1
|
Barnet M, Descheemaeker A, Favier L, Moisset X, Schopp J, Dallel R, Artola A, Monconduit L, Antri M. Estrous cycle regulates cephalic mechanical sensitivity and sensitization of the trigemino-cervical complex in a female rat model of chronic migraine. Pain 2024:00006396-990000000-00761. [PMID: 39480245 DOI: 10.1097/j.pain.0000000000003459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024]
Abstract
ABSTRACT The higher incidence of migraines in women compared with men has led to the inclusion of female animals in pain research models. However, the critical role of the hormonal cycle is frequently overlooked, despite its clear correlation with migraine occurrences. In this study, we show in a rat model of migraine induced by repeated dural infusions of an inflammatory soup (IS) that a second IS (IS2) injection performed in proestrus/estrus (PE, high estrogen) female rats evokes higher cephalic mechanical hypersensitivities than when performed in metestrus/diestrus (MD, low estrogen) or ovariectomized (OV) rats. This hypersensitivity induced by IS2 correlates with increased c-Fos expression in outer lamina II (IIo) neurons located in the periorbital projection area of the trigemino-cervical complex (TCC), in PE only. Four IS (IS4) repetition induced an enlargement of c-Fos expression in adjacent territories areas in PE, but not MD or OV animals. Unexpectedly, c-Fos expression in locus coeruleus neurons does not potentiate after IS2 or IS4 injections. To examine the impacts of the hormonal cycle on the physiology of lamina IIo TCC neurons, we performed whole-cell patch-clamp recordings. Second inflammatory soup depolarizes neurons in PE and MD but not in OV rats and enhances excitatory synaptic inputs in PE animals to a greater extent compared with MD and OV rats. These findings show that central TCC sensitization triggered by meningeal nociceptor activation and the resulting cephalic hypersensitivity are modulated by the estrous cycle. This highlights the crucial need to account for not just sex, but also the female estrous cycle in pain research.
Collapse
Affiliation(s)
- Maxime Barnet
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Silva Tortorelli L, Garad M, Megemont M, Haga-Yamanaka S, Goel A, Yang H. Variations of neuronal properties in the region of locus coeruleus of mice. Brain Res 2024:149289. [PMID: 39442646 DOI: 10.1016/j.brainres.2024.149289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Neurons in the locus coeruleus (LC) have been traditionally viewed as a homogenous population. Recent studies begin to reveal their heterogeneity at multiple levels, ranging from molecular compositions to projection targets. To further uncover variations of neuronal properties in the LC, we took a genetic-based tagging approach to identify these neurons. Our data revealed diverse spike waveforms among neurons in the LC region, including a considerable fraction of narrow-spiking units. While all wide-spiking units possessed the regular waveform polarity (negative-positive deflection), the narrow units can be further divided based on opposing waveform polarities. Under anesthesia, wide units emitted action potential at a higher rate than the narrow units. Under wakefulness, only one subtype of narrow units exhibited fast-spiking phenotype. These neurons also had long latencies to optogenetic stimulation. In-situ hybridization further supported the existence of a small population of putative GABAergic neurons in the LC core. Together, our data reveal characteristic differences among neurons in the LC region, and suggest that a fraction of electrophysiologically-identified narrow-spiking neurons can be fast-spiking interneurons, and their fast-spiking feature is masked by anesthesia.
Collapse
Affiliation(s)
- Lucas Silva Tortorelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Machhindra Garad
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Marine Megemont
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Sachiko Haga-Yamanaka
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Anubhuti Goel
- Department of Psychology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
3
|
Kuo CC, McCall JG. Neural circuit-selective, multiplexed pharmacological targeting of prefrontal cortex-projecting locus coeruleus neurons drives antinociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598059. [PMID: 38895281 PMCID: PMC11185789 DOI: 10.1101/2024.06.08.598059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Selective manipulation of neural circuits using optogenetics and chemogenetics holds great translational potential but requires genetic access to neurons. Here, we demonstrate a general framework for identifying genetic tool-independent, pharmacological strategies for neural circuit-selective modulation. We developed an economically accessible calcium imaging-based approach for large-scale pharmacological scans of endogenous receptor-mediated neural activity. As a testbed for this approach, we used the mouse locus coeruleus due to the combination of its widespread, modular efferent neural circuitry and its wide variety of endogenously expressed GPCRs. Using machine learning-based action potential deconvolution and retrograde tracing, we identified an agonist cocktail that selectively inhibits medial prefrontal cortex-projecting locus coeruleus neurons. In vivo, this cocktail produces synergistic antinociception, consistent with selective pharmacological blunting of this neural circuit. This framework has broad utility for selective targeting of other neural circuits under different physiological and pathological states, facilitating non-genetic translational applications arising from cell type-selective discoveries.
Collapse
Affiliation(s)
- Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
España JC, Yasoda-Mohan A, Vanneste S. The Locus Coeruleus in Chronic Pain. Int J Mol Sci 2024; 25:8636. [PMID: 39201323 PMCID: PMC11354431 DOI: 10.3390/ijms25168636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Pain perception is the consequence of a complex interplay between activation and inhibition. Noradrenergic pain modulation inhibits nociceptive transmission and pain perception. The main source of norepinephrine (NE) in the central nervous system is the Locus Coeruleus (LC), a small but complex cluster of cells in the pons. The aim of this study is to review the literature on the LC-NE inhibitory system, its influence on chronic pain pathways and its frequent comorbidities. The literature research showed that pain perception is the consequence of nociceptive and environmental processing and is modulated by the LC-NE system. If perpetuated in time, nociceptive inputs can generate neuroplastic changes in the central nervous system that reduce the inhibitory effects of the LC-NE complex and facilitate the development of chronic pain and frequent comorbidities, such as anxiety, depression or sleeping disturbances. The exact mechanisms involved in the LC functional shift remain unknown, but there is some evidence that they occur through plastic changes in the medial and lateral pathways and their brain projections. Additionally, there are other influencing factors, like developmental issues, neuroinflammatory glial changes, NE receptor affinity and changes in LC neuronal firing rates.
Collapse
Affiliation(s)
- Jorge Castejón España
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Compass Physio, A83 YW96 Enfield, Ireland
| | - Anusha Yasoda-Mohan
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Brain Research Centre for Advanced, International, Innovative and Interdisciplinary Neuromodulation, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Iannitelli AF, Hassenein L, Mulvey B, Blankenship HE, Liles LC, Sharpe AL, Pare JF, Segal A, Sloan SA, Martinowich K, McCann KE, Dougherty JD, Smith Y, Beckstead MJ, Weinshenker D. Tyrosinase-induced neuromelanin accumulation triggers rapid dysregulation and degeneration of the mouse locus coeruleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.07.530845. [PMID: 36945637 PMCID: PMC10028911 DOI: 10.1101/2023.03.07.530845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The locus coeruleus (LC), the major source of norepinephrine (NE) in the brain, is an early site of pathology in both Alzheimer's disease (AD) and Parkinson's disease (PD), and it undergoes catastrophic degeneration later in both disorders. Dysregulation of the LC is thought to contribute to prodromal symptoms of AD and PD such as anxiety and sleep disturbances, while frank LC-NE loss promotes cognitive decline. However, the mechanisms responsible for its selective vulnerability are unknown. The LC is among the only structures in the brain that produces appreciable amounts of neuromelanin (NM), a dark cytoplasmic pigment. It has been proposed that NM initially plays a protective role by sequestering toxic catecholamine metabolites and heavy metals, but may become harmful during aging as it overwhelms cellular machinery and is released during neurodegeneration. Rodents do not naturally produce NM, limiting the study of causal relationships between NM and LC pathology. Adapting a viral-mediated approach for expression of human tyrosinase, the enzyme responsible for peripheral melanin production, we successfully promoted pigmentation in mouse LC neurons that recapitulates key ultrastructural features of endogenous NM found in primates. Pigment expression results in LC neuron hyperactivity, reduced tissue NE levels, transcriptional changes, and novelty-induced anxiety phenotypes as early as 1-week post-injection. By 6-10 weeks, NM accumulation is associated with severe LC neuron neurodegeneration and microglial engulfment of the pigment granules, while the anxiety-like behavior is abated. These phenotypes are reminiscent of LC dysfunction and cell death in AD and PD, validating this model for studying the consequences of pigment accumulation in the LC as it relates to neurodegenerative disease.
Collapse
Affiliation(s)
- Alexa F. Iannitelli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Leslie Hassenein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bernard Mulvey
- Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harris E. Blankenship
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - L. Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amanda L. Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, 73117
| | - Jean-Francoise Pare
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Arielle Segal
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Steven A. Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katharine E. McCann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joseph D. Dougherty
- Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yoland Smith
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Michael J. Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Callan L, Caroland-Williams A, Lee G, Belflower J, Belflower J, Modi U, Kase C, Patel A, Collins N, Datta A, Qasi S, Gheidi A. After a period of forced abstinence, rats treated with the norepinephrine neurotoxin DSP-4 still exhibit preserved food-seeking behavior and prefrontal cortex fos-expressing neurons. Heliyon 2024; 10:e32146. [PMID: 39027623 PMCID: PMC11255514 DOI: 10.1016/j.heliyon.2024.e32146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Aims Relapse is a common characteristic of compulsive behaviors like addiction, where individuals tend to return to drug use or overeating after a period of abstinence. PFC (prefrontal cortex) neuronal ensembles are required for drug and food-seeking behaviors and are partially regulated by Norepinephrine (NE). However, the contributions of neuromodulators, such as the adrenergic system, in food-seeking behavior are not fully understood. Main methods To investigate this, we trained male and female rats to press a lever in an operant chamber to obtain banana-flavored food pellets for ten days. We then administered DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride), a neurotoxin that diminishes norepinephrine levels in the brain. The rats were kept in their home cages for ten more days before being returned to the operant chambers to measure food-seeking behavior. Key findings Despite receiving DSP-4, the PFC neuronal ensembles measured by Fos and food-seeking behavior did not differ between groups, but rather sex. Significance Although both NE and Fos expressing neurons are implicated in food-seeking, they do not seem to be involved in a cue-contextual induced re-exposure response.
Collapse
Affiliation(s)
- L.N. Callan
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A.J. Caroland-Williams
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - G. Lee
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - J.M. Belflower
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - J.T. Belflower
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - U.A. Modi
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - C.V. Kase
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A.D. Patel
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - N.A. Collins
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A. Datta
- Lincoln Memorial University DeBusk College of Osteopathic Medicine, Harrogate, TN, USA
| | - S. Qasi
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A. Gheidi
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| |
Collapse
|
7
|
Hughes AC, Pittman BG, Xu B, Gammons JW, Webb CM, Nolen HG, Chapman P, Bikoff JB, Schwarz LA. A single-vector intersectional AAV strategy for interrogating cellular diversity and brain function. Nat Neurosci 2024; 27:1400-1410. [PMID: 38802592 DOI: 10.1038/s41593-024-01659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
As discovery of cellular diversity in the brain accelerates, so does the need for tools that target cells based on multiple features. Here we developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), an adeno-associated virus-based, single-construct, intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches to deliver molecular cargo to specific neuronal subtypes. ConVERGD offers benefits over existing intersectional expression platforms, such as expanded intersectional targeting with up to five recombinase-based features, accommodation of larger and more complex payloads and a vector that is easy to modify for rapid toolkit expansion. In the present report we employed ConVERGD to characterize an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus that co-express the endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ locus coeruleus neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.
Collapse
Affiliation(s)
- Alex C Hughes
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Human Cell Types, Allen Institute for Brain Science, Seattle, WA, USA
| | - Brittany G Pittman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jesse W Gammons
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charis M Webb
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hunter G Nolen
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jay B Bikoff
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lindsay A Schwarz
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
8
|
Bedard ML, Huang XP, Murray JG, Nowlan AC, Conley SY, Mott SE, Loyack SJ, Cline CA, Clodfelter CG, Dasgupta N, Krumm B, Roth BL, McElligott ZA. Xylazine is an agonist at kappa opioid receptors and exhibits sex-specific responses to opioid antagonism. ADDICTION NEUROSCIENCE 2024; 11:100155. [PMID: 39086495 PMCID: PMC11290297 DOI: 10.1016/j.addicn.2024.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Xylazine is in the unregulated drug supply at increasing rates, usually combined with fentanyl, necessitating understanding of its pharmacology. Despite commentary from politicians, and public health officials, it is unknown how xylazine impacts naloxone efficacy, and. few studies have examined it alone. Here, we examine the impact of xylazine alone and in combination with fentanyl on several behaviors in mice. Surprisingly, naloxone precipitates withdrawal from xylazine and fentanyl/xylazine coadministration, with enhanced sensitivity in females. Further, xylazine is a full agonist at kappa opioid receptors, a potential mechanism for its naloxone sensitivity. Finally, we demonstrate surprising effects of xylazine to kappa opioid antagonism, which are relevant for public health considerations. These data address an ongoing health crisis and will help inform critical policy and healthcare decisions.
Collapse
Affiliation(s)
- Madigan L. Bedard
- Department of Pharmacology, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Xi-Ping Huang
- Department of Pharmacology, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- National Institute of Mental Health Psychoactive Drug Screening Program, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Jackson G. Murray
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Alexandra C. Nowlan
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Sara Y. Conley
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Program in Neuroscience, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Sarah E. Mott
- Department of Pharmacology, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Samuel J. Loyack
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Calista A. Cline
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Caroline G. Clodfelter
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Nabarun Dasgupta
- Injury Prevention Research Center, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Brian Krumm
- Department of Pharmacology, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Bryan L. Roth
- Department of Pharmacology, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- National Institute of Mental Health Psychoactive Drug Screening Program, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill Eshelman School of Pharmacy; Chapel Hill, 27599, USA
| | - Zoe A. McElligott
- Department of Pharmacology, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| |
Collapse
|
9
|
Ahlbrand R, Wilson A, Woller P, Sachdeva Y, Lai J, Davis N, Wiggins J, Sah R. Sex-specific threat responding and neuronal engagement in carbon dioxide associated fear and extinction: Noradrenergic involvement in female mice. Neurobiol Stress 2024; 30:100617. [PMID: 38433995 PMCID: PMC10907837 DOI: 10.1016/j.ynstr.2024.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Difficulty in appropriately responding to threats is a key feature of psychiatric disorders, especially fear-related conditions such as panic disorder (PD) and posttraumatic stress disorder (PTSD). Most prior work on threat and fear regulation involves exposure to external threatful cues. However, fear can also be triggered by aversive, within-the-body, sensations. This interoceptive signaling of fear is highly relevant to PD and PTSD but is not well understood, especially in the context of sex. Using female and male mice, the current study investigated fear-associated spontaneous and conditioned behaviors to carbon dioxide (CO2) inhalation, a potent interoceptive threat that induces fear and panic. We also investigated whether behavioral sensitivity to CO2 is associated with delayed PTSD-relevant behaviors. CO2 evoked heterogenous freezing behaviors in both male and female animals. However, active, rearing behavior was significantly reduced in CO2-exposed male but not female mice. Interestingly, behavioral sensitivity to CO2 was associated with compromised fear extinction, independent of sex. However, in comparison to CO2-exposed males, females elicited less freezing and higher rearing during extinction suggesting an engagement of active versus passive defensive coping. Persistent neuronal activation marker ΔFosB immuno-mapping revealed attenuated engagement of infralimbic-prefrontal areas in both sexes but higher activation of brain stem locus coeruleus (LC) area in females. Inter-regional co-activation mapping revealed sex-independent disruptions in the infralimbic-amygdala associations but altered LC associations only in CO2-exposed female mice. Lastly, dopamine β hydroxylase positive (DβH + ve) noradrenergic neuronal cell counts in the LC correlated with freezing and rearing behaviors during CO2 inhalation and extinction only in female but not male mice. Collectively, these data provide evidence for higher active defensive responding to interoceptive threat CO2-associated fear in females that may stem from increased recruitment of the brainstem noradrenergic system. Our findings reveal distinct contributory mechanisms that may promote sex differences in fear and panic associated pathologies.
Collapse
Affiliation(s)
- Rebecca Ahlbrand
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
- Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Allison Wilson
- Neuroscience Undergraduate Program, University of Cincinnati, USA
| | - Patrick Woller
- Neuroscience Graduate Program, University of Cincinnati, USA
| | - Yuv Sachdeva
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
| | - Jayden Lai
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
| | - Nikki Davis
- Neuroscience Undergraduate Program, University of Cincinnati, USA
| | - James Wiggins
- Neuroscience Undergraduate Program, University of Cincinnati, USA
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
- Neuroscience Graduate Program, University of Cincinnati, USA
- Veterans Affairs Medical Center, Cincinnati, OH, USA
| |
Collapse
|
10
|
Lee J, Wang ZM, Messi ML, Milligan C, Furdui CM, Delbono O. Sex differences in single neuron function and proteomics profiles examined by patch-clamp and mass spectrometry in the locus coeruleus of the adult mouse. Acta Physiol (Oxf) 2024; 240:e14123. [PMID: 38459766 PMCID: PMC11021178 DOI: 10.1111/apha.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
AIMS This study aimed to characterize the properties of locus coeruleus (LC) noradrenergic neurons in male and female mice. We also sought to investigate sex-specific differences in membrane properties, action potential generation, and protein expression profiles to understand the mechanisms underlying neuronal excitability variations. METHODS Utilizing a genetic mouse model by crossing Dbhcre knock-in mice with tdTomato Ai14 transgenic mice, LC neurons were identified using fluorescence microscopy. Neuronal functional properties were assessed using patch-clamp recordings. Proteomic analyses of individual LC neuron soma was conducted using mass spectrometry to discern protein expression profiles. Data are available via ProteomeXchange with identifier PXD045844. RESULTS Female LC noradrenergic neurons displayed greater membrane capacitance than those in male mice. Male LC neurons demonstrated greater spontaneous and evoked action potential generation compared to females. Male LC neurons exhibited a lower rheobase and achieved higher peak frequencies with similar current injections. Proteomic analysis revealed differences in protein expression profiles between sexes, with male mice displaying a notably larger unique protein set compared to females. Notably, pathways pertinent to protein synthesis, degradation, and recycling, such as EIF2 and glucocorticoid receptor signaling, showed reduced expression in females. CONCLUSIONS Male LC noradrenergic neurons exhibit higher intrinsic excitability compared to those from females. The discernible sex-based differences in excitability could be ascribed to varying protein expression profiles, especially within pathways that regulate protein synthesis and degradation. This study lays the groundwork for future studies focusing on the interplay between proteomics and neuronal function examined in individual cells.
Collapse
Affiliation(s)
- Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Carol Milligan
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
11
|
Lynch MA. A case for seeking sex-specific treatments in Alzheimer's disease. Front Aging Neurosci 2024; 16:1346621. [PMID: 38414633 PMCID: PMC10897030 DOI: 10.3389/fnagi.2024.1346621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
There is no satisfactory explanation for the sex-related differences in the incidence of many diseases and this is also true of Alzheimer's disease (AD), where females have a higher lifetime risk of developing the disease and make up about two thirds of the AD patient population. The importance of understanding the cause(s) that account for this disproportionate distribution cannot be overestimated, and is likely to be a significant factor in the search for therapeutic strategies that will combat the disease and, furthermore, potentially point to a sex-targeted approach to treatment. This review considers the literature in the context of what is known about the impact of sex on processes targeted by drugs that are in clinical trial for AD, and existing knowledge on differing responses of males and females to these drugs. Current knowledge strongly supports the view that trials should make assessing sex-related difference in responses a priority with a focus on exploring the sex-stratified treatments.
Collapse
|
12
|
Weber LM, Divecha HR, Tran MN, Kwon SH, Spangler A, Montgomery KD, Tippani M, Bharadwaj R, Kleinman JE, Page SC, Hyde TM, Collado-Torres L, Maynard KR, Martinowich K, Hicks SC. The gene expression landscape of the human locus coeruleus revealed by single-nucleus and spatially-resolved transcriptomics. eLife 2024; 12:RP84628. [PMID: 38266073 PMCID: PMC10945708 DOI: 10.7554/elife.84628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Norepinephrine (NE) neurons in the locus coeruleus (LC) make long-range projections throughout the central nervous system, playing critical roles in arousal and mood, as well as various components of cognition including attention, learning, and memory. The LC-NE system is also implicated in multiple neurological and neuropsychiatric disorders. Importantly, LC-NE neurons are highly sensitive to degeneration in both Alzheimer's and Parkinson's disease. Despite the clinical importance of the brain region and the prominent role of LC-NE neurons in a variety of brain and behavioral functions, a detailed molecular characterization of the LC is lacking. Here, we used a combination of spatially-resolved transcriptomics and single-nucleus RNA-sequencing to characterize the molecular landscape of the LC region and the transcriptomic profile of LC-NE neurons in the human brain. We provide a freely accessible resource of these data in web-accessible and downloadable formats.
Collapse
Affiliation(s)
- Lukas M Weber
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Heena R Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Matthew N Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Sang Ho Kwon
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Abby Spangler
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Kelsey D Montgomery
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Rahul Bharadwaj
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of MedicineBaltimoreUnited States
- Department of Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | | | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of MedicineBaltimoreUnited States
- The Kavli Neuroscience Discovery Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| |
Collapse
|
13
|
Rosenberg MF, Godoy MI, Wade SD, Paredes MF, Zhang Y, Molofsky AV. β-Adrenergic Signaling Promotes Morphological Maturation of Astrocytes in Female Mice. J Neurosci 2023; 43:8621-8636. [PMID: 37845031 PMCID: PMC10727121 DOI: 10.1523/jneurosci.0357-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/24/2023] [Accepted: 07/31/2023] [Indexed: 10/18/2023] Open
Abstract
Astrocytes play essential roles in the developing nervous system, including supporting synapse function. These astrocyte support functions emerge coincident with brain maturation and may be tailored in a region-specific manner. For example, gray matter astrocytes have elaborate synapse-associated processes and are morphologically and molecularly distinct from white matter astrocytes. This raises the question of whether there are unique environmental cues that promote gray matter astrocyte identity and synaptogenic function. We previously identified adrenergic receptors as preferentially enriched in developing gray versus white matter astrocytes, suggesting that noradrenergic signaling could be a cue that promotes the functional maturation of gray matter astrocytes. We first characterized noradrenergic projections during postnatal brain development in mouse and human, finding that process density was higher in the gray matter and increased concurrently with astrocyte maturation. RNA sequencing revealed that astrocytes in both species expressed α- and β-adrenergic receptors. We found that stimulation of β-adrenergic receptors increased primary branching of rodent astrocytes in vitro Conversely, astrocyte-conditional knockout of the β1-adrenergic receptor reduced the size of gray matter astrocytes and led to dysregulated sensorimotor integration in female mice. These studies suggest that adrenergic signaling to developing astrocytes impacts their morphology and has implications for adult behavior, particularly in female animals. More broadly, they demonstrate a mechanism through which environmental cues impact astrocyte development. Given the key roles of norepinephrine in brain states, such as arousal, stress, and learning, these findings could prompt further inquiry into how developmental stressors impact astrocyte development and adult brain function.SIGNIFICANCE STATEMENT This study demonstrates a role for noradrenergic signaling in the development of gray matter astrocytes. We provide new evidence that the β1-adrenergic receptor is robustly expressed by both mouse and human astrocytes, and that conditional KO of the β1-adrenergic receptor from female mouse astrocytes impairs gray matter astrocyte maturation. Moreover, female conditional KO mice exhibit behavioral deficits in two paradigms that test sensorimotor function. Given the emerging interest in moving beyond RNA sequencing to probe specific pathways that underlie astrocyte heterogeneity, this study provides a foundation for future investigation into the effect of noradrenergic signaling on astrocyte functions in conditions where noradrenergic signaling is altered, such as stress, arousal, and learning.
Collapse
Affiliation(s)
- Marci F Rosenberg
- Department of Psychiatry and Behavioral Sciences and Weill Institute of Neurosciences, University of California at San Francisco, San Francisco, California 94143
- Medical Scientist Training Program and Biomedical Sciences Graduate Program, University of California at San Francisco, San Francisco, California 94143
| | - Marlesa I Godoy
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Sarah D Wade
- Department of Psychiatry and Behavioral Sciences and Weill Institute of Neurosciences, University of California at San Francisco, San Francisco, California 94143
- Neurosciences Graduate Program, University of California at San Francisco, San Francisco, California 94143
| | - Mercedes F Paredes
- Department of Neurology, Weill Institute of Neurosciences, University of California, San Francisco, San Francisco, California 94143
- Chan Zuckerberg Biohub-San Francisco, San Francisco, California 94158
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Anna V Molofsky
- Department of Psychiatry and Behavioral Sciences and Weill Institute of Neurosciences, University of California at San Francisco, San Francisco, California 94143
- Neurosciences Graduate Program, University of California at San Francisco, San Francisco, California 94143
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
14
|
Jiang J, Tan S, Feng X, Peng Y, Long C, Yang L. Distinct ACC Neural Mechanisms Underlie Authentic and Transmitted Anxiety Induced by Maternal Separation in Mice. J Neurosci 2023; 43:8201-8218. [PMID: 37845036 PMCID: PMC10697407 DOI: 10.1523/jneurosci.0558-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023] Open
Abstract
It is known that humans and rodents are capable of transmitting stress to their naive partners via social interaction. However, a comprehensive understanding of transmitted stress, which may differ from authentic stress, thus revealing unique neural mechanisms of social interaction resulting from transmitted stress and the associated anxiety, is missing. We used, in the present study, maternal separation (MS) as a stress model to investigate whether MS causes abnormal behavior in adolescence. A key concern in the analysis of stress transmission is whether the littermates of MS mice who only witness MS stress ("Partners") exhibit behavioral abnormalities similar to those of MS mice themselves. Of special interest is the establishment of the neural mechanisms underlying transmitted stress and authentic stress. The results show that Partners, similar to MS mice, exhibit anxiety-like behavior and hyperalgesia after witnessing littermates being subjected to early-life repetitive MS. Electrophysiological analysis revealed that mice subjected to MS demonstrate a reduction in both the excitatory and inhibitory synaptic activities of parvalbumin interneurons (PVINs) in the anterior cingulate cortex (ACC). However, Partners differed from MS mice in showing an increase in the number and excitability of GABAergic PVINs in the ACC and in the ability of chemogenetic PVIN inactivation to eliminate abnormal behavior. Furthermore, the social transfer of anxiety-like behavior required intact olfactory, but not visual, perception. This study suggests a functional involvement of ACC PVINs in mediating the distinct neural basis of transmitted anxiety.SIGNIFICANCE STATEMENT The anterior cingulate cortex (ACC) is a critical brain area in physical and social pain and contributes to the exhibition of abnormal behavior. ACC glutamatergic neurons have been shown to encode transmitted stress, but it remains unclear whether inhibitory ACC neurons also play a role. We evaluate, in this study, ACC neuronal, synaptic and network activities and uncover a critical role of parvalbumin interneurons (PVINs) in the expression of transmitted stress in adolescent mice who had witnessed MS of littermates in infancy. Furthermore, inactivation of ACC PVINs blocks transmitted stress. The results suggest that emotional contagion has a severe effect on brain function, and identify a potential target for the treatment of transmitted anxiety.
Collapse
Affiliation(s)
- Jinxiang Jiang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shuyi Tan
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoyi Feng
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yigang Peng
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
15
|
Mukai Y, Okubo TS, Lazarus M, Ono D, Tanaka KF, Yamanaka A. Prostaglandin E 2 Induces Long-Lasting Inhibition of Noradrenergic Neurons in the Locus Coeruleus and Moderates the Behavioral Response to Stressors. J Neurosci 2023; 43:7982-7999. [PMID: 37734949 PMCID: PMC10669809 DOI: 10.1523/jneurosci.0353-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Neuronal activity is modulated not only by inputs from other neurons but also by various factors, such as bioactive substances. Noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons) are involved in diverse physiological functions, including sleep/wakefulness and stress responses. Previous studies have identified various substances and receptors that modulate LC-NA neuronal activity through techniques including electrophysiology, calcium imaging, and single-cell RNA sequencing. However, many substances with unknown physiological significance have been overlooked. Here, we established an efficient screening method for identifying substances that modulate LC-NA neuronal activity through intracellular calcium ([Ca2+]i) imaging using brain slices. Using both sexes of mice, we screened 53 bioactive substances, and identified five novel substances: gastrin-releasing peptide, neuromedin U, and angiotensin II, which increase [Ca2+]i, and pancreatic polypeptide and prostaglandin D2, which decrease [Ca2+]i Among them, neuromedin U induced the greatest response in female mice. In terms of the duration of [Ca2+]i change, we focused on prostaglandin E2 (PGE2), since it induces a long-lasting decrease in [Ca2+]i via the EP3 receptor. Conditional knock-out of the receptor in LC-NA neurons resulted in increased depression-like behavior, prolonged wakefulness in the dark period, and increased [Ca2+]i after stress exposure. Our results demonstrate the effectiveness of our screening method for identifying substances that modulate a specific neuronal population in an unbiased manner and suggest that stress-induced prostaglandin E2 can suppress LC-NA neuronal activity to moderate the behavioral response to stressors. Our screening method will contribute to uncovering previously unknown physiological functions of uncharacterized bioactive substances in specific neuronal populations.SIGNIFICANCE STATEMENT Bioactive substances modulate the activity of specific neuronal populations. However, since only a limited number of substances with predicted effects have been investigated, many substances that may modulate neuronal activity have gone unrecognized. Here, we established an unbiased method for identifying modulatory substances by measuring the intracellular calcium signal, which reflects neuronal activity. We examined noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons), which are involved in diverse physiological functions. We identified five novel substances that modulate LC-NA neuronal activity. We also found that stress-induced prostaglandin E2 (PGE2) may suppress LC-NA neuronal activity and influence behavioral outcomes. Our screening method will help uncover previously overlooked functions of bioactive substances and provide insight into unrecognized roles of specific neuronal populations.
Collapse
Affiliation(s)
- Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tatsuo S Okubo
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Chinese Institute for Brain Research, Beijing 102206, China
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
16
|
Nazabal A, Mendiguren A, Pineda J. Inhibition of rat locus coeruleus neurons by prostaglandin E 2 EP3 receptors: pharmacological characterization ex vivo. Front Pharmacol 2023; 14:1290605. [PMID: 38035000 PMCID: PMC10684765 DOI: 10.3389/fphar.2023.1290605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Prostaglandin E2 (PGE2) is an inflammatory mediator synthesized by the brain constitutive cyclooxygenase enzyme. PGE2 binds to G protein-coupled EP1-4 receptors (EP1 to Gq, EP2,4 to Gs, and EP3 to Gi/o). EP2, EP3 and EP4 receptors are expressed in the locus coeruleus (LC), the main noradrenergic nucleus in the brain. EP3 receptors have been explored in the central nervous system, although its role regulating the locus coeruleus neuron activity has not been pharmacologically defined. Our aim was to characterize the function of EP3 receptors in neurons of the LC. Thus, we studied the effect of EP3 receptor agonists on the firing activity of LC cells in rat brain slices by single-unit extracellular electrophysiological techniques. The EP3 receptor agonist sulprostone (0.15 nM-1.28 µM), PGE2 (0.31 nM-10.2 µM) and the PGE1 analogue misoprostol (0.31 nM-2.56 µM) inhibited the firing rate of LC neurons in a concentration-dependent manner (EC50 = 15 nM, 110 nM, and 51 nM, respectively). The EP3 receptor antagonist L-798,106 (3-10 µM), but not the EP2 (PF-04418948, 3-10 µM) or EP4 (L-161,982, 3-10 µM) receptor antagonists, caused rightward shifts in the concentration-effect curves for the EP3 receptor agonists. Sulprostone-induced effect was attenuated by the Gi/o protein blocker pertussis toxin (pertussis toxin, 500 ng ml-1) and the inhibitors of inwardly rectifying potassium channels (GIRK) BaCl2 (300 µM) and SCH-23390 (15 µM). In conclusion, LC neuron firing activity is regulated by EP3 receptors, presumably by an inhibitory Gi/o protein- and GIRK-mediated mechanism.
Collapse
|
17
|
Mariscal P, Bravo L, Llorca-Torralba M, Razquin J, Miguelez C, Suárez-Pereira I, Berrocoso E. Sexual differences in locus coeruleus neurons and related behavior in C57BL/6J mice. Biol Sex Differ 2023; 14:64. [PMID: 37770907 PMCID: PMC10540344 DOI: 10.1186/s13293-023-00550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND In addition to social and cultural factors, sex differences in the central nervous system have a critical influence on behavior, although the neurobiology underlying these differences remains unclear. Interestingly, the Locus Coeruleus (LC), a noradrenergic nucleus that exhibits sexual dimorphism, integrates signals that are related to diverse activities, including emotions, cognition and pain. Therefore, we set-out to evaluate sex differences in behaviors related to LC nucleus, and subsequently, to assess the sex differences in LC morphology and function. METHODS Female and male C57BL/6J mice were studied to explore the role of the LC in anxiety, depressive-like behavior, well-being, pain, and learning and memory. We also explored the number of noradrenergic LC cells, their somatodendritic volume, as well as the electrophysiological properties of LC neurons in each sex. RESULTS While both male and female mice displayed similar depressive-like behavior, female mice exhibited more anxiety-related behaviors. Interestingly, females outperformed males in memory tasks that involved distinguishing objects with small differences and they also showed greater thermal pain sensitivity. Immunohistological analysis revealed that females had fewer noradrenergic cells yet they showed a larger dendritic volume than males. Patch clamp electrophysiology studies demonstrated that LC neurons in female mice had a lower capacitance and that they were more excitable than male LC neurons, albeit with similar action potential properties. CONCLUSIONS Overall, this study provides new insights into the sex differences related to LC nucleus and associated behaviors, which may explain the heightened emotional arousal response observed in females.
Collapse
Affiliation(s)
- Patricia Mariscal
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Lidia Bravo
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain.
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain.
| | - Meritxell Llorca-Torralba
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Cell Biology & Histology, University of Cádiz, 11003, Cádiz, Spain
| | - Jone Razquin
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48940, Barakaldo, Spain
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48940, Barakaldo, Spain
| | - Irene Suárez-Pereira
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain.
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain.
| |
Collapse
|
18
|
Fortin SM, Chen JC, Petticord MC, Ragozzino FJ, Peters JH, Hayes MR. The locus coeruleus contributes to the anorectic, nausea, and autonomic physiological effects of glucagon-like peptide-1. SCIENCE ADVANCES 2023; 9:eadh0980. [PMID: 37729419 PMCID: PMC10511187 DOI: 10.1126/sciadv.adh0980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Increasing the therapeutic potential and reducing the side effects of U.S. Food and Drug Administration-approved glucagon-like peptide-1 receptor (GLP-1R) agonists used to treat obesity require complete characterization of the central mechanisms that mediate both the food intake-suppressive and illness-like effects of GLP-1R signaling. Our studies, in the rat, demonstrate that GLP-1Rs in the locus coeruleus (LC) are pharmacologically and physiologically relevant for food intake control. Furthermore, agonism of LC GLP-1Rs induces illness-like behaviors, and antagonism of LC GLP-1Rs can attenuate GLP-1R-mediated nausea. Electrophysiological and behavioral pharmacology data support a role for LC GLP-1Rs expressed on presynaptic glutamatergic terminals in the control of feeding and malaise. Collectively, our work establishes the LC as a site of action for GLP-1 signaling and extends our understanding of the GLP-1 signaling mechanism necessary for the development of improved obesity pharmacotherapies.
Collapse
Affiliation(s)
- Samantha M. Fortin
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jack C. Chen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa C. Petticord
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Forrest J. Ragozzino
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - James H. Peters
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Matthew R. Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Koohsari S, Sadabad FE, Pittman B, Gallezot JD, Carson RE, van Dyck CH, Li CSR, Potenza MN, Matuskey D. Relationships of in vivo brain norepinephrine transporter and age, BMI, and gender. Synapse 2023; 77:e22279. [PMID: 37382240 PMCID: PMC10416616 DOI: 10.1002/syn.22279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Previous research reported an age-related decline in brain norepinephrine transporter (NET) using (S, S)-[11C]O-methylreboxetine ([11C]MRB) as a radiotracer. Studies with the same tracer have been mixed in regard to differences related to body mass index (BMI). Here, we investigated potential age-, BMI-, and gender-related differences in brain NET availability using [11C]MRB, the most selective available radiotracer. Forty-three healthy participants (20 females, 23 males; age range 18-49 years), including 12 individuals with normal/lean weight, 15 with overweight, and 16 with obesity were scanned with [11C]MRB using a positron emission tomography (PET) high-resolution research tomograph (HRRT). We evaluated binding potential (BPND ) in brain regions with high NET availability using multilinear reference tissue model 2 (MRTM2) with the occipital cortex as a reference region. Brain regions were delineated with a defined anatomic template applied to subjects' structural MR scans. We found a negative association between age and NET availability in the locus coeruleus, raphe nucleus, and hypothalamus, with a 17%, 19%, and 14% decrease per decade, respectively, in each region. No gender or BMI relationships with NET availability were observed. Our findings suggest an age-related decline, but no BMI- or gender-related differences, in NET availability in healthy adults.
Collapse
Affiliation(s)
- Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | | | - Brian Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | | | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | | | - Chiang-Shan R Li
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Marc N Potenza
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Child Study Center, Yale School of Medicine, New Haven, Connecticut
- Department of Neuroscience, Yale University, New Haven, Connecticut
- Connecticut Council on Problem Gambling, Wethersfield, Connecticut
- Connecticut Mental Health Center, New Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Department of Neurology, Yale University, New Haven, Connecticut
| |
Collapse
|
20
|
Ma HT, Zhang HC, Zuo ZF, Liu YX. Heterogeneous organization of Locus coeruleus: An intrinsic mechanism for functional complexity. Physiol Behav 2023; 268:114231. [PMID: 37172640 DOI: 10.1016/j.physbeh.2023.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Locus coeruleus (LC) is a small nucleus located deep in the brainstem that contains the majority of central noradrenergic neurons, which provide the primary source of noradrenaline (NA) throughout the entire central nervous system (CNS).The release of neurotransmitter NA is considered to modulate arousal, sensory processing, attention, aversive and adaptive stress responses as well as high-order cognitive function and memory, with the highly ramified axonal arborizations of LC-NA neurons sending wide projections to the targeted brain areas. For over 30 years, LC was thought to be a homogeneous nucleus in structure and function due to the widespread uniform release of NA by LC-NA neurons and simultaneous action in several CNS regions, such as the prefrontal cortex, hippocampus, cerebellum, and spinal cord. However, recent advances in neuroscience tools have revealed that LC is probably not so homogeneous as we previous thought and exhibits heterogeneity in various aspects. Accumulating studies have shown that the functional complexity of LC may be attributed to its heterogeneity in developmental origin, projection patterns, topography distribution, morphology and molecular organization, electrophysiological properties and sex differences. This review will highlight the heterogeneity of LC and its critical role in modulating diverse behavioral outcomes.
Collapse
Affiliation(s)
- Hai-Tao Ma
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China; Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, 100069, China.
| | - Hao-Chen Zhang
- Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Zhong-Fu Zuo
- Department of Human Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121000, China
| | - Ying-Xue Liu
- Department of Human Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
21
|
Cuevas JS, Watanabe M, Uematsu A, Johansen JP. Whole-brain afferent input mapping to functionally distinct brainstem noradrenaline cell types. Neurosci Res 2023:S0168-0102(23)00074-3. [PMID: 37062443 DOI: 10.1016/j.neures.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
The locus coeruleus (LC) is a small region in the pons and the main source of noradrenaline (NA) to the forebrain. While traditional models suggested that all LC-NA neurons project indiscriminately throughout the brain, accumulating evidence indicates that these cells can be heterogeneous based on their anatomical connectivity and behavioral functionality and exhibit distinct coding modes. How LC-NA neuronal subpopulations are endowed with unique functional properties is unclear. Here, we used a viral-genetic approach for mapping anatomical connectivity at different levels of organization based on inputs and outputs of defined cell classes. Specifically, we studied the whole-brain afferent inputs onto two functionally distinct LC-NA neuronal subpopulations which project to amygdala or medial prefrontal cortex (mPFC). We found that the global input distribution is similar for both LC-NA neuronal subpopulations. However, finer analysis demonstrated important differences in inputs from specific brain regions. Moreover, sex related differences were apparent, but only in inputs to amygdala-projecting LC-NA neurons. These findings reveal a cell type and sex specific afferent input organization which could allow for context dependent and target specific control of NA outflow to forebrain structures involved in emotional control and decision making.
Collapse
Affiliation(s)
- Jessica Sulkes Cuevas
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan 351-0198; Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 0Japan
| | - Mayumi Watanabe
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan 351-0198; Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 0Japan
| | - Akira Uematsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Joshua P Johansen
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan 351-0198; Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 0Japan.
| |
Collapse
|
22
|
Downs AM, Catavero CM, Kasten MR, McElligott ZA. Tauopathy and alcohol consumption interact to alter locus coeruleus excitatory transmission and excitability in male and female mice. Alcohol 2023; 107:97-107. [PMID: 36150608 DOI: 10.1016/j.alcohol.2022.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/23/2022]
Abstract
Alcohol use disorder is a major public health concern in the United States. Recent work has suggested a link between chronic alcohol consumption and the development of tauopathy disorders, such as Alzheimer's disease and frontotemporal dementia. However, relatively little work has investigated changes in neural circuitry involved in both tauopathy disorders and alcohol use disorder. The locus coeruleus (LC) is the major noradrenergic nucleus in the brain and is one of the earliest sites to be affected by tau lesions. The LC is also implicated in the rewarding effects of ethanol and alcohol withdrawal. In this study we assessed effects of long-term ethanol consumption and tauopathy on the physiology of LC neurons. Male and female P301S mice, a humanized transgenic mouse model of tauopathy, underwent 16 weeks of intermittent access to 20% ethanol from 3 to 7 months of age. We observed higher total alcohol consumption in female mice regardless of genotype. Male P301S mice consumed more ethanol and had a greater preference for ethanol than wild-type (WT) males. At the end of the drinking study, LC function was assessed using ex vivo whole cell electrophysiology. We found significant changes in excitatory inputs to the LC due to both ethanol and genotype. We found significantly increased excitability of the LC due to ethanol with greater effects in female P301S mice than in female WT mice. Our study identifies significant changes in the LC due to interactions between tauopathy and long-term ethanol use. These findings could have important implications regarding LC activity and changes in behavior due to both ethanol- and tauopathy-related dementia.
Collapse
Affiliation(s)
- Anthony M Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Christina M Catavero
- Graduate Program in Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Michael R Kasten
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Zoé A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
23
|
Hughes AC, Pollard BG, Xu B, Gammons JW, Chapman P, Bikoff JB, Schwarz LA. A Novel Single Vector Intersectional AAV Strategy for Interrogating Cellular Diversity and Brain Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527312. [PMID: 36798174 PMCID: PMC9934562 DOI: 10.1101/2023.02.07.527312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
As the discovery of cellular diversity in the brain accelerates, so does the need for functional tools that target cells based on multiple features, such as gene expression and projection target. By selectively driving recombinase expression in a feature-specific manner, one can utilize intersectional strategies to conditionally promote payload expression only where multiple features overlap. We developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), a single-construct intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches. ConVERGD offers benefits over existing platforms, such as expanded intersectionality, the ability to accommodate larger and more complex payloads, and a vector design that is easily modified to better facilitate rapid toolkit expansion. To demonstrate its utility for interrogating neural circuitry, we employed ConVERGD to target an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus (LC) identified via single-cell transcriptomic profiling to co-express the stress-related endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ LC neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.
Collapse
Affiliation(s)
- Alex C. Hughes
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Brittany G. Pollard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Jesse W. Gammons
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Present address: Department of Pediatrics, Stanford University, Stanford, CA, 94305
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Lindsay A. Schwarz
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Lead contact
| |
Collapse
|
24
|
Shen Z, Li W, Chang W, Yue N, Yu J. Sex differences in chronic pain-induced mental disorders: Mechanisms of cerebral circuitry. Front Mol Neurosci 2023; 16:1102808. [PMID: 36891517 PMCID: PMC9986270 DOI: 10.3389/fnmol.2023.1102808] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023] Open
Abstract
Mental disorders such as anxiety and depression induced by chronic pain are common in clinical practice, and there are significant sex differences in their epidemiology. However, the circuit mechanism of this difference has not been fully studied, as preclinical studies have traditionally excluded female rodents. Recently, this oversight has begun to be resolved and studies including male and female rodents are revealing sex differences in the neurobiological processes behind mental disorder features. This paper reviews the structural functions involved in the injury perception circuit and advanced emotional cortex circuit. In addition, we also summarize the latest breakthroughs and insights into sex differences in neuromodulation through endogenous dopamine, 5-hydroxytryptamine, GABAergic inhibition, norepinephrine, and peptide pathways like oxytocin, as well as their receptors. By comparing sex differences, we hope to identify new therapeutic targets to offer safer and more effective treatments.
Collapse
Affiliation(s)
- Zuqi Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiqi Chang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Yue
- Weifang Maternal and Child Health Hospital, Weifang, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Iannitelli AF, Kelberman MA, Lustberg DJ, Korukonda A, McCann KE, Mulvey B, Segal A, Liles LC, Sloan SA, Dougherty JD, Weinshenker D. The Neurotoxin DSP-4 Dysregulates the Locus Coeruleus-Norepinephrine System and Recapitulates Molecular and Behavioral Aspects of Prodromal Neurodegenerative Disease. eNeuro 2023; 10:ENEURO.0483-22.2022. [PMID: 36635251 PMCID: PMC9829100 DOI: 10.1523/eneuro.0483-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The noradrenergic locus coeruleus (LC) is among the earliest sites of tau and α-synuclein pathology in Alzheimer's disease (AD) and Parkinson's disease (PD), respectively. The onset of these pathologies coincides with loss of noradrenergic fibers in LC target regions and the emergence of prodromal symptoms including sleep disturbances and anxiety. Paradoxically, these prodromal symptoms are indicative of a noradrenergic hyperactivity phenotype, rather than the predicted loss of norepinephrine (NE) transmission following LC damage, suggesting the engagement of complex compensatory mechanisms. Because current therapeutic efforts are targeting early disease, interest in the LC has grown, and it is critical to identify the links between pathology and dysfunction. We employed the LC-specific neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), which preferentially damages LC axons, to model early changes in the LC-NE system pertinent to AD and PD in male and female mice. DSP-4 (two doses of 50 mg/kg, one week apart) induced LC axon degeneration, triggered neuroinflammation and oxidative stress, and reduced tissue NE levels. There was no LC cell death or changes to LC firing, but transcriptomics revealed reduced expression of genes that define noradrenergic identity and other changes relevant to neurodegenerative disease. Despite the dramatic loss of LC fibers, NE turnover and signaling were elevated in terminal regions and were associated with anxiogenic phenotypes in multiple behavioral tests. These results represent a comprehensive analysis of how the LC-NE system responds to axon/terminal damage reminiscent of early AD and PD at the molecular, cellular, systems, and behavioral levels, and provides potential mechanisms underlying prodromal neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Alexa F Iannitelli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Michael A Kelberman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Daniel J Lustberg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Anu Korukonda
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Katharine E McCann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Bernard Mulvey
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Arielle Segal
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - L Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
26
|
Liu X, Feng X, Huang H, Huang K, Xu Y, Ye S, Tseng YT, Wei P, Wang L, Wang F. Male and female mice display consistent lifelong ability to address potential life-threatening cues using different post-threat coping strategies. BMC Biol 2022; 20:281. [PMID: 36522765 PMCID: PMC9753375 DOI: 10.1186/s12915-022-01486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Sex differences ranging from physiological functions to pathological disorders are developmentally hard-wired in a broad range of animals, from invertebrates to humans. These differences ensure that animals can display appropriate behaviors under a variety of circumstances, such as aggression, hunting, sleep, mating, and parental care, which are often thought to be important in the acquisition of resources, including territory, food, and mates. Although there are reports of an absence of sexual dimorphism in the context of innate fear, the question of whether there is sexual dimorphism of innate defensive behavior is still an open question. Therefore, an in-depth investigation to determine whether there are sex differences in developmentally hard-wired innate defensive behaviors in life-threatening circumstances is warranted. RESULTS We found that innate defensive behavioral responses to potentially life-threatening stimuli between males and females were indistinguishable over their lifespan. However, by using 3 dimensional (3D)-motion learning framework analysis, we found that males and females showed different behavioral patterns after escaping to the refuge. Specifically, the defensive "freezing" occurred primarily in males, whereas females were more likely to return directly to exploration. Moreover, there were also no estrous phase differences in innate defensive behavioral responses after looming stimuli. CONCLUSIONS Our results demonstrate that visually-evoked innate fear behavior is highly conserved throughout the lifespan in both males and females, while specific post-threat coping strategies depend on sex. These findings indicate that innate fear behavior is essential to both sexes and as such, there are no evolutionary-driven sex differences in defensive ability.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolong Feng
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Hongren Huang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Huang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yang Xu
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuwei Ye
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yu-Ting Tseng
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Pengfei Wei
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Liping Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Feng Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
27
|
Beine Z, Wang Z, Tsoulfas P, Blackmore MG. Single Nuclei Analyses Reveal Transcriptional Profiles and Marker Genes for Diverse Supraspinal Populations. J Neurosci 2022; 42:8780-8794. [PMID: 36202615 PMCID: PMC9698772 DOI: 10.1523/jneurosci.1197-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 01/18/2023] Open
Abstract
The mammalian brain contains numerous neurons distributed across forebrain, midbrain, and hindbrain that project axons to the lower spinal cord and work in concert to control movement and achieve homeostasis. Extensive work has mapped the anatomic location of supraspinal cell types and continues to establish specific physiological functions. The patterns of gene expression that typify and distinguish these disparate populations, however, are mostly unknown. Here, using adult mice of mixed sex, we combined retrograde labeling of supraspinal cell nuclei with fluorescence-activated nuclei sorting and single-nuclei RNA sequencing analyses to transcriptionally profile neurons that project axons from the brain to lumbar spinal cord. We identified 14 transcriptionally distinct cell types and used a combination of established and newly identified marker genes to assign an anatomic location to each. To validate the putative marker genes, we visualized selected transcripts and confirmed selective expression within lumbar-projecting neurons in discrete supraspinal regions. Finally, we illustrate the potential utility of these data by examining the expression of transcription factors that distinguish different supraspinal cell types and by surveying the expression of receptors for growth and guidance cues that may be present in the spinal cord. Collectively, these data establish transcriptional differences between anatomically defined supraspinal populations, identify a new set of marker genes of use in future experiments, and provide insight into potential differences in cellular and physiological activity across the supraspinal connectome.SIGNIFICANCE STATEMENT The brain communicates with the body through a wide variety of neuronal populations with distinct functions and differential sensitivity to damage and disease. We have used single-nuclei RNA sequencing technology to distinguish patterns of gene expression within a diverse set of neurons that project axons from the mouse brain to the lumbar spinal cord. The results reveal transcriptional differences between populations previously defined on the basis of anatomy, provide new marker genes to facilitate rapid identification of cell type in future work, and suggest distinct responsiveness of different supraspinal populations to external growth and guidance cues.
Collapse
Affiliation(s)
- Zachary Beine
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Zimei Wang
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Pantelis Tsoulfas
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Murray G Blackmore
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
28
|
Curley DE, Vasaturo-Kolodner TR, Cannella N, Ciccocioppo R, Haass-Koffler CL. Yohimbine as a pharmacological probe for alcohol research: a systematic review of rodent and human studies. Neuropsychopharmacology 2022; 47:2111-2122. [PMID: 35760866 PMCID: PMC9556614 DOI: 10.1038/s41386-022-01363-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/08/2022]
Abstract
Alcohol use disorder (AUD) is a significant public health concern, contributing to a myriad of social, psychological, and physiological issues. Despite substantial efforts within the alcohol research field, promising preclinical findings have failed to translate to clinical use, highlighting the necessity to develop safe and effective pharmacological probes with the ability to be used in preclinical and clinical research. Yohimbine, an α2 adrenergic receptor antagonist, is a well-validated pharmacological tool that has been widely employed in alcohol studies to evaluate noradrenergic activation. This scoping systematic review examines published literature in rodent and human studies involving the use of yohimbine relevant to alcohol research. We conducted a systematic literature review of MEDLINE, Embase, Web of Science Core Collection, CINAHL, PsycInfo, and Cochrane Central Register of Controlled Trials to identify: (1) Experimental Characteristics and Methodology, (2) Sex Differences, (3) Neurochemical Systems and Brain Regions, and (4) Discussion of Applications for Medication Development. Sixty-seven (62 preclinical and 5 clinical) studies were identified meeting the stated criteria, comprising extensive evidence supporting the use of yohimbine as a safe, titratable pharmacological agent for translational alcohol research. Support for the use of yohimbine as a fully translational tool, however, is hindered by limited available findings from human laboratory studies, as well as a dearth of studies examining sex differences in yohimbine's mechanistic actions. Additional consideration should be given to further translational modeling, ideally allowing for parallel preclinical and clinical assessment of yohimbine, methodological assessment of neurochemical systems and brain regions.
Collapse
Affiliation(s)
- Dallece E Curley
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Neuroscience Graduate Program, Department of Neuroscience, Brown University, Providence, RI, USA
| | - Talia R Vasaturo-Kolodner
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA.
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
29
|
Delbono O, Wang Z, Messi ML. Brainstem noradrenergic neurons: Identifying a hub at the intersection of cognition, motility, and skeletal muscle regulation. Acta Physiol (Oxf) 2022; 236:e13887. [PMID: 36073023 PMCID: PMC9588743 DOI: 10.1111/apha.13887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Brainstem noradrenergic neuron clusters form a node integrating efferents projecting to distinct areas such as those regulating cognition and skeletal muscle structure and function, and receive dissimilar afferents through established circuits to coordinate organismal responses to internal and environmental challenges. Genetic lineage tracing shows the remarkable heterogeneity of brainstem noradrenergic neurons, which may explain their varied functions. They project to the locus coeruleus, the primary source of noradrenaline in the brain, which supports learning and cognition. They also project to pre-ganglionic neurons, which lie within the spinal cord and form synapses onto post-ganglionic neurons. The synapse between descending brainstem noradrenergic neurons and pre-ganglionic spinal neurons, and these in turn with post-ganglionic noradrenergic neurons located at the paravertebral sympathetic ganglia, support an anatomical hierarchy that regulates skeletal muscle innervation, neuromuscular transmission, and muscle trophism. Whether any noradrenergic neuron subpopulation is more susceptible to damaged protein deposit and death with ageing and neurodegeneration is a relevant question that answer will help us to detect neurodegeneration at an early stage, establish prognosis, and anticipate disease progression. Loss of muscle mass and strength with ageing, termed sarcopenia, may predict impaired cognition with ageing and neurodegeneration and establish an early time to start interventions aimed at reducing central noradrenergic neurons hyperactivity. Complex multidisciplinary approaches, including genetic tracing, specific circuit labelling, optogenetics and chemogenetics, electrophysiology, and single-cell transcriptomics and proteomics, are required to test this hypothesis pre-clinical.
Collapse
Affiliation(s)
- Osvaldo Delbono
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Zhong‐Min Wang
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - María Laura Messi
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
30
|
Duesman SJ, Shetty S, Patel S, Ogale N, Mohamed F, Sparman N, Rajbhandari P, Rajbhandari AK. Sexually dimorphic role of the locus coeruleus PAC1 receptors in regulating acute stress-associated energy metabolism. Front Behav Neurosci 2022; 16:995573. [PMID: 36275856 PMCID: PMC9580361 DOI: 10.3389/fnbeh.2022.995573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/24/2022] [Indexed: 01/05/2023] Open
Abstract
Severe stress leads to alterations in energy metabolism with sexually dimorphic onset or severity. The locus coeruleus (LC) in the brainstem that mediates fight-or-flight-or-freeze response to stress is sexually dimorphic in morphology, plays a key role in interactions between diet and severe stressors, and has neuronal input to the brown adipose tissue (BAT)-a thermogenic organ important for energy balance. Yet, little is known on how LC coordinates stress-related metabolic adaptations. LC expresses receptors for the neuropeptide PACAP (pituitary adenylate cyclase activating peptide) and PACAP signaling through PAC1 (PACAP receptor) are critical regulators of various types of stressors and energy metabolism. We hypothesized that LC-PAC1 axis is a sex-specific central "gatekeeper" of severe acute stress-driven behavior and energy metabolism. Selective ablation of PAC1 receptors from the LC did not alter stress response in mice of either sex, but enhanced food intake in females and was associated with increased energy expenditure and BAT thermogenesis in male mice. These results show a sexually dimorphic role of the LC-PAC1 in regulating acute stress-related energy metabolism. Thus, by disrupting LC-PAC1 signaling, our studies show a unique and previously unexplored role of LC in adaptive energy metabolism in a sex-dependent manner.
Collapse
Affiliation(s)
- Samuel J. Duesman
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sanutha Shetty
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sanil Patel
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Neha Ogale
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Farzanna Mohamed
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Njeri Sparman
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Abha Karki Rajbhandari
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States,*Correspondence: Abha Karki Rajbhandari,
| |
Collapse
|
31
|
Winek K, Tzur Y, Soreq H. Biological underpinnings of sex differences in neurological disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:27-67. [PMID: 36038206 DOI: 10.1016/bs.irn.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The importance of sex differences in neurological disorders has been increasingly acknowledged in recent clinical and basic research studies, but the complex biology and genetics underlying sex-linked biological heterogeneity and its brain-to-body impact remained incompletely understood. Men and women differ substantially in their susceptibility to certain neurological diseases, in the severity of symptoms, prognosis as well as the nature and efficacy of their response to treatments. The detailed mechanisms underlying these differences, especially at the molecular level, are being addressed in many studies but leave a lot to be further revealed. Here, we provide an overview of recent advances in our understanding of how sex differences in the brain and brain-body signaling contribute to neurological disorders and further present some future prospects entailed in terms of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Katarzyna Winek
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonat Tzur
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
32
|
Baytas O, Kauer JA, Morrow EM. Loss of mitochondrial enzyme GPT2 causes early neurodegeneration in locus coeruleus. Neurobiol Dis 2022; 173:105831. [PMID: 35908744 PMCID: PMC9669404 DOI: 10.1016/j.nbd.2022.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
Locus coeruleus (LC) is among the first brain areas to degenerate in Alzheimer’s disease and Parkinson’s disease; however, the underlying causes for the vulnerability of LC neurons are not well defined. Here we report a novel mechanism of degeneration of LC neurons caused by loss of the mitochondrial enzyme glutamate pyruvate transaminase 2 (GPT2). GPT2 Deficiency is a newly-recognized childhood neurometabolic disorder. The GPT2 enzyme regulates cell growth through replenishment of tricarboxylic acid (TCA) cycle intermediates and modulation of amino acid metabolism. In Gpt2-null mice, we observe an early loss of tyrosine hydroxylase (TH)-positive neurons in LC and reduced soma size at postnatal day 18. Gpt2-null LC shows selective positive Fluoro-Jade C staining. Neuron loss is accompanied by selective, prominent microgliosis and astrogliosis in LC. We observe reduced noradrenergic projections to and norepinephrine levels in hippocampus and spinal cord. Whole cell recordings in Gpt2-null LC slices show reduced soma size and abnormal action potentials with altered firing kinetics. Strikingly, we observe early decreases in phosphorylated S6 in Gpt2-null LC, preceding prominent p62 aggregation, increased LC3B-II to LC3B-I ratio, and neuronal loss. These data are consistent with a possible mechanism involving deficiency in protein synthesis and cell growth, associated subsequently with abnormal autophagy and neurodegeneration. As compared to the few genetic animal models with LC degeneration, loss of LC neurons in Gpt2-null mice is developmentally the earliest. Early neuron loss in LC in a model of human neurometabolic disease provides important clues regarding the metabolic vulnerability of LC and may lead to new therapeutic targets.
Collapse
Affiliation(s)
- Ozan Baytas
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA; Neuroscience Graduate Program, Brown University, Providence, RI 02912, USA
| | - Julie A Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
33
|
Ingiosi AM, Frank MG. Noradrenergic Signaling in Astrocytes Influences Mammalian Sleep Homeostasis. Clocks Sleep 2022; 4:332-345. [PMID: 35892990 PMCID: PMC9326550 DOI: 10.3390/clockssleep4030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Astrocytes influence sleep expression and regulation, but the cellular signaling pathways involved in these processes are poorly defined. We proposed that astrocytes detect and integrate a neuronal signal that accumulates during wakefulness, thereby leading to increased sleep drive. Noradrenaline (NA) satisfies several criteria for a waking signal integrated by astrocytes. We therefore investigated the role of NA signaling in astrocytes in mammalian sleep. We conditionally knocked out (cKO) β2-adrenergic receptors (β2-AR) selectively in astrocytes in mice and recorded electroencephalographic and electromyographic activity under baseline conditions and in response to sleep deprivation (SDep). cKO of astroglial β2-ARs increased active phase siesta duration under baseline conditions and reduced homeostatic compensatory changes in sleep consolidation and non-rapid eye movement slow-wave activity (SWA) after SDep. Overall, astroglial NA β2-ARs influence mammalian sleep homeostasis in a manner consistent with our proposed model of neuronal-astroglial interactions.
Collapse
Affiliation(s)
- Ashley M. Ingiosi
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA;
| | - Marcos G. Frank
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA;
- Gleason Institute for Neuroscience, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
34
|
Binette AN, Totty MS, Maren S. Sex differences in the immediate extinction deficit and renewal of extinguished fear in rats. PLoS One 2022; 17:e0264797. [PMID: 35687598 PMCID: PMC9187087 DOI: 10.1371/journal.pone.0264797] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
Abstract
Extinction learning is central to exposure-based behavioral therapies for reducing fear and anxiety in humans. However, patients with fear and anxiety disorders are often resistant to extinction. Moreover, trauma and stress-related disorders are highly prone to relapse and are twice as likely to occur in females compared to males, suggesting that females may be more susceptible to extinction deficits and fear relapse phenomena. In this report, we tested this hypothesis by examining sex differences in a stress-induced extinction learning impairment, the immediate extinction deficit (IED), and renewal, a common form of fear relapse. In contrast to our hypothesis, there were no sex differences in the magnitude of the immediate extinction deficit in two different rat strains (Long-Evans and Wistar). However, we did observe a sex difference in the renewal of fear when the extinguished conditioned stimulus was presented outside the extinction context. Male Wistar rats exhibited significantly greater renewal than female rats, a sex difference that has previously been reported after appetitive extinction. Collectively, these data reveal that stress-induced extinction impairments are similar in male and female rats, though the context-dependence of extinction is more pronounced in males.
Collapse
Affiliation(s)
- Annalise N. Binette
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
| | - Michael S. Totty
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
35
|
Suárez-Pereira I, Llorca-Torralba M, Bravo L, Camarena-Delgado C, Soriano-Mas C, Berrocoso E. The Role of the Locus Coeruleus in Pain and Associated Stress-Related Disorders. Biol Psychiatry 2022; 91:786-797. [PMID: 35164940 DOI: 10.1016/j.biopsych.2021.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
The locus coeruleus (LC)-noradrenergic system is the main source of noradrenaline in the central nervous system and is involved intensively in modulating pain and stress-related disorders (e.g., major depressive disorder and anxiety) and in their comorbidity. However, the mechanisms involving the LC that underlie these effects have not been fully elucidated, in part owing to the technical difficulties inherent in exploring such a tiny nucleus. However, novel research tools are now available that have helped redefine the LC system, moving away from the traditional view of LC as a homogeneous structure that exerts a uniform influence on neural activity. Indeed, innovative techniques such as DREADDs (designer receptors exclusively activated by designer drugs) and optogenetics have demonstrated the functional heterogeneity of LC, and novel magnetic resonance imaging applications combined with pupillometry have opened the way to evaluate LC activity in vivo. This review aims to bring together the data available on the efferent activity of the LC-noradrenergic system in relation to pain and its comorbidity with anxiodepressive disorders. Acute pain triggers a robust LC stress response, producing spinal cord-mediated endogenous analgesia while promoting aversion, vigilance, and threat detection through its ascending efferents. However, this protective biological system fails in chronic pain, and LC activity produces pain facilitation, anxiety, increased aversive memory, and behavioral despair, acting at the medulla, prefrontal cortex, and amygdala levels. Thus, the activation/deactivation of specific LC projections contributes to different behavioral outcomes in the shift from acute to chronic pain.
Collapse
Affiliation(s)
- Irene Suárez-Pereira
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Camarena-Delgado
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Carles Soriano-Mas
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
36
|
Borodovitsyna O, Tkaczynski JA, Corbett CM, Loweth JA, Chandler DJ. Age- and Sex-Dependent Changes in Locus Coeruleus Physiology and Anxiety-Like Behavior Following Acute Stressor Exposure. Front Behav Neurosci 2022; 16:808590. [PMID: 35283738 PMCID: PMC8914098 DOI: 10.3389/fnbeh.2022.808590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Adolescence is a critical period of development with increased sensitivity toward psychological stressors. Many psychiatric conditions emerge during adolescence and animal studies have shown that that acute stress has long-term effects on hypothalamic-pituitary-adrenal axis function and behavior. We recently demonstrated that acute stress produces long-term electrophysiological changes in locus coeruleus and long-lasting anxiety-like behavior in adolescent male rats. Based on prior reports of increased stress sensitivity during adolescence and increased sensitivity of female locus coeruleus toward corticotropin releasing factor, we hypothesized that the same acute stressor would cause different behavioral and physiological responses in adolescent female and adult male and female rats one week after stressor exposure. In this study, we assessed age and sex differences in how an acute psychological stressor affects corticosterone release, anxiety-like behavior, and locus coeruleus physiology at short- and long-term intervals. All groups of animals except adult female responded to stress with elevated corticosterone levels at the acute time point. One week after stressor exposure, adolescent females showed decreased firing of locus coeruleus neurons upon current injection and increased exploratory behavior compared to controls. The results were in direct contrast to changes observed in adolescent males, which showed increased anxiety-like behavior and increased spontaneous and induced firing in locus coeruleus neurons a week after stressor exposure. Adult males and females were both behaviorally and electrophysiologically resilient to the long-term effects of acute stress. Therefore, there may be a normal developmental trajectory for locus coeruleus neurons which promotes stress resilience in adults, but stressor exposure during adolescence perturbs their function. Furthermore, while locus coeruleus neurons are more sensitive to stressor exposure during adolescence, the effect varies between adolescent males and females. These findings suggest that endocrine, behavioral, and physiological responses to stress vary among animals of different age and sex, and therefore these variables should be taken into account when selecting models and designing experiments to investigate the effects of stress. These differences in animals may also allude to age and sex differences in the prevalence of various psychiatric illnesses within the human population.
Collapse
Affiliation(s)
- Olga Borodovitsyna
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, United States
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - John A. Tkaczynski
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, United States
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Claire M. Corbett
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, United States
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Jessica A. Loweth
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, United States
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Daniel J. Chandler
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, United States
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
- *Correspondence: Daniel J. Chandler,
| |
Collapse
|
37
|
Silveira‐Rosa T, Mateus‐Pinheiro A, Correia JS, Silva JM, Martins‐Macedo J, Araújo B, Machado‐Santos AR, Alves ND, Silva M, Loureiro‐Campos E, Sotiropoulos I, Bessa JM, Rodrigues AJ, Sousa N, Patrício P, Pinto L. Suppression of adult cytogenesis in the rat brain leads to sex-differentiated disruption of the HPA axis activity. Cell Prolif 2022; 55:e13165. [PMID: 34970787 PMCID: PMC8828259 DOI: 10.1111/cpr.13165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The action of stress hormones, mainly glucocorticoids, starts and coordinates the systemic response to stressful events. The HPA axis activity is predicated on information processing and modulation by upstream centres, such as the hippocampus where adult-born neurons (hABN) have been reported to be an important component in the processing and integration of new information. Still, it remains unclear whether and how hABN regulates HPA axis activity and CORT production, particularly when considering sex differences. MATERIALS AND METHODS Using both sexes of a transgenic rat model of cytogenesis ablation (GFAP-Tk rat model), we examined the endocrinological and behavioural effects of disrupting the generation of new astrocytes and neurons within the hippocampal dentate gyrus (DG). RESULTS Our results show that GFAP-Tk male rats present a heightened acute stress response. In contrast, GFAP-Tk female rats have increased corticosterone secretion at nadir, a heightened, yet delayed, response to an acute stress stimulus, accompanied by neuronal hypertrophy in the basal lateral amygdala and increased expression of the glucocorticoid receptors in the ventral DG. CONCLUSIONS Our results reveal that hABN regulation of the HPA axis response is sex-differentiated.
Collapse
Affiliation(s)
- Tiago Silveira‐Rosa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - António Mateus‐Pinheiro
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Department of Internal MedicineCoimbra Hospital and University CenterCoimbraPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Joana Margarida Silva
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Joana Martins‐Macedo
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ana Rita Machado‐Santos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Present address:
Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA
- Present address:
New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Mariana Silva
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Eduardo Loureiro‐Campos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - João Miguel Bessa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| |
Collapse
|
38
|
Locus Coeruleus in Non-Mammalian Vertebrates. Brain Sci 2022; 12:brainsci12020134. [PMID: 35203898 PMCID: PMC8870555 DOI: 10.3390/brainsci12020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 11/30/2022] Open
Abstract
The locus coeruleus (LC) is a vertebrate-specific nucleus and the primary source of norepinephrine (NE) in the brain. This nucleus has conserved properties across species: highly homogeneous cell types, a small number of cells but extensive axonal projections, and potent influence on brain states. Comparative studies on LC benefit greatly from its homogeneity in cell types and modularity in projection patterns, and thoroughly understanding the LC-NE system could shed new light on the organization principles of other more complex modulatory systems. Although studies on LC are mainly focused on mammals, many of the fundamental properties and functions of LC are readily observable in other vertebrate models and could inform mammalian studies. Here, we summarize anatomical and functional studies of LC in non-mammalian vertebrate classes, fish, amphibians, reptiles, and birds, on topics including axonal projections, gene expressions, homeostatic control, and modulation of sensorimotor transformation. Thus, this review complements mammalian studies on the role of LC in the brain.
Collapse
|
39
|
TRPM4 Contributes to Subthreshold Membrane Potential Oscillations in Multiple Mouse Pacemaker Neurons. eNeuro 2021; 8:ENEURO.0212-21.2021. [PMID: 34732535 PMCID: PMC8607911 DOI: 10.1523/eneuro.0212-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
Select neuronal populations display steady rhythmic neuronal firing that provides tonic excitation to drive downstream networks and behaviors. In noradrenergic neurons of the locus coeruleus (LC), circadian neurons of the suprachiasmatic nucleus (SCN), and CO2/H+-activated neurons of the brainstem retrotrapezoid nucleus (RTN), large subthreshold membrane potential oscillations contribute to the pacemaker-like action potential discharge. The oscillations and firing in LC and SCN involve contributions from leak sodium (NALCN) and L-type calcium channels while recent work from RTN suggested an additional pivotal role for a secondary calcium-activated and voltage-gated cationic current sensitive to TRPM4 channel blockers. Here, we tested whether TRPM4 contributes to subthreshold oscillations in mouse LC and SCN. By RNAscope in situ hybridization, Trpm4 transcripts were detected in both cell groups. In whole-cell recordings from acute slice preparations, prominent voltage-dependent membrane potential oscillations were revealed in LC and SCN after blocking action potentials. These oscillations were inhibited by two chemically-distinct blockers of TRPM4, 9-phenanthrol (9-pt) and 4-chloro-2-[[2-(2-chlorophenoxy)acetyl]amino]benzoic acid (CBA). Under whole-cell voltage clamp, inward currents evoked by oscillation voltage waveforms were inhibited in LC by blocking L-type calcium channels and TRPM4. These data implicate TRPM4 in the large subthreshold membrane potential oscillations that underlie tonic action potential discharge in LC and SCN, providing a voltage-dependent and calcium-dependent cationic current to augment the depolarizing inward Na+ and Ca2+ currents previously associated with this distinctive electroresponsive property.
Collapse
|
40
|
Palamarchuk IS, Vaillancourt T. Mental Resilience and Coping With Stress: A Comprehensive, Multi-level Model of Cognitive Processing, Decision Making, and Behavior. Front Behav Neurosci 2021; 15:719674. [PMID: 34421556 PMCID: PMC8377204 DOI: 10.3389/fnbeh.2021.719674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Aversive events can evoke strong emotions that trigger cerebral neuroactivity to facilitate behavioral and cognitive shifts to secure physiological stability. However, upon intense and/or chronic exposure to such events, the neural coping processes can be maladaptive and disrupt mental well-being. This maladaptation denotes a pivotal point when psychological stress occurs, which can trigger subconscious, "automatic" neuroreactivity as a defence mechanism to protect the individual from potential danger including overwhelming unpleasant feelings and disturbing or threatening thoughts.The outcomes of maladaptive neural activity are cognitive dysfunctions such as altered memory, decision making, and behavior that impose a risk for mental disorders. Although the neurocognitive phenomena associated with psychological stress are well documented, the complex neural activity and pathways related to stressor detection and stress coping have not been outlined in detail. Accordingly, we define acute and chronic stress-induced pathways, phases, and stages in relation to novel/unpredicted, uncontrollable, and ambiguous stressors. We offer a comprehensive model of the stress-induced alterations associated with multifaceted pathophysiology related to cognitive appraisal and executive functioning in stress.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada.,School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
41
|
Mei X, Wang L, Yang B, Li X. Sex differences in noradrenergic modulation of attention and impulsivity in rats. Psychopharmacology (Berl) 2021; 238:2167-2177. [PMID: 33834255 DOI: 10.1007/s00213-021-05841-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
RATIONALE Noradrenaline (NE) is closely related to attentive performance and impulsive control. However, the potential sex differences regarding attention and impulsivity under the noradrenergic modulation have been largely neglected. Therefore, our study aimed to investigate whether male and female rats exhibit differential responses to NE-related drugs during the five-choice serial reaction time task (5CSRT). METHODS Male and female rats were trained in 5CSRT and administered with different NE drugs after obtaining stable baseline performance: atipamezole, a highly selective α2 receptor antagonist; prazosin, an α1 receptor antagonist; and atomoxetine, a selective NE reuptake inhibitor. Later, prazosin was selected to co-administration with atomoxetine. RESULTS Male and female rats exhibited equal learning speed, and no significant baseline differences were found as measured by the 5CSRT. Atomoxetine decreased premature responses in both sexes, but the extent of this reduction was different, with the reduction greater in males. Besides, atomoxetine (1.8 mg/kg) increased the error of omissions in females. The high dose of prazosin (0.5 mg/kg) decreased the accuracy only in male rats, but this was ameliorated by the co-administration with atomoxetine. CONCLUSIONS Atomoxetine showed significant improvement in impulsivity, but atomoxetine had less beneficial effects on impulsive control in females than in males, and it even impaired attentional performance in female rats. The α1 receptors were mainly responsible for NE drug-related sex differences in attention rather than impulsivity. The results obtained in this study indicate that the sex differences exist in both attention and impulsivity by the modulation of noradrenaline and raise the concern to improve sex-specific treatments.
Collapse
Affiliation(s)
- Xiaolin Mei
- College of Psychology, Capital Normal University, Beijing, 100048, China
- Department of Psychology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lutong Wang
- College of Psychology, Capital Normal University, Beijing, 100048, China
| | - Bo Yang
- Department of Psychology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xinwang Li
- College of Psychology, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
42
|
Mulvey B, Dougherty JD. Transcriptional-regulatory convergence across functional MDD risk variants identified by massively parallel reporter assays. Transl Psychiatry 2021; 11:403. [PMID: 34294677 PMCID: PMC8298436 DOI: 10.1038/s41398-021-01493-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Family and population studies indicate clear heritability of major depressive disorder (MDD), though its underlying biology remains unclear. The majority of single-nucleotide polymorphism (SNP) linkage blocks associated with MDD by genome-wide association studies (GWASes) are believed to alter transcriptional regulators (e.g., enhancers, promoters) based on enrichment of marks correlated with these functions. A key to understanding MDD pathophysiology will be elucidation of which SNPs are functional and how such functional variants biologically converge to elicit the disease. Furthermore, retinoids can elicit MDD in patients and promote depressive-like behaviors in rodent models, acting via a regulatory system of retinoid receptor transcription factors (TFs). We therefore sought to simultaneously identify functional genetic variants and assess retinoid pathway regulation of MDD risk loci. Using Massively Parallel Reporter Assays (MPRAs), we functionally screened over 1000 SNPs prioritized from 39 neuropsychiatric trait/disease GWAS loci, selecting SNPs based on overlap with predicted regulatory features-including expression quantitative trait loci (eQTL) and histone marks-from human brains and cell cultures. We identified >100 SNPs with allelic effects on expression in a retinoid-responsive model system. Functional SNPs were enriched for binding sequences of retinoic acid-receptive transcription factors (TFs), with additional allelic differences unmasked by treatment with all-trans retinoic acid (ATRA). Finally, motifs overrepresented across functional SNPs corresponded to TFs highly specific to serotonergic neurons, suggesting an in vivo site of action. Our application of MPRAs to screen MDD-associated SNPs suggests a shared transcriptional-regulatory program across loci, a component of which is unmasked by retinoids.
Collapse
Affiliation(s)
- Bernard Mulvey
- Departments of Genetics and Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Joseph D Dougherty
- Departments of Genetics and Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
43
|
Cardenas A, Papadogiannis A, Dimitrov E. The role of medial prefrontal cortex projections to locus ceruleus in mediating the sex differences in behavior in mice with inflammatory pain. FASEB J 2021; 35:e21747. [PMID: 34151467 DOI: 10.1096/fj.202100319rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/11/2022]
Abstract
We tested the hypothesis that the cognitive impairment associated with inflammatory pain may result from dysregulation of the top-down control of locus ceruleus's (LC) activity by the medial prefrontal cortex (mPFC). Injection of complete Freund's adjuvant (CFA) served as a model for inflammatory pain. The CFA injection decreased the thermal thresholds in both sexes but only the male mice showed increased anxiety-like behavior and diminished cognition, while the females were not affected. Increased calcium fluorescence, a marker for neuronal activity, was detected by photometry in the mPFC of males but not in females with CFA. Next, while chemogenetic inhibition of the projections from the mPFC to the LC improved the object recognition memory of males with pain, the inhibition of the mPFC to LC pathway in female mice produced anxiolysis and spatial memory deficits. The behavior results prompted us to compare the reciprocal innervation of mPFC and LC between the sexes. We used an anterograde transsynaptic tagging technique, which relies on postsynaptic cre transfer, to assess the innervation of LC by mPFC efferents. The males showed a higher rate of postsynaptic cre transfer into LC neurons from mPFC efferents than the females. And vice versa, a retrograde tracing experiment demonstrated that LC to mPFC projection neurons were more numerous in females when compared to males. In conclusion, we provide evidence that subtle differences in the reciprocal neuronal circuit between the LC and mPFC may contribute to sex differences associated with the adverse cognitive effects of inflammatory pain.
Collapse
Affiliation(s)
- Andrea Cardenas
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexander Papadogiannis
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Eugene Dimitrov
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
44
|
Dib R, Gervais NJ, Mongrain V. A review of the current state of knowledge on sex differences in sleep and circadian phenotypes in rodents. Neurobiol Sleep Circadian Rhythms 2021; 11:100068. [PMID: 34195482 PMCID: PMC8240025 DOI: 10.1016/j.nbscr.2021.100068] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022] Open
Abstract
Sleep is a vital part of our lives as it is required to maintain health and optimal cognition. In humans, sex differences are relatively well-established for many sleep phenotypes. However, precise differences in sleep phenotypes between male and female rodents are less documented. The main goal of this article is to review sex differences in sleep architecture and electroencephalographic (EEG) activity during wakefulness and sleep in rodents. The effects of acute sleep deprivation on sleep duration and EEG activity in male and female rodents will also be covered, in addition to sex differences in specific circadian phenotypes. When possible, the contribution of the female estrous cycle to the observed differences between males and females will be described. In general, male rodents spend more time in non-rapid eye movement sleep (NREMS) in comparison to females, while other differences between sexes in sleep phenotypes are species- and estrous cycle phase-dependent. Altogether, the review illustrates the need for a sex-based perspective in basic sleep and circadian research, including the consideration of sex chromosomes and gonadal hormones in sleep and circadian phenotypes. In rodents, males spend less time awake, and more time in NREMS than females. The recovery from sleep deprivation is also dependent on biological sex. Gonadal hormones modulate sleep and circadian phenotypes in rodents. A more systematic comparison of sex in basic sleep/circadian research is needed.
Collapse
Affiliation(s)
- Rama Dib
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada.,Center for Advanced Research in Sleep Medicine, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Montréal, QC, Canada
| | - Nicole J Gervais
- Rotman Research Institute - Baycrest Centre, North York, ON, Canada
| | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada.,Center for Advanced Research in Sleep Medicine, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Montréal, QC, Canada
| |
Collapse
|
45
|
Alshammari TK. Sexual dimorphism in pre-clinical studies of depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110120. [PMID: 33002519 DOI: 10.1016/j.pnpbp.2020.110120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022]
Abstract
Although there is a sex bias in the pathological mechanisms exhibited by brain disorders, investigation of the female brain in biomedical science has long been neglected. Use of the male model has generally been the preferred option as the female animal model exhibits both biological variability and hormonal fluctuations. Existing studies that compare behavioral and/or molecular alterations in animal models of brain diseases are generally underrepresented, and most utilize the male model. Nevertheless, in recent years there has been a trend toward the increased inclusion of females in brain studies. However, current knowledge regarding sex-based differences in depression and stress-related disorders is limited. This can be improved by reviewing preclinical studies that highlight sex differences in depression. This paper therefore presents a review of sex-based preclinical studies of depression. These shed light on the discrepancies between males and females regarding the biological mechanisms that underpin mechanistic alterations in the diseased brain. This review also highlights the conclusions drawn by preclinical studies to advance our understanding of mood disorders, encouraging researchers to promote ways of investigating and managing sexually dimorphic disorders.
Collapse
Affiliation(s)
- Tahani K Alshammari
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Saudi Arabia; Prince Naïf Bin Abdul-Aziz Health Research Center, King Saud University, Saudi Arabia.
| |
Collapse
|
46
|
Guinea-Izquierdo A, Giménez M, Martínez-Zalacaín I, Del Cerro I, Canal-Noguer P, Blasco G, Gascón J, Reñé R, Rico I, Camins A, Aguilera C, Urretavizcaya M, Ferrer I, Menchón JM, Soria V, Soriano-Mas C. Lower Locus Coeruleus MRI intensity in patients with late-life major depression. PeerJ 2021; 9:e10828. [PMID: 33628639 PMCID: PMC7894108 DOI: 10.7717/peerj.10828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/04/2021] [Indexed: 11/24/2022] Open
Abstract
Background The locus coeruleus (LC) is the major noradrenergic source in the central nervous system. Structural alterations in the LC contribute to the pathophysiology of different neuropsychiatric disorders, which may increase to a variable extent the likelihood of developing neurodegenerative conditions. The characterization of such alterations may therefore help to predict progression to neurodegenerative disorders. Despite the LC cannot be visualized with conventional magnetic resonance imaging (MRI), specific MRI sequences have been developed to infer its structural integrity. Methods We quantified LC signal Contrast Ratios (LCCRs) in late-life major depressive disorder (MDD) (n = 37, 9 with comorbid aMCI), amnestic Mild Cognitive Impairment (aMCI) (n = 21, without comorbid MDD), and healthy controls (HCs) (n = 31), and also assessed the putative modulatory effects of comorbidities and other clinical variables. Results LCCRs were lower in MDD compared to aMCI and HCs. While no effects of aMCI comorbidity were observed, lower LCCRs were specifically observed in patients taking serotonin/norepinephrine reuptake inhibitors (SNRIs). Conclusion Our results do not support the hypothesis that lower LCCRs characterize the different clinical groups that may eventually develop a neurodegenerative disorder. Conversely, our results were specifically observed in patients with late-life MDD taking SNRIs. Further research with larger samples is warranted to ascertain whether medication or particular clinical features of patients taking SNRIs are associated with changes in LC neurons.
Collapse
Affiliation(s)
- Andrés Guinea-Izquierdo
- Department of Clinical Sciences/School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Psychiatry/Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat (Barcelona), Spain
| | - Mónica Giménez
- Department of Psychiatry/Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat (Barcelona), Spain
| | - Ignacio Martínez-Zalacaín
- Department of Clinical Sciences/School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Psychiatry/Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat (Barcelona), Spain
| | - Inés Del Cerro
- Department of Clinical Sciences/School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Psychiatry/Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat (Barcelona), Spain.,Network Center for Biomedical Research on Mental Health (CIBERSAM), Madrid, Spain
| | - Pol Canal-Noguer
- B2SLab/Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain.,Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Esplugues de Llobregat (Barcelona), Spain
| | - Gerard Blasco
- Imaging Diagnostic Institute (IDI), Bellvitge University Hospital, Hospitalet de Llobregat (Barcelona), Spain
| | - Jordi Gascón
- Dementia Diagnostic and Treatment Unit/Department of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat (Barcelona), Spain
| | - Ramon Reñé
- Dementia Diagnostic and Treatment Unit/Department of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat (Barcelona), Spain
| | - Inmaculada Rico
- Dementia Diagnostic and Treatment Unit/Department of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat (Barcelona), Spain
| | - Angels Camins
- Imaging Diagnostic Institute (IDI), Bellvitge University Hospital, Hospitalet de Llobregat (Barcelona), Spain
| | - Carlos Aguilera
- Imaging Diagnostic Institute (IDI), Bellvitge University Hospital, Hospitalet de Llobregat (Barcelona), Spain
| | - Mikel Urretavizcaya
- Department of Clinical Sciences/School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Psychiatry/Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat (Barcelona), Spain.,Network Center for Biomedical Research on Mental Health (CIBERSAM), Madrid, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics/Institute of Neurosciences, University of Barcelona, Hospitalet de Llobregat (Barcelona), Spain.,Department of Pathologic Anatomy/Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat (Barcelona), Spain.,Network Center for Biomedical Research on Neurodegenerative diseases (CIBERNED), Madrid, Spain
| | - José Manuel Menchón
- Department of Clinical Sciences/School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Psychiatry/Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat (Barcelona), Spain.,Network Center for Biomedical Research on Mental Health (CIBERSAM), Madrid, Spain
| | - Virginia Soria
- Department of Clinical Sciences/School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Psychiatry/Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat (Barcelona), Spain.,Network Center for Biomedical Research on Mental Health (CIBERSAM), Madrid, Spain
| | - Carles Soriano-Mas
- Department of Psychiatry/Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat (Barcelona), Spain.,Network Center for Biomedical Research on Mental Health (CIBERSAM), Madrid, Spain.,Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| |
Collapse
|
47
|
Diab A, Qi J, Shahin I, Milligan C, Fawcett JP. NCK1 Regulates Amygdala Activity to Control Context-dependent Stress Responses and Anxiety in Male Mice. Neuroscience 2020; 448:107-125. [PMID: 32946951 DOI: 10.1016/j.neuroscience.2020.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Anxiety disorder (AD) is characterized by the development of maladaptive neuronal circuits and changes to the excitatory/inhibitory (E/I) balance of the central nervous system. Although AD is considered to be heritable, specific genetic markers remain elusive. Recent genome-wide association studies (GWAS) studies have identified non-catalytic region of tyrosine kinase adaptor protein 1 (NCK1), a gene that codes for an intracellular adaptor protein involved in actin dynamics, as an important gene in the regulation of mood. Using a murine model in which NCK1 is inactivated, we show that male, but not female, mice display increased levels of context-dependent anxiety-like behaviors along with an increase in circulating serum corticosterone relative to control. Treatment of male NCK1 mutant mice with a positive allosteric modulator of the GABAA receptor rescued the anxiety-like behaviors implicating NCK1 in regulating neuronal excitability. These defects are not attributable to apparent defects in gross brain structure or in axon guidance. However, when challenged in an approach-avoidance conflict paradigm, male NCK1-deficient mice have decreased neuronal activation in the prefrontal cortex (PFC), as well as decreased activation of inhibitory interneurons in the basolateral amygdala (BLA). Finally, NCK1 deficiency results in loss of dendritic spine density in principal neurons of the BLA. Taken together, these data implicate NCK1 in the control of E/I balance in BLA. Our work identifies a novel role for NCK1 in the regulation of sex-specific neuronal circuitry necessary for controlling anxiety-like behaviors. Further, our work points to this animal model as a useful preclinical tool for the study of novel anxiolytics and its significance towards understanding sex differences in anxiolytic function.
Collapse
Affiliation(s)
- Antonios Diab
- Department of Pharmacology, Dalhousie University, Canada
| | - Jiansong Qi
- Department of Pharmacology, Dalhousie University, Canada
| | - Ibrahim Shahin
- Department of Pharmacology, Dalhousie University, Canada
| | | | - James P Fawcett
- Department of Pharmacology, Dalhousie University, Canada; Department of Surgery, Dalhousie University, Canada.
| |
Collapse
|
48
|
Sun P, Wang J, Zhang M, Duan X, Wei Y, Xu F, Ma Y, Zhang YH. Sex-Related Differential Whole-Brain Input Atlas of Locus Coeruleus Noradrenaline Neurons. Front Neural Circuits 2020; 14:53. [PMID: 33071759 PMCID: PMC7541090 DOI: 10.3389/fncir.2020.00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
As the most important organ in our bodies, the brain plays a critical role in deciding sex-related differential features; however, the underlying neural circuitry basis remains unclear. Here, we used a cell-type-specific rabies virus-mediated monosynaptic tracing system to generate a sex differences-related whole-brain input atlas of locus coeruleus noradrenaline (LC-NE) neurons. We developed custom pipelines for brain-wide comparisons of input sources in both sexes with the registration of the whole-brain data set to the Allen Mouse Brain Reference Atlas. Among 257 distinct anatomical regions, we demonstrated the differential proportions of inputs to LC-NE neurons in male and female mice at different levels. Locus coeruleus noradrenaline neurons of two sexes showed general similarity in the input patterns, but with differentiated input proportions quantitatively from major brain regions and diverse sub-regions. For instance, inputs to male LC-NE neurons were found mainly in the cerebrum, interbrain, and cerebellum, whereas inputs to female LC-NE neurons were found in the midbrain and hindbrain. We further found that specific subsets of nuclei nested within sub-regions contributed to overall sex-related differences in the input circuitry. Furthermore, among the totaled 123 anatomical regions with proportion of inputs >0.1%, we also identified 11 sub-regions with significant statistical differences of total inputs between male and female mice, and seven of them also showed such differences in ipsilateral hemispheres. Our study not only provides a structural basis to facilitate our understanding of sex differences at a circuitry level but also provides clues for future sexually differentiated functional studies related to LC-NE neurons.
Collapse
Affiliation(s)
- Pei Sun
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Junjun Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Duan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfei Wei
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqiang Xu
- Centre for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, CAS Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Ma
- HUST-WHBC United Hematology Optical Imaging Center, Wuhan Blood Center (WHBC), Wuhan, China
| | - Yu-Hui Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Spinal astrocytes in superficial laminae gate brainstem descending control of mechanosensory hypersensitivity. Nat Neurosci 2020; 23:1376-1387. [DOI: 10.1038/s41593-020-00713-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
|
50
|
den Hartog CR, Blandino KL, Nash ML, Sjogren ER, Grampetro MA, Moorman DE, Vazey EM. Noradrenergic tone mediates marble burying behavior after chronic stress and ethanol. Psychopharmacology (Berl) 2020; 237:3021-3031. [PMID: 32588079 PMCID: PMC7529922 DOI: 10.1007/s00213-020-05589-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/11/2020] [Indexed: 12/27/2022]
Abstract
RATIONALE Stress plays a major role in the development of alcohol use disorder (AUD)-a history of chronic stress contributes to alcohol misuse, and withdrawal from alcohol elevates stress, perpetuating cycles of problematic drinking. Recent studies have shown that, in male mice, repeated chronic intermittent ethanol (CIE) and stress elevates alcohol use above either manipulation alone and impacts cognitive functions such as behavioral flexibility. OBJECTIVE Here, we investigated the impact of CIE and stress on anxiety in both sexes, and whether the norepinephrine (NE) system via locus coeruleus, which is implicated in both stress and alcohol motivation, is involved. RESULTS Male and female mice received multiple cycles of CIE and/or repeated forced swim stress (FSS), producing elevated drinking in both sexes. CIE/FSS treatment increased anxiety, which was blocked by treatment with the α1-AR inverse agonist prazosin. In contrast, administration of the corticotropin releasing factor receptor antagonist CP376395 into locus coeruleus did not reduce CIE/FSS-elevated anxiety. We also observed sex differences in behavioral responses to a history of CIE or FSS alone as well as differential behavioral consequences of prazosin treatment. CONCLUSIONS These data indicate that NE contributes to the development of anxiety following a history of alcohol and/or stress, and that the influence of both treatment history and NE signaling is sex dependent. These results argue for further investigation of the NE system in relation to disrupted behavior following chronic alcohol and stress, and support the assertion that treatments may differ across sex based on differential neural system engagement.
Collapse
Affiliation(s)
| | | | - McKenzie L. Nash
- Department of Biology, University of Massachusetts Amherst, MA, 01003, USA
| | - Emily R. Sjogren
- Department of Biology, University of Massachusetts Amherst, MA, 01003, USA
| | | | - David E. Moorman
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, MA, 01003, USA
| | - Elena M. Vazey
- Department of Biology, University of Massachusetts Amherst, MA, 01003, USA
| |
Collapse
|