1
|
Chen X, Han D, Zeng Y, Li H, Wang X, Huang Z, Yang L, Wagenaar GTM, Lin B, Yang C. Inhibition of lysophosphatidic acid receptor 2 attenuates neonatal chronic lung disease in mice by preserving vascular and alveolar development. Eur J Pharmacol 2024; 985:177120. [PMID: 39522686 DOI: 10.1016/j.ejphar.2024.177120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
AIM Bronchopulmonary dysplasia (BPD) is a common morbidity in extremely premature infants. Previous studies demonstrated the important role of lysophosphatidic acid (LPA) in inflammation in BPD. However, the role of LPA and its receptors in hyperoxia-induced vascular malformations in BPD remains to be elucidated. METHODS AND RESULTS Elevated plasma LPA levels were observed in mice with BPD compared to controls (792 vs. 607 ng/mL, p < 0.05). Inhibition of LPA signaling protected against hyperoxia-induced lung injury in neonatal mice, demonstrated by a 2.8-fold increase in pulmonary vascular density and a 14% reduction in alveolar enlargement. In vitro studies showed that LPA suppressed tube formation in human umbilical vein endothelial cells (HUVECs) by approximately 50%. LPA receptor 2 (LPA2) was identified as a functional LPA receptor in primary endothelial cells from the lungs of hyperoxic mice and in HUVECs under hyperoxic conditions. The LPA2 antagonist H2L5186303 enhanced the tube formation ability of HUVECs exposed to LPA, both under normoxia (4-fold) and hyperoxia (5-fold). Moreover, H2L5186303 significantly protected against hyperoxia-induced vascular malformation (2-fold) and improved alveolarization in neonatal mice (12% decrease in mean linear intercept, MLI). Early growth response 1 (EGR1) was characterized as a downstream target of LPA2, silencing EGR1 restored tube formation in HUVECs exposed to LPA and hyperoxia. CONCLUSIONS Our in vitro and in vivo findings demonstrate that the inhibition of LPA/LPA2 signaling mitigates hyperoxia-induced pulmonary vascular malformations, suggesting the LPA/LPA2-dependent signaling pathway has therapeutic potential for extremely premature infants with BPD.
Collapse
Affiliation(s)
- Xueyu Chen
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China; Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, China
| | - Dongshan Han
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | - Yali Zeng
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | - Huitao Li
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | - Xuan Wang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | - Zilu Huang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | - Lingling Yang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | | | - Bingchun Lin
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China.
| | - Chuanzhong Yang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China; Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, China.
| |
Collapse
|
2
|
Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat Rev Cancer 2024; 24:655-675. [PMID: 39210063 DOI: 10.1038/s41568-024-00736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
As angiogenesis was recognized as a core hallmark of cancer growth and survival, several strategies have been implemented to target the tumour vasculature. Yet to date, attempts have rarely been so diverse, ranging from vessel growth inhibition and destruction to vessel normalization, reprogramming and vessel growth promotion. Some of these strategies, combined with standard of care, have translated into improved cancer therapies, but their successes are constrained to certain cancer types. This Review provides an overview of these vascular targeting approaches and puts them into context based on our subsequent improved understanding of the tumour vasculature as an integral part of the tumour microenvironment with which it is functionally interlinked. This new knowledge has already led to dual targeting of the vascular and immune cell compartments and sets the scene for future investigations of possible alternative approaches that consider the vascular link with other tumour microenvironment components for improved cancer therapy.
Collapse
Affiliation(s)
- Sophie Guelfi
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK.
| | - Gabriele Bergers
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Yun CC, Han Y, McConnell B. Lysophosphatidic Acid Signaling in the Gastrointestinal System. Cell Mol Gastroenterol Hepatol 2024; 18:101398. [PMID: 39233124 PMCID: PMC11532463 DOI: 10.1016/j.jcmgh.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
The intestinal epithelium undergoes continuous homeostatic renewal to conduct the digestion and absorption of nutrients. At the same time, the intestinal epithelial barrier separates the host from the intestinal lumen, preventing systemic infection from enteric pathogens. To maintain homeostasis and epithelial functionality, stem cells, which reside in the base of intestinal crypts, generate progenitor cells that ultimately differentiate to produce an array of secretory and absorptive cells. Intestinal regeneration is regulated by niche signaling pathways, specifically, Wnt, bone morphogenetic protein, Notch, and epidermal growth factor. In addition, growth factors and other peptides have emerged as potential modulators of intestinal repair and inflammation through their roles in cellular proliferation, differentiation, migration, and survival. Lysophosphatidic acid (LPA) is such a factor that modulates the proliferation, survival, and migration of epithelial cells while also regulating trafficking of immune cells, both of which are important for tissue homeostasis. Perturbation of LPA signaling, however, has been shown to promote cancer and inflammation. This review focuses on the recent advances in LPA-mediated signaling that contribute to physiological and pathophysiological regulation of the gastrointestinal system.
Collapse
Affiliation(s)
- C Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia.
| | - Yiran Han
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Beth McConnell
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Suehiro JI, Kimura T, Fukutomi T, Naito H, Kanki Y, Wada Y, Kubota Y, Takakura N, Sakurai H. Endothelial cell-specific LAT1 ablation normalizes tumor vasculature. JCI Insight 2024; 9:e171371. [PMID: 39163136 PMCID: PMC11457854 DOI: 10.1172/jci.insight.171371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Some endothelial cells in the tumor vasculature express a system L amino acid transporter, LAT1. To elucidate the role of LAT1 in tumor-related endothelial cells, tumor cells were injected into endothelial cell-specific LAT1 conditional knockout mice (Slc7a5flox/flox; Cdh5-Cre-ERT2), and we found that the shape of the tumor vasculature was normalized and the size and numbers of lung metastasis was reduced. TNF-α-induced expression of VCAM1 and E-selectin at the surface of HUVEC, both of which are responsible for enhanced monocyte attachment and premetastatic niche formation, was reduced in the presence of LAT1 inhibitor, nanvuranlat. Deprivation of tryptophan, a LAT1 substrate, mimicked LAT1 inhibition, which led to activation of MEK1/2-ERK1/2 pathway and subsequent cystathionine γ lyase (CTH) induction. Increased production of hydrogen sulfide (H2S) by CTH was at least partially responsible for tumor vascular normalization, leading to decreased leakiness and enhanced delivery of chemotherapeutic agents to the tumor.
Collapse
Affiliation(s)
- Jun-ichi Suehiro
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Toru Kimura
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Hisamichi Naito
- Department of Vascular Physiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Yasuharu Kanki
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Sakurai
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|
5
|
Yang F, Lee G, Fan Y. Navigating tumor angiogenesis: therapeutic perspectives and myeloid cell regulation mechanism. Angiogenesis 2024; 27:333-349. [PMID: 38580870 PMCID: PMC11303583 DOI: 10.1007/s10456-024-09913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Sustained angiogenesis stands as a hallmark of cancer. The intricate vascular tumor microenvironment fuels cancer progression and metastasis, fosters therapy resistance, and facilitates immune evasion. Therapeutic strategies targeting tumor vasculature have emerged as transformative for cancer treatment, encompassing anti-angiogenesis, vessel normalization, and endothelial reprogramming. Growing evidence suggests the dynamic regulation of tumor angiogenesis by infiltrating myeloid cells, such as macrophages, myeloid-derived suppressor cells (MDSCs), and neutrophils. Understanding these regulatory mechanisms is pivotal in paving the way for successful vasculature-targeted cancer treatments. Therapeutic interventions aimed to disrupt myeloid cell-mediated tumor angiogenesis may reshape tumor microenvironment and overcome tumor resistance to radio/chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Gloria Lee
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Watanabe M, Tsugeno Y, Sato T, Higashide M, Nishikiori N, Umetsu A, Ogawa T, Furuhashi M, Ohguro H. Lysophosphatidic Acid Modulates TGF-β2-Induced Biological Phenotype in Human Conjunctival Fibroblasts. Life (Basel) 2024; 14:770. [PMID: 38929752 PMCID: PMC11204428 DOI: 10.3390/life14060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Although lysophosphatidic acid (LPA) is known to have multiple pathophysiological roles, its contributions to ocular tissues, especially conjunctival fibrogenesis, remain to be elucidated. METHODS To study this issue, the effects of LPA on transforming growth factor-β2 (TGF-β2)-induced fibrogenesis of two-dimensional (2D) and three-dimensional (3D) cultures of human conjunctival fibroblasts (HconF) were examined by the following analyses: (1) planar proliferation determined by transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran permeability measurements, (2) real-time metabolic analyses, (3) measurements of the size and stiffness of 3D spheroids, and (4) mRNA expression of extracellular matrix (ECM) molecules and their modulators. RESULTS LPA had no effect on TGF-β2-induced increase in the planar proliferation of HconF cells. LPA induced a more quiescent metabolic state in 2D HconF cells, but this metabolic suppression by LPA was partially blunted in the presence of TGF-β2. In contrast, LPA caused a substantial decrease in the hardness of 3D HconF spheroids independently of TGF-β2. In agreement with these different LPA-induced effects between 2D and 3D cultured HconF cells, mRNA expressions of ECM and their modulators were differently modulated. CONCLUSION The findings that LPA induced the inhibition of both TGF-β2-related and -unrelated subepithelial proliferation of HconF cells may be clinically applicable.
Collapse
Affiliation(s)
- Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Yuri Tsugeno
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| |
Collapse
|
7
|
Carrera-Aguado I, Marcos-Zazo L, Carrancio-Salán P, Guerra-Paes E, Sánchez-Juanes F, Muñoz-Félix JM. The Inhibition of Vessel Co-Option as an Emerging Strategy for Cancer Therapy. Int J Mol Sci 2024; 25:921. [PMID: 38255995 PMCID: PMC10815934 DOI: 10.3390/ijms25020921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Vessel co-option (VCO) is a non-angiogenic mechanism of vascularization that has been associated to anti-angiogenic therapy. In VCO, cancer cells hijack the pre-existing blood vessels and use them to obtain oxygen and nutrients and invade adjacent tissue. Multiple primary tumors and metastases undergo VCO in highly vascularized tissues such as the lungs, liver or brain. VCO has been associated with a worse prognosis. The cellular and molecular mechanisms that undergo VCO are poorly understood. Recent studies have demonstrated that co-opted vessels show a quiescent phenotype in contrast to angiogenic tumor blood vessels. On the other hand, it is believed that during VCO, cancer cells are adhered to basement membrane from pre-existing blood vessels by using integrins, show enhanced motility and a mesenchymal phenotype. Other components of the tumor microenvironment (TME) such as extracellular matrix, immune cells or extracellular vesicles play important roles in vessel co-option maintenance. There are no strategies to inhibit VCO, and thus, to eliminate resistance to anti-angiogenic therapy. This review summarizes all the molecular mechanisms involved in vessel co-option analyzing the possible therapeutic strategies to inhibit this process.
Collapse
Affiliation(s)
- Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Patricia Carrancio-Salán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José M. Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
8
|
Li H, Huang Z, Yang C, Han D, Wang X, Qiu X, Zhang Z, Chen X. Association between plasma lysophosphatidic acid levels and bronchopulmonary dysplasia in extremely preterm infants: A prospective study. Pediatr Pulmonol 2023; 58:3516-3522. [PMID: 37712600 DOI: 10.1002/ppul.26685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/19/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Lysophosphatidic acid (LPA) is implicated in bronchopulmonary dysplasia (BPD) pathogenesis, but clinical evidence is lacking. This study aimed to investigate LPA levels in preterm infants with and without BPD and explore LPA as a biomarker for predicting BPD occurrence. METHODS Premature infants with a gestational age of <28 weeks or a birth weight of <1000 g were enrolled. Blood samples were collected at postnatal day (PD) 7, 28, and postmenstrual age (PMA) 36 weeks, and plasma LPA levels were measured using a commercial ELISA kit. Receiver operating characteristic curve (ROC) curve analysis determined the PD 28 cutoff for LPA, and multivariable regression analyzed LPA's independent contribution to BPD and exploratory outcomes. RESULT Among the 91 infants enrolled in this study, 35 were classified into the non-BPD group and 56 into the BPD group. Infants with BPD had higher plasma LPA levels at PD 28 (6.467 vs. 4.226 μg/mL, p = 0.034) and PMA 36 weeks (2.330 vs. 1.636 μg/mL, p = 0.001). PD 28 LPA level of 6.132 μg/mL was the cutoff for predicting BPD development. Higher PD 28 LPA levels (≥6.132 μg/mL) independently associated with BPD occurrence (OR 3.307, 95% CI 1.032-10.597, p = 0.044). Higher LPA levels correlated with longer oxygen therapy durations [regression coefficients (β) 0.147, 95% CI 0.643-16.133, p = .034]. CONCLUSIONS Infants with BPD had higher plasma LPA levels at PD 28 and PMA 36 weeks. Higher PD 28 LPA levels independently associated with an increased BPD risk.
Collapse
Affiliation(s)
- Huitao Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
- Department of Cardiac Pediatrics, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zilu Huang
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Chuanzhong Yang
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Dongshan Han
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xuan Wang
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xiaomei Qiu
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhiwei Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Cardiac Pediatrics, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xueyu Chen
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
9
|
Yanagida K, Shimizu T. Lysophosphatidic acid, a simple phospholipid with myriad functions. Pharmacol Ther 2023; 246:108421. [PMID: 37080433 DOI: 10.1016/j.pharmthera.2023.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid consisting of a phosphate group, glycerol moiety, and only one hydrocarbon chain. Despite its simple chemical structure, LPA plays an important role as an essential bioactive signaling molecule via its specific six G protein-coupled receptors, LPA1-6. Recent studies, especially those using genetic tools, have revealed diverse physiological and pathological roles of LPA and LPA receptors in almost every organ system. Furthermore, many studies are illuminating detailed mechanisms to orchestrate multiple LPA receptor signaling pathways and to facilitate their coordinated function. Importantly, these extensive "bench" works are now translated into the "bedside" as exemplified by approaches targeting LPA1 signaling to combat fibrotic diseases. In this review, we discuss the physiological and pathological roles of LPA signaling and their implications for clinical application by focusing on findings revealed by in vivo studies utilizing genetic tools targeting LPA receptors.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Takao Shimizu
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan; Institute of Microbial Chemistry, Tokyo, Japan
| |
Collapse
|
10
|
Wang H, Li M, St Onge CM, Fuss B, Zhang Y. Elucidating the binding mechanism of LPA species and analogs in an LPA 4 receptor homology model. J Mol Graph Model 2022; 116:108274. [PMID: 35868118 DOI: 10.1016/j.jmgm.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 12/15/2022]
Abstract
Lysophosphatidic acid receptor 4 (LPA4) has emerged as a potential therapeutic target for the treatment of a variety of diseases, including cancer and obesity-induced diabetes, but its structure remains to be revealed. In the present work, a homology model of LPA4 was built for studying the binding mechanism of LPA species and analogs. Then five selected LPA species and analogs with structural variations in their phosphate groups, substitutions on the glycerol backbone, and fatty acyl chains were docked into the LPA4 model, followed by molecular dynamics simulations and energy analyses. The computational results revealed that the aliphatic residues located at the vertical cleft of LPA4 may form a hydrophobic environment for the fatty acyl moiety of LPA species and their analogs. Meanwhile, the positively charged residues in the central cavity of LPA4 may form ionic interactions with the negatively charged hydrophilic head group of LPA species and their analogs. In addition, it was noted that a different binding mode of the hydrophilic head group in each species with the central cavity of the LPA4 might lead to a special rearrangement of the fatty acyl moiety. Taken together, these results may facilitate understanding of the activation mechanism of LPA4 and help design selective ligands to modulate its function for therapeutic purposes.
Collapse
Affiliation(s)
- Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Celsey M St Onge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA, 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States.
| |
Collapse
|
11
|
Sakakibara S, Sakane A, Sasaki T, Shinohara M, Maruo T, Miyata M, Mizutani K, Takai Y. Identification of lysophosphatidic acid in serum as a factor that promotes epithelial apical junctional complex organization. J Biol Chem 2022; 298:102426. [PMID: 36030821 PMCID: PMC9520027 DOI: 10.1016/j.jbc.2022.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
The apical junctional complex (AJC) consists of adherens junctions (AJs) and tight junctions and regulates epithelial integrity and remodeling. However, it is unclear how AJC organization is regulated based on environmental cues. We found here using cultured EpH4 mouse mammary epithelial cells that fetal bovine serum (FBS) in a culture medium showed an activity to promote AJC organization and that FBS showed an activity to promote tight junction formation even in the absence of AJ proteins, such as E-cadherin, αE-catenin, and afadin. Furthermore, we purified the individual factor responsible for these functions from FBS and identified this molecule as lysophosphatidic acid (LPA). In validation experiments, purified LPA elicited the same activity as FBS. In addition, we found that the AJC organization–promoting activity of LPA was mediated through the LPA receptor 1/5 via diacylglycerol–novel PKC and Rho–ROCK pathway activation in a mutually independent, but complementary, manner. We demonstrated that the Rho–ROCK pathway activation–mediated AJC organization was independent of myosin II-induced actomyosin contraction, although this signaling pathway was previously shown to induce myosin II activation. These findings are in contrast to the literature, as previous results suggested an AJC organization–disrupting activity of LPA. The present results indicate that LPA in serum has an AJC organization–promoting activity in a manner dependent on or independent of AJ proteins.
Collapse
Affiliation(s)
- Shotaro Sakakibara
- Department of Biochemistry, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Ayuko Sakane
- Department of Biochemistry, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan; Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8503, Japan.
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan; The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Tomohiko Maruo
- Department of Biochemistry, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan.
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan.
| |
Collapse
|
12
|
Wang S, Chen J, Guo XZ. KAI1/CD82 gene and autotaxin-lysophosphatidic acid axis in gastrointestinal cancers. World J Gastrointest Oncol 2022; 14:1388-1405. [PMID: 36160748 PMCID: PMC9412925 DOI: 10.4251/wjgo.v14.i8.1388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/06/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
The KAI1/CD82 gene inhibits the metastasis of most tumors and is remarkably correlated with tumor invasion and prognosis. Cell metabolism dysregulation is an important cause of tumor occurrence, development, and metastasis. As one of the important characteristics of tumors, cell metabolism dysregulation is attracting increasing research attention. Phospholipids are an indispensable substance in the metabolism in various tumor cells. Phospholipid metabolites have become important cell signaling molecules. The pathological role of lysophosphatidic acid (LPA) in tumors was identified in the early 1990s. Currently, LPA inhibitors have entered clinical trials but are not yet used in clinical treatment. Autotaxin (ATX) has lysophospholipase D (lysoPLD) activity and can regulate LPA levels in vivo. The LPA receptor family and ATX/lysoPLD are abnormally expressed in various gastrointestinal tumors. According to our recent pre-experimental results, KAI1/CD82 might inhibit the migration and metastasis of cancer cells by regulating the ATX-LPA axis. However, no relevant research has been reported. Clarifying the mechanism of ATX-LPA in the inhibition of cancer metastasis by KAI1/CD82 will provide an important theoretical basis for targeted cancer therapy. In this paper, the molecular compositions of the KAI1/CD82 gene and the ATX-LPA axis, their physiological functions in tumors, and their roles in gastrointestinal cancers and target therapy are reviewed.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Jiang Chen
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Xiao-Zhong Guo
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| |
Collapse
|
13
|
Pei J, Cai L, Wang F, Xu C, Pei S, Guo H, Sun X, Chun J, Cong X, Zhu W, Zheng Z, Chen X. LPA 2 Contributes to Vascular Endothelium Homeostasis and Cardiac Remodeling After Myocardial Infarction. Circ Res 2022; 131:388-403. [PMID: 35920162 DOI: 10.1161/circresaha.122.321036] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Myocardial infarction (MI) is one of the most dangerous adverse cardiovascular events. Our previous study found that lysophosphatidic acid (LPA) is increased in human peripheral blood after MI, and LPA has a protective effect on the survival and proliferation of various cell types. However, the role of LPA and its receptors in MI is less understood. OBJECTIVES To study the unknown role of LPA and its receptors in heart during MI. METHODS AND RESULTS In this study, we found that mice also had elevated LPA level in peripheral blood, as well as increased cardiac expression of its receptor LPA2 in the early stages after MI. With adult and neonate MI models in global Lpar2 knockout (Lpar2-KO) mice, we found Lpar2 deficiency increased vascular leak leading to disruption of its homeostasis, so as to impaired heart function and increased early mortality. Histological examination revealed larger scar size, increased fibrosis, and reduced vascular density in the heart of Lpar2-KO mice. Furthermore, Lpar2-KO also attenuated blood flow recovery after femoral artery ligation with decreased vascular density in gastrocnemius. Our study revealed that Lpar2 was mainly expressed and altered in cardiac endothelial cells during MI, and use of endothelial-specific Lpar2 knockout mice phenocopied the global knockout mice. Additionally, adenovirus-Lpar2 and pharmacologically activated LPA2 significantly improved heart function, reduced scar size, increased vascular formation, and alleviated early mortality by maintaining vascular homeostasis owing to protecting vessels from leakage. Mechanistic studies demonstrated that LPA-LPA2 signaling could promote endothelial cell proliferation through PI3K-Akt/PLC-Raf1-Erk pathway and enhanced endothelial cell tube formation via PKD1-CD36 signaling. CONCLUSIONS Our results indicate that endothelial LPA-LPA2 signaling promotes angiogenesis and maintains vascular homeostasis, which is vital for restoring blood flow and repairing tissue function in ischemic injuries. Targeting LPA-LPA2 signal might have clinical therapeutic potential to protect the heart from ischemic injury.
Collapse
Affiliation(s)
- Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease (J.P., L.C., C.X., S.P., X.C., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China (J.P., Z.Z.)
| | - Lin Cai
- State Key Laboratory of Cardiovascular Disease (J.P., L.C., C.X., S.P., X.C., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (L.C.)
| | - Fang Wang
- State Key Laboratory of Cardiovascular Disease, Center of Laboratory Medicine (F.W., X. Cong, X. Chen), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuansheng Xu
- State Key Laboratory of Cardiovascular Disease (J.P., L.C., C.X., S.P., X.C., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengqiang Pei
- State Key Laboratory of Cardiovascular Disease (J.P., L.C., C.X., S.P., X.C., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongwei Guo
- Department of Cardiovascular Surgery (H.G., X.S., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaogang Sun
- Department of Cardiovascular Surgery (H.G., X.S., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (J.C.)
| | - Xiangfeng Cong
- State Key Laboratory of Cardiovascular Disease, Center of Laboratory Medicine (F.W., X. Cong, X. Chen), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiquan Zhu
- Department of Medicine, Program in Molecular Medicine, Department of Internal Medicine, Division of Cardiovascular Medicine, Department of Pathology, University of Utah, Salt Lake City (W.Z.)
| | - Zhe Zheng
- Department of Cardiovascular Surgery (H.G., X.S., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China (J.P., Z.Z.)
| | - Xi Chen
- State Key Laboratory of Cardiovascular Disease (J.P., L.C., C.X., S.P., X.C., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Cardiovascular Disease, Center of Laboratory Medicine (F.W., X. Cong, X. Chen), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Abstract
Lysophospholipids, exemplified by lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), are produced by the metabolism and perturbation of biological membranes. Both molecules are established extracellular lipid mediators that signal via specific G protein-coupled receptors in vertebrates. This widespread signaling axis regulates the development, physiological functions, and pathological processes of all organ systems. Indeed, recent research into LPA and S1P has revealed their important roles in cellular stress signaling, inflammation, resolution, and host defense responses. In this review, we focus on how LPA regulates fibrosis, neuropathic pain, abnormal angiogenesis, endometriosis, and disorders of neuroectodermal development such as hydrocephalus and alopecia. In addition, we discuss how S1P controls collective behavior, apoptotic cell clearance, and immunosurveillance of cancers. Advances in lysophospholipid research have led to new therapeutics in autoimmune diseases, with many more in earlier stages of development for a wide variety of diseases, such as fibrotic disorders, vascular diseases, and cancer.
Collapse
Affiliation(s)
- Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; , .,AMED-LEAP, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; , .,AMED-LEAP, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Platelets in COVID-19 disease: friend, foe, or both? Pharmacol Rep 2022; 74:1182-1197. [PMID: 36463349 PMCID: PMC9726679 DOI: 10.1007/s43440-022-00438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/07/2022]
Abstract
Immuno-thrombosis of COVID-19 results in the activation of platelets and coagulopathy. Antiplatelet therapy has been widely used in COVID-19 patients to prevent thrombotic events. However, recent analysis of clinical trials does not support the major effects of antiplatelet therapy on mortality in hospitalized COVID-19 patients, despite the indisputable evidence for an increased risk of thrombotic complications in COVID-19 disease. This apparent paradox calls for an explanation. Platelets have an important role in sensing and orchestrating host response to infection, and several platelet functions related to host defense response not directly related to their well-known hemostatic function are emerging. In this paper, we aim to review the evidence supporting the notion that platelets have protective properties in maintaining endothelial barrier integrity in the course of an inflammatory response, and this role seems to be of particular importance in the lung. It might, thus, well be that the inhibition of platelet function, if affecting the protective aspect of platelet activity, might diminish clinical benefits resulting from the inhibition of the pro-thrombotic phenotype of platelets in immuno-thrombosis of COVID-19. A better understanding of the platelet-dependent mechanisms involved in the preservation of the endothelial barrier is necessary to design the antiplatelet therapeutic strategies that inhibit the pro-thrombotic activity of platelets without effects on the vaso-protective function of platelets safeguarding the pulmonary endothelial barrier during multicellular host defense in pulmonary circulation.
Collapse
|
16
|
Okasato R, Kano K, Kise R, Inoue A, Fukuhara S, Aoki J. An ATX-LPA 6-Gα 13-ROCK axis shapes and maintains caudal vein plexus in zebrafish. iScience 2021; 24:103254. [PMID: 34755093 PMCID: PMC8564058 DOI: 10.1016/j.isci.2021.103254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a potential regulator of vascular formation derived from blood. In this study, we utilized zebrafish as a model organism to monitor the blood vessel formation in detail. Zebrafish mutant of ATX, an LPA-producing enzyme, had a defect in the caudal vein plexus (CVP). Pharmacological inhibition of ATX resulted in a fusion of the delicate vessels in the CVP to form large sac-like vessels. Mutant embryos of LPA6 receptor and downstream Gα13 showed the same phenotype. Administration of OMPT, a stable LPA-analog, induced rapid CVP constriction, which was attenuated significantly in the LPA6 mutant. We also found that blood flow-induced CVP formation was dependent on ATX. The present study demonstrated that the ATX-LPA6 axis acts cooperatively with blood flow and contributes to the formation and maintenance of the CVP by generating contractive force in endothelial cells. Blocking an ATX-LPA6-Gα13-ROCK axis causes malformation of the caudal vein plexus The axis also contributes to maintaining the fine structure of the caudal vein plexus Activation of LPA6 induces vasoconstriction Caudal vein plexus formation evoked by blood flow is dependent on an ATX-LPA6 axis
Collapse
Affiliation(s)
- Ryohei Okasato
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
17
|
The Dual Effect of the BMP9-ALK1 Pathway in Blood Vessels: An Opportunity for Cancer Therapy Improvement? Cancers (Basel) 2021; 13:cancers13215412. [PMID: 34771575 PMCID: PMC8582496 DOI: 10.3390/cancers13215412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The modulation of tumor blood vessels is a great opportunity for improving cancer therapies. Understanding the cellular and molecular players that regulate the biology of tumor blood vessels and tumor angiogenesis is necessary for the development of new anti-tumor strategies. Bone morphogenetic protein 9 (BMP9) is a circulating factor with multiple effects in vascular biology through its receptor activin receptor-like kinase 1 (ALK1). In this review, we give an overview of the possible benefits of modulating BMP9–ALK1 functions for cancer therapy improvement. Abstract The improvement of cancer therapy efficacy, the extension of patient survival and the reduction of adverse side effects are major challenges in cancer research. Targeting blood vessels has been considered a promising strategy in cancer therapy. Since the tumor vasculature is disorganized, leaky and triggers immunosuppression and tumor hypoxia, several strategies have been studied to modify tumor vasculature for cancer therapy improvement. Anti-angiogenesis was first described as a mechanism to prevent the formation of new blood vessels and prevent the oxygen supply to tumor cells, showing numerous limitations. Vascular normalization using low doses of anti-angiogenic drugs was purposed to overcome the limitations of anti-angiogenic therapies. Other strategies such as vascular promotion or the induction of high endothelial venules are being studied now to improve cancer therapy. Bone morphogenetic protein 9 (BMP9) exerts a dual effect through the activin receptor-like kinase 1 (ALK1) receptor in blood vessel maturation or activation phase of angiogenesis. Thus, it is an interesting pathway to target in combination with chemotherapies or immunotherapies. This review manuscript explores the effect of the BMP9–ALK1 pathway in tumor angiogenesis and the possible usefulness of targeting this pathway in anti-angiogenesis, vascular normalization or vascular promotion therapies.
Collapse
|
18
|
Yang T, Xiao H, Liu X, Wang Z, Zhang Q, Wei N, Guo X. Vascular Normalization: A New Window Opened for Cancer Therapies. Front Oncol 2021; 11:719836. [PMID: 34476218 PMCID: PMC8406857 DOI: 10.3389/fonc.2021.719836] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Preclinical and clinical antiangiogenic approaches, with multiple side effects such as resistance, have not been proved to be very successful in treating tumor blood vessels which are important targets for tumor therapy. Meanwhile, restoring aberrant tumor blood vessels, known as tumor vascular normalization, has been shown not only capable of reducing tumor invasion and metastasis but also of enhancing the effectiveness of chemotherapy, radiation therapy, and immunotherapy. In addition to the introduction of such methods of promoting tumor vascular normalization such as maintaining the balance between proangiogenic and antiangiogenic factors and targeting endothelial cell metabolism, microRNAs, and the extracellular matrix, the latest molecular mechanisms and the potential connections between them were primarily explored. In particular, the immunotherapy-induced normalization of blood vessels further promotes infiltration of immune effector cells, which in turn improves immunotherapy, thus forming an enhanced loop. Thus, immunotherapy in combination with antiangiogenic agents is recommended. Finally, we introduce the imaging technologies and serum markers, which can be used to determine the window for tumor vascular normalization.
Collapse
Affiliation(s)
- Ting Yang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongqi Xiao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoxia Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihui Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingbai Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nianjin Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinggang Guo
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Takakura N. Vascular reconstitution in the tumor for more effective tumor immunotherapy. Cancer Sci 2021; 112:1348-1356. [PMID: 33587826 PMCID: PMC8019202 DOI: 10.1111/cas.14854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
It has been widely accepted that the regulation of the tumor microenvironment is an important strategy in cancer treatment. Particularly, control of the tumor vasculature has been suggested to be critical for antitumor immunotherapy. Effectiveness of cancer immunotherapy depends on the quality and quantity of immune cells infiltrating into tumor tissues, which may be affected by the status of the tumor vasculature. Under physiological conditions, immune cells migrate from the intravascular lumen into the parenchyma especially by passing through the vascular wall of venulae. Extravasation of immune cells is induced from venulae where endothelial cells (ECs) are fully covered with pericytes from the basal side. Interaction of pericytes with ECs contributes to immune cell extravasation by several steps, ie, adhesion of immune cells to intraluminal ECs, transmigration, and chemotaxis of immune cells. Blood vessels are structurally immature and non‐functional in tumors, and therefore, induction of maturation in the tumor vasculature is a promising strategy for effective cancer therapies and is relevant not only for immune cell migration but also drug delivery.
Collapse
Affiliation(s)
- Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
20
|
An in vivo model allowing continuous observation of human vascular formation in the same animal over time. Sci Rep 2021; 11:745. [PMID: 33436931 PMCID: PMC7804448 DOI: 10.1038/s41598-020-80497-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis contributes to numerous pathological conditions. Understanding the molecular mechanisms of angiogenesis will offer new therapeutic opportunities. Several experimental in vivo models that better represent the pathological conditions have been generated for this purpose in mice, but it is difficult to translate results from mouse to human blood vessels. To understand human vascular biology and translate findings into human research, we need human blood vessel models to replicate human vascular physiology. Here, we show that human tumor tissue transplantation into a cranial window enables engraftment of human blood vessels in mice. An in vivo imaging technique using two-photon microscopy allows continuous observation of human blood vessels until at least 49 days after tumor transplantation. These human blood vessels make connections with mouse blood vessels as shown by the finding that lectin injected into the mouse tail vein reaches the human blood vessels. Finally, this model revealed that formation and/or maintenance of human blood vessels depends on VEGFR2 signaling. This approach represents a useful tool to study molecular mechanisms of human blood vessel formation and to test effects of drugs that target human blood vessels in vivo to show proof of concept in a preclinical model.
Collapse
|
21
|
Martin JD, Seano G, Jain RK. Normalizing Function of Tumor Vessels: Progress, Opportunities, and Challenges. Annu Rev Physiol 2020; 81:505-534. [PMID: 30742782 DOI: 10.1146/annurev-physiol-020518-114700] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abnormal blood and lymphatic vessels create a hostile tumor microenvironment characterized by hypoxia, low pH, and elevated interstitial fluid pressure. These abnormalities fuel tumor progression, immunosuppression, and treatment resistance. In 2001, we proposed a novel hypothesis that the judicious use of antiangiogenesis agents-originally developed to starve tumors-could transiently normalize tumor vessels and improve the outcome of anticancer drugs administered during the window of normalization. In addition to providing preclinical and clinical evidence in support of this hypothesis, we also revealed the underlying molecular mechanisms. In parallel, we demonstrated that desmoplasia could also impair vascular function by compressing vessels, and that normalizing the extracellular matrix could improve vascular function and treatment outcome in both preclinical and clinical settings. Here, we summarize the progress made in understanding and applying the normalization concept to cancer and outline opportunities and challenges ahead to improve patient outcomes using various normalizing strategies.
Collapse
Affiliation(s)
- John D Martin
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Giorgio Seano
- Institut Curie Research Center, CNRS, Inserm, UMR3347, U1021, 91405 Orsay, France
| | - Rakesh K Jain
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA;
| |
Collapse
|
22
|
Xiang H, Lu Y, Shao M, Wu T. Lysophosphatidic Acid Receptors: Biochemical and Clinical Implications in Different Diseases. J Cancer 2020; 11:3519-3535. [PMID: 32284748 PMCID: PMC7150451 DOI: 10.7150/jca.41841] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Lysophosphatidic acid (LPA, 1-acyl-2-hemolytic-sn-glycerol-3-phosphate) extracted from membrane phospholipid is a kind of simple bioactive glycophospholipid, which has many biological functions such as stimulating cell multiplication, cytoskeleton recombination, cell survival, drug-fast, synthesis of DNA and ion transport. Current studies have shown that six G-coupled protein receptors (LPAR1-6) can be activated by LPA. They stimulate a variety of signal transduction pathways through heterotrimeric G-proteins (such as Gα12/13, Gαq/11, Gαi/o and GαS). LPA and its receptors play vital roles in cancers, nervous system diseases, cardiovascular diseases, liver diseases, metabolic diseases, etc. In this article, we discussed the structure of LPA receptors and elucidated their functions in various diseases, in order to better understand them and point out new therapeutic schemes for them.
Collapse
Affiliation(s)
- Hongjiao Xiang
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Shao
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
23
|
Yanagida K, Valentine WJ. Druggable Lysophospholipid Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:137-176. [DOI: 10.1007/978-3-030-50621-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Zhou Y, Little PJ, Ta HT, Xu S, Kamato D. Lysophosphatidic acid and its receptors: pharmacology and therapeutic potential in atherosclerosis and vascular disease. Pharmacol Ther 2019; 204:107404. [DOI: 10.1016/j.pharmthera.2019.107404] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
|
25
|
Deregulated Lysophosphatidic Acid Metabolism and Signaling in Liver Cancer. Cancers (Basel) 2019; 11:cancers11111626. [PMID: 31652837 PMCID: PMC6893780 DOI: 10.3390/cancers11111626] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the leading causes of death worldwide due to late diagnosis and scarcity of treatment options. The major risk factor for liver cancer is cirrhosis with the underlying causes of cirrhosis being viral infection (hepatitis B or C), metabolic deregulation (Non-alcoholic fatty liver disease (NAFLD) in the presence of obesity and diabetes), alcohol or cholestatic disorders. Lysophosphatidic acid (LPA) is a bioactive phospholipid with numerous effects, most of them compatible with the hallmarks of cancer (proliferation, migration, invasion, survival, evasion of apoptosis, deregulated metabolism, neoangiogenesis, etc.). Autotaxin (ATX) is the enzyme responsible for the bulk of extracellular LPA production, and together with LPA signaling is involved in chronic inflammatory diseases, fibrosis and cancer. This review discusses the most important findings and the mechanisms related to ATX/LPA/LPAR involvement on metabolic, viral and cholestatic liver disorders and their progression to liver cancer in the context of human patients and mouse models. It focuses on the role of ATX/LPA in NAFLD development and its progression to liver cancer as NAFLD has an increasing incidence which is associated with the increasing incidence of liver cancer. Bearing in mind that adipose tissue accounts for the largest amount of LPA production, many studies have implicated LPA in adipose tissue metabolism and inflammation, liver steatosis, insulin resistance, glucose intolerance and lipogenesis. At the same time, LPA and ATX play crucial roles in fibrotic diseases. Given that hepatocellular carcinoma (HCC) is usually developed on the background of liver fibrosis, therapies that both delay the progression of fibrosis and prevent its development to malignancy would be very promising. Therefore, ATX/LPA signaling appears as an attractive therapeutic target as evidenced by the fact that it is involved in both liver fibrosis progression and liver cancer development.
Collapse
|
26
|
Xu Y. Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside. Cancers (Basel) 2019; 11:E1523. [PMID: 31658655 PMCID: PMC6826372 DOI: 10.3390/cancers11101523] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Since the clear demonstration of lysophosphatidic acid (LPA)'s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications.
Collapse
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA.
| |
Collapse
|
27
|
Fan Y, Mu J, Huang M, Imani S, Wang Y, Lin S, Fan J, Wen Q. Epigenetic identification of ADCY4 as a biomarker for breast cancer: an integrated analysis of adenylate cyclases. Epigenomics 2019; 11:1561-1579. [PMID: 31584294 DOI: 10.2217/epi-2019-0207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To explore the role of adenylyl cyclase isoforms and its epigenetics in cancer. Materials & methods: Adenylyl cyclase expression profiles, epigenetic alterations, prognostic value and molecular networks were assessed by use of public omics datasets. Results: ADCY4 was significantly downregulated in breast cancer. This downregulation was associated with promoter hypermethylation. High ADCY4 expression was correlated with better survival of patients with breast cancer and its different intrinsic subtypes and tumor stages. ADCY4 was shown to be strongly associated with G protein coupled receptors and the downstream cAMP signaling pathway, which was also significantly enriched in newly identified lysophosphatidic acid receptor 4 and glucagon-like peptide-1. Conclusion: ADCY4 may be used as an epigenetic biomarker for breast cancer, as well as a possible target for therapy.
Collapse
Affiliation(s)
- Yu Fan
- Oncology Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, PR China
| | - Mingquan Huang
- Breast Surgery Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Saber Imani
- Oncology Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Yu Wang
- Health Examination Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Sheng Lin
- Oncology Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Juan Fan
- Oncology Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Qinglian Wen
- Oncology Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| |
Collapse
|
28
|
Magkrioti C, Galaris A, Kanellopoulou P, Stylianaki EA, Kaffe E, Aidinis V. Autotaxin and chronic inflammatory diseases. J Autoimmun 2019; 104:102327. [PMID: 31471142 DOI: 10.1016/j.jaut.2019.102327] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 08/17/2019] [Indexed: 12/18/2022]
Abstract
Autotaxin (ATX) is a secreted glycoprotein, widely present in biological fluids including blood. ATX catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a growth factor-like, signaling phospholipid. LPA exerts pleiotropic effects mediated by its G-protein-coupled receptors that are widely expressed and exhibit overlapping specificities. Although ATX also possesses matricellular properties, the majority of ATX reported functions in adulthood are thought to be mediated through the extracellular production of LPA. ATX-mediated LPA synthesis is likely localized at the cell surface through the possible interaction of ATX with integrins or other molecules, while LPA levels are further controlled by a group of membrane-associated lipid-phosphate phosphatases. ATX expression was shown to be necessary for embryonic development, and ATX deficient embryos exhibit defective vascular homeostasis and aberrant neuronal system development. In adult life, ATX is highly expressed in the adipose tissue and has been implicated in diet-induced obesity and glucose homeostasis with multiple implications in metabolic disorders. Additionally, LPA has been shown to affect multiple cell types, including stromal and immune cells in various ways. Therefore, LPA participates in many processes that are intricately involved in the pathogenesis of different chronic inflammatory diseases such as vascular homeostasis, skeletal and stromal remodeling, lymphocyte trafficking and immune regulation. Accordingly, increased ATX and LPA levels have been detected, locally and/or systemically, in patients with chronic inflammatory diseases, most notably idiopathic pulmonary fibrosis (IPF), chronic liver diseases, and rheumatoid arthritis. Genetic and pharmacological studies in mice have confirmed a pathogenetic role for ATX expression and LPA signaling in chronic inflammatory diseases, and provided the proof of principle for therapeutic interventions, as exemplified by the ongoing clinical trials for IPF.
Collapse
Affiliation(s)
| | - Apostolos Galaris
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | | | | | - Eleanna Kaffe
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | - Vassilis Aidinis
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece.
| |
Collapse
|
29
|
Lysophosphatidic Acid and Autotaxin-associated Effects on the Initiation and Progression of Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11070958. [PMID: 31323936 PMCID: PMC6678549 DOI: 10.3390/cancers11070958] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium interacts dynamically with the immune system to maintain its barrier function to protect the host, while performing the physiological roles in absorption of nutrients, electrolytes, water and minerals. The importance of lysophosphatidic acid (LPA) and its receptors in the gut has been progressively appreciated. LPA signaling modulates cell proliferation, invasion, adhesion, angiogenesis, and survival that can promote cancer growth and metastasis. These effects are equally important for the maintenance of the epithelial barrier in the gut, which forms the first line of defense against the milieu of potentially pathogenic stimuli. This review focuses on the LPA-mediated signaling that potentially contributes to inflammation and tumor formation in the gastrointestinal tract.
Collapse
|
30
|
Iba T, Naito H, Shimizu S, Rahmawati FN, Wakabayashi T, Takakura N. Isolation of tissue-resident endothelial stem cells and their use in regenerative medicine. Inflamm Regen 2019; 39:9. [PMID: 31086611 PMCID: PMC6505211 DOI: 10.1186/s41232-019-0098-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/12/2019] [Indexed: 11/25/2022] Open
Abstract
Background During sprouting angiogenesis, stalk cells, localized behind tip cells, generate endothelial cells (ECs) for the elongation of new vessels. We hypothesized that stalk cells may have endothelial progenitor cell properties because of their highly proliferative ability. We conducted Hoechst dye DNA staining in ECs of preexisting blood vessels from hind limb muscle and found that endothelial-side population (E-SP) cells, which efflux Hoechst rapidly with abundant ABC transporters, show highly producing ability of ECs. We previously showed the existence of E-SP cells in hind limb muscle, retina, and liver, but not in other tissues such as adipose tissue, skin, and placenta. Methods We investigated the existence of E-SP cells and analyzed their proliferative ability among CD31+CD45− ECs from adipose tissue, skin, and placenta of adult mice. We also analyzed the neovascular formation of E-SP cells from adipose tissue in vivo. Results We detected E-SP cells in all tissues examined. However, by in vitro colony formation analysis on OP9 cells, we found that E-SP cells from adipose tissue and skin, but not from placenta, have highly proliferative ability. Moreover, E-SP cells from adipose tissue could contribute to the neovascular formation in hind limb ischemia model. Conclusion The adipose tissue and skin are available sources to obtain endothelial stem cells for conducting therapeutic angiogenesis in regenerative medicine.
Collapse
Affiliation(s)
- Tomohiro Iba
- 1Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871 Japan
| | - Hisamichi Naito
- 1Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871 Japan
| | - Shota Shimizu
- 1Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871 Japan
| | - Fitriana Nur Rahmawati
- 1Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871 Japan
| | - Taku Wakabayashi
- 1Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871 Japan
| | - Nobuyuki Takakura
- 1Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871 Japan.,2Division of Signal Transduction, Immunology Frontier Reserch Center, Osaka University, Suita, Japan
| |
Collapse
|
31
|
Yang L, Kraemer M, Fang XF, Angel PM, Drake RR, Morris AJ, Smyth SS. LPA receptor 4 deficiency attenuates experimental atherosclerosis. J Lipid Res 2019; 60:972-980. [PMID: 30796085 PMCID: PMC6495174 DOI: 10.1194/jlr.m091066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
The widely expressed lysophosphatidic acid (LPA) selective receptor 4 (LPAR4) contributes to vascular development in mice and zebrafish. LPAR4 regulates endothelial permeability, lymphocyte migration, and hematopoiesis, which could contribute to atherosclerosis. We investigated the role of LPAR4 in experimental atherosclerosis elicited by adeno-associated virus expressing PCSK9 to lower LDL receptor levels. After 20 weeks on a Western diet, cholesterol levels and lipoprotein distribution were similar in WT male and Lpar4Y/- mice (P = 0.94). The atherosclerotic lesion area in the proximal aorta and arch was ∼25% smaller in Lpar4Y/- mice (P = 0.009), and less atherosclerosis was detected in Lpar4Y/- mice at any given plasma cholesterol. Neutral lipid accumulation in aortic root sections occupied ∼40% less area in Lpar4Y/- mice (P = 0.001), and CD68 expression was ∼25% lower (P = 0.045). No difference in α-smooth muscle actin staining was observed. Bone marrow-derived macrophages isolated from Lpar4Y/- mice displayed significantly increased upregulation of the M2 marker Arg1 in response to LPA compared with WT cells. In aortic root sections from Lpar4Y/- mice, heightened M2 "repair" macrophage marker expression was detected by CD206 staining (P = 0.03). These results suggest that LPAR4 may regulate the recruitment of specific sets of macrophages or their phenotypic switching in a manner that could influence the development of atherosclerosis.
Collapse
Affiliation(s)
- Liping Yang
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536
| | - Maria Kraemer
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536
| | - Xianjun Frank Fang
- Department of Biochemistry and Molecular Biology VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0614
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC 29425
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC 29425
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536; Veterans Affairs Medical Center, Lexington, KY 40511
| | - Susan S Smyth
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536; Veterans Affairs Medical Center, Lexington, KY 40511.
| |
Collapse
|
32
|
Hayashi Y, Jia W, Kidoya H, Muramatsu F, Tsukada Y, Takakura N. Galectin-3 Inhibits Cancer Metastasis by Negatively Regulating Integrin β3 Expression. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:900-910. [PMID: 30653955 DOI: 10.1016/j.ajpath.2018.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/27/2023]
Abstract
Galectin-3 (Gal-3; gene LGALS3) is a member of the β-galactose-binding lectin family. Previous studies showed that Gal-3 is expressed in several tissues across species and functions as a regulator of cell proliferation, apoptosis, adhesion, and migration, thus affecting many aspects of events, such as angiogenesis and tumorigenesis. Although several reports have suggested that the level of Gal-3 expression correlates positively with tumor progression, herein we show that highly metastatic mouse melanoma B16/BL6 cells express less Gal-3 than B16 cells with a lower metastatic potential. It was found that overexpression of Gal-3 in melanoma cells in fact suppresses metastasis. In contrast, knocking out Gal-3 expression in cancer cells promoted cell aggregation mediated through interactions with platelets and fibrinogen in vitro and increased the number of metastatic foci in vivo. Thus, reduced Gal-3 expression results in the up-regulation of β3 integrin expression, and this contributes to metastatic potential. These findings indicate that changes of Gal-3 expression in cancer cells during tumor progression influence the characteristics of metastatic cells.
Collapse
Affiliation(s)
- Yumiko Hayashi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Weizhen Jia
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yohei Tsukada
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Division of Signal Transduction, Immunology Frontier Research Center, Osaka University, Suita, Japan.
| |
Collapse
|
33
|
Eino D, Tsukada Y, Naito H, Kanemura Y, Iba T, Wakabayashi T, Muramatsu F, Kidoya H, Arita H, Kagawa N, Fujimoto Y, Takara K, Kishima H, Takakura N. LPA4-Mediated Vascular Network Formation Increases the Efficacy of Anti-PD-1 Therapy against Brain Tumors. Cancer Res 2018; 78:6607-6620. [PMID: 30301839 DOI: 10.1158/0008-5472.can-18-0498] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/22/2018] [Accepted: 10/05/2018] [Indexed: 11/16/2022]
Abstract
: The structure and function of tumor blood vessels profoundly affects the tumor microenvironment. Signals mediated through the lysophosphatidic acid receptor 4 (LPA4) promote vascular network formation to restore normal vascular barrier function in subcutaneous tumors and thus improve drug delivery. However, the characteristics of the vasculature vary by organ and tumor types, and how drug delivery and leukocyte trafficking are affected by modification of vascular function by LPA in different cancers is unclear. Here, we show that LPA4 activation promotes the formation of fine vascular structures in brain tumors. RhoA/ROCK signaling contributed to LPA-induced endothelial cell-cell adhesion, and RhoA/ROCK activity following LPA4 stimulation regulated expression of VCAM-1. This resulted in increased lymphocyte infiltration into the tumor. LPA improved delivery of exogenous IgG into brain tumors and enhanced the anticancer effect of anti-programmed cell death-1 antibody therapy. These results indicate the effects of LPA on vascular structure and function apply not only to chemotherapy but also to immunotherapy. SIGNIFICANCE: These findings demonstrate that lysophosphatidic acid, a lipid mediator, promotes development of a fine capillary network in brain tumors by inducing tightening of endothelial cell-to-cell adhesion, facilitating improved drug delivery, and lymphocyte penetration.
Collapse
Affiliation(s)
- Daisuke Eino
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yohei Tsukada
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hisamichi Naito
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, Japan
| | - Tomohiro Iba
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Taku Wakabayashi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hideyuki Arita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasunori Fujimoto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiro Takara
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Research Unit/Frontier Therapeutic Sciences Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Aoba-ku, Yokohama, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
34
|
Wang C, Zhang J, Tang J, Li YY, Gu Y, Yu Y, Xiong J, Zhao X, Zhang Z, Li TT, Chen J, Wan Q, Zhang Z. Lysophosphatidic acid induces neuronal cell death via activation of asparagine endopeptidase in cerebral ischemia-reperfusion injury. Exp Neurol 2018; 306:1-9. [PMID: 29673933 DOI: 10.1016/j.expneurol.2018.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/01/2018] [Accepted: 04/14/2018] [Indexed: 12/26/2022]
Abstract
Lysophosphatidic acid (LPA), an extracellular signaling molecule, influences diverse biological events, including the pathophysiological process induced after ischemic brain injury. However, the molecular mechanisms mediating the pathological change after ischemic stroke remain elusive. Here we report that asparagine endopeptidase (AEP), a lysosomal cysteine proteinase, is regulated by LPA during stroke. AEP proteolytically cleaves tau and generates tauN368 fragments, triggering neuronal death. Inhibiting the generation of LPA reduces the expression of AEP and tauN368, and alleviates neuronal cell death. Together, this evidence indicates that the LPA-AEP pathway plays a key role in the pathophysiological process induced after ischemic stroke. Inhibition of LPA could be a useful therapeutic for treating neuronal injury after stroke.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jie Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Junchun Tang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Yi-Yi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - YanXia Gu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ying Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xueqing Zhao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zheng Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ting-Ting Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jutao Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|