1
|
Uppoor S, Damodar T, Lodha L, Huluvadi Nagarajaiah M, Mani RS. Evolving dengue serotype distribution with dominance of dengue virus- 3 in Bangalore: critical insights for vaccine efficacy and implementation. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 30:100485. [PMID: 39315002 PMCID: PMC11417586 DOI: 10.1016/j.lansea.2024.100485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Affiliation(s)
- Shruthi Uppoor
- H Siddaiah Referral Hospital, Bruhat Bengaluru Mahanagara Palike, Bangalore, India
| | - Tina Damodar
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Lonika Lodha
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | | | - Reeta S. Mani
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| |
Collapse
|
2
|
Woodson SE, Morabito KM. Continuing development of vaccines and monoclonal antibodies against Zika virus. NPJ Vaccines 2024; 9:91. [PMID: 38789469 PMCID: PMC11126562 DOI: 10.1038/s41541-024-00889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Affiliation(s)
- Sara E Woodson
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kaitlyn M Morabito
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Katzelnick L, Odio C, Daag J, Crisostomo MV, Voirin C, Escoto AC, Adams C, Hein LD, Aogo R, Mpingabo P, Rodriguez GR, Firdous S, Fernandez MA, White L, Agrupis KA, Deen J, de Silva A, Ylade M. Dengue virus IgG and serotype-specific neutralizing antibody titers measured with standard and mature viruses are associated with protection. RESEARCH SQUARE 2024:rs.3.rs-4145863. [PMID: 38659845 PMCID: PMC11042401 DOI: 10.21203/rs.3.rs-4145863/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Recent work demonstrates the limitations of the standard dengue virus (DENV) neutralization assay to predict protection against dengue. We perform studies to compare how a commercial IgG ELISA, envelope domain III (EDIII) or non-structural protein 1 (NS1) binding antibodies, and titers from plaque reduction neutralization tests (PRNTs) using reference standard and clinical mature viruses are associated with dengue disease. Healthy children (n = 1,206) in Cebu, Philippines were followed for 5 years. High ELISA values (≥3) were associated with reduced dengue probability relative to naïve children (3% vs. 10%, p = 0.008), but antibody binding EDIII or NS1 from each serotype had no association. High standard and mature geometric mean PRNT titers were associated with reduced dengue disease overall (p < 0.01), and high DENV2 and DENV3 titers in both assays provided protection against the matched serotype (p < 0.02). However, while 52% of dengue cases had standard virus PRNT titers > 100, only 2% of cases had mature virus PRNT titers > 100 (p < 0.001), indicating a lower, more consistent threshold for protection. Each assay may be useful for different purposes as correlates of protection in population and vaccine trials.
Collapse
Affiliation(s)
- Leah Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Camila Odio
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Jedas Daag
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Maria Vinna Crisostomo
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Charlie Voirin
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Ana Coello Escoto
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | | | - Lindsay Dahora Hein
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill
| | - Rosemary Aogo
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Patrick Mpingabo
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Guillermo Raimundi Rodriguez
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Saba Firdous
- National Institute of Allergy and Infectious Diseases
| | - Maria Abad Fernandez
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill
| | - Laura White
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill
| | - Kristal-An Agrupis
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines Manila
| | - Jacqueline Deen
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines Manila
| | | | - Michelle Ylade
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines Manila
| |
Collapse
|
4
|
Balingit JC, Dimamay MPS, Suzuki R, Matsuda M, Xayavong D, Ngwe Tun MM, Matias RR, Natividad FF, Moi ML, Takamatsu Y, Culleton R, Buerano CC, Morita K. Role of pre-existing immunity in driving the dengue virus serotype 2 genotype shift in the Philippines: A retrospective analysis of serological data. Int J Infect Dis 2024; 139:59-68. [PMID: 38029834 DOI: 10.1016/j.ijid.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023] Open
Abstract
OBJECTIVE The invasion of dengue virus (DENV)-2 Cosmopolitan genotype into the Philippines, where the Asian II genotype previously circulated challenges the principle of dengue serotype-specific immunity. Assessment of antibodies in this population may provide a mechanistic basis for how new genotypes emerge in dengue-endemic areas. METHODS We evaluated the neutralizing antibody (nAb) and antibody-dependent enhancement (ADE) responses against the two genotypes using archived serum samples collected from 333 patients with confirmed dengue in Metro Manila, Philippines, before, during, and after the introduction of the Cosmopolitan genotype. We quantified nAb titers in baby hamster kidney (BHK-21) cells with or without the Fcγ receptor IIA (FcγRIIA) to detect the capacity of virus-antibody complexes to neutralize or enhance DENV. RESULTS The nAb potency of the archived serum samples against the two genotypes was greatly affected by the presence of FcγRIIA. We found significant differences in nAb titers between the two genotypes in BHK-21 cells with FcγRIIA (P <0.0001). The archived serum samples were incapable of fully neutralizing the Cosmopolitan genotype, but instead strongly promoted its ADE compared to the Asian II genotype (P <0.0001). CONCLUSION These results reinforce the role of pre-existing immunity in driving genotype shifts. Our finding that specific genotypes exhibit differing susceptibilities to ADE by cross-reactive antibodies may have implications for dengue vaccine development.
Collapse
Affiliation(s)
- Jean Claude Balingit
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki City, Nagasaki, Japan; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Mark Pierre S Dimamay
- Research and Biotechnology Group, St. Luke's Medical Center, Quezon City, Metro Manila, Philippines
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Gakuen, Musashi-murayama, Tokyo, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Gakuen, Musashi-murayama, Tokyo, Japan
| | - Dalouny Xayavong
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Mya Myat Ngwe Tun
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki City, Nagasaki, Japan; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Ronald R Matias
- Research and Biotechnology Group, St. Luke's Medical Center, Quezon City, Metro Manila, Philippines
| | - Filipinas F Natividad
- National Ethics Committee, Philippine Council for Health Research and Development, Department of Science and Technology (DOST), Saliksik Building, DOST Compound, Bicutan, Taguig City, Metro Manila, Philippines
| | - Meng Ling Moi
- Department of Developmental Medical Sciences, School of International Health, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuki Takamatsu
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki City, Nagasaki, Japan; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Richard Culleton
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Shitsukawa, Ehime, Japan
| | - Corazon C Buerano
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki City, Nagasaki, Japan; Research and Biotechnology Group, St. Luke's Medical Center, Quezon City, Metro Manila, Philippines
| | - Kouichi Morita
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki City, Nagasaki, Japan; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki City, Nagasaki, Japan; DEJIMA Infectious Disease Research Alliance, Nagasaki University, Sakamoto, Nagasaki City, Nagasaki, Japan.
| |
Collapse
|
5
|
Pierce KK, Durbin AP, Walsh MCR, Carmolli M, Sabundayo BP, Dickson DM, Diehl SA, Whitehead SS, Kirkpatrick BD. TV005 dengue vaccine protects against dengue serotypes 2 and 3 in two controlled human infection studies. J Clin Invest 2024; 134:e173328. [PMID: 37971871 PMCID: PMC10836801 DOI: 10.1172/jci173328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUNDDisease due to dengue viruses is a growing global health threat, causing 100-400 million cases annually. An ideal dengue vaccine should demonstrate durable protection against all 4 serotypes in phase III efficacy trials, however the lack of circulating serotypes may lead to incomplete efficacy data. Controlled human infection models help downselect vaccine candidates and supply critical data to supplement efficacy trials. We evaluated the efficacy of a leading live-attenuated tetravalent dengue vaccine candidate, TV005, against infection with a newly established dengue serotype 3 or an established serotype 2 challenge virus.METHODSTwo randomized, controlled clinical trials were performed. In study 1, a total of 42 participants received TV005 or placebo (n = 21 each), and 6 months later, all were challenged with dengue 2 virus (rDEN2Δ30) at a dose of 103 PFU. In study 2, a total of 23 participants received TV005 and 20 received placebo, and 6 months later, all were challenged with 104 PFU dengue 3 virus (rDEN3Δ30). The study participants were closely monitored for safety, viremia, and immunologic responses. Infection, measured by post-challenge viremia, and the occurrence of rash and neutropenia were the primary endpoints. Secondary endpoints included safety, immunologic, and virologic profiles following vaccination with TV005 and subsequent challenge with the rDEN2Δ30 or rDEN3Δ30 strain.RESULTSTV005 was well tolerated and protected all vaccinated volunteers from viremia with DENV2 or DENV3 (none infected in either group). Placebo recipients had post-challenge viremia (100% in study 1, 85% in study 2), and all experienced rash following challenge with either serotype.CONCLUSIONSTV005 is a leading tetravalent dengue vaccine candidate that fully protected against infection with DENV2 and DENV3 in an established controlled human infection model.TRIAL REGISTRATIONClinicalTrials.gov NCT02317900 and NCT02873260.FUNDINGIntramural Research Program, NIH (contract HHSN272200900010C).
Collapse
Affiliation(s)
- Kristen K. Pierce
- Department of Medicine and
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, USA
| | - Anna P. Durbin
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mary-Claire R. Walsh
- Department of Medicine and
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, USA
| | - Marya Carmolli
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, USA
| | - Beulah P. Sabundayo
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Dorothy M. Dickson
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, USA
| | - Sean A. Diehl
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, USA
| | - Stephen S. Whitehead
- National Institute of Allergy and Infectious Diseases (NIAID), Laboratory of Viral Diseases, Bethesda, Maryland, USA
| | - Beth D. Kirkpatrick
- Department of Medicine and
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, USA
| |
Collapse
|
6
|
Bos S, Graber AL, Cardona-Ospina JA, Duarte EM, Zambrana JV, Ruíz Salinas JA, Mercado-Hernandez R, Singh T, Katzelnick LC, de Silva A, Kuan G, Balmaseda A, Harris E. Protection against symptomatic dengue infection by neutralizing antibodies varies by infection history and infecting serotype. Nat Commun 2024; 15:382. [PMID: 38195666 PMCID: PMC10776616 DOI: 10.1038/s41467-023-44330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Dengue viruses (DENV1-4) are the most prevalent arboviruses in humans and a major public health concern. Understanding immune mechanisms that modulate DENV infection outcome is critical for vaccine development. Neutralizing antibodies (nAbs) are an essential component of the protective immune response, yet their measurement often relies on a single cellular substrate and partially mature virions, which does not capture the full breadth of neutralizing activity and may lead to biased estimations of nAb potency. Here, we analyze 125 samples collected after one or more DENV infections but prior to subsequent symptomatic or inapparent DENV1, DENV2, or DENV3 infections from a long-standing pediatric cohort study in Nicaragua. By assessing nAb responses using Vero cells with or without DC-SIGN and with mature or partially mature virions, we find that nAb potency and the protective NT50 cutoff are greatly influenced by cell substrate and virion maturation state. Additionally, the correlation between nAb titer and protection from disease depends on prior infection history and infecting serotype. Finally, we uncover variations in nAb composition that contribute to protection from symptomatic infection differently after primary and secondary prior infection. These findings have important implications for identifying antibody correlates of protection for vaccines and natural infections.
Collapse
Affiliation(s)
- Sandra Bos
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| | - Aaron L Graber
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Jaime A Cardona-Ospina
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Grupo de Investigación Biomedicina, Facultad de Medicina, Institución Universitaria Visión de las Américas, Pereira, Colombia
| | - Elias M Duarte
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Jose Victor Zambrana
- Sustainable Sciences Institute, Managua, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Reinaldo Mercado-Hernandez
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Tulika Singh
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aravinda de Silva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
7
|
Samune Y, Saito A, Sasaki T, Koketsu R, Srimark N, Phadungsombat J, Yokoyama M, Kotani O, Sato H, Yamanaka A, Haga S, Okamoto T, Kurosu T, Nakayama EE, Shioda T. Genetic regions affecting the replication and pathogenicity of dengue virus type 2. PLoS Negl Trop Dis 2024; 18:e0011885. [PMID: 38190404 PMCID: PMC10798627 DOI: 10.1371/journal.pntd.0011885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/19/2024] [Accepted: 12/26/2023] [Indexed: 01/10/2024] Open
Abstract
Dengue is a mosquito-borne disease that has spread to over 100 countries. Its symptoms vary from the relatively mild acute febrile illness called dengue fever to the much more severe dengue shock syndrome. Dengue is caused by dengue virus (DENV), which belongs to the Flavivirus genus of the family Flaviviridae. There are four serotypes of DENV, i.e., DENV1 to DENV4, and each serotype is divided into distinct genotypes. Thailand is an endemic area where all four serotypes of DENV co-circulate. Genome sequencing of the DENV2 that was isolated in Thailand in 2016 and 2017 revealed the emergence of the Cosmopolitan genotype and its co-circulation with the Asian-I genotype. However, it was unclear whether different genotypes have different levels of viral replication and pathogenicity. Focus-forming assay (FFA) results showed that clinical isolates of these genotypes differed in focus size and proliferative capacity. Using circular polymerase extension reaction, we generated parental and chimeric viruses with swapped genes between these two DENV2 genotypes, and compared their focus sizes and infectivity titers using FFA. The results showed that the focus size was larger when the structural proteins and/or non-structural NS1-NS2B proteins were derived from the Cosmopolitan virus. The infectious titers were consistent with the focus sizes. Single-round infectious particle assay results confirmed that chimeric viruses with Cosmopolitan type structural proteins, particularly prM/E, had significantly increased luciferase activity. Replicon assay results showed that Cosmopolitan NS1-NS2B proteins had increased reporter gene expression levels. Furthermore, in interferon-receptor knock-out mice, viruses with Cosmopolitan structural and NS1-NS2B proteins had higher titers in the blood, and caused critical disease courses. These results suggested that differences in the sequences within the structural and NS1-NS2B proteins may be responsible for the differences in replication, pathogenicity, and infectivity between the Asian-I and Cosmopolitan viruses.
Collapse
Affiliation(s)
- Yoshihiro Samune
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Tadahiro Sasaki
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ritsuko Koketsu
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Narinee Srimark
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Juthamas Phadungsombat
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Osamu Kotani
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Atsushi Yamanaka
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Saori Haga
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Emi E. Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Kikawa C, Cartwright-Acar CH, Stuart JB, Contreras M, Levoir LM, Evans MJ, Bloom JD, Goo L. The effect of single mutations in Zika virus envelope on escape from broadly neutralizing antibodies. J Virol 2023; 97:e0141423. [PMID: 37943046 PMCID: PMC10688354 DOI: 10.1128/jvi.01414-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE The wide endemic range of mosquito-vectored flaviviruses-such as Zika virus and dengue virus serotypes 1-4-places hundreds of millions of people at risk of infection every year. Despite this, there are no widely available vaccines, and treatment of severe cases is limited to supportive care. An avenue toward development of more widely applicable vaccines and targeted therapies is the characterization of monoclonal antibodies that broadly neutralize all these viruses. Here, we measure how single amino acid mutations in viral envelope protein affect neutralizing antibodies with both broad and narrow specificities. We find that broadly neutralizing antibodies with potential as vaccine prototypes or biological therapeutics are quantifiably more difficult to escape than narrow, virus-specific neutralizing antibodies.
Collapse
Affiliation(s)
- Caroline Kikawa
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | | | - Jackson B. Stuart
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Matthew J. Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jesse D. Bloom
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Basic Sciences, Fred Hutch Cancer Center, Seattle, Washington, USA
- Computational Biology, Fred Hutch Cancer Center, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, Washington, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| |
Collapse
|
9
|
Munt JE, Henein S, Adams C, Young E, Hou YJ, Conrad H, Zhu D, Dong S, Kose N, Yount B, Meganck RM, Tse LPV, Kuan G, Balmaseda A, Ricciardi MJ, Watkins DI, Crowe JE, Harris E, DeSilva AM, Baric RS. Homotypic antibodies target novel E glycoprotein domains after natural DENV 3 infection/vaccination. Cell Host Microbe 2023; 31:1850-1865.e5. [PMID: 37909048 PMCID: PMC11221912 DOI: 10.1016/j.chom.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
The envelope (E) glycoprotein is the primary target of type-specific (TS) neutralizing antibodies (nAbs) after infection with any of the four distinct dengue virus serotypes (DENV1-4). nAbs can be elicited to distinct structural E domains (EDs) I, II, or III. However, the relative contribution of these domain-specific antibodies is unclear. To identify the primary DENV3 nAb targets in sera after natural infection or vaccination, chimeric DENV1 recombinant encoding DENV3 EDI, EDII, or EDIII were generated. DENV3 EDII is the principal target of TS polyclonal nAb responses and encodes two or more neutralizing epitopes. In contrast, some were individuals vaccinated with a DENV3 monovalent vaccine-elicited serum TS nAbs targeting each ED in a subject-dependent fashion, with an emphasis on EDI and EDIII. Vaccine responses were also sensitive to DENV3 genotypic variation. This DENV1/3 panel allows the measurement of serum ED TS nAbs, revealing differences in TS nAb immunity after natural infection or vaccination.
Collapse
Affiliation(s)
- Jennifer E Munt
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Sandra Henein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Cameron Adams
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ellen Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Deanna Zhu
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Nashville, TN, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Long Ping V Tse
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Guillermina Kuan
- Health Center Socrates Flores Vivas, Ministry of Health, Managua, Nicaragua; Sustainable Sciences Institute, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua; National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | | | - David I Watkins
- University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Aravinda M DeSilva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Roßbacher L, Malafa S, Huber K, Thaler M, Aberle SW, Aberle JH, Heinz FX, Stiasny K. Effect of previous heterologous flavivirus vaccinations on human antibody responses in tick-borne encephalitis and dengue virus infections. J Med Virol 2023; 95:e29245. [PMID: 38009693 PMCID: PMC10952712 DOI: 10.1002/jmv.29245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Arthropod-borne flaviviruses include a number of medically relevant human pathogens such as the mosquito-borne dengue (DEN), Zika, and yellow fever (YF) viruses as well as tick-borne encephalitis virus (TBEV). All flaviviruses are antigenically related and anamnestic responses due to prior immunity can modulate antibody specificities in subsequent infections or vaccinations. In our study, we analyzed the induction of broadly flavivirus cross-reactive antibodies in tick-borne encephalitis (TBE) and DEN patients without or with prior flavivirus exposure through TBE and/or YF vaccination, and determined the contribution of these antibodies to TBE and dengue virus (DENV) neutralization. In addition, we investigated the formation of cross-reactive antibodies in TBE-vaccination breakthroughs (VBTs). A TBEV infection without prior YF or TBE vaccination induced predominantly type-specific antibodies. In contrast, high levels of broadly cross-reactive antibodies were found in samples from TBE patients prevaccinated against YF as well as in DEN patients prevaccinated against TBE and/or YF. While these cross-reactive antibodies did not neutralize TBEV, they were effective in neutralizing DENV. This discrepancy points to structural differences between the two viruses and indicates that broadly cross-reactive epitopes are less accessible in TBEV than in DENV. In TBE VBT infections, type-specific antibodies dominated the antibody response, thus revealing no difference from that of unvaccinated TBE patients. Our results emphasize significant differences in the structural properties of different flaviviruses that have an impact on the induction of broadly cross-reactive antibodies and their functional activities in virus neutralization.
Collapse
Affiliation(s)
- Lena Roßbacher
- Center for VirologyMedical University of ViennaViennaAustria
| | - Stefan Malafa
- Center for VirologyMedical University of ViennaViennaAustria
| | - Kristina Huber
- Division of Infectious Diseases and Tropical MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Melissa Thaler
- Center for VirologyMedical University of ViennaViennaAustria
- Present address:
Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | | | | | - Franz X. Heinz
- Center for VirologyMedical University of ViennaViennaAustria
| | - Karin Stiasny
- Center for VirologyMedical University of ViennaViennaAustria
| |
Collapse
|
11
|
Bos S, Graber AL, Cardona-Ospina JA, Duarte EM, Zambrana JV, Ruíz Salinas JA, Mercado-Hernandez R, Singh T, Katzelnick LC, de Silva A, Kuan G, Balmaseda A, Harris E. The association of neutralizing antibodies with protection against symptomatic dengue virus infection varies by serotype, prior infection history, and assay condition. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.20.23291522. [PMID: 37502957 PMCID: PMC10371115 DOI: 10.1101/2023.06.20.23291522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The four dengue virus serotypes (DENV1-4) are the most prevalent arboviruses in humans and a major public health concern worldwide. Understanding immune mechanisms that modulate DENV infection outcome is critical for epidemic preparedness and development of a safe and effective vaccine. Neutralizing antibodies (nAbs) are an essential component of the protective response, yet their measurement often relies on a single cellular substrate and partially mature virions, which do not capture the full breadth of neutralizing activity and may lead to biased estimations of nAb potency. Here, we investigated the characteristics of nAbs associated with protection against dengue cases using samples collected after one or more DENV infections but prior to subsequent symptomatic or inapparent DENV1, DENV2, or DENV3 infections from a long- standing pediatric cohort study in Nicaragua. By assessing nAb responses using Vero cells with or without the attachment factor DC-SIGN and with mature or partially mature virions, we found that nAb potency and the protective NT 50 cutoff were greatly influenced by cell substrate and virion maturation state. Additionally, the correlation between nAb titer and protection from disease depended on an individual's prior infection history and the subsequent infecting DENV serotype. Finally, we uncovered variations in nAbs composition that contributed to protection from symptomatic DENV infection differently after primary and secondary prior infection. These findings have important implications for identifying antibody correlates of protection in the context of vaccines and natural infections.
Collapse
|
12
|
Lubow J, Levoir LM, Ralph DK, Belmont L, Contreras M, Cartwright-Acar CH, Kikawa C, Kannan S, Davidson E, Duran V, Rebellon-Sanchez DE, Sanz AM, Rosso F, Doranz BJ, Einav S, Matsen IV FA, Goo L. Single B cell transcriptomics identifies multiple isotypes of broadly neutralizing antibodies against flaviviruses. PLoS Pathog 2023; 19:e1011722. [PMID: 37812640 PMCID: PMC10586629 DOI: 10.1371/journal.ppat.1011722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/19/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Sequential dengue virus (DENV) infections often generate neutralizing antibodies against all four DENV serotypes and sometimes, Zika virus. Characterizing cross-flavivirus broadly neutralizing antibody (bnAb) responses can inform countermeasures that avoid enhancement of infection associated with non-neutralizing antibodies. Here, we used single cell transcriptomics to mine the bnAb repertoire following repeated DENV infections. We identified several new bnAbs with comparable or superior breadth and potency to known bnAbs, and with distinct recognition determinants. Unlike all known flavivirus bnAbs, which are IgG1, one newly identified cross-flavivirus bnAb (F25.S02) was derived from IgA1. Both IgG1 and IgA1 versions of F25.S02 and known bnAbs displayed neutralizing activity, but only IgG1 enhanced infection in monocytes expressing IgG and IgA Fc receptors. Moreover, IgG-mediated enhancement of infection was inhibited by IgA1 versions of bnAbs. We demonstrate a role for IgA in flavivirus infection and immunity with implications for vaccine and therapeutic strategies.
Collapse
Affiliation(s)
- Jay Lubow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Duncan K. Ralph
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Catiana H. Cartwright-Acar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Caroline Kikawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
| | - Shruthi Kannan
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Edgar Davidson
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Veronica Duran
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | | | - Ana M. Sanz
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
| | - Fernando Rosso
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
- Department of Internal Medicine, Division of Infectious Diseases, Fundación Valle del Lili, Cali, Colombia
| | - Benjamin J. Doranz
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Frederick A. Matsen IV
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
13
|
Kikawa C, Cartwright-Acar CH, Stuart JB, Contreras M, Levoir LM, Evans MJ, Bloom JD, Goo L. The effect of single mutations in Zika virus envelope on escape from broadly neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557606. [PMID: 37808848 PMCID: PMC10557620 DOI: 10.1101/2023.09.13.557606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Zika virus and dengue virus are co-circulating flaviviruses with a widespread endemic range. Eliciting broad and potent neutralizing antibodies is an attractive goal for developing a vaccine to simultaneously protect against these viruses. However, the capacity of viral mutations to confer escape from broadly neutralizing antibodies remains undescribed, due in part to limited throughput and scope of traditional approaches. Here, we use deep mutational scanning to map how all possible single amino acid mutations in Zika virus envelope protein affect neutralization by antibodies of varying breadth and potency. While all antibodies selected viral escape mutations, the mutations selected by broadly neutralizing antibodies conferred less escape relative to those selected by narrow, virus-specific antibodies. Surprisingly, even for broadly neutralizing antibodies with similar binding footprints, different single mutations led to escape, indicating distinct functional requirements for neutralization not captured by existing structures. Additionally, the antigenic effects of mutations selected by broadly neutralizing antibodies were conserved across divergent, albeit related, flaviviruses. Our approach identifies residues critical for antibody neutralization, thus comprehensively defining the as-yet-unknown functional epitopes of antibodies with clinical potential.
Collapse
Affiliation(s)
- Caroline Kikawa
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98109, USA
- Medical Scientist Training Program, University of Washington, Seattle, Washington, 98109, USA
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| | | | - Jackson B. Stuart
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| | - Matthew J. Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Jesse D. Bloom
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98109, USA
- Basic Sciences and Computational Biology, Fred Hutch Cancer Center, Seattle Washington, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| |
Collapse
|
14
|
Henrique Ferreira Sucupira P, Silveira Ferreira M, Santos Coutinho-da-Silva M, Alves Bicalho K, Carolina Campi-Azevedo A, Pedro Brito-de-Sousa J, Peruhype-Magalhães V, Rios M, Konduru K, Teixeira-Carvalho A, Grazziela Alves Coelho-Dos-Reis J, Ribeiro do Valle Antonelli L, Bortolo de Rezende V, Ludolf Ribeiro de Melo F, Couto Garcia C, Carla Silva-Andrade J, Artur da Costa-Rocha I, Alves da Rocha L, Aprigio Silva V, Damasceno Pinto S, Araújo de Melo S, Guimarães Costa A, de Souza Gomes M, Rodrigues Amaral L, Luiz Lima Bertarini P, Cristina da Silva Furtado E, Vieira Pinto da Silva E, Alves Ramos B, Barros Dos Santos É, Nazaré Oliveira Freitas M, Maria Caetano Faria A, Fernando da Costa Vasconcelos P, de Souza Bastos M, Carício Martins L, Assis Martins-Filho O, Sobreira Silva Araújo M. Serotype-associated immune response and network immunoclusters in children and adults during acute Dengue virus infection. Cytokine 2023; 169:156306. [PMID: 37542834 DOI: 10.1016/j.cyto.2023.156306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/24/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
The present study was designed as an exploratory investigation to characterize the overall profile of chemokines, growth factors, and pro-inflammatory/regulatory cytokines during acute DENV infection according to DENV-1, DENV-2, DENV-4 serotypes and age: children: <1-10-year-old (yo); adolescents:11-20 yo; adults 21-40 yo; and older adults: 41-75 yo. The levels of soluble immunemediators were measured in serum by high-throughput microbeads array in 636 subjects including 317 DENV-infected and 319 age-matching non-infected control (NI). Overall, most soluble mediators were increased in DENV-infected patients as compared to NI group regardless of age and DENV serotype, with high magnitude order of increase for CCL2, CXCL10, IL-1β, IFN-γ, IL1-Ra (fold change >3x), except PDGF in which no fold change was observed. Moreover, despite the age ranges, DENV-1 and DENV-4 presented increased levels of VEGF, IL-6, and TNF-α in serum but decreased levels of PDGF, while DENV-2 exhibited increased levels of CXCL8, CCL4, and IL-12. Noteworthy was that DENV-2 showed increased levels of IL-12, IL-15, IL-17, IL-4, IL-9, and IL-13, and maintained an unaltered levels of PDGF at younger ages (<1-10 yo and 11-20 yo), whereas in older ages (21-40 yo and 41-75 yo), the results showed increased levels of CCL2, IL-6, and TNF-α, but lower levels of PDGF. In general, DENV infection at younger age groups exhibited more complex network immunoclusters as compared to older age groups. Multivariate analysis revealed a clustering of DENV cases according to age for a set of soluble mediators especially in subjects infected with DENV-2 serotype. Altogether, our findings demonstrate that the profile of circulating soluble mediators differs substantially in acute DENV according to age and DENV serotypes suggesting the participation of serotype-associated immune response, which may represent a potential target for development of therapeutics and could be used to assist medical directive for precise clinical management of severe cases.
Collapse
Affiliation(s)
| | | | | | - Kelly Alves Bicalho
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | | | | | | | - Maria Rios
- Office of Blood Research and Review (OBRR), Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Krishnamurthy Konduru
- Office of Blood Research and Review (OBRR), Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | | | | | | | | | - Fernanda Ludolf Ribeiro de Melo
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil; Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristiana Couto Garcia
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil; Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | | | - Lucia Alves da Rocha
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil; Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | | | | | | | - Allyson Guimarães Costa
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil; Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil; Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Matheus de Souza Gomes
- Laboratório de Bioinformática e Análises Moleculares, Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Universidade Federal de Uberlândia (UFU), Campus Patos de Minas, Minas Gerais, Brazil; Laboratório de Tecnologias Urbanas e Rurais, Faculdade de Engenharia Elétrica, Universidade Federal de Uberlândia (UFU), Campus Patos de Minas, Minas Gerais, Brazil
| | - Laurence Rodrigues Amaral
- Laboratório de Bioinformática e Análises Moleculares, Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Universidade Federal de Uberlândia (UFU), Campus Patos de Minas, Minas Gerais, Brazil; Laboratório de Tecnologias Urbanas e Rurais, Faculdade de Engenharia Elétrica, Universidade Federal de Uberlândia (UFU), Campus Patos de Minas, Minas Gerais, Brazil
| | - Pedro Luiz Lima Bertarini
- Laboratório de Bioinformática e Análises Moleculares, Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Universidade Federal de Uberlândia (UFU), Campus Patos de Minas, Minas Gerais, Brazil; Laboratório de Tecnologias Urbanas e Rurais, Faculdade de Engenharia Elétrica, Universidade Federal de Uberlândia (UFU), Campus Patos de Minas, Minas Gerais, Brazil
| | | | | | - Bruna Alves Ramos
- Instituto Evandro Chagas, Rodovia BR-316 KM 7 S/N, Ananindeua, PA, Brazil
| | | | | | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Instituto Evandro Chagas, Rodovia BR-316 KM 7 S/N, Ananindeua, PA, Brazil; Departamento de Patologia, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, PA, Brazil
| | - Michele de Souza Bastos
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil; Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
| | | | | | | |
Collapse
|
15
|
Márquez S, Lee G, Gutiérrez B, Bennett S, Coloma J, Eisenberg JNS, Trueba G. Phylogenetic Analysis of Transmission Dynamics of Dengue in Large and Small Population Centers, Northern Ecuador. Emerg Infect Dis 2023; 29:888-897. [PMID: 37080979 PMCID: PMC10124659 DOI: 10.3201/eid2905.221226] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Although dengue is typically considered an urban disease, rural communities are also at high risk. To clarify dynamics of dengue virus (DENV) transmission in settings with characteristics generally considered rural (e.g., lower population density, remoteness), we conducted a phylogenetic analysis in 6 communities in northwestern Ecuador. DENV RNA was detected by PCR in 121/488 serum samples collected from febrile case-patients during 2019-2021. Phylogenetic analysis of 27 samples from Ecuador and other countries in South America confirmed that DENV-1 circulated during May 2019-March 2020 and DENV-2 circulated during December 2020-July 2021. Combining locality and isolation dates, we found strong evidence that DENV entered Ecuador through the northern province of Esmeraldas. Phylogenetic patterns suggest that, within this province, communities with larger populations and commercial centers were more often the source of DENV but that smaller, remote communities also play a role in regional transmission dynamics.
Collapse
|
16
|
Fritsch H, Moreno K, Lima IAB, Santos CS, Costa BGG, de Almeida BL, dos Santos RA, Francisco MVLDO, Sampaio MPS, de Lima MM, Pereira FM, Fonseca V, Tosta S, Xavier J, de Oliveira C, Adelino T, de Mello ALES, Gräf T, Alcantara LCJ, Giovanetti M, de Siqueira IC. Phylogenetic Reconstructions Reveal the Circulation of a Novel Dengue Virus-1V Clade and the Persistence of a Dengue Virus-2 III Genotype in Northeast Brazil. Viruses 2023; 15:1073. [PMID: 37243159 PMCID: PMC10224011 DOI: 10.3390/v15051073] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Dengue fever is among the most significant public health concerns in Brazil. To date, the highest number of Dengue notifications in the Americas has been reported in Brazil, with cases accounting for a total number of 3,418,796 reported cases as of mid-December 2022. Furthermore, the northeastern region of Brazil registered the second-highest incidence of Dengue fever in 2022. Due to the alarming epidemiological scenario, in this study, we used a combination of portable whole-genome sequencing, phylodynamic, and epidemiological analyses to reveal a novel DENV-1 genotype V clade and the persistence of DENV-2 genotype III in the region. We further report the presence of non-synonymous mutations associated with non-structural domains, especially the NS2A (non-structural protein 2A), as well as describe synonymous mutations in envelope and membrane proteins, distributed differently between clades. However, the absence of clinical data at the time of collection and notification, as well as the impossibility of monitoring patients in order to observe worsening or death, restricts our possibility of correlating mutational findings with possible clinical prognoses. Together, these results reinforce the crucial role of genomic surveillance to follow the evolution of circulating DENV strains and understand their spread across the region through inter-regional importation events, likely mediated by human mobility, and also the possible impacts on public health and outbreak management.
Collapse
Affiliation(s)
- Hegger Fritsch
- Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Keldenn Moreno
- Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Italo Andrade Barbosa Lima
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Salvador 40296-710, BA, Brazil
| | - Cleiton Silva Santos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Salvador 40296-710, BA, Brazil
| | | | - Breno Lima de Almeida
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Salvador 40296-710, BA, Brazil
| | - Ronald Alves dos Santos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Salvador 40296-710, BA, Brazil
| | | | - Maria Paula Souza Sampaio
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Salvador 40296-710, BA, Brazil
| | - Maricelia Maia de Lima
- Secretaria Municipal de Saúde de Feira de Santana, Avenida João Durval Carneiro, s/n, Feira de Santana 44027-010, BA, Brazil
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Avenida Transnordestina, s/n, Feira de Santana 44036-900, BA, Brazil
| | - Felicidade Mota Pereira
- Laboratório Central de Saúde Pública Prof Goncalo Moniz, Rua Waldemar Falcão, 123, Salvador 40295-010, BA, Brazil
| | - Vagner Fonseca
- Organização Pan-Americana de Saúde/Organização Mundial de Saúde, Setor das Embaixadas, Lote 19, Avenida das Nações, Brasília 70-800400, SP, Brazil
| | - Stephane Tosta
- Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Joilson Xavier
- Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Carla de Oliveira
- Laboratório de Flavivírus, Lnstituto Oswaldo Cruz/Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro 21040-900, RJ, Brazil
| | - Talita Adelino
- Laboratório Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, Belo Horizonte 30510-010, MG, Brazil
| | - Arabela Leal e Silva de Mello
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Avenida Transnordestina, s/n, Feira de Santana 44036-900, BA, Brazil
| | - Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Avenida Professor Algacyr Munhoz Mader, 3775, Curitiba 81310-020, PA, Brazil
| | - Luiz Carlos Junior Alcantara
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, Belo Horizonte 30190-002, MG, Brazil
| | - Marta Giovanetti
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, Belo Horizonte 30190-002, MG, Brazil
- Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | | |
Collapse
|
17
|
Lubow J, Levoir LM, Ralph DK, Belmont L, Contreras M, Cartwright-Acar CH, Kikawa C, Kannan S, Davidson E, Doranz BJ, Duran V, Sanchez DE, Sanz AM, Rosso F, Einav S, Matsen FA, Goo L. Single B cell transcriptomics identifies multiple isotypes of broadly neutralizing antibodies against flaviviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.536175. [PMID: 37090561 PMCID: PMC10120628 DOI: 10.1101/2023.04.09.536175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Sequential dengue virus (DENV) infections often generate neutralizing antibodies against all four DENV serotypes and sometimes, Zika virus. Characterizing cross-flavivirus broadly neutralizing antibody (bnAb) responses can inform countermeasure strategies that avoid infection enhancement associated with non-neutralizing antibodies. Here, we used single cell transcriptomics to mine the bnAb repertoire following secondary DENV infection. We identified several new bnAbs with comparable or superior breadth and potency to known bnAbs, and with distinct recognition determinants. Unlike all known flavivirus bnAbs, which are IgG1, one newly identified cross-flavivirus bnAb (F25.S02) was derived from IgA1. Both IgG1 and IgA1 versions of F25.S02 and known bnAbs displayed neutralizing activity, but only IgG1 enhanced infection in monocytes expressing IgG and IgA Fc receptors. Moreover, IgG-mediated enhancement of infection was inhibited by IgA1 versions of bnAbs. We demonstrate a role for IgA in flavivirus infection and immunity with implications for vaccine and therapeutic strategies.
Collapse
|
18
|
Jagtap S, Pattabiraman C, Sankaradoss A, Krishna S, Roy R. Evolutionary dynamics of dengue virus in India. PLoS Pathog 2023; 19:e1010862. [PMID: 37011104 PMCID: PMC10101646 DOI: 10.1371/journal.ppat.1010862] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/13/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
More than a hundred thousand dengue cases are diagnosed in India annually, and about half of the country's population carries dengue virus-specific antibodies. Dengue propagates and adapts to the selection pressures imposed by a multitude of factors that can lead to the emergence of new variants. Yet, there has been no systematic analysis of the evolution of the dengue virus in the country. Here, we present a comprehensive analysis of all DENV gene sequences collected between 1956 and 2018 from India. We examine the spatio-temporal dynamics of India-specific genotypes, their evolutionary relationship with global and local dengue virus strains, interserotype dynamics and their divergence from the vaccine strains. Our analysis highlights the co-circulation of all DENV serotypes in India with cyclical outbreaks every 3-4 years. Since 2000, genotype III of DENV-1, cosmopolitan genotype of DENV-2, genotype III of DENV-3 and genotype I of DENV-4 have been dominating across the country. Substitution rates are comparable across the serotypes, suggesting a lack of serotype-specific evolutionary divergence. Yet, the envelope (E) protein displays strong signatures of evolution under immune selection. Apart from drifting away from its ancestors and other contemporary serotypes in general, we find evidence for recurring interserotype drift towards each other, suggesting selection via cross-reactive antibody-dependent enhancement. We identify the emergence of the highly divergent DENV-4-Id lineage in South India, which has acquired half of all E gene mutations in the antigenic sites. Moreover, the DENV-4-Id is drifting towards DENV-1 and DENV-3 clades, suggesting the role of cross-reactive antibodies in its evolution. Due to the regional restriction of the Indian genotypes and immunity-driven virus evolution in the country, ~50% of all E gene differences with the current vaccines are focused on the antigenic sites. Our study shows how the dengue virus evolution in India is being shaped in complex ways.
Collapse
Affiliation(s)
- Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Arun Sankaradoss
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Sudhir Krishna
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Ponda, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
19
|
Hussain Z, Rani S, Ma F, Li W, Shen W, Gao T, Wang J, Pei R. Dengue determinants: Necessities and challenges for universal dengue vaccine development. Rev Med Virol 2023; 33:e2425. [PMID: 36683235 DOI: 10.1002/rmv.2425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Dengue illness can range from mild illness to life-threatening haemorrhage. It is an Aedes-borne infectious disease caused by the dengue virus, which has four serotypes. Each serotype acts as an independent infectious agent. The antibodies against one serotype confer homotypic immunity but temporary protection against heterotypic infection. Dengue has become a growing health concern for up to one third of the world's population. Currently, there is no potent anti-dengue medicine, and treatment for severe dengue relies on intravenous fluid management and pain medications. The burden of dengue dramatically increases despite advances in vector control measures. These factors underscore the need for a vaccine. Various dengue vaccine strategies have been demonstrated, that is, live attenuated vaccine, inactivated vaccine, DNA vaccine, subunit vaccine, and viral-vector vaccines, some of which are at the stage of clinical testing. Unfortunately, the forefront candidate vaccine is less than satisfactory, and its performance depends on serostatus and age factors. The lessons from clinical studies depicted ambiguity concerning the efficacy of dengue vaccine. Our study highlighted that viral structural heterogeneity, epitope accessibility, autoimmune complications, genetic variants, genetic diversities, antigen competition, virulence variation, host-pathogen specific interaction, antibody-dependent enhancement, cross-reactive immunity among Flaviviruses, and host-susceptibility determinants not only influence infection outcomes but also hampered successful vaccine development. This review integrates dengue determinants allocated necessities and challenges, which would provide insight for universal dengue vaccine development.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China.,Molecular Virology Laboratory, Department of Biosciences, Comsats University Islamabad (CUI), Islamabad, Pakistan
| | - Saima Rani
- Molecular Virology Laboratory, Department of Biosciences, Comsats University Islamabad (CUI), Islamabad, Pakistan
| | - Fanshu Ma
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Wenjing Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Wenqi Shen
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Jine Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
20
|
Data-rich modeling helps answer increasingly complex questions on variant and disease interactions: Comment on "Mathematical models for dengue fever epidemiology: A 10-year systematic review" by Aguiar et al. Phys Life Rev 2023; 44:197-200. [PMID: 36773393 PMCID: PMC9893800 DOI: 10.1016/j.plrev.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
|
21
|
Seesen M, Jearanaiwitayakul T, Limthongkul J, Midoeng P, Sunintaboon P, Ubol S. A bivalent form of nanoparticle-based dengue vaccine stimulated responses that potently eliminate both DENV-2 particles and DENV-2-infected cells. Vaccine 2023; 41:1638-1648. [PMID: 36740559 DOI: 10.1016/j.vaccine.2023.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/03/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Dengue is the most prevalent mosquito-borne viral disease and continues to be a global public health concern. Although a licensed dengue vaccine is available, its efficacy and safety profile are not satisfactory. Hence, there remains a need for a safe and effective dengue vaccine. We are currently developing a bivalent dengue vaccine candidate. This vaccine candidate is composed of a C-terminus truncated non-structural protein 1 (NS11-279) and envelope domain III (EDIII) of DENV-2 encapsidated in the nanocarriers, N, N, N-trimethyl chitosan nanoparticles (TMC NPs). The immunogenicity of this bivalent vaccine candidate was investigated in the present study using BALB/c mice. In this work, we demonstrate that NS1 + EDIII TMC NP-immunized mice strongly elicited antigen-specific antibody responses (anti-NS1 and anti-EDIII IgG) and T-cell responses (NS1- and EDIII-specific-CD4+ and CD8+ T cells). Importantly, the antibody response induced by NS1 + EDIII TMC NPs provided antiviral activities against DENV-2, including serotype-specific neutralization and antibody-mediated complement-dependent cytotoxicity. Moreover, the significant upregulation of Th1- and Th2-associated cytokines, as well as the increased levels of antigen-specific IgG2a and IgG1, indicated a balanced Th1/Th2 response. Collectively, our findings suggest that NS1 + EDIII TMC NPs induced protective responses that can not only neutralize infectious DENV-2 but also eliminate DENV-2-infected cells.
Collapse
Affiliation(s)
- Mathurin Seesen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tuksin Jearanaiwitayakul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panuwat Midoeng
- Division of Pathology, Army Institute of Pathology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Salaya, Nakornpatom, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
22
|
Designing an Epitope-Based Peptide Vaccine Derived from RNA-Dependent RNA Polymerase (RdRp) against Dengue Virus Serotype 2. Vaccines (Basel) 2022; 10:vaccines10101734. [PMID: 36298599 PMCID: PMC9611443 DOI: 10.3390/vaccines10101734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue fever (DF) continues to be one of the tropical and subtropical health concerns. Its prevalence tends to increase in some places in these regions. This disease is caused by the dengue virus (DENV), which is transmitted through the mosquitoes Aedes aegypti and A. albopictus. The treatment of DF to date is only supportive and there is no definitive vaccine to prevent this disease. The non-structural DENV protein, RNA-dependent RNA Polymerase (RdRp), is involved in viral replication. The RdRp-derived peptides can be used in the construction of a universal dengue vaccine. These peptides can be utilized as epitopes to induce immunity. This study was an in silico evaluation of the affinity of the potential epitope for the universal dengue vaccine to dendritic cells and the bonds between the epitope and the dendritic cell receptor. The peptide sequence MGKREKKLGEFGKAKG generated from dengue virus subtype 2 (DENV-2) RdRp was antigenic, did not produce allergies, was non-toxic, and had no homology with the human genome. The potential epitope-based vaccine MGKREKKLGEFGKAKG binds stably to dendritic cell receptors with a binding free energy of −474,4 kcal/mol. This epitope is anticipated to induce an immunological response and has the potential to serve as a universal dengue virus vaccine candidate.
Collapse
|
23
|
Lee MF, Voon GZ, Lim HX, Chua ML, Poh CL. Innate and adaptive immune evasion by dengue virus. Front Cell Infect Microbiol 2022; 12:1004608. [PMID: 36189361 PMCID: PMC9523788 DOI: 10.3389/fcimb.2022.1004608] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Dengue is a mosquito-borne disease which causes significant public health concerns in tropical and subtropical countries. Dengue virus (DENV) has evolved various strategies to manipulate the innate immune responses of the host such as ‘hiding’ in the ultrastructure of the host, interfering with the signaling pathway through RNA modifications, inhibiting type 1 IFN production, as well as inhibiting STAT1 phosphorylation. DENV is also able to evade the adaptive immune responses of the host through antigenic variation, antigen-dependent enhancement (ADE), partial maturation of prM proteins, and inhibition of antigen presentation. miRNAs are important regulators of both innate and adaptive immunity and they have been shown to play important roles in DENV replication and pathogenesis. This makes them suitable candidates for the development of anti-dengue therapeutics. This review discusses the various strategies employed by DENV to evade innate and adaptive immunity. The role of miRNAs and DENV non-structural proteins (NS) are promising targets for the development of anti-dengue therapeutics.
Collapse
|
24
|
Ura T, Takeuchi M, Kawagoe T, Mizuki N, Okuda K, Shimada M. Current Vaccine Platforms in Enhancing T-Cell Response. Vaccines (Basel) 2022; 10:1367. [PMID: 36016254 PMCID: PMC9413345 DOI: 10.3390/vaccines10081367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
The induction of T cell-mediated immunity is crucial in vaccine development. The most effective vaccine is likely to employ both cellular and humoral immune responses. The efficacy of a vaccine depends on T cells activated by antigen-presenting cells. T cells also play a critical role in the duration and cross-reactivity of vaccines. Moreover, pre-existing T-cell immunity is associated with a decreased severity of infectious diseases. Many technical and delivery platforms have been designed to induce T cell-mediated vaccine immunity. The immunogenicity of vaccines is enhanced by controlling the kinetics and targeted delivery. Viral vectors are attractive tools that enable the intracellular expression of foreign antigens and induce robust immunity. However, it is necessary to select an appropriate viral vector considering the existing anti-vector immunity that impairs vaccine efficacy. mRNA vaccines have the advantage of rapid and low-cost manufacturing and have been approved for clinical use as COVID-19 vaccines for the first time. mRNA modification and nanomaterial encapsulation can help address mRNA instability and translation efficacy. This review summarizes the T cell responses of vaccines against various infectious diseases based on vaccine technologies and delivery platforms and discusses the future directions of these cutting-edge platforms.
Collapse
Affiliation(s)
- Takehiro Ura
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Tatsukata Kawagoe
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Department of Ophthalmology and Visual Science, School of Medicine, St. Marianna University, Kawazaki 216-8511, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
25
|
Seesen M, Jearanaiwitayakul T, Limthongkul J, Sunintaboon P, Ubol S. Mice immunized with trimethyl chitosan nanoparticles containing DENV-2 envelope domain III elicit neutralizing antibodies with undetectable antibody-dependent enhancement activity. J Gen Virol 2022; 103. [PMID: 35833704 DOI: 10.1099/jgv.0.001768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue is a disease that poses a significant global public health concern. Although a tetravalent live-attenuated dengue vaccine has been licensed, its efficacy is still debated due to evidence of vaccine breakthrough infection. To avoid this issue, dengue vaccines should stimulate a high degree of serotype-specific response. Thus, envelope domain III (EDIII), which contains serotype-specific neutralizing epitopes, is an attractive target for dengue vaccine development. In this study, we investigated how EDIII encapsidated in N, N, N-trimethyl chitosan chloride nanoparticles (TMC NPs) stimulates a serotype-specific response and whether this response exerts a potential in vitro breakthrough infection. The immune response to DENV-2 elicited by EDIII TMC NP-immunized mice was monitored. We demonstrated that immunization with EDIII TMC NPs resulted in a high level of anti-EDIII antibody production. These antibodies included IgG, IgG1, and IgG2a subtypes. Importantly, antibodies from the immunized mice exerted efficient neutralizing activity with undetectable antibody dependent enhancement (ADE) activity. We also found that EDIII TMC NPs activated functional EDIII-specific CD4+ and CD8+ T cell responses. In conclusion, EDIII TMC NPs stimulated humoral immunity with a strong neutralizing antibody response, as well as a cellular immune response against DENV-2.
Collapse
Affiliation(s)
- Mathurin Seesen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Salaya, Nakornpatom 73170, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
26
|
Castro-Jiménez TK, Gómez-Legorreta LC, López-Campa LA, Martínez-Torres V, Alvarado-Silva M, Posadas-Mondragón A, Díaz-Lima N, Angulo-Mendez HA, Mejía-Domínguez NR, Vaca-Paniagua F, Ávila-Moreno F, García-Cordero J, Cedillo-Barrón L, Aguilar-Ruíz SR, Bustos-Arriaga J. Variability in Susceptibility to Type I Interferon Response and Subgenomic RNA Accumulation Between Clinical Isolates of Dengue and Zika Virus From Oaxaca Mexico Correlate With Replication Efficiency in Human Cells and Disease Severity. Front Cell Infect Microbiol 2022; 12:890750. [PMID: 35800385 PMCID: PMC9254156 DOI: 10.3389/fcimb.2022.890750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue and Zika viruses cocirculate annually in endemic areas of Mexico, causing outbreaks of different magnitude and severity every year, suggesting a continuous selection of Flavivirus variants with variable phenotypes of transmissibility and virulence. To evaluate if Flavivirus variants with different phenotypes cocirculate during outbreaks, we isolated dengue and Zika viruses from blood samples of febrile patients from Oaxaca City during the 2016 and 2019 epidemic years. We compared their replication kinetics in human cells, susceptibility to type I interferon antiviral response, and the accumulation of subgenomic RNA on infected cells. We observed correlations between type I interferon susceptibility and subgenomic RNA accumulation, with high hematocrit percentage and thrombocytopenia. Our results suggest that Flaviviruses that cocirculate in Oaxaca, Mexico, have variable sensitivity to the antiviral activity of type I interferons, and this phenotypic trait correlates with the severity of the disease.
Collapse
Affiliation(s)
- Tannya Karen Castro-Jiménez
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Laura Cristina Gómez-Legorreta
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Laura Alejandra López-Campa
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Valeria Martínez-Torres
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Marcos Alvarado-Silva
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Araceli Posadas-Mondragón
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | | | | | - Nancy R. Mejía-Domínguez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Federico Ávila-Moreno
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Sergio Roberto Aguilar-Ruíz
- Departamento de Biomedicina Experimental, Facultad de Medicina y Cirugía de la Universidad Autónoma ‘Benito Juárez’ de Oaxaca, Oaxaca, Mexico
| | - José Bustos-Arriaga
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- *Correspondence: José Bustos-Arriaga,
| |
Collapse
|
27
|
Wong JM, Adams LE, Durbin AP, Muñoz-Jordán JL, Poehling KA, Sánchez-González LM, Volkman HR, Paz-Bailey G. Dengue: A Growing Problem With New Interventions. Pediatrics 2022; 149:187012. [PMID: 35543085 DOI: 10.1542/peds.2021-055522] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Dengue is the disease caused by 1 of 4 distinct, but closely related dengue viruses (DENV-1-4) that are transmitted by Aedes spp. mosquito vectors. It is the most common arboviral disease worldwide, with the greatest burden in tropical and sub-tropical regions. In the absence of effective prevention and control measures, dengue is projected to increase in both disease burden and geographic range. Given its increasing importance as an etiology of fever in the returning traveler or the possibility of local transmission in regions in the United States with competent vectors, as well as the risk for large outbreaks in endemic US territories and associated states, clinicians should understand its clinical presentation and be familiar with appropriate testing, triage, and management of patients with dengue. Control and prevention efforts reached a milestone in June 2021 when the Advisory Committee on Immunization Practices (ACIP) recommended Dengvaxia for routine use in children aged 9 to 16 years living in endemic areas with laboratory confirmation of previous dengue virus infection. Dengvaxia is the first vaccine against dengue to be recommended for use in the United States and one of the first to require laboratory testing of potential recipients to be eligible for vaccination. In this review, we outline dengue pathogenesis, epidemiology, and key clinical features for front-line clinicians evaluating patients presenting with dengue. We also provide a summary of Dengvaxia efficacy, safety, and considerations for use as well as an overview of other potential new tools to control and prevent the growing threat of dengue .
Collapse
Affiliation(s)
- Joshua M Wong
- Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, Georgia.,Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Laura E Adams
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Anna P Durbin
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jorge L Muñoz-Jordán
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | | | - Liliana M Sánchez-González
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Hannah R Volkman
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Gabriela Paz-Bailey
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| |
Collapse
|
28
|
Sankaradoss A, Jagtap S, Nazir J, Moula SE, Modak A, Fialho J, Iyer M, Shastri JS, Dias M, Gadepalli R, Aggarwal A, Vedpathak M, Agrawal S, Pandit A, Nisheetha A, Kumar A, Bordoloi M, Shafi M, Shelar B, Balachandra SS, Damodar T, Masika MM, Mwaura P, Anzala O, Muthumani K, Sowdhamini R, Medigeshi GR, Roy R, Pattabiraman C, Krishna S, Sreekumar E. Immune profile and responses of a novel dengue DNA vaccine encoding an EDIII-NS1 consensus design based on Indo-African sequences. Mol Ther 2022; 30:2058-2077. [PMID: 34999210 PMCID: PMC8736276 DOI: 10.1016/j.ymthe.2022.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 12/30/2022] Open
Abstract
The ongoing COVID-19 pandemic highlights the need to tackle viral variants, expand the number of antigens, and assess diverse delivery systems for vaccines against emerging viruses. In the present study, a DNA vaccine candidate was generated by combining in tandem envelope protein domain III (EDIII) of dengue virus serotypes 1-4 and a dengue virus (DENV)-2 non-structural protein 1 (NS1) protein-coding region. Each domain was designed as a serotype-specific consensus coding sequence derived from different genotypes based on the whole genome sequencing of clinical isolates in India and complemented with data from Africa. This sequence was further optimized for protein expression. In silico structural analysis of the EDIII consensus sequence revealed that epitopes are structurally conserved and immunogenic. The vaccination of mice with this construct induced pan-serotype neutralizing antibodies and antigen-specific T cell responses. Assaying intracellular interferon (IFN)-γ staining, immunoglobulin IgG2(a/c)/IgG1 ratios, and immune gene profiling suggests a strong Th1-dominant immune response. Finally, the passive transfer of immune sera protected AG129 mice challenged with a virulent, non-mouse-adapted DENV-2 strain. Our findings collectively suggest an alternative strategy for dengue vaccine design by offering a novel vaccine candidate with a possible broad-spectrum protection and a successful clinical translation either as a stand alone or in a mix and match strategy.
Collapse
Affiliation(s)
- Arun Sankaradoss
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
| | - Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Junaid Nazir
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Shefta E Moula
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Ayan Modak
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala 695014, India
| | - Joshuah Fialho
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Meenakshi Iyer
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Jayanthi S Shastri
- Department of Microbiology, T.N.Medical College & B.y.L.Nair Hospital, Mumbai 400008, India
| | - Mary Dias
- Division of Infectious Disease, St. John's Medical College and Hospital, Bangalore 560034, India
| | - Ravisekhar Gadepalli
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Alisha Aggarwal
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Manoj Vedpathak
- Department of Microbiology, T.N.Medical College & B.y.L.Nair Hospital, Mumbai 400008, India
| | - Sachee Agrawal
- Department of Microbiology, T.N.Medical College & B.y.L.Nair Hospital, Mumbai 400008, India
| | - Awadhesh Pandit
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Amul Nisheetha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Anuj Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Mahasweta Bordoloi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Mohamed Shafi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Bhagyashree Shelar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Swathi S Balachandra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Tina Damodar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Moses Muia Masika
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi 19676-00202, Kenya
| | - Patrick Mwaura
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi 19676-00202, Kenya
| | - Omu Anzala
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi 19676-00202, Kenya
| | - Kar Muthumani
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | | | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India; Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Chitra Pattabiraman
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Sudhir Krishna
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India; School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Ponda 404401, India
| | - Easwaran Sreekumar
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala 695014, India.
| |
Collapse
|
29
|
Huang AT, Salje H, Escoto AC, Chowdhury N, Chávez C, Garcia-Carreras B, Rutvisuttinunt W, Maljkovic Berry I, Gromowski GD, Wang L, Klungthong C, Thaisomboonsuk B, Nisalak A, Trimmer-Smith LM, Rodriguez-Barraquer I, Ellison DW, Jones AR, Fernandez S, Thomas SJ, Smith DJ, Jarman R, Whitehead SS, Cummings DAT, Katzelnick LC. Beneath the surface: Amino acid variation underlying two decades of dengue virus antigenic dynamics in Bangkok, Thailand. PLoS Pathog 2022; 18:e1010500. [PMID: 35500035 PMCID: PMC9098070 DOI: 10.1371/journal.ppat.1010500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/12/2022] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Neutralizing antibodies are important correlates of protection against dengue. Yet, determinants of variation in neutralization across strains within the four dengue virus serotypes (DENV1-4) is imperfectly understood. Studies focus on structural DENV proteins, especially the envelope (E), the primary target of anti-DENV antibodies. Although changes in immune recognition (antigenicity) are often attributed to variation in epitope residues, viral processes influencing conformation and epitope accessibility also affect neutralizability, suggesting possible modulating roles of nonstructural proteins. We estimated effects of residue changes in all 10 DENV proteins on antigenic distances between 348 DENV collected from individuals living in Bangkok, Thailand (1994-2014). Antigenic distances were derived from response of each virus to a panel of twenty non-human primate antisera. Across 100 estimations, excluding 10% of virus pairs each time, 77 of 295 positions with residue variability in E consistently conferred antigenic effects; 52 were within ±3 sites of known binding sites of neutralizing human monoclonal antibodies, exceeding expectations from random assignments of effects to sites (p = 0.037). Effects were also identified for 16 sites on the stem/anchor of E which were only recently shown to become exposed under physiological conditions. For all proteins, except nonstructural protein 2A (NS2A), root-mean-squared-error (RMSE) in predicting distances between pairs held out in each estimation did not outperform sequences of equal length derived from all proteins or E, suggesting that antigenic signals present were likely through linkage with E. Adjusted for E, we identified 62/219 sites embedding the excess signals in NS2A. Concatenating these sites to E additionally explained 3.4% to 4.0% of observed variance in antigenic distances compared to E alone (50.5% to 50.8%); RMSE outperformed concatenating E with sites from any protein of the virus (ΔRMSE, 95%IQR: 0.01, 0.05). Our results support examining antigenic determinants beyond the DENV surface. Dengue viruses, even of the same serotype, are differentially recognized by preexisting antibodies of individuals. With antibody levels being an important indicator of infection risk and pathogenicity, understanding mechanisms underlying these differences are crucial for vaccine design and development. Investigations have primarily targeted surface regions of the envelope protein (E) where virus-antibody interactions were thought to primarily occur. However, the roles of non-surface regions of the E protein as well as nonstructural proteins has been limited. We looked at the entire virus to identify associations between specific changes in the protein sequence and differences in how viruses were recognized by antibodies. In addition to recovering known determinants on the surface, we found signals in other areas on the structural building blocks of the virus. We also identified additional signals on specific areas of a protein that does not form structures of the virus but orchestrate virus formation. Our results point towards broadening the frame of investigation to gain a more comprehensive understanding of mechanisms giving rise to antibody recognition of dengue viruses, and may aid the design and evaluation of vaccines and/or assays to characterize dengue immunity.
Collapse
Affiliation(s)
- Angkana T. Huang
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Henrik Salje
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ana Coello Escoto
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nayeem Chowdhury
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Christian Chávez
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Bernardo Garcia-Carreras
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Wiriya Rutvisuttinunt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Gregory D. Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Lin Wang
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Chonticha Klungthong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Butsaya Thaisomboonsuk
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Ananda Nisalak
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Luke M. Trimmer-Smith
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Isabel Rodriguez-Barraquer
- School of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Damon W. Ellison
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Anthony R. Jones
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Stephen J. Thomas
- State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Derek J. Smith
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Richard Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Stephen S. Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Derek A. T. Cummings
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (DATC); (LCK)
| | - Leah C. Katzelnick
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (DATC); (LCK)
| |
Collapse
|
30
|
Park J, Kim J, Jang YS. Current status and perspectives on vaccine development against dengue virus infection. J Microbiol 2022; 60:247-254. [PMID: 35157223 PMCID: PMC8853353 DOI: 10.1007/s12275-022-1625-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 10/31/2022]
Abstract
Dengue virus (DENV) consists of four serotypes in the family Flaviviridae and is a causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. DENV is transmitted by mosquitoes, Aedes aegypti and A. albopictus, and is mainly observed in areas where vector mosquitoes live. The number of dengue cases reported by the World Health Organization increased more than 8-fold over the last two decades from 505,430 in 2000 to over 2.4 million in 2010 to 5.2 million in 2019. Although vaccine is the most effective method against DENV, only one commercialized vaccine exists, and it cannot be administered to children under 9 years of age. Currently, many researchers are working to resolve the various problems hindering the development of effective dengue vaccines; understanding of the viral antigen configuration would provide insight into the development of effective vaccines against DENV infection. In this review, the current status and perspectives on effective vaccine development for DENV are examined. In addition, a plausible direction for effective vaccine development against DENV is suggested.
Collapse
Affiliation(s)
- Jisang Park
- Department of Bioactive Material Sciences and the Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.,Innovative Research and Education Center for Integrated Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and the Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Innovative Research and Education Center for Integrated Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
31
|
Sharp TM, Anderson KB, Katzelnick LC, Clapham H, Johansson MA, Morrison AC, Harris E, Paz-Bailey G, Waterman SH. Knowledge gaps in the epidemiology of severe dengue impede vaccine evaluation. THE LANCET. INFECTIOUS DISEASES 2022; 22:e42-e51. [PMID: 34265259 PMCID: PMC11379041 DOI: 10.1016/s1473-3099(20)30871-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 10/20/2022]
Abstract
The most severe consequences of dengue virus infection include shock, haemorrhage, and major organ failure; however, the frequency of these manifestations varies, and the relative contribution of pre-existing anti-dengue virus antibodies, virus characteristics, and host factors (including age and comorbidities) are not well understood. Reliable characterisation of the epidemiology of severe dengue first depends on the use of consistent definitions of disease severity. As vaccine trials have shown, severe dengue is a crucial interventional endpoint, yet the infrequency of its occurrence necessitates the inclusion of thousands of study participants to appropriately compare its frequency among participants who have and have not been vaccinated. Hospital admission is frequently used as a proxy for severe dengue; however, lack of specificity and variability in clinical practices limit the reliability of this approach. Although previous infection with a dengue virus is the best characterised risk factor for developing severe dengue, the influence of the timing between dengue virus infections and the sequence of dengue virus infections on disease severity is only beginning to be elucidated. To improve our understanding of the diverse factors that shape the clinical spectrum of disease resulting from dengue virus infection, prospective, community-based and clinic-based immunological, virological, genetic, and clinical studies across a range of ages and geographical regions are needed.
Collapse
Affiliation(s)
- Tyler M Sharp
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, PR, USA; United States Public Health Service, Silver Springs, MD, USA.
| | - Kathryn B Anderson
- Institute for Global Health and Translational Sciences and Department of Medicine, and Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Virology, Armed Forces Research Institute for Medical Sciences, Bangkok, Thailand
| | - Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Department of Biology, University of Florida, Gainesville, FL, USA
| | - Hannah Clapham
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michael A Johansson
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, PR, USA
| | - Amy C Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Gabriela Paz-Bailey
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, PR, USA
| | - Stephen H Waterman
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, PR, USA; United States Public Health Service, Silver Springs, MD, USA
| |
Collapse
|
32
|
Haslwanter D, Lasso G, Wec AZ, Furtado ND, Raphael LMS, Tse AL, Sun Y, Stransky S, Pedreño-Lopez N, Correia CA, Bornholdt ZA, Sakharkar M, Avelino-Silva VI, Moyer CL, Watkins DI, Kallas EG, Sidoli S, Walker LM, Bonaldo MC, Chandran K. Genotype-specific features reduce the susceptibility of South American yellow fever virus strains to vaccine-induced antibodies. Cell Host Microbe 2022; 30:248-259.e6. [PMID: 34998466 PMCID: PMC10067022 DOI: 10.1016/j.chom.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/01/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
The resurgence of yellow fever in South America has prompted vaccination against the etiologic agent, yellow fever virus (YFV). Current vaccines are based on a live-attenuated YF-17D virus derived from a virulent African isolate. The capacity of these vaccines to induce neutralizing antibodies against the vaccine strain is used as a surrogate for protection. However, the sensitivity of genetically distinct South American strains to vaccine-induced antibodies is unknown. We show that antiviral potency of the polyclonal antibody response in vaccinees is attenuated against an emergent Brazilian strain. This reduction was attributable to amino acid changes at two sites in central domain II of the glycoprotein E, including multiple changes at the domain I-domain II hinge, which are unique to and shared among most South American YFV strains. Our findings call for a reevaluation of current approaches to YFV immunological surveillance in South America and suggest approaches for updating vaccines.
Collapse
Affiliation(s)
- Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Gorka Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | | | - Nathália Dias Furtado
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-360 Rio de Janeiro, Brazil
| | - Lidiane Menezes Souza Raphael
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-360 Rio de Janeiro, Brazil
| | - Alexandra L Tse
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Yan Sun
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Núria Pedreño-Lopez
- Department of Pathology, The George Washington University, Washington, DC 20037, USA
| | - Carolina Argondizo Correia
- Laboratório de Imunologia Clínica e Alergia, Faculdade de Medicina, Universidade de São Paulo, 01246-903 São Paulo, Brazil
| | | | | | - Vivian I Avelino-Silva
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, 01246-903 São Paulo, Brazil
| | | | - David I Watkins
- Department of Pathology, The George Washington University, Washington, DC 20037, USA
| | - Esper G Kallas
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, 01246-903 São Paulo, Brazil
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Laura M Walker
- Adimab, LLC, Lebanon, NH 03766, USA; Adagio Therapeutics Inc., Waltham, MA 02451, USA
| | - Myrna C Bonaldo
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-360 Rio de Janeiro, Brazil.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA.
| |
Collapse
|
33
|
Li X, Dong Z, Liu Y, Song W, Pu J, Jiang G, Wu Y, Liu L, Huang X. A Novel Role for the Regulatory Nod-Like Receptor NLRP12 in Anti-Dengue Virus Response. Front Immunol 2021; 12:744880. [PMID: 34956178 PMCID: PMC8695442 DOI: 10.3389/fimmu.2021.744880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
Dengue Virus (DENV) infection can cause severe illness such as highly fatality dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Innate immune activation by Nod-like receptors (NLRs) is a critical part of host defense against viral infection. Here, we revealed a key mechanism of NLRP12-mediated regulation in DENV infection. Firstly, NLRP12 expression was inhibited in human macrophage following DENV or other flaviviruses (JEV, YFV, ZIKV) infection. Positive regulatory domain 1 (PRDM1) was induced by DENV or poly(I:C) and suppressed NLRP12 expression, which was dependent on TBK-1/IRF3 and NF-κB signaling pathways. Moreover, NLRP12 inhibited DENV and other flaviviruses (JEV, YFV, ZIKV) replication, which relied on the well-conserved nucleotide binding structures of its NACHT domain. Furthermore, NLRP12 could interact with heat shock protein 90 (HSP90) dependent on its Walker A and Walker B sites. In addition, NLRP12 enhanced the production of type I IFNs (IFN-α/β) and interferon-stimulated genes (ISGs), including IFITM3, TRAIL and Viperin. Inhibition of HSP90 with 17-DMAG impaired the upregulation of type I IFNs and ISGs induced by NLRP12. Taken together, we demonstrated a novel mechanism that NLRP12 exerted anti-viral properties in DENV and other flaviviruses (JEV, YFV, ZIKV) infection, which brings up a potential target for the treatment of DENV infection.
Collapse
Affiliation(s)
- Xingyu Li
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhuo Dong
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yan Liu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Weifeng Song
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jieying Pu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Lei Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
34
|
Zhang L, Zhao L, Zhang Z, Hong W, Wang J, Qiu S, Yang H, Gan M, Sun J, Zhao J, Wang Y, Zhao J, Zhang F. Genetic and pathogenicity diversity of dengue virus type 2 strains circulating in Guangdong, China. BIOSAFETY AND HEALTH 2021. [DOI: 10.1016/j.bsheal.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
35
|
Katzelnick LC, Escoto AC, Huang AT, Garcia-Carreras B, Chowdhury N, Berry IM, Chavez C, Buchy P, Duong V, Dussart P, Gromowski G, Macareo L, Thaisomboonsuk B, Fernandez S, Smith DJ, Jarman R, Whitehead SS, Salje H, Cummings DA. Antigenic evolution of dengue viruses over 20 years. Science 2021; 374:999-1004. [PMID: 34793238 PMCID: PMC8693836 DOI: 10.1126/science.abk0058] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Infection with one of dengue viruses 1 to 4 (DENV1-4) induces protective antibodies against homotypic infection. However, a notable feature of dengue viruses is the ability to use preexisting heterotypic antibodies to infect Fcγ receptor–bearing immune cells, leading to higher viral load and immunopathological events that augment disease. We tracked the antigenic dynamics of each DENV serotype by using 1944 sequenced isolates from Bangkok, Thailand, between 1994 and 2014 (348 strains), in comparison with regional and global DENV antigenic diversity (64 strains). Over the course of 20 years, the Thailand DENV serotypes gradually evolved away from one another. However, for brief periods, the serotypes increased in similarity, with corresponding changes in epidemic magnitude. Antigenic evolution within a genotype involved a trade-off between two types of antigenic change (within-serotype and between-serotype), whereas genotype replacement resulted in antigenic change away from all serotypes. These findings provide insights into theorized dynamics in antigenic evolution.
Collapse
Affiliation(s)
- Leah C. Katzelnick
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Ana Coello Escoto
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Angkana T. Huang
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Bernardo Garcia-Carreras
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
| | - Nayeem Chowdhury
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Chris Chavez
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
| | - Philippe Buchy
- GlaxoSmithKline (GSK) Vaccines, 637421 Singapore, Singapore
| | - Veasna Duong
- Institut Pasteur in Cambodia, Réseau International des Instituts Pasteur, Phnom Penh 12201, Cambodia
| | - Philippe Dussart
- Institut Pasteur in Cambodia, Réseau International des Instituts Pasteur, Phnom Penh 12201, Cambodia
| | - Gregory Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Louis Macareo
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Butsaya Thaisomboonsuk
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Derek J. Smith
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Richard Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Stephen S. Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Henrik Salje
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Derek A.T. Cummings
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
| |
Collapse
|
36
|
Chen RE, Smith BK, Errico JM, Gordon DN, Winkler ES, VanBlargan LA, Desai C, Handley SA, Dowd KA, Amaro-Carambot E, Cardosa MJ, Sariol CA, Kallas EG, Sékaly RP, Vasilakis N, Fremont DH, Whitehead SS, Pierson TC, Diamond MS. Implications of a highly divergent dengue virus strain for cross-neutralization, protection, and vaccine immunity. Cell Host Microbe 2021; 29:1634-1648.e5. [PMID: 34610295 PMCID: PMC8595868 DOI: 10.1016/j.chom.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 01/29/2023]
Abstract
Although divergent dengue viruses (DENVs) have been isolated in insects, nonhuman primates, and humans, their relationships to the four canonical serotypes (DENV 1-4) are poorly understood. One virus isolated from a dengue patient, DKE-121, falls between genotype and serotype levels of sequence divergence to DENV-4. To examine its antigenic relationship to DENV-4, we assessed serum neutralizing and protective activity. Whereas DENV-4-immune mouse sera neutralize DKE-121 infection, DKE-121-immune sera inhibit DENV-4 less efficiently. Passive transfer of DENV-4 or DKE-121-immune sera protects mice against homologous, but not heterologous, DENV-4 or DKE-121 challenge. Antigenic cartography suggests that DENV-4 and DKE-121 are related but antigenically distinct. However, DENV-4 vaccination confers protection against DKE-121 in nonhuman primates, and serum from humans immunized with a tetravalent vaccine neutralize DENV-4 and DKE-121 infection equivalently. As divergent DENV strains, such as DKE-121, may meet criteria for serotype distinction, monitoring their capacity to impact dengue disease and vaccine efficacy appears warranted.
Collapse
Affiliation(s)
- Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Brittany K Smith
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - John M Errico
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - David N Gordon
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Chandni Desai
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Scott A Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Kimberly A Dowd
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Emerito Amaro-Carambot
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - M Jane Cardosa
- Institute of Health and Community Medicine, Universiti Sarawak Malaysia (UNIMAS), Kota Samarahan, Sarawak 94300, Malaysia; Integrated Research Associates, San Rafael, CA 94903, USA
| | - Carlos A Sariol
- Unit of Comparative Medicine, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936-5067, USA
| | - Esper G Kallas
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Rafick-Pierre Sékaly
- Department of Microbiology and Immunology, Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; The Andrew M. Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Stephen S Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; The Andrew M. Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110-1010, USA.
| |
Collapse
|
37
|
Alagarasu K, Patil JA, Kakade MB, More AM, Yogesh B, Newase P, Jadhav SM, Parashar D, Kaur H, Gupta N, Vijay N, Narayan J, Shah PS. Serotype and genotype diversity of dengue viruses circulating in India: a multi-centre retrospective study involving the Virus Research Diagnostic Laboratory Network in 2018. Int J Infect Dis 2021; 111:242-252. [PMID: 34428547 DOI: 10.1016/j.ijid.2021.08.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES A retrospective study was undertaken to investigate the circulating dengue virus (DENV) serotypes and genotypes in India in 2018. METHODS In total, 4963 samples referred to virus research diagnostic laboratories (n=21), the Indian Council of Medical Research-National Institute of Virology (ICMR-NIV) and ICMR-NIV field units (n=2) for diagnosis of dengue in 2018 were tested using a real-time reverse transcription polymerase chain reaction assay for the presence of DENV serotypes. Representative samples were sequenced for the envelope (E) gene. RESULTS Regional diversity was observed with regard to the dominant circulating serotypes. DENV-2 was found to be the most common serotype in many states. Thrombocytopenia, petechiae and malaise were associated with DENV-2 infection. Phylogenetic analyses of DENV E gene sequences revealed the circulation of genotypes I and V of DENV-1, two lineages of DENV-2 genotype IV, DENV-3 genotype III and DENV-4 genotype I. CONCLUSIONS This study found regional differences in the prevalence of circulating DENV serotypes in India, and provides baseline data for continuous molecular surveillance. Molecular surveillance may have implications for predicting large-scale outbreaks of dengue if regional shifts in the predominantly circulating serotypes and genotypes are detected during the early phase of the dengue season.
Collapse
Affiliation(s)
- K Alagarasu
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India.
| | - J A Patil
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - M B Kakade
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - A M More
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - B Yogesh
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - P Newase
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - S M Jadhav
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - D Parashar
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - H Kaur
- Virology Unit, Indian Council of Medical Research, New Delhi, India
| | - N Gupta
- Virology Unit, Indian Council of Medical Research, New Delhi, India
| | - N Vijay
- Virology Unit, Indian Council of Medical Research, New Delhi, India
| | - J Narayan
- Virology Unit, Indian Council of Medical Research, New Delhi, India
| | - P S Shah
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | | |
Collapse
|
38
|
Huang Y, Williamson BD, Moodie Z, Carpp LN, Chambonneau L, DiazGranados CA, Gilbert PB. Analysis of Neutralizing Antibodies as a Correlate of Instantaneous Risk of Hospitalized Dengue in Placebo Recipients of Dengue Vaccine Efficacy Trials. J Infect Dis 2021; 225:332-340. [PMID: 34174082 DOI: 10.1093/infdis/jiab342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In the CYD14 (NCT01373281) and CYD15 (NCT01374516) dengue vaccine efficacy trials, Month 13 neutralizing antibody (nAb) titers correlated inversely with risk of symptomatic, virologically confirmed dengue (VCD) between Month 13 (one month post-final-dose) and Month 25. We assessed nAb titer as a correlate of instantaneous risk of hospitalized VCD (HVCD), for which participants were continually surveilled for 72 months. METHODS Using longitudinal nAb titers from the per-protocol immunogenicity subsets, we estimated hazard ratios (HRs) of HVCD by current nAb titer value for three correlate/endpoint pairs: average titer across all four serotypes/HVCD of any serotype (HVCD-Any), serotype-specific titer/homologous HVCD, and serotype-specific titer/heterologous HVCD. RESULTS Baseline-seropositive placebo recipients with higher average titer had lower instantaneous risk of HVCD-Any in 2-16-year-olds and in 9-16-year-olds (HR 0.26 or 0.15 per 10-fold increase in average titer by two methods, 95% CIs 0.14 to 0.45 and 0.07 to 0.34, respectively) pooled across both trials. Results were similar for homologous HVCD. There was evidence suggesting increased HVCD-Any risk in participants with low average titer (1:10 to 1:100) compared to seronegative participants (HR 1.85, 95% CI 0.93 to 3.68). CONCLUSIONS Natural infection-induced nAbs were inversely associated with hospitalized dengue, upon exceeding a relatively low threshold.
Collapse
Affiliation(s)
- Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America.,Department of Biostatistics, University of Washington, Seattle, 98109, United States of America
| | - Brian D Williamson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | | | - Carlos A DiazGranados
- Clinical Sciences, Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America.,Department of Biostatistics, University of Washington, Seattle, 98109, United States of America
| |
Collapse
|
39
|
Adelino TÉR, Giovanetti M, Fonseca V, Xavier J, de Abreu ÁS, do Nascimento VA, Demarchi LHF, Oliveira MAA, da Silva VL, de Mello ALES, Cunha GM, Santos RH, de Oliveira EC, Júnior JAC, de Melo Iani FC, de Filippis AMB, de Abreu AL, de Jesus R, de Albuquerque CFC, Rico JM, do Carmo Said RF, Silva JA, de Moura NFO, Leite P, Frutuoso LCV, Haddad SK, Martínez A, Barreto FK, Vazquez CC, da Cunha RV, Araújo ELL, de Oliveira Tosta SF, de Araújo Fabri A, Chalhoub FLL, da Silva Lemos P, de Bruycker-Nogueira F, de Castro Lichs GG, Zardin MCSU, Segovia FMC, Gonçalves CCM, Grillo ZDCF, Slavov SN, Pereira LA, Mendonça AF, Pereira FM, de Magalhães JJF, Dos Santos Júnior ADCM, de Lima MM, Nogueira RMR, Góes-Neto A, de Carvalho Azevedo VA, Ramalho DB, Oliveira WK, Macario EM, de Medeiros AC, Pimentel V, Holmes EC, de Oliveira T, Lourenço J, Alcantara LCJ. Field and classroom initiatives for portable sequence-based monitoring of dengue virus in Brazil. Nat Commun 2021; 12:2296. [PMID: 33863880 PMCID: PMC8052316 DOI: 10.1038/s41467-021-22607-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Brazil experienced a large dengue virus (DENV) epidemic in 2019, highlighting a continuous struggle with effective control and public health preparedness. Using Oxford Nanopore sequencing, we led field and classroom initiatives for the monitoring of DENV in Brazil, generating 227 novel genome sequences of DENV1-2 from 85 municipalities (2015-2019). This equated to an over 50% increase in the number of DENV genomes from Brazil available in public databases. Using both phylogenetic and epidemiological models we retrospectively reconstructed the recent transmission history of DENV1-2. Phylogenetic analysis revealed complex patterns of transmission, with both lineage co-circulation and replacement. We identified two lineages within the DENV2 BR-4 clade, for which we estimated the effective reproduction number and pattern of seasonality. Overall, the surveillance outputs and training initiative described here serve as a proof-of-concept for the utility of real-time portable sequencing for research and local capacity building in the genomic surveillance of emerging viruses.
Collapse
Affiliation(s)
- Talita Émile Ribeiro Adelino
- Laboratório Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Marta Giovanetti
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Vagner Fonseca
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joilson Xavier
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Álvaro Salgado de Abreu
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valdinete Alves do Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | | | | | | | | | | | - Roselene Hans Santos
- Laboratório Central de Saúde Pública Dr. Milton Bezerra Sobral, Recife, Pernambuco, Brazil
| | | | | | - Felipe Campos de Melo Iani
- Laboratório Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Maria Bispo de Filippis
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz de Abreu
- Coordenação Geral dos Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Ronaldo de Jesus
- Coordenação Geral dos Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | | | - Jairo Mendez Rico
- Organização Pan-Americana da Saúde/Organização Mundial da Saúde, Brasília, Distrito Federal, Brazil
| | | | - Joscélio Aguiar Silva
- Coordenação Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Noely Fabiana Oliveira de Moura
- Coordenação Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Priscila Leite
- Coordenação Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Lívia Carla Vinhal Frutuoso
- Coordenação Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | | | | | | | | | | | - Emerson Luiz Lima Araújo
- Coordenação Geral dos Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | | | - Allison de Araújo Fabri
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia Löwen Levy Chalhoub
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | - Luiz Augusto Pereira
- Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros, Goiânia, Goiás, Brazil
| | - Ana Flávia Mendonça
- Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros, Goiânia, Goiás, Brazil
| | | | | | | | | | - Rita Maria Ribeiro Nogueira
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aristóteles Góes-Neto
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Dario Brock Ramalho
- Secretaria de Saúde do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Victor Pimentel
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - José Lourenço
- Department of Zoology, Peter Medawar Building, University of Oxford, Oxford, UK.
| | - Luiz Carlos Junior Alcantara
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
40
|
Dengue Vaccines: The Promise and Pitfalls of Antibody-Mediated Protection. Cell Host Microbe 2021; 29:13-22. [PMID: 33444553 DOI: 10.1016/j.chom.2020.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/12/2020] [Accepted: 12/10/2020] [Indexed: 01/16/2023]
Abstract
More than 390 million human dengue virus (DENV) infections occur each year, worldwide. Dengvaxia, a live-virus tetravalent vaccine from Sanofi Pasteur, was recently approved for human clinical use, although vaccine performance against the four DENV serotypes is highly variable. Other dengue vaccines in advanced clinical testing also demonstrate variability in efficacy. In this review, we outline the benefits and challenges of developing a safe, effective, and balanced DENV vaccine that can provide uniform protection against all four serotypes. Even though T cell biology plays an important role in establishing protective immunity, this review focuses on B cell responses. We discuss the leading dengue vaccine candidates and review the specificity of antibody responses and the known immune correlates of protection against DENV infection. A better understanding of immune correlates of protection against DENV infection will inform the development of a vaccine that can provide long-term, uniform protection.
Collapse
|