1
|
Wang Z, Zhang X, Zhang G, Zheng YJ, Zhao A, Jiang X, Gan J. Astrocyte modulation in cerebral ischemia-reperfusion injury: A promising therapeutic strategy. Exp Neurol 2024; 378:114814. [PMID: 38762094 DOI: 10.1016/j.expneurol.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) poses significant challenges for drug development due to its complex pathogenesis. Astrocyte involvement in CIRI pathogenesis has led to the development of novel astrocyte-targeting drug strategies. To comprehensively review the current literature, we conducted a thorough analysis from January 2012 to December 2023, identifying 82 drugs aimed at preventing and treating CIRI. These drugs target astrocytes to exert potential benefits in CIRI, and their primary actions include modulation of relevant signaling pathways to inhibit neuroinflammation and oxidative stress, reduce cerebral edema, restore blood-brain barrier integrity, suppress excitotoxicity, and regulate autophagy. Notably, active components from traditional Chinese medicines (TCM) such as Salvia miltiorrhiza, Ginkgo, and Ginseng exhibit these important pharmacological properties and show promise in the treatment of CIRI. This review highlights the potential of astrocyte-targeted drugs to ameliorate CIRI and categorizes them based on their mechanisms of action, underscoring their therapeutic potential in targeting astrocytes.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Jia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
2
|
Alhadidi QM, Bahader GA, Arvola O, Kitchen P, Shah ZA, Salman MM. Astrocytes in functional recovery following central nervous system injuries. J Physiol 2024; 602:3069-3096. [PMID: 37702572 PMCID: PMC11421637 DOI: 10.1113/jp284197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Collapse
Affiliation(s)
- Qasim M Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala, Iraq
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Oiva Arvola
- Division of Anaesthesiology, Jorvi Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Kim RG, Cho J, Park JY, Kim YR, Lee MC, Kim HI. Neuron type-specific optogenetic stimulation for differential stroke recovery in chronic capsular infarct. Exp Mol Med 2024; 56:1439-1449. [PMID: 38825647 PMCID: PMC11263592 DOI: 10.1038/s12276-024-01253-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Cortical neuromodulation (CNM) is widely used to promote recovery after stroke. Despite the beneficial results of CNM, the roles played by different neuron types in the effects of current CNM techniques are unable to be differentiated. Our aim was to use selective optogenetic cortical stimulation to explore how different subpopulations of neuronal cells contribute to poststroke recovery. We transduced the sensory-parietal cortex (SPC) of rats with CamKII-ChR2 (pyramidal neurons), PV-ChR2 (parvalbumin-expressing inhibitory neurons), or hSyn-ChR2 (pan-neuronal population) before inducing photothrombotic capsular infarct lesions. We found that selective stimulation of inhibitory neurons resulted in significantly greater motor recovery than stimulation of excitatory neurons or the pan-neuronal population. Furthermore, 2-deoxy-2-[18F] fluoro-D-glucose microPET (FDG-microPET) imaging revealed a significant reduction in cortical diaschisis and activation of the corticostriatal neural circuit, which were correlated with behavioral recovery in the PV-ChR2 group. The spatial pattern of brain-derived neurotrophic factor (BDNF) expression was evident in the stimulated cortex and underlying cortico-subcortical circuit. Our results indicate that the plasticity of inhibitory neurons is crucial for functional recovery after capsular infarct. Modifying CNM parameters to potentiate the stimulation of inhibitory neurons could improve poststroke outcomes.
Collapse
Affiliation(s)
- Ra Gyung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Choemdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
- Research Headquarter, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Jongwook Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Choemdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Ji-Young Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Choemdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Young Ro Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Min-Cheol Lee
- Pathology Center, Seegene Medical Foundation, 320 Cheonho-Daero, Seongdong-gu, Seoul, 04805, Republic of Korea
| | - Hyoung-Ihl Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Choemdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
- Department of Neurosurgery, Presbyterian Medical Center, 365 Seowon-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, 54987, Republic of Korea.
| |
Collapse
|
4
|
Nam MH, Na H, Justin Lee C, Yun M. A Key Mediator and Imaging Target in Alzheimer's Disease: Unlocking the Role of Reactive Astrogliosis Through MAOB. Nucl Med Mol Imaging 2024; 58:177-184. [PMID: 38932762 PMCID: PMC11196512 DOI: 10.1007/s13139-023-00837-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 06/28/2024] Open
Abstract
Astrocytes primarily maintain physiological brain homeostasis. However, under various pathological conditions, they can undergo morphological, transcriptomic, and functional transformations, collectively referred to as reactive astrogliosis. Recent studies have accumulated lines of evidence that reactive astrogliosis plays a crucial role in the pathology of Alzheimer's disease (AD). In particular, monoamine oxidase B, a mitochondrial enzyme mainly expressed in astrocytes, significantly contributes to neuronal dysfunction and neurodegeneration in AD brains. Moreover, it has been reported that reactive astrogliosis precedes other pathological hallmarks such as amyloid-beta plaque deposition and tau tangle formation in AD. Due to the early onset and profound impact of reactive astrocytes on pathology, there have been extensive efforts in the past decade to visualize these cells in the brains of AD patients using positron emission tomography (PET) imaging. In this review, we summarize the recent studies regarding the essential pathological importance of reactive astrocytes in AD and their application as a target for PET imaging.
Collapse
Affiliation(s)
- Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Heesu Na
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - C. Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Rothman DL, Behar KL, Dienel GA. Mechanistic stoichiometric relationship between the rates of neurotransmission and neuronal glucose oxidation: Reevaluation of and alternatives to the pseudo-malate-aspartate shuttle model. J Neurochem 2024; 168:555-591. [PMID: 36089566 DOI: 10.1111/jnc.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022]
Abstract
The ~1:1 stoichiometry between the rates of neuronal glucose oxidation (CMRglc-ox-N) and glutamate (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) neurotransmitter (NT) cycling between neurons and astrocytes (VNTcycle) has been firmly established. However, the mechanistic basis for this relationship is not fully understood, and this knowledge is critical for the interpretation of metabolic and brain imaging studies in normal and diseased brain. The pseudo-malate-aspartate shuttle (pseudo-MAS) model established the requirement for glycolytic metabolism in cultured glutamatergic neurons to produce NADH that is shuttled into mitochondria to support conversion of extracellular Gln (i.e., astrocyte-derived Gln in vivo) into vesicular neurotransmitter Glu. The evaluation of this model revealed that it could explain half of the 1:1 stoichiometry and it has limitations. Modifications of the pseudo-MAS model were, therefore, devised to address major knowledge gaps, that is, submitochondrial glutaminase location, identities of mitochondrial carriers for Gln and other model components, alternative mechanisms to transaminate α-ketoglutarate to form Glu and shuttle glutamine-derived ammonia while maintaining mass balance. All modified models had a similar 0.5 to 1.0 predicted mechanistic stoichiometry between VNTcycle and the rate of glucose oxidation. Based on studies of brain β-hydroxybutyrate oxidation, about half of CMRglc-ox-N may be linked to glutamatergic neurotransmission and localized in pre-synaptic structures that use pseudo-MAS type mechanisms for Glu-Gln cycling. In contrast, neuronal compartments that do not participate in transmitter cycling may use the MAS to sustain glucose oxidation. The evaluation of subcellular compartmentation of neuronal glucose metabolism in vivo is a critically important topic for future studies to understand glutamatergic and GABAergic neurotransmission.
Collapse
Affiliation(s)
- Douglas L Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Kevin L Behar
- Magnetic Resonance Research Center and Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
6
|
Cho J, Hong E, Kim Y, Song J, Ju YH, Kim H, Lee H, Kim H, Nam M. Baicalin and baicalein from Scutellaria baicalensis Georgi alleviate aberrant neuronal suppression mediated by GABA from reactive astrocytes. CNS Neurosci Ther 2024; 30:e14740. [PMID: 38715318 PMCID: PMC11076983 DOI: 10.1111/cns.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/17/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
AIMS γ-aminobutyric acid (GABA) from reactive astrocytes is critical for the dysregulation of neuronal activity in various neuroinflammatory conditions. While Scutellaria baicalensis Georgi (S. baicalensis) is known for its efficacy in addressing neurological symptoms, its potential to reduce GABA synthesis in reactive astrocytes and the associated neuronal suppression remains unclear. This study focuses on the inhibitory action of monoamine oxidase B (MAO-B), the key enzyme for astrocytic GABA synthesis. METHODS Using a lipopolysaccharide (LPS)-induced neuroinflammation mouse model, we conducted immunohistochemistry to assess the effect of S. baicalensis on astrocyte reactivity and its GABA synthesis. High-performance liquid chromatography was performed to reveal the major compounds of S. baicalensis, the effects of which on MAO-B inhibition, astrocyte reactivity, and tonic inhibition in hippocampal neurons were validated by MAO-B activity assay, qRT-PCR, and whole-cell patch-clamp. RESULTS The ethanolic extract of S. baicalensis ameliorated astrocyte reactivity and reduced excessive astrocytic GABA content in the CA1 hippocampus. Baicalin and baicalein exhibited significant MAO-B inhibition potential. These two compounds downregulate the mRNA levels of genes associated with reactive astrogliosis or astrocytic GABA synthesis. Additionally, LPS-induced aberrant tonic inhibition was reversed by both S. baicalensis extract and its key compounds. CONCLUSIONS In summary, baicalin and baicalein isolated from S. baicalensis reduce astrocyte reactivity and alleviate aberrant tonic inhibition of hippocampal neurons during neuroinflammation.
Collapse
Affiliation(s)
- Juyeong Cho
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Eun‐Bin Hong
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Young‐Sik Kim
- Department of Herbology, College of Korean MedicineWoosuk UniversityJeonju‐siRepublic of Korea
| | - Jungbin Song
- Department of Herbal Pharmacology, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - Yeon Ha Ju
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Hyunjin Kim
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of KHU‐KIST Convergence Science and TechnologyKyung Hee UniversitySeoulRepublic of Korea
| | - Hyowon Lee
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - Min‐Ho Nam
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of KHU‐KIST Convergence Science and TechnologyKyung Hee UniversitySeoulRepublic of Korea
- Division of Bio‐Medical Science & Technology, KIST SchoolUniversity of Science and TechnologySeoulRepublic of Korea
| |
Collapse
|
7
|
Chae U, Chun H, Lim J, Shin H, Smith WC, Choi JW, Park KD, Lee CJ, Cho IJ. KDS2010, a reversible MAO-B inhibitor, extends the lifetime of neural probes by preventing glial scar formation. Glia 2024; 72:748-758. [PMID: 38200694 DOI: 10.1002/glia.24500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Implantable neural probes have been extensively utilized in the fields of neurocircuitry, systems neuroscience, and brain-computer interface. However, the long-term functionality of these devices is hampered by the formation of glial scar and astrogliosis at the surface of electrodes. In this study, we administered KDS2010, a recently developed reversible MAO-B inhibitor, to mice through ad libitum drinking in order to prevent glial scar formation and astrogliosis. The administration of KDS2010 allowed long-term recordings of neural signals with implantable devices, which remained stable over a period of 6 months and even restored diminished neural signals after probe implantation. KDS2010 effectively prevented the formation of glial scar, which consists of reactive astrocytes and activated microglia around the implant. Furthermore, it restored neural activity by disinhibiting astrocytic MAO-B dependent tonic GABA inhibition induced by astrogliosis. We suggest that the use of KDS2010 is a promising approach to prevent glial scar formation around the implant, thereby enabling long-term functionality of neural devices.
Collapse
Affiliation(s)
- Uikyu Chae
- Department of Convergence Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Heejung Chun
- Yonsei-SLBigen Research Institute, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyogeun Shin
- Department of Convergence Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Wesley Charles Smith
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ji Won Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ki Duk Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Il-Joo Cho
- Department of Convergence Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Koh W, Lee CJ. Diagnostic and therapeutic potential of tonic gamma-aminobutyric acid from reactive astrocytes in brain diseases. Clin Transl Med 2024; 14:e1642. [PMID: 38558537 PMCID: PMC10983021 DOI: 10.1002/ctm2.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Wuhyun Koh
- Center for Cognition and SocialityLife Science ClusterInstitute for Basic Science (IBS)DaejeonSouth Korea
| | - C. Justin Lee
- Center for Cognition and SocialityLife Science ClusterInstitute for Basic Science (IBS)DaejeonSouth Korea
| |
Collapse
|
9
|
Takahashi K, Rensing NR, Eultgen EM, Wang SH, Nelvagal HR, Le SQ, Roberts MS, Doray B, Han EB, Dickson PI, Wong M, Sands MS, Cooper JD. GABAergic interneurons contribute to the fatal seizure phenotype of CLN2 disease mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587276. [PMID: 38585903 PMCID: PMC10996664 DOI: 10.1101/2024.03.29.587276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
GABAergic interneuron deficits have been implicated in the epileptogenesis of multiple neurological diseases. While epileptic seizures are a key clinical hallmark of CLN2 disease, a childhood-onset neurodegenerative lysosomal storage disorder caused by a deficiency of tripeptidyl peptidase 1 (TPP1), the etiology of these seizures remains elusive. Given that Cln2 R207X/R207X mice display fatal spontaneous seizures and an early loss of several cortical interneuron populations, we hypothesized that those two events might be causally related. To address this hypothesis, we first generated an inducible transgenic mouse expressing lysosomal membrane-tethered TPP1 (TPP1LAMP1) on the Cln2 R207X/R207X genetic background to study the cell-autonomous effects of cell-type-specific TPP1 deficiency. We crossed the TPP1LAMP1 mice with Vgat-Cre mice to introduce interneuron-specific TPP1 deficiency. Vgat-Cre ; TPP1LAMP1 mice displayed storage material accumulation in several interneuron populations both in cortex and striatum, and increased susceptibility to die after PTZ-induced seizures. Secondly, to test the role of GABAergic interneuron activity in seizure progression, we selectively activated these cells in Cln2 R207X/R207X mice using Designer Receptor Exclusively Activated by Designer Drugs (DREADDs) in in Vgat-Cre : Cln2 R207X/R207X mice. EEG monitoring revealed that DREADD-mediated activation of interneurons via chronic deschloroclozapine administration accelerated the onset of spontaneous seizures and seizure-associated death in Vgat-Cre : Cln2 R207X/R207X mice, suggesting that modulating interneuron activity can exert influence over epileptiform abnormalities in CLN2 disease. Taken together, these results provide new mechanistic insights into the underlying etiology of seizures and premature death that characterize CLN2 disease.
Collapse
|
10
|
Yang K, Liu Y, Zhang M. The Diverse Roles of Reactive Astrocytes in the Pathogenesis of Amyotrophic Lateral Sclerosis. Brain Sci 2024; 14:158. [PMID: 38391732 PMCID: PMC10886687 DOI: 10.3390/brainsci14020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Astrocytes displaying reactive phenotypes are characterized by their ability to remodel morphologically, molecularly, and functionally in response to pathological stimuli. This process results in the loss of their typical astrocyte functions and the acquisition of neurotoxic or neuroprotective roles. A growing body of research indicates that these reactive astrocytes play a pivotal role in the pathogenesis of amyotrophic lateral sclerosis (ALS), involving calcium homeostasis imbalance, mitochondrial dysfunction, abnormal lipid and lactate metabolism, glutamate excitotoxicity, etc. This review summarizes the characteristics of reactive astrocytes, their role in the pathogenesis of ALS, and recent advancements in astrocyte-targeting strategies.
Collapse
Affiliation(s)
- Kangqin Yang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Liu
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Zhang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
11
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Kim KT, Cho DW, Cho JW, Im WJ, Kim DH, Park JH, Park KD, Yang YS, Han SC. Two weeks dose range-finding and four weeks repeated dose oral toxicity study of a novel reversible monoamine oxidase B inhibitor KDS2010 in cynomolgus monkeys. Toxicol Res 2023; 39:693-709. [PMID: 37779583 PMCID: PMC10541392 DOI: 10.1007/s43188-023-00182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/05/2023] [Accepted: 04/04/2023] [Indexed: 10/03/2023] Open
Abstract
A novel reversible monoamine oxidase B inhibitor, KDS2010, has been developed as a therapeutic candidate for neurodegenerative diseases. This study investigated its potential toxicity in non-human primates before human clinical trials. Daily KDS2010 doses (25, 50, or 100 mg/kg) were orally administered to cynomolgus monkeys (1 animal/sex/group, 4 males and 4 females) for 2 weeks to determine the dose range. One male was moribund, and one female was found dead in the 100 mg/kg/day group. One male was also found dead in the 50 mg/kg/day group. The death was considered an adverse effect in both sexes since distal tubules/collecting duct dilation and hypertrophy in the epithelium of the papillary duct were observed in their kidneys. Based on dose range finding results, KDS2010 (10, 20, or 40 mg/kg/day) was administered orally for 4 weeks, and animals were given 2 weeks for recovery. No significant changes were observed during daily clinical observations and macro-and microscopic examinations, including body weight, food consumption, hematology, clinical chemistry, and organ weight. And, the kidney was seen as the primary target organ of KDS2010 in the 2 weeks study, but no adverse effect was observed in the 4 weeks study. Therefore, 40 mg/kg/day is considered the no-observed-adverse-effect level in both sexes of cynomolgus monkeys. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00182-4.
Collapse
Affiliation(s)
- Kyung-Tai Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| | - Doo-Wan Cho
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| | - Jae-woo Cho
- Department of Advanced Toxicology Research, Korea Institute of Toxicology (KIT), 141 Gajeong-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Wan-Jung Im
- Department of Advanced Toxicology Research, Korea Institute of Toxicology (KIT), 141 Gajeong-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Da-Hee Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Young-Su Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| | - Su-Cheol Han
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| |
Collapse
|
13
|
Koh W, Kwak H, Cheong E, Lee CJ. GABA tone regulation and its cognitive functions in the brain. Nat Rev Neurosci 2023; 24:523-539. [PMID: 37495761 DOI: 10.1038/s41583-023-00724-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter released at GABAergic synapses, mediating fast-acting phasic inhibition. Emerging lines of evidence unequivocally indicate that a small amount of extracellular GABA - GABA tone - exists in the brain and induces a tonic GABA current that controls neuronal activity on a slow timescale relative to that of phasic inhibition. Surprisingly, studies indicate that glial cells that synthesize GABA, such as astrocytes, release GABA through non-vesicular mechanisms, such as channel-mediated release, and thereby act as the source of GABA tone in the brain. In this Review, we first provide an overview of major advances in our understanding of the cell-specific molecular and cellular mechanisms of GABA synthesis, release and clearance that regulate GABA tone in various brain regions. We next examine the diverse ways in which the tonic GABA current regulates synaptic transmission and synaptic plasticity through extrasynaptic GABAA-receptor-mediated mechanisms. Last, we discuss the physiological mechanisms through which tonic inhibition modulates cognitive function on a slow timescale. In this Review, we emphasize that the cognitive functions of tonic GABA current extend beyond mere inhibition, laying a foundation for future research on the physiological and pathophysiological roles of GABA tone regulation in normal and abnormal psychiatric conditions.
Collapse
Affiliation(s)
- Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Hankyul Kwak
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea.
| |
Collapse
|
14
|
Sa M, Yoo ES, Koh W, Park MG, Jang HJ, Yang YR, Bhalla M, Lee JH, Lim J, Won W, Kwon J, Kwon JH, Seong Y, Kim B, An H, Lee SE, Park KD, Suh PG, Sohn JW, Lee CJ. Hypothalamic GABRA5-positive neurons control obesity via astrocytic GABA. Nat Metab 2023; 5:1506-1525. [PMID: 37653043 DOI: 10.1038/s42255-023-00877-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/25/2023] [Indexed: 09/02/2023]
Abstract
The lateral hypothalamic area (LHA) regulates food intake and energy balance. Although LHA neurons innervate adipose tissues, the identity of neurons that regulate fat is undefined. Here we show that GABRA5-positive neurons in LHA (GABRA5LHA) polysynaptically project to brown and white adipose tissues in the periphery. GABRA5LHA are a distinct subpopulation of GABAergic neurons and show decreased pacemaker firing in diet-induced obesity mouse models in males. Chemogenetic inhibition of GABRA5LHA suppresses fat thermogenesis and increases weight gain, whereas gene silencing of GABRA5 in LHA decreases weight gain. In the diet-induced obesity mouse model, GABRA5LHA are tonically inhibited by nearby reactive astrocytes releasing GABA, which is synthesized by monoamine oxidase B (Maob). Gene silencing of astrocytic Maob in LHA facilitates fat thermogenesis and reduces weight gain significantly without affecting food intake, which is recapitulated by administration of a Maob inhibitor, KDS2010. We propose that firing of GABRA5LHA suppresses fat accumulation and selective inhibition of astrocytic GABA is a molecular target for treating obesity.
Collapse
Affiliation(s)
- Moonsun Sa
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Eun-Seon Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Mingu Gordon Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Hyun-Jun Jang
- Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Yong Ryoul Yang
- Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Mridula Bhalla
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- IBS School, University of Science and Technology, Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- IBS School, University of Science and Technology, Daejeon, Republic of Korea
| | - Woojin Won
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jea Kwon
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Joon-Ho Kwon
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Yejin Seong
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Byungeun Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Heeyoung An
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ki Duk Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Pann-Ghill Suh
- Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, Republic of Korea.
- IBS School, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Diep YN, Park HJ, Kwon JH, Tran M, Ko HY, Jo H, Kim J, Chung JI, Kim TY, Kim D, Chang JH, Kang YJ, Lee CJ, Yun M, Cho H. Astrocytic scar restricting glioblastoma via glutamate-MAO-B activity in glioblastoma-microglia assembloid. Biomater Res 2023; 27:71. [PMID: 37468961 DOI: 10.1186/s40824-023-00408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Glial scar formation is a reactive glial response confining injured regions in a central nervous system. However, it remains challenging to identify key factors formulating glial scar in response to glioblastoma (GBM) due to complex glia-GBM crosstalk. METHODS Here, we constructed an astrocytic scar enclosing GBM in a human assembloid and a mouse xenograft model. GBM spheroids were preformed and then co-cultured with microglia and astrocytes in 3D Matrigel. For the xenograft model, U87-MG cells were subcutaneously injected to the Balb/C nude female mice. RESULTS Additional glutamate was released from GBM-microglia assembloid by 3.2-folds compared to GBM alone. The glutamate upregulated astrocytic monoamine oxidase-B (MAO-B) activity and chondroitin sulfate proteoglycans (CSPGs) deposition, forming the astrocytic scar and restricting GBM growth. Attenuating scar formation by the glutamate-MAO-B inhibition increased drug penetration into GBM assembloid, while reducing GBM confinement. CONCLUSIONS Taken together, our study suggests that astrocytic scar could be a critical modulator in GBM therapeutics.
Collapse
Affiliation(s)
- Yen N Diep
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hee Jung Park
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Joon-Ho Kwon
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science & Technology, Ulsan, 44919, Republic of Korea
| | - Minh Tran
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hae Young Ko
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hanhee Jo
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jisu Kim
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jee-In Chung
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Tai Young Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Dongwoo Kim
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Seoul, 120-752, Republic of Korea
| | - You Jung Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
- Department of Biomedical Engineering, Ulsan National Institute of Science & Technology, Ulsan, 44919, Republic of Korea.
- Korea University-Korea Institute of Science and Technology, Graduate School of Convergence Technology, Korea University, Seoul, 136-701, Republic of Korea.
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
16
|
Nam MH, Ko HY, Kim D, Lee S, Park YM, Hyeon SJ, Won W, Chung JI, Kim SY, Jo HH, Oh KT, Han YE, Lee GH, Ju YH, Lee H, Kim H, Heo J, Bhalla M, Kim KJ, Kwon J, Stein TD, Kong M, Lee H, Lee SE, Oh SJ, Chun JH, Park MA, Park KD, Ryu H, Yun M, Lee CJ. Visualizing reactive astrocyte-neuron interaction in Alzheimer's disease using 11C-acetate and 18F-FDG. Brain 2023; 146:2957-2974. [PMID: 37062541 PMCID: PMC10517195 DOI: 10.1093/brain/awad037] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 04/18/2023] Open
Abstract
Reactive astrogliosis is a hallmark of Alzheimer's disease (AD). However, a clinically validated neuroimaging probe to visualize the reactive astrogliosis is yet to be discovered. Here, we show that PET imaging with 11C-acetate and 18F-fluorodeoxyglucose (18F-FDG) functionally visualizes the reactive astrocyte-mediated neuronal hypometabolism in the brains with neuroinflammation and AD. To investigate the alterations of acetate and glucose metabolism in the diseased brains and their impact on the AD pathology, we adopted multifaceted approaches including microPET imaging, autoradiography, immunohistochemistry, metabolomics, and electrophysiology. Two AD rodent models, APP/PS1 and 5xFAD transgenic mice, one adenovirus-induced rat model of reactive astrogliosis, and post-mortem human brain tissues were used in this study. We further curated a proof-of-concept human study that included 11C-acetate and 18F-FDG PET imaging analyses along with neuropsychological assessments from 11 AD patients and 10 healthy control subjects. We demonstrate that reactive astrocytes excessively absorb acetate through elevated monocarboxylate transporter-1 (MCT1) in rodent models of both reactive astrogliosis and AD. The elevated acetate uptake is associated with reactive astrogliosis and boosts the aberrant astrocytic GABA synthesis when amyloid-β is present. The excessive astrocytic GABA subsequently suppresses neuronal activity, which could lead to glucose uptake through decreased glucose transporter-3 in the diseased brains. We further demonstrate that 11C-acetate uptake was significantly increased in the entorhinal cortex, hippocampus and temporo-parietal neocortex of the AD patients compared to the healthy controls, while 18F-FDG uptake was significantly reduced in the same regions. Additionally, we discover a strong correlation between the patients' cognitive function and the PET signals of both 11C-acetate and 18F-FDG. We demonstrate the potential value of PET imaging with 11C-acetate and 18F-FDG by visualizing reactive astrogliosis and the associated neuronal glucose hypometablosim for AD patients. Our findings further suggest that the acetate-boosted reactive astrocyte-neuron interaction could contribute to the cognitive decline in AD.
Collapse
Affiliation(s)
- Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hae Young Ko
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dongwoo Kim
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sangwon Lee
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yongmin Mason Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
- IBS School, University of Science and Technology, Daejeon 34126, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Woojin Won
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Jee-In Chung
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seon Yoo Kim
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Han Hee Jo
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyeong Taek Oh
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young-Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gwan-Ho Lee
- Research Resources Division, KIST, Seoul 02792, Republic of Korea
| | - Yeon Ha Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
- IBS School, University of Science and Technology, Daejeon 34126, Republic of Korea
| | - Hyowon Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyunjin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaejun Heo
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Mridula Bhalla
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
- IBS School, University of Science and Technology, Daejeon 34126, Republic of Korea
| | - Ki Jung Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Jea Kwon
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Thor D Stein
- Boston University Alzheimer’s Disease Research Center and Department of Pathology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA 02130, USA
| | - Mingyu Kong
- Molecular Recognition Research Center, KIST, Seoul 02792, Republic of Korea
| | - Hyunbeom Lee
- Molecular Recognition Research Center, KIST, Seoul 02792, Republic of Korea
| | - Seung Eun Lee
- Research Resources Division, KIST, Seoul 02792, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Mi-Ae Park
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ki Duk Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Boston University Alzheimer’s Disease Research Center and Department of Pathology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA 02130, USA
| | - Mijin Yun
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
- IBS School, University of Science and Technology, Daejeon 34126, Republic of Korea
| |
Collapse
|
17
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
18
|
Matsuda K, Nagasaka K, Kato J, Takashima I, Higo N. Structural plasticity of motor cortices assessed by voxel-based morphometry and immunohistochemical analysis following internal capsular infarcts in macaque monkeys. Cereb Cortex Commun 2022; 3:tgac046. [PMID: 36457456 PMCID: PMC9706438 DOI: 10.1093/texcom/tgac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2023] Open
Abstract
Compensatory plastic changes in the remaining intact brain regions are supposedly involved in functional recovery following stroke. Previously, a compensatory increase in cortical activation occurred in the ventral premotor cortex (PMv), which contributed to the recovery of dexterous hand movement in a macaque model of unilateral internal capsular infarcts. Herein, we investigated the structural plastic changes underlying functional changes together with voxel-based morphometry (VBM) analysis of magnetic resonance imaging data and immunohistochemical analysis using SMI-32 antibody in a macaque model. Unilateral internal capsular infarcts were pharmacologically induced in 5 macaques, and another 5 macaques were used as intact controls for immunohistochemical analysis. Three months post infarcts, we observed significant increases in the gray matter volume (GMV) and the dendritic arborization of layer V pyramidal neurons in the contralesional rostral PMv (F5) as well as the primary motor cortex (M1). The histological analysis revealed shrinkage of neuronal soma and dendrites in the ipsilesional M1 and several premotor cortices, despite not always detecting GMV reduction by VBM analysis. In conclusion, compensatory structural changes occur in the contralesional F5 and M1 during motor recovery following internal capsular infarcts, and the dendritic growth of pyramidal neurons is partially correlated with GMV increase.
Collapse
Affiliation(s)
- Kohei Matsuda
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 3058577, Japan
| | - Kazuaki Nagasaka
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 9503198, Japan
- Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata 9503198, Japan
| | - Junpei Kato
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
- Faculty of Medicine, University of Tsukuba, Ibaraki 3058577, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 3058577, Japan
| | - Noriyuki Higo
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
| |
Collapse
|
19
|
Cho J, Ryu S, Lee S, Kim J, Park JY, Kwon HS, Kim HI. Clozapine-Induced Chemogenetic Neuromodulation Rescues Post-Stroke Deficits After Chronic Capsular Infarct. Transl Stroke Res 2022:10.1007/s12975-022-01059-8. [PMID: 35809218 DOI: 10.1007/s12975-022-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022]
Abstract
Long-term disabilities induced by stroke impose a heavy burden on patients, families, caregivers, and public health systems. Extensive studies have demonstrated the therapeutic value of neuromodulation in enhancing post-stroke recovery. Among them, chemogenetic neuromodulation activated by clozapine-N-oxide (CNO) has been proposed as the potential tool of neuromodulation. However, recent evidence showed that CNO does not cross the blood - brain barrier and may in fact have low binding affinity for chemogenetic tool. Thus, clozapine (CLZ) has been suggested for use in chemogenetic neuromodulation, in place of CNO, because it readily crosses the blood-brain barrier. Previously we reported that low doses of CLZ (0.1 mg/kg) successfully induced neural responses without off-target effects. Here, we show that low-dose clozapine (0.1 mg/kg) can induce prolonged chemogenetic activation while avoiding permeability issues and minimizing off-target effects. In addition, clozapine-induced excitatory chemogenetic neuromodulation (CLZ-ChemoNM) of sensory-parietal cortex with hsyn-hM3Dq-YFP-enhanced motor recovery in a chronic capsular infarct model of stroke in rats, improving post-stroke behavioral scores to 56% of pre-infarct levels. Longitudinal 2-deoxy-2-[18F]-fluoro-D-glucose microPET (FDG-microPET) scans showed that a reduction in diaschisis volume and activation of corticostriatal circuits were both correlated with post-stroke recovery. We also found c-Fos increases in bilateral cortices and BDNF increases in the cortices and striatum after CLZ-ChemoNM, indicating an increase in neural plasticity. These findings suggest the translational feasibility of CLZ-ChemoNM for augmenting recovery in chronic stroke.
Collapse
Affiliation(s)
- Jongwook Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Seungjun Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sunwoo Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Junsoo Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Ji-Young Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyuk-Sang Kwon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| | - Hyoung-Ihl Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
20
|
Lee JM, Sa M, An H, Kim JMJ, Kwon J, Yoon BE, Lee CJ. Generation of Astrocyte-Specific MAOB Conditional Knockout Mouse with Minimal Tonic GABA Inhibition. Exp Neurobiol 2022; 31:158-172. [PMID: 35786639 PMCID: PMC9272118 DOI: 10.5607/en22016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
Monoamine oxidase B (MAOB) is a key enzyme for GABA production in astrocytes in several brain regions. To date, the role of astrocytic MAOB has been studied in MAOB null knockout (KO) mice, although MAOB is expressed throughout the body. Therefore, there has been a need for genetically engineered mice in which only astrocytic MAOB is targeted. Here, we generated an astrocyte-specific MAOB conditional KO (cKO) mouse line and characterized it in the cerebellar and striatal regions of the brain. Using the CRISPR-Cas9 gene-editing technique, we generated Maob floxed mice (B6-Maobem1Cjl/Ibs) which have floxed exons 2 and 3 of Maob with two loxP sites. By crossing these mice with hGFAP-CreERT2, we obtained Maob floxed::hGFAP-CreERT2 mice which have a property of tamoxifen-inducible ablation of Maob under the human GFAP (hGFAP) promoter. When we treated Maob floxed::hGFAP-CreERT2 mice with tamoxifen for 5 consecutive days, MAOB and GABA immunoreactivity were significantly reduced in striatal astrocytes as well as in Bergmann glia and lamellar astrocytes in the cerebellum, compared to sunflower oil-injected control mice. Moreover, astrocyte-specific MAOB cKO led to a 74.6% reduction in tonic GABA currents from granule cells and a 76.8% reduction from medium spiny neurons. Our results validate that astrocytic MAOB is a critical enzyme for the synthesis of GABA in astrocytes. We propose that this new mouse line could be widely used in studies of various brain diseases to elucidate the pathological role of astrocytic MAOB in the future.
Collapse
Affiliation(s)
- Jung Moo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Moonsun Sa
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Heeyoung An
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | | | - Jea Kwon
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Bo-Eun Yoon
- Department of Molecular biology, Dankook University, Cheonan 31116, Korea
| | - C. Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| |
Collapse
|
21
|
Sa M, Lee JM, Park MG, Lim J, Kim JMJ, Koh W, Yoon BE, Lee CJ. Unaltered Tonic Inhibition in the Arcuate Nucleus of Diet-induced Obese Mice. Exp Neurobiol 2022; 31:147-157. [PMID: 35786638 PMCID: PMC9272119 DOI: 10.5607/en22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/19/2022] Open
Abstract
The principal inhibitory transmitter, γ-aminobutyric acid (GABA), is critical for maintaining hypothalamic homeostasis and released from neurons phasically, as well as from astrocytes tonically. Although astrocytes in the arcuate nucleus (ARC) of the hypothalamus are shown to transform into reactive astrocytes, the tonic inhibition by astrocytic GABA has not been adequately investigated in diet-induced obesity (DIO). Here, we investigated the expression of monoamine oxidase-B (MAOB), a GABA-synthesizing enzyme, in reactive astrocytes in obese mice. We observed that a chronic high-fat diet (HFD) significantly increased astrocytic MAOB and cellular GABA content, along with enhanced hypertrophy of astrocytes in the ARC. Unexpectedly, we found that the level of tonic GABA was unaltered in chronic HFD mice using whole-cell patch-clamp recordings in the ARC. Furthermore, the GABA-induced current was increased with elevated GABAA receptor α5 (GABRA5) expression. Surprisingly, we found that a nonselective GABA transporter (GAT) inhibitor, nipecotic acid (NPA)-induced current was significantly increased in chronic HFD mice. We observed that GAT1 inhibitor, NO711-induced current was significantly increased, whereas GAT3 inhibitor, SNAP5114-induced current was not altered. The unexpected unaltered tonic inhibition was due to an increase of GABA clearance in the ARC by neuronal GAT1 rather than astrocytic GAT3. These results imply that increased astrocytic GABA synthesis and neuronal GABAA receptor were compensated by GABA clearance, resulting in unaltered tonic GABA inhibition in the ARC of the hypothalamus in obese mice. Taken together, GABA-related molecular pathways in the ARC dynamically regulate the tonic inhibition to maintain hypothalamic homeostasis against the HFD challenge.
Collapse
Affiliation(s)
- Moonsun Sa
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Jung Moo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
- IBS School, University of Science and Technology (UST), Daejeon 34126, Korea
| | | | - Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - C. Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
- IBS School, University of Science and Technology (UST), Daejeon 34126, Korea
| |
Collapse
|
22
|
Liu J, Feng X, Wang Y, Xia X, Zheng JC. Astrocytes: GABAceptive and GABAergic Cells in the Brain. Front Cell Neurosci 2022; 16:892497. [PMID: 35755777 PMCID: PMC9231434 DOI: 10.3389/fncel.2022.892497] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Astrocytes, the most numerous glial cells in the brain, play an important role in preserving normal neural functions and mediating the pathogenesis of neurological disorders. Recent studies have shown that astrocytes are GABAceptive and GABAergic astrocytes express GABAA receptors, GABAB receptors, and GABA transporter proteins to capture and internalize GABA. GABAceptive astrocytes thus influence both inhibitory and excitatory neurotransmission by controlling the levels of extracellular GABA. Furthermore, astrocytes synthesize and release GABA to directly regulate brain functions. In this review, we highlight recent research progresses that support astrocytes as GABAceptive and GABAergic cells. We also summarize the roles of GABAceptive and GABAergic astrocytes that serve as an inhibitory node in the intercellular communication in the brain. Besides, we discuss future directions for further expanding our knowledge on the GABAceptive and GABAergic astrocyte signaling.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xuanran Feng
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xiaohuan Xia
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jialin C Zheng
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Houlton J, Zubkova OV, Clarkson AN. Recovery of Post-Stroke Spatial Memory and Thalamocortical Connectivity Following Novel Glycomimetic and rhBDNF Treatment. Int J Mol Sci 2022; 23:ijms23094817. [PMID: 35563207 PMCID: PMC9101131 DOI: 10.3390/ijms23094817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Stroke-induced cognitive impairments remain of significant concern, with very few treatment options available. The involvement of glycosaminoglycans in neuroregenerative processes is becoming better understood and recent advancements in technology have allowed for cost-effective synthesis of novel glycomimetics. The current study evaluated the therapeutic potential of two novel glycomimetics, compound A and G, when administered systemically five-days post-photothrombotic stroke to the PFC. As glycosaminoglycans are thought to facilitate growth factor function, we also investigated the combination of our glycomimetics with intracerebral, recombinant human brain-derived neurotrophic factor (rhBDNF). C56BL/6J mice received sham or stroke surgery and experimental treatment (day-5), before undergoing the object location recognition task (OLRT). Four-weeks post-surgery, animals received prelimbic injections of the retrograde tracer cholera toxin B (CTB), before tissue was collected for quantification of thalamo-PFC connectivity and reactive astrogliosis. Compound A or G treatment alone modulated a degree of reactive astrogliosis yet did not influence spatial memory performance. Contrastingly, compound G+rhBDNF treatment significantly improved spatial memory, dampened reactive astrogliosis and limited stroke-induced loss of connectivity between the PFC and midline thalamus. As rhBDNF treatment had negligible effects, these findings support compound A acted synergistically to enhance rhBDNF to restrict secondary degeneration and facilitate functional recovery after PFC stroke.
Collapse
Affiliation(s)
- Josh Houlton
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand;
| | - Olga V. Zubkova
- The Ferrier Research Institute, Gracefield Research Centre, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand;
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand;
- Correspondence: ; Tel./Fax: +64-3-279-7326
| |
Collapse
|
24
|
Mu JD, Ma LX, Zhang Z, Yu WY, Sun TY, Qian X, Tian Y, Wang JX. Acupuncture alleviates spinal hyperreflexia and motor dysfunction in post-ischemic stroke rats with spastic hypertonia via KCC2-mediated spinal GABA A activation. Exp Neurol 2022; 354:114027. [PMID: 35245503 DOI: 10.1016/j.expneurol.2022.114027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
The majority of patients simultaneously develop motor dysfunction and spastic hypertonia after ischemic strokes, which can be associated with an increasing trend in motor impairments, seriously impeding the rehabilitation process. Evidence suggests that some deficits in the KCC2 expression in the spinal cord along with maladaptive endogenous plasticity via GABAA receptors are often involved in the pathology of spastic hypertonia after a stroke. In this respect, acupuncture has been commonly used in clinical settings for post-stroke patients' rehabilitation. Nevertheless, the mechanism of the modulating activity of this alternative medicine in the spinal pathways to relieve spasticity and improve functional recovery after a stroke has still remained unclear. Utilizing laser speckle imaging, functional assessments (viz. neurologic function scale, muscular tension scale, foot balance test, and gait analysis), H-reflex recording, TTC, Western blotting, RT-qPCR, ELISA, and immunofluorescence molecular assay, the study results illustrated that acupuncture could significantly alleviate the spinal hyperreflexia, decrease muscle tone, and enhance locomotor function by elevating the GABA, KCC2, and GABAAγ2 expressions in the lumbar spine of a rat model of post-ischemic stroke with spastic hypertonia. Furthermore, the KCC2 antagonist DIOA abolished the benefits induced by this practice. Overall, the data revealed that acupuncture is a promising therapeutic approach for spastic hypertonia after a stroke, and the positive outcomes in this sense could be achieved via activating the KCC2-mediated spinal GABAA signaling pathway.
Collapse
Affiliation(s)
- Jie-Dan Mu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liang-Xiao Ma
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China; The Key Unit of State Administration of Traditional Chinese Medicine, Evaluation of Characteristic Acupuncture Therapy, Beijing 100029, China.
| | - Zhou Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen-Yan Yu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tian-Yi Sun
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xu Qian
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuan Tian
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun-Xiang Wang
- School of Nursing, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
25
|
Yoon HH, Ye S, Lim S, Jo A, Lee H, Hong F, Lee SE, Oh SJ, Kim NR, Kim K, Kim BJ, Kim H, Lee CJ, Nam MH, Hur JW, Jeon SR. CRISPR-Cas9 Gene Editing Protects from the A53T-SNCA Overexpression-Induced Pathology of Parkinson's Disease In Vivo. CRISPR J 2022; 5:95-108. [PMID: 35191750 DOI: 10.1089/crispr.2021.0025] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in specific genes, including synuclein alpha (SNCA) that encodes the α-synuclein protein, are known to be risk factors for sporadic Parkinson's disease (PD), as well as critical factors for familial PD. In particular, A53T-mutated SNCA (A53T-SNCA) is a well-studied familial pathologic mutation in PD. However, techniques for deletion of the mutated SNCA gene in vivo have not been developed. Here, we used the CRISPR-Cas9 system to delete A53T-SNCA in vitro as well as in vivo. Adeno-associated virus carrying SaCas9-KKH with a single-guide RNA targeting A53T-SNCA significantly reduced A53T-SNCA expression levels in vitro. Furthermore, we tested its therapeutic potential in vivo in a viral A53T-SNCA-overexpressing rat model of PD. Gene deletion of A53T-SNCA significantly rescued the overexpression of α-synuclein, reactive microgliosis, dopaminergic neurodegeneration, and parkinsonian motor symptoms. Our findings propose CRISPR-Cas9 system as a potential prevention strategy for A53T-SNCA-specific PD.
Collapse
Affiliation(s)
- Hyung Ho Yoon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Sunghyeok Ye
- RnD center, GeneCker, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Sunhwa Lim
- Convergence Research Center for Dementia, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea.,Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Ara Jo
- Department of Neurosurgery, College of Medicine, Korea University, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Hawon Lee
- RnD center, GeneCker, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Felix Hong
- RnD center, GeneCker, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Soo-Jin Oh
- Convergence Research Center for Dementia, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea.,Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Na-Rae Kim
- Department of Biomedical Sciences and Department of Physiology, College of Medicine, Korea University, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences and Department of Physiology, College of Medicine, Korea University, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Neurosurgery, College of Medicine, Korea University, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Hyunjin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea; and Kyung Hee University, Seoul, Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea.,Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, Korea
| | - Junseok W Hur
- Department of Neurosurgery, College of Medicine, Korea University, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; Kyung Hee University, Seoul, Korea
| |
Collapse
|
26
|
Kim HS, Hwang JH, Han SC, Kang GH, Park JY, Kim HI. Precision Capsular Infarct Modeling to Produce Hand Motor Deficits in Cynomolgus Macaques. Exp Neurobiol 2021; 30:356-364. [PMID: 34737240 PMCID: PMC8572658 DOI: 10.5607/en21026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 12/03/2022] Open
Abstract
Stroke research in non-human primates (NHPs) with gyrencephalic brains is a critical step in overcoming the translational barrier that limits the development of new pharmaceutical and rehabilitative strategies for stroke. White-matter stroke (WMS) has a unique pathophysiology from gray-matter stroke and is not well understood because of a lack of pertinent animal models. To create a precise capsular infarct model in the cynomolgus macaque, we first used electrical stimulation to map hand movements, followed by viral tracing of the hand motor fibers (hMFs). This enabled us to identify stereotactic targets in the posterior limb of the internal capsule (PLIC). Neural tracing showed that hMFs occupy the full width of the PLIC, owing to overlap with the motor fibers for the leg. Furthermore, the hMFs were distributed in an oblique shape, requiring coronal tilting of the target probe. We used the photothrombotic infarct lesioning technique to precisely destroy the hMFs within the internal capsule. Double-point infarct lesioning that fully compromised the hMFs resulted in persistent hand motor and walking deficits whereas single-point lesioning did not. Minor deviations in targeting failed to produce persistent motor deficits. Accurate stereotactic targeting with thorough involvement of motor fibers is critical for the production of a capsular infarct model with persistent motor deficits. In conclusion, the precision capsular infarct model can be translated to the NHP system to show persistent motor deficits and may be useful to investigate the mechanism of post-stroke recovery as well as to develop new therapeutic strategies for the WMS.
Collapse
Affiliation(s)
- Hyung-Sun Kim
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 53212, Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 53212, Korea
| | - Su-Cheol Han
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 53212, Korea
| | - Goo-Hwa Kang
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 53212, Korea
| | - Ji-Young Park
- Neuromodulation Lab, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Hyoung-Ihl Kim
- Neuromodulation Lab, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,Department of Neurosurgery, Presbyterian Medical Center, Jeonju 54987, Korea
| |
Collapse
|
27
|
An H, Lee H, Yang S, Won W, Lee CJ, Nam MH. Adenovirus-induced Reactive Astrogliosis Exacerbates the Pathology of Parkinson's Disease. Exp Neurobiol 2021; 30:222-231. [PMID: 34045369 PMCID: PMC8278136 DOI: 10.5607/en21013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is the most prevalent neurodegenerative motor disorder. While PD has been attributed to dopaminergic neuronal death in substantia nigra pars compacta (SNpc), accumulating lines of evidence have suggested that reactive astrogliosis is critically involved in PD pathology. These pathological changes are associated with α-synuclein aggregation, which is more prone to be induced by an A53T mutation. Therefore, the overexpression of A53T-mutated α-synuclein (A53T-α-syn) has been utilized as a popular animal model of PD. However, this animal model only shows marginal-to-moderate extents of reactive astrogliosis and astrocytic α-synuclein accumulation, while these phenomena are prominent in human PD brains. Here we show that Adeno-GFAP-GFP virus injection into SNpc causes severe reactive astrogliosis and exacerbates the A53T-α-syn-mediated PD pathology. In particular, we demonstrate that AAV-CMV-A53T-α-syn injection, when combined with Adeno-GFAP-GFP, causes more significant loss of dopaminergic neuronal tyrosine hydroxylase level and gain of astrocytic GFAP and GABA levels. Moreover, the combination of AAV-CMV-A53T-α-syn and Adeno-GFAP-GFP causes an extensive astrocytic α-syn expression, just as in human PD brains. These results are in marked contrast to previous reports that AAV-CMV-A53T-α-syn alone causes α-syn expression mostly in neurons but rarely in astrocytes. Furthermore, the combination causes a severe PD-like motor dysfunction as assessed by rotarod and cylinder tests within three weeks from the virus injection, whereas Adeno-GFAP-GFP alone or AAV-CMV-A53T-α-syn alone does not. Our findings implicate that inducing reactive astrogliosis exacerbates PD-like pathologies and propose the virus combination as an advanced strategy for developing a new animal model of PD.
Collapse
Affiliation(s)
- Heeyoung An
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Hyowon Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seulkee Yang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Woojin Won
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - C. Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of KHU-KIST Convergent Science and Technology, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
28
|
An H, Heo JY, Lee CJ, Nam MH. The Pathological Role of Astrocytic MAOB in Parkinsonism Revealed by Genetic Ablation and Over-expression of MAOB. Exp Neurobiol 2021; 30:113-119. [PMID: 33972465 PMCID: PMC8118757 DOI: 10.5607/en21007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
The cause of Parkinson’s disease has been traditionally believed to be the dopaminergic neuronal death in the substantia nigra pars compacta (SNpc). This traditional view has been recently challenged by the proposal that reactive astrocytes serve as key players in the pathology of Parkinson’s disease through excessive GABA release. This aberrant astrocytic GABA is synthesized by the enzymatic action of monoamine oxidase B (MAOB), whose pharmacological inhibition and gene-silencing are reported to significantly alleviate parkinsonian motor symptoms in animal models of Parkinson’s disease. However, whether genetic ablation and over-expression of MAOB can bidirectionally regulate parkinsonian motor symptoms has not been tested. Here we demonstrate that genetic ablation of MAOB blocks the MPTP-induced augmentation of astrocytic GABA-mediated tonic inhibition of neighboring dopaminergic neurons as well as parkinsonian motor symptoms, indicating the necessity of MAOB for parkinsonian motor symptoms. Furthermore, we demonstrate that GFAP-MAOB transgenic mice, in which MAOB is over-expressed under the GFAP promoter for astrocyte-specific over-expression, display exacerbated MPTP-induced tonic inhibition and parkinsonian motor symptoms compared to wild-type mice, indicating the importance of astrocytic MAOB for parkinsonian motor symptoms. Our study provides genetic pieces of evidence for the causal link between the pathological role of astrocytic MAOB-dependent tonic GABA synthesis and parkinsonian motor symptoms.
Collapse
Affiliation(s)
- Heeyoung An
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Jun Young Heo
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| |
Collapse
|
29
|
Patabendige A, Singh A, Jenkins S, Sen J, Chen R. Astrocyte Activation in Neurovascular Damage and Repair Following Ischaemic Stroke. Int J Mol Sci 2021; 22:4280. [PMID: 33924191 PMCID: PMC8074612 DOI: 10.3390/ijms22084280] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Transient or permanent loss of tissue perfusion due to ischaemic stroke can lead to damage to the neurovasculature, and disrupt brain homeostasis, causing long-term motor and cognitive deficits. Despite promising pre-clinical studies, clinically approved neuroprotective therapies are lacking. Most studies have focused on neurons while ignoring the important roles of other cells of the neurovascular unit, such as astrocytes and pericytes. Astrocytes are important for the development and maintenance of the blood-brain barrier, brain homeostasis, structural support, control of cerebral blood flow and secretion of neuroprotective factors. Emerging data suggest that astrocyte activation exerts both beneficial and detrimental effects following ischaemic stroke. Activated astrocytes provide neuroprotection and contribute to neurorestoration, but also secrete inflammatory modulators, leading to aggravation of the ischaemic lesion. Astrocytes are more resistant than other cell types to stroke pathology, and exert a regulative effect in response to ischaemia. These roles of astrocytes following ischaemic stroke remain incompletely understood, though they represent an appealing target for neurovascular protection following stroke. In this review, we summarise the astrocytic contributions to neurovascular damage and repair following ischaemic stroke, and explore mechanisms of neuroprotection that promote revascularisation and neurorestoration, which may be targeted for developing novel therapies for ischaemic stroke.
Collapse
Affiliation(s)
- Adjanie Patabendige
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2321, Australia;
- Priority Research Centre for Stroke and Brain Injury, and Priority Research Centre for Brain & Mental Health, University of Newcastle, Callaghan, NSW 2321, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Institute of Infection & Global Health, University of Liverpool, Liverpool L7 3EA, UK
| | - Ayesha Singh
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK;
| | - Stuart Jenkins
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (S.J.); (J.S.)
- Neural Tissue Engineering: Keele (NTEK), Keele University, Staffordshire ST5 5BG, UK
| | - Jon Sen
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (S.J.); (J.S.)
- Clinical Informatics and Neurosurgery Fellow, The Cleveland Clinic, 33 Grosvenor Square, London SW1X 7HY, UK
| | - Ruoli Chen
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK;
| |
Collapse
|
30
|
Müller J, Timmermann A, Henning L, Müller H, Steinhäuser C, Bedner P. Astrocytic GABA Accumulation in Experimental Temporal Lobe Epilepsy. Front Neurol 2020; 11:614923. [PMID: 33391173 PMCID: PMC7775561 DOI: 10.3389/fneur.2020.614923] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/30/2020] [Indexed: 01/17/2023] Open
Abstract
An imbalance of excitation and inhibition has been associated with the pathophysiology of epilepsy. Loss of GABAergic interneurons and/or synaptic inhibition has been shown in various epilepsy models and in human epilepsy. Despite this loss, several studies reported preserved or increased tonic GABAA receptor-mediated currents in epilepsy, raising the question of the source of the inhibitory transmitter. We used the unilateral intracortical kainate mouse model of temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) to answer this question. In our model we observed profound loss of interneurons in the sclerotic hippocampal CA1 region and dentate gyrus already 5 days after epilepsy induction. Consistent with the literature, the absence of interneurons caused no reduction of tonic inhibition of CA1 pyramidal neurons. In dentate granule cells the inhibitory currents were even increased in epileptic tissue. Intriguingly, immunostaining of brain sections from epileptic mice with antibodies against GABA revealed strong and progressive accumulation of the neurotransmitter in reactive astrocytes. Pharmacological inhibition of the astrocytic GABA transporter GAT3 did not affect tonic inhibition in the sclerotic hippocampus, suggesting that this transporter is not responsible for astrocytic GABA accumulation or release. Immunostaining further indicated that both decarboxylation of glutamate and putrescine degradation accounted for the increased GABA levels in reactive astrocytes. Together, our data provide evidence that the preserved tonic inhibitory currents in the epileptic brain are mediated by GABA overproduction and release from astrocytes. A deeper understanding of the underlying mechanisms may lead to new strategies for antiepileptic drug therapy.
Collapse
Affiliation(s)
- Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Aline Timmermann
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hendrik Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|