1
|
Hastie KM, Salie ZL, Ke Z, Halfmann PJ, DeWald LE, McArdle S, Grinyó A, Davidson E, Schendel SL, Hariharan C, Norris MJ, Yu X, Chennareddy C, Xiong X, Heinrich M, Holbrook MR, Doranz B, Crozier I, Kawaoka Y, Branco LM, Kuhn JH, Briggs JAG, Worwa G, Davis CW, Ahmed R, Saphire EO. Anti-Ebola virus mAb 3A6 protects highly viremic animals from fatal outcome via binding GP (1,2) in a position elevated from the virion membrane. Nat Commun 2025; 16:1293. [PMID: 39900911 PMCID: PMC11791206 DOI: 10.1038/s41467-025-56452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2023] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Monoclonal antibodies (mAbs) against Ebola virus (EBOV) glycoprotein (GP1,2) are the standard of care for Ebola virus disease (EVD). Anti-GP1,2 mAbs targeting the stalk and membrane proximal external region (MPER) potently neutralize EBOV in vitro and are protective in a mouse model of EVD. However, their neutralization mechanism is poorly understood because they target a GP1,2 epitope that has evaded structural characterization. Using X-ray crystallography and cryo-electron tomography of mAb 3A6 complexed with its stalk-MPER epitope, we reveal a previously undescribed mechanism in which 3A6 binds to a conformation of GP1,2 that is lifted from the virion membrane. We further show that in both domestic guinea pig and rhesus monkey EVD models, 3A6 provides therapeutic benefit at high-viremia advanced disease stages and at the lowest dose yet demonstrated for any anti-EBOV mAb-based monotherapy. The findings reported here can guide design of next-generation highly potent anti-EBOV therapeutics and vaccines.
Collapse
Affiliation(s)
- Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zhe Li Salie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Eli Lilly, San Diego, CA, USA
| | - Zunlong Ke
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
- Department of Molecular Biosciences, the University of Texas at Austin, Austin, TX, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Lisa Evans DeWald
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Sara McArdle
- Microscopy Core, La Jolla Institute for Immunology, La Jolla, La Jolla, CA, USA
| | - Ariadna Grinyó
- Integral Molecular, Philadelphia, PA, USA
- Vall d'Hebron Institute of Oncology, Hospital del Mar Research Institute, Barcelona, Spain
| | | | - Sharon L Schendel
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Chitra Hariharan
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael J Norris
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Xiaoying Yu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Arcturus Therapeutics, San Diego, CA, USA
| | | | - Xiaoli Xiong
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Science Park, Guangzhou, Guangdong Province, China
| | | | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | | | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | | | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA.
| | - John A G Briggs
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany.
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA.
| | - Carl W Davis
- Department of Microbiology and Immunology, Emory Vaccine Center, Atlanta, GA, USA.
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory Vaccine Center, Atlanta, GA, USA.
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Roe MD, Hood G, Sterling SL, Yan L, Boré JA, Tipton T, Thompson C, Carroll MW, Laing ED. Performance of an envelope glycoprotein-based multiplex immunoassay for Ebola virus antibody detection in a cohort of Ebola virus disease survivors. J Virol Methods 2025; 331:115057. [PMID: 39461623 DOI: 10.1016/j.jviromet.2024.115057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Serological surveillance in animal and human hosts can be a cost-effective strategy for orthoebolavirus detection, but is challenged by accurate estimates of seroprevalence, potential pauci-symptomatic disease presentation, and antigenic cross-reactivity. Here, we describe the use of an envelope glycoprotein (GP)-based multiplex microsphere immunoassay, consisting of nine filovirus GP antigens for the detection of anti-Ebola virus (EBOV) antibodies in a well-characterized cohort of Guinean Ebola virus disease (EVD) survivors and contacts from the 2013 - 2016 West African EVD outbreak. We examined sensitivity and specificity for the detection of anti-EBOV antibodies by GP expressed as recombinant trimeric ectodomains, yielding an assay performance of 95.96 % sensitivity and 98.61 % specificity. Additionally, agreement between the multiplex test and a whole virus ELISA and virus neutralization test showed strong correlations. The results demonstrate that this filovirus multiplex test is a sensitive tool for high-throughput serosurveillance.
Collapse
Affiliation(s)
- McKenna D Roe
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Grace Hood
- Centre for Human Genetics & Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Spencer L Sterling
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson for the Advancement of Military Medicine, Rockledge, MD, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson for the Advancement of Military Medicine, Rockledge, MD, USA
| | - Joseph Akoi Boré
- Centre de Recherche et d'Analyse Biomédicale (CRAM), Macenta, Guinea
| | - Tom Tipton
- Centre for Human Genetics & Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Craig Thompson
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Warwick, UK
| | - Miles W Carroll
- Centre for Human Genetics & Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
3
|
Bu F, Ye G, Morsheimer K, Mendoza A, Turner-Hubbard H, Herbst M, Spiller B, Wadzinski BE, Eaton B, Anantpadma M, Yang G, Liu B, Davey R, Li F. Discovery of Nanosota-EB1 and -EB2 as Novel Nanobody Inhibitors Against Ebola Virus Infection. PLoS Pathog 2024; 20:e1012817. [PMID: 39715280 PMCID: PMC11723632 DOI: 10.1371/journal.ppat.1012817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
The Ebola filovirus (EBOV) poses a serious threat to global health and national security. Nanobodies, a type of single-domain antibody, have demonstrated promising therapeutic potential. We identified two anti-EBOV nanobodies, Nanosota-EB1 and Nanosota-EB2, which specifically target the EBOV glycoprotein (GP). Cryo-EM and biochemical data revealed that Nanosota-EB1 binds to the glycan cap of GP1, preventing its protease cleavage, while Nanosota-EB2 binds to critical membrane-fusion elements in GP2, stabilizing it in the pre-fusion state. Nanosota-EB2 is a potent neutralizer of EBOV infection in vitro and offers excellent protection in a mouse model of EBOV challenge, while Nanosota-EB1 provides moderate neutralization and protection. Nanosota-EB1 and Nanosota-EB2 are the first nanobodies shown to inhibit authentic EBOV. Combined with our newly developed structure-guided in vitro evolution approach, they lay the foundation for nanobody-based therapies against EBOV and other viruses within the ebolavirus genus.
Collapse
Affiliation(s)
- Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kimberly Morsheimer
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alise Mendoza
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hailey Turner-Hubbard
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Morgan Herbst
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin Spiller
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brett Eaton
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Manu Anantpadma
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Ge Yang
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Robert Davey
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
4
|
Edgar JE, Bournazos S. Fc-FcγR interactions during infections: From neutralizing antibodies to antibody-dependent enhancement. Immunol Rev 2024; 328:221-242. [PMID: 39268652 PMCID: PMC11659939 DOI: 10.1111/imr.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/17/2024]
Abstract
Advances in antibody technologies have resulted in the development of potent antibody-based therapeutics with proven clinical efficacy against infectious diseases. Several monoclonal antibodies (mAbs), mainly against viruses such as SARS-CoV-2, HIV-1, Ebola virus, influenza virus, and hepatitis B virus, are currently undergoing clinical testing or are already in use. Although these mAbs exhibit potent neutralizing activity that effectively blocks host cell infection, their antiviral activity results not only from Fab-mediated virus neutralization, but also from the protective effector functions mediated through the interaction of their Fc domains with Fcγ receptors (FcγRs) on effector leukocytes. Fc-FcγR interactions confer pleiotropic protective activities, including the clearance of opsonized virions and infected cells, as well as the induction of antiviral T-cell responses. However, excessive or inappropriate activation of specific FcγR pathways can lead to disease enhancement and exacerbated pathology, as seen in the context of dengue virus infections. A comprehensive understanding of the diversity of Fc effector functions during infection has guided the development of engineered antiviral antibodies optimized for maximal effector activity, as well as the design of targeted therapeutic approaches to prevent antibody-dependent enhancement of disease.
Collapse
Affiliation(s)
- Julia E. Edgar
- The London School of Hygiene and Tropical MedicineLondonUK
| | - Stylianos Bournazos
- The Laboratory of Molecular Genetics and ImmunologyThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
5
|
Munyeku-Bazitama Y, Edidi-Atani F, Takada A. Non-Ebola Filoviruses: Potential Threats to Global Health Security. Viruses 2024; 16:1179. [PMID: 39205153 PMCID: PMC11359311 DOI: 10.3390/v16081179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Filoviruses are negative-sense single-stranded RNA viruses often associated with severe and highly lethal hemorrhagic fever in humans and nonhuman primates, with case fatality rates as high as 90%. Of the known filoviruses, Ebola virus (EBOV), the prototype of the genus Orthoebolavirus, has been a major public health concern as it frequently causes outbreaks and was associated with an unprecedented outbreak in several Western African countries in 2013-2016, affecting 28,610 people, 11,308 of whom died. Thereafter, filovirus research mostly focused on EBOV, paying less attention to other equally deadly orthoebolaviruses (Sudan, Bundibugyo, and Taï Forest viruses) and orthomarburgviruses (Marburg and Ravn viruses). Some of these filoviruses have emerged in nonendemic areas, as exemplified by four Marburg disease outbreaks recorded in Guinea, Ghana, Tanzania, and Equatorial Guinea between 2021 and 2023. Similarly, the Sudan virus has reemerged in Uganda 10 years after the last recorded outbreak. Moreover, several novel bat-derived filoviruses have been discovered in the last 15 years (Lloviu virus, Bombali virus, Měnglà virus, and Dehong virus), most of which are poorly characterized but may display a wide host range. These novel viruses have the potential to cause outbreaks in humans. Several gaps are yet to be addressed regarding known and emerging filoviruses. These gaps include the virus ecology and pathogenicity, mechanisms of zoonotic transmission, host range and susceptibility, and the development of specific medical countermeasures. In this review, we summarize the current knowledge on non-Ebola filoviruses (Bombali virus, Bundibugyo virus, Reston virus, Sudan virus, Tai Forest virus, Marburg virus, Ravn virus, Lloviu virus, Měnglà virus, and Dehong virus) and suggest some strategies to accelerate specific countermeasure development.
Collapse
Affiliation(s)
- Yannick Munyeku-Bazitama
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- Institut National de Recherche Biomédicale, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
- Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa P.O. Box 123, Democratic Republic of the Congo
| | - Francois Edidi-Atani
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- Institut National de Recherche Biomédicale, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
- Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa P.O. Box 123, Democratic Republic of the Congo
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
6
|
Wirchnianski AS, Nyakatura EK, Herbert AS, Kuehne AI, Abbasi SA, Florez C, Storm N, McKay LGA, Dailey L, Kuang E, Abelson DM, Wec AZ, Chakraborti S, Holtsberg FW, Shulenin S, Bornholdt ZA, Aman MJ, Honko AN, Griffiths A, Dye JM, Chandran K, Lai JR. Design and characterization of protective pan-ebolavirus and pan-filovirus bispecific antibodies. PLoS Pathog 2024; 20:e1012134. [PMID: 38603762 PMCID: PMC11037526 DOI: 10.1371/journal.ppat.1012134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2023] [Revised: 04/23/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Monoclonal antibodies (mAbs) are an important class of antiviral therapeutics. MAbs are highly selective, well tolerated, and have long in vivo half-life as well as the capacity to induce immune-mediated virus clearance. Their activities can be further enhanced by integration of their variable fragments (Fvs) into bispecific antibodies (bsAbs), affording simultaneous targeting of multiple epitopes to improve potency and breadth and/or to mitigate against viral escape by a single mutation. Here, we explore a bsAb strategy for generation of pan-ebolavirus and pan-filovirus immunotherapeutics. Filoviruses, including Ebola virus (EBOV), Sudan virus (SUDV), and Marburg virus (MARV), cause severe hemorrhagic fever. Although there are two FDA-approved mAb therapies for EBOV infection, these do not extend to other filoviruses. Here, we combine Fvs from broad ebolavirus mAbs to generate novel pan-ebolavirus bsAbs that are potently neutralizing, confer protection in mice, and are resistant to viral escape. Moreover, we combine Fvs from pan-ebolavirus mAbs with those of protective MARV mAbs to generate pan-filovirus protective bsAbs. These results provide guidelines for broad antiviral bsAb design and generate new immunotherapeutic candidates.
Collapse
MESH Headings
- Animals
- Mice
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/therapeutic use
- Ebolavirus/immunology
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Hemorrhagic Fever, Ebola/virology
- Antibodies, Viral/immunology
- Humans
- Filoviridae/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Monoclonal/immunology
- Female
- Mice, Inbred BALB C
- Filoviridae Infections/immunology
- Filoviridae Infections/therapy
- Filoviridae Infections/prevention & control
Collapse
Affiliation(s)
- Ariel S. Wirchnianski
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Elisabeth K. Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Andrew S. Herbert
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- The Geneva Foundation, Tacoma, Washington, United States of America
| | - Ana I. Kuehne
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Shawn A. Abbasi
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- The Geneva Foundation, Tacoma, Washington, United States of America
| | - Catalina Florez
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- The Geneva Foundation, Tacoma, Washington, United States of America
| | - Nadia Storm
- Department of Virology, Immunology, and Microbiology; and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lindsay G. A. McKay
- Department of Virology, Immunology, and Microbiology; and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Leandrew Dailey
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erin Kuang
- Mapp Biopharmaceutical Inc., San Diego, California, United States of America
| | - Dafna M. Abelson
- Mapp Biopharmaceutical Inc., San Diego, California, United States of America
| | - Anna Z. Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Srinjoy Chakraborti
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | | | - Sergey Shulenin
- Integrated BioTherapeutics, Inc., Rockville, Maryland, United States of America
| | | | - M. Javad Aman
- Integrated BioTherapeutics, Inc., Rockville, Maryland, United States of America
| | - Anna N. Honko
- Department of Virology, Immunology, and Microbiology; and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Anthony Griffiths
- Department of Virology, Immunology, and Microbiology; and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - John M. Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
7
|
Tam EH, Peng Y, Cheah MXY, Yan C, Xiao T. Neutralizing antibodies to block viral entry and for identification of entry inhibitors. Antiviral Res 2024; 224:105834. [PMID: 38369246 DOI: 10.1016/j.antiviral.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Neutralizing antibodies (NAbs) are naturally produced by our immune system to combat viral infections. Clinically, neutralizing antibodies with potent efficacy and high specificity have been extensively used to prevent and treat a wide variety of viral infections, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Human Immunodeficiency Virus (HIV), Dengue Virus (DENV) and Hepatitis B Virus (HBV). An overwhelmingly large subset of clinically effective NAbs operates by targeting viral envelope proteins to inhibit viral entry into the host cell. Binding of viral envelope protein to the host receptor is a critical rate limiting step triggering a cascade of downstream events, including endocytosis, membrane fusion and pore formation to allow viral entry. In recent years, improved structural knowledge on these processes have allowed researchers to also leverage NAbs as an indispensable tool in guiding discovery of novel antiviral entry inhibitors, providing drug candidates with high efficacy and pan-genus specificity. This review will summarize the latest progresses on the applications of NAbs as effective entry inhibitors and as important tools to develop antiviral therapeutics by high-throughput drug screenings, rational design of peptidic entry inhibitor mimicking NAbs and in silico computational modeling approaches.
Collapse
Affiliation(s)
- Ee Hong Tam
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Yu Peng
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Megan Xin Yan Cheah
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Chuan Yan
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Tianshu Xiao
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore.
| |
Collapse
|
8
|
Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv 2024; 70:108283. [PMID: 37972669 PMCID: PMC10867814 DOI: 10.1016/j.biotechadv.2023.108283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
A key aspect of successful viral vaccine design is the elicitation of neutralizing antibodies targeting viral attachment and fusion glycoproteins that embellish viral particles. This observation has catalyzed the development of numerous viral glycoprotein mimetics as vaccines. Glycans can dominate the surface of viral glycoproteins and as such, the viral glycome can influence the antigenicity and immunogenicity of a candidate vaccine. In one extreme, glycans can form an integral part of epitopes targeted by neutralizing antibodies and are therefore considered to be an important feature of key immunogens within an immunization regimen. In the other extreme, the existence of peptide and bacterially expressed protein vaccines shows that viral glycosylation can be dispensable in some cases. However, native-like glycosylation can indicate native-like protein folding and the presence of conformational epitopes. Furthermore, going beyond native glycan mimicry, in either occupancy of glycosylation sites or the glycan processing state, may offer opportunities for enhancing the immunogenicity and associated protection elicited by an immunogen. Here, we review key determinants of viral glycosylation and how recombinant immunogens can recapitulate these signatures across a range of enveloped viruses, including HIV-1, Ebola virus, SARS-CoV-2, Influenza and Lassa virus. The emerging understanding of immunogen glycosylation and its control will help guide the development of future vaccines in both recombinant protein- and nucleic acid-based vaccine technologies.
Collapse
Affiliation(s)
- Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
9
|
Saphire E, Salie ZL, Ke Z, Halfmann P, DeWald LE, McArdle S, Grinyo A, Davidson E, Schendel S, Hariharan C, Norris M, Yu X, Chennareddy C, Xiong X, Heinrich M, Holbrook M, Doranz B, Crozier I, Hastie K, Kawaoka Y, Branco L, Kuhn J, Briggs J, Worwa G, Davis C, Ahmed R. Anti-Ebola virus mAb 3A6 with unprecedented potency protects highly viremic animals from fatal outcome and physically lifts its glycoprotein target from the virion membrane. RESEARCH SQUARE 2023:rs.3.rs-3722563. [PMID: 38196595 PMCID: PMC10775387 DOI: 10.21203/rs.3.rs-3722563/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2024]
Abstract
Monoclonal antibodies (mAbs) against Ebola virus (EBOV) glycoprotein (GP1,2) are the standard of care for Ebola virus disease (EVD). Anti-GP1,2 mAbs targeting the stalk and membrane proximal external region (MPER) potently neutralize EBOV in vitro. However, their neutralization mechanism is poorly understood because they target a GP1,2 epitope that has evaded structural characterization. Moreover, their in vivo efficacy has only been evaluated in the mouse model of EVD. Using x-ray crystallography and cryo-electron tomography of 3A6 complexed with its stalk- GP1,2 MPER epitope we reveal a novel mechanism in which 3A6 elevates the stalk or stabilizes a conformation of GP1,2 that is lifted from the virion membrane. In domestic guinea pig and rhesus monkey EVD models, 3A6 provides therapeutic benefit at high viremia levels, advanced disease stages, and at the lowest dose yet demonstrated for any anti-EBOV mAb-based monotherapy. These findings can guide design of next-generation, highly potent anti-EBOV mAbs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xiaoli Xiong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
| | | | - Michael Holbrook
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, National Institutes of Health (NIH)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rijal P, Donnellan FR. A review of broadly protective monoclonal antibodies to treat Ebola virus disease. Curr Opin Virol 2023; 61:101339. [PMID: 37392670 DOI: 10.1016/j.coviro.2023.101339] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2022] [Revised: 04/26/2023] [Accepted: 05/28/2023] [Indexed: 07/03/2023]
Abstract
The filovirus vaccine and the therapeutic monoclonal antibody (mAb) research have made substantial progress. However, existing vaccines and mAbs approved for use in humans are specific to Zaire ebolavirus (EBOV). Since other Ebolavirus species are a continuing threat to public health, the search for broadly protective mAbs has drawn attention. Here, we review viral glycoprotein-targeting mAbs that have proved their broader protective efficacy in animal models. MBP134AF, the most advanced of these new-generation mAb therapies, has recently been deployed in Uganda during the Sudan ebolavirus outbreak. Furthermore, we discuss the measures associated with enhancing antibody therapies and the risks associated with them, including the rise of escape mutations following the mAb treatment and naturally occurring EBOV variants.
Collapse
Affiliation(s)
- Pramila Rijal
- Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, University of Oxford, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, United Kingdom.
| | - Francesca R Donnellan
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, UK.
| |
Collapse
|
11
|
Biavasco R, De Giovanni M. The Relative Positioning of B and T Cell Epitopes Drives Immunodominance. Vaccines (Basel) 2022; 10:vaccines10081227. [PMID: 36016115 PMCID: PMC9413633 DOI: 10.3390/vaccines10081227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/05/2022] Open
Abstract
Humoral immunity is crucial for protection against invading pathogens. Broadly neutralizing antibodies (bnAbs) provide sterilizing immunity by targeting conserved regions of viral variants and represent the goal of most vaccination approaches. While antibodies can be selected to bind virtually any region of a given antigen, the consistent induction of bnAbs in the context of influenza and HIV has represented a major roadblock. Many possible explanations have been considered; however, none of the arguments proposed to date seem to fully recapitulate the observed counter-selection for broadly protective antibodies. Antibodies can influence antigen presentation by enhancing the processing of CD4 epitopes adjacent to the binding region while suppressing the overlapping ones. We analyze the relative positioning of dominant B and T cell epitopes in published antigens that elicit strong and poor humoral responses. In strong immunogenic antigens, regions bound by immunodominant antibodies are frequently adjacent to CD4 epitopes, potentially boosting their presentation. Conversely, poorly immunogenic regions targeted by bnAbs in HIV and influenza overlap with clusters of dominant CD4 epitopes, potentially conferring an intrinsic disadvantage for bnAb-bearing B cells in germinal centers. Here, we propose the theory of immunodominance relativity, according to which the relative positioning of immunodominant B and CD4 epitopes within a given antigen drives immunodominance. Thus, we suggest that the relative positioning of B-T epitopes may be one additional mechanism that cooperates with other previously described processes to influence immunodominance. If demonstrated, this theory can improve the current understanding of immunodominance, provide a novel explanation for HIV and influenza escape from humoral responses, and pave the way for a new rational design of universal vaccines.
Collapse
Affiliation(s)
- Riccardo Biavasco
- Department of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Marco De Giovanni
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Correspondence:
| |
Collapse
|
12
|
Can Modern Molecular Modeling Methods Help Find the Area of Potential Vulnerability of Flaviviruses? Int J Mol Sci 2022; 23:ijms23147721. [PMID: 35887069 PMCID: PMC9316223 DOI: 10.3390/ijms23147721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Flaviviruses are single-stranded RNA viruses that have emerged in recent decades and infect up to 400 million people annually, causing a variety of potentially severe pathophysiological processes including hepatitis, encephalitis, hemorrhagic fever, tissues and capillaries damage. The Flaviviridae family is represented by four genera comprising 89 known virus species. There are no effective therapies available against many pathogenic flaviviruses. One of the promising strategies for flavivirus infections prevention and therapy is the use of neutralizing antibodies (NAb) that can disable the virus particles from infecting the host cells. The envelope protein (E protein) of flaviviruses is a three-domain structure that mediates the fusion of viral and host membranes delivering the infectious material. We previously developed and characterized 10H10 mAb which interacts with the E protein of the tick-borne encephalitis virus (TBEV) and many other flaviviruses’ E proteins. The aim of this work was to analyze the structure of E protein binding sites recognized by the 10H10 antibody, which is reactive with different flavivirus species. Here, we present experimental data and 3D modeling indicating that the 10H10 antibody recognizes the amino acid sequence between the two cysteines C92-C116 of the fusion loop (FL) region of flaviviruses’ E proteins. Overall, our results indicate that the antibody-antigen complex can form a rigid or dynamic structure that provides antibody cross reactivity and efficient interaction with the fusion loop of E protein.
Collapse
|
13
|
Schoeder CT, Gilchuk P, Sangha AK, Ledwitch KV, Malherbe DC, Zhang X, Binshtein E, Williamson LE, Martina CE, Dong J, Armstrong E, Sutton R, Nargi R, Rodriguez J, Kuzmina N, Fiala B, King NP, Bukreyev A, Crowe JE, Meiler J. Epitope-focused immunogen design based on the ebolavirus glycoprotein HR2-MPER region. PLoS Pathog 2022; 18:e1010518. [PMID: 35584193 PMCID: PMC9170092 DOI: 10.1371/journal.ppat.1010518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2021] [Revised: 06/06/2022] [Accepted: 04/12/2022] [Indexed: 01/09/2023] Open
Abstract
The three human pathogenic ebolaviruses: Zaire (EBOV), Bundibugyo (BDBV), and Sudan (SUDV) virus, cause severe disease with high fatality rates. Epitopes of ebolavirus glycoprotein (GP) recognized by antibodies with binding breadth for all three ebolaviruses are of major interest for rational vaccine design. In particular, the heptad repeat 2 -membrane-proximal external region (HR2-MPER) epitope is relatively conserved between EBOV, BDBV, and SUDV GP and targeted by human broadly-neutralizing antibodies. To study whether this epitope can serve as an immunogen for the elicitation of broadly-reactive antibody responses, protein design in Rosetta was employed to transplant the HR2-MPER epitope identified from a co-crystal structure with the known broadly-reactive monoclonal antibody (mAb) BDBV223 onto smaller scaffold proteins. From computational analysis, selected immunogen designs were produced as recombinant proteins and functionally validated, leading to the identification of a sterile alpha motif (SAM) domain displaying the BDBV-HR2-MPER epitope near its C terminus as a promising candidate. The immunogen was fused to one component of a self-assembling, two-component nanoparticle and tested for immunogenicity in rabbits. Robust titers of cross-reactive serum antibodies to BDBV and EBOV GPs and moderate titers to SUDV GP were induced following immunization. To confirm the structural composition of the immunogens, solution NMR studies were conducted and revealed structural flexibility in the C-terminal residues of the epitope. Overall, our study represents the first report on an epitope-focused immunogen design based on the structurally challenging BDBV-HR2-MPER epitope.
Collapse
Affiliation(s)
- Clara T. Schoeder
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, University Leipzig Medical School, Leipzig, Germany
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Amandeep K. Sangha
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kaitlyn V. Ledwitch
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Delphine C. Malherbe
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - Xuan Zhang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Lauren E. Williamson
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Cristina E. Martina
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jinhui Dong
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Erica Armstrong
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Rachel Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Rachel Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Jessica Rodriguez
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Natalia Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, Unites States, United States of America
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Departments of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, University Leipzig Medical School, Leipzig, Germany
| |
Collapse
|
14
|
Cooper L, Achi JG, Rong L. Comparative analyses of small molecule and antibody inhibition on glycoprotein-mediated entry of Měngla virus with other filoviruses. J Med Virol 2022; 94:3263-3269. [PMID: 35332563 PMCID: PMC9161972 DOI: 10.1002/jmv.27739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/08/2022]
Abstract
The ability of viruses in the filoviridae family (Ebola virus (EBOV) and Marburg Virus (MARV)) to cause severe human disease and their pandemic potential makes all emerging filoviral pathogens a concern to humanity. Měnglà Virus (MLAV) belonging to the new genus Dianlovirus was recently discovered in the liver of bats from Měnglà County, Yunnan Province, China. The capacity of MLAV to utilize NPC1 as an endosomal receptor, to transduce mammalian cells, and suppress IFN response suggests that this potential pathogen could cause human illness. Despite great effort by researchers, only the viral genome has been recovered and isolation of live MLAV had been unsuccessful. Here using a pseudovirus model baring the MLAV glycoprotein (GP), we studied the protease dependence of the MLAV-GP, and the ability of small molecules and antibodies to inhibit MLAV viral entry. Like EBOV and MARV, the MLAV-GP requires proteolytic processing but like MARV it does not depend on cathepsin B activity for viral entry. Furthermore, previously discovered small molecule inhibitors and antibodies are MLAV inhibitors and show the possibility of developing these inhibitors as broad-spectrum filovirus antivirals. Overall, the findings in the study confirmed that MLAV viral entry is biologically distinct but has similarities to MARV. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laura Cooper
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jazmin Galvan Achi
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
15
|
Murin CD, Gilchuk P, Crowe JE, Ward AB. Structural Biology Illuminates Molecular Determinants of Broad Ebolavirus Neutralization by Human Antibodies for Pan-Ebolavirus Therapeutic Development. Front Immunol 2022; 12:808047. [PMID: 35082794 PMCID: PMC8784787 DOI: 10.3389/fimmu.2021.808047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 01/13/2023] Open
Abstract
Monoclonal antibodies (mAbs) have proven effective for the treatment of ebolavirus infection in humans, with two mAb-based drugs Inmazeb™ and Ebanga™ receiving FDA approval in 2020. While these drugs represent a major advance in the field of filoviral therapeutics, they are composed of antibodies with single-species specificity for Zaire ebolavirus. The Ebolavirus genus includes five additional species, two of which, Bundibugyo ebolavirus and Sudan ebolavirus, have caused severe disease and significant outbreaks in the past. There are several recently identified broadly neutralizing ebolavirus antibodies, including some in the clinical development pipeline, that have demonstrated broad protection in preclinical studies. In this review, we describe how structural biology has illuminated the molecular basis of broad ebolavirus neutralization, including details of common antigenic sites of vulnerability on the glycoprotein surface. We begin with a discussion outlining the history of monoclonal antibody therapeutics for ebolaviruses, with an emphasis on how structural biology has contributed to these efforts. Next, we highlight key structural studies that have advanced our understanding of ebolavirus glycoprotein structures and mechanisms of antibody-mediated neutralization. Finally, we offer examples of how structural biology has contributed to advances in anti-viral medicines and discuss what opportunities the future holds, including rationally designed next-generation therapeutics with increased potency, breadth, and specificity against ebolaviruses.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antiviral Agents/immunology
- Antiviral Agents/therapeutic use
- Drug Combinations
- Ebolavirus/drug effects
- Ebolavirus/immunology
- Ebolavirus/physiology
- Epitopes/chemistry
- Epitopes/immunology
- Glycoproteins/chemistry
- Glycoproteins/immunology
- Hemorrhagic Fever, Ebola/drug therapy
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/virology
- Humans
- Models, Molecular
- Protein Domains/immunology
- Viral Proteins/chemistry
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Charles D. Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
16
|
Hargreaves A, Brady C, Mellors J, Tipton T, Carroll MW, Longet S. Filovirus Neutralising Antibodies: Mechanisms of Action and Therapeutic Application. Pathogens 2021; 10:pathogens10091201. [PMID: 34578233 PMCID: PMC8468515 DOI: 10.3390/pathogens10091201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/02/2022] Open
Abstract
Filoviruses, especially Ebola virus, cause sporadic outbreaks of viral haemorrhagic fever with very high case fatality rates in Africa. The 2013–2016 Ebola epidemic in West Africa provided large survivor cohorts spurring a large number of human studies which showed that specific neutralising antibodies played a key role in protection following a natural Ebola virus infection, as part of the overall humoral response and in conjunction with the cellular adaptive response. This review will discuss the studies in survivors and animal models which described protective neutralising antibody response. Their mechanisms of action will be detailed. Furthermore, the importance of neutralising antibodies in antibody-based therapeutics and in vaccine-induced responses will be explained, as well as the strategies to avoid immune escape from neutralising antibodies. Understanding the neutralising antibody response in the context of filoviruses is crucial to furthering our understanding of virus structure and function, in addition to improving current vaccines & antibody-based therapeutics.
Collapse
Affiliation(s)
- Alexander Hargreaves
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Caolann Brady
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
| | - Jack Mellors
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
- National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, UK
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7ZX, UK
| | - Tom Tipton
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
| | - Miles W. Carroll
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
- National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Stephanie Longet
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
- Correspondence: ; Tel.: +44-18-6561-7892
| |
Collapse
|
17
|
Convergence of a common solution for broad ebolavirus neutralization by glycan cap-directed human antibodies. Cell Rep 2021; 35:108984. [PMID: 33852862 PMCID: PMC8133395 DOI: 10.1016/j.celrep.2021.108984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2020] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
Antibodies that target the glycan cap epitope on the ebolavirus glycoprotein (GP) are common in the adaptive response of survivors. A subset is known to be broadly neutralizing, but the details of their epitopes and basis for neutralization are not well understood. Here, we present cryoelectron microscopy (cryo-EM) structures of diverse glycan cap antibodies that variably synergize with GP base-binding antibodies. These structures describe a conserved site of vulnerability that anchors the mucin-like domains (MLDs) to the glycan cap, which we call the MLD anchor and cradle. Antibodies that bind to the MLD cradle share common features, including use of IGHV1–69 and IGHJ6 germline genes, which exploit hydrophobic residues and form β-hairpin structures to mimic the MLD anchor, disrupt MLD attachment, destabilize GP quaternary structure, and block cleavage events required for receptor binding. Our results provide a molecular basis for ebolavirus neutralization by broadly reactive glycan cap antibodies. A rare subset of ebolavirus antibodies targeting the glycan cap are broadly neutralizing. Murin et al. report cryo-EM structures and custom in vitro assays identifying a conserved site of vulnerability in the glycan cap and detail mechanisms of action, including structural mimicry, trimer instability, and blocking cleavage.
Collapse
|
18
|
Rutten L, Gilman MSA, Blokland S, Juraszek J, McLellan JS, Langedijk JPM. Structure-Based Design of Prefusion-Stabilized Filovirus Glycoprotein Trimers. Cell Rep 2021; 30:4540-4550.e3. [PMID: 32234486 PMCID: PMC7118701 DOI: 10.1016/j.celrep.2020.03.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2019] [Revised: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Ebola virus causes severe hemorrhagic fever, often leading to death in humans. The trimeric fusion glycoprotein (GP) is the sole target for neutralizing antibodies and is the major focus of vaccine development. Soluble GP ectodomains are unstable and mostly monomeric when not fused to a heterologous trimerization domain. Here, we report structure-based designs of Ebola and Marburg GP trimers based on a stabilizing mutation in the hinge loop in refolding region 1 and substitution of a partially buried charge at the interface of the GP1 and GP2 subunits. The combined substitutions (T577P and K588F) substantially increased trimer expression for Ebola GP proteins. We determined the crystal structure of stabilized GP from the Makona Zaire ebolavirus strain without a trimerization domain or complexed ligand. The structure reveals that the stabilized GP adopts the same trimeric prefusion conformation, provides insight into triggering of GP conformational changes, and should inform future filovirus vaccine development. Filovirus GP expression increases by stabilizing mutations in hinge loop and base helix Charged lysine in base helix and GP1 N terminus are trapped in metastable conformation Crystal structure of stabilized Makona Δmucin GP confirms successful stabilization These findings may be useful for understanding fusion mechanisms and vaccine design
Collapse
Affiliation(s)
- Lucy Rutten
- Janssen Vaccines & Prevention, Archimedesweg 4-6, Leiden 2333 CN, the Netherlands
| | - Morgan S A Gilman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sven Blokland
- Janssen Vaccines & Prevention, Archimedesweg 4-6, Leiden 2333 CN, the Netherlands
| | - Jarek Juraszek
- Janssen Vaccines & Prevention, Archimedesweg 4-6, Leiden 2333 CN, the Netherlands
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
19
|
Ripoll DR, Chaudhury S, Wallqvist A. Using the antibody-antigen binding interface to train image-based deep neural networks for antibody-epitope classification. PLoS Comput Biol 2021; 17:e1008864. [PMID: 33780441 PMCID: PMC8032195 DOI: 10.1371/journal.pcbi.1008864] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2020] [Revised: 04/08/2021] [Accepted: 03/10/2021] [Indexed: 12/05/2022] Open
Abstract
High-throughput B-cell sequencing has opened up new avenues for investigating complex mechanisms underlying our adaptive immune response. These technological advances drive data generation and the need to mine and analyze the information contained in these large datasets, in particular the identification of therapeutic antibodies (Abs) or those associated with disease exposure and protection. Here, we describe our efforts to use artificial intelligence (AI)-based image-analyses for prospective classification of Abs based solely on sequence information. We hypothesized that Abs recognizing the same part of an antigen share a limited set of features at the binding interface, and that the binding site regions of these Abs share share common structure and physicochemical property patterns that can serve as a "fingerprint" to recognize uncharacterized Abs. We combined large-scale sequence-based protein-structure predictions to generate ensembles of 3-D Ab models, reduced the Ab binding interface to a 2-D image (fingerprint), used pre-trained convolutional neural networks to extract features, and trained deep neural networks (DNNs) to classify Abs. We evaluated this approach using Ab sequences derived from human HIV and Ebola viral infections to differentiate between two Abs, Abs belonging to specific B-cell family lineages, and Abs with different epitope preferences. In addition, we explored a different type of DNN method to detect one class of Abs from a larger pool of Abs. Testing on Ab sets that had been kept aside during model training, we achieved average prediction accuracies ranging from 71-96% depending on the complexity of the classification task. The high level of accuracies reached during these classification tests suggests that the DNN models were able to learn a series of structural patterns shared by Abs belonging to the same class. The developed methodology provides a means to apply AI-based image recognition techniques to analyze high-throughput B-cell sequencing datasets (repertoires) for Ab classification.
Collapse
Affiliation(s)
- Daniel R. Ripoll
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Sidhartha Chaudhury
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland, United States of America
- Center for Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Anders Wallqvist
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland, United States of America
| |
Collapse
|
20
|
Schafer A, Xiong R, Cooper L, Nowar R, Lee H, Li Y, Ramirez BE, Peet NP, Caffrey M, Thatcher GRJ, Saphire EO, Cheng H, Rong L. Evidence for distinct mechanisms of small molecule inhibitors of filovirus entry. PLoS Pathog 2021; 17:e1009312. [PMID: 33539432 PMCID: PMC7888603 DOI: 10.1371/journal.ppat.1009312] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2020] [Revised: 02/17/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Many small molecules have been identified as entry inhibitors of filoviruses. However, a lack of understanding of the mechanism of action for these molecules limits further their development as anti-filoviral agents. Here we provide evidence that toremifene and other small molecule entry inhibitors have at least three distinctive mechanisms of action and lay the groundwork for future development of anti-filoviral agents. The three mechanisms identified here include: (1) direct binding to the internal fusion loop region of Ebola virus glycoprotein (GP); (2) the HR2 domain is likely the main binding site for Marburg virus GP inhibitors and a secondary binding site for some EBOV GP inhibitors; (3) lysosome trapping of GP inhibitors increases drug exposure in the lysosome and further improves the viral inhibition. Importantly, small molecules targeting different domains on GP are synergistic in inhibiting EBOV entry suggesting these two mechanisms of action are distinct. Our findings provide important mechanistic insights into filovirus entry and rational drug design for future antiviral development.
Collapse
Affiliation(s)
- Adam Schafer
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rui Xiong
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America.,Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Raghad Nowar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America.,Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America.,Biophysics core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yangfeng Li
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Benjamin E Ramirez
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America.,NMR Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Norton P Peet
- Chicago BioSolutions Inc., Chicago, Illinois, United States of America
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Gregory R J Thatcher
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | | | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
21
|
A Virion-Based Assay for Glycoprotein Thermostability Reveals Key Determinants of Filovirus Entry and Its Inhibition. J Virol 2020; 94:JVI.00336-20. [PMID: 32611759 DOI: 10.1128/jvi.00336-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV) entry into cells is mediated by its spike glycoprotein (GP). Following attachment and internalization, virions traffic to late endosomes where GP is cleaved by host cysteine proteases. Cleaved GP then binds its cellular receptor, Niemann-Pick C1. In response to an unknown cellular trigger, GP undergoes conformational rearrangements that drive fusion of viral and endosomal membranes. The temperature-dependent stability (thermostability) of the prefusion conformers of class I viral fusion glycoproteins, including those of filovirus GPs, has provided insights into their propensity to undergo fusion-related rearrangements. However, previously described assays have relied on soluble glycoprotein ectodomains. Here, we developed a simple enzyme-linked immunosorbent assay (ELISA)-based assay that uses the temperature-dependent loss of conformational epitopes to measure thermostability of GP embedded in viral membranes. The base and glycan cap subdomains of all filovirus GPs tested suffered a concerted loss of prefusion conformation at elevated temperatures but did so at different temperature ranges, indicating virus-specific differences in thermostability. Despite these differences, all of these GPs displayed reduced thermostability upon cleavage to GP conformers (GPCL). Surprisingly, acid pH enhanced, rather than decreased, GP thermostability, suggesting it could enhance viral survival in hostile endo/lysosomal compartments. Finally, we confirmed and extended previous findings that some small-molecule inhibitors of filovirus entry destabilize EBOV GP and uncovered evidence that the most potent inhibitors act through multiple mechanisms. We establish the epitope-loss ELISA as a useful tool for studies of filovirus entry, engineering of GP variants with enhanced stability for use in vaccine development, and discovery of new stability-modulating antivirals.IMPORTANCE The development of Ebola virus countermeasures is challenged by our limited understanding of cell entry, especially at the step of membrane fusion. The surface-exposed viral protein, GP, mediates membrane fusion and undergoes major structural rearrangements during this process. The stability of GP at elevated temperatures (thermostability) can provide insights into its capacity to undergo these rearrangements. Here, we describe a new assay that uses GP-specific antibodies to measure GP thermostability under a variety of conditions relevant to viral entry. We show that proteolytic cleavage and acid pH have significant effects on GP thermostability that shed light on their respective roles in viral entry. We also show that the assay can be used to study how small-molecule entry inhibitors affect GP stability. This work provides a simple and readily accessible assay to engineer stabilized GP variants for antiviral vaccines and to discover and improve drugs that act by modulating GP stability.
Collapse
|
22
|
Gilchuk P, Murin CD, Milligan JC, Cross RW, Mire CE, Ilinykh PA, Huang K, Kuzmina N, Altman PX, Hui S, Gunn BM, Bryan AL, Davidson E, Doranz BJ, Turner HL, Alkutkar T, Flinko R, Orlandi C, Carnahan R, Nargi R, Bombardi RG, Vodzak ME, Li S, Okoli A, Ibeawuchi M, Ohiaeri B, Lewis GK, Alter G, Bukreyev A, Saphire EO, Geisbert TW, Ward AB, Crowe JE. Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization. Immunity 2020; 52:388-403.e12. [PMID: 32023489 PMCID: PMC7111202 DOI: 10.1016/j.immuni.2020.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2019] [Revised: 11/14/2019] [Accepted: 01/08/2020] [Indexed: 01/14/2023]
Abstract
Structural principles underlying the composition of protective antiviral monoclonal antibody (mAb) cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic mAb cocktail against Ebola virus. We systematically analyzed the antibody repertoire in human survivors and identified a pair of potently neutralizing mAbs that cooperatively bound to the ebolavirus glycoprotein (GP). High-resolution structures revealed that in a two-antibody cocktail, molecular mimicry was a major feature of mAb-GP interactions. Broadly neutralizing mAb rEBOV-520 targeted a conserved epitope on the GP base region. mAb rEBOV-548 bound to a glycan cap epitope, possessed neutralizing and Fc-mediated effector function activities, and potentiated neutralization by rEBOV-520. Remodeling of the glycan cap structures by the cocktail enabled enhanced GP binding and virus neutralization. The cocktail demonstrated resistance to virus escape and protected non-human primates (NHPs) against Ebola virus disease. These data illuminate structural principles of antibody cooperativity with implications for development of antiviral immunotherapeutics.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles D. Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jacob C. Milligan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert W. Cross
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chad E. Mire
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Philipp A. Ilinykh
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kai Huang
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Natalia Kuzmina
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pilar X. Altman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Hui
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bronwyn M. Gunn
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | | | | | - Hannah L. Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tanwee Alkutkar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robin Flinko
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chiara Orlandi
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Robert Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin G. Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Megan E. Vodzak
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Adaora Okoli
- First Consultants Medical Center, Lagos, Nigeria
| | | | | | - George K. Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Alexander Bukreyev
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Corresponding author
| |
Collapse
|
23
|
Khurana S, Ravichandran S, Hahn M, Coyle EM, Stonier SW, Zak SE, Kindrachuk J, Davey RT, Dye JM, Chertow DS. Longitudinal Human Antibody Repertoire against Complete Viral Proteome from Ebola Virus Survivor Reveals Protective Sites for Vaccine Design. Cell Host Microbe 2020; 27:262-276.e4. [PMID: 32053790 PMCID: PMC7071344 DOI: 10.1016/j.chom.2020.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2019] [Revised: 11/14/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022]
Abstract
Evolution of antibody repertoire against the Ebola virus (EBOV) proteome was characterized in an acutely infected patient receiving supportive care alone to elucidate virus-host interactions over time. Differential kinetics are observed for IgM-IgG-IgA epitope diversity, antibody binding, and affinity maturation to EBOV proteins. During acute illness, antibodies predominate to VP40 and glycoprotein (GP). At day 13 of clinical illness, a marked increase in antibody titers to most EBOV proteins and affinity maturation to GP is associated with rapid decline in viral replication and illness severity. At one year, despite undetectable virus, a diverse IgM repertoire against VP40 and GP epitopes is observed suggesting occult viral persistence. Rabbit immunization experiments identify key immunodominant sites of GP, while challenge studies in mice found these epitopes induce EBOV-neutralizing antibodies and protect against lethal EBOV challenge. This study reveals markers of viral persistence and provides promising approaches for development and evaluation of vaccines and therapeutics.
Collapse
Affiliation(s)
- Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20871, USA.
| | - Supriya Ravichandran
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20871, USA
| | - Megan Hahn
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20871, USA
| | - Elizabeth M Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20871, USA
| | - Spencer W Stonier
- United States Army, Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Virology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Samantha E Zak
- United States Army, Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Virology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Jason Kindrachuk
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Richard T Davey
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John M Dye
- United States Army, Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Virology Division, Fort Detrick, Frederick, MD 21702, USA
| | - Daniel S Chertow
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Durham ND, Howard AR, Govindan R, Senjobe F, Fels JM, Diehl WE, Luban J, Chandran K, Munro JB. Real-Time Analysis of Individual Ebola Virus Glycoproteins Reveals Pre-Fusion, Entry-Relevant Conformational Dynamics. Viruses 2020; 12:v12010103. [PMID: 31952255 PMCID: PMC7019799 DOI: 10.3390/v12010103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
The Ebola virus (EBOV) envelope glycoprotein (GP) mediates the fusion of the virion membrane with the membrane of susceptible target cells during infection. While proteolytic cleavage of GP by endosomal cathepsins and binding of the cellular receptor Niemann-Pick C1 protein (NPC1) are essential steps for virus entry, the detailed mechanisms by which these events promote membrane fusion remain unknown. Here, we applied single-molecule Förster resonance energy transfer (smFRET) imaging to investigate the structural dynamics of the EBOV GP trimeric ectodomain, and the functional transmembrane protein on the surface of pseudovirions. We show that in both contexts, pre-fusion GP is dynamic and samples multiple conformations. Removal of the glycan cap and NPC1 binding shift the conformational equilibrium, suggesting stabilization of conformations relevant to viral fusion. Furthermore, several neutralizing antibodies enrich alternative conformational states. This suggests that these antibodies neutralize EBOV by restricting access to GP conformations relevant to fusion. This work demonstrates previously unobserved dynamics of pre-fusion EBOV GP and presents a platform with heightened sensitivity to conformational changes for the study of GP function and antibody-mediated neutralization.
Collapse
Affiliation(s)
- Natasha D. Durham
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA;
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA; (A.R.H.); (F.S.)
- Correspondence: (N.D.D.); (J.B.M.)
| | - Angela R. Howard
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA; (A.R.H.); (F.S.)
| | - Ramesh Govindan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA;
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA; (A.R.H.); (F.S.)
| | - Fernando Senjobe
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA; (A.R.H.); (F.S.)
| | - J. Maximilian Fels
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.M.F.); (K.C.)
| | - William E. Diehl
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (W.E.D.); (J.L.)
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (W.E.D.); (J.L.)
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.M.F.); (K.C.)
| | - James B. Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA;
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA; (A.R.H.); (F.S.)
- Correspondence: (N.D.D.); (J.B.M.)
| |
Collapse
|
25
|
Abstract
Antibodies play critical roles in neutralizing viral infections and are increasingly used as therapeutic drugs and diagnostic tools. Structural studies on virus-antibody immune complexes are important for better understanding the molecular mechanisms of antibody-mediated neutralization and also provide valuable information for structure-based vaccine design. Cryo-electron microscopy (cryo-EM) has recently matured as a powerful structural technique for studying bio-macromolecular complexes. When combined with X-ray crystallography, cryo-EM provides a routine approach for structurally characterizing the immune complexes formed between icosahedral viruses and their antibodies. In this review, recent advances in the structural understanding of virus-antibody interactions are outlined for whole virions with icosahedral T = pseudo 3 (picornaviruses) and T = 3 (flaviviruses) architectures, focusing on the dynamic nature of viral shells in different functional states. Glycoprotein complexes from pleomorphic enveloped viruses are also discussed as immune complex antigens. Improving our understanding of viral epitope structures using virus-based platforms would provide a fundamental road map for future vaccine development.
Collapse
Affiliation(s)
- Na Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Wuhan, 430071, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Wuhan, 430071, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Fu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Wuhan, 430071, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Sheng Cao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Wuhan, 430071, China. .,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
26
|
Xu S, Jiao C, Jin H, Li W, Li E, Cao Z, Shi Z, Yan F, Zhang S, He H, Chi H, Feng N, Zhao Y, Gao Y, Yang S, Wang J, Wang H, Xia X. A Novel Bacterium-Like Particle-Based Vaccine Displaying the SUDV Glycoprotein Induces Potent Humoral and Cellular Immune Responses in Mice. Viruses 2019; 11:v11121149. [PMID: 31835785 PMCID: PMC6950126 DOI: 10.3390/v11121149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2019] [Revised: 12/01/2019] [Accepted: 12/07/2019] [Indexed: 01/24/2023] Open
Abstract
Sudan virus (SUDV) causes severe lethal hemorrhagic fever in humans and nonhuman primates. The most effective and economical way to protect against Sudan ebolavirus disease is prophylactic vaccination. However, there are no licensed vaccines to prevent SUDV infections. In this study, a bacterium-like particle (BLP)-based vaccine displaying the extracellular domain of the SUDV glycoprotein (eGP) was developed based on a gram-positive enhancer matrix-protein anchor (GEM-PA) surface display system. Expression of the recombinant GEM-displayed eGP (eGP-PA-GEM) was verified by Western blotting and immunofluorescence assays. The SUDV BLPs (SBLPs), which were mixed with Montanide ISA 201VG plus Poly (I:C) combined adjuvant, could induce high SUDV GP-specific IgG titers of up to 1:40,960 and robust virus-neutralizing antibody titers reached 1:460. The SBLP also elicited T-helper 1 (Th1) and T-helper 2 (Th2) cell-mediated immunity. These data indicate that the SBLP subunit vaccine has the potential to be developed into a promising candidate vaccine against SUDV infections.
Collapse
Affiliation(s)
- Shengnan Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.X.); (Z.S.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
| | - Cuicui Jiao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
| | - Hongli Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zengguo Cao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhikang Shi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.X.); (Z.S.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
| | - Shengnan Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hongbin He
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China;
| | - Hang Chi
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Jianzhong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.X.); (Z.S.)
- Correspondence: (J.W.); (X.X.)
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
- Correspondence: (J.W.); (X.X.)
| |
Collapse
|
27
|
Burke CW, Froude JW, Rossi F, White CE, Moyer CL, Ennis J, Pitt ML, Streatfield S, Jones RM, Musiychuk K, Kervinen J, Zeitlin L, Yusibov V, Glass PJ. Therapeutic monoclonal antibody treatment protects nonhuman primates from severe Venezuelan equine encephalitis virus disease after aerosol exposure. PLoS Pathog 2019; 15:e1008157. [PMID: 31790515 PMCID: PMC6907853 DOI: 10.1371/journal.ppat.1008157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2019] [Revised: 12/12/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
There are no FDA licensed vaccines or therapeutics for Venezuelan equine encephalitis virus (VEEV) which causes a debilitating acute febrile illness in humans that can progress to encephalitis. Previous studies demonstrated that murine and macaque monoclonal antibodies (mAbs) provide prophylactic and therapeutic efficacy against VEEV peripheral and aerosol challenge in mice. Additionally, humanized versions of two neutralizing mAbs specific for the E2 glycoprotein, 1A3B-7 and 1A4A-1, administered singly protected mice against aerosolized VEEV. However, no studies have demonstrated protection in nonhuman primate (NHP) models of VEEV infection. Here, we evaluated a chimeric antibody 1A3B-7 (c1A3B-7) containing mouse variable regions on a human IgG framework and a humanized antibody 1A4A-1 containing a serum half-life extension modification (Hu-1A4A-1-YTE) for their post-exposure efficacy in NHPs exposed to aerosolized VEEV. Approximately 24 hours after exposure, NHPs were administered a single bolus intravenous mAb. Control NHPs had typical biomarkers of VEEV infection including measurable viremia, fever, and lymphopenia. In contrast, c1A3B-7 treated NHPs had significant reductions in viremia and lymphopenia and on average approximately 50% reduction in fever. Although not statistically significant, Hu-1A4A-1-YTE administration did result in reductions in viremia and fever duration. Delay of treatment with c1A3B-7 to 48 hours post-exposure still provided NHPs protection from severe VEE disease through reductions in viremia and fever. These results demonstrate that post-exposure administration of c1A3B-7 protected macaques from development of severe VEE disease even when administered 48 hours following aerosol exposure and describe the first evaluations of VEEV-specific mAbs for post-exposure prophylactic use in NHPs. Viral mutations were identified in one NHP after c1A3B-7 treatment administered 24 hrs after virus exposure. This suggests that a cocktail-based therapy, or an alternative mAb against an epitope that cannot mutate without resulting in loss of viral fitness may be necessary for a highly effective therapeutic.
Collapse
Affiliation(s)
- Crystal W. Burke
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Jeffery W. Froude
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Franco Rossi
- Center of Aerobiological Sciences, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Charles E. White
- Biostatisics Branch, US Army Medical Research Institute of Infectious Disease, Fort Detrick Maryland, United States of America
| | - Crystal L. Moyer
- Mapp Biopharmaceutical, Inc., San Diego, California, United States of America
| | - Jane Ennis
- Mapp Biopharmaceutical, Inc., San Diego, California, United States of America
| | - M. Louise Pitt
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Stephen Streatfield
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Konstantin Musiychuk
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Jukka Kervinen
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, California, United States of America
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Pamela J. Glass
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| |
Collapse
|
28
|
Antibody responses to viral infections: a structural perspective across three different enveloped viruses. Nat Microbiol 2019; 4:734-747. [PMID: 30886356 PMCID: PMC6818971 DOI: 10.1038/s41564-019-0392-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Antibodies serve as critical barriers to viral infection. Humoral immunity to a virus is achieved through the dual role of antibodies in communicating the presence of invading pathogens in infected cells to effector cells and interfering with processes essential to the viral lifecycle, chiefly entry into the host cell. For individuals that successfully control infection, virus-elicited antibodies can provide lifelong surveillance and protection from future insults. One approach to understand the nature of a successful immune response has been to utilize structural biology to uncover the molecular details of the antibodies derived from vaccines or natural infection and how they interact with their cognate microbial antigens. The ability to isolate antigen specific B-cells and rapidly solve structures of functional, monoclonal antibodies in complex with viral glycoprotein surface antigens has greatly expanded our knowledge of the sites of vulnerability on viruses. In this review, we compare the adaptive humoral immune responses to HIV, influenza, and filoviruses, with a particular focus on neutralizing antibodies. The pathogenesis of each of these viruses is quite different, providing an opportunity for comparison of immune responses: HIV causes a persistent, chronic infection; influenza an acute infection with multiple exposures during a lifetime and annual vaccination; and filoviruses, a virulent, acute infection. Neutralizing antibodies that develop under these different constraints are therefore sentinels that can provide insight into the underlying humoral immune responses and important lessons to guide future development of vaccines and immunotherapeutics.
Collapse
|