1
|
Fu S, Wynshaw-Boris A. Autism risk genes converge on PBX1 to govern neural cell growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642693. [PMID: 40161581 PMCID: PMC11952423 DOI: 10.1101/2025.03.12.642693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The alteration of neural progenitor cell (NPC) proliferation underlies autism spectrum disorders (ASD). It remains unclear whether targeting convergent downstream targets among mutations from different genes and individuals can rescue this alteration. We identified PBX1 as a convergent target of three autism risk genes: CTNNB1, PTEN, and DVL3, using isogenic iPSC-derived 2D NPCs. Overexpression of the PBX1a isoform effectively rescued increased NPC proliferation in all three isogenic ASD-related variants. Dysregulation of PBX1 in NPCs was further confirmed in publicly available datasets from other models of ASD. These findings spotlight PBX1, known to play important roles during olfactory bulb/adult neurogenesis and in multiple cancers, as an unexpected and key downstream target, influencing NPC proliferation in ASD and neurodevelopmental syndromes.
Collapse
Affiliation(s)
- Shuai Fu
- Department of Genetics and Genome Sciences, Case Western Reserve University; Cleveland, OH, USA
- Present address: Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University; Cleveland, OH, USA
| |
Collapse
|
2
|
Vecchio D, Panfili FM, Macchiaiolo M, Dentici ML, Trivisano M, Medina CB, Capolino R, Salzano E, Cortellessa F, Busè M, Pantaleo A, Cocciadiferro D, Gonfiantini MV, Niceta M, De Dominicis A, Specchio N, Piccione M, Digilio MC, Tartaglia M, Novelli A, Bartuli A. Molecular and clinical Insights into KMT2E-Related O'Donnell-Luria-Rodan syndrome in a novel patient cohort. Eur J Med Genet 2025; 73:104990. [PMID: 39709003 DOI: 10.1016/j.ejmg.2024.104990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
O'Donnell-Luria-Rodan (ODLURO) syndrome is an autosomal dominant neurodevelopmental disorder mainly characterized by global development delay/intellectual disability, white matter abnormalities, and behavioral manifestations. It is caused by pathogenic variants in the KMT2E gene. Here we report seven new patients with loss-of-function KMT2E variants, six harboring frameshift/nonsense changes, and one with a 7q22.3 microdeletion encompassing the entire gene-locus. We further characterize both the clinical phenotype as well as its associated pathogenic variants' spectrum providing new information on sex-related phenotype distribution, according to the variant groups. We also highlight different epilepsy phenotype-genotype correlation with preferential association of generalized epilepsy and/or developmental and epileptic encephalopathy with missense pathogenic variants and focal epilepsy, childhood absence epilepsy and/or febrile seizures with pathogenic truncating variants and structural rearrangements. By a systematic review of the previously reported series, we also discuss previously unappreciated findings, including progressive macrocephaly, apraxia, and higher risk of bone fractures.
Collapse
Affiliation(s)
- Davide Vecchio
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy.
| | - Filippo M Panfili
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Maria Lisa Dentici
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Marina Trivisano
- Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Carolina Benitez Medina
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Rossella Capolino
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Emanuela Salzano
- Medical Genetics Unit, Department of Genetics, Oncohaematology and Rare Diseases, AOOR Villa Sofia-Cervello, Palermo, Italy
| | - Fabiana Cortellessa
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Martina Busè
- Medical Genetics Unit, Department of Genetics, Oncohaematology and Rare Diseases, AOOR Villa Sofia-Cervello, Palermo, Italy
| | - Antonio Pantaleo
- Medical Genetics Unit, Department of Genetics, Oncohaematology and Rare Diseases, AOOR Villa Sofia-Cervello, Palermo, Italy
| | - Dario Cocciadiferro
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michaela V Gonfiantini
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela De Dominicis
- Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Nicola Specchio
- Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Maria Piccione
- Medical Genetics Unit, Department of Genetics, Oncohaematology and Rare Diseases, AOOR Villa Sofia-Cervello, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maria Cristina Digilio
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| |
Collapse
|
3
|
Hurtado EC, Wotton JM, Gulka A, Burke C, Ng JK, Bah I, Manuel J, Heins H, Murray SA, Gorkin DU, White JK, Peterson KA, Turner TN. Generation and Characterization of a Knockout Mouse of an Enhancer of EBF3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631762. [PMID: 39829799 PMCID: PMC11741297 DOI: 10.1101/2025.01.09.631762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Genomic studies of autism and other neurodevelopmental disorders have identified several relevant protein-coding and noncoding variants. One gene with an excess of protein-coding de novo variants is EBF3 that also is the gene underlying the Hypotonia, Ataxia, and Delayed Development Syndrome (HADDS). In previous work, we have identified noncoding de novo variants in an enhancer of EBF3 called hs737 and further showed that there was an enrichment of deletions of this enhancer in individuals with neurodevelopmental disorders. In this present study, we generated a novel mouse line that deletes the highly conserved, orthologous mouse region of hs737 within the Rr169617 regulatory region, and characterized the molecular and phenotypic aspects of this mouse model. This line contains a 1,160 bp deletion within Rr169617 and through heterozygous crosses we found a deviation from Mendelian expectation (p = 0.02) with a significant depletion of the deletion allele (p = 5.8 × 10-4). Rr169617 +/- mice had a reduction of Ebf3 expression by 10% and Rr169617 -/- mice had a reduction of Ebf3 expression by 20%. Differential expression analyses in E12.5 forebrain, midbrain, and hindbrain in Rr169617 +/+ versus Rr169617 -/- mice identified dysregulated genes including histone genes (i.e., Hist1h1e, Hist1h2bk, Hist1h3i, Hist1h2ao) and other brain development related genes (e.g., Chd5, Ntng1). A priori phenotyping analysis (open field, hole board and light/dark transition) identified sex-specific differences in behavioral traits when comparing Rr169617 -/- males versus females; whereby, males were observed to be less mobile, move slower, and spend more time in the dark. Furthermore, both sexes when homozygous for the enhancer deletion displayed body composition differences when compared to wild-type mice. Overall, we show that deletion within Rr169617 reduces the expression of Ebf3 and results in phenotypic outcomes consistent with potential sex specific behavioral differences. This enhancer deletion line provides a valuable resource for others interested in noncoding regions in neurodevelopmental disorders and/or those interested in the gene regulatory network downstream of Ebf3.
Collapse
Affiliation(s)
- Emily Cordova Hurtado
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Alexander Gulka
- Department of Biology, Emory University. Atlanta, GA 30322, USA
| | | | - Jeffrey K. Ng
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ibrahim Bah
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Juana Manuel
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hillary Heins
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - David U. Gorkin
- Department of Biology, Emory University. Atlanta, GA 30322, USA
| | | | | | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Kissel LT, Pochareddy S, An JY, Sestan N, Sanders SJ, Wang X, Werling DM. Sex-Differential Gene Expression in Developing Human Cortex and Its Intersection With Autism Risk Pathways. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100321. [PMID: 38957312 PMCID: PMC11217612 DOI: 10.1016/j.bpsgos.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 07/04/2024] Open
Abstract
Background Sex-differential biology may contribute to the consistently male-biased prevalence of autism spectrum disorder (ASD). Gene expression differences between males and females in the brain can indicate possible molecular and cellular mechanisms involved, although transcriptomic sex differences during human prenatal cortical development have been incompletely characterized, primarily due to small sample sizes. Methods We performed a meta-analysis of sex-differential expression and co-expression network analysis in 2 independent bulk RNA sequencing datasets generated from cortex of 273 prenatal donors without known neuropsychiatric disorders. To assess the intersection between neurotypical sex differences and neuropsychiatric disorder biology, we tested for enrichment of ASD-associated risk genes and expression changes, neuropsychiatric disorder risk genes, and cell type markers within identified sex-differentially expressed genes (sex-DEGs) and sex-differential co-expression modules. Results We identified 101 significant sex-DEGs, including Y-chromosome genes, genes impacted by X-chromosome inactivation, and autosomal genes. Known ASD risk genes, implicated by either common or rare variants, did not preferentially overlap with sex-DEGs. We identified 1 male-specific co-expression module enriched for immune signaling that is unique to 1 input dataset. Conclusions Sex-differential gene expression is limited in prenatal human cortex tissue, although meta-analysis of large datasets allows for the identification of sex-DEGs, including autosomal genes that encode proteins involved in neural development. Lack of sex-DEG overlap with ASD risk genes in the prenatal cortex suggests that sex-differential modulation of ASD symptoms may occur in other brain regions, at other developmental stages, or in specific cell types, or may involve mechanisms that act downstream from mutation-carrying genes.
Collapse
Affiliation(s)
- Lee T. Kissel
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sirisha Pochareddy
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Stephan J. Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Xuran Wang
- Seaver Autism Center for Research and Treatment, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Donna M. Werling
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
5
|
Yuan J, Wang Y, Li L, Xie Y, Mo Z, Jin P. Clinical and genetic analysis of a case of O 'Donnell -Luria -Rodan syndrome manifesting as growth retardation. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:649-654. [PMID: 39019795 PMCID: PMC11255198 DOI: 10.11817/j.issn.1672-7347.2024.230359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Indexed: 07/19/2024]
Abstract
O'Donnell-Luria-Rodan (ODLURO) syndrome is an autosomal dominant genetic disorder caused by mutations in the KMT2E (lysine methyltransferase 2E) gene. The Third Xiangya Hospital of Central South University admitted a 12-year and 9-month-old male patient who presented with growth retardation, intellectual disability, and distinctive facial features. Peripheral blood was collected from the patient, and DNA was extracted for genetic testing. Chromosome karyotyping showed 46XY. Whole-exome sequencing and low-coverage massively parallel copy number variation sequencing (CNV-seq) revealed a 506 kb heterozygous deletion in the 7q22.3 region, which includes 6 genes, including KMT2E. The patient was diagnosed with ODLURO syndrome. Both the patient's parents and younger brother had normal clinical phenotypes and genetic test results, indicating that this deletion was a de novo mutation. The clinical and genetic characteristics of this case can help increase clinicians' awareness of ODLURO syndrome.
Collapse
Affiliation(s)
- Jingjing Yuan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Yujun Wang
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Lusha Li
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yanhong Xie
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhaohui Mo
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ping Jin
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
6
|
Sun W, Justice I, Green EM. Defining Biological and Biochemical Functions of Noncanonical SET Domain Proteins. J Mol Biol 2024; 436:168318. [PMID: 37863247 PMCID: PMC10957327 DOI: 10.1016/j.jmb.2023.168318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Within the SET domain superfamily of lysine methyltransferases, there is a well-conserved subfamily, frequently referred to as the Set3 SET domain subfamily, which contain noncanonical SET domains carrying divergent amino acid sequences. These proteins are implicated in diverse biological processes including stress responses, cell differentiation, and development, and their disruption is linked to diseases including cancer and neurodevelopmental disorders. Interestingly, biochemical and structural analysis indicates that they do not possess catalytic methyltransferase activity. At the molecular level, Set3 SET domain proteins appear to play critical roles in the regulation of gene expression, particularly repression and heterochromatin maintenance, and in some cases, via scaffolding other histone modifying activities at chromatin. Here, we explore the common and unique functions among Set3 SET domain subfamily proteins and analyze what is known about the specific contribution of the conserved SET domain to functional roles of these proteins, as well as propose areas of investigation to improve understanding of this important, noncanonical subfamily of proteins.
Collapse
Affiliation(s)
- Winny Sun
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Isabella Justice
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Erin M Green
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
7
|
Ng JK, Chen Y, Akinwe TM, Heins HB, Mehinovic E, Chang Y, Payne ZL, Manuel JG, Karchin R, Turner TN. Proteome-Wide Assessment of Clustering of Missense Variants in Neurodevelopmental Disorders Versus Cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.02.24302238. [PMID: 38352539 PMCID: PMC10863034 DOI: 10.1101/2024.02.02.24302238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Missense de novo variants (DNVs) and missense somatic variants contribute to neurodevelopmental disorders (NDDs) and cancer, respectively. Proteins with statistical enrichment based on analyses of these variants exhibit convergence in the differing NDD and cancer phenotypes. Herein, the question of why some of the same proteins are identified in both phenotypes is examined through investigation of clustering of missense variation at the protein level. Our hypothesis is that missense variation is present in different protein locations in the two phenotypes leading to the distinct phenotypic outcomes. We tested this hypothesis in 1D protein space using our software CLUMP. Furthermore, we newly developed 3D-CLUMP that uses 3D protein structures to spatially test clustering of missense variation for proteome-wide significance. We examined missense DNVs in 39,883 parent-child sequenced trios with NDDs and missense somatic variants from 10,543 sequenced tumors covering five TCGA cancer types and two COSMIC pan-cancer aggregates of tissue types. There were 57 proteins with proteome-wide significant missense variation clustering in NDDs when compared to cancers and 79 proteins with proteome-wide significant missense clustering in cancers compared to NDDs. While our main objective was to identify differences in patterns of missense variation, we also identified a novel NDD protein BLTP2. Overall, our study is innovative, provides new insights into differential missense variation in NDDs and cancer at the protein-level, and contributes necessary information toward building a framework for thinking about prognostic and therapeutic aspects of these proteins.
Collapse
Affiliation(s)
- Jeffrey K. Ng
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yilin Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Titilope M. Akinwe
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Molecular Genetics & Genomics Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hillary B. Heins
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elvisa Mehinovic
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yoonhoo Chang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Human & Statistical Genetics Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zachary L. Payne
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Molecular Genetics & Genomics Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Juana G. Manuel
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel Karchin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
8
|
Bar O, Vahey E, Mintz M, Frye RE, Boles RG. Reanalysis of Trio Whole-Genome Sequencing Data Doubles the Yield in Autism Spectrum Disorder: De Novo Variants Present in Half. Int J Mol Sci 2024; 25:1192. [PMID: 38256266 PMCID: PMC10816071 DOI: 10.3390/ijms25021192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Autism spectrum disorder (ASD) is a common condition with lifelong implications. The last decade has seen dramatic improvements in DNA sequencing and related bioinformatics and databases. We analyzed the raw DNA sequencing files on the Variantyx® bioinformatics platform for the last 50 ASD patients evaluated with trio whole-genome sequencing (trio-WGS). "Qualified" variants were defined as coding, rare, and evolutionarily conserved. Primary Diagnostic Variants (PDV), additionally, were present in genes directly linked to ASD and matched clinical correlation. A PDV was identified in 34/50 (68%) of cases, including 25 (50%) cases with heterozygous de novo and 10 (20%) with inherited variants. De novo variants in genes directly associated with ASD were far more likely to be Qualifying than non-Qualifying versus a control group of genes (p = 0.0002), validating that most are indeed disease related. Sequence reanalysis increased diagnostic yield from 28% to 68%, mostly through inclusion of de novo PDVs in genes not yet reported as ASD associated. Thirty-three subjects (66%) had treatment recommendation(s) based on DNA analyses. Our results demonstrate a high yield of trio-WGS for revealing molecular diagnoses in ASD, which is greatly enhanced by reanalyzing DNA sequencing files. In contrast to previous reports, de novo variants dominate the findings, mostly representing novel conditions. This has implications to the cause and rising prevalence of autism.
Collapse
Affiliation(s)
- Omri Bar
- NeurAbilities Healthcare, Voorhees, NJ 08043, USA; (O.B.); (E.V.); (M.M.)
| | - Elizabeth Vahey
- NeurAbilities Healthcare, Voorhees, NJ 08043, USA; (O.B.); (E.V.); (M.M.)
| | - Mark Mintz
- NeurAbilities Healthcare, Voorhees, NJ 08043, USA; (O.B.); (E.V.); (M.M.)
| | - Richard E. Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ 85050, USA;
| | - Richard G. Boles
- NeurAbilities Healthcare, Voorhees, NJ 08043, USA; (O.B.); (E.V.); (M.M.)
- NeuroNeeds, Old Lyme, CT 06371, USA
| |
Collapse
|
9
|
Tai YY, Yu Q, Tang Y, Sun W, Kelly NJ, Okawa S, Zhao J, Schwantes-An TH, Lacoux C, Torrino S, Aaraj YA, Khoury WE, Negi V, Liu M, Corey CG, Belmonte F, Vargas SO, Schwartz B, Bhat B, Chau BN, Karnes JH, Satoh T, Barndt RJ, Wu H, Parikh VN, Wang J, Zhang Y, McNamara D, Li G, Speyer G, Wang B, Shiva S, Kaufman B, Kim S, Gomez D, Mari B, Cho MH, Boueiz A, Pauciulo MW, Southgate L, Trembath RC, Sitbon O, Humbert M, Graf S, Morrell NW, Rhodes CJ, Wilkins MR, Nouraie M, Nichols WC, Desai AA, Bertero T, Chan SY. Allele-specific control of rodent and human lncRNA KMT2E-AS1 promotes hypoxic endothelial pathology in pulmonary hypertension. Sci Transl Med 2024; 16:eadd2029. [PMID: 38198571 PMCID: PMC10947529 DOI: 10.1126/scitranslmed.add2029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Hypoxic reprogramming of vasculature relies on genetic, epigenetic, and metabolic circuitry, but the control points are unknown. In pulmonary arterial hypertension (PAH), a disease driven by hypoxia inducible factor (HIF)-dependent vascular dysfunction, HIF-2α promoted expression of neighboring genes, long noncoding RNA (lncRNA) histone lysine N-methyltransferase 2E-antisense 1 (KMT2E-AS1) and histone lysine N-methyltransferase 2E (KMT2E). KMT2E-AS1 stabilized KMT2E protein to increase epigenetic histone 3 lysine 4 trimethylation (H3K4me3), driving HIF-2α-dependent metabolic and pathogenic endothelial activity. This lncRNA axis also increased HIF-2α expression across epigenetic, transcriptional, and posttranscriptional contexts, thus promoting a positive feedback loop to further augment HIF-2α activity. We identified a genetic association between rs73184087, a single-nucleotide variant (SNV) within a KMT2E intron, and disease risk in PAH discovery and replication patient cohorts and in a global meta-analysis. This SNV displayed allele (G)-specific association with HIF-2α, engaged in long-range chromatin interactions, and induced the lncRNA-KMT2E tandem in hypoxic (G/G) cells. In vivo, KMT2E-AS1 deficiency protected against PAH in mice, as did pharmacologic inhibition of histone methylation in rats. Conversely, forced lncRNA expression promoted more severe PH. Thus, the KMT2E-AS1/KMT2E pair orchestrates across convergent multi-ome landscapes to mediate HIF-2α pathobiology and represents a key clinical target in pulmonary hypertension.
Collapse
Affiliation(s)
- Yi Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Qiujun Yu
- Cardiovascular Division, Department Of Internal Medicine, Washington University School of Medicine, St. louis, Mo 63110, USA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Neil J. Kelly
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Va Medical Center, Pittsburgh, PA 15240, USA
| | - Satoshi Okawa
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Tae-Hwi Schwantes-An
- Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, In 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, In 46202, USA
| | - Caroline Lacoux
- Université côte d’Azur, CNRS, IPMC, IHU RespiERA, Sophia-Antipolis, 06903, France
| | - Stephanie Torrino
- Université côte d’Azur, CNRS, IPMC, IHU RespiERA, Sophia-Antipolis, 06903, France
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Wadih El Khoury
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Vinny Negi
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Mingjun Liu
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Catherine G. Corey
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Pediatrics, University of Pittsburgh Medical center children’s hospital, Pittsburgh, PA 15224, USA
| | - Frances Belmonte
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sara O. Vargas
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Bal Bhat
- Translate Bio, Lexington, MA 02421, USA
| | | | - Jason H. Karnes
- Division of Pharmacogenomics, College of Pharmacy, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | - Taijyu Satoh
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980–8575, Japan
| | - Robert J. Barndt
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Haodi Wu
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Victoria N. Parikh
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yingze Zhang
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Dennis McNamara
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Gang Li
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Gil Speyer
- Research Computing, Arizona State University, Tempe, AZ 85281, USA
| | - Bing Wang
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brett Kaufman
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Seungchan Kim
- Center for Computational Systems Biology, Department of Electrical and Computer Engineering, Roy G. Perry college of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Bernard Mari
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, In 46202, USA
| | - Michael H. Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Adel Boueiz
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michael W. Pauciulo
- Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Laura Southgate
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London, WC2R 2lS, UK
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London, SW17 0RE, UK
| | - Richard C. Trembath
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London, WC2R 2lS, UK
| | - Olivier Sitbon
- Université Paris–Saclay, INSERM, Assistance Publique Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin Bicêtre, 94270, France
| | - Marc Humbert
- Université Paris–Saclay, INSERM, Assistance Publique Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin Bicêtre, 94270, France
| | - Stefan Graf
- Department of Medicine, University of Cambridge, Cambridge, CB2 1TN, UK
- NIHR Bioresource for Translational Research, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Haematology, University of Cambridge, NHS Blood and Transplant, Long Road, Cambridge, CB2 2PT, UK
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge, Cambridge, CB2 1TN, UK
- Centessa Pharmaceuticals, Altrincham, Cheshire, WA14 2DT, UK
| | | | - Martin R. Wilkins
- National Heart and Lung Institute, Imperial College London, London, SW3 6lY, UK
| | - Mehdi Nouraie
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - William C. Nichols
- Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ankit A. Desai
- Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, In 46202, USA
| | - Thomas Bertero
- Université côte d’Azur, CNRS, IPMC, IHU RespiERA, Sophia-Antipolis, 06903, France
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Laighneach A, Kelly JP, Desbonnet L, Holleran L, Kerr DM, McKernan D, Donohoe G, Morris DW. Social isolation-induced transcriptomic changes in mouse hippocampus impact the synapse and show convergence with human genetic risk for neurodevelopmental phenotypes. PLoS One 2023; 18:e0295855. [PMID: 38127959 PMCID: PMC10735045 DOI: 10.1371/journal.pone.0295855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Early life stress (ELS) can impact brain development and is a risk factor for neurodevelopmental disorders such as schizophrenia. Post-weaning social isolation (SI) is used to model ELS in animals, using isolation stress to disrupt a normal developmental trajectory. We aimed to investigate how SI affects the expression of genes in mouse hippocampus and to investigate how these changes related to the genetic basis of neurodevelopmental phenotypes. BL/6J mice were exposed to post-weaning SI (PD21-25) or treated as group-housed controls (n = 7-8 per group). RNA sequencing was performed on tissue samples from the hippocampus of adult male and female mice. Four hundred and 1,215 differentially-expressed genes (DEGs) at a false discovery rate of < 0.05 were detected between SI and control samples for males and females respectively. DEGS for both males and females were significantly overrepresented in gene ontologies related to synaptic structure and function, especially the post-synapse. DEGs were enriched for common variant (SNP) heritability in humans that contributes to risk of neuropsychiatric disorders (schizophrenia, bipolar disorder) and to cognitive function. DEGs were also enriched for genes harbouring rare de novo variants that contribute to autism spectrum disorder and other developmental disorders. Finally, cell type analysis revealed populations of hippocampal astrocytes that were enriched for DEGs, indicating effects in these cell types as well as neurons. Overall, these data suggest a convergence between genes dysregulated by the SI stressor in the mouse and genes associated with neurodevelopmental disorders and cognitive phenotypes in humans.
Collapse
Affiliation(s)
- Aodán Laighneach
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, Galway, Ireland
| | - John P. Kelly
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Lieve Desbonnet
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Laurena Holleran
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, Galway, Ireland
| | - Daniel M. Kerr
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Declan McKernan
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Gary Donohoe
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, Galway, Ireland
| | - Derek W. Morris
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, Galway, Ireland
| |
Collapse
|
11
|
Shil A, Levin L, Golan H, Meiri G, Michaelovski A, Sadaka Y, Aran A, Dinstein I, Menashe I. Comparison of three bioinformatics tools in the detection of ASD candidate variants from whole exome sequencing data. Sci Rep 2023; 13:18853. [PMID: 37914828 PMCID: PMC10620213 DOI: 10.1038/s41598-023-46258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogenous multifactorial neurodevelopmental condition with a significant genetic susceptibility component. Thus, identifying genetic variations associated with ASD is a complex task. Whole-exome sequencing (WES) is an effective approach for detecting extremely rare protein-coding single-nucleotide variants (SNVs) and short insertions/deletions (INDELs). However, interpreting these variants' functional and clinical consequences requires integrating multifaceted genomic information. We compared the concordance and effectiveness of three bioinformatics tools in detecting ASD candidate variants (SNVs and short INDELs) from WES data of 220 ASD family trios registered in the National Autism Database of Israel. We studied only rare (< 1% population frequency) proband-specific variants. According to the American College of Medical Genetics (ACMG) guidelines, the pathogenicity of variants was evaluated by the InterVar and TAPES tools. In addition, likely gene-disrupting (LGD) variants were detected based on an in-house bioinformatics tool, Psi-Variant, that integrates results from seven in-silico prediction tools. Overall, 372 variants in 311 genes distributed in 168 probands were detected by these tools. The overlap between the tools was 64.1, 22.9, and 23.1% for InterVar-TAPES, InterVar-Psi-Variant, and TAPES-Psi-Variant, respectively. The intersection between InterVar and Psi-Variant (I ∩ P) was the most effective approach in detecting variants in known ASD genes (PPV = 0.274; OR = 7.09, 95% CI = 3.92-12.22), while the union of InterVar and Psi Variant (I U P) achieved the highest diagnostic yield (20.5%).Our results suggest that integrating different variant interpretation approaches in detecting ASD candidate variants from WES data is superior to each approach alone. The inclusion of additional criteria could further improve the detection of ASD candidate variants.
Collapse
Affiliation(s)
- Apurba Shil
- Department of Epidemiology, Biostatistics, and Health Community Sciences, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Liron Levin
- Bioinformatics Core Facility, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hava Golan
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gal Meiri
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Preschool Psychiatric Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - Analya Michaelovski
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Child Development Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - Yair Sadaka
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Child Development Center, Ministry of Health, Beer-Sheva, Israel
| | - Adi Aran
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilan Dinstein
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Psychology Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Idan Menashe
- Department of Epidemiology, Biostatistics, and Health Community Sciences, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
12
|
Wu CS, Tsai TH, Chen WL, Tsai HJ, Chien YL. Ophthalmologic diagnoses in youths with autism spectrum disorder: Prevalence and clinical correlates. Autism Res 2023; 16:2008-2020. [PMID: 37632715 DOI: 10.1002/aur.3019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/10/2023] [Indexed: 08/28/2023]
Abstract
Autism spectrum disorder (ASD) is associated with a high prevalence of visual dysfunction. This study aimed to investigate the rates of amblyopia, refractive errors, and strabismus, as well as their clinical correlates in ASD. This population-based matched-cohort study used data from the Taiwan National Health Insurance Research Database. A total of 3,551 youths with ASD and 35,510 non-autistic control participants matched by age and sex were included. All the participants were followed-up until they were 18 years old. The prevalence of amblyopia, refractive errors, and strabismus was compared between the ASD and control groups. Effect modifiers, including sex, ASD subgroup, and co-diagnosis of intelligence disability, were examined. Compared to the control group, youths with ASD had a significantly increased risk of amblyopia (adjusted odds ratio [aOR] = 1.75), anisometropia (aOR = 1.66), astigmatism (aOR = 1.51), hypermetropia (aOR = 2.08), exotropia (aOR = 2.86), and esotropia (aOR = 2.63), but a comparable likelihood of myopia according to age. Males with ASD had a significantly lower likelihood of exotropia, but a higher likelihood of myopia than females with ASD. The autism subgroup had a higher OR for hypermetropia, but a lower OR for myopia than the other ASD subgroups. ASD youths with intelligence disabilities demonstrated significantly higher ORs for amblyopia, hypermetropia, and all types of strabismus and lower OR for myopia than those without intelligence disabilities. In conclusion, the rates of amblyopia, refractive errors, and strabismus were higher in youths with ASD. Ocular abnormalities in youths with ASD require a comprehensive assessment and management.
Collapse
Affiliation(s)
- Chi-Shin Wu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Yunlin Branch, Yunlin, Taiwan
| | - Tzu-Hsun Tsai
- Department of Ophthalmology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wei-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Advanced Ocular Surface and Corneal Nerve Regeneration Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
13
|
Cirnigliaro M, Chang TS, Arteaga SA, Pérez-Cano L, Ruzzo EK, Gordon A, Bicks LK, Jung JY, Lowe JK, Wall DP, Geschwind DH. The contributions of rare inherited and polygenic risk to ASD in multiplex families. Proc Natl Acad Sci U S A 2023; 120:e2215632120. [PMID: 37506195 PMCID: PMC10400943 DOI: 10.1073/pnas.2215632120] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) has a complex genetic architecture involving contributions from both de novo and inherited variation. Few studies have been designed to address the role of rare inherited variation or its interaction with common polygenic risk in ASD. Here, we performed whole-genome sequencing of the largest cohort of multiplex families to date, consisting of 4,551 individuals in 1,004 families having two or more autistic children. Using this study design, we identify seven previously unrecognized ASD risk genes supported by a majority of rare inherited variants, finding support for a total of 74 genes in our cohort and a total of 152 genes after combined analysis with other studies. Autistic children from multiplex families demonstrate an increased burden of rare inherited protein-truncating variants in known ASD risk genes. We also find that ASD polygenic score (PGS) is overtransmitted from nonautistic parents to autistic children who also harbor rare inherited variants, consistent with combinatorial effects in the offspring, which may explain the reduced penetrance of these rare variants in parents. We also observe that in addition to social dysfunction, language delay is associated with ASD PGS overtransmission. These results are consistent with an additive complex genetic risk architecture of ASD involving rare and common variation and further suggest that language delay is a core biological feature of ASD.
Collapse
Affiliation(s)
- Matilde Cirnigliaro
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Timothy S. Chang
- Movement Disorders Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Stephanie A. Arteaga
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Laura Pérez-Cano
- STALICLA Discovery and Data Science Unit, World Trade Center, Barcelona08039, Spain
| | - Elizabeth K. Ruzzo
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Aaron Gordon
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Lucy K. Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Jae-Yoon Jung
- Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA94304
- Department of Biomedical Data Science, Stanford University, Stanford, CA94305
| | - Jennifer K. Lowe
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Dennis P. Wall
- Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA94304
- Department of Biomedical Data Science, Stanford University, Stanford, CA94305
| | - Daniel H. Geschwind
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Movement Disorders Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
14
|
Abi-Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, Jutla A, Kotov R, Paulus MP, Rubio JM, Sanacora G, Veenstra-VanderWeele J, Krystal JH. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 2023; 22:236-262. [PMID: 37159365 PMCID: PMC10168176 DOI: 10.1002/wps.21078] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 05/11/2023] Open
Abstract
The field of psychiatry is hampered by a lack of robust, reliable and valid biomarkers that can aid in objectively diagnosing patients and providing individualized treatment recommendations. Here we review and critically evaluate the evidence for the most promising biomarkers in the psychiatric neuroscience literature for autism spectrum disorder, schizophrenia, anxiety disorders and post-traumatic stress disorder, major depression and bipolar disorder, and substance use disorders. Candidate biomarkers reviewed include various neuroimaging, genetic, molecular and peripheral assays, for the purposes of determining susceptibility or presence of illness, and predicting treatment response or safety. This review highlights a critical gap in the biomarker validation process. An enormous societal investment over the past 50 years has identified numerous candidate biomarkers. However, to date, the overwhelming majority of these measures have not been proven sufficiently reliable, valid and useful to be adopted clinically. It is time to consider whether strategic investments might break this impasse, focusing on a limited number of promising candidates to advance through a process of definitive testing for a specific indication. Some promising candidates for definitive testing include the N170 signal, an event-related brain potential measured using electroencephalography, for subgroup identification within autism spectrum disorder; striatal resting-state functional magnetic resonance imaging (fMRI) measures, such as the striatal connectivity index (SCI) and the functional striatal abnormalities (FSA) index, for prediction of treatment response in schizophrenia; error-related negativity (ERN), an electrophysiological index, for prediction of first onset of generalized anxiety disorder, and resting-state and structural brain connectomic measures for prediction of treatment response in social anxiety disorder. Alternate forms of classification may be useful for conceptualizing and testing potential biomarkers. Collaborative efforts allowing the inclusion of biosystems beyond genetics and neuroimaging are needed, and online remote acquisition of selected measures in a naturalistic setting using mobile health tools may significantly advance the field. Setting specific benchmarks for well-defined target application, along with development of appropriate funding and partnership mechanisms, would also be crucial. Finally, it should never be forgotten that, for a biomarker to be actionable, it will need to be clinically predictive at the individual level and viable in clinical settings.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Scott J Moeller
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Farzana Ali
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Amandeep Jutla
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Roman Kotov
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | | | - Jose M Rubio
- Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
- Feinstein Institute for Medical Research - Northwell, Manhasset, NY, USA
- Zucker Hillside Hospital - Northwell Health, Glen Oaks, NY, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
15
|
Apte M, Kumar A. Correlation of mutated gene and signalling pathways in ASD. IBRO Neurosci Rep 2023; 14:384-392. [PMID: 37101819 PMCID: PMC10123338 DOI: 10.1016/j.ibneur.2023.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Autism is a complicated spectrum of neurodevelopmental illnesses characterized by repetitive and constrained behaviors and interests, as well as social interaction and communication difficulties that are first shown in infancy. More than 18 million Indians, according to the National Health Portal of India, and 1 in 160 children worldwide, according to the WHO, are diagnosed with autism spectrum disorders. This review aims to discuss the complex genetic architecture that underlies autism and summarizes the role of proteins likely to play in the development of autism. We also consider how genetic mutations can affect convergent signaling pathways and hinder the development of brain circuitry and the role of cognition development and theory of mind with Cognition-behavior therapy benefits in autism.
Collapse
Affiliation(s)
- Madhavi Apte
- Quality Assurance and Pharmacognosy and Phytochemistry, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, 400056 Mumbai, India
| | - Aayush Kumar
- Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, 400056 Mumbai, India
| |
Collapse
|
16
|
Fu C, Ngo J, Zhang S, Lu L, Miron A, Schafer S, Gage FH, Jin F, Schumacher FR, Wynshaw-Boris A. Novel correlative analysis identifies multiple genomic variations impacting ASD with macrocephaly. Hum Mol Genet 2023; 32:1589-1606. [PMID: 36519762 PMCID: PMC10162433 DOI: 10.1093/hmg/ddac300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASD) display both phenotypic and genetic heterogeneity, impeding the understanding of ASD and development of effective means of diagnosis and potential treatments. Genes affected by genomic variations for ASD converge in dozens of gene ontologies (GOs), but the relationship between the variations at the GO level have not been well elucidated. In the current study, multiple types of genomic variations were mapped to GOs and correlations among GOs were measured in ASD and control samples. Several ASD-unique GO correlations were found, suggesting the importance of co-occurrence of genomic variations in genes from different functional categories in ASD etiology. Combined with experimental data, several variations related to WNT signaling, neuron development, synapse morphology/function and organ morphogenesis were found to be important for ASD with macrocephaly, and novel co-occurrence patterns of them in ASD patients were found. Furthermore, we applied this gene ontology correlation analysis method to find genomic variations that contribute to ASD etiology in combination with changes in gene expression and transcription factor binding, providing novel insights into ASD with macrocephaly and a new methodology for the analysis of genomic variation.
Collapse
Affiliation(s)
- Chen Fu
- Department of Genetics and Genomic Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Justine Ngo
- Department of Genetics and Genomic Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Shanshan Zhang
- Department of Genetics and Genomic Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Leina Lu
- Department of Genetics and Genomic Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alexander Miron
- Department of Genetics and Genomic Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Simon Schafer
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Fred H Gage
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Fulai Jin
- Department of Genetics and Genomic Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genomic Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Li YJ, Li CY, Li CY, Hu DX, Xv ZB, Zhang SH, Li Q, Zhang P, Tian B, Lan XL, Chen XQ. KMT2E Haploinsufficiency Manifests Autism-Like Behaviors and Amygdala Neuronal Development Dysfunction in Mice. Mol Neurobiol 2023; 60:1609-1625. [PMID: 36534336 DOI: 10.1007/s12035-022-03167-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Autism spectrum disorders (ASD) are highly heterogeneous neurodevelopmental disorders characterized by impaired social interaction skills. Whole exome sequencing has identified loss-of-function mutations in lysine methyltransferase 2E (KMT2E, also named MLL5) in ASD patients and it is listed as an ASD high-risk gene in humans. However, experimental evidence of KMT2E in association with ASD-like manifestations or neuronal function is still missing. Relying on KMT2E+/- mice, through animal behavior analyses, positron emission tomography (PET) imaging, and neuronal morphological analyses, we explored the role of KMT2E haploinsufficiency in ASD-like symptoms. Behavioral results revealed that KMT2E haploinsufficiency was sufficient to produce social deficit, accompanied by anxiety in mice. Whole-brain 18F-FDG-PET analysis identified that relative amygdala glycometabolism was selectively decreased in KMT2E+/- mice compared to wild-type mice. The numbers and soma sizes of amygdala neurons in KMT2E+/- mice were prominently increased. Additionally, KMT2E mRNA levels in human amygdala were significantly decreased after birth during brain development. Our findings support a causative role of KMT2E in ASD development and suggest that amygdala neuronal development abnormality is likely a major underlying mechanism.
Collapse
Affiliation(s)
- Yuan-Jun Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Chun-Yan Li
- Department of Nuclear Medicine, Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun-Yang Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Dian-Xing Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Zhi-Bo Xv
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Shu-Han Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Xiao-Li Lan
- Department of Nuclear Medicine, Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiao-Qian Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China.
| |
Collapse
|
18
|
Ng JK, Vats P, Fritz-Waters E, Sarkar S, Sams EI, Padhi EM, Payne ZL, Leonard S, West MA, Prince C, Trani L, Jansen M, Vacek G, Samadi M, Harkins TT, Pohl C, Turner TN. de novo variant calling identifies cancer mutation signatures in the 1000 Genomes Project. Hum Mutat 2022; 43:1979-1993. [PMID: 36054329 PMCID: PMC9771978 DOI: 10.1002/humu.24455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023]
Abstract
Detection of de novo variants (DNVs) is critical for studies of disease-related variation and mutation rates. To accelerate DNV calling, we developed a graphics processing units-based workflow. We applied our workflow to whole-genome sequencing data from three parent-child sequenced cohorts including the Simons Simplex Collection (SSC), Simons Foundation Powering Autism Research (SPARK), and the 1000 Genomes Project (1000G) that were sequenced using DNA from blood, saliva, and lymphoblastoid cell lines (LCLs), respectively. The SSC and SPARK DNV callsets were within expectations for number of DNVs, percent at CpG sites, phasing to the paternal chromosome of origin, and average allele balance. However, the 1000G DNV callset was not within expectations and contained excessive DNVs that are likely cell line artifacts. Mutation signature analysis revealed 30% of 1000G DNV signatures matched B-cell lymphoma. Furthermore, we found variants in DNA repair genes and at Clinvar pathogenic or likely-pathogenic sites and significant excess of protein-coding DNVs in IGLL5; a gene known to be involved in B-cell lymphomas. Our study provides a new rapid DNV caller for the field and elucidates important implications of using sequencing data from LCLs for reference building and disease-related projects.
Collapse
Affiliation(s)
- Jeffrey K. Ng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pankaj Vats
- NVIDIA Corporation, Santa Clara, California, USA
| | - Elyn Fritz-Waters
- Research Infrastructure Services, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephanie Sarkar
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eleanor I. Sams
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Evin M. Padhi
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zachary L. Payne
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shawn Leonard
- Research Infrastructure Services, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marc A. West
- NVIDIA Corporation, Santa Clara, California, USA
| | - Chandler Prince
- Research Infrastructure Services, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lee Trani
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marshall Jansen
- Research Infrastructure Services, Washington University School of Medicine, St. Louis, Missouri, USA
| | - George Vacek
- NVIDIA Corporation, Santa Clara, California, USA
| | | | | | - Craig Pohl
- Research Infrastructure Services, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Hopkins CE, Brock T, Caulfield TR, Bainbridge M. Phenotypic screening models for rapid diagnosis of genetic variants and discovery of personalized therapeutics. Mol Aspects Med 2022; 91:101153. [PMID: 36411139 PMCID: PMC10073243 DOI: 10.1016/j.mam.2022.101153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/19/2022]
Abstract
Precision medicine strives for highly individualized treatments for disease under the notion that each individual's unique genetic makeup and environmental exposures imprints upon them not only a disposition to illness, but also an optimal therapeutic approach. In the realm of rare disorders, genetic predisposition is often the predominant mechanism driving disease presentation. For such, mostly, monogenic disorders, a causal gene to phenotype association is likely. As a result, it becomes important to query the patient's genome for the presence of pathogenic variations that are likely to cause the disease. Determining whether a variant is pathogenic or not is critical to these analyses and can be challenging, as many disease-causing variants are novel and, ergo, have no available functional data to help categorize them. This problem is exacerbated by the need for rapid evaluation of pathogenicity, since many genetic diseases present in young children who will experience increased morbidity and mortality without rapid diagnosis and therapeutics. Here, we discuss the utility of animal models, with a focus mainly on C. elegans, as a contrast to tissue culture and in silico approaches, with emphasis on how these systems are used in determining pathogenicity of variants with uncertain significance and then used to screen for novel therapeutics.
Collapse
Affiliation(s)
| | | | - Thomas R Caulfield
- Mayo Clinic, Department of Neuroscience, Department of Computational Biology, Department of Clinical Genomics, Jacksonville, FL, 32224, Rochester, MN, 55905, USA
| | | |
Collapse
|
20
|
Yeo XY, Lim YT, Chae WR, Park C, Park H, Jung S. Alterations of presynaptic proteins in autism spectrum disorder. Front Mol Neurosci 2022; 15:1062878. [PMID: 36466804 PMCID: PMC9715400 DOI: 10.3389/fnmol.2022.1062878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2025] Open
Abstract
The expanded use of hypothesis-free gene analysis methods in autism research has significantly increased the number of genetic risk factors associated with the pathogenesis of autism. A further examination of the implicated genes directly revealed the involvement in processes pertinent to neuronal differentiation, development, and function, with a predominant contribution from the regulators of synaptic function. Despite the importance of presynaptic function in synaptic transmission, the regulation of neuronal network activity, and the final behavioral output, there is a relative lack of understanding of the presynaptic contribution to the pathology of autism. Here, we will review the close association among autism-related mutations, autism spectrum disorders (ASD) phenotypes, and the altered presynaptic protein functions through a systematic examination of the presynaptic risk genes relating to the critical stages of synaptogenesis and neurotransmission.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Woo Ri Chae
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of BioNano Technology, Gachon University, Seongnam, South Korea
| | - Chungwon Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Sangyong Jung
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Fu JM, Satterstrom FK, Peng M, Brand H, Collins RL, Dong S, Wamsley B, Klei L, Wang L, Hao SP, Stevens CR, Cusick C, Babadi M, Banks E, Collins B, Dodge S, Gabriel SB, Gauthier L, Lee SK, Liang L, Ljungdahl A, Mahjani B, Sloofman L, Smirnov AN, Barbosa M, Betancur C, Brusco A, Chung BHY, Cook EH, Cuccaro ML, Domenici E, Ferrero GB, Gargus JJ, Herman GE, Hertz-Picciotto I, Maciel P, Manoach DS, Passos-Bueno MR, Persico AM, Renieri A, Sutcliffe JS, Tassone F, Trabetti E, Campos G, Cardaropoli S, Carli D, Chan MCY, Fallerini C, Giorgio E, Girardi AC, Hansen-Kiss E, Lee SL, Lintas C, Ludena Y, Nguyen R, Pavinato L, Pericak-Vance M, Pessah IN, Schmidt RJ, Smith M, Costa CIS, Trajkova S, Wang JYT, Yu MHC, Cutler DJ, De Rubeis S, Buxbaum JD, Daly MJ, Devlin B, Roeder K, Sanders SJ, Talkowski ME. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat Genet 2022; 54:1320-1331. [PMID: 35982160 PMCID: PMC9653013 DOI: 10.1038/s41588-022-01104-0] [Citation(s) in RCA: 305] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/24/2022] [Indexed: 01/11/2023]
Abstract
Some individuals with autism spectrum disorder (ASD) carry functional mutations rarely observed in the general population. We explored the genes disrupted by these variants from joint analysis of protein-truncating variants (PTVs), missense variants and copy number variants (CNVs) in a cohort of 63,237 individuals. We discovered 72 genes associated with ASD at false discovery rate (FDR) ≤ 0.001 (185 at FDR ≤ 0.05). De novo PTVs, damaging missense variants and CNVs represented 57.5%, 21.1% and 8.44% of association evidence, while CNVs conferred greatest relative risk. Meta-analysis with cohorts ascertained for developmental delay (DD) (n = 91,605) yielded 373 genes associated with ASD/DD at FDR ≤ 0.001 (664 at FDR ≤ 0.05), some of which differed in relative frequency of mutation between ASD and DD cohorts. The DD-associated genes were enriched in transcriptomes of progenitor and immature neuronal cells, whereas genes showing stronger evidence in ASD were more enriched in maturing neurons and overlapped with schizophrenia-associated genes, emphasizing that these neuropsychiatric disorders may share common pathways to risk.
Collapse
Affiliation(s)
- Jack M Fu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - F Kyle Satterstrom
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Minshi Peng
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
| | - Shan Dong
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Brie Wamsley
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lily Wang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
| | - Stephanie P Hao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Christine R Stevens
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Caroline Cusick
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mehrtash Babadi
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Banks
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brett Collins
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sheila Dodge
- Genomics Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stacey B Gabriel
- Genomics Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laura Gauthier
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel K Lee
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lindsay Liang
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Alicia Ljungdahl
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Behrang Mahjani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Laura Sloofman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrey N Smirnov
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mafalda Barbosa
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Turin, Italy
- Medical Genetics Unit, 'Città della Salute e della Scienza' University Hospital, Turin, Italy
| | - Brian H Y Chung
- Department of Pediatrics and Adolescent Medicine, Duchess of Kent Children's Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Edwin H Cook
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael L Cuccaro
- The John P Hussman Institute for Human Genomics, The University of Miami Miller School of Medicine, Miami, FL, USA
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology, , University of Trento, Trento, Italy
| | | | - J Jay Gargus
- Center for Autism Research and Translation, University of California Irvine, Irvine, CA, USA
| | - Gail E Herman
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Irva Hertz-Picciotto
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, CA, USA
| | - Patricia Maciel
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas sobre o Genoma Humano e Células tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio M Persico
- Interdepartmental Program 'Autism 0-90', 'Gaetano Martino' University Hospital, University of Messina, Messina, Italy
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, , University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - James S Sutcliffe
- Department of Molecular Physiology & Biophysics and Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Flora Tassone
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - Elisabetta Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Gabriele Campos
- Centro de Pesquisas sobre o Genoma Humano e Células tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Simona Cardaropoli
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - Diana Carli
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - Marcus C Y Chan
- Department of Pediatrics and Adolescent Medicine, Duchess of Kent Children's Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, , University of Siena, Siena, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Ana Cristina Girardi
- Centro de Pesquisas sobre o Genoma Humano e Células tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Emily Hansen-Kiss
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - So Lun Lee
- Department of Pediatrics and Adolescent Medicine, Duchess of Kent Children's Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Carla Lintas
- Service for Neurodevelopmental Disorders, University Campus Bio-medico of Rome, Rome, Italy
| | - Yunin Ludena
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, CA, USA
| | - Rachel Nguyen
- Center for Autism Research and Translation, University of California Irvine, Irvine, CA, USA
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Margaret Pericak-Vance
- The John P Hussman Institute for Human Genomics, The University of Miami Miller School of Medicine, Miami, FL, USA
| | - Isaac N Pessah
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, CA, USA
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Rebecca J Schmidt
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, CA, USA
| | - Moyra Smith
- Center for Autism Research and Translation, University of California Irvine, Irvine, CA, USA
| | - Claudia I S Costa
- Centro de Pesquisas sobre o Genoma Humano e Células tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Jaqueline Y T Wang
- Centro de Pesquisas sobre o Genoma Humano e Células tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Mullin H C Yu
- Department of Pediatrics and Adolescent Medicine, Duchess of Kent Children's Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Mark J Daly
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA.
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Velmans C, O'Donnell-Luria AH, Argilli E, Tran Mau-Them F, Vitobello A, Chan MC, Fung JLF, Rech M, Abicht A, Aubert Mucca M, Carmichael J, Chassaing N, Clark R, Coubes C, Denommé-Pichon AS, de Dios JK, England E, Funalot B, Gerard M, Joseph M, Kennedy C, Kumps C, Willems M, van de Laar IMBH, Aarts-Tesselaar C, van Slegtenhorst M, Lehalle D, Leppig K, Lessmeier L, Pais LS, Paterson H, Ramanathan S, Rodan LH, Superti-Furga A, Chung BHY, Sherr E, Netzer C, Schaaf CP, Erger F. O'Donnell-Luria-Rodan syndrome: description of a second multinational cohort and refinement of the phenotypic spectrum. J Med Genet 2022; 59:697-705. [PMID: 34321323 DOI: 10.1136/jmedgenet-2020-107470] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/02/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND O'Donnell-Luria-Rodan syndrome (ODLURO) is an autosomal-dominant neurodevelopmental disorder caused by pathogenic, mostly truncating variants in KMT2E. It was first described by O'Donnell-Luria et al in 2019 in a cohort of 38 patients. Clinical features encompass macrocephaly, mild intellectual disability (ID), autism spectrum disorder (ASD) susceptibility and seizure susceptibility. METHODS Affected individuals were ascertained at paediatric and genetic centres in various countries by diagnostic chromosome microarray or exome/genome sequencing. Patients were collected into a case cohort and were systematically phenotyped where possible. RESULTS We report 18 additional patients from 17 families with genetically confirmed ODLURO. We identified 15 different heterozygous likely pathogenic or pathogenic sequence variants (14 novel) and two partial microdeletions of KMT2E. We confirm and refine the phenotypic spectrum of the KMT2E-related neurodevelopmental disorder, especially concerning cognitive development, with rather mild ID and macrocephaly with subtle facial features in most patients. We observe a high prevalence of ASD in our cohort (41%), while seizures are present in only two patients. We extend the phenotypic spectrum by sleep disturbances. CONCLUSION Our study, bringing the total of known patients with ODLURO to more than 60 within 2 years of the first publication, suggests an unexpectedly high relative frequency of this syndrome worldwide. It seems likely that ODLURO, although just recently described, is among the more common single-gene aetiologies of neurodevelopmental delay and ASD. We present the second systematic case series of patients with ODLURO, further refining the mutational and phenotypic spectrum of this not-so-rare syndrome.
Collapse
Affiliation(s)
- Clara Velmans
- Institute of Human Genetics, University Hospital Cologne, Cologne, Nordrhein-Westfalen, Germany
| | - Anne H O'Donnell-Luria
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Emanuela Argilli
- Brain Development Research Program, Department of Neurology, University of California San Francisco Division of Hospital Medicine, San Francisco, California, USA
| | - Frederic Tran Mau-Them
- UFR Des Sciences de Santé, INSERM UMR1231 GAD Génétique des Anomalies du Développement, FHU-TRANSLAD, Université de Bourgogne, Dijon, Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Antonio Vitobello
- UFR Des Sciences de Santé, INSERM UMR1231 GAD Génétique des Anomalies du Développement, FHU-TRANSLAD, Université de Bourgogne, Dijon, Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Marcus Cy Chan
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Jasmine Lee-Fong Fung
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Megan Rech
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Marion Aubert Mucca
- Department of Medical Genetics, University Hospital Centre Toulouse, Toulouse, Midi-Pyrénées, France
| | - Jason Carmichael
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, California, USA
| | - Nicolas Chassaing
- Department of Medical Genetics, University Hospital Centre Toulouse, Toulouse, Midi-Pyrénées, France
| | - Robin Clark
- Pediatrics Specialty Clinics, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Christine Coubes
- Department of Medical Genetics, University Hospital Center Montpellier, Montpellier, Languedoc-Roussillon, France
| | - Anne-Sophie Denommé-Pichon
- UFR Des Sciences de Santé, INSERM UMR1231 GAD Génétique des Anomalies du Développement, FHU-TRANSLAD, Université de Bourgogne, Dijon, Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - John Karl de Dios
- Department of Medical Genetics, Dayton Children's Hospital, Dayton, Ohio, USA
| | - Eleina England
- Center for Mendelian Genomics and Medical and Population Genetics Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Benoit Funalot
- Department of Clinical Genetics, Hopital Henri Mondor, Creteil, Île-de-France, France
| | - Marion Gerard
- Service de Génétique, Centre Hospitalier Universitaire de Caen, Caen, Basse-Normandie, France
| | - Maries Joseph
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, California, USA
| | - Colleen Kennedy
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, California, USA
| | - Camille Kumps
- Division of Genetic Medicine, Lausanne University Hospital, Lausanne, VD, Switzerland
| | - Marjolaine Willems
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Groupe DI, Inserm U1298, Montpellier University, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Ingrid M B H van de Laar
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daphné Lehalle
- Department of Clinical Genetics, Hopital Henri Mondor, Creteil, Île-de-France, France
| | - Kathleen Leppig
- Genetic Services, Kaiser Permanente Washington, Seattle, Washington, USA
| | - Lennart Lessmeier
- Institute of Human Genetics, University Hospital Cologne, Cologne, Nordrhein-Westfalen, Germany
| | - Lynn S Pais
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Heather Paterson
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Subhadra Ramanathan
- Pediatrics Specialty Clinics, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Lance H Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital, Lausanne, VD, Switzerland
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Elliott Sherr
- Brain Development Research Program, Department of Neurology, University of California San Francisco Division of Hospital Medicine, San Francisco, California, USA
| | - Christian Netzer
- Institute of Human Genetics, University Hospital Cologne, Cologne, Nordrhein-Westfalen, Germany
| | - Christian P Schaaf
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Institute of Human Genetics, Heidelberg University, Heidelberg, Baden-Württemberg, Germany.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Florian Erger
- Institute of Human Genetics, University Hospital Cologne, Cologne, Nordrhein-Westfalen, Germany
| |
Collapse
|
23
|
Willsey HR, Willsey AJ, Wang B, State MW. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci 2022; 23:323-341. [PMID: 35440779 PMCID: PMC10693992 DOI: 10.1038/s41583-022-00576-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/31/2022]
Abstract
More than a hundred genes have been identified that, when disrupted, impart large risk for autism spectrum disorder (ASD). Current knowledge about the encoded proteins - although incomplete - points to a very wide range of developmentally dynamic and diverse biological processes. Moreover, the core symptoms of ASD involve distinctly human characteristics, presenting challenges to interpreting evolutionarily distant model systems. Indeed, despite a decade of striking progress in gene discovery, an actionable understanding of pathobiology remains elusive. Increasingly, convergent neuroscience approaches have been recognized as an important complement to traditional uses of genetics to illuminate the biology of human disorders. These methods seek to identify intersection among molecular-level, cellular-level and circuit-level functions across multiple risk genes and have highlighted developing excitatory neurons in the human mid-gestational prefrontal cortex as an important pathobiological nexus in ASD. In addition, neurogenesis, chromatin modification and synaptic function have emerged as key potential mediators of genetic vulnerability. The continued expansion of foundational 'omics' data sets, the application of higher-throughput model systems and incorporating developmental trajectories and sex differences into future analyses will refine and extend these results. Ultimately, a systems-level understanding of ASD genetic risk holds promise for clarifying pathobiology and advancing therapeutics.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
24
|
Cătană A, Kutasi E, Cuzmici‑Barabaș Z, Militaru D, Iordănescu I, Militaru M. O'Donnel‑Luria‑Rodan Syndrome: New gene variant identified in Romania (A case report). Exp Ther Med 2022; 23:367. [PMID: 35481221 PMCID: PMC9016787 DOI: 10.3892/etm.2022.11294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/01/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Andreea Cătană
- Department of Oncogenetics, Institute of Oncology I. Chiricuță, Cluj‑Napoca, Transylvania 4000015, Romania
| | - Enikő Kutasi
- Department of Oncogenetics, Institute of Oncology I. Chiricuță, Cluj‑Napoca, Transylvania 4000015, Romania
| | - Zina Cuzmici‑Barabaș
- Department of Molecular Sciences, University of Medicine and Pharmacy, Cluj‑Napoca, Transylvania 4000012, Romania
| | - Diana Militaru
- Department of Molecular Sciences, University of Medicine and Pharmacy, Cluj‑Napoca, Transylvania 4000012, Romania
| | - Irina Iordănescu
- Department of Medical Genetics, Genetic Center Laboratory, Regina Maria, Bucharest 011376, Romania
| | - Mariela Militaru
- Department of Molecular Sciences, University of Medicine and Pharmacy, Cluj‑Napoca, Transylvania 4000012, Romania
| |
Collapse
|
25
|
Li K, Fang Z, Zhao G, Li B, Chen C, Xia L, Wang L, Luo T, Wang X, Wang Z, Zhang Y, Jiang Y, Pan Q, Hu Z, Guo H, Tang B, Liu C, Sun Z, Xia K, Li J. Cross-Disorder Analysis of De Novo Mutations in Neuropsychiatric Disorders. J Autism Dev Disord 2022; 52:1299-1313. [PMID: 33970367 PMCID: PMC8854168 DOI: 10.1007/s10803-021-05031-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/02/2022]
Abstract
The clinical similarity among different neuropsychiatric disorders (NPDs) suggested a shared genetic basis. We catalogued 23,109 coding de novo mutations (DNMs) from 6511 patients with autism spectrum disorder (ASD), 4,293 undiagnosed developmental disorder (UDD), 933 epileptic encephalopathy (EE), 1022 intellectual disability (ID), 1094 schizophrenia (SCZ), and 3391 controls. We evaluated that putative functional DNMs contribute to 38.11%, 34.40%, 33.31%, 10.98% and 6.91% of patients with ID, EE, UDD, ASD and SCZ, respectively. Consistent with phenotype similarity and heterogeneity in different NPDs, they show different degree of genetic association. Cross-disorder analysis of DNMs prioritized 321 candidate genes (FDR < 0.05) and showed that genes shared in more disorders were more likely to exhibited specific expression pattern, functional pathway, genetic convergence, and genetic intolerance.
Collapse
Affiliation(s)
- Kuokuo Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhenghuan Fang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Lu Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Lin Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Tengfei Luo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Xiaomeng Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Yi Zhang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Yi Jiang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Qian Pan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Zhengmao Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Hui Guo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China.
- School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Shanghai, China.
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China.
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China.
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Xiangya Road, Kaifu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
26
|
Rhine CL, Neil C, Wang J, Maguire S, Buerer L, Salomon M, Meremikwu IC, Kim J, Strande NT, Fairbrother WG. Massively parallel reporter assays discover de novo exonic splicing mutants in paralogs of Autism genes. PLoS Genet 2022; 18:e1009884. [PMID: 35051175 PMCID: PMC8775188 DOI: 10.1371/journal.pgen.1009884] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/17/2021] [Indexed: 01/04/2023] Open
Abstract
To determine the contribution of defective splicing in Autism Spectrum Disorders (ASD), the most common neurodevelopmental disorder, a high throughput Massively Parallel Splicing Assay (MaPSY) was employed and identified 42 exonic splicing mutants out of 725 coding de novo variants discovered in the sequencing of ASD families. A redesign of the minigene constructs in MaPSY revealed that upstream exons with strong 5' splice sites increase the magnitude of skipping phenotypes observed in downstream exons. Select hits were validated by RT-PCR and amplicon sequencing in patient cell lines. Exonic splicing mutants were enriched in probands relative to unaffected siblings -especially synonymous variants (7.5% vs 3.5%, respectively). Of the 26 genes disrupted by exonic splicing mutations, 6 were in known ASD genes and 3 were in paralogs of known ASD genes. Of particular interest was a synonymous variant in TNRC6C - an ASD gene paralog with interactions with other ASD genes. Clinical records of 3 ASD patients with TNRC6C variant revealed respiratory issues consistent with phenotypes observed in TNRC6 depleted mice. Overall, this study highlights the need for splicing analysis in determining variant pathogenicity, especially as it relates to ASD.
Collapse
Affiliation(s)
- Christy L. Rhine
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Autism & Developmental Medicine Institute, and Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, United States of America
| | - Christopher Neil
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Autism & Developmental Medicine Institute, and Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, United States of America
- C enter for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Jing Wang
- Autism & Developmental Medicine Institute, and Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, United States of America
- C enter for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Samantha Maguire
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Luke Buerer
- C enter for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Mitchell Salomon
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Ijeoma C. Meremikwu
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Juliana Kim
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Natasha T. Strande
- Autism & Developmental Medicine Institute, and Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, United States of America
| | - William G. Fairbrother
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- C enter for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Hassenfeld Child Health Innovation Institute of Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
27
|
Pugsley K, Scherer SW, Bellgrove MA, Hawi Z. Environmental exposures associated with elevated risk for autism spectrum disorder may augment the burden of deleterious de novo mutations among probands. Mol Psychiatry 2022; 27:710-730. [PMID: 34002022 PMCID: PMC8960415 DOI: 10.1038/s41380-021-01142-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Although the full aetiology of autism spectrum disorder (ASD) is unknown, familial and twin studies demonstrate high heritability of 60-90%, indicating a predominant role of genetics in the development of the disorder. The genetic architecture of ASD consists of a complex array of rare and common variants of all classes of genetic variation usually acting additively to augment individual risk. The relative contribution of heredity in ASD persists despite selective pressures against the classic autistic phenotype; a phenomenon thought to be explained, in part, by the incidence of spontaneous (or de novo) mutations. Notably, environmental exposures attributed as salient risk factors for ASD may play a causal role in the emergence of deleterious de novo variations, with several ASD-associated agents having significant mutagenic potential. To explore this hypothesis, this review article assesses published epidemiological data with evidence derived from assays of mutagenicity, both in vivo and in vitro, to determine the likely role such agents may play in augmenting the genetic liability in ASD. Broadly, these exposures were observed to elicit genomic alterations through one or a combination of: (1) direct interaction with genetic material; (2) impaired DNA repair; or (3) oxidative DNA damage. However, the direct contribution of these factors to the ASD phenotype cannot be determined without further analysis. The development of comprehensive prospective birth cohorts in combination with genome sequencing is essential to forming a causal, mechanistic account of de novo mutations in ASD that links exposure, genotypic alterations, and phenotypic consequences.
Collapse
Affiliation(s)
- Kealan Pugsley
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC Australia
| | - Stephen W. Scherer
- grid.42327.300000 0004 0473 9646The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Mark A. Bellgrove
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC Australia
| | - Ziarih Hawi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
28
|
Eyring KW, Geschwind DH. Three decades of ASD genetics: building a foundation for neurobiological understanding and treatment. Hum Mol Genet 2021; 30:R236-R244. [PMID: 34313757 PMCID: PMC8861370 DOI: 10.1093/hmg/ddab176] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Methodological advances over the last three decades have led to a profound transformation in our understanding of the genetic origins of neuropsychiatric disorders. This is exemplified by the study of autism spectrum disorders (ASDs) for which microarrays, whole exome sequencing and whole genome sequencing have yielded over a hundred causal loci. Genome-wide association studies in ASD have also been fruitful, identifying 5 genome-wide significant loci thus far and demonstrating a substantial role for polygenic inherited risk. Approaches rooted in systems biology and functional genomics have increasingly placed genes implicated by risk variants into biological context. Genetic risk affects a finite group of cell-types and biological processes, converging primarily on early stages of brain development (though, the expression of many risk genes persists through childhood). Coupled with advances in stem cell-based human in vitro model systems, these findings provide a basis for developing mechanistic models of disease pathophysiology.
Collapse
Affiliation(s)
- Katherine W Eyring
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center For Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics and Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
29
|
Carollo A, Bonassi A, Lim M, Gabrieli G, Setoh P, Dimitriou D, Aryadoust V, Esposito G. Developmental disabilities across the world: A scientometric review from 1936 to 2020. RESEARCH IN DEVELOPMENTAL DISABILITIES 2021; 117:104031. [PMID: 34333315 DOI: 10.1016/j.ridd.2021.104031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/07/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Developmental disabilities have been largely studied in the past years. Their etiological mechanisms have been underpinned to the interactions between genetic and environmental factors. These factors show variability across the world. Thus, it is important to understand where the set of knowledge obtained on developmental disabilities originates from and whether it is generalizable to low- and middle-income countries. AIMS This study aims to understand the origins of the available literature on developmental disabilities, keeping a focus on parenting, and identify the main trend of research. METHODS AND PROCEDURE A sample of 11,315 publications from 1936 to 2020 were collected from Scopus and a graphical country analysis was conducted. Furthermore, a qualitative approach enabled the clustering of references by keywords into four main areas: "Expression of the disorder", "Physiological Factors", "How it is studied" and "Environmental factors". For each area, a document co-citation analysis (DCA) on CiteSpace software was performed. OUTCOMES AND RESULTS Results highlight the leading role of North America in the study of developmental disabilities. Trends in the literature and the documents' scientific relevance are discussed in details. CONCLUSIONS AND IMPLICATIONS Results demand for investigation in different socio-economical settings to generalize our knowledge. What this paper adds? The current paper tries to provide insight into the origins of the literature on developmental disabilities with a focus on parenting, together with an analysis of the trends of research in the field. The paper consisted of a multi-disciplinary and multi-method review. In fact, the review tried to integrate the analysis of the relation between developmental disabilities with a closer look at the scientific contributions to the field across the world. Specifically, the paper integrates a total of 11,315 papers published on almost a century of research (from 1936 to 2020). An initial qualitative analysis on keywords was combined to a subsequent quantitative approach in order to maximize the comprehension of the impact of almost a century of scientific contributions. Specifically, documents were studied with temporal and structural metrics on a scientometric approach. This allowed the exploration of patterns within the literature available on Scopus in a quantitative way. This method not only assessed the importance of single documents within the network. As a matter of fact, the document co-citation analysis used on CiteSpace software provided insight into the relations existing between multiple documents in the field of research. As a result, the leading role of North America in the literature of developmental disabilities and parenting emerged. This was accompanied by the review of the main trends of research within the existing literature.
Collapse
Affiliation(s)
- Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Andrea Bonassi
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy; Mobile and Social Computing Lab, Bruno Kessler Foundation, Trento, Italy
| | - Mengyu Lim
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Giulio Gabrieli
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Peipei Setoh
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dagmara Dimitriou
- Sleep Research and Education Laboratory, UCL Institute of Education, London, United Kingdom
| | - Vahid Aryadoust
- National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy; Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
30
|
Gunning M, Pavlidis P. "Guilt by association" is not competitive with genetic association for identifying autism risk genes. Sci Rep 2021; 11:15950. [PMID: 34354131 PMCID: PMC8342445 DOI: 10.1038/s41598-021-95321-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022] Open
Abstract
Discovering genes involved in complex human genetic disorders is a major challenge. Many have suggested that machine learning (ML) algorithms using gene networks can be used to supplement traditional genetic association-based approaches to predict or prioritize disease genes. However, questions have been raised about the utility of ML methods for this type of task due to biases within the data, and poor real-world performance. Using autism spectrum disorder (ASD) as a test case, we sought to investigate the question: can machine learning aid in the discovery of disease genes? We collected 13 published ASD gene prioritization studies and evaluated their performance using known and novel high-confidence ASD genes. We also investigated their biases towards generic gene annotations, like number of association publications. We found that ML methods which do not incorporate genetics information have limited utility for prioritization of ASD risk genes. These studies perform at a comparable level to generic measures of likelihood for the involvement of genes in any condition, and do not out-perform genetic association studies. Future efforts to discover disease genes should be focused on developing and validating statistical models for genetic association, specifically for association between rare variants and disease, rather than developing complex machine learning methods using complex heterogeneous biological data with unknown reliability.
Collapse
Affiliation(s)
- Margot Gunning
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
31
|
Kosma K, Varvagiannis K, Mitrakos A, Tsipi M, Traeger-Synodinos J, Tzetis M. 239-kb Microdeletion Spanning KMT2E in a Child with Developmental Delay: Further Delineation of the Phenotype. Mol Syndromol 2021; 12:321-326. [PMID: 34602960 PMCID: PMC8436641 DOI: 10.1159/000516635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/20/2021] [Indexed: 11/19/2022] Open
Abstract
Pathogenic KMT2E variants underly O'Donnell-Luria-Rodan syndrome, a recently described neurodevelopmental disorder characterized by global developmental delay, variable degrees of intellectual disability, and subtle facial dysmorphism. Less common findings include autism, seizures, gastrointestinal (GI) problems, and abnormal head circumference. Occurrence of mostly truncating variants as well as the similar phenotype observed in individuals with deletions spanning KMT2E suggest haploinsufficiency of this gene as a common mechanism for the disorder, while a gain-of-function or dominant-negative effect cannot be ruled out for some missense variants. Deletions reported in the literature encompass several additional known or presumed haploinsufficient genes, thus leading to more complex phenotypes. Here, we describe a male with antenatal onset hydronephrosis, hypotonia, global developmental delay, prominent GI symptoms as well as facial dysmorphism. Chromosomal microarray revealed a 239-kb de novo microdeletion spanning KMT2E and LHFPL3. Clinical presentation of our proband, harboring one of the smallest deletions of the region confirms the core features of this disorder, suggests GI symptoms as a prominent finding in affected individuals while expanding the phenotypic spectrum to abnormalities of the urinary tract.
Collapse
Affiliation(s)
- Konstantina Kosma
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Varvagiannis
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Mitrakos
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, Athens, Greece
| | - Maria Tsipi
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joanne Traeger-Synodinos
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, Athens, Greece
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
32
|
Boussaad I, Obermaier CD, Hanss Z, Bobbili DR, Bolognin S, Glaab E, Wołyńska K, Weisschuh N, De Conti L, May C, Giesert F, Grossmann D, Lambert A, Kirchen S, Biryukov M, Burbulla LF, Massart F, Bohler J, Cruciani G, Schmid B, Kurz-Drexler A, May P, Duga S, Klein C, Schwamborn JC, Marcus K, Woitalla D, Vogt Weisenhorn DM, Wurst W, Baralle M, Krainc D, Gasser T, Wissinger B, Krüger R. A patient-based model of RNA mis-splicing uncovers treatment targets in Parkinson's disease. Sci Transl Med 2021; 12:12/560/eaau3960. [PMID: 32908004 DOI: 10.1126/scitranslmed.aau3960] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/24/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing prototypes of the underlying molecular pathology and reproducing to variable degrees the sporadic forms of the disease. Using a patient-based in vitro model of PARK7-linked PD, we identified a U1-dependent splicing defect causing a drastic reduction in DJ-1 protein and, consequently, mitochondrial dysfunction. Targeting defective exon skipping with genetically engineered U1-snRNA recovered DJ-1 protein expression in neuronal precursor cells and differentiated neurons. After prioritization of candidate drugs, we identified and validated a combinatorial treatment with the small-molecule compounds rectifier of aberrant splicing (RECTAS) and phenylbutyric acid, which restored DJ-1 protein and mitochondrial dysfunction in patient-derived fibroblasts as well as dopaminergic neuronal cell loss in mutant midbrain organoids. Our analysis of a large number of exomes revealed that U1 splice-site mutations were enriched in sporadic PD patients. Therefore, our study suggests an alternative strategy to restore cellular abnormalities in in vitro models of PD and provides a proof of concept for neuroprotection based on precision medicine strategies in PD.
Collapse
Affiliation(s)
- Ibrahim Boussaad
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Carolin D Obermaier
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg.,Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Zoé Hanss
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Dheeraj R Bobbili
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Silvia Bolognin
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Enrico Glaab
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Katarzyna Wołyńska
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University Clinics Tübingen, 72076 Tübingen, Germany
| | - Laura De Conti
- ICGEB-International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Caroline May
- Medizinisches Proteom-Center, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Florian Giesert
- Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany.,Technische Universität München-Weihenstephan, Developmental Genetics, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Dajana Grossmann
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Annika Lambert
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Susanne Kirchen
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Maria Biryukov
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Lena F Burbulla
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Francois Massart
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Jill Bohler
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Gérald Cruciani
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Benjamin Schmid
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | | | - Patrick May
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano, Milan, Italy.,Humanitas Clinical and Research center, IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Jens C Schwamborn
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Dirk Woitalla
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Daniela M Vogt Weisenhorn
- Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.,Technische Universität München-Weihenstephan, Developmental Genetics, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Wolfgang Wurst
- Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany.,Technische Universität München-Weihenstephan, Developmental Genetics, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.,Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Marco Baralle
- ICGEB-International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Thomas Gasser
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University Clinics Tübingen, 72076 Tübingen, Germany
| | - Rejko Krüger
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg. .,Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,Department of Neurology and Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1445 Strassen, Luxembourg
| |
Collapse
|
33
|
Hidalgo S, Campusano JM, Hodge JJL. Assessing olfactory, memory, social and circadian phenotypes associated with schizophrenia in a genetic model based on Rim. Transl Psychiatry 2021; 11:292. [PMID: 34001859 PMCID: PMC8128896 DOI: 10.1038/s41398-021-01418-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia shows high heritability and several of the genes associated with this disorder are involved in calcium (Ca2+) signalling and synaptic function. One of these is the Rab-3 interacting molecule-1 (RIM1), which has recently been associated with schizophrenia by Genome Wide Association Studies (GWAS). However, its contribution to the pathophysiology of this disorder remains unexplored. In this work, we use Drosophila mutants of the orthologue of RIM1, Rim, to model some aspects of the classical and non-classical symptoms of schizophrenia. Rim mutants showed several behavioural features relevant to schizophrenia including social distancing and altered olfactory processing. These defects were accompanied by reduced evoked Ca2+ influx and structural changes in the presynaptic terminals sent by the primary olfactory neurons to higher processing centres. In contrast, expression of Rim-RNAi in the mushroom bodies (MBs), the main memory centre in flies, spared learning and memory suggesting a differential role of Rim in different synapses. Circadian deficits have been reported in schizophrenia. We observed circadian locomotor activity deficits in Rim mutants, revealing a role of Rim in the pacemaker ventral lateral clock neurons (LNvs). These changes were accompanied by impaired day/night remodelling of dorsal terminal synapses from a subpopulation of LNvs and impaired day/night release of the circadian neuropeptide pigment dispersing factor (PDF) from these terminals. Lastly, treatment with the commonly used antipsychotic haloperidol rescued Rim locomotor deficits to wildtype. This work characterises the role of Rim in synaptic functions underlying behaviours disrupted in schizophrenia.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, UK
| | - Jorge M Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, UK.
| |
Collapse
|
34
|
John A, Ng-Cordell E, Hanna N, Brkic D, Baker K. The neurodevelopmental spectrum of synaptic vesicle cycling disorders. J Neurochem 2021; 157:208-228. [PMID: 32738165 DOI: 10.1111/jnc.15135] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
In this review, we describe and discuss neurodevelopmental phenotypes arising from rare, high penetrance genomic variants which directly influence synaptic vesicle cycling (SVC disorders). Pathogenic variants in each SVC disorder gene lead to disturbance of at least one SVC subprocess, namely vesicle trafficking (e.g. KIF1A and GDI1), clustering (e.g. TRIO, NRXN1 and SYN1), docking and priming (e.g. STXBP1), fusion (e.g. SYT1 and PRRT2) or re-uptake (e.g. DNM1, AP1S2 and TBC1D24). We observe that SVC disorders share a common set of neurological symptoms (movement disorders, epilepsies), cognitive impairments (developmental delay, intellectual disabilities, cerebral visual impairment) and mental health difficulties (autism, ADHD, psychiatric symptoms). On the other hand, there is notable phenotypic variation between and within disorders, which may reflect selective disruption to SVC subprocesses, spatiotemporal and cell-specific gene expression profiles, mutation-specific effects, or modifying factors. Understanding the common cellular and systems mechanisms underlying neurodevelopmental phenotypes in SVC disorders, and the factors responsible for variation in clinical presentations and outcomes, may translate to personalized clinical management and improved quality of life for patients and families.
Collapse
Affiliation(s)
- Abinayah John
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Elise Ng-Cordell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Nancy Hanna
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Diandra Brkic
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Sharawat IK, Panda PK, Dawman L. Clinical Characteristics and Genotype-Phenotype Correlation in Children with KMT2E Gene-Related Neurodevelopmental Disorders: Report of Two New Cases and Review of Published Literature. Neuropediatrics 2021; 52:98-104. [PMID: 33111303 DOI: 10.1055/s-0040-1715629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND In recent years, many new candidate genes are being identified as putative pathogenic factors in children with developmental delay and autism. Recently, heterozygous mutations in the KMT2E gene have been identified as a cause of a unique neurodevelopmental disorder with variable combination of global developmental delay or isolated speech delay, intellectual disability, autistic features, and seizures. METHODS Here, we present two new cases of KMT2E mutation-associated neurodevelopmental disorder in a 4-year-old girl and 5-year-old boy. We also performed a pooled review of the previously published cases of KMT2E-related neurodevelopmental disorder. Articles were identified through search engines using appropriate search terms. RESULTS Along with the presented 2 cases, 40 cases were analyzed. Out of them, 30, 6, and 4 children had protein-truncating mutations, missense mutations, and copy number variants, respectively. The common features were global developmental delay (97%) followed by macrocephaly (35%), seizures (30%), and autism (25%). Children with missense variants had severe phenotype, with microcephaly, profound developmental delay, and increased frequency of seizures. Neuroimaging revealed nonspecific changes, including cerebral white matter signal abnormalities. CONCLUSION KMT2E-related neurodevelopmental disorder remains one of the clinical differentials in children with global developmental delay and/or autistic features/seizure. With the reporting of more cases in the future, the already heterogeneous clinical spectrum of this disease is likely to be widened.
Collapse
Affiliation(s)
- Indar Kumar Sharawat
- Division of Pediatric Neurology, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Prateek Kumar Panda
- Division of Pediatric Neurology, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Lesa Dawman
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
36
|
Yao F, Zhang K, Feng C, Gao Y, Shen L, Liu X, Ni J. Protein Biomarkers of Autism Spectrum Disorder Identified by Computational and Experimental Methods. Front Psychiatry 2021; 12:554621. [PMID: 33716802 PMCID: PMC7947305 DOI: 10.3389/fpsyt.2021.554621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that affects millions of people worldwide. However, there are currently no reliable biomarkers for ASD diagnosis. Materials and Methods: The strategy of computational prediction combined with experimental verification was used to identify blood protein biomarkers for ASD. First, brain tissue-based transcriptome data of ASD were collected from Gene Expression Omnibus database and analyzed to find ASD-related genes by bioinformatics method of significance analysis of microarrays. Then, a prediction program of blood-secretory proteins was applied on these genes to predict ASD-related proteins in blood. Furthermore, ELISA was used to verify these proteins in plasma samples of ASD patients. Results: A total of 364 genes were identified differentially expressed in brain tissue of ASD, among which 59 genes were predicted to encode ASD-related blood-secretory proteins. After functional analysis and literature survey, six proteins were chosen for experimental verification and five were successfully validated. Receiver operating characteristic curve analyses showed that the area under the curve of SLC25A12, LIMK1, and RARS was larger than 0.85, indicating that they are more powerful in discriminating ASD cases from controls. Conclusion: SLC25A12, LIMK1, and RARS might serve as new potential blood protein biomarkers for ASD. Our findings provide new insights into the pathogenesis and diagnosis of ASD.
Collapse
Affiliation(s)
- Fang Yao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Kaoyuan Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chengyun Feng
- Department of Child Healthcare, Maternal and Child Health Hospital of Baoan, Shenzhen, China
| | - Yan Gao
- Department of Child Healthcare, Maternal and Child Health Hospital of Baoan, Shenzhen, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiazuan Ni
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
37
|
Li Y, Fan L, Luo R, Yang Z, Yuan M, Zhang J, Gan J. Case Report: De novo Variants of KMT2E Cause O'Donnell-Luria-Rodan Syndrome: Additional Cases and Literature Review. Front Pediatr 2021; 9:641841. [PMID: 33681112 PMCID: PMC7935518 DOI: 10.3389/fped.2021.641841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction: O'Donnell-Luria-Rodan syndrome was recently identified as an autosomal dominant systemic disorder caused by variants in KMT2E. It is characterized by global developmental delay, some patients also exhibit autism, seizures, hypotonia, and/or feeding difficulties. Methods: Whole-exome sequencing of family trios were performed for two independent children with unexplained recurrent seizures and developmental delay. Both cases were identified as having de novo variants in KMT2E. We also collected and summarized the clinical data and diagnosed them with O'Donnell-Luria-Rodan syndrome. Structural-prediction programs were used to draw the variants' locations. Results: A 186 G>A synonymous variant [NM_182931.3:exon4: c.186G>A (p.Ala62=)] was found in one family, resulting in alternative splicing acid. A 5417 C>T transition variant [NM_182931.3:exon27: c.5417C>T (p.Pro1806Leu)] was found in another family, resulting in 1806 Pro-to-Leu substitution. Both variants were classified as likely pathogenic according to the ACMG (American College of Medical Genetics and Genomics) guidelines and verified by Sanger sequencing. Conclusion: To date, three studies of O'Donnell-Luria-Rodan syndrome have been reported with heterogeneous clinical manifestations. As a newly recognized inherited systemic disorder, O'Donnell-Luria-Rodan syndrome needs to be paid more attention, especially in gene testing.
Collapse
Affiliation(s)
- Yang Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Lijuan Fan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rong Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | | | - Meng Yuan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Jinxiu Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Jing Gan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Sherman MA, Rodin RE, Genovese G, Dias C, Barton AR, Mukamel RE, Berger B, Park PJ, Walsh CA, Loh PR. Large mosaic copy number variations confer autism risk. Nat Neurosci 2021; 24:197-203. [PMID: 33432194 PMCID: PMC7854495 DOI: 10.1038/s41593-020-00766-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 11/21/2020] [Indexed: 01/29/2023]
Abstract
Although germline de novo copy number variants (CNVs) are known causes of autism spectrum disorder (ASD), the contribution of mosaic (early-developmental) copy number variants (mCNVs) has not been explored. In this study, we assessed the contribution of mCNVs to ASD by ascertaining mCNVs in genotype array intensity data from 12,077 probands with ASD and 5,500 unaffected siblings. We detected 46 mCNVs in probands and 19 mCNVs in siblings, affecting 2.8-73.8% of cells. Probands carried a significant burden of large (>4-Mb) mCNVs, which were detected in 25 probands but only one sibling (odds ratio = 11.4, 95% confidence interval = 1.5-84.2, P = 7.4 × 10-4). Event size positively correlated with severity of ASD symptoms (P = 0.016). Surprisingly, we did not observe mosaic analogues of the short de novo CNVs recurrently observed in ASD (eg, 16p11.2). We further experimentally validated two mCNVs in postmortem brain tissue from 59 additional probands. These results indicate that mCNVs contribute a previously unexplained component of ASD risk.
Collapse
Affiliation(s)
- Maxwell A. Sherman
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA,Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA,Correspondence should be addressed to M.A.S. (), P.J.P. (), C.A.W. (), or P.-R.L. ()
| | - Rachel E. Rodin
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Giulio Genovese
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Caroline Dias
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA,Division of Developmental Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alison R. Barton
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ronen E. Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA,Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA,Correspondence should be addressed to M.A.S. (), P.J.P. (), C.A.W. (), or P.-R.L. ()
| | - Christopher A. Walsh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA,Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA,Correspondence should be addressed to M.A.S. (), P.J.P. (), C.A.W. (), or P.-R.L. ()
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA,Correspondence should be addressed to M.A.S. (), P.J.P. (), C.A.W. (), or P.-R.L. ()
| |
Collapse
|
39
|
Gropman AL. Epigenetics and pervasive developmental disorders. EPIGENETICS IN PSYCHIATRY 2021:519-552. [DOI: 10.1016/b978-0-12-823577-5.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
40
|
Reilly J, Gallagher L, Leader G, Shen S. Coupling of autism genes to tissue-wide expression and dysfunction of synapse, calcium signalling and transcriptional regulation. PLoS One 2020; 15:e0242773. [PMID: 33338084 PMCID: PMC7748153 DOI: 10.1371/journal.pone.0242773] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous disorder that is often accompanied with many co-morbidities. Recent genetic studies have identified various pathways from hundreds of candidate risk genes with varying levels of association to ASD. However, it is unknown which pathways are specific to the core symptoms or which are shared by the co-morbidities. We hypothesised that critical ASD candidates should appear widely across different scoring systems, and that comorbidity pathways should be constituted by genes expressed in the relevant tissues. We analysed the Simons Foundation for Autism Research Initiative (SFARI) database and four independently published scoring systems and identified 292 overlapping genes. We examined their mRNA expression using the Genotype-Tissue Expression (GTEx) database and validated protein expression levels using the human protein atlas (HPA) dataset. This led to clustering of the overlapping ASD genes into 2 groups; one with 91 genes primarily expressed in the central nervous system (CNS geneset) and another with 201 genes expressed in both CNS and peripheral tissues (CNS+PT geneset). Bioinformatic analyses showed a high enrichment of CNS development and synaptic transmission in the CNS geneset, and an enrichment of synapse, chromatin remodelling, gene regulation and endocrine signalling in the CNS+PT geneset. Calcium signalling and the glutamatergic synapse were found to be highly interconnected among pathways in the combined geneset. Our analyses demonstrate that 2/3 of ASD genes are expressed beyond the brain, which may impact peripheral function and involve in ASD co-morbidities, and relevant pathways may be explored for the treatment of ASD co-morbidities.
Collapse
Affiliation(s)
- Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, Biomedical Science Building, National University of Ireland (NUI) Galway, Galway, Ireland
- * E-mail: (JR); (SS)
| | - Louise Gallagher
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity Centre for Health Sciences—Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research (ICAN), Department of Psychology, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, Biomedical Science Building, National University of Ireland (NUI) Galway, Galway, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- * E-mail: (JR); (SS)
| |
Collapse
|
41
|
Liu Y, Liu J, Wang Y. Filtering de novo indels in parent-offspring trios. BMC Bioinformatics 2020; 21:547. [PMID: 33323105 PMCID: PMC7739476 DOI: 10.1186/s12859-020-03900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/19/2020] [Indexed: 12/02/2022] Open
Abstract
Background Identification of de novo indels from whole genome or exome sequencing data of parent-offspring trios is a challenging task in human disease studies and clinical practices. Existing computational approaches usually yield high false positive rate. Results In this study, we developed a gradient boosting approach for filtering de novo indels obtained by any computational approaches. Through application on the real genome sequencing data, our approach showed it could significantly reduce the false positive rate of de novo indels without a significant compromise on sensitivity. Conclusions The software DNMFilter_Indel was written in a combination of Java and R and freely available from the website at https://github.com/yongzhuang/DNMFilter_Indel.
Collapse
Affiliation(s)
- Yongzhuang Liu
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Jian Liu
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China.
| |
Collapse
|
42
|
Basilico B, Morandell J, Novarino G. Molecular mechanisms for targeted ASD treatments. Curr Opin Genet Dev 2020; 65:126-137. [PMID: 32659636 DOI: 10.1016/j.gde.2020.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022]
Abstract
The possibility to generate construct valid animal models enabled the development and testing of therapeutic strategies targeting the core features of autism spectrum disorders (ASDs). At the same time, these studies highlighted the necessity of identifying sensitive developmental time windows for successful therapeutic interventions. Animal and human studies also uncovered the possibility to stratify the variety of ASDs in molecularly distinct subgroups, potentially facilitating effective treatment design. Here, we focus on the molecular pathways emerging as commonly affected by mutations in diverse ASD-risk genes, on their role during critical windows of brain development and the potential treatments targeting these biological processes.
Collapse
Affiliation(s)
| | - Jasmin Morandell
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
43
|
Garcia-Forn M, Boitnott A, Akpinar Z, De Rubeis S. Linking Autism Risk Genes to Disruption of Cortical Development. Cells 2020; 9:cells9112500. [PMID: 33218123 PMCID: PMC7698947 DOI: 10.3390/cells9112500] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by impairments in social communication and social interaction, and the presence of repetitive behaviors and/or restricted interests. In the past few years, large-scale whole-exome sequencing and genome-wide association studies have made enormous progress in our understanding of the genetic risk architecture of ASD. While showing a complex and heterogeneous landscape, these studies have led to the identification of genetic loci associated with ASD risk. The intersection of genetic and transcriptomic analyses have also begun to shed light on functional convergences between risk genes, with the mid-fetal development of the cerebral cortex emerging as a critical nexus for ASD. In this review, we provide a concise summary of the latest genetic discoveries on ASD. We then discuss the studies in postmortem tissues, stem cell models, and rodent models that implicate recently identified ASD risk genes in cortical development.
Collapse
Affiliation(s)
- Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Boitnott
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zeynep Akpinar
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychology, College of Arts and Sciences, New York University, New York, NY 10003, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: ; Tel.: +1-212-241-0179
| |
Collapse
|
44
|
Wang L, Zhang Y, Li K, Wang Z, Wang X, Li B, Zhao G, Fang Z, Ling Z, Luo T, Xia L, Li Y, Guo H, Hu Z, Li J, Sun Z, Xia K. Functional relationships between recessive inherited genes and genes with de novo variants in autism spectrum disorder. Mol Autism 2020; 11:75. [PMID: 33023636 PMCID: PMC7541261 DOI: 10.1186/s13229-020-00382-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background Both de novo variants and recessive inherited variants were associated with autism spectrum disorder (ASD). This study aimed to use exome data to prioritize recessive inherited genes (RIGs) with biallelically inherited variants in autosomes or X-linked inherited variants in males and investigate the functional relationships between RIGs and genes with de novo variants (DNGs).
Methods We used a bioinformatics pipeline to analyze whole-exome sequencing data from 1799 ASD quads (containing one proband, one unaffected sibling, and their parents) from the Simons Simplex Collection and prioritize candidate RIGs with rare biallelically inherited variants in autosomes or X-linked inherited variants in males. The relationships between RIGs and DNGs were characterized based on different genetic perspectives, including genetic variants, functional networks, and brain expression patterns. Results Among the biallelically or hemizygous constrained genes that were expressed in the brain, ASD probands carried significantly more biallelically inherited protein-truncating variants (PTVs) in autosomes (p = 0.038) and X-linked inherited PTVs in males (p = 0.026) than those in unaffected siblings. We prioritized eight autosomal, and 13 X-linked candidate RIGs, including 11 genes already associated with neurodevelopmental disorders. In total, we detected biallelically inherited variants or X-linked inherited variants of these 21 candidate RIGs in 26 (1.4%) of 1799 probands. We then integrated previously reported known or candidate genes in ASD, ultimately obtaining 70 RIGs and 87 DNGs for analysis. We found that RIGs were less likely to carry multiple recessive inherited variants than DNGs were to carry multiple de novo variants. Additionally, RIGs and DNGs were significantly co-expressed and interacted with each other, forming a network enriched in known functional ASD clusters, although RIGs were less likely to be enriched in these functional clusters compared with DNGs. Furthermore, although RIGs and DNGs presented comparable expression patterns in the human brain, RIGs were less likely to be associated with prenatal brain regions, the middle cortical layers, and excitatory neurons than DNGs. Limitations The RIGs analyzed in this study require functional validation, and the results should be replicated in more patients with ASD. Conclusions ASD RIGs were functionally associated with DNGs; however, they exhibited higher heterogeneity than DNGs.
Collapse
Affiliation(s)
- Lin Wang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Zhang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kuokuo Li
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaomeng Wang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenghuan Fang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhengbao Ling
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tengfei Luo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lu Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yanping Li
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Guo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhongsheng Sun
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Shanghai, China. .,School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
45
|
Matoba N, Liang D, Sun H, Aygün N, McAfee JC, Davis JE, Raffield LM, Qian H, Piven J, Li Y, Kosuri S, Won H, Stein JL. Common genetic risk variants identified in the SPARK cohort support DDHD2 as a candidate risk gene for autism. Transl Psychiatry 2020; 10:265. [PMID: 32747698 PMCID: PMC7400671 DOI: 10.1038/s41398-020-00953-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder. Large genetically informative cohorts of individuals with ASD have led to the identification of a limited number of common genome-wide significant (GWS) risk loci to date. However, many more common genetic variants are expected to contribute to ASD risk given the high heritability. Here, we performed a genome-wide association study (GWAS) on 6222 case-pseudocontrol pairs from the Simons Foundation Powering Autism Research for Knowledge (SPARK) dataset to identify additional common genetic risk factors and molecular mechanisms underlying risk for ASD. We identified one novel GWS locus from the SPARK GWAS and four significant loci, including an additional novel locus from meta-analysis with a previous GWAS. We replicated the previous observation of significant enrichment of ASD heritability within regulatory regions of the developing cortex, indicating that disruption of gene regulation during neurodevelopment is critical for ASD risk. We further employed a massively parallel reporter assay (MPRA) and identified a putative causal variant at the novel locus from SPARK GWAS with strong impacts on gene regulation (rs7001340). Expression quantitative trait loci data demonstrated an association between the risk allele and decreased expression of DDHD2 (DDHD domain containing 2) in both adult and prenatal brains. In conclusion, by integrating genetic association data with multi-omic gene regulatory annotations and experimental validation, we fine-mapped a causal risk variant and demonstrated that DDHD2 is a novel gene associated with ASD risk.
Collapse
Affiliation(s)
- Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Huaigu Sun
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jessica C McAfee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jessica E Davis
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Quantitative and Computational Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Huijun Qian
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joseph Piven
- Department of Psychiatry and the Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sriam Kosuri
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Quantitative and Computational Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
46
|
Bonnycastle K, Davenport EC, Cousin MA. Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle. J Neurochem 2020; 157:179-207. [PMID: 32378740 DOI: 10.1111/jnc.15035] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
The activity-dependent fusion, retrieval and recycling of synaptic vesicles is essential for the maintenance of neurotransmission. Until relatively recently it was believed that most mutations in genes that were essential for this process would be incompatible with life, because of this fundamental role. However, an ever-expanding number of mutations in this very cohort of genes are being identified in individuals with neurodevelopmental disorders, including autism, intellectual disability and epilepsy. This article will summarize the current state of knowledge linking mutations in presynaptic genes to neurodevelopmental disorders by sequentially covering the various stages of the synaptic vesicle life cycle. It will also discuss how perturbations of specific stages within this recycling process could translate into human disease. Finally, it will also provide perspectives on the potential for future therapy that are targeted to presynaptic function.
Collapse
Affiliation(s)
- Katherine Bonnycastle
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
47
|
Krug A, Wöhr M, Seffer D, Rippberger H, Sungur AÖ, Dietsche B, Stein F, Sivalingam S, Forstner AJ, Witt SH, Dukal H, Streit F, Maaser A, Heilmann-Heimbach S, Andlauer TFM, Herms S, Hoffmann P, Rietschel M, Nöthen MM, Lackinger M, Schratt G, Koch M, Schwarting RKW, Kircher T. Advanced paternal age as a risk factor for neurodevelopmental disorders: a translational study. Mol Autism 2020; 11:54. [PMID: 32576230 PMCID: PMC7310295 DOI: 10.1186/s13229-020-00345-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/07/2020] [Indexed: 01/13/2023] Open
Abstract
Advanced paternal age (APA) is a risk factor for several neurodevelopmental disorders, including autism and schizophrenia. The potential mechanisms conferring this risk are poorly understood. Here, we show that the personality traits schizotypy and neuroticism correlated with paternal age in healthy subjects (N = 677). Paternal age was further positively associated with gray matter volume (VBM, N = 342) in the right prefrontal and the right medial temporal cortex. The integrity of fiber tracts (DTI, N = 222) connecting these two areas correlated positively with paternal age. Genome-wide methylation analysis in humans showed differential methylation in APA individuals, linking APA to epigenetic mechanisms. A corresponding phenotype was obtained in our rat model. APA rats displayed social-communication deficits and emitted fewer pro-social ultrasonic vocalizations compared to controls. They further showed repetitive and stereotyped patterns of behavior, together with higher anxiety during early development. At the neurobiological level, microRNAs miR-132 and miR-134 were both differentially regulated in rats and humans depending on APA. This study demonstrates associations between APA and social behaviors across species. They might be driven by changes in the expression of microRNAs and/or epigenetic changes regulating neuronal plasticity, leading to brain morphological changes and fronto-hippocampal connectivity, a network which has been implicated in social interaction.
Collapse
Affiliation(s)
- Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039, Marburg, Germany.
- Center for Mind, Brain and Behavior, Marburg, Germany.
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Marburg, Germany
- Laboratory for Behavioral Neuroscience, Department of Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Dominik Seffer
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - Henrike Rippberger
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - A Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Marburg, Germany
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039, Marburg, Germany
| | - Sugirthan Sivalingam
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Helene Dukal
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Anna Maaser
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Till F M Andlauer
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
| | - Martin Lackinger
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-University Marburg, 35043, Marburg, Germany
| | - Gerhard Schratt
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-University Marburg, 35043, Marburg, Germany
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Michael Koch
- Department of Neuropharmacology, Brain Research Institute, Centre for Cognitive Sciences, University of Bremen, 28334, Bremen, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039, Marburg, Germany
- Center for Mind, Brain and Behavior, Marburg, Germany
| |
Collapse
|
48
|
Verhage M, Sørensen JB. SNAREopathies: Diversity in Mechanisms and Symptoms. Neuron 2020; 107:22-37. [PMID: 32559416 DOI: 10.1016/j.neuron.2020.05.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Neuronal SNAREs and their key regulators together drive synaptic vesicle exocytosis and synaptic transmission as a single integrated membrane fusion machine. Human pathogenic mutations have now been reported for all eight core components, but patients are diagnosed with very different neurodevelopmental syndromes. We propose to unify these syndromes, based on etiology and mechanism, as "SNAREopathies." Here, we review the strikingly diverse clinical phenomenology and disease severity and the also remarkably diverse genetic mechanisms. We argue that disease severity generally scales with functional redundancy and, conversely, that the large effect of mutations in some SNARE genes is the price paid for extensive integration and exceptional specialization. Finally, we discuss how subtle differences in components being rate limiting in different types of neurons helps to explain the main symptoms.
Collapse
Affiliation(s)
- Matthijs Verhage
- Department of Functional Genomics, Vrije Universiteit (VU) Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands; Department of Clinical Genetics, UMC Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands.
| | - Jakob B Sørensen
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
49
|
De Novo Damaging DNA Coding Mutations Are Associated With Obsessive-Compulsive Disorder and Overlap With Tourette's Disorder and Autism. Biol Psychiatry 2020; 87:1035-1044. [PMID: 31771860 PMCID: PMC7160031 DOI: 10.1016/j.biopsych.2019.09.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 08/01/2019] [Accepted: 09/22/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric disorder with a genetic risk component, yet identification of high-confidence risk genes has been challenging. In recent years, risk gene discovery in other complex psychiatric disorders has been achieved by studying rare de novo (DN) coding variants. METHODS We performed whole-exome sequencing in 222 OCD parent-child trios (184 trios after quality control), comparing DN variant frequencies with 777 previously sequenced unaffected trios. We estimated the contribution of DN mutations to OCD risk and the number of genes involved. Finally, we looked for gene enrichment in other datasets and canonical pathways. RESULTS DN likely gene disrupting and predicted damaging missense variants are enriched in OCD probands (rate ratio, 1.52; p = .0005) and contribute to risk. We identified 2 high-confidence risk genes, each containing 2 DN damaging variants in unrelated probands: CHD8 and SCUBE1. We estimate that 34% of DN damaging variants in OCD contribute to risk and that DN damaging variants in approximately 335 genes contribute to risk in 22% of OCD cases. Furthermore, genes harboring DN damaging variants in OCD are enriched for those reported in neurodevelopmental disorders, particularly Tourette's disorder and autism spectrum disorder. An exploratory network analysis reveals significant functional connectivity and enrichment in canonical pathways, biological processes, and disease networks. CONCLUSIONS Our findings show a pathway toward systematic gene discovery in OCD via identification of DN damaging variants. Sequencing larger cohorts of OCD parent-child trios will reveal more OCD risk genes and will provide needed insights into underlying disease biology.
Collapse
|
50
|
Mechaussier S, Almoallem B, Zeitz C, Van Schil K, Jeddawi L, Van Dorpe J, Dueñas Rey A, Condroyer C, Pelle O, Polak M, Boddaert N, Bahi-Buisson N, Cavallin M, Bacquet JL, Mouallem-Bézière A, Zambrowski O, Sahel JA, Audo I, Kaplan J, Rozet JM, De Baere E, Perrault I. Loss of Function of RIMS2 Causes a Syndromic Congenital Cone-Rod Synaptic Disease with Neurodevelopmental and Pancreatic Involvement. Am J Hum Genet 2020; 106:859-871. [PMID: 32470375 PMCID: PMC7273530 DOI: 10.1016/j.ajhg.2020.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Congenital cone-rod synaptic disorder (CRSD), also known as incomplete congenital stationary night blindness (iCSNB), is a non-progressive inherited retinal disease (IRD) characterized by night blindness, photophobia, and nystagmus, and distinctive electroretinographic features. Here, we report bi-allelic RIMS2 variants in seven CRSD-affected individuals from four unrelated families. Apart from CRSD, neurodevelopmental disease was observed in all affected individuals, and abnormal glucose homeostasis was observed in the eldest affected individual. RIMS2 regulates synaptic membrane exocytosis. Data mining of human adult bulk and single-cell retinal transcriptional datasets revealed predominant expression in rod photoreceptors, and immunostaining demonstrated RIMS2 localization in the human retinal outer plexiform layer, Purkinje cells, and pancreatic islets. Additionally, nonsense variants were shown to result in truncated RIMS2 and decreased insulin secretion in mammalian cells. The identification of a syndromic stationary congenital IRD has a major impact on the differential diagnosis of syndromic congenital IRD, which has previously been exclusively linked with degenerative IRD.
Collapse
Affiliation(s)
- Sabrina Mechaussier
- Laboratory of Genetics in Ophthalmology, INSERM UMR 1163, Institute of Genetic Diseases, Imagine and Paris University, 75015 Paris, France
| | - Basamat Almoallem
- Center for Medical Genetics and Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium; Department of Ophthalmology, King Abdul-Aziz University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Christina Zeitz
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique, Institut de la Vision, 75012 Paris, France
| | - Kristof Van Schil
- Center for Medical Genetics and Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
| | - Laila Jeddawi
- Pediatric Ophthalmology Division, Dhahran Eye Specialist Hospital, Dhahran 34257, Saudi Arabia
| | - Jo Van Dorpe
- Department of Pathology, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
| | - Alfredo Dueñas Rey
- Center for Medical Genetics and Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
| | - Christel Condroyer
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique, Institut de la Vision, 75012 Paris, France
| | - Olivier Pelle
- Cell Sorting Facility, INSERM UMR 1163, Institute of Genetic Diseases, Imagine and Paris University, 75015 Paris, France
| | - Michel Polak
- Endocrinology, Gynecology, and Pediatric Diabetology Department, University Hospital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, University Hospital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Nadia Bahi-Buisson
- Pediatric Neurology Department, University Hospital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Mara Cavallin
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR 1163, Institute of Genetic Diseases, Imagine and Paris University, 75015 Paris, France
| | - Jean-Louis Bacquet
- Service d'Ophtalmologie, Centre Hospitalier Intercommunal de Créteil, Assistance Publique-Hôpitaux de Paris, 94000 Créteil, France
| | - Alexandra Mouallem-Bézière
- Service d'Ophtalmologie, Centre Hospitalier Intercommunal de Créteil, Assistance Publique-Hôpitaux de Paris, 94000 Créteil, France
| | - Olivia Zambrowski
- Service d'Ophtalmologie, Centre Hospitalier Intercommunal de Créteil, Assistance Publique-Hôpitaux de Paris, 94000 Créteil, France; Ophthalmology Department, University Hospital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - José Alain Sahel
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique, Institut de la Vision, 75012 Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM, Direction de l'Hospitalisation et de l'Organisation des Soins (DHOS), Centres d'Investigations Cliniques (CIC) 1423, 75012 Paris, France; Fondation Ophtalmologique Adolphe de Rothschild, 75019 Paris, France; Académie des Sciences, Institut de France, 75006 Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Isabelle Audo
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique, Institut de la Vision, 75012 Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM, Direction de l'Hospitalisation et de l'Organisation des Soins (DHOS), Centres d'Investigations Cliniques (CIC) 1423, 75012 Paris, France; Institute of Ophthalmology, University College of London, London EC1V 9EL, UK
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology, INSERM UMR 1163, Institute of Genetic Diseases, Imagine and Paris University, 75015 Paris, France; Service d'Ophtalmologie, Centre Hospitalier Intercommunal de Créteil, Assistance Publique-Hôpitaux de Paris, 94000 Créteil, France
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology, INSERM UMR 1163, Institute of Genetic Diseases, Imagine and Paris University, 75015 Paris, France
| | - Elfride De Baere
- Center for Medical Genetics and Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium.
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology, INSERM UMR 1163, Institute of Genetic Diseases, Imagine and Paris University, 75015 Paris, France.
| |
Collapse
|