1
|
Yin F, Li J, Wang Y, Yang Z. Biodegradable chelating agents for enhancing phytoremediation: Mechanisms, market feasibility, and future studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116113. [PMID: 38364761 DOI: 10.1016/j.ecoenv.2024.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Heavy metals in soil significantly threaten human health, and their remediation is essential. Among the various techniques used, phytoremediation is one of the safest, most innovative, and effective. In recent years, the use of biodegradable chelators to assist plants in improving their remediation efficiency has gained popularity. These biodegradable chelators aid in the transformation of metal ions or metalloids, thereby facilitating their mobilization and uptake by plants. Developed countries are increasingly adopting biodegradable chelators for phytoremediation, with a growing emphasis on green manufacturing and technological innovation in the chelating agent market. Therefore, it is crucial to gain a comprehensive understanding of the mechanisms and market prospects of biodegradable chelators for phytoremediation. This review focuses on elucidating the uptake, translocation, and detoxification mechanisms of chelators in plants. In this study, we focused on the effects of biodegradable chelators on the growth and environmental development of plants treated with phytoremediation agents. Finally, the potential risks associated with biodegradable chelator-assisted phytoremediation are presented in terms of their availability and application prospects in the market. This study provides a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Fengwei Yin
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China
| | - Jianbin Li
- Jiaojiang Branch of Taizhou Municipal Ecology and Environment Bureau, Taizhou 318000, People's Republic of China
| | - Yilu Wang
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhongyi Yang
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China.
| |
Collapse
|
2
|
Sun C, Shen X, Zhang Y, Song T, Xu L, Xiao J. Molecular Defensive Mechanism of Echinacea purpurea (L.) Moench against PAH Contaminations. Int J Mol Sci 2023; 24:11020. [PMID: 37446196 DOI: 10.3390/ijms241311020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The understanding of the molecular defensive mechanism of Echinacea purpurea (L.) Moench against polycyclic aromatic hydrocarbon (PAH) contamination plays a key role in the further improvement of phytoremediation efficiency. Here, the responses of E. purpurea to a defined mixture of phenanthrene (PHE) and pyrene (PYR) at different concentrations or a natural mixture from an oilfield site with a history of several decades were studied based on transcriptomics sequencing and widely targeted metabolomics approaches. The results showed that upon 60-day PAH exposure, the growth of E. purpurea in terms of biomass (p < 0.01) and leaf area per plant (p < 0.05) was negatively correlated with total PAH concentration and significantly reduced at high PAH level. The majority of genes were switched on and metabolites were accumulated after exposure to PHE + PYR, but a larger set of genes (3964) or metabolites (208) showed a response to a natural PAH mixture in E. purpurea. The expression of genes involved in the pathways, such as chlorophyll cycle and degradation, circadian rhythm, jasmonic acid signaling, and starch and sucrose metabolism, was remarkably regulated, enhancing the ability of E. purpurea to adapt to PAH exposure. Tightly associated with transcriptional regulation, metabolites mainly including sugars and secondary metabolites, especially those produced via the phenylpropanoid pathway, such as coumarins, flavonoids, and their derivatives, were increased to fortify the adaptation of E. purpurea to PAH contamination. These results suggest that E. purpurea has a positive defense mechanism against PAHs, which opens new avenues for the research of phytoremediation mechanism and improvement of phytoremediation efficiency via a mechanism-based strategy.
Collapse
Affiliation(s)
- Caixia Sun
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Xiangbo Shen
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yulan Zhang
- Liaoning Province Outstanding Innovation Team, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Tianshu Song
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Lingjing Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Junyao Xiao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| |
Collapse
|
3
|
Zhang Z, Zhang X, Peng X, Li Z, Chen H, Zhang X, Gong Y, Tan C, Li H. The simultaneous removal of co-contaminants pyrene and Cu (II) from aqueous solutions by Fe/Mn bimetallic functionalized mesoporous silica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71100-71112. [PMID: 35595898 DOI: 10.1007/s11356-022-20825-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the co-contamination of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) has attracted more and more attention, and finding efficient and coordinated removal method has been the hot focus. In this study, Fe/Mn-SBA15 bimetallic mesoporous silica adsorbent (Fe/Mn-SBA15) was prepared by hydrothermal method with the functional groups Fe and Mn simultaneously doped into the framework structure of SBA15. Fe/Mn-SBA15 was systematically characterized by XRD, TEM, and BET and used in removal of typical PAHs-pyrene and heavy metal-Cu (II) from aqueous solutions simultaneously. The single and binary adsorption behaviors were studied by kinetics, isotherm, pH, and ionic strength. The results showed that the functional groups of Fe and Mn were successfully loaded into the structure of SBA15 and the prepared adsorbent was still a typical mesoporous adsorbent. The adsorption of pyrene and Cu (II) onto Fe/Mn-SBA15 was fast and the adsorption equilibrium was achieved in 100 min. The Langmuir model fitted the adsorption isotherm better and the maximum adsorption capacities for pyrene and Cu (II) were 120 mg/g and 10.52 mg/g, respectively. The increase of ionic strength could enhance and decrease the adsorption capacity of pyrene and Cu (II), which may be attributed to salting-out effect and potassium competitive. With the increase of pH values, the negative charge on the surface of the adsorbent increased, resulting in the decrease and increase of adsorption capacity of pyrene and Cu (II) onto Fe/Mn-SBA15. In addition, Fe/Mn-SBA15 was found to have a synergistic effect on the adsorption of pyrene and Cu (II). This result is mainly due to the formation of hydration complex by pyrene-Cu (II) through cation-π interaction, which increases the adsorption capacity by occupying each other's adsorption sites of adsorbent. This study provides a new method for the synergistic removal of PAHs and HMs from aqueous solutions.
Collapse
Affiliation(s)
- Ziyang Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, People's Republic of China.
| | - Xiaoxian Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, People's Republic of China
| | - Xinyu Peng
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, People's Republic of China
| | - Zhifei Li
- Beijing General Municipal Engineering Design & Research Institute Co., Ltd, Beijing, 100088, People's Republic of China
| | - Hongrui Chen
- CRRC Environmental Science & Technology Cooperation, Beijing, 100067, People's Republic of China
| | - Xiaoran Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, People's Republic of China
| | - Yongwei Gong
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, People's Republic of China
| | - Chaohong Tan
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, People's Republic of China
| | - Haiyan Li
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, People's Republic of China
| |
Collapse
|
4
|
Gabriele I, Race M, Papirio S, Papetti P, Esposito G. Phytoremediation of a pyrene-contaminated soil by Cannabis sativa L. at different initial pyrene concentrations. CHEMOSPHERE 2022; 300:134578. [PMID: 35417760 DOI: 10.1016/j.chemosphere.2022.134578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
This study proposes the phytoremediation of a pyrene (PYR)-contaminated soil by Cannabis sativa L. The experimental campaign was conducted along a 60 days period using three different initial PYR concentrations (i.e., 50, 100 and 150 mg kg TS-1 of soil) in 300 mL volume pots under greenhouse conditions (18-25 °C and 45-55% humidity). After 60 days of hemp growth and flourishing, the highest PYR removal reached approximately 95% in planted soil, 35% higher than in the unplanted control. PYR accumulation was observed in both roots and aerial parts of the plant, with a higher PYR uptake at increasing initial PYR concentrations in soil. The initial PYR concentration affected the growth and, thus, the phytoremediation potential of C. sativa L., which was the result of different removal mechanisms. Overall, the lowest initial PYR concentration was the one that resulted in the highest PYR removal. The interaction between the plant roots and microorganisms in rhizosphere was likely associated with PYR removal in this study. The highest DHO activity of 66.26 μg INTF g-1 TS-1 was observed in the soil spiked with 50 mg PYR·kg TS-1.
Collapse
Affiliation(s)
- Ilaria Gabriele
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Patrizia Papetti
- Department of Economics and Law, Territorial and Products Analysis Laboratory, University of Cassino and Southern Lazio, Via S. Angelo, Folcara, 03043, Cassino, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
5
|
Wang X, Sun J, Liu R, Zheng T, Tang Y. Plant contribution to the remediation of PAH-contaminated soil of Dagang Oilfield by Fire Phoenix. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43126-43137. [PMID: 35091936 DOI: 10.1007/s11356-021-18230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Pot experiments were conducted to evaluate plant contribution during remediation of the polycyclic aromatic hydrocarbons (PAH)-contaminated soil of Dagang Oilfield by Fire Phoenix (a mixture of Festuca L.). The results showed that Fire Phoenix could grow in soil contaminated by high and low concentrations of PAHs. After being planted for 150 days, the total removal rate of six PAHs in the high and low PAH concentrations was 80.36% and 79.79%, significantly higher than the 58.79% and 53.29% of the unplanted control group, respectively. Thus, Fire Phoenix can effectively repair the soil contaminated by different concentrations of PAHs. In high concentrations of PAHs, the results indicated a positive linear relationship between PAH absorption in tissues of Fire Phoenix and the growth time in the early stage. In contrast, the contents of PAHs were just slightly increased in the late period of plant growth. The main factor for the dissipation of PAHs was plant-promoted biodegradation (99.04%-99.93%), suggesting a low contribution of PAH uptake and transformation (0.07%-0.96%). The results revealed that Fire Phoenix did not remove the PAHs in the soil by accumulation but promoted PAH dissipation in the soil by stimulating the microbial metabolism in the rhizosphere.
Collapse
Affiliation(s)
- Xiaomei Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110179, China
| | - Jianping Sun
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110179, China
| | - Rui Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
| | - Tingyu Zheng
- Zhongke Dingshi Environmental Engineering Co., Ltd, Beijing, 100028, China
| | - Yingnan Tang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
6
|
Gabriele I, Race M, Papirio S, Esposito G. Phytoremediation of pyrene-contaminated soils: A critical review of the key factors affecting the fate of pyrene. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112805. [PMID: 34051532 DOI: 10.1016/j.jenvman.2021.112805] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/15/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Soil contamination by pyrene has increased over the years due to human-related activities, urgently demanding for remediation approaches to ensure human and environment safety. Within this frame, phytoremediation has been successfully applied over the years due to its green and cost-effectiveness features. The scope of this review includes the main phytoremediation mechanisms correlated with the removal of pyrene from contaminated soils and sediments to highlight the impact of different parameters and the supplement of additives on the efficiency of the treatment. Soil organic matter (SOM), plant species, aging time, environmental parameters (pH, soil oxygenation, and temperature) and bioavailability are among the main parameters affecting pyrene removal through phytoremediation. Phytoextraction only accounts for a small part of the entire phytoremediation process, but the addition of surfactants and chelating agents in planted soils could increase pyrene accumulation in plant tissues by 20% as a consequence of the increased pyrene bioavailability. Rhizodegradation is the main phytoremediation mechanism involved due to the activity of bacteria capable of degrading pyrene in the root area. Inoculated-planted soil treatments have the potential to decrease pyrene accumulation in shoots and roots by approximately 30 and 40%, respectively, further stimulating the proliferation of pyrene-degrading bacteria in the rhizosphere. Plant-fungi symbiotic association results in an enhanced accumulation of pyrene in shoots and roots of plants as well as a higher biodegradation. Finally, pyrene removal from soil can be improved in the presence of amendments, such as natural non-ionic surfactants, biochar, and bacterial mixtures.
Collapse
Affiliation(s)
- Ilaria Gabriele
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
7
|
Hoang SA, Sarkar B, Seshadri B, Lamb D, Wijesekara H, Vithanage M, Liyanage C, Kolivabandara PA, Rinklebe J, Lam SS, Vinu A, Wang H, Kirkham MB, Bolan NS. Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125702. [PMID: 33866291 DOI: 10.1016/j.jhazmat.2021.125702] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
The term "Total petroleum hydrocarbons" (TPH) is used to describe a complex mixture of petroleum-based hydrocarbons primarily derived from crude oil. Those compounds are considered as persistent organic pollutants in the terrestrial environment. A wide array of organic amendments is increasingly used for the remediation of TPH-contaminated soils. Organic amendments not only supply a source of carbon and nutrients but also add exogenous beneficial microorganisms to enhance the TPH degradation rate, thereby improving the soil health. Two fundamental approaches can be contemplated within the context of remediation of TPH-contaminated soils using organic amendments: (i) enhanced TPH sorption to the exogenous organic matter (immobilization) as it reduces the bioavailability of the contaminants, and (ii) increasing the solubility of the contaminants by supplying desorbing agents (mobilization) for enhancing the subsequent biodegradation. Net immobilization and mobilization of TPH have both been observed following the application of organic amendments to contaminated soils. This review examines the mechanisms for the enhanced remediation of TPH-contaminated soils by organic amendments and discusses the influencing factors in relation to sequestration, bioavailability, and subsequent biodegradation of TPH in soils. The uncertainty of mechanisms for various organic amendments in TPH remediation processes remains a critical area of future research.
Collapse
Affiliation(s)
- Son A Hoang
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia; Division of Urban Infrastructural Engineering, Mien Trung University of Civil Engineering, Phu Yen 56000, Vietnam
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Balaji Seshadri
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Dane Lamb
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, P.O. Box 02, Belihuloya 70140, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Chathuri Liyanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Pabasari A Kolivabandara
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
8
|
Haider FU, Ejaz M, Cheema SA, Khan MI, Zhao B, Liqun C, Salim MA, Naveed M, Khan N, Núñez-Delgado A, Mustafa A. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. ENVIRONMENTAL RESEARCH 2021; 197:111031. [PMID: 33744268 DOI: 10.1016/j.envres.2021.111031] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Extraction and exploration of petroleum hydrocarbons (PHs) to satisfy the rising world population's fossil fuel demand is playing havoc with human beings and other life forms by contaminating the ecosystem, particularly the soil. In the current review, we highlighted the sources of PHs contamination, factors affecting the PHs accumulation in soil, mechanisms of uptake, translocation and potential toxic effects of PHs on plants. In plants, PHs reduce the seed germination andnutrients translocation, and induce oxidative stress, disturb the plant metabolic activity and inhibit the plant physiology and morphology that ultimately reduce plant yield. Moreover, the defense strategy in plants to mitigate the PHs toxicity and other potential remediation techniques, including the use of organic manure, compost, plant hormones, and biochar, and application of microbe-assisted remediation, and phytoremediation are also discussed in the current review. These remediation strategies not only help to remediate PHs pollutionin the soil rhizosphere but also enhance the morphological and physiological attributes of plant and results to improve crop yield under PHs contaminated soils. This review aims to provide significant information on ecological importance of PHs stress in various interdisciplinary investigations and critical remediation techniques to mitigate the contamination of PHs in agricultural soils.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Lab of Arid-land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mukkaram Ejaz
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, PR China
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Imran Khan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, PR China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Lab of Arid-land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | | | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 12 FL 32611, USA
| | - Avelino Núñez-Delgado
- Depart. Soil Sci. and Agric. Chem., Engineering Polytech. School, Lugo, Univ. Santiago de Compostela, Spain
| | - Adnan Mustafa
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
9
|
Liao Q, Liu H, Lu C, Liu J, Waigi MG, Ling W. Root exudates enhance the PAH degradation and degrading gene abundance in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144436. [PMID: 33401039 DOI: 10.1016/j.scitotenv.2020.144436] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Root exudates could influence the bioavailability of polycyclic aromatic hydrocarbons (PAHs), provide nutrients for soil microorganisms, and affect PAH biodegradation. However, it remains unclear how a bacterial community and its PAH-degrading genes play crucial roles in PAH biodegradation and respond to root exudates. In this study, a 32-day soil microcosm study was conducted to explore the impacts of artificial and actual root exudates on PAH degradation, degrading genes, and bacterial community structure. The results showed that 10-100 mg DOC/kg artificial and actual root exudates promoted the degradation of naphthalene, phenanthrene, and pyrene in soils, and their percent removal increased initially and then decreased with the increasing root exudates. Quantitative polymerase chain reaction analysis and 16S rRNA gene high-throughput sequencing suggested that the artificial root exudates significantly promoted the Nocardioides and Arthrobacter genera, which may harbor the nidA gene (the representative PAH-degrading gene from Gram-positive bacteria). In contrast, actual root exudates significantly stimulated the Pseudomonas genus that may harbor the nahAc gene (the representative PAH-degrading gene from Gram-negative bacteria). The correlation analysis further indicated that the absolute abundance of PAH degraders and degrading genes had strong correlations with PAH degradation efficiency. Therefore, these findings suggest that root exudates enhanced PAH biodegradation probably due to increases in abundance of both PAH-degraders and their degrading genes.
Collapse
Affiliation(s)
- Qihang Liao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Liu
- College of Economics and Management, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Lu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Hoang SA, Lamb D, Seshadri B, Sarkar B, Choppala G, Kirkham MB, Bolan NS. Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123282. [PMID: 32634659 DOI: 10.1016/j.jhazmat.2020.123282] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 05/22/2023]
Abstract
Rhizoremediation is increasingly becoming a green and sustainable alternative to physico-chemical methods for remediation of contaminated environments through the utilization of symbiotic relationship between plants and their associated soil microorganisms in the root zone. The overall efficiency can be enhanced by identifying suitable plant-microbe combinations for specific contaminants and supporting the process with the application of appropriate soil amendments. This approach not only involves promoting the existing activity of plants and soil microbes, but also introduces an adequate number of microorganisms with specific catabolic activity. Here, we reviewed recent literature on the main mechanisms and key factors in the rhizoremediation process with a particular focus on soils contaminated with total petroleum hydrocarbon (TPH). We then discuss the potential of different soil amendments to accelerate the remediation efficiency based on biostimulation and bioaugmentation processes. Notwithstanding some successes in well-controlled environments, rhizoremediation of TPH under field conditions is still not widespread and considered less attractive than physico-chemical methods. We catalogued the major pitfalls of this remediation approach at the field scale in TPH-contaminated sites and, provide some applicable situations for the future successful use of in situ rhizoremediation of TPH-contaminated soils.
Collapse
Affiliation(s)
- Son A Hoang
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Division of Urban Infrastructural Engineering, Mien Trung University of Civil Engineering, Phu Yen 56000, Viet Nam
| | - Dane Lamb
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Balaji Seshadri
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Girish Choppala
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
11
|
Alves WS, Santos NS, Baroca FF, Alves BPD, Nunes RO, Abrahão GCD, Manoel EA, Soares MR. The influence of polycyclic aromatic hydrocarbons in protein profile of Medicago sativa L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:426-435. [PMID: 33070622 DOI: 10.1080/15226514.2020.1825324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medicago sativa L. (alfalfa) are studied as potential phytoremediation agents of priority pollutants like polycyclic aromatic hydrocarbons (PAH). However, elucidation of the biochemical mechanisms involved in phytoremediation is a topic to be explored with knowledge gaps. This study aims to identify and classify proteins expressed in the aerial parts of laboratory-cultivated alfalfa in the presence and absence of pyrene, anthracene, and phenanthrene. Soil samples were amended with 100 mg.kg-1 of each PAH (total concentration of 300 ppm) and cultivated with alfalfa plants for 20 days. After this, aerial parts of cultivated plants from each condition were collected for qualitative proteomic analysis (ESI-Q/TOF). The results showed a significant increase (Student's t-test p < 0.05) of 41.7% in the concentration of proteins from plants grown in PAH-amended substrates, changes in the protein profile, with intense protein bands observed at 40-55, 34, 28, and 15 kDa when compared to the control. A total of 504 proteins were identified and classified into 12 functional categories, highlighting the identification of 11 phytoremediation-related proteins candidates in plants grown in the presence of PAH, with biological functions related to diverse metabolisms involved in the xenobiotics biodegradation (included PAH), glutathione and response to stress.
Collapse
Affiliation(s)
- Wilber S Alves
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
- Programa Químico de Petróleo e Biocombustíveis PRH-01, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
- Departamento de Ensino Médio e Técnico - Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, CEFET/RJ - Campus Maracanã, Rio de Janeiro, Brazil
| | - Noemi S Santos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Felipe F Baroca
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Bruna P D Alves
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Rosane O Nunes
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Giselli C D Abrahão
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Evelin A Manoel
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Marcia R Soares
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Valizadeh Rad K, Motesharezadeh B, Alikhani HA, Dadrasnia A. The potential use of Cordia myxa in the remediation of crude oil pollution. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:445-453. [PMID: 33016103 DOI: 10.1080/15226514.2020.1825326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study investigated the effects of hydrocarbon-degrading bacteria and organic matter on a crude oil-polluted soil by Cordia myxa. The treatments consisted of crude oil at two levels (3 and 6% w/w), municipal waste compost at two levels (5 and 10% v/v), and two different bacterial strains (Pseudomonas sp.141 and Pseudomonas sp. 27ps). At the end of the growth period, the plants were harvested and prepared for the laboratory analyses. The greatest population of oil degrading-bacteria (4.6 × 106 CFU/g soil) was observed in the treatment containing 10% compost, 6% crude oil, and Pseudomonas sp.141. The highest crude oil degradation (76.49%) was recorded in the soil polluted with 6% crude oil, amended with 10% compost, and inoculated with Pseudomonas sp.141. The investigation on the degradation of the chains of C10-C35 compounds indicated that, in various treatments, the most abundant compound was among those with fewer carbon atoms (C12-C25), so the application of organic matter boosted the degradation of crude oil. In conclusion, C. myxa seedlings has an acceptable efficiency in the remediation of the oil-contaminated soil affected by biological factors (compost and Pseudomonas bacteria), which is because of their high tolerance to the pollution and their ability to penetrate deeper soil layers.
Collapse
Affiliation(s)
- Keyvan Valizadeh Rad
- Soil Science Engineering Department, University College of Agriculture & Natural Resource, University of Tehran, Karaj, Iran
| | - Babak Motesharezadeh
- Soil Science Engineering Department, University College of Agriculture & Natural Resource, University of Tehran, Karaj, Iran
| | - Hossein Ali Alikhani
- Soil Science Engineering Department, University College of Agriculture & Natural Resource, University of Tehran, Karaj, Iran
| | - Arezoo Dadrasnia
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Dardouri S, Jedidi A, Mejri S, Hattab S, Sghaier J. Morphological effect of dichloromethane on alfalfa ( Medicago sativa) cultivated in soil amended with fertilizer manures. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:263-271. [PMID: 32851853 DOI: 10.1080/15226514.2020.1810205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we investigated the morphological effect of dichloromethane (DCM) on alfalfa (Medicago sativa) plant. We studied in vitro the influence of its concentration on alfalfa germination. The plants were placed in pots for 15 weeks, and exposed to increasing concentrations of DCM (50 µg L-1 and 84 mg L-1). In addition, we examined the effect of two manures (cow and sheep), which were applied to a contaminated soil, on alfalfa plant growth. The effect of the presence of dichloromethane is obvious even in plant-soil manure system. In fact, in the event of contamination, the soil-cow manure mixture represents the best setting medium for the Alfalfa plant compared to other environments, regardless of the contamination level. Indeed, the presence of two types of manure does not allow the suppression of the inhibitory effect of dichloromethane on the mass of the dry matter of the aerial part which is 18.38% for the cow manure-amended soil and 13.96% for the sheep manure-amended soil.
Collapse
Affiliation(s)
- Sana Dardouri
- Laboratory of Thermal and Thermodynamics in Industrial Processes, National Engineering School of Monastir, Monastir, Tunisia
| | - Asma Jedidi
- Laboratory of Thermal and Thermodynamics in Industrial Processes, National Engineering School of Monastir, Monastir, Tunisia
| | - Sabrine Mejri
- Integrated Devices and Systems, Faculty of Electrical Engineering, Mathematical and Computer Science, University of Twente, the Netherlands
| | - Sabrine Hattab
- Regional Research Centre on Horticulture and Organic Agriculture, Chott-Mariem, Sousse, Tunisia
| | - Jalila Sghaier
- Laboratory of Thermal and Thermodynamics in Industrial Processes, National Engineering School of Monastir, Monastir, Tunisia
| |
Collapse
|
14
|
Salehi N, Azhdarpoor A, Shirdarreh M. The effect of different levels of leachate on phytoremediation of pyrene-contaminated soil and simultaneous extraction of lead and cadmium. CHEMOSPHERE 2020; 246:125845. [PMID: 31918113 DOI: 10.1016/j.chemosphere.2020.125845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Pyrene is one of the 16 group combinations of polyaromatic hydrocarbons, which are known as primary pollutants in the U.S. Environmental Protection Agency (USEPA) list. This study aimed to investigate the cross effect of different levels of landfill leachate on phytoremediation of pyrene-contaminated soil using the sorghum bicolor plant. The study parameters included the presence or absence of the plant, different concentrations of pyrene (150, 300, 500, 750, and 1000 mg kg-1), time (30, 60, and 90 days), and different levels of irrigation with leachate (0, 30, 50, 70, and 100%). Soil pyrene was measured every 30 days, and heavy metals (lead and cadmium) added to the soil by irrigation with leachate were measured in the soil and the plant at the end of 90 days. According to the results, pyrene removal efficiency after 90 days was 96% in irrigation treatments with 30% leachate in the presence of the plant and 67% in irrigation treatments with tap water in the presence of the plant. In addition, 95% of lead and 49% of cadmium added to the soil by irrigation with 30% leachate were extracted from the soil by the sorghum bicolor. According to the results, by increasing nutrients and number of soil bacteria during the cross treatment, landfill leachate increased the pyrene removal efficiency significantly during phytoremediation (p < 0.006) and the sorghum bicolor plant extracted the lead and cadmium of the leachate. In non-planting treatments, although adding high levels of leachate to the soil significantly improved the pyrene removal, it caused the levels of heavy metals, such as lead and cadmium, to exceed the allowable limit (p < 0.001).
Collapse
Affiliation(s)
- Nasim Salehi
- MA Student of Environmental Health, School of Health, Shiraz University of Medical Sciences, Iran
| | - Abooalfazl Azhdarpoor
- Associate Professor of Environmental Health, School of Health, Shiraz University of Medical Sciences, Iran.
| | - Mohammadreza Shirdarreh
- Instructor of Environmental Health, School of Health, Shiraz University of Medical Sciences, Iran
| |
Collapse
|
15
|
Xu C, Yang W, Wei L, Huang Z, Wei W, Lin A. Enhanced phytoremediation of PAHs-contaminated soil from an industrial relocation site by Ochrobactrum sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8991-8999. [PMID: 31321730 DOI: 10.1007/s11356-019-05830-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Nowadays, the remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil has received wide attention. In this work, Ochrobactrum sp. (PW) was isolated through selective enrichment from PAHs-contaminated soil in coking plant of Beijing, and the effects of PW on phytoremediation of that soil by alfalfa (Medicago sativa L.) and ryegrass (Lolium multiflorum Lam.) were investigated through pot experiments. Plant biomass, peroxidase (POD) activity, malondialdehyde (MDA) contents, soil enzyme activity (polyphenol oxidase and dehydrogenase activity), and residual concentration of PAHs in soils were determined to illustrate the ability of PW for enhancing the degradation of PAHs by plants. The results showed that the fresh weight of ryegrass and alfalfa inoculated with PW was significantly (p < 0.05) increased while the activity of POD and MDA contents were notably (p < 0.05) reduced than that without inoculation. Additionally, PW enhanced the activity of polyphenol oxidase and dehydrogenase in soil significantly (p < 0.05), and further enhanced the degradability of the system to PAHs. Different treatment methods could be ranked by the following order according to the degradability: SP (alfalfa + PW) > RP (ryegrass + PW) > PW (PW) > S (alfalfa) > R (ryegrass). The combined action of PW and alfalfa/ryegrass could accelerate the degradability of PAHs from soil contaminated by coking plants. PW could be used as potential bacteria to promote phytoremediation of the soil contaminated by PAHs.
Collapse
Affiliation(s)
- Congbin Xu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Wenjie Yang
- Chinese Academy for Environmental Planning, Beijing, 100012, People's Republic of China
| | - Lianshuang Wei
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zeyu Huang
- School of International Education, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Wenxia Wei
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Environmental Protection Research Institute of Light Industry, Beijing, 100089, People's Republic of China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
16
|
Dai Y, Liu R, Zhou Y, Li N, Hou L, Ma Q, Gao B. Fire Phoenix facilitates phytoremediation of PAH-Cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities. ENVIRONMENT INTERNATIONAL 2020; 136:105421. [PMID: 31884414 DOI: 10.1016/j.envint.2019.105421] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 05/13/2023]
Abstract
Pot experiments were conducted in a growth chamber to evaluate the phytoremediation efficiency and rhizosphere regulation mechanism of Fire Phoenix (a mixture of Festuca L.) in polycyclic aromatic hydrocarbon-cadmium (PAH-Cd) co-contaminated soils. Plant biomass, removal rates of PAHs and Cd, soil enzyme activity, and soil bacterial community were determined. After 150 days of planting, the removal rates of the total 4 PAHs and Cd reached 64.57% and 40.93% in co-contaminated soils with low-PAH (104.79-144.87 mg·kg-1), and 68.29% and 25.40% in co-contaminated soils with high-PAH (169.17-197.44 mg·kg-1), respectively. The polyphenol oxidase (PPO) activity decreased in soils having Fire Phoenix, while the dehydrogenase (DHO) activity increased as the changes of DHO activity had a strong positive correlation with the removal rates of PAHs and Cd in the low-PAH soils (r = 0.862 (P < 0.006) and 0.913 (P < 0.002), respectively). Meanwhile, successional changes in the bacterial communities were detected using high-throughput 454 Gs-FLX pyrosequencing of the 16S rRNA, and these changes were especially apparent for the co-contaminated soils with the low PAH concentration. The Fire Phoenix could promote the growth of Mycobacterium, Dokdonella, Gordonia and Kaistobacter, which played important roles in PAHs degradation or Cd dissipation. These results indicated that Fire Phoenix could effectively motivate the soil enzyme and bacterial community and enhance the potential for phytoremediation of PAH-Cd co-contaminated soils.
Collapse
Affiliation(s)
- Yuanyuan Dai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China.
| | - Yuemei Zhou
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Na Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqun Hou
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
17
|
Li J, Zhao Q, Xue B, Wu H, Song G, Zhang X. Arsenic and nutrient absorption characteristics and antioxidant response in different leaves of two ryegrass (Lolium perenne) species under arsenic stress. PLoS One 2019; 14:e0225373. [PMID: 31774844 PMCID: PMC6881006 DOI: 10.1371/journal.pone.0225373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/03/2019] [Indexed: 11/18/2022] Open
Abstract
Arsenic (As), a heavy metal element, causes soil environmental concerns in many parts of the world, and ryegrass has been considered as an effective plant species for bioremediation of heavy metal pollution including As. This study was designed to investigate As content, nutrient absorption and antioxidant enzyme activity associated with As tolerance in the mature leaves, expanded leaves and emerging leaves of perennial ryegrass (Lolium perenne) and annual ryegrass (Lolium multiflorum) under 100 mg·kg-1 As treatment. The contents of As, calcium (Ca), magnesium (Mg), manganese (Mn) in the leaves of both ryegrass species were greatest in the mature leaves and least in the emerging leaves. The nitrogen (N), phosphorus (P), potassium (K) contents of both ryegrass species were greatest in the emerging leaves and least in the mature leaves. The As treatment reduced biomass more in the mature leaves and expanded leaves relative to the emerging leaves for annual ryegrass and reduced more in emerging leaves relative to the mature and expanded leaves for perennial ryegrass. Perennial ryegrass had higher As content than annual ryegrass in all three kinds of leaves. The As treatment increased hydrogen peroxide (H2O2) in expanded leaves of two ryegrass species, relative to the control. The As treatment increased the ascorbate peroxidase (APX) activity in the expanded leaves of perennial ryegrass and the mature leaves of annual ryegrass, the catalase (CAT) activity in the mature and expanded leaves of perennial ryegrass and the emerging leaves of annual ryegrass, relative to the control. The As treatment reduced peroxidase (POD) activity in all three kinds of leaves of annual ryegrass and superoxide dismutase (SOD) activity in expanded leaves of perennial ryegrass, relative to the control. The results of this study suggest that As tolerance may vary among different ages of leaf and reactive oxygen species (ROS) and antioxidant enzyme activity may be associated with As tolerance in the ryegrass.
Collapse
Affiliation(s)
- Jinbo Li
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| | - Qian Zhao
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| | - Bohan Xue
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| | - Hongyan Wu
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| | - Guilong Song
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| | - Xunzhong Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
18
|
Zheng K, Fan J, Hu X, Zhang X, Liu X, Shen J. Distribution by influence factors of pyrene removal in chemical enhancers assisted microbial phytoremediation of Scirpus triqueter in co-contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1190-1196. [PMID: 31119945 DOI: 10.1080/15226514.2019.1612846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The rehabilitation of soil co-contaminated by heavy metals and polycyclic aromatic hydrocarbons (PAHs) has become a serious global issue. Chemical enhancers and strains are often used to remove PAHs from contaminated soil. In this paper, the effects of chemical enhancers, strain HD-1, and Scirpus triqueter in removing pyrene from co-contaminated soil are studied. In the pot experiment, chemical enhancers and HD-1 were added to the co-contaminated soil. On the 60th day, the plants and soil were taken out for measurement. The result showed that the addition of chemical enhancers and microorganisms (Group PBC) alleviated the inhibition effect of plants on pollution. The accumulation of pyrene in plants of Group PC (chemical enhancers) and Group PBC (chemical enhancers and HD-1) were much higher than those in other groups. Plant enrichment was not the major way to remove pyrene from soil (less than 0.3%). Compared with the contributions of chemical enhancers, HD-1, and Scirpus triqueter, HD-1 had stronger effects on the removal of pyrene (17.23-22.80%). This study indicates that the combination of chemical enhancers, HD-1, and Scirpus triqueter constituted a beneficial composite system, in which the three elements interacted with each other and ultimately achieved the goal of removing pyrene from co-contaminated soil.
Collapse
Affiliation(s)
- Kewen Zheng
- College of Environmental and Chemical Engineering, Shanghai University , Shanghai , China
| | - Jiayue Fan
- College of Environmental and Chemical Engineering, Shanghai University , Shanghai , China
| | - Xiaoxin Hu
- SGIDI Engineering Consulting (Group) Co., Ltd , Shanghai , China
| | - Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University , Shanghai , China
| | - Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University , Shanghai , China
| | - Jiayi Shen
- College of Environmental and Chemical Engineering, Shanghai University , Shanghai , China
| |
Collapse
|
19
|
Zhang JJ, Wang YK, Zhou JH, Xie F, Guo QN, Lu FF, Jin SF, Zhu HM, Yang H. Reduced phytotoxicity of propazine on wheat, maize and rapeseed by salicylic acid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:42-50. [PMID: 29960913 DOI: 10.1016/j.ecoenv.2018.06.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Propazine belongs to the triazine herbicide family and widely used in the farmland for crop production. Recent studies have shown that the residue of propazine in environment is accumulative. This inevitably results in accumulation of propazine in crops. Therefore, reduction of propazine toxicity and accumulation in crops is critically important. In this study, the growth of wheat, maize and rapeseed was significantly inhibited by 2, 8 and 0.4 mg kg-1 propazine in soils. The chlorophyll content of the three crops also showed significant decrease, while the electrolyte permeability, a biomarker of cellular damage, increased in the plant cells. However, when plants were sprayed with 5 mg L-1 of salicylic acid (SA), the propazine phytotoxicity of the crops was relieved, with increased chlorophyll content and reduced electrolyte permeability of all crops. Meanwhile, the activities of peroxidase (POD) and glutathione transferase (GST) remained lower. The propazine accumulation in the crops and the residues in the soil were determined by high performance liquid chromatography. The concentration of propazine in plants and soils treated by SA was less than that of the untreated control. Six propazine degraded products (derivatives) in rhizosphere of wheat were characterized using ultraperformance liquid chromatography with a quadrupole-time-of-flight tandem mass spectrometer. Our work indicates that the improved growth of crops was possibly due to the acceleration of propazine degradation by salicylic acid.
Collapse
Affiliation(s)
- Jing Jing Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Ya Kun Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Hua Zhou
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Xie
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Nan Guo
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Fan Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - She Feng Jin
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Mei Zhu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Gitipour S, Sorial GA, Ghasemi S, Bazyari M. Treatment technologies for PAH-contaminated sites: a critical review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:546. [PMID: 30140952 DOI: 10.1007/s10661-018-6936-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
To reduce environmental and human health risks of contaminated sites, having a comprehensive knowledge about the polycyclic aromatic hydrocarbon (PAH) removal processes is crucial. PAHs are contaminants which are highly recognized to pose threats to humans, animals, and plants. PAHs are hydrophobic and own two or more benzene rings, and hence are resistant to structural degradation. There are various techniques which have been developed to treat PAH-contaminated soil. Four distinct processes to remove PAHs in the contaminated soil, thought to be more effective techniques, are presented in this review: soil washing, chemical oxidation, electrokinetic, phytoremediation. In a surfactant-aided washing process, a removal rate of 90% was reported. Compost-amended phytoremediation treatment presented 58-99% removal of pyrene from the soil in 90 days. Chemical oxidation method was able to reach complete conversion for some PAHs. In electrokinetic treatment, researchers have achieved reliable results in removal of some specific PAHs. Researchers' innovations in novel studies and advantages/disadvantages of the techniques are also investigated throughout the paper. Finally, it should be noted that an exclusive method or a combination of methods by themselves are not the key to be employed for remediation of every contaminated site but the field characteristics are also essential in selection of the most appropriate decontamination technique(s). The remedy for selection criteria is based on PAH concentrations, site characteristics, costs, shortcomings, and advantages.
Collapse
Affiliation(s)
- Saeid Gitipour
- Department of Environmental Engineering, Faculty of Environment, University of Tehran, No.25 Ghods St., Enghelab Ave, PO Box 81948/43995, Tehran, Iran.
| | - George A Sorial
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Soroush Ghasemi
- Department of Environmental Engineering, Faculty of Environment, University of Tehran, No.25 Ghods St., Enghelab Ave, PO Box 81948/43995, Tehran, Iran
| | - Mahdieh Bazyari
- HSE Group, Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
Alves WS, Manoel EA, Santos NS, Nunes RO, Domiciano GC, Soares MR. Phytoremediation of polycyclic aromatic hydrocarbons (PAH) by cv. Crioula: A Brazilian alfalfa cultivar. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:747-755. [PMID: 29775101 DOI: 10.1080/15226514.2018.1425663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
This work aimed to evaluate the phytoremediation capacity of the alfalfa cultivar Crioula in soils contaminated with polycyclic aromatic hydrocarbons (PAHs), primary pollutants with mutagenic and carcinogenic potential. Alfalfa was grown from seed for 40 days on soil amended with anthracene, pyrene, and phenanthrene. Soil and plant tissue was collected for biometric assay, dry mass analysis, and PAH analysis by liquid chromatography. Increased total PAH concentration was associated with decreases in plant biomass, height, and internode length. The Crioula cultivar had a satisfactory phytoremediation effect, reducing total PAH concentration (300 ppm) in the experimental soil by 85% in 20 days, and by more than 95% in 40 days. The PAH showed a tendency to be removed in the temporal order: phenanthrene before pyrene before anthracene, and the removal ratio was influenced by the initial soil concentration of each PAH.
Collapse
Affiliation(s)
- Wilber S Alves
- a Departamento de Bioquímica , Instituto de Química, UFRJ - Centro de Tecnologia, Cidade Universitária , Rio de Janeiro , Brazil
- b Programa Químico de Petróleo e Biocombustíveis PRH-01, Instituto de Química, UFRJ - Centro de Tecnologia, Cidade Universitária , Rio de Janeiro , Brazil
| | - Evelin A Manoel
- c Departamento de Biotecnologia Farmacêutica , Faculdade de Farmácia, UFRJ - Avenida Carlos Chagas Filho, Cidade Universitária , Rio de Janeiro , Brazil
| | - Noemi S Santos
- a Departamento de Bioquímica , Instituto de Química, UFRJ - Centro de Tecnologia, Cidade Universitária , Rio de Janeiro , Brazil
| | - Rosane O Nunes
- a Departamento de Bioquímica , Instituto de Química, UFRJ - Centro de Tecnologia, Cidade Universitária , Rio de Janeiro , Brazil
| | - Giselli C Domiciano
- a Departamento de Bioquímica , Instituto de Química, UFRJ - Centro de Tecnologia, Cidade Universitária , Rio de Janeiro , Brazil
| | - Marcia R Soares
- a Departamento de Bioquímica , Instituto de Química, UFRJ - Centro de Tecnologia, Cidade Universitária , Rio de Janeiro , Brazil
| |
Collapse
|
22
|
Luo C, Deng Y, Inubushi K, Liang J, Zhu S, Wei Z, Guo X, Luo X. Sludge Biochar Amendment and Alfalfa Revegetation Improve Soil Physicochemical Properties and Increase Diversity of Soil Microbes in Soils from a Rare Earth Element Mining Wasteland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15050965. [PMID: 29751652 PMCID: PMC5982004 DOI: 10.3390/ijerph15050965] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
Long-term unregulated mining of ion-adsorption clays (IAC) in China has resulted in severe ecological destruction and created large areas of wasteland in dire need of rehabilitation. Soil amendment and revegetation are two important means of rehabilitation of IAC mining wasteland. In this study, we used sludge biochar prepared by pyrolysis of municipal sewage sludge as a soil ameliorant, selected alfalfa as a revegetation plant, and conducted pot trials in a climate-controlled chamber. We investigated the effects of alfalfa revegetation, sludge biochar amendment, and their combined amendment on soil physicochemical properties in soil from an IAC mining wasteland as well as the impact of sludge biochar on plant growth. At the same time, we also assessed the impacts of these amendments on the soil microbial community by means of the Illumina Miseq sequences method. Results showed that alfalfa revegetation and sludge biochar both improved soil physicochemical properties and microbial community structure. When alfalfa revegetation and sludge biochar amendment were combined, we detected additive effects on the improvement of soil physicochemical properties as well as increases in the richness and diversity of bacterial and fungal communities. Redundancy analyses suggested that alfalfa revegetation and sludge biochar amendment significantly affected soil microbial community structure. Critical environmental factors consisted of soil available K, pH, organic matter, carbon⁻nitrogen ratio, bulk density, and total porosity. Sludge biochar amendment significantly promoted the growth of alfalfa and changed its root morphology. Combining alfalfa the revegetation with sludge biochar amendment may serve to not only achieve the revegetation of IAC mining wasteland, but also address the challenge of municipal sludge disposal by making the waste profitable.
Collapse
Affiliation(s)
- Caigui Luo
- Faculty of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
- National Engineering Research Center for Ionic Rare Earth, Ganzhou 341000, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Ganzhou 341000, China.
| | - Yangwu Deng
- Faculty of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
- National Engineering Research Center for Ionic Rare Earth, Ganzhou 341000, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Ganzhou 341000, China.
| | - Kazuyuki Inubushi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 2718510, Japan.
| | - Jian Liang
- Faculty of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Ganzhou 341000, China.
| | - Sipin Zhu
- Faculty of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Ganzhou 341000, China.
| | - Zhenya Wei
- Faculty of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Ganzhou 341000, China.
| | - Xiaobin Guo
- National Engineering Research Center for Ionic Rare Earth, Ganzhou 341000, China.
| | - Xianping Luo
- Faculty of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
- National Engineering Research Center for Ionic Rare Earth, Ganzhou 341000, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Ganzhou 341000, China.
| |
Collapse
|
23
|
Cao B, Zhang Y, Wang Z, Li M, Yang F, Jiang D, Jiang Z. Insight Into the Variation of Bacterial Structure in Atrazine-Contaminated Soil Regulating by Potential Phytoremediator: Pennisetum americanum (L.) K. Schum. Front Microbiol 2018; 9:864. [PMID: 29780374 PMCID: PMC5945882 DOI: 10.3389/fmicb.2018.00864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Although plants of the genus Pennisetum can accelerate the removal of atrazine from its rhizosphere, the roles played by this plant in adjusting the soil environment and soil microorganism properties that might contribute to pollutant removal are incompletely understood. We selected Pennisetum americanum (L.) K. Schum (P. americanum) as the test plant and investigated the interaction between P. americanum and atrazine-contaminated soil, focusing on the adjustment of the soil biochemical properties as well as bacterial functional and community diversity in the rhizosphere using Biolog EcoPlates and high-throughput sequencing of the 16S rRNA gene. The results demonstrate that the rhizosphere soil of P. americanum exhibited higher catalase activity, urease activity and water soluble organic carbon (WSOC) content, as well as a suitable pH for microorganisms after a 28-day incubation. The bacterial functional diversity indices (Shannon and McIntosh) for rhizosphere soil were 3.17 ± 0.04 and 6.43 ± 0.86 respectively, while these indices for non-rhizosphere soil were 2.95 ± 0.06 and 3.98 ± 0.27. Thus, bacteria in the P. americanum rhizosphere exhibited better carbon substrate utilization than non-rhizosphere bacteria. Though atrazine decreased the richness of the soil bacterial community, rhizosphere soil had higher bacterial community traits. For example, the Shannon diversity indices for rhizosphere and non-rhizosphere soil were 5.821 and 5.670 respectively. Meanwhile, some bacteria, such as those of the genera Paenibacillus, Rhizobium, Sphingobium, and Mycoplana, which facilitate soil nutrient cycling or organic pollutants degradation, were only found in rhizosphere soil after a 28-day remediation. Moreover, redundancy analysis suggests that the soil biochemical properties that were adjusted by the test plant exhibited correlations with the bacterial community composition and functional diversity. These results suggest that the soil environment and bacterial properties could be adjusted by P. americanum during phytoremediation of atrazine-contaminated soil.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, China
| |
Collapse
|
24
|
Marchand C, Mench M, Jani Y, Kaczala F, Notini P, Hijri M, Hogland W. Pilot scale aided-phytoremediation of a co-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:753-764. [PMID: 29054647 DOI: 10.1016/j.scitotenv.2017.08.143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 05/16/2023]
Abstract
A pilot scale experiment was conducted to investigate the aided-phytoextraction of metals and the aided-phytodegradation of petroleum hydrocarbons (PHC) in a co-contaminated soil. First, this soil was amended with compost (10% w/w) and assembled into piles (Unp-10%C). Then, a phyto-cap of Medicago sativa L. either in monoculture (MS-10%C) or co-cropped with Helianthus annuus L. as companion planting (MSHA-10%C) was sown on the topsoil. Physico-chemical parameters and contaminants in the soil and its leachates were measured at the beginning and the end of the first growth season (after five months). In parallel, residual soil ecotoxicity was assessed using the plant species Lepidium sativum L. and the earthworm Eisenia fetida Savigny, 1826, while the leachate ecotoxicity was assessed using Lemna minor L. After 5months, PH C10-C40, PAH-L, PAH-M PAH-H, Pb and Cu concentrations in the MS-10%C soil were significantly reduced as compared to the Unp-10%C soil. Metal uptake by alfalfa was low but their translocation to shoots was high for Mn, Cr, Co and Zn (transfer factor (TF) >1), except for Cu and Pb. Alfalfa in monoculture reduced electrical conductivity, total organic C and Cu concentration in the leachate while pH and dissolved oxygen increased. Alfalfa co-planting with sunflower did not affect the extraction of inorganic contaminants from the soil, the PAH (M and H) degradation and was less efficient for PH C10-C40 and PAH-L as compared to alfalfa monoculture. The co-planting reduced shoot and root Pb concentrations. The residual soil ecotoxicity after 5months showed a positive effect of co-planting on L. sativum shoot dry weight (DW) yield. However, high contaminant concentrations in soil and leachate still inhibited the L. sativum root DW yield, earthworm development, and L. minor growth rate.
Collapse
Affiliation(s)
- Charlotte Marchand
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec H1X 2B2, Canada; Department of Biology & Environmental Sciences, Linnaeus University, Landgången 3, Kalmar, SE -391 82, Sweden.
| | - Michel Mench
- BIOGECO, INRA, Univ. Bordeaux, 33615 Pessac, France
| | - Yahya Jani
- Department of Biology & Environmental Sciences, Linnaeus University, Landgången 3, Kalmar, SE -391 82, Sweden
| | - Fabio Kaczala
- Department of Biology & Environmental Sciences, Linnaeus University, Landgången 3, Kalmar, SE -391 82, Sweden
| | - Peter Notini
- Department of Biology & Environmental Sciences, Linnaeus University, Landgången 3, Kalmar, SE -391 82, Sweden
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec H1X 2B2, Canada
| | - William Hogland
- Department of Biology & Environmental Sciences, Linnaeus University, Landgången 3, Kalmar, SE -391 82, Sweden
| |
Collapse
|
25
|
Panchenko L, Muratova A, Dubrovskaya E, Golubev S, Turkovskaya O. Dynamics of natural revegetation of hydrocarbon-contaminated soil and remediation potential of indigenous plant species in the steppe zone of the southern Volga Uplands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3260-3274. [PMID: 29147987 DOI: 10.1007/s11356-017-0710-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
The result of monitoring of natural vegetation growing on oil-contaminated (2.0-75.6 g/kg) and uncontaminated (0.04-2.0 g/kg) soils of a petroleum refinery for a period of 13 years is presented. Floristic studies showed that the families Poaceae, Asteraceae, Fabaceae, and eventually Brassicaceae were predominant in the vegetation cover of both types of soils. Over time, the projective vegetation cover of the contaminated sites increased from 46 to 90%; the species diversity increased twofold: in the ecological-cenotic structure of the flora, the number of ruderal plant species decreased; and the number of steppe, i.e., zonal, plant species increased. Using 62 dominant plant species, we conducted a field study of plant characteristics such as resistance to oil pollution, the ability to enrich the rhizosphere soil with microorganisms and bioavailable mineral nitrogen, and reduction of the concentration of petroleum hydrocarbons. The results enable us to characterize the phytoremediation potential (PRP) of the native plants and identify species that, probably, played a key role in the natural restoration of oil-contaminated soils. Statistical analysis showed correlations between the PRP constituents, and the leading role of rhizosphere microorganisms in the rhizodegradation of petroleum hydrocarbons was proven. A conditional value of PRP was proposed which allowed the investigated plants to be ranked in 11 classes. The study of a large sample of plant species showed that some plants held promise for the use in reclamation of soils in arid steppe zone, and that other species can be used for the rehabilitation of saline soils and semideserts.
Collapse
Affiliation(s)
- Leonid Panchenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049.
| | - Anna Muratova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049
| | - Ekaterina Dubrovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049
| | - Sergey Golubev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049
| | - Olga Turkovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049
| |
Collapse
|
26
|
Yang L, Sun T, Liu Y, Guo H, Lv L, Zhang J, Liu C. Photosynthesis of alfalfa (Medicago sativa) in response to landfill leachate contamination. CHEMOSPHERE 2017; 186:743-748. [PMID: 28820998 DOI: 10.1016/j.chemosphere.2017.08.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/06/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Thousands of unlined landfills and open dumpsites have put great threat on the security of soil and ground water due to leachate leakage. Alfalfa is believed potential as a phytoremediation plant for leachate contamination based on strong root system and the excellent capacity of removing various kinds of pollutants. A lab-scale investigation was conducted to figure out the sensitiveness of alfalfa photosynthesis in response to leachate contamination. The results demonstrated that both of the maximum photosynthetic efficiency (Fv/Fm) and net photosynthetic rate (Pn) were slightly inhibited in the high-dosage group. Based on statistical analysis, higher sensitivity of Pn to leaching parameters than Fv/Fm was observed. There were significant correlations between most of leaching parameters (pH, ammonium and COD) and Pn with correlation coefficients of 0.530, -0.580 and -0.578 (p < 0.01), respectively. Therefore, Pn is potential for acting as an effective indicator for staple leaching characteristics of leachate contaminated soils.
Collapse
Affiliation(s)
- Lie Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, 430070 Wuhan, PR China.
| | - Tiantian Sun
- School of Resources and Environmental Engineering, Wuhan University of Technology, 430070 Wuhan, PR China
| | - Yanli Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, 430070 Wuhan, PR China
| | - Houqing Guo
- School of Resources and Environmental Engineering, Wuhan University of Technology, 430070 Wuhan, PR China
| | - Lixin Lv
- School of Resources and Environmental Engineering, Wuhan University of Technology, 430070 Wuhan, PR China
| | - Jie Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, 430070 Wuhan, PR China
| | - Chang Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, 430070 Wuhan, PR China
| |
Collapse
|
27
|
Lu H, Sun J, Zhu L. The role of artificial root exudate components in facilitating the degradation of pyrene in soil. Sci Rep 2017; 7:7130. [PMID: 28769098 PMCID: PMC5541004 DOI: 10.1038/s41598-017-07413-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/26/2017] [Indexed: 11/09/2022] Open
Abstract
Root exudates play an important role in the phytoremediation of soils contaminated by organic pollutants, but how root exudate components affect the remediation process is not well understood. In this study, we explored the effects and mechanisms of the major root exudates, including glucose, organic acids, and serine, in the rhizoremediation of pyrene-contaminated soil. The results showed that glucose increased the degradation of pyrene (54.3 ± 1.7%) most significantly compared to the organic acids (45.5 ± 2.5%) and serine (43.2 ± 0.1%). Glucose could significantly facilitate the removal of pyrene in soil through promoting dehydrogenase activity indicated by a positive correlation between the removal efficiency of pyrene and the soil dehydrogenase activity (p < 0.01). Furthermore, root exudates were able to change soil microbial community, particularly the bacterial taxonomic composition, thereby affecting the biodegradation of pyrene. Glucose could alter soil microbial community and enhance the amount of Mycobacterium markedly, which is dominant in the degradation of pyrene. These findings provide insights into the mechanisms by which root exudates enhance the degradation of organic contaminants and advance our understanding of the micro-processes involved in rhizoremediation.
Collapse
Affiliation(s)
- Hainan Lu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
28
|
Liu X, Cao L, Wang Q, Zhang X, Hu X. Effect of tea saponin on phytoremediation of Cd and pyrene in contaminated soils by Lolium multiflorum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:18946-18952. [PMID: 28656573 DOI: 10.1007/s11356-017-9515-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
Tea saponin (TS), a kind of green biosurfactant produced by plants, was added into the Cd-pyrene co-contaminated soils to evaluate its influence on phytoremediation of Cd and pyrene by Lolium multiflorum. The results showed that the accumulation of pyrene in L. multiflorum was significantly promoted by the TS. Compared with no TS treatments (PL and ML), the aboveground concentrations of pyrene in TS treatments (PLT and MLT) increased by 135 and 30%, respectively, and the underground concentrations of pyrene in TS treatments (PLT and MLT) increased by 40 and 25%. The concentrations of Cd in the aboveground and underground parts in single contaminated treatments were all significantly more than those in co-contaminated treatments, while the situation of pyrene was quite the reverse. Besides, the addition of TS enhanced activities of dehydrogenase and polyphenol oxidase in soils and increased the biomass of L. multiflorum. The micromorphology of L. multiflorum was not affected by TS. The study suggests that the use of L. multiflorum with TS is an alternative technology for remediation of Cd-pyrene co-contaminated soils.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, No.99, Shangda Road, Baoshan District, Shanghai, 200444, China
| | - Liya Cao
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, No.99, Shangda Road, Baoshan District, Shanghai, 200444, China
| | - Qian Wang
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, No.99, Shangda Road, Baoshan District, Shanghai, 200444, China
| | - Xinying Zhang
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, No.99, Shangda Road, Baoshan District, Shanghai, 200444, China.
| | - Xiaoxin Hu
- Laboratory of Environmental Remediation, College of Environment and Chemical Engineering, Shanghai University, No.99, Shangda Road, Baoshan District, Shanghai, 200444, China
| |
Collapse
|
29
|
Alves WS, Manoel EA, Santos NS, Nunes RO, Domiciano GC, Soares MR. Detection of polycyclic aromatic hydrocarbons (PAHs) in Medicago sativa L. by fluorescence microscopy. Micron 2017; 95:23-30. [DOI: 10.1016/j.micron.2017.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 11/26/2022]
|
30
|
Mohammad AH. Importance of soil physical characteristics for petroleum hydrocarbons phytoremediation: A review. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajest2016.2169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
31
|
Marchand C, Hogland W, Kaczala F, Jani Y, Marchand L, Augustsson A, Hijri M. Effect of Medicago sativa L. and compost on organic and inorganic pollutant removal from a mixed contaminated soil and risk assessment using ecotoxicological tests. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:1136-47. [PMID: 27216854 DOI: 10.1080/15226514.2016.1186594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Several Gentle Remediation Options (GRO), e.g., plant-based options (phytoremediation), singly and combined with soil amendments, can be simultaneously efficient for degrading organic pollutants and either stabilizing or extracting trace elements (TEs). Here, a 5-month greenhouse trial was performed to test the efficiency of Medicago sativa L., singly and combined with a compost addition (30% w/w), to treat soils contaminated by petroleum hydrocarbons (PHC), Co and Pb collected at an auto scrap yard. After 5 months, total soil Pb significantly decreased in the compost-amended soil planted with M. sativa, but not total soil Co. Compost incorporation into the soil promoted PHC degradation, M. sativa growth and survival, and shoot Pb concentrations [3.8 mg kg(-1) dry weight (DW)]. Residual risk assessment after the phytoremediation trial showed a positive effect of compost amendment on plant growth and earthworm development. The O2 uptake by soil microorganisms was lower in the compost-amended soil, suggesting a decrease in microbial activity. This study underlined the benefits of the phytoremediation option based on M. sativa cultivation and compost amendment for remediating PHC- and Pb-contaminated soils.
Collapse
Affiliation(s)
- Charlotte Marchand
- a Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal , Montréal , QC , Canada
| | - William Hogland
- b Department of Biology and Environmental Sciences , Linnaeus University , Kalmar , Sweden
| | - Fabio Kaczala
- b Department of Biology and Environmental Sciences , Linnaeus University , Kalmar , Sweden
| | - Yahya Jani
- b Department of Biology and Environmental Sciences , Linnaeus University , Kalmar , Sweden
| | | | - Anna Augustsson
- b Department of Biology and Environmental Sciences , Linnaeus University , Kalmar , Sweden
| | - Mohamed Hijri
- a Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal , Montréal , QC , Canada
| |
Collapse
|
32
|
Song Y, Li Y, Zhang W, Wang F, Bian Y, Boughner LA, Jiang X. Novel Biochar-Plant Tandem Approach for Remediating Hexachlorobenzene Contaminated Soils: Proof-of-Concept and New Insight into the Rhizosphere. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5464-71. [PMID: 27327363 DOI: 10.1021/acs.jafc.6b01035] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Volatilization of semi/volatile persistent organic pollutants (POPs) from soils is a major source of global POPs emission. This proof-of-concept study investigated a novel biochar-plant tandem approach to effectively immobilize and then degrade POPs in soils using hexachlorobenzene (HCB) as a model POP and ryegrass (Lolium perenne L.) as a model plant growing in soils amended with wheat straw biochar. HCB dissipation was significantly enhanced in the rhizosphere and near rhizosphere soils, with the greatest dissipation in the 2 mm near rhizosphere. This enhanced HCB dissipation likely resulted from (i) increased bioavailability of immobilized HCB and (ii) enhanced microbial activities, both of which were induced by ryegrass root exudates. As a major component of ryegrass root exudates, oxalic acid suppressed HCB sorption to biochar and stimulated HCB desorption from biochar and biochar-amended soils, thus increasing the bioavailability of HCB. High-throughput sequencing results revealed that the 2 mm near rhizosphere soil showed the lowest bacterial diversity due to the increased abundance of some genera (e.g., Azohydromonas, Pseudomonas, Fluviicola, and Sporocytophaga). These bacteria were likely responsible for the enhanced degradation of HCB as their abundance was exponentially correlated with HCB dissipation. The results from this study suggest that the biochar-plant tandem approach could be an effective strategy for remediating soils contaminated with semi/volatile organic contaminants.
Collapse
Affiliation(s)
- Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences , 71 East Beijing Road, Nanjing 210008, PR China
| | - Yang Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences , 71 East Beijing Road, Nanjing 210008, PR China
| | | | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences , 71 East Beijing Road, Nanjing 210008, PR China
| | - Yongrong Bian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences , 71 East Beijing Road, Nanjing 210008, PR China
| | | | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences , 71 East Beijing Road, Nanjing 210008, PR China
| |
Collapse
|
33
|
Ye J, Yin H, Peng H, Bai J, Li Y. Pyrene removal and transformation by joint application of alfalfa and exogenous microorganisms and their influence on soil microbial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:129-135. [PMID: 25232990 DOI: 10.1016/j.ecoenv.2014.08.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 06/03/2023]
Abstract
Phytoremediation is an attractive approach for the cleanup of polycyclic aromatic hydrocarbons-contaminated soil. The joint effect of alfalfa and microorganisms, including Arthrobacter oxydans, Staphylococcus auricularis and Stenotrophomonas maltophilia, on pyrene removal was investigated. The results showed that the joint effect primarily contributed to pyrene removal, and the concentration of residual pyrene in rhizosphere soil was lower than that in non-rhizosphere soil. After joint treatment for 45d, pyrene in rhizosphere soils decreased from 11.3, 52.5 and 106.0mg/kg to 2.0-3.0, 15.0-18.7, and 41.2-44.8mg/kg, respectively. These bacteria significantly enhanced pyrene accumulation and microbial community diversity, and increased soil dehydrogenase and polyphenol oxidase activities. Pyrene was initially degraded through ring cleavage. One of the main metabolites 4-dihydroxy-phenanthrene was transformed into naphthol and 1,2-dihydroxynaphthalene, which were further degraded through salicylic acid pathway and phthalic acid pathway, separately.
Collapse
Affiliation(s)
- Jinshao Ye
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hua Yin
- Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Jieqiong Bai
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yuepeng Li
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
34
|
Liu R, Xiao N, Wei S, Zhao L, An J. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 473-474:350-358. [PMID: 24374595 DOI: 10.1016/j.scitotenv.2013.12.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 06/03/2023]
Abstract
The rhizosphere effect of a special phytoremediating species known as Fire Phoenix on the degradation of polycyclic aromatic hydrocarbons (PAHs) was investigated, including changes of the enzymatic activity and microbial communities in rhizosphere soil. The study showed that the degradation rate of Σ8PAHs by Fire Phoenix was up to 99.40% after a 150-day culture. The activity of dehydrogenase (DHO), peroxidase (POD) and catalase (CAT) increased greatly, especially after a 60-day culture, followed by a gradual reduction with an increase in the planting time. The activity of these enzymes was strongly correlated to the higher degradation performance of Fire Phoenix growing in PAH-contaminated soils, although it was also affected by the basic characteristics of the plant species itself, such as the excessive, fibrous root systems, strong disease resistance, drought resistance, heat resistance, and resistance to barren soil. The activity of polyphenoloxidase (PPO) decreased during the whole growing period in this study, and the degradation rate of Σ8PAHs in the rhizosphere soil after having planted Fire Phoenix plants had a significant (R(2)=0.947) negative correlation with the change in the activity of PPO. Using an analysis of the microbial communities, the results indicated that the structure of microorganisms in the rhizosphere soil could be changed by planting Fire Phoenix plants, namely, there was an increase in microbial diversity compared with the unplanted soil. In addition, the primary advantage of Fire Phoenix was to promote the growth of flora genus Gordonia sp. as the major bacteria that can effectively degrade PAHs.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Nan Xiao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Lixing Zhao
- College of Science, Northeastern University, Shenyang 110004, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
35
|
Wang Y, Fang L, Lin L, Luan T, Tam NFY. Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons. CHEMOSPHERE 2014; 99:152-159. [PMID: 24287262 DOI: 10.1016/j.chemosphere.2013.10.054] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/29/2013] [Accepted: 10/16/2013] [Indexed: 06/02/2023]
Abstract
This work evaluated the roles of the low-molecular-weight organic acids (LMWOAs) from root exudates and the dehydrogenase activity in the rhizosphere sediments of three mangrove plant species on the removal of mixed PAHs. The results showed that the concentrations of LMWOAs and dehydrogenase activity changed species-specifically with the levels of PAH contamination. In all plant species, the concentration of citric acid was the highest, followed by succinic acid. For these acids, succinic acid was positively related to the removal of all the PAHs except Chr. Positive correlations were also found between the removal percentages of 4-and 5-ring PAHs and all LMWOAs, except citric acid. LMWOAs enhanced dehydrogenase activity, which positively related to PAH removal percentages. These findings suggested that LMWOAs and dehydrogenase activity promoted the removal of PAHs. Among three mangrove plants, Bruguiera gymnorrhiza, the plant with the highest root biomass, dehydrogenase activity and concentrations of LMWOAs, was most efficient in removing PAHs.
Collapse
Affiliation(s)
- Yuanyuan Wang
- MOE Key Laboratory of Aquatic Product Safety, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Ling Fang
- MOE Key Laboratory of Aquatic Product Safety, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li Lin
- MOE Key Laboratory of Aquatic Product Safety, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Tiangang Luan
- MOE Key Laboratory of Aquatic Product Safety, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Nora F Y Tam
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
36
|
Chigbo C, Batty L. Phytoremediation potential of Brassica juncea in Cu-pyrene co-contaminated soil: comparing freshly spiked soil with aged soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 129:18-24. [PMID: 23792886 DOI: 10.1016/j.jenvman.2013.05.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/06/2013] [Accepted: 05/22/2013] [Indexed: 05/24/2023]
Abstract
A comparison was made between the dissipation of pyrene as well as the uptake of copper (Cu) in soil freshly spiked with Cu, pyrene or Cu + pyrene and in aged soil. The potential of B juncea for phytoremediation was also investigated. The biomass of Brassica juncea significantly decreased (>50% reduction) in freshly spiked soil when compared to aged soil in all treatments. However, the accumulation of Cu in shoot was significantly reduced (60-88%) in aged soil after 60 days of planting. The total removal of Cu from co-contaminated soil was always higher (>2-3 fold) in aged soil than in freshly spiked soil when lower Cu concentration (50 mg kg(-1)) was co-contaminated with 250 or 500 mg kg(-1) of pyrene while in other co-contaminated treatments, the total removal of Cu from aged soil were significantly lower. The level of pyrene in both planted and un-planted freshly spiked soil decreased significantly (>67%) over the 60 days of plant trial. In aged soils, there were no significant differences in residual pyrene concentration between planted and unplanted soil. This suggests that the presence of B. juncea in aged soil did not enhance the dissipation of pyrene and that the prediction of pyrene dissipation in laboratory prepared soil may not have reflected the true situation in the fields.
Collapse
Affiliation(s)
- Chibuike Chigbo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, UK.
| | | |
Collapse
|
37
|
An overview of phytoremediation as a potentially promising technology for environmental pollution control. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-013-0193-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Li YY, Yang H. Bioaccumulation and degradation of pentachloronitrobenzene in Medicago sativa. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 119:143-150. [PMID: 23474338 DOI: 10.1016/j.jenvman.2013.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 06/01/2023]
Abstract
Pentachloronitrobenzene (PCNB) is a fungicide belonging to the organochlorine family and used extensively in agriculture for crop production. Many studies have implied that PCNB has become an environmental concern due to its widespread contamination in eco-systems. However, whether PCNB is bioaccumulated, degraded and phytotoxic in plants is poorly understood. In this study, several alfalfa (Medicago sativa) cultivars were grown in soil with PCNB to investigate their absorption and catabolism, including PCNB residues in the soil and PCNB-induced toxic responses in plants. Alfalfa plants varied widely in their ability to accumulate and degrade PCNB. The degradation rate of PCNB was 66.26-77.68% after alfalfa growth in the soils for 20 d, while the rates in the control (soil without alfalfa) were only 48.42%. Moreover, concentrations of PCNB residues in the rhizosphere soil were significantly higher than those in the non-rhizosphere soils. Alfalfa exposed to 10 mg kg(-1) PCNB showed inhibited growth and oxidative damage, but the effects of PCNB on the cultivars differed significantly, indicating that the alfalfa cultivars have different tolerance to PCNB. Activities of invertase (INV), urease (URE), polyphenol oxidase (PPO), alkaline phosphatase (ALP) and acid phosphatase (ACP) were assayed in the treated soils and showed that the enzyme activities were altered after PCNB exposure. The URE, PPO, ALP and ACP activities were increased in soil following the planting of alfalfa. The objective of the study was to analyze the potential of different cultivars of alfalfa to accumulate and degrade PCNB from the contaminated soil.
Collapse
Affiliation(s)
- Ying Ying Li
- Jiangsu Key Laboratory of Pesticide Science, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | | |
Collapse
|
39
|
Abstract
Aquatic plant, Scirpus triqueter, uptake of PAHs was investigated with test time for periods of 336h. The effect of APG, an environment-friendly surfactant, on the plant uptake and distribution characteristics of PAHs in root and shoot of the plant were detected. Concentrations of phenanthrene and pyrene in the Scirpus triqueter root increased sharply at the early stage and reached the peak at 16 h, but in shoots elevated significantly and reached the peak at 48h. APG did not show any apparent phytotoxity toward the growth of Scirpus triqueter in the test concentration range. APG(≤30 mg L-1) can enhance the root uptake and root concentration factors (RCF) of phenanthrene in plant, whereas APG(>30 mg L-1) may inhibit the PAHs uptake by the plant. Results indicate that the APG would be a preferred selection for the application of surfactant-enhanced phytoremediation and optimal concentration should be determined before the application of APG.
Collapse
|
40
|
Khan S, Afzal M, Iqbal S, Khan QM. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. CHEMOSPHERE 2013; 90:1317-32. [PMID: 23058201 DOI: 10.1016/j.chemosphere.2012.09.045] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 05/06/2023]
Abstract
Plant-bacteria partnerships have been extensively studied and applied to improve crop yield. In addition to their application in agriculture, a promising field to exploit plant-bacteria partnerships is the remediation of soil and water polluted with hydrocarbons. Application of effective plant-bacteria partnerships for the remediation of hydrocarbons depend mainly on the presence and metabolic activities of plant associated rhizo- and endophytic bacteria possessing specific genes required for the degradation of hydrocarbon pollutants. Plants and their associated bacteria interact with each other whereby plant supplies the bacteria with a special carbon source that stimulates the bacteria to degrade organic contaminants in the soil. In return, plant associated-bacteria can support their host plant to overcome contaminated-induced stress responses, and improve plant growth and development. In addition, plants further get benefits from their associated-bacteria possessing hydrocarbon-degradation potential, leading to enhanced hydrocarbon mineralization and lowering of both phytotoxicity and evapotranspiration of volatile hydrocarbons. A better understanding of plant-bacteria partnerships could be exploited to enhance the remediation of hydrocarbon contaminated soils in conjunction with sustainable production of non-food crops for biomass and biofuel production.
Collapse
Affiliation(s)
- Sumia Khan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | | | | |
Collapse
|