore of particular interest due to its potential connection to its transforming capability.
Collapse
Affiliation(s)
- Abdulrahman Hamasy
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden.
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.
| | - Alamdar Hussain
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, 141 83, Stockholm, Sweden
| | - Dara K Mohammad
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, 141 83, Stockholm, Sweden
- College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Erbil, Kurdistan Region, 44002, Iraq
| | - Qing Wang
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden
| | - Manuela Gustafsson Sfetcovici
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden
| | - Beston F Nore
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden
- Department of Biomedical Science, Komar University of Science and Technology (KUST), Qliasan St, Sulaymaniyah City, Kurdistan Region, 46002, Iraq
| | - Abdalla J Mohamed
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Centre for Rare Diseases, Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden.
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| |
Collapse
|
2
|
Li L, Xu X, Lv K, Zheng G, Wang H, Chen S, Huang L, Liu Y, Zhang Y, Tang Z, Zhang L, Wang J, Qiao J, Li H, Wang X, Yao G, Fang C. Asebogenin suppresses thrombus formation via inhibition of Syk phosphorylation. Br J Pharmacol 2023; 180:287-307. [PMID: 36166754 DOI: 10.1111/bph.15964] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/24/2022] [Accepted: 09/11/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Thrombosis is a major cause of morbidity and mortality worldwide. Platelet activation by exposed collagen through glycoprotein VI (GPVI) and formation of neutrophil extracellular traps (NETs) are critical pathogenic factors for arterial and venous thrombosis. Both events are regulated by spleen tyrosine kinase (Syk)-mediated signalling events. Asebogenin is a dihydrochalcone whose pharmacological effects remain largely unknown. This study aims to investigate the antithrombotic effects of asebogenin and the underlying molecular mechanisms. EXPERIMENTAL APPROACH Platelet aggregation was assessed using an aggregometer. Platelet P-selectin exposure, integrin activation and calcium mobilization were determined by flow cytometry. NETs formation was assessed by SYTOX Green staining and immunohistochemistry. Quantitative phosphoproteomics, microscale thermophoresis, in vitro kinase assay and molecular docking combined with dynamics simulation were performed to characterize the targets of asebogenin. The in vivo effects of asebogenin on arterial thrombosis were investigated using FeCl3 -induced and laser-induced injury models, whereas those of venous thrombosis were induced by stenosis of the inferior vena cava. KEY RESULTS Asebogenin inhibited a series of GPVI-induced platelet responses and suppressed NETs formation induced by proinflammatory stimuli. Mechanistically, asebogenin directly interfered with the phosphorylation of Syk at Tyr525/526, which is important for its activation. Further, asebogenin suppressed arterial thrombosis demonstrated by decreased platelet accumulation and fibrin generation and attenuated venous thrombosis determined by reduced neutrophil accumulation and NETs formation, without increasing bleeding risk. CONCLUSION AND IMPLICATIONS Asebogenin exhibits potent antithrombotic effects by targeting Syk and is a potential lead compound for the development of efficient and safe antithrombotic agents.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xulin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Keyu Lv
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuai Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lang Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Liu
- DeepKinase Biotechnologies Ltd., Beijing, China
| | | | - Zhaoming Tang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lili Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Oral and Maxillofacial Development and Regeneration of Hubei Province, Wuhan, Hubei, China
| | - Jianlin Qiao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongliang Li
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Biomedical Research Institute, School of Pharmaceutical Sciences and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Biomedical Research Institute, School of Pharmaceutical Sciences and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
3
|
Kostyak JC, Mauri B, Dangelmaier C, Vari HR, Patel A, Wright M, Reddy H, Tsygankov AY, Kunapuli SP. Phosphorylation on Syk Y342 is important for both ITAM and hemITAM signaling in platelets. J Biol Chem 2022; 298:102189. [PMID: 35753354 PMCID: PMC9287148 DOI: 10.1016/j.jbc.2022.102189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Immune cells express receptors bearing an immune tyrosine activation motif (ITAM) containing two YXXL motifs or hemITAMs containing only one YXXL motif. Phosphorylation of the ITAM/hemITAM is mediated by Src family kinases allowing for the binding and activation of spleen tyrosine kinase (Syk). It is believed that Syk must be phosphorylated on tyrosine residues for activation, and Tyr342, а conserved tyrosine in the interdomain B region, has been shown to be critical for regulating Syk in FcεR1-activated mast cells. Syk is a key mediator of signaling pathways downstream of several platelet pathways including the ITAM bearing glycoprotein VI (GPVI)/Fc receptor gamma chain collagen receptor and the hemITAM containing C-type lectin-like receptor-2 (CLEC-2). Since platelet activation is a crucial step in both hemostasis and thrombosis, we evaluated the importance of Syk Y342 in these processes by producing an Syk Y342F knock-in mouse. When using a CLEC-2 antibody as an agonist, reduced aggregation and secretion were observed in Syk Y342F mouse platelets when compared with control mouse platelets. Platelet reactivity was also reduced in response to the GPVI agonist collagen-related peptide. Signaling initiated by either GPVI or CLEC-2 was also greatly inhibited, including Syk Y519/520 phosphorylation. Hemostasis, as measured by tail bleeding time, was not altered in Syk Y342F mice, but thrombus formation in response to FeCl3 injury was prolonged in Syk Y342F mice. These data demonstrate that phosphorylation of Y342 on Syk following stimulation of either GPVI or CLEC-2 receptors is important for the ability of Syk to transduce a signal.
Collapse
Affiliation(s)
- John C Kostyak
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Benjamin Mauri
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Carol Dangelmaier
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Hymavathi Reddy Vari
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Akruti Patel
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Monica Wright
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Haritha Reddy
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Loureiro CA, Pinto FR, Barros P, Matos P, Jordan P. A SYK/SHC1 pathway regulates the amount of CFTR in the plasma membrane. Cell Mol Life Sci 2020; 77:4997-5015. [PMID: 31974654 PMCID: PMC11105000 DOI: 10.1007/s00018-020-03448-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/06/2019] [Accepted: 01/02/2020] [Indexed: 11/24/2022]
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause the recessive genetic disease cystic fibrosis, where the chloride transport across the apical membrane of epithelial cells mediated by the CFTR protein is impaired. CFTR protein trafficking to the plasma membrane (PM) is the result of a complex interplay between the secretory and membrane recycling pathways that control the number of channels present at the membrane. In addition, the ion transport activity of CFTR at the PM is modulated through post-translational protein modifications. Previously we described that spleen tyrosine kinase (SYK) phosphorylates a specific tyrosine residue in the nucleotide-binding domain 1 domain and this modification can regulate the PM abundance of CFTR. Here we identified the underlying biochemical mechanism using peptide pull-down assays followed by mass spectrometry. We identified in bronchial epithelial cells that the adaptor protein SHC1 recognizes tyrosine-phosphorylated CFTR through its phosphotyrosine-binding domain and that the formation of a complex between SHC1 and CFTR is induced at the PM in the presence of activated SYK. The depletion of endogenous SHC1 expression was sufficient to promote an increase in CFTR at the PM of these cells. The results identify a SYK/SHC1 pathway that regulates the PM levels of CFTR channels, contributing to a better understanding of how CFTR-mediated chloride secretion is regulated.
Collapse
Affiliation(s)
- Cláudia Almeida Loureiro
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Francisco R Pinto
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Patrícia Barros
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
5
|
Mechanisms of B Cell Receptor Activation and Responses to B Cell Receptor Inhibitors in B Cell Malignancies. Cancers (Basel) 2020; 12:cancers12061396. [PMID: 32481736 PMCID: PMC7352865 DOI: 10.3390/cancers12061396] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
The B cell receptor (BCR) pathway has been identified as a potential therapeutic target in a number of common B cell malignancies, including chronic lymphocytic leukemia, diffuse large B cell lymphoma, Burkitt lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone B cell lymphoma, and Waldenstrom's macroglobulinemia. This finding has resulted in the development of numerous drugs that target this pathway, including various inhibitors of the kinases BTK, PI3K, and SYK. Several of these drugs have been approved in recent years for clinical use, resulting in a profound change in the way these diseases are currently being treated. However, the response rates and durability of responses vary largely across the different disease entities, suggesting a different proportion of patients with an activated BCR pathway and different mechanisms of BCR pathway activation. Indeed, several antigen-dependent and antigen-independent mechanisms have recently been described and shown to result in the activation of distinct downstream signaling pathways. The purpose of this review is to provide an overview of the mechanisms responsible for the activation of the BCR pathway in different B cell malignancies and to correlate these mechanisms with clinical responses to treatment with BCR inhibitors.
Collapse
|
6
|
Nguyen GT, Shaban L, Mack M, Swanson KD, Bunnell SC, Sykes DB, Mecsas J. SKAP2 is required for defense against K. pneumoniae infection and neutrophil respiratory burst. eLife 2020; 9:56656. [PMID: 32352382 PMCID: PMC7250567 DOI: 10.7554/elife.56656] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Klebsiella pneumoniae is a respiratory, blood, liver, and bladder pathogen of significant clinical concern. We show that the adaptor protein, SKAP2, is required for protection against K. pneumoniae (ATCC 43816) pulmonary infections. Skap2-/- mice had 100-fold higher bacterial burden when compared to wild-type and burden was controlled by SKAP2 expression in innate immune cells. Skap2-/- neutrophils and monocytes were present in infected lungs, and the neutrophils degranulated normally in response to K. pneumoniae infection in mice; however, K. pneumoniae-stimulated reactive oxygen species (ROS) production in vitro was abolished. K. pneumoniae-induced neutrophil ROS response required the activity of SFKs, Syk, Btk, PLCγ2, and PKC. The loss of SKAP2 significantly hindered the K. pneumoniae-induced phosphorylation of SFKs, Syk, and Pyk2 implicating SKAP2 as proximal to their activation in pathogen-signaling pathways. In conclusion, SKAP2-dependent signaling in neutrophils is essential for K. pneumoniae-activated ROS production and for promoting bacterial clearance during infection. Klebsiella pneumoniae is a type of bacteria that can cause life-threatening infections – including pneumonia, blood stream infections, and urinary tract infections – in hospitalized patients. These infections can be difficult to treat because some K. pneumoniae are resistant to antibiotics. The bacteria are normally found in the human intestine, and they do not usually cause infections in healthy people. This implies that healthy people’s immune systems are better able to fend off K. pneumoniae infections; learning how could help scientists develop new ways to treat or prevent infections in hospitalized patients. In healthy people, a type of immune cell called neutrophils are the first line of defense against bacterial infections. Several different proteins are needed to activate neutrophils, including a protein called SKAP2. But the role of this protein in fighting K. pneumoniae infections is not clear. To find out what role SKAP2 plays in the defense against pneumonia caused by K. pneumoniae, Nguyen et al. compared infections in mice with and without the protein. Mice lacking SKAP2 in their white blood cells had more bacteria in their lungs than normal mice. The experiments showed that neutrophils from mice with SKAP2 produce a burst of chemicals called “reactive oxygen species”, which can kill bacteria. But neutrophils without the protein do not. Without SKAP2, several proteins that help produce reactive oxygen species do not work. Understanding the role of SKAP2 in fighting infections may help scientists better understand the immune system. This could help clinicians to treat conditions that cause it to be hyperactive or ineffective. More studies are needed to determine if SKAP2 works the same way in human neutrophils and if it works against all types of K. pneumoniae. If it does, then scientists might be able use this information to develop therapies that help the immune system fight infections.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States
| | - Lamyaa Shaban
- Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Boston, United States
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Kenneth D Swanson
- Brain Tumor Center and Neuro-Oncology Unit, Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, United States
| | - Stephen C Bunnell
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Department of Immunology, School of Medicine, Tufts University, Boston, United States
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, United States
| |
Collapse
|
7
|
Lillico DME, Pemberton JG, Niemand R, Stafford JL. Selective recruitment of Nck and Syk contribute to distinct leukocyte immune-type receptor-initiated target interactions. Cell Signal 2019; 66:109443. [PMID: 31626955 DOI: 10.1016/j.cellsig.2019.109443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 01/18/2023]
Abstract
The ability of phagocytes to recognize, immobilize, and engulf extracellular targets are fundamental immune cell processes that allow for the destruction of a variety of microbial intruders. The phagocytic process depends onsignalling events that initiate dynamic changes in the plasma membrane architecture that are required to accommodate the internalization of large particulate targets. To better understand fundamental molecular mechanisms responsible for facilitating phagocytic receptor-mediated regulation of cytoskeletal networks, our research has focused on investigating representative immunoregulatory proteins from the channel catfish (Ictalurus punctatus) leukocyte immune-type receptor family (IpLITRs). Specifically, we have shown that a specific IpLITR-type can regulate the constitutive deployment of filopodial-like structures to actively capture and secure targets to the phagocyte surface, which is followed by F-actin mediated membrane dynamics that are associated with the formation of phagocytic cup-like structures that precede target engulfment. In the present study, we use confocal imaging to examine the recruitment of mediators of the F-actin cytoskeleton during IpLITR-mediated regulation of membrane dynamics. Our results provide novel details regarding the dynamic recruitment of the signaling effectors Nck and Syk during classical as well as atypical IpLITR-induced phagocytic processes.
Collapse
Affiliation(s)
- Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Rikus Niemand
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Kusuyama J, Seong C, Makarewicz NS, Ohnishi T, Shima K, Semba I, Bandow K, Matsuguchi T. Low intensity pulsed ultrasound (LIPUS) maintains osteogenic potency by the increased expression and stability of Nanog through spleen tyrosine kinase (Syk) activation. Cell Signal 2019; 62:109345. [PMID: 31228531 DOI: 10.1016/j.cellsig.2019.109345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/22/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are a powerful tool for cell-based, clinical therapies like bone regeneration. Therapeutic use of cell transplantation requires many cells, however, the expansion process needed to produce large quantities of cells reduces the differentiation potential of MSCs. Here, we examined the protective effects of low intensity pulsed ultrasound (LIPUS) on the maintenance of osteogenic potency. Primary osteoblastic cells were serially passaged between 2 and 12 times with daily LIPUS treatment. We found that LIPUS stimulation maintains osteogenic differentiation capacity in serially passaged cells, as characterized by improved matrix mineralization and Osteocalcin mRNA expression. Decreased expression of Nanog, Sox2, and Msx2, and increased expression of Pparg2 from serial passaging was recovered in LIPUS-stimulated cells. We found that LIPUS stimulation not only increased but also sustained expression of Nanog in primary osteoblasts and ST2 cells, a mouse mesenchymal stromal cell line. Nanog overexpression in serially passaged cells mimicked the recuperative effects of LIPUS on osteogenic potency, highlighting the important role of Nanog in LIPUS stimulation. Additionally, we found that spleen tyrosine kinase (Syk) is an important signaling molecule to induce Nanog expression in LIPUS-stimulated cells. Syk activation was regulated by both Rho-associated kinase 1 (ROCK1) and extracellular ATP in a paracrine manner. Interestingly, the LIPUS-induced increase in Nanog mRNA expression was regulated by ATP-P2X4-Syk Y323 activation, while the improvement of Nanog protein stability was controlled by the ROCK1-Syk Y525/526 pathway. Taken together, these results indicate that LIPUS stimulation recovers and maintains the osteogenic potency of serially passaged cells through a Syk-Nanog axis.
Collapse
Affiliation(s)
- Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA.
| | - Changhwan Seong
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Nathan S Makarewicz
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kaori Shima
- Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Ichiro Semba
- Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kenjiro Bandow
- Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakato 350-0283, Saitama, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
9
|
Tyrosine phosphorylation modulates cell surface expression of chloride cotransporters NKCC2 and KCC3. Arch Biochem Biophys 2019; 669:61-70. [PMID: 31145900 DOI: 10.1016/j.abb.2019.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 11/22/2022]
Abstract
Cellular chloride transport has a fundamental role in cell volume regulation and renal salt handling. Cellular chloride entry or exit are mediated at the plasma membrane by cotransporter proteins of the solute carrier 12 family. For example, NKCC2 resorbs chloride with sodium and potassium ions at the apical membrane of epithelial cells in the kidney, whereas KCC3 releases chloride with potassium ions at the basolateral membrane. Their ion transport activity is regulated by protein phosphorylation in response to signaling pathways. An additional regulatory mechanism concerns the amount of cotransporter molecules inserted into the plasma membrane. Here we describe that tyrosine phosphorylation of NKCC2 and KCC3 regulates their plasma membrane expression levels. We identified that spleen tyrosine kinase (SYK) phosphorylates a specific N-terminal tyrosine residue in each cotransporter. Experimental depletion of endogenous SYK or pharmacological inhibition of its kinase activity increased the abundance of NKCC2 at the plasma membrane of human embryonic kidney cells. In contrast, overexpression of a constitutively active SYK mutant decreased NKCC2 membrane abundance. Intriguingly, the same experimental approaches revealed the opposite effect on KCC3 abundance at the plasma membrane, compatible with the known antagonistic roles of NKCC and KCC cotransporters in cell volume regulation. Thus, we identified a novel pathway modulating the cell surface expression of NKCC2 and KCC3 and show that this same pathway has opposite functional outcomes for these two cotransporters. The findings have several biomedical implications considering the role of these cotransporters in regulating blood pressure and cell volume.
Collapse
|
10
|
Sasi BK, Martines C, Xerxa E, Porro F, Kalkan H, Fazio R, Turkalj S, Bojnik E, Pyrzynska B, Stachura J, Zerrouqi A, Bobrowicz M, Winiarska M, Priebe V, Bertoni F, Mansouri L, Rosenquist R, Efremov DG. Inhibition of SYK or BTK augments venetoclax sensitivity in SHP1-negative/BCL-2-positive diffuse large B-cell lymphoma. Leukemia 2019; 33:2416-2428. [PMID: 30872780 DOI: 10.1038/s41375-019-0442-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/20/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
The BCL-2 inhibitor venetoclax has only limited activity in DLBCL despite frequent BCL-2 overexpression. Since constitutive activation of the B cell receptor (BCR) pathway has been reported in both ABC and GCB DLBCL, we investigated whether targeting SYK or BTK will increase sensitivity of DLBCL cells to venetoclax. We report that pharmacological inhibition of SYK or BTK synergistically enhances venetoclax sensitivity in BCL-2-positive DLBCL cell lines with an activated BCR pathway in vitro and in a xenograft model in vivo, despite the only modest direct cytotoxic effect. We further show that these sensitizing effects are associated with inhibition of the downstream PI3K/AKT pathway and changes in the expression of MCL-1, BIM, and HRK. In addition, we show that BCR-dependent GCB DLBCL cells are characterized by deficiency of the phosphatase SHP1, a key negative regulator of the BCR pathway. Re-expression of SHP1 in GCB DBLCL cells reduces SYK, BLNK, and GSK3 phosphorylation and induces corresponding changes in MCL1, BIM, and HRK expression. Together, these findings suggest that SHP1 deficiency is responsible for the constitutive activation of the BCR pathway in GCB DLBCL and identify SHP1 and BCL-2 as potential predictive markers for response to treatment with a venetoclax/BCR inhibitor combination.
Collapse
Affiliation(s)
- Binu K Sasi
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Claudio Martines
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Elena Xerxa
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Fabiola Porro
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Hilal Kalkan
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Rosa Fazio
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Sven Turkalj
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Engin Bojnik
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Beata Pyrzynska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Stachura
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | - Larry Mansouri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Rosenquist
- Dept. of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Dimitar G Efremov
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| |
Collapse
|
11
|
SYK Inhibition Potentiates the Effect of Chemotherapeutic Drugs on Neuroblastoma Cells in Vitro. Cancers (Basel) 2019; 11:cancers11020202. [PMID: 30744170 PMCID: PMC6406899 DOI: 10.3390/cancers11020202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is a malignancy arising from the developing sympathetic nervous system and the most common and deadly cancer of infancy. New therapies are needed to improve the prognosis for high-risk patients and to reduce toxicity and late effects. Spleen tyrosine kinase (SYK) has previously been identified as a promising drug target in various inflammatory diseases and cancers but has so far not been extensively studied as a potential therapeutic target in neuroblastoma. In this study, we observed elevated SYK gene expression in neuroblastoma compared to neural crest and benign neurofibroma. While SYK protein was detected in the majority of examined neuroblastoma tissues it was less frequently observed in neuroblastoma cell lines. Depletion of SYK by siRNA and the use of small molecule SYK inhibitors significantly reduced the cell viability of neuroblastoma cell lines expressing SYK protein. Moreover, SYK inhibition decreased ERK1/2 and Akt phosphorylation. The SYK inhibitor BAY 61-3606 enhanced the effect of different chemotherapeutic drugs. Transient expression of a constitutive active SYK variant increased the viability of neuroblastoma cells independent of endogenous SYK levels. Collectively, our findings suggest that targeting SYK in combination with conventional chemotherapy should be further evaluated as a treatment option in neuroblastoma.
Collapse
|
12
|
Hardy AT, Palma-Barqueros V, Watson SK, Malcor JD, Eble JA, Gardiner EE, Blanco JE, Guijarro-Campillo R, Delgado JL, Lozano ML, Teruel-Montoya R, Vicente V, Watson SP, Rivera J, Ferrer-Marín F. Significant Hypo-Responsiveness to GPVI and CLEC-2 Agonists in Pre-Term and Full-Term Neonatal Platelets and following Immune Thrombocytopenia. Thromb Haemost 2018; 118:1009-1020. [PMID: 29695020 PMCID: PMC6202930 DOI: 10.1055/s-0038-1646924] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neonatal platelets are hypo-reactive to the tyrosine kinase-linked receptor agonist collagen. Here, we have investigated whether the hypo-responsiveness is related to altered levels of glycoprotein VI (GPVI) and integrin α2β1, or to defects in downstream signalling events by comparison to platelet activation by C-type lectin-like receptor 2 (CLEC-2). GPVI and CLEC-2 activate a Src- and Syk-dependent signalling pathway upstream of phospholipase C (PLC) γ2. Phosphorylation of a conserved YxxL sequence known as a (hemi) immunotyrosine-based-activation-motif (ITAM) in both receptors is critical for Syk activation. Platelets from human pre-term and full-term neonates display mildly reduced expression of GPVI and CLEC-2, as well as integrin αIIbβ3, accounted for at the transcriptional level. They are also hypo-responsive to the two ITAM receptors, as shown by measurement of integrin αIIbβ3 activation, P-selectin expression and Syk and PLCγ2 phosphorylation. Mouse platelets are also hypo-responsive to GPVI and CLEC-2 from late gestation to 2 weeks of age, as determined by measurement of integrin αIIbβ3 activation. In contrast, the response to G protein-coupled receptor agonists was only mildly reduced and in some cases not altered in neonatal platelets of both species. A reduction in response to GPVI and CLEC-2, but not protease-activated receptor 4 (PAR-4) peptide, was also observed in adult mouse platelets following immune thrombocytopenia, whereas receptor expression was not impaired. Our results demonstrate developmental differences in platelet responsiveness to GPVI and CLEC-2, and also following immune platelet depletion leading to reduced Syk activation. The rapid generation of platelets during development or following platelet depletion is achieved at the expense of signalling by ITAM-coupled receptors.
Collapse
Affiliation(s)
- Alexander T Hardy
- Institute of Cardiovascular Science, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Verónica Palma-Barqueros
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Stephanie K Watson
- Institute of Cardiovascular Science, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jean-Daniel Malcor
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - José E Blanco
- Departamento de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca, Murcia, Spain
| | - Rafael Guijarro-Campillo
- Departamento de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca, Murcia, Spain
| | - Juan L Delgado
- Departamento de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca, Murcia, Spain
| | - María L Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Raúl Teruel-Montoya
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Vicente Vicente
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Steve P Watson
- Institute of Cardiovascular Science, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Francisca Ferrer-Marín
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain.,Grado de Medicina, Universidad Católica San Antonio de Murcia, Murcia, Spain
| |
Collapse
|
13
|
Braegelmann C, Hölzel M, Ludbrook V, Dickson M, Turan N, Ferring-Schmitt S, Sternberg S, Bieber T, Kuhn A, Wenzel J. Spleen tyrosine kinase (SYK) is a potential target for the treatment of cutaneous lupus erythematosus patients. Exp Dermatol 2018; 25:375-9. [PMID: 26910509 DOI: 10.1111/exd.12986] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2016] [Indexed: 12/17/2022]
Abstract
Spleen tyrosine kinase (SYK) is a protein kinase involved in cell proliferation and the regulation of inflammatory pathways. Due to the increasing evidence that kinase inhibitors have potential as specific anti-inflammatory drugs, we have investigated the potential for SYK inhibition as a therapeutic target in autoimmune diseases, particularly cutaneous lupus erythematosus (CLE). Skin samples of patients with different CLE subtypes and appropriate controls were analysed for the expression of SYK and SYK-associated pro-inflammatory mediators via gene expression analysis and immunohistochemistry. The functional role of SYK in keratinocytes was investigated in vitro, using LE-typical pro-inflammatory stimuli and a selective inhibitor of SYK. SYK-associated genes are strongly upregulated in CLE skin lesions. Importantly, phosphorylated SYK (pSYK) is strongly expressed by several immune cell types and also keratinocytes in CLE skin. In vitro, immunostimulatory nucleic acids are capable of inducing SYK phosphorylation in keratinocytes leading to the induction of pro-inflammatory cytokines, while small-molecule SYK inhibition decreases the expression of these proteins. The results demonstrate that pSYK is expressed by immune cells and keratinocytes in skin lesions of CLE patients. LE-typical stimuli induce the expression of pSYK in vitro. Small-molecule SYK inhibition leads to a reduction of pSYK expression and downregulation of pro-inflammatory cytokines in keratinocytes. We therefore believe that pSYK provides a potential future drug target for the treatment of patients who suffer from CLE and related skin disorders. Specifically, our study reveals evidence supporting the use of topical SYK inhibitors in treating lupus.
Collapse
Affiliation(s)
| | - Michael Hölzel
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | | | | | | | | | - Sonja Sternberg
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Thomas Bieber
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Annegret Kuhn
- Interdisciplinary Center for Clinical Trials (IZKS), University Medical Center Mainz, Mainz, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| |
Collapse
|
14
|
Westbroek ML, Geahlen RL. Modulation of BCR Signaling by the Induced Dimerization of Receptor-Associated SYK. Antibodies (Basel) 2017; 6:antib6040023. [PMID: 31548538 PMCID: PMC6698873 DOI: 10.3390/antib6040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/27/2017] [Accepted: 12/02/2017] [Indexed: 01/14/2023] Open
Abstract
Clustering of the B cell antigen receptor (BCR) by polyvalent antigens is transmitted through the SYK tyrosine kinase to the activation of multiple intracellular pathways that determine the physiological consequences of receptor engagement. To explore factors that modulate the quantity and quality of signals sent by the crosslinked BCR, we developed a novel chemical mediator of dimerization to induce clustering of receptor-associated SYK. To accomplish this, we fused SYK with E. coli dihydrofolate reductase (eDHFR), which binds the small molecule trimethoprim (TMP) with high affinity and selectivity and synthesized a dimer of TMP with a flexible linker. The TMP dimer is able to induce the aggregation of eDHFR-linked SYK in live cells. The induced dimerization of SYK bound to the BCR differentially regulates the activation of downstream transcription factors, promoting the activation of Nuclear Factor of Activated T cells (NFAT) without affecting the activation of NFκB. The dimerization of SYK enhances the duration but not the amplitude of calcium mobilization by enhancing the extent and duration of its interaction with the crosslinked BCR at the plasma membrane.
Collapse
Affiliation(s)
- Mark L Westbroek
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | - Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
15
|
Köhler C, Fuhr V, Dinekov M. Distribution of spleen tyrosine kinase and tau phosphorylated at tyrosine 18 in a mouse model of tauopathy and in the human hippocampus. Brain Res 2017; 1677:1-13. [DOI: 10.1016/j.brainres.2017.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/11/2017] [Accepted: 08/25/2017] [Indexed: 12/01/2022]
|
16
|
Kusuyama J, Kamisono A, ChangHwan S, Amir MS, Bandow K, Eiraku N, Ohnishi T, Matsuguchi T. Spleen tyrosine kinase influences the early stages of multilineage differentiation of bone marrow stromal cell lines by regulating phospholipase C gamma activities. J Cell Physiol 2017; 233:2549-2559. [DOI: 10.1002/jcp.26130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/01/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Joji Kusuyama
- Department of Oral Biochemistry; Field of Developmental Medicine; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Ai Kamisono
- Department of Oral Biochemistry; Field of Developmental Medicine; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Seong ChangHwan
- Department of Oral Biochemistry; Field of Developmental Medicine; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Muhammad S. Amir
- Department of Oral Biochemistry; Field of Developmental Medicine; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
- Department of Oral and Maxillofacial Surgery; Field of Oral and Maxillofacial Rehabilitation; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
- Department of Oral and Maxillofacial Surgery; Faculty of Dentistry; Airlangga University; Surabaya Indonesia
- Campus A UNAIR, JL, Mayjen Professor Doktor Moestopo, Pacar Kembang, Tambaksari, Kota SBY,; Jawa Timur Indonesia
| | - Kenjiro Bandow
- Department of Oral Biology and Tissue Engineering; Meikai University School of Dentistry; Saitama Japan
| | - Nahoko Eiraku
- Department of Periodontology; Field of Oral and Maxillofacial Rehabilitation; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry; Field of Developmental Medicine; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry; Field of Developmental Medicine; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| |
Collapse
|
17
|
Ectopic ILT3 controls BCR-dependent activation of Akt in B-cell chronic lymphocytic leukemia. Blood 2017; 130:2006-2017. [PMID: 28931525 DOI: 10.1182/blood-2017-03-775858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022] Open
Abstract
The high proportion of long-term nonprogressors among chronic lymphocytic leukemia (CLL) patients suggests the existence of a regulatory network that restrains the proliferation of tumor B cells. The identification of molecular determinants composing such network is hence fundamental for our understanding of CLL pathogenesis. Based on our previous finding establishing a deficiency in the signaling adaptor p66Shc in CLL cells, we undertook to identify unique phenotypic traits caused by this defect. Here we show that a lack of p66Shc shapes the transcriptional profile of CLL cells and leads to an upregulation of the surface receptor ILT3, the immunoglobulin-like transcript 3 that is normally found on myeloid cells. The ectopic expression of ILT3 in CLL was a distinctive feature of neoplastic B cells and hematopoietic stem cells, thus identifying ILT3 as a selective marker of malignancy in CLL and the first example of phenotypic continuity between mature CLL cells and their progenitors in the bone marrow. ILT3 expression in CLL was found to be driven by Deltex1, a suppressor of antigen receptor signaling in lymphocytes. Triggering of ILT3 inhibited the activation of Akt kinase upon B-cell receptor (BCR) stimulation. This effect was achieved through the dynamic coalescence of ILT3, BCRs, and phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 into inhibitory clusters at the cell surface. Collectively, our findings identify ILT3 as a signature molecule of p66Shc deficiency in CLL and indicate that ILT3 may functionally contribute to a regulatory network controlling tumor progression by suppressing the Akt pathway.
Collapse
|
18
|
Schwartz SL, Cleyrat C, Olah MJ, Relich PK, Phillips GK, Hlavacek WS, Lidke KA, Wilson BS, Lidke DS. Differential mast cell outcomes are sensitive to FcεRI-Syk binding kinetics. Mol Biol Cell 2017; 28:3397-3414. [PMID: 28855374 PMCID: PMC5687039 DOI: 10.1091/mbc.e17-06-0350] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/11/2022] Open
Abstract
Cross-linking of immunoglobulin E-bound FcεRI triggers multiple cellular responses, including degranulation and cytokine production. Signaling is dependent on recruitment of Syk via docking of its dual SH2 domains to phosphorylated tyrosines within the FcεRI immunoreceptor tyrosine-based activation motifs. Using single-molecule imaging in live cells, we directly visualized and quantified the binding of individual mNeonGreen-tagged Syk molecules as they associated with the plasma membrane after FcεRI activation. We found that Syk colocalizes transiently to FcεRI and that Syk-FcεRI binding dynamics are independent of receptor aggregate size. Substitution of glutamic acid for tyrosine between the Syk SH2 domains (Syk-Y130E) led to an increased Syk-FcεRI off-rate, loss of site-specific Syk autophosphorylation, and impaired downstream signaling. Genome edited cells expressing only Syk-Y130E were deficient in antigen-stimulated calcium release, degranulation, and production of some cytokines (TNF-a, IL-3) but not others (MCP-1, IL-4). We propose that kinetic discrimination along the FcεRI signaling pathway occurs at the level of Syk-FcεRI interactions, with key outcomes dependent upon sufficiently long-lived Syk binding events.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Cédric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Mark J Olah
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Peter K Relich
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Genevieve K Phillips
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Keith A Lidke
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131.,Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131 .,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
19
|
Caruso JA, Carruthers N, Shin N, Gill R, Stemmer PM, Rosenspire A. Mercury alters endogenous phosphorylation profiles of SYK in murine B cells. BMC Immunol 2017; 18:37. [PMID: 28716125 PMCID: PMC5514489 DOI: 10.1186/s12865-017-0221-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/07/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Epidemiological evidence and animal models suggest that exposure to low and non-neurotoxic concentrations of mercury may contribute to idiosyncratic autoimmune disease. Since defects in function and signaling in B cells are often associated with autoimmunity, we investigated whether mercury exposure might alter B cell responsiveness to self-antigens by interfering with B cell receptor (BCR) signal transduction. In this study we determined the effects of mercury on the protein tyrosine kinase SYK, a critical protein involved in regulation of the BCR signaling pathway. METHODS Phosphorylation sites of murine SYK were mapped before and after treatment of WEHI cell cultures with mercury, or with anti-IgM antibody (positive control) or pervanadate (a potent phosphatase inhibitor). Phosphopeptides were enriched by either titanium dioxide chromatography or anti-phosphotyrosine immunoaffinity, and analyzed by liquid chromatography-mass spectrometry. Select SYK phosphosite cluster regions were profiled for responsiveness to treatments using multiple reaction monitoring (MRM) methodology. RESULTS A total of 23 phosphosites were identified with high probability in endogenous SYK, including 19 tyrosine and 4 serine residues. For 10 of these sites phosphorylation levels were increased following BCR activation. Using MRM to profile changes in phosphorylation status we found that 4 cluster regions, encompassing 8 phosphosites, were activated by mercury and differentially responsive to all 3 treatments. Phosphorylation of tyrosine-342 and -346 residues were most sensitive to mercury exposure. This cluster is known to propagate normal BCR signal transduction by recruiting adaptor proteins such as PLC-γ and Vav-1 to SYK during formation of the BCR signalosome. CONCLUSIONS Our data shows that mercury alters the phosphorylation status of SYK on tyrosine sites known to have a role in promoting BCR signals. Considering the importance of SYK in the BCR signaling pathway, these data suggest that mercury can alter BCR signaling in B cells, which might affect B cell responsiveness to self-antigen and have implications with respect to autoimmunity and autoimmune disease.
Collapse
Affiliation(s)
- Joseph A Caruso
- Institute of Environmental Health Sciences, Center for Urban Responses to Environmental Stressors (CURES), Wayne State University, Detroit, MI, 48201, USA.
| | - Nicholas Carruthers
- Institute of Environmental Health Sciences, Center for Urban Responses to Environmental Stressors (CURES), Wayne State University, Detroit, MI, 48201, USA
| | - Namhee Shin
- Institute of Environmental Health Sciences, Center for Urban Responses to Environmental Stressors (CURES), Wayne State University, Detroit, MI, 48201, USA
| | - Randal Gill
- Department of Immunology and Microbiology, Center for Urban Responses to Environmental Stressors (CURES), Wayne State University, Detroit, MI, 48201, USA
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, Center for Urban Responses to Environmental Stressors (CURES), Wayne State University, Detroit, MI, 48201, USA
| | - Allen Rosenspire
- Department of Immunology and Microbiology, Center for Urban Responses to Environmental Stressors (CURES), Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
20
|
Mohammad DK, Nore BF, Gustafsson MO, Mohamed AJ, Smith CIE. Protein kinase B (AKT) regulates SYK activity and shuttling through 14-3-3 and importin 7. Int J Biochem Cell Biol 2016; 78:63-74. [PMID: 27381982 DOI: 10.1016/j.biocel.2016.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/24/2016] [Accepted: 06/30/2016] [Indexed: 01/10/2023]
Abstract
The Protein kinase B (AKT) regulates a plethora of intracellular signaling proteins to fine-tune signaling of multiple pathways. Here, we found that following B-cell receptor (BCR)-induced tyrosine phosphorylation of the cytoplasmic tyrosine kinase SYK and the adaptor BLNK, the AKT/PKB enzyme strongly induced BLNK (>100-fold) and SYK (>100-fold) serine/threonine phosphorylation (pS/pT). Increased phosphorylation promoted 14-3-3 binding to BLNK (37-fold) and SYK (2.5-fold) in a pS/pT-concentration dependent manner. We also demonstrated that the AKT inhibitor MK2206 reduced pS/pT of both BLNK (3-fold) and SYK (2.5-fold). Notably, the AKT phosphatase, PHLPP2 maintained the activating phosphorylation of BLNK at Y84 and increased protein stability (8.5-fold). In addition, 14-3-3 was required for the regulation SYK's interaction with BLNK and attenuated SYK binding to Importin 7 (5-fold), thereby perturbing shuttling to the nucleus. Moreover, 14-3-3 proteins also sustained tyrosine phosphorylation of SYK and BLNK. Furthermore, substitution of S295 or S297 for alanine abrogated SYK's binding to Importin 7. SYK with S295A or S297A replacements showed intense pY525/526 phosphorylation, and BLNK pY84 phosphorylation correlated with the SYK pY525/526 phosphorylation level. Conversely, the corresponding mutations to aspartic acid in SYK reduced pY525/526 phosphorylation. Collectively, these and previous results suggest that AKT and 14-3-3 proteins down-regulate the activity of several BCR-associated components, including BTK, BLNK and SYK and also inhibit SYK's interaction with Importin 7.
Collapse
Affiliation(s)
- Dara K Mohammad
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge, Stockholm, Sweden; Department of Biology, College of Science, University of Salahaddin, Erbil, Kurdistan Region, Iraq.
| | - Beston F Nore
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge, Stockholm, Sweden; Department of Biochemistry, School of Medicine, University of Sulaimani, Sulaimaniyah, Kurdistan Region, Iraq
| | - Manuela O Gustafsson
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge, Stockholm, Sweden
| | - Abdalla J Mohamed
- Universiti Brunei Darussalam, Environmental and Life Sciences, Faculty of Science, Jalan Tungku Link, Gadong BE1410 Negara Brunei Darussalam, Brunei
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge, Stockholm, Sweden.
| |
Collapse
|
21
|
Aouar B, Kovarova D, Letard S, Font-Haro A, Florentin J, Weber J, Durantel D, Chaperot L, Plumas J, Trejbalova K, Hejnar J, Nunès JA, Olive D, Dubreuil P, Hirsch I, Stranska R. Dual Role of the Tyrosine Kinase Syk in Regulation of Toll-Like Receptor Signaling in Plasmacytoid Dendritic Cells. PLoS One 2016; 11:e0156063. [PMID: 27258042 PMCID: PMC4892542 DOI: 10.1371/journal.pone.0156063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/09/2016] [Indexed: 12/30/2022] Open
Abstract
Crosslinking of regulatory immunoreceptors (RR), such as BDCA-2 (CD303) or ILT7 (CD85g), of plasmacytoid dendritic cells (pDCs) efficiently suppresses production of type-I interferon (IFN)-α/β and other cytokines in response to Toll-like receptor (TLR) 7/9 ligands. This cytokine-inhibitory pathway is mediated by spleen tyrosine kinase (Syk) associated with the ITAM-containing adapter of RR. Here we demonstrate by pharmacological targeting of Syk that in addition to the negative regulation of TLR7/9 signaling via RR, Syk also positively regulates the TLR7/9 pathway in human pDCs. Novel highly specific Syk inhibitor AB8779 suppressed IFN-α, TNF-α and IL-6 production induced by TLR7/9 agonists in primary pDCs and in the pDC cell line GEN2.2. Triggering of TLR9 or RR signaling induced a differential kinetics of phosphorylation at Y352 and Y525/526 of Syk and a differential sensitivity to AB8779. Consistent with the different roles of Syk in TLR7/9 and RR signaling, a concentration of AB8779 insufficient to block TLR7/9 signaling still released the block of IFN-α production triggered via the RR pathway, including that induced by hepatitis B and C viruses. Thus, pharmacological targeting of Syk partially restored the main pDC function—IFN-α production. Opposing roles of Syk in TLR7/9 and RR pathways may regulate the innate immune response to weaken inflammation reaction.
Collapse
Affiliation(s)
- Besma Aouar
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
| | - Denisa Kovarova
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Sebastien Letard
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
- AB Science, Paris, France
| | - Albert Font-Haro
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jonathan Florentin
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - David Durantel
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Lyon, France
| | - Laurence Chaperot
- UJF, INSERM U823, University Grenoble Alpes, EFS Rhone-Alpes, Grenoble, France
| | - Joel Plumas
- UJF, INSERM U823, University Grenoble Alpes, EFS Rhone-Alpes, Grenoble, France
| | - Katerina Trejbalova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Hejnar
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jacques A. Nunès
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
| | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
| | - Patrice Dubreuil
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
| | - Ivan Hirsch
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: (RS); (IH)
| | - Ruzena Stranska
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
- * E-mail: (RS); (IH)
| |
Collapse
|
22
|
Bojarczuk K, Bobrowicz M, Dwojak M, Miazek N, Zapala P, Bunes A, Siernicka M, Rozanska M, Winiarska M. B-cell receptor signaling in the pathogenesis of lymphoid malignancies. Blood Cells Mol Dis 2015; 55:255-65. [PMID: 26227856 DOI: 10.1016/j.bcmd.2015.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/21/2015] [Indexed: 11/17/2022]
Abstract
B-cell receptor (BCR) signaling pathway plays a central role in B-lymphocyte development and initiation of humoral immunity. Recently, BCR signaling pathway has been shown as a major driver in the pathogenesis of B-cell malignancies. As a result, a vast array of BCR-associated kinases has emerged as rational therapeutic targets changing treatment paradigms in B cell malignancies. Based on high efficacy in early-stage clinical trials, there is rapid clinical development of inhibitors targeting BCR signaling pathway. Here, we describe the essential components of BCR signaling, their function in normal and pathogenic signaling and molecular effects of their inhibition in vitro and in vivo.
Collapse
Affiliation(s)
- Kamil Bojarczuk
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Malgorzata Bobrowicz
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Michal Dwojak
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Nina Miazek
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Piotr Zapala
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Anders Bunes
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Marta Siernicka
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Maria Rozanska
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland.
| |
Collapse
|
23
|
ten Hacken E, Burger JA. Microenvironment dependency in Chronic Lymphocytic Leukemia: The basis for new targeted therapies. Pharmacol Ther 2014; 144:338-48. [PMID: 25050922 DOI: 10.1016/j.pharmthera.2014.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 02/03/2023]
Abstract
Chronic Lymphocytic Leukemia (CLL) is a prototype microenvironment-dependent B-cell malignancy, in which the neoplastic B cells co-evolve together with a supportive tissue microenvironment, which promotes leukemia cell survival, growth, and drug-resistance. Chemo-immunotherapy is an established treatment modality for CLL patients, resulting in high rates of responses and improved survival, especially in low-risk CLL. New, alternative treatments target B-cell receptor (BCR) signaling and the Chemokine (C-X-C motif) Receptor 4 (CXCR4)-Chemokine (C-X-C motif) Ligand 12 (CXCL12) axis, which are key pathways of CLL-microenvironment cross talk. The remarkable clinical efficacy of inhibitors targeting the BCR-associated kinases Bruton's tyrosine kinase (BTK) and phosphoinositide 3-kinase delta (PI3Kδ) challenges established therapeutic paradigms and corroborates the central role of BCR signaling in CLL pathogenesis. In this review, we discuss the cellular and molecular components of the CLL microenvironment. We also describe the emerging therapeutic options for CLL patients, with a focus on inhibitors of CXCR4-CXCL12 and BCR signaling.
Collapse
Affiliation(s)
- Elisa ten Hacken
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Jan A Burger
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
24
|
Sprissler C, Belenki D, Maurer H, Aumann K, Pfeifer D, Klein C, Müller TA, Kissel S, Hülsdünker J, Alexandrovski J, Brummer T, Jumaa H, Duyster J, Dierks C. Depletion of STAT5 blocks TEL-SYK-induced APMF-type leukemia with myelofibrosis and myelodysplasia in mice. Blood Cancer J 2014; 4:e240. [PMID: 25148222 PMCID: PMC4219468 DOI: 10.1038/bcj.2014.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/27/2014] [Accepted: 06/12/2014] [Indexed: 12/16/2022] Open
Abstract
The spleen tyrosine kinase (SYK) was identified as an oncogenic driver in a broad spectrum of hematologic malignancies. The in vivo comparison of three SYK containing oncogenes, SYK(wt), TEL-SYK and IL-2-inducible T-cell kinase (ITK)-SYK revealed a general myeloexpansion and the establishment of three different hematologic (pre)diseases. SYK(wt) enhanced the myeloid and T-cell compartment, without leukemia/lymphoma development. ITK-SYK caused lethal T-cell lymphomas and the cytoplasmic TEL-SYK fusion induced an acute panmyelosis with myelofibrosis-type acute myeloid leukemia (AML) with up to 50% immature megakaryoblasts infiltrating bone marrow, spleen and liver, additional MPN features (myelofibrosis and granulocyte expansion) and MDS stigmata with megakaryocytic and erythroid dysplasia. LKS cells were reduced and all subsets (LT/ST/MPP) showed reduced proliferation rates. SYK inhibitor treatment (R788) of diseased TEL-SYK mice reduced leukocytosis, spleen and liver infiltration, enhanced the hematocrit and prolonged survival time, but could not significantly reduce myelofibrosis. Stat5 was identified as a major downstream mediator of TEL-SYK in vitro as well as in vivo. Consequently, targeted deletion of Stat5 in vivo completely abrogated TEL-SYK-induced AML and myelofibrosis development, proving Stat5 as a major driver of SYK-induced transformation. Our experiments highlight the important role of SYK in AML and myelofibrosis and prove SYK and STAT5 inhibitors as potent treatment options for those diseases.
Collapse
MESH Headings
- Animals
- Cell Line
- Gene Deletion
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/prevention & control
- Male
- Mice
- Mice, Inbred BALB C
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/prevention & control
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Primary Myelofibrosis/genetics
- Primary Myelofibrosis/metabolism
- Primary Myelofibrosis/pathology
- Primary Myelofibrosis/prevention & control
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Syk Kinase
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- C Sprissler
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
- University of Freiburg, Schaenzlestrasse 1, Freiburg, Germany
| | - D Belenki
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - H Maurer
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - K Aumann
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - D Pfeifer
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - C Klein
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - T A Müller
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - S Kissel
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - J Hülsdünker
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - J Alexandrovski
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - T Brummer
- Institut für Molekulare Medizin und Zellforschung, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, Germany
- Centre for Biological Signaling Studies BIOSS, Freiburg, Germany
| | - H Jumaa
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
- Institut für Molekulare Medizin und Zellforschung, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, Germany
- Centre for Biological Signaling Studies BIOSS, Freiburg, Germany
| | - J Duyster
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - C Dierks
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
- Centre for Biological Signaling Studies BIOSS, Freiburg, Germany
| |
Collapse
|
25
|
Rolán HG, Durand EA, Mecsas J. Identifying Yersinia YopH-targeted signal transduction pathways that impair neutrophil responses during in vivo murine infection. Cell Host Microbe 2014; 14:306-17. [PMID: 24034616 DOI: 10.1016/j.chom.2013.08.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/10/2013] [Accepted: 08/19/2013] [Indexed: 12/23/2022]
Abstract
Identifying molecular targets of Yersinia virulence effectors, or Yops, during animal infection is challenging because few cells are targeted by Yops in an infected organ, and isolating these sparse effector-containing cells is difficult. YopH, a tyrosine phosphatase, is essential for full virulence of Yersinia. Investigating the YopH-targeted signal transduction pathway(s) in neutrophils during infection of a murine host, we find that several host proteins, including the essential signaling adaptor SLP-76, are dephosphorylated in the presence of YopH in neutrophils isolated from infected tissues. YopH inactivated PRAM-1/SKAP-HOM and the SLP-76/Vav/PLCγ2 signal transduction axes, leading to an inhibition of calcium response in isolated neutrophils. Consistent with a failure to mount a calcium response, IL-10 production was reduced in neutrophils containing YopH from infected tissues. Finally, a yopH mutant survived better in the absence of neutrophils, indicating that neutrophil inactivation by YopH by targeting PRAM-1/SKAP-HOM and SLP-76/Vav/PLCγ2 signaling hubs may be critical for Yersinia survival.
Collapse
Affiliation(s)
- Hortensia G Rolán
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| | | | | |
Collapse
|
26
|
Feng G, Wang X. Role of spleen tyrosine kinase in the pathogenesis of chronic lymphocytic leukemia. Leuk Lymphoma 2014; 55:2699-705. [PMID: 24547708 DOI: 10.3109/10428194.2014.891026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The antigen-dependent B-cell receptor (BCR) is triggered by binding to external antigens and transmits signals in normal B lymphocytes. Tonic signaling through the BCR plays a crucial role in the pathogenesis and progression of chronic lymphocytic leukemia (CLL). Spleen tyrosine kinase (Syk) is a key component of both BCR signals, and regulates multiple physiological functions of B lymphocytes. Studies have defined enhanced gene expression and protein expression of Syk in CLL cells which are closely related to the status of the immunoglobulin heavy chain variable region genes (IgVH). Recently, abrogating the BCR-induced signaling pathway by Syk inhibitors has represented a novel and active therapeutic approach for CLL. Studies of the correlation between Syk and ZAP-70 expression in CLL cells have brought a new perspective to determining the value of Syk in evaluating the effect of therapy and the prognosis of CLL. Therefore, we here review the role of Syk in the pathogenesis of CLL and provide an update of progress in the clinical development of Syk inhibitors.
Collapse
Affiliation(s)
- Gege Feng
- Department of Hematology, Provincial Hospital Affiliated to Shandong University , Jinan, Shandong , P. R. China
| | | |
Collapse
|
27
|
Agarwal S, Kazi JU, Rönnstrand L. Phosphorylation of the activation loop tyrosine 823 in c-Kit is crucial for cell survival and proliferation. J Biol Chem 2013; 288:22460-8. [PMID: 23803604 DOI: 10.1074/jbc.m113.474072] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The receptor tyrosine kinase c-Kit, also known as the stem cell factor receptor, plays a key role in several developmental processes. Activating mutations in c-Kit lead to alteration of these cellular processes and have been implicated in many human cancers such as gastrointestinal stromal tumors, acute myeloid leukemia, testicular seminomas and mastocytosis. Regulation of the catalytic activity of several kinases is known to be governed by phosphorylation of tyrosine residues in the activation loop of the kinase domain. However, in the case of c-Kit phosphorylation of Tyr-823 has been demonstrated to be a late event that is not required for kinase activation. However, because phosphorylation of Tyr-823 is a ligand-activated event, we sought to investigate the functional consequences of Tyr-823 phosphorylation. By using a tyrosine-to-phenylalanine mutant of tyrosine 823, we investigated the impact of Tyr-823 on c-Kit signaling. We demonstrate here that Tyr-823 is crucial for cell survival and proliferation and that mutation of Tyr-823 to phenylalanine leads to decreased sustained phosphorylation and ubiquitination of c-Kit as compared with the wild-type receptor. Furthermore, the mutated receptor was, upon ligand-stimulation, quickly internalized and degraded. Phosphorylation of the E3 ubiquitin ligase Cbl was transient, followed by a substantial reduction in phosphorylation of downstream signaling molecules such as Akt, Erk, p38, Shc, and Gab2. Thus, we propose that activation loop tyrosine 823 is crucial for activation of both the MAPK and PI3K pathways and that its disruption leads to a destabilization of the c-Kit receptor and decreased survival of cells.
Collapse
Affiliation(s)
- Shruti Agarwal
- Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden
| | | | | |
Collapse
|
28
|
Talab F, Allen JC, Thompson V, Lin K, Slupsky JR. LCK is an important mediator of B-cell receptor signaling in chronic lymphocytic leukemia cells. Mol Cancer Res 2013; 11:541-54. [PMID: 23505068 DOI: 10.1158/1541-7786.mcr-12-0415-t] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
B-cell receptor (BCR) signals promote survival of chronic lymphocytic leukemia (CLL) cells, and it is believed that overexpressed and constitutively active Lyn mediates this signaling. Here, we show that CLL cells express lymphocyte-specific protein tyrosine kinase (LCK) and that inhibition of this Src family tyrosine kinase with the specific inhibitor [4-amino-5-(4-phenoxyphenyl)-7H-pyrrolo[3,2-d]pyrimidin-7-yl-cyclopentane (Lck-i)], or reduction of its expression with siRNA, blocks the induction of CD79a, Syk, inhibitor of IκB kinase (IKK), Akt, and extracellular signal-regulated kinase (ERK) phosphorylation by BCR cross-linking in these cells. Furthermore, we show that CLL cells with high levels of LCK expression have higher levels of BCR-mediated IKK, Akt, and ERK phosphorylation as well as cell survival than CLL cells with low levels of LCK expression. We also show that treatment of CLL cells with Lck-i inhibits BCR cross-linking-induced cell survival. Taken together, these data show a major role for LCK in proximal and distal BCR-mediated signaling in CLL cells and suggest that LCK expression is important in the pathogenesis of this disease. On a clinical level, these studies advocate the use of specific LCK inhibitors in the treatment of progressive CLL.
Collapse
Affiliation(s)
- Fatima Talab
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Hussain A, Mohammad DK, Gustafsson MO, Uslu M, Hamasy A, Nore BF, Mohamed AJ, Smith CIE. Signaling of the ITK (interleukin 2-inducible T cell kinase)-SYK (spleen tyrosine kinase) fusion kinase is dependent on adapter SLP-76 and on the adapter function of the kinases SYK and ZAP70. J Biol Chem 2013; 288:7338-50. [PMID: 23293025 DOI: 10.1074/jbc.m112.374967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inducible T cell kinase-spleen tyrosine kinase (ITK-SYK) oncogene consists of the Tec homology-pleckstrin homology domain of ITK and the kinase domain of SYK, and it is believed to be the cause of peripheral T cell lymphoma. We and others have recently demonstrated that this fusion protein is constitutively tyrosine-phosphorylated and is transforming both in vitro and in vivo. To gain a deeper insight into the molecular mechanism(s) underlying its activation and signaling, we mutated a total of eight tyrosines located in the SYK portion of the chimera into either phenylalanine or to the negatively charged glutamic acid. Although mutations in the interdomain-B region affected ITK-SYK kinase activity, they only modestly altered downstream signaling events. In contrast, mutations that were introduced in the kinase domain triggered severe impairment of downstream signaling. Moreover, we show here that SLP-76 is critical for ITK-SYK activation and is particularly required for the ITK-SYK-dependent phosphorylation of SYK activation loop tyrosines. In Jurkat cell lines, we demonstrate that expression of ITK-SYK fusion requires an intact SLP-76 function and significantly induces IL-2 secretion and CD69 expression. Furthermore, the SLP-76-mediated induction of IL-2 and CD69 could be further enhanced by SYK or ZAP-70, but it was independent of their kinase activity. Notably, ITK-SYK expression in SYF cells phosphorylates SLP-76 in the absence of SRC family kinases. Altogether, our data suggest that ITK-SYK exists in the active conformation state and is therefore capable of signaling without SRC family kinases or stimulation of the T cell receptor.
Collapse
Affiliation(s)
- Alamdar Hussain
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska Hospital, Huddinge, SE 141 86 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The significant correlation between disease aggressiveness and the gene and protein structures of the B-cell receptors (BCRs) expressed on chronic lymphocytic leukemia (CLL) cells, together with the evidence for chronic activation of the BCR pathway, have led to the hypothesis that this leukemia initiates and progresses by selecting normal B lymphocytes reactive with a restricted set of (auto)antigens. A study recently published in Nature identified a novel signal-initiating interaction between the third complementary determining region of the IG heavy chain variable domain (HCDR3) and an epitope in the second framework region (FR2) that appears to be unique to CLL B cells and that calls into question the need for classical antigen binding in the activation and expansion of the leukemic cells. These findings are discussed in the context of available information about the antigen reactivity of CLL B cells and its potential role in clonal survival and drive.
Collapse
|
31
|
Novel Agents and Emerging Strategies for Targeting the B-Cell Receptor Pathway in CLL. Mediterr J Hematol Infect Dis 2012; 4:e2012067. [PMID: 23170196 PMCID: PMC3499997 DOI: 10.4084/mjhid.2012.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a disease of malignant CD5+ B lymphocytes that are characterized by frequent expression of autoreactive B-cell receptors (BCRs) and marked dependence on microenvironmental signals for proliferation and survival. Among the latter, signals propagated through the BCR are believed to play a key role in leukemia initiation, maintenance and evolution. Drugs that can disrupt these signals have recently emerged as potential therapeutic agents in CLL and several of them are currently being evaluated in clinical trials. Particularly promising clinical responses have been obtained with inhibitors of the kinases SYK, BTK, and PI3Kδ, which function by blocking BCR signal transduction. In addition, recent studies focusing on the phosphatase PTPN22, which is involved in the pathogenesis of multiple autoimmune diseases and is markedly overexpressed in CLL cells, suggest that it may be possible in the future to develop strategies that will selectively reprogram BCR survival signals into signals that induce leukemic cell death. This review focuses on the biological basis behind these strategies and highlights some of the most promising BCR-targeting agents in ongoing preclinical and clinical studies.
Collapse
|
32
|
|
33
|
The degree of BCR and NFAT activation predicts clinical outcomes in chronic lymphocytic leukemia. Blood 2012; 120:356-65. [PMID: 22613791 DOI: 10.1182/blood-2011-12-397158] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
B-cell antigen receptor (BCR)-mediated signaling plays a critical role in chronic lymphocytic leukemia (CLL) pathogenesis and gives an in vitro survival advantage to B cells isolated from patients with unfavorable prognostic factors. In this study, we undertook to elucidate the signaling intermediates responsible for this biologic alteration. In responding cells only, in vitro BCR engagement triggers global phosphorylation of Syk, activation of phospholipase Cγ2, and intracellular calcium mobilization, reflecting competency of BCR signaling. The calcium-calcineurin-dependent transcription factor NFAT2 is up-regulated and to some extent constitutively activated in all CLL B cells. In contrast, its DNA-binding capacity is enhanced on IgM stimulation in responding cells only. NFAT inhibition using the VIVIT peptide prevents induction of CD23 target gene and IgM-induced survival, converting responding cells to unresponsive status. At the opposite, ionomycin-induced NFAT activity allows survival of nonresponding cells. These results demonstrate that the functional heterogeneity relies on variability of protein levels establishing BCR-dependent thresholds and NFAT-dependent activation. Finally, status of the BCR-NFAT pathway for each patient reveals its relevance for CLL clinical outcome and points out to BCR-NFAT intermediates as promising functional therapeutic targets.
Collapse
|
34
|
Pedroza LA, Kumar V, Sanborn KB, Mace EM, Niinikoski H, Nadeau K, Vasconcelos DDM, Perez E, Jyonouchi S, Jyonouchi H, Banerjee PP, Ruuskanen O, Condino-Neto A, Orange JS. Autoimmune regulator (AIRE) contributes to Dectin-1-induced TNF-α production and complexes with caspase recruitment domain-containing protein 9 (CARD9), spleen tyrosine kinase (Syk), and Dectin-1. J Allergy Clin Immunol 2012; 129:464-72, 472.e1-3. [PMID: 21962774 DOI: 10.1016/j.jaci.2011.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/06/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome is a complex immunologic disease caused by mutation of the autoimmune regulator (AIRE) gene. Autoimmunity in patients with APECED syndrome has been shown to result from deficiency of AIRE function in transcriptional regulation of thymic peripheral tissue antigens, which leads to defective T-cell negative selection. Candidal susceptibility in patients with APECED syndrome is thought to result from aberrant adaptive immunity. OBJECTIVE To determine whether AIRE could function in anticandidal innate immune signaling, we investigated an extrathymic role for AIRE in the immune recognition of β-glucan through the Dectin-1 pathway, which is required for defense against Candida species. METHODS Innate immune signaling through the Dectin-1 pathway was assessed in both PBMCs from patients with APECED syndrome and a monocytic cell line. Subcellular localization of AIRE was assessed by using confocal microscopy. RESULTS PBMCs from patients with APECED syndrome had reduced TNF-α responses after Dectin-1 ligation but in part used a Raf-1-mediated pathway to preserve function. In the THP-1 human monocytic cell line, reducing AIRE expression resulted in significantly decreased TNF-α release after Dectin-1 ligation. AIRE formed a transient complex with the known Dectin-1 pathway components phosphorylated spleen tyrosine kinase and caspase recruitment domain-containing protein 9 after receptor ligation and localized with Dectin-1 at the cell membrane. CONCLUSION AIRE can participate in the Dectin-1 signaling pathway, indicating a novel extrathymic role for AIRE and a defect that likely contributes to fungal susceptibility in patients with APECED syndrome.
Collapse
Affiliation(s)
- Luis A Pedroza
- Center for Investigation in Pediatrics, University of Campinas Medical School, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Efremov DG, Laurenti L. The Syk kinase as a therapeutic target in leukemia and lymphoma. Expert Opin Investig Drugs 2011; 20:623-36. [DOI: 10.1517/13543784.2011.570329] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Getz TM, Mayanglambam A, Daniel JL, Kunapuli SP. Go6976 abrogates GPVI-mediated platelet functional responses in human platelets through inhibition of Syk. J Thromb Haemost 2011; 9:608-10. [PMID: 21251194 PMCID: PMC3057064 DOI: 10.1111/j.1538-7836.2011.04192.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Todd M. Getz
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, U.S.A
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, U.S.A
| | - Azad Mayanglambam
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, U.S.A
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, U.S.A
| | - James L. Daniel
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, U.S.A
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, U.S.A
| | - Satya P. Kunapuli
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, U.S.A
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, U.S.A
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, U.S.A
| |
Collapse
|
37
|
Mócsai A, Ruland J, Tybulewicz VLJ. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 2010; 10:387-402. [PMID: 20467426 PMCID: PMC4782221 DOI: 10.1038/nri2765] [Citation(s) in RCA: 1000] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spleen tyrosine kinase (SYK) is known to have a crucial role in adaptive immune receptor signalling. However, recent reports indicate that SYK also mediates other, unexpectedly diverse biological functions, including cellular adhesion, innate immune recognition, osteoclast maturation, platelet activation and vascular development. SYK is activated by C-type lectins and integrins, and activates new targets, including the CARD9-BCL-10-MALT1 pathway and the NLRP3 inflammasome. Studies using Drosophila melanogaster suggest that there is an evolutionarily ancient origin of SYK-mediated signalling. Moreover, SYK has a crucial role in autoimmune diseases and haematological malignancies. This Review summarizes our current understanding of the diverse functions of SYK and how this is being translated for therapeutic purposes.
Collapse
Affiliation(s)
- Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.
| | | | | |
Collapse
|
38
|
Schistosoma mansoni: signal transduction processes during the development of the reproductive organs. Parasitology 2010; 137:497-520. [PMID: 20163751 DOI: 10.1017/s0031182010000053] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Among the topics of considerable interest concerning our understanding of the unusual biology of schistosomes is the sexual maturation of the female. The identification of genes coding for signal transduction proteins controlling essential steps of the pairing-dependent differentiation of the reproductive organs, vitellarium and ovary will help to substantiate our knowledge about this unique parasite. Furthermore, such signalling proteins could be potential targets to interfere with the development of this parasite to combat schistosomiasis since its pathology is caused by the eggs. This review summarises first post-genomic steps to elucidate the function of gonad-specific signalling molecules which were identified by homology-based cloning strategies, by in silico identification or by yeast two-hybrid interaction analyses, using a combination of novel techniques. These include the in vitro culture of adult schistosomes, their treatment with chemical inhibitors to block enzyme activity, the use of RNAi to silence gene function post-transcriptionally, and confocal laser scanning microscopy to study the morphological consequences of these experimental approaches. Finally, we propose a first model of protein networks that are active in the ovary regulating mitogenic activity and differentiation. Some of these molecules are also active in the testes of males, probably fulfilling similar roles as in the ovary.
Collapse
|
39
|
Phosphatidylinositol-3-kinase-dependent phosphorylation of SLP-76 by the lymphoma-associated ITK-SYK fusion-protein. Biochem Biophys Res Commun 2009; 390:892-6. [DOI: 10.1016/j.bbrc.2009.10.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
|