1
|
Jemli M, Karray F, Mansour L, Loukil S, Bouhdida R, Yadav KK, Sayadi S. Wastewater biotreatment and bioaugmentation for remediation of contaminated sites at an oil recycling plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:139-159. [PMID: 39882919 DOI: 10.2166/wst.2024.364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/08/2024] [Indexed: 01/31/2025]
Abstract
This work focused on the biotreatment of wastewater and contaminated soil in a used oil recycling plant located in Bizerte. A continuous stirred tank reactor (CSTR) and a trickling filter (TF) were used to treat stripped and collected wastewater, respectively. The CSTR was started up and stabilized for 90 days. Over the following 170 days, the operational organic loading rates of the TF and the CSTR were around 1,200 and 3,000 g chemical oxygen demand (COD) m-3 day-1, respectively. The treatment efficiency was 94% for total petroleum hydrocarbons (TPHs), 89.5% for COD, 83.34% for biological oxygen demand (BOD5), and 91.25% for phenol. Treated industrial wastewater from the TF was used for bioaugmentation (BA) of contaminated soil. The assessment of the soil took 24 weeks to complete. The effectiveness of the soil BA strategy was confirmed by monitoring phenolic compounds, aliphatic and polycyclic aromatic hydrocarbons, heavy metals, and germination index. The biodegradation rate of contaminants was improved and the time required for their removal was reduced. The soil bacterial communities were dominated by species of the genera Mycobacterium, Proteiniphilum, Nocardioides, Luteimicrobium, and Azospirillum, which were identified as hydrocarbon and phenol-degrading bacteria.
Collapse
Affiliation(s)
- Meryem Jemli
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451 Riyadh, Saudi Arabia E-mail:
| | - Slim Loukil
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Rihab Bouhdida
- The Tunisian Company of Lubricants SOTULUB, Industrial Zone, 7021 Zarzouna, Bizerte, Tunisia
| | - Krishna Kumar Yadav
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
2
|
Mathur J, Panwar R. Synergistic effect of pyrene and heavy metals (Zn, Pb, and Cd) on phytoremediation potential of Medicago sativa L. (alfalfa) in multi-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21012-21027. [PMID: 38383928 DOI: 10.1007/s11356-024-32499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The environment in India is contaminated with polycyclic aromatic hydrocarbons (PAHs) due to the occurrence of large anthropogenic activities, i.e., fuel combustion, mineral roasting, and biomass burning. Hence, 13 toxic PAHs were detected: phenanthrene, anthracene, fluoranthene, pyrene, and benz(a) anthracene, ben-zo; (b) fluoranthene, benzo(k) fluoranthene, benzo(a) pyrene, benzo(ghi)perylene, dibenz (ah) anthracene, indeno1,2,3-(cd) pyrene, coronene and coronene in the environment (i.e., ambient particulate matter, road dust, sludge, and sewage) of the most industrialized area. Pollutants such as heavy metals and polycyclic aromatic hydrocarbons co-contaminate the soil and pose a significant hazard to the ecosystem because these pollutants are harmful to both humans and the environment. Phytoremediation is an economical plant-based natural approach for soil clean-up that has no negative impact on ecosystems. The aim of this study was to investigate the effects of pyrene (500 mg kg-1), Zn (150 mg kg-1), Pb (150 mg kg-1), and Cd (150 mg kg-1) alone and in combination on the phytoextraction efficiency of Medicago sativa growing in contaminated soil. Plant biomass, biochemical activities, translocation factors, accumulation of heavy metals, and pyrene removal were determined. After 60 days of planting, compared with those of the control plants, the growth parameters, biomass, and chlorophyll content of the M. sativa plants were significantly lower, and the reactive oxygen species activity, such as proline and polyphenol content and metallothionein protein content, was markedly greater in the pyrene and heavy metal-polluted soils. Furthermore, the combined toxicity of pyrene and all three metals on M. sativa growth and biochemical parameters was significantly greater than that of pyrene, Zn, Pb, or Cd alone, indicating the synergistic effect of pyrene and heavy metals on cytotoxicity. Pyrene stress increased Cd accumulation in M. sativa. After pyrene exposure alone or in combination with Zn-pyrene, a greater pyrene removal rate (85.5-81.44%) was observed than that in Pb-pyrene, Cd-pyrene, and Zn-Pb-Cd-pyrene polluted soils (62.78-71.27%), indicating that zinc can enhance the removal of pyrene from contaminated soil. The resulting hypotheses demonstrated that Medicago sativa can be used as a promising phytoremediation agent for co-contaminated soil.
Collapse
Affiliation(s)
- Jyoti Mathur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India.
| | - Ritu Panwar
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
3
|
Zeng N, Huang C, Huang F, Du J, Wang D, Zhan X, Xing B. Transport proteins and their differential roles in the accumulation of phenanthrene in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108275. [PMID: 38103340 DOI: 10.1016/j.plaphy.2023.108275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The study focuses on the uptake, accumulation, and translocation of polycyclic aromatic hydrocarbons (PAHs) in cereals, specifically exploring the role of peroxidase (UniProt accession: A0A3B5XXD0, abbreviation: PX1) and unidentified protein (UniProt accession: A0A3B6LUC6, abbreviation: UP1) in phenanthrene solubilization within wheat xylem sap. This research aims to clarify the interactions between these proteins and phenanthrene. Employing both in vitro and in vivo analyses, we evaluated the solubilization capabilities of recombinant transport proteins for phenanthrene and examined the relationship between protein expression and phenanthrene concentration. UP1 displayed greater transport efficiency, while PX1 excelled at lower concentrations. Elevated PX1 levels contributed to phenanthrene degradation, marginally diminishing its transport. Spectral analyses and molecular dynamics simulations validated the formation of stable protein-phenanthrene complexes. The study offers crucial insights into PAH-related health risks in crops by elucidating the mechanisms of PAH accumulation facilitated by transport proteins.
Collapse
Affiliation(s)
- Nengde Zeng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Chenghao Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Fei Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Jiani Du
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Dongru Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
4
|
Lv H, Liang C, Liu W, Chen N, Li X, Wang Q, Yao X, Wang J, Zhu L, Wang J. Multi-level biological effects of diverse alkyl chains phthalate esters on cotton seedlings (Gossypium hirsutum L.): Insights into individual, physiological-biochemical and molecular perspectives. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132352. [PMID: 37619280 DOI: 10.1016/j.jhazmat.2023.132352] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Phthalate esters (PAEs) are organic contaminants that pose environmental threat and safety risks to soil health and crop production. However, the ecological toxicity of different PAEs to cotton and the underlying mechanisms are not clear. This study investigated the ecotoxic effects and potential mechanisms of different alkyl-chain PAEs, including dioctyl phthalate (DOP), dibutyl phthalate (DBP), and diethyl phthalate (DEP) on cotton seedlings at multiple levels. The results showed that PAEs significantly hindered the growth and development of cotton. The chlorophyll content decreased by 1.87-31.66 %, accompanied by non-stomatal photosynthetic inhibition. The antioxidant system was activated by the three PAEs in cotton seedlings, while the osmotic potential was boosted intracellularly. Additionally, PAEs significantly interfered with functional gene expression and exhibited genotoxicity. Risk assessment results indicated that the ecotoxicity was DOP >DBP >DEP, with a "dose-response" relationship. The affinity between the three PAEs and catalase increased as the alkyl chain length increased, further supporting the toxicity sequence. Surprisingly, the bioconcentration factors of short-chain DEP were 8.07 ± 5.89 times and 1837.49 ± 826.83 times higher than those of long-chain DBP and DOP, respectively. These results support the ecological risk assessment of PAEs in cotton and provide new insights into determining the toxicity levels of different PAEs.
Collapse
Affiliation(s)
- Huijuan Lv
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Chunliu Liang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Wenrong Liu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Na Chen
- Ningyang Environmental Monitoring Centre, Ningyang, Tai'an, Shandong 271400, China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China.
| |
Collapse
|
5
|
Gorshkov AP, Kusakin PG, Borisov YG, Tsyganova AV, Tsyganov VE. Effect of Triazole Fungicides Titul Duo and Vintage on the Development of Pea ( Pisum sativum L.) Symbiotic Nodules. Int J Mol Sci 2023; 24:8646. [PMID: 37240010 PMCID: PMC10217885 DOI: 10.3390/ijms24108646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Triazole fungicides are widely used in agricultural production for plant protection, including pea (Pisum sativum L.). The use of fungicides can negatively affect the legume-Rhizobium symbiosis. In this study, the effects of triazole fungicides Vintage and Titul Duo on nodule formation and, in particular, on nodule morphology, were studied. Both fungicides at the highest concentration decreased the nodule number and dry weight of the roots 20 days after inoculation. Transmission electron microscopy revealed the following ultrastructural changes in nodules: modifications in the cell walls (their clearing and thinning), thickening of the infection thread walls with the formation of outgrowths, accumulation of poly-β-hydroxybutyrates in bacteroids, expansion of the peribacteroid space, and fusion of symbiosomes. Fungicides Vintage and Titul Duo negatively affect the composition of cell walls, leading to a decrease in the activity of synthesis of cellulose microfibrils and an increase in the number of matrix polysaccharides of cell walls. The results obtained coincide well with the data of transcriptomic analysis, which revealed an increase in the expression levels of genes that control cell wall modification and defense reactions. The data obtained indicate the need for further research on the effects of pesticides on the legume-Rhizobium symbiosis in order to optimize their use.
Collapse
Affiliation(s)
- Artemii P. Gorshkov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (A.P.G.); (P.G.K.); (A.V.T.)
| | - Pyotr G. Kusakin
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (A.P.G.); (P.G.K.); (A.V.T.)
| | - Yaroslav G. Borisov
- Research Resource Centre “Molecular and Cell Technologies”, Saint Petersburg State University, Saint Petersburg 199034, Russia;
| | - Anna V. Tsyganova
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (A.P.G.); (P.G.K.); (A.V.T.)
| | - Viktor E. Tsyganov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (A.P.G.); (P.G.K.); (A.V.T.)
- Saint Petersburg Scientific Center RAS, Universitetskaya Embankment 5, Saint Petersburg 199034, Russia
| |
Collapse
|
6
|
Mercado SAS, Galvis DGV. Paracetamol ecotoxicological bioassay using the bioindicators Lens culinaris Med. and Pisum sativum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61965-61976. [PMID: 36934188 PMCID: PMC10024602 DOI: 10.1007/s11356-023-26475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Paracetamol is one of the most widely used drugs worldwide, yet its environmental presence and hazardous impact on non-target organisms could rapidly increase. In this study, the possible cytotoxic effects of paracetamol were evaluated using two bioindicator plants Lens culinaris and Pisum sativum. Concentrations of 500, 400, 300, 200, 100, 50, 25, 5, 1 mg L-1, and a control (distilled water) were used for a total of 10 treatments, which were subsequently applied on seeds of Lens culinaris Med. and Pisum sativum L.; after 72 h of exposure, root growth, mitotic index, percentage of chromosomal abnormalities, and the presence of micronucleus were evaluated. The cytotoxic effect of paracetamol on L. culinaris and P. sativum was demonstrated, reporting the inhibition of root growth, the presence of abnormalities, and a significant micronucleus index at all concentrations used, which shows that this drug has a high degree of toxicity.
Collapse
|
7
|
Li H, Li Y, Li X, Chen XW, Chen A, Wu L, Wong MH, Li H. Low-Arsenic Accumulating Cabbage Possesses Higher Root Activities against Oxidative Stress of Arsenic. PLANTS (BASEL, SWITZERLAND) 2023; 12:1699. [PMID: 37111922 PMCID: PMC10146792 DOI: 10.3390/plants12081699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Cabbage grown in contaminated soils can accumulate high levels of arsenic (As) in the edible parts, posing serious health risks. The efficiency of As uptake varies drastically among cabbage cultivars, but the underlying mechanisms are not clear. We screened out low (HY, Hangyun 49) and high As accumulating cultivars (GD, Guangdongyizhihua) to comparatively study whether the As accumulation is associated with variations in root physiological properties. Root biomass and length, reactive oxygen species (ROS), protein content, root activity, and ultrastructure of root cells of cabbage under different levels of As stress (0 (control), 1, 5, or 15 mg L-1) were measured As results, at low concentration (1 mg L-1), compared to GD, HY reduced As uptake and ROS content, and increased shoot biomass. At a high concentration (15 mg L-1), the thickened root cell wall and higher protein content in HY reduced arsenic damage to root cell structure and increased shoot biomass compared to GD. In conclusion, our results highlight that higher protein content, higher root activity, and thickened root cell walls result in lower As accumulation properties of HY compared to GD.
Collapse
Affiliation(s)
- Hanhao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yongtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xing Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xun Wen Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Aoyu Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Panwar R, Mathur J. Comparative analysis of remediation efficiency and ultrastructural translocalization of polycyclic aromatic hydrocarbons in Medicago sativa, Helianthus annuus, and Tagetes erecta. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1743-1761. [PMID: 36935611 DOI: 10.1080/15226514.2023.2189967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are semi-volatile anthropogenic contaminants that can damage soil fertility and threaten the environment due to their hazardous effects on various ecological parameters. The experimental objective was divided into two parts because PAHs are always present in mixtures. The toxicity of anthracene, phenanthrene, pyrene, and fluoranthene was examined and investigated the potential of three phytoremediator plants species viz Tagetes erecta, Helianthus annuus, and Medicago sativa for remediation and translocation of individual PAH. PAHs were shown to have inhibitory or stimulating effects on growth, antioxidant properties, and impact on the structure of plant cells. The result showed that M. sativa significantly enhances the removal rate of PAHs in the soil. The dissipation rate reached 96.2% in M. sativa planted soil, followed by H. annuus and T. erecta. Among the plant species, M. sativa exhibited the highest root and shoot concentrations (314.37 and 169.55 mg kg-1), while the lowest concentration was 187.56 and 76.60 mg kg-1 in T. erecta. SEM-EDX and fluorescence micrographs confirmed that pyrene altered plant tissue's ultrastructure and cell viability and was found to be the most toxic and resistant. M. sativa was proven to be the most effective plant for the mitigation of PAHs.
Collapse
Affiliation(s)
- Ritu Panwar
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, India
| | - Jyoti Mathur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
9
|
Voloshina M, Rajput VD, Chernikova N, Minkina T, Vechkanov E, Mandzhieva S, Voloshin M, Krepakova M, Dudnikova T, Sushkova S, Plotnikov A. Physiological and Biochemical Responses of Solanum lycopersicum L. to Benzo[a]pyrene Contaminated Soils. Int J Mol Sci 2023; 24:ijms24043741. [PMID: 36835172 PMCID: PMC9963405 DOI: 10.3390/ijms24043741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Benzo[a]pyrene (BaP) is noted as one of the main cancer-causing pollutants in human beings and may damage the development of crop plants. The present work was designed to explore more insights into the toxic effects of BaP on Solanum lycopersicum L. at various doses (20, 40, and 60 MPC) spiked in Haplic Chernozem. A dose-dependent response in phytotoxicity were noted, especially in the biomass of the roots and shoots, at doses of 40 and 60 MPC BaP and the accumulation of BaP in S. lycopersicum tissues. Physiological and biochemical response indices were severely damaged based on applied doses of BaP. During the histochemical analysis of the localization of superoxide in the leaves of S. lycopersicum, formazan spots were detected in the area near the leaf's veins. The results of a significant increase in malondialdehyde (MDA) from 2.7 to 5.1 times, proline 1.12- to 2.62-folds, however, a decrease in catalase (CAT) activity was recorded by 1.8 to 1.1 times. The activity of superoxide dismutase (SOD) increased from 1.4 to 2, peroxidase (PRX) from 2.3 to 5.25, ascorbate peroxidase (APOX) by 5.8 to 11.5, glutathione peroxidase (GP) from 3.8 to 7 times, respectively. The structure of the tissues of the roots and leaves of S. lycopersicum in the variants with BaP changed depending on the dose: it increased the intercellular space, cortical layer, and the epidermis, and the structure of the leaf tissues became looser.
Collapse
Affiliation(s)
- Marina Voloshina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
- Correspondence: or
| | - Natalia Chernikova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Evgeniy Vechkanov
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Mark Voloshin
- Moscow Clinical Scientific Center Named after Loginov MHD, Moscow 111123, Russia
| | - Maria Krepakova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Tamara Dudnikova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Andrey Plotnikov
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| |
Collapse
|
10
|
Svobodníková L, Kummerová M, Zezulka Š, Martinka M, Klemš M, Čáslavský J. Pea root responses under naproxen stress: changes in the formation of structural barriers in the primary root in context with changes of auxin and abscisic acid levels. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1-11. [PMID: 36542231 DOI: 10.1007/s10646-022-02613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Pharmaceuticals belong to pseudo-persistent pollutants because of constant entry into the environment and hazardous potential for non-target organisms, including plants, in which they can influence biochemical and physiological processes. Detailed analysis of results obtained by microscopic observations using fluorescent dyes (berberine hemisulphate, Fluorol Yellow 088), detection of phytohormone levels (radioimmunoassay, enzyme-linked immune sorbent assay) and thermogravimetric analysis of lignin content proved that the drug naproxen (NPX) can stimulate the formation of root structural barriers. In the primary root of plants treated with 0.5, 1, and 10 mg/L NPX, earlier Casparian strip formation and development of the whole endodermis circle closer to its apex were found after five days of cultivation (by 9-20% as compared to control) and after ten days from 0.1 mg/L NPX (by 8-63%). Suberin lamellae (SL) were deposited in endodermal cells significantly closer to the apex under 10 mg/L NPX by up to 75%. Structural barrier formation under NPX treatment can be influenced indirectly by auxin-supported cell division and differentiation caused by its eight-times higher level under 10 mg/L NPX and directly by stimulated SL deposition induced by abscisic acid (higher from 0.5 mg/L NPX), as proved by the higher proportion of cells with SL in the primary root base (by 8-44%). The earlier modification of endodermis in plant roots can help to limit the drug transfer and maintain the homeostasis of the plant.
Collapse
Affiliation(s)
- Lucie Svobodníková
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Marie Kummerová
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Štěpán Zezulka
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Science, Comenius University in Bratislava, Mlynská dolina B2, 842 15, Bratislava, Slovakia
| | - Marek Klemš
- Institute of Plant Biology, Faculty of Agronomy, Mendel University Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Josef Čáslavský
- Laboratory of Metabolomics and Isotope Analyses, Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| |
Collapse
|
11
|
Mendoza NGA, Mercado SAS. Cytogenotoxicity of fifth-generation quaternary ammonium using three plant bioindicators. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103972. [PMID: 36089239 DOI: 10.1016/j.etap.2022.103972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The investigation aimed to determine the cytogenotoxic effect of fifth-generation quaternary ammonium using three plant species as bioindicators. Bulbs of A. cepa and seeds of L. culinaris and P. sativum were exposed to different concentrations of fifth-generation quaternary ammonium and a control solution of distilled water for 72 h. The results showed that the A. cepa bioindicator presented the greatest reduction in root length at 50 mg L-1 and no mitotic index at 40 and 50 mg L-1, reaching 100% mitotic inhibition. Cell abnormalities were present among the three bioindicator species, where the highest index of micronuclei occurred at 50 mg L-1, being A. cepa the bioindicator with the highest relative rate of abnormality (25.28%). It was concluded that fifth-generation quaternary ammonium, in all treatments, caused a cytogenotoxic effect on the apical meristematic cells of the three species, A. cepa was the most sensitive species.
Collapse
Affiliation(s)
| | - Seir Antonio Salazar Mercado
- Departamento de Biología, Universidad Francisco de Paula Santander, Avenida Gran Colombia No. 12E-96B, Colsag, San José de Cúcuta, Colombia.
| |
Collapse
|
12
|
Wang X, Wang Y, Zhao X, Chen B, Kong N, Shangguan L, Zhang X, Xu Y, Hu F. The association between phenanthrene and nutrients uptake in lotus cultivar 'Zhongguo Hong Beijing'. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62272-62280. [PMID: 35397727 DOI: 10.1007/s11356-022-19996-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
It has been well documented that polycyclic aromatic hydrocarbon (PAHs) can be taken up from the environment by the plants and translocated into the shoots. However, the mechanisms underlying this process are poorly understood. Nelumbo nucifera L. (lotus) is a highly ornamental aquatic plant known to possess strong phytoremediation capability. In the present study, the association between phenanthrene (Phe) and nutrients, including nitrogen (N) and phosphorus (P), in lotus was investigated. Over 2 years, all eight lotus cultivars tested accumulated Phe to various degrees when grown in PAH-polluted sediment (0.46 mg/kg Phe). Cluster analysis showed N. nucifera 'Zhongguo Hong Beijing (ZHB)' was the one with the highest Phe levels in the leaves and petals in 2 years. The Phe concentrations in the tissues of 'ZHB' were 3.14 mg/kg and 1.63 mg/kg on average in the first and second year, respectively. Interestingly, 'ZHB' was also the cultivar with the lowest N and P levels considering 2 years and tissues. Hydroponic studies further revealed a negative association between the concentrations of Phe and those of N and P in the aerial tissues under 0.5 and 1.0 mg/L Phe treatments in 'ZHB'. Furthermore, the significant reductions of the roots number (72.6%), longest root length (75.8%), and petiolar height (34.6%) in 'ZHB' seedlings exposed to 1.0 mg/L Phe were observed, indicating that Phe retarded the growth of lotus. These results provide a new understanding of the accumulation of Phe in plants and the association with nutrients and enrich the basis of phytoremediation to the contaminated environment.
Collapse
Affiliation(s)
- Xiaowen Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyan Zhao
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing, 210019, China
| | - Bingqiong Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nannan Kong
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingfei Shangguan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Wuhu Dongyuan New Rural Development Co., Ltd in Anhui Province, Wuhu, 241000, China
| | - Xiaobin Zhang
- Wuhu Dongyuan New Rural Development Co., Ltd in Anhui Province, Wuhu, 241000, China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
13
|
Di Lodovico E, Marchand L, Oustrière N, Burges A, Capdeville G, Burlett R, Delzon S, Isaure MP, Marmiroli M, Mench MJ. Potential ability of tobacco (Nicotiana tabacum L.) to phytomanage an urban brownfield soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29314-29331. [PMID: 34661843 PMCID: PMC8521509 DOI: 10.1007/s11356-021-16411-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
The ability of tobacco (Nicotiana tabacum L. cv. Badischer Geudertheimer) for phytomanaging and remediating soil ecological functions at a contaminated site was assessed with a potted soil series made by fading an uncontaminated sandy soil with a contaminated sandy soil from the Borifer brownfield site, Bordeaux, SW France, at the 0%, 25%, 50%, 75%, and 100% addition rates. Activities of sandblasting and painting with metal-based paints occurred for decades at this urban brownfield, polluting the soil with metal(loid)s and organic contaminants, e.g., polycyclic aromatic hydrocarbons, in addition to past backfilling. Total topsoil metal(loid)s (e.g., 54,700 mg Zn and 5060 mg Cu kg-1) exceeded by seven- to tenfold the background values for French sandy soils, but the soil pH was 7.9, and overall, the 1M NH4NO3 extractable soil fractions of metals were relatively low. Leaf area, water content of shoots, and total chlorophyll (Chl) progressively decreased with the soil contamination, but the Chl fluorescence remained constant near its optimum value. Foliar Cu and Zn concentrations varied from 17.8 ± 4.2 (0%) to 27 ± 5 mg Cu kg-1 (100%) and from 60 ± 15 (0%) to 454 ± 53 mg Zn kg-1 (100%), respectively. Foliar Cd concentration peaked up to 1.74 ± 0.09 mg Cd kg-1, and its bioconcentration factor had the highest value (0.2) among those of the metal(loid)s. Few nutrient concentrations in the aboveground plant parts decreased with the soil contamination, e.g., foliar P concentration from 5972 ± 1026 (0%) to 2861 ± 334 mg kg-1 (100%). Vulnerability to drought-induced embolism (P50) did not differ for the tobacco stems across the soil series, whereas their hydraulic efficiency (Ks) declined significantly with increasing soil contamination. Overall, this tobacco cultivar grew relatively well even in the Borifer soil (100%), keeping its photosynthetic system healthy under stress, and contaminant exposure did not increase the vulnerability of the vascular system to drought. This tobacco had a relevant potential to annually phytoextract a part of the bioavailable soil Zn and Cd, i.e., shoot removals representing here 8.8% for Zn and 43.3% for Cd of their 1M NH4NO3 extractable amount in the potted Borifer soil.
Collapse
Affiliation(s)
- Eliana Di Lodovico
- Univ. Parma, via Universita 12, 43121 Parma, Italy
- Univ. Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, F-33615 Pessac cedex, France
| | - Lilian Marchand
- Univ. Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, F-33615 Pessac cedex, France
| | - Nadège Oustrière
- Univ. Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, F-33615 Pessac cedex, France
| | - Aritz Burges
- Univ. Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, F-33615 Pessac cedex, France
| | - Gaelle Capdeville
- Univ. Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, F-33615 Pessac cedex, France
| | - Régis Burlett
- Univ. Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, F-33615 Pessac cedex, France
| | - Sylvain Delzon
- Univ. Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, F-33615 Pessac cedex, France
| | - Marie-Pierre Isaure
- Univ. Pau et Pays de l’Adour, E2S UPPA, CNRS, IPREM-UMR 5254, Hélioparc, 2 Avenue Pierre Angot, F-64053 Pau cedex9, France
| | | | - Michel J. Mench
- Univ. Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, F-33615 Pessac cedex, France
| |
Collapse
|
14
|
Wang X, Jain A, Huang X, Lan X, Xu L, Zhao G, Cong X, Zhang Z, Fan X, Hu F. Reducing phenanthrene uptake and translocation, and accumulation in the seeds by overexpressing OsNRT2.3b in rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143690. [PMID: 33348216 DOI: 10.1016/j.scitotenv.2020.143690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
The uptake and accumulation of polycyclic aromatic hydrocarbons (PAHs) in crops have gained much attention due to their toxicity to humans. Nitrogen (N) is an essential element for plant growth and has also been implicated in the acquisition and acropetal translocation of PAHs. OsNRT2.3b encodes a nitrate (NO3-) transporter that is involved in the acquisition and mobilization of N in rice. Here, we investigated whether overexpression of OsNRT2.3b would exert any mitigating influence on the uptake and translocation of phenanthrene (Phe, a model PAH) in transgenic rice (Oryza sativa). The wild-type seedlings exhibited a reduction in plant height, primary root length, and shoot biomass when grown hydroponically in a medium supplemented with Phe. Acquisition of Phe by the roots and its subsequent translocation to shoots increased concomitantly with an increase in Phe concentration in the medium and duration of the treatment. OsNRT2.3b-overexpressing lines (Ox-6 and Ox-8) were generated independently. Compared with the wild-type, the concentration of Phe in Ox-6 and Ox-8 were significantly lower in the roots (47%-54%) and shoots (22%-31%) grown hydroponically with Phe (1 mg/L). Further, the wild-type and Ox lines were grown to maturity in a pot soil under Phe conditions and the concentrations of Phe and total N were assayed in the culms and flag leaves. Compared with the wild-type, in Ox lines the concentration of total N significantly increased in the culms (288%-366%) and flag leaves (12%-25%), while that of Phe significantly reduced in the culms (25%-28%) and flag leaves (18%-21%). The results revealed an antagonistic correlation between the concentration of total N and Phe. The concentration of Phe was also significantly lower (29%-38%) in the seeds of Ox lines than the wild-type. The study highlighted the efficacy of overexpressing OsNRT2.3b in mitigating the Phe toxicity by attenuating its acquisition, mobilization, and allocation to the seeds.
Collapse
Affiliation(s)
- Xiaowen Wang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Xu Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxia Lan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Gengmao Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Cong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhantian Zhang
- Institute of Plant Protection & Resource and Environment, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Svobodníková L, Kummerová M, Zezulka Š, Babula P, Sendecká K. Root response in Pisum sativum under naproxen stress: Morpho-anatomical, cytological, and biochemical traits. CHEMOSPHERE 2020; 258:127411. [PMID: 32947668 PMCID: PMC7308076 DOI: 10.1016/j.chemosphere.2020.127411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 05/04/2023]
Abstract
Non-steroidal anti-inflammatory drugs as an important group of emerging environmental contaminants in irrigation water and soils can influence biochemical and physiological processes essential for growth and development in plants as non-target organisms. Plants are able to take up, transport, transform, and accumulate drugs in the roots. Root biomass in ten-days old pea plants was lowered by 6% already under 0.1 mg/L naproxen (NPX) due to a lowered number of lateral roots, although 0.5 mg/L NPX stimulated the total root length by 30% as against control. Higher section area (by 40%) in root tip, area of xylem (by 150%) or stele-to-section ratio (by 10%) in zone of maturation, and lower section area in zone of lateral roots (by 18%) prove the changes in primary root anatomy and its earlier differentiation at 10 mg/L NPX. Accumulated NPX (up to 10 μg/g DW at 10 mg/L) and products of its metabolization in roots increased the amounts of hydrogen peroxide (by 33%), and superoxide (by 62%), which was reflected in elevated lipid peroxidation (by 32%), disruption of membrane integrity (by 89%) and lowering both oxidoreductase and dehydrogenase activities (by up to 40%). Elevated antioxidant capacity (SOD, APX, and other molecules) under low treatments decreased at 10 mg/L NPX (both by approx. 30%). Naproxen was proved to cause changes at both cellular and tissue levels in roots, which was also reflected in their anatomy and morphology. Higher environmental loading through drugs thus can influence even the root function.
Collapse
Affiliation(s)
- Lucie Svobodníková
- Section of Experimental Plant Biology, Dep. of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Marie Kummerová
- Section of Experimental Plant Biology, Dep. of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Štěpán Zezulka
- Section of Experimental Plant Biology, Dep. of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 753/5, 625 00, Brno, Czech Republic.
| | - Katarína Sendecká
- Laboratory of Metabolomics and Isotope Analyses, Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| |
Collapse
|
16
|
Agoun-Bahar S, Djebbar R, Nait Achour T, Abrous-Belbachir O. Soil-to-plant transfer of naphthalene and its effects on seedlings pea ( Pisum sativum L.) grown on contaminated soil. ENVIRONMENTAL TECHNOLOGY 2019; 40:3713-3723. [PMID: 29883289 DOI: 10.1080/09593330.2018.1485752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
The aim of this work was to determinate effect of naphthalene at different concentrations on morphological, physiological and some metabolic responses of pea seedlings. The quantification of naphthalene and its by-products were also recorded by Gas Chromatography/ Mass Spectrometry (GC / MS) in soil and in the different plant parts (roots, stems, leaves and fruit). In our controlled laboratory studies, plants exposed to naphthalene were able to efficiently grow and maintain their content of chlorophyll and carotenoids comparatively to the control plants. However, the pollutant slightly increased the amounts of fatty acid peroxides and strongly those of malonyldialdehyde, the product of lipid peroxidation. The glutathione S transferase activity was also increased for all concentrations used especially in leaves. Chromatograms showed that naphthalene has fallen sharply in the soil or even disappeared for the highest concentration from the second to third week. Furthermore, the removal ratio of 67% of the pollutant from the soil was distributed between two metabolites (ion 47 and ion 59) in the leaves for this same concentration in only three weeks of cultivation. In parallel, the amount of pollutant remained higher in unvegetated control soil. These results suggest that seedlings of pea (Pisum sativum L.) can remove naphthalene from contaminated soil and consequently have a high potential to be used as a promising candidate for the phytoremediation of naphthalene-contaminated soil.
Collapse
Affiliation(s)
- S Agoun-Bahar
- Laboratoire de Biologie et Physiologie des Organismes (LBPO), Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algérie
| | - R Djebbar
- Laboratoire de Biologie et Physiologie des Organismes (LBPO), Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algérie
| | - T Nait Achour
- Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS, Université de Montpellier, Montpellier, France
| | - O Abrous-Belbachir
- Laboratoire de Biologie et Physiologie des Organismes (LBPO), Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algérie
| |
Collapse
|
17
|
Sivaram AK, Logeshwaran P, Lockington R, Naidu R, Megharaj M. Phytoremediation efficacy assessment of polycyclic aromatic hydrocarbons contaminated soils using garden pea (Pisum sativum) and earthworms (Eisenia fetida). CHEMOSPHERE 2019; 229:227-235. [PMID: 31078879 DOI: 10.1016/j.chemosphere.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Endpoint assessment using biological systems in combination with the chemical analysis is important for evaluating the residual effect of contaminants following remediation. In this study, the level of residual toxicity of polycyclic aromatic hydrocarbons (PAHs) after 120 days of phytoremediation with five different plant species:- maize (Zea mays), Sudan grass (Sorghum sudanense), vetiver (Vetiveria zizanioides), sunflower (Helianthus annuus) and wallaby grass (Austrodanthonia sp.) has been evaluated by ecotoxicological tests such as root nodulation and leghaemoglobin assay using garden pea (Pisum sativum) and acute, chronic and genotoxicity assays using earthworm (Eisenia fetida). The phytoremediated soil exhibited lesser toxicity supporting improved root nodulation and leghaemoglobin content in P. sativum and reducing DNA damage in E. fetida when compared to contaminated soil before remediation. Also, the results of the ecotoxicological assays with the legume and earthworm performed in this study complemented the results obtained by the chemical analysis of PAHs in phytoremediated soil. Therefore, these findings provide a basis for a framework in which remediation efficacy of PAHs-contaminated sites can be evaluated effectively with simple ecotoxicological bioassays using legumes and earthworms.
Collapse
Affiliation(s)
- Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Adelaide, SA, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia
| | - Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Adelaide, SA, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia
| | - Robin Lockington
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Adelaide, SA, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Adelaide, SA, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Adelaide, SA, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia.
| |
Collapse
|
18
|
Bouknana D, Jodeh S, Sbaa M, Hammouti B, Arabi M, Darmous A, Slamini M, Haboubi K. A phytotoxic impact of phenolic compounds in olive oil mill wastewater on fenugreek "Trigonella foenum-graecum". ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:405. [PMID: 31144085 DOI: 10.1007/s10661-019-7541-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
The objective of this study is the determination of the chemical structure of nine phenolic molecules responsible for the phytotoxic action on the germination of the plant species "Trigonella foenum-graecum". The phytotoxic action was evaluated by calculating the germination index of the plant species for a period of 5 days of incubation. The analysis of the physicochemical properties of phenolic molecules shows that hydrophobicity is a key factor in phytotoxicity. The sublethal concentration varies as follows: hydroquinone (0.91 mM), 4-aminophenol (0.85 mM), phenol (0.75 mM), gallic acid (0.59 mM), caffeic acid (0.56 mM), 3,5-di-tert-butylcatechol (0,45 mM), quercetin (0.33 mM), oleuropein (0.3 mM), and catechol (0.13 mM). Phytotoxicity varies depending on the nature and position of the substituents on the aromatic ring. The reactivity of this type of molecule is partly linked to the presence of catechol function that can play the main role in phytotoxicity of the Fenugreek.
Collapse
Affiliation(s)
- Driss Bouknana
- Department of Chemistry, Laboratory of Applied Analytical Chemistry, Materials and Environment, Faculty of Sciences, University Mohammed first, BP 4808, 60046, Oujda, Morocco.
- Department of Biology, Laboratory of Water Sciences, Ecology and Sustainable Development (LWESD), Faculty of Sciences, University Mohammed first, BC 717, 60000, Oujda, Morocco.
| | - Shehdeh Jodeh
- Department of Chemistry, An-Najah National University, P. O. Box 7, Nablus, State of Palestine, Palestine.
| | - Mohamed Sbaa
- Department of Biology, Laboratory of Water Sciences, Ecology and Sustainable Development (LWESD), Faculty of Sciences, University Mohammed first, BC 717, 60000, Oujda, Morocco
| | - Belkheir Hammouti
- Department of Chemistry, Laboratory of Applied Analytical Chemistry, Materials and Environment, Faculty of Sciences, University Mohammed first, BP 4808, 60046, Oujda, Morocco
| | - Mourad Arabi
- Department of Biology, Laboratory of Water Sciences, Ecology and Sustainable Development (LWESD), Faculty of Sciences, University Mohammed first, BC 717, 60000, Oujda, Morocco
| | - Ahmed Darmous
- Department of Biology, Laboratory of Water Sciences, Ecology and Sustainable Development (LWESD), Faculty of Sciences, University Mohammed first, BC 717, 60000, Oujda, Morocco
| | - Maryam Slamini
- Department of Biology, Laboratory of Water Sciences, Ecology and Sustainable Development (LWESD), Faculty of Sciences, University Mohammed first, BC 717, 60000, Oujda, Morocco
| | - Khadija Haboubi
- Head of the Research Team "Materials, Energy and Environment" National School of Applied Sciences, Al Hoceima, Morocco
| |
Collapse
|
19
|
Zezulka Š, Kummerová M, Babula P, Hájková M, Oravec M. Sensitivity of physiological and biochemical endpoints in early ontogenetic stages of crops under diclofenac and paracetamol treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3965-3979. [PMID: 30552611 DOI: 10.1007/s11356-018-3930-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Early stages of ontogenesis determining subsequent growth, development, and productivity of crops can be affected by wastewater and sludge contaminated with pharmaceuticals. Diclofenac (DCF) and paracetamol (PCT; both 0.0001 to 10 mg/L) did not affect seed germination and primary root length of onion, lettuce, pea, and tomato. Conversely, 20-day-old pea and maize plants exhibited decrease in biomass production, leaf area (by approx. 40% in pea and 70% in maize under 10 mg/L DCF), or content of photosynthetic pigments (by 10% and 60% under 10 mg/L PCT). Quantum yields of photosystem II were reduced only in maize (FV/FM and ΦII by more than 40% under 10 mg/L of both pharmaceuticals). Contents of H2O2 and superoxide increased in roots of both species (more than four times under 10 mg/L PCT in pea). Activities of antioxidant enzymes were elevated in pea under DCF treatments, but decreased in maize under both pharmaceuticals. Oxidative injury of root cells expressed as lowered oxidoreductase activity (MTT assay, by 40% in pea and 80% in maize) and increase in malondialdehyde content (by 60% and 100%) together with the membrane integrity disruption (higher Evans Blue accumulation, by 100% in pea and 300% in maize) confirmed higher sensitivity of maize as a C4 monocot plant to both pharmaceuticals.
Collapse
Affiliation(s)
- Štěpán Zezulka
- Department of Plant Physiology and Anatomy (ÚEB-FAR), Institute of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 267/2, 611 37, Brno, Czech Republic.
| | - Marie Kummerová
- Department of Plant Physiology and Anatomy (ÚEB-FAR), Institute of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Petr Babula
- Dep. of Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Markéta Hájková
- Department of Plant Physiology and Anatomy (ÚEB-FAR), Institute of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Michal Oravec
- Laboratory of Metabolomics and Isotope Analyses, Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| |
Collapse
|
20
|
Zelko I, Ouvrard S, Sirguey C. Roots alterations in presence of phenanthrene may limit co-remediation implementation with Noccaea caerulescens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19653-19661. [PMID: 28681304 DOI: 10.1007/s11356-017-9592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Co-phytoremediation of both trace elements and polycyclic aromatic hydrocarbons (PAH) is an emerging technique to treat multi-contaminated soils. In this study, root morphological and structural features of the heavy metal hyperaccumulator Noccaea caerulescens, exposed to a model PAH phenanthrene (PHE) in combination with cadmium (Cd), were observed. In vitro cultivated seedlings were exposed to 2 mM of PHE and/or 5 μM of Cd for 1 week. Co-phytoremediation effectiveness appeared restricted because of a serious inhibition (about 40%) of root and shoot biomass production in presence of PHE, while Cd had no significant adverse effect on these parameters. The most striking effects of PHE on roots were a decreased average root diameter, the inhibition of cell and root hair elongation and the promotion of lateral root formation. Moreover, endodermal cells with suberin lamellae appeared closer to the root apex when exposed to PHE compared to control and Cd treatments, possibly due to modified lateral root formation. The stage with well-developed suberin lamellae was not influenced by PHE whereas peri-endodermal layer development was impaired in PHE-treated plants. Many of these symptoms were similar to a water-deficit response. These morphological and structural root modifications in response to PHE exposition might in turn limit Cd phytoextraction by N. caerulescens in co-contaminated soils.
Collapse
Affiliation(s)
- Ivan Zelko
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine, Vandoeuvre-lès-, 54518, Nancy, France
- INRA, Laboratoire Sols et Environnement, UMR 1120, 2 avenue de la Forêt de Haye-TSA 40602-, 54518, Vandoeuvre-lès-Nancy Cedex, France
- Slovak Academy of Sciences, Institute of Chemistry, Dúbravská cesta 9, Bratislava, SK, 845 38, Slovak Republic
| | - Stéphanie Ouvrard
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine, Vandoeuvre-lès-, 54518, Nancy, France
- INRA, Laboratoire Sols et Environnement, UMR 1120, 2 avenue de la Forêt de Haye-TSA 40602-, 54518, Vandoeuvre-lès-Nancy Cedex, France
| | - Catherine Sirguey
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine, Vandoeuvre-lès-, 54518, Nancy, France.
- INRA, Laboratoire Sols et Environnement, UMR 1120, 2 avenue de la Forêt de Haye-TSA 40602-, 54518, Vandoeuvre-lès-Nancy Cedex, France.
| |
Collapse
|
21
|
Jin L, Che X, Zhang Z, Li Y, Gao H, Zhao S. The mechanisms by which phenanthrene affects the photosynthetic apparatus of cucumber leaves. CHEMOSPHERE 2017; 168:1498-1505. [PMID: 27939666 DOI: 10.1016/j.chemosphere.2016.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/01/2016] [Accepted: 12/01/2016] [Indexed: 05/28/2023]
Abstract
Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) that is widely distributed in the environment and seriously affects the growth and development of plants. To clarify the mechanisms of the direct effects of phenanthrene on the plant photosynthetic apparatus, we measured short-term phenanthrene-treated cucumber leaves. Phenanthrene inhibited Rubisco carboxylation activity, decreasing photosynthesis rates (Pn). And phenanthrene inhibited photosystem II (PSII) activity, thereby blocking photosynthetic electron transport. The inhibition of the light and dark reactions decreased the photosynthetic electron transport rate (ETR) and increased the excitation pressure (1-qP). Under high light, the maximum photochemical efficiency of photosystem II (Fv/Fm) in phenanthrene-treated cucumber leaves decreased significantly, but photosystem I (PSI) activity (Δ I/Io) did not. Phenanthrene also caused a J-point rise in the OJIP curve under high light, which indicated that the acceptor side of PSII QA to QB electron transfer was restricted. This was primarily due to the net degradation of D1 protein, which is caused by the accumulation of reactive oxygen species (ROS) in phenanthrene-treated cucumber leaves under high light. This study demonstrated that phenanthrene could directly inhibit photosynthetic electron transport and Rubisco carboxylation activity to decrease net Pn. Under high light, phenanthrene caused the accumulation of ROS, resulting in net increases in D1 protein degradation and consequently causing PSII photoinhibition.
Collapse
Affiliation(s)
- Liqiao Jin
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xingkai Che
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zishan Zhang
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yuting Li
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Huiyuan Gao
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Shijie Zhao
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
22
|
Dupuy J, Leglize P, Vincent Q, Zelko I, Mustin C, Ouvrard S, Sterckeman T. Effect and localization of phenanthrene in maize roots. CHEMOSPHERE 2016; 149:130-136. [PMID: 26855216 DOI: 10.1016/j.chemosphere.2016.01.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have a toxic effect on plants, which limits the efficiency of phytomanagement of contaminated soils. The mechanisms underlying their toxicity are not fully understood. A cultivation experiment was carried out with maize, used as model plant, exposed to sand spiked with phenanthrene (50 or 150 mg kg(-1) dw). Epi-fluorescence microscopic observation of root sections was used to assess suberization of exodermis and endodermis and phenanthrene localization along the primary root length. For 10 days of cultivation, exodermis and endodermis suberization of exposed maize was more extensive. However, after 20 days of exposure, exodermis and endodermis of non-exposed roots were totally suberized, whilst PHE-exposed roots where less suberized. Early extensive suberization may act as barrier against PHE penetration, however longer exposure inhibits root maturation. Phenanthrene patches were located only near suberized exodermis and endodermis, which may therefore act as retention zones, where the hydrophobic phenanthrene accumulates during its radial transport.
Collapse
Affiliation(s)
- Joan Dupuy
- Université de Lorraine, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy, F-54518, France; INRA, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy, F-54518, France
| | - Pierre Leglize
- Université de Lorraine, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy, F-54518, France; INRA, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy, F-54518, France.
| | - Quentin Vincent
- Université de Lorraine, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy, F-54518, France; INRA, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy, F-54518, France
| | - Ivan Zelko
- Université de Lorraine, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy, F-54518, France; INRA, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy, F-54518, France; Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK-845 38, Slovak Republic
| | - Christian Mustin
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Vandœuvre-lès-Nancy, F-54506, France; CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Vandœuvre-lès-Nancy, F-54506, France
| | - Stéphanie Ouvrard
- Université de Lorraine, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy, F-54518, France; INRA, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy, F-54518, France
| | - Thibault Sterckeman
- Université de Lorraine, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy, F-54518, France; INRA, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy, F-54518, France
| |
Collapse
|
23
|
Serra AA, Couée I, Renault D, Gouesbet G, Sulmon C. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1801-16. [PMID: 25618145 PMCID: PMC4669549 DOI: 10.1093/jxb/eru518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 05/23/2023]
Abstract
Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing.
Collapse
Affiliation(s)
- Anne-Antonella Serra
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, Bâtiment 14A, 263 Avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Ivan Couée
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, Bâtiment 14A, 263 Avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - David Renault
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, Bâtiment 14A, 263 Avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Gwenola Gouesbet
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, Bâtiment 14A, 263 Avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Cécile Sulmon
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, Bâtiment 14A, 263 Avenue du Général Leclerc, F-35042 Rennes Cedex, France
| |
Collapse
|
24
|
Dupuy J, Ouvrard S, Leglize P, Sterckeman T. Morphological and physiological responses of maize (Zea mays) exposed to sand contaminated by phenanthrene. CHEMOSPHERE 2015; 124:110-115. [PMID: 25496734 DOI: 10.1016/j.chemosphere.2014.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 10/16/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Phytoremediation is promising, but depends on clearly understanding contaminants' impact on plant functioning. We therefore focused on the impact of polycyclic aromatic hydrocarbons (PAH) on cultivated plants and understanding the impact of phenanthrene (PHE) on maize functioning (Zea mays). Cultivation was conducted under controlled conditions on artificially contaminated sand with PHE levels increasing from 50 to 750 mg PHE kg(-1). After four weeks, plants exposed to levels above 50 mg PHE kg(-1) presented decreased biomasses and reduced photosynthetic activity. These modifications were associated with higher biomass allocations to roots and lower ones to stems. The leaf biomass proportion was similar, with thinner blades than controls. PHE-exposed plant showed modified root architecture, with fewer roots of 0.2 and 0.4 mm in diameter. Leaves were potassium-deplete, but calcium, phosphorus, magnesium and zinc-enriched. Their content in nitrogen, iron, sulfur and manganese was unaffected. These responses resembled those of water-stress, although water contents in plant organs were not affected by PHE and water supply was not limited. They also indicated a possible perturbation of both nutritional functioning and photosynthesis.
Collapse
Affiliation(s)
- Joan Dupuy
- Université de Lorraine, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy F-54518, France; INRA, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy F-54518, France
| | - Stéphanie Ouvrard
- Université de Lorraine, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy F-54518, France; INRA, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy F-54518, France
| | - Pierre Leglize
- Université de Lorraine, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy F-54518, France; INRA, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy F-54518, France.
| | - Thibault Sterckeman
- Université de Lorraine, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy F-54518, France; INRA, Laboratoire Sols et Environnement, UMR 1120, Vandœuvre-lès-Nancy F-54518, France
| |
Collapse
|
25
|
Daresta BE, Italiano F, Gennaro GD, Trotta M, Tutino M, Veronico P. Atmospheric particulate matter (PM) effect on the growth of Solanum lycopersicum cv. Roma plants. CHEMOSPHERE 2015; 119:37-42. [PMID: 24955951 DOI: 10.1016/j.chemosphere.2014.05.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
This study shows the direct effect of atmospheric particulate matter on plant growth. Tomato (Solanum lycopersicum L.) plants were grown for 18d directly on PM10 collected on quartz fiber filters. Organic and elemental carbon and polycyclic aromatic hydrocarbons (PAHs) contents were analyzed on all the tested filters. The toxicity indicators (i.e., seed germination, root elongation, shoot and/or fresh root weight, chlorophyll and carotenoids content) were quantified to study the negative and/or positive effects in the plants via root uptake. Substantial differences were found in the growth of the root apparatus with respect to that of the control plants. A 17-58% decrease of primary root elongation, a large amount of secondary roots and a decrease in shoot (32%) and root (53-70%) weights were found. Quantitative analysis of the reactive oxygen species (ROS) indicated that an oxidative burst in response to abiotic stress occurred in roots directly grown on PM10, and this detrimental effect was also confirmed by the findings on the chlorophyll content and chlorophyll-to-carotenoid ratio.
Collapse
Affiliation(s)
- Barbara Elisabetta Daresta
- Agenzia Regionale per la Prevenzione e Protezione dell'Ambiente (ARPA Puglia), Corso Trieste 27, 70126 Bari, Italy
| | - Francesca Italiano
- CNR, Istituto per i Processi Chimico Fisici, via Orabona 4, 70125 Bari, Italy
| | - Gianluigi de Gennaro
- Agenzia Regionale per la Prevenzione e Protezione dell'Ambiente (ARPA Puglia), Corso Trieste 27, 70126 Bari, Italy; Dipartimento di Chimica Università degli Studi di Bari, via Orabona 4, 70125 Bari, Italy
| | - Massimo Trotta
- CNR, Istituto per i Processi Chimico Fisici, via Orabona 4, 70125 Bari, Italy
| | - Maria Tutino
- Agenzia Regionale per la Prevenzione e Protezione dell'Ambiente (ARPA Puglia), Corso Trieste 27, 70126 Bari, Italy
| | - Pasqua Veronico
- CNR, Istituto per la Protezione Sostenibile delle Piante, via G. Amendola 122/d, 70126 Bari, Italy.
| |
Collapse
|
26
|
Zezulka S, Klemš M, Kummerová M. Root and foliar uptake, translocation, and distribution of [14C] fluoranthene in pea plants (Pisum sativum). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2308-12. [PMID: 24975487 DOI: 10.1002/etc.2677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/09/2014] [Accepted: 06/26/2014] [Indexed: 06/03/2023]
Abstract
Uptake of (14)C-labeled fluoranthene ([(14)C]FLT) via both roots and leaves of Pisum sativum seedlings and distribution of [(14) C] in plants by both acropetal and basipetal transport was evaluated. The highest [(14)C] level was found in the root base (≈270 × 10(4) dpm/g dry wt) and the lowest level in the stem apex (<2 × 10(4) dpm/g dry wt) after just 2 h of root exposure. For foliar uptake, the highest level of [(14)C] was found in the stem and root apex (both ≈2 × 10(4) dpm/g dry wt) (except for treated leaves), while the lowest level was found in the root base (<0.6 × 10(4) dpm/g dry wt).
Collapse
Affiliation(s)
- Stěpán Zezulka
- Department of Plant Physiology and Anatomy, Institute of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská, Brno, Czech Republic
| | | | | |
Collapse
|
27
|
Szymanowska-Pułka J. Form matters: morphological aspects of lateral root development. ANNALS OF BOTANY 2013; 112:1643-54. [PMID: 24190952 PMCID: PMC3838556 DOI: 10.1093/aob/mct231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/13/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND The crucial role of roots in plant nutrition, and consequently in plant productivity, is a strong motivation to study the growth and functioning of various aspects of the root system. Numerous studies on lateral roots, as a major determinant of the root system architecture, mostly focus on the physiological and molecular bases of developmental processes. Unfortunately, little attention is paid either to the morphological changes accompanying the formation of a lateral root or to morphological defects occurring in lateral root primordia. The latter are observed in some mutants and occasionally in wild-type plants, but may also result from application of external factors. SCOPE AND CONCLUSIONS In this review various morphological aspects of lateral branching in roots are analysed. Morphological events occurring during the formation of a typical lateral root are described. This process involves dramatic changes in the geometry of the developing organ that at early stages are associated with oblique cell divisions, leading to breaking of the symmetry of the cell pattern. Several types of defects in the morphology of primordia are indicated and described. Computer simulations show that some of these defects may result from an unstable field of growth rates. Significant changes in both primary and lateral root morphology may also be a consequence of various mutations, some of which are auxin-related. Examples reported in the literature are considered. Finally, lateral root formation is discussed in terms of mechanics. In this approach the primordium is considered as a physical object undergoing deformation and is characterized by specific mechanical properties.
Collapse
|
28
|
Zezulka S, Kummerová M, Babula P, Váňová L. Lemna minor exposed to fluoranthene: growth, biochemical, physiological and histochemical changes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:37-47. [PMID: 23751793 DOI: 10.1016/j.aquatox.2013.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent one of the major groups of organic contaminants in the aquatic environment. Duckweed (Lemna minor L.) is a common aquatic plant widely used in phytotoxicity tests for xenobiotic substances. The goal of this study was to assess the growth and the physiological, biochemical and histochemical changes in duckweed exposed for 4 and 10 days to fluoranthene (FLT, 0.1 and 1 mgL(-1)). Nonsignificant changes in number of plants, biomass production, leaf area size, content of chlorophylls a and b and carotenoids and parameters of chlorophyll fluorescence recorded after 4 and 10 days of exposure to FLT were in contrast with considerable changes at biochemical and histochemical levels. Higher occurrence of reactive oxygen species (ROS) caused by an exposure to FLT after 10 days as compared to control (hydrogen peroxide elevated by 13% in the 0.1 mgL(-1) and by 41% in the 1 mgL(-1) FLT; superoxide anion radical by 52% and 115% respectively) reflected in an increase in the activities of antioxidant enzymes (superoxide dismutase by 3% in both treatments, catalase by 9% and 1% respectively, ascorbate peroxidase by 21% and 5% respectively, guaiacol peroxidase by 12% in the 0.1 mgL(-1) FLT). Even the content of antioxidant compounds like ascorbate (by 20% in the 1 mgL(-1) FLT) or total thiols (reduced forms by 15% in the 0.1 mgL(-1) and 8% in the 1 mgL(-1) FLT, oxidized forms by 36% in the 0.1 mgL(-1) FLT) increased. Increased amount of ROS was followed by an increase in malondialdehyde content (by 33% in the 0.1 mgL(-1) and 79% in the 1 mgL(-1) FLT). Whereas in plants treated by the 0.1 mgL(-1) FLT the contents of total proteins and phenols increased by 15% and 25%, respectively, the 1 mgL(-1) FLT caused decrease of their contents by 32% and 7%. Microscopic observations of duckweed roots also confirmed the presence of ROS and related histochemical changes at the cellular and tissue levels. The assessment of phytotoxicity of organic pollutant in duckweed based only on the evaluation of growth parameters could not fully cover the irreversible changes already running at the level of biochemical processes.
Collapse
Affiliation(s)
- Stěpán Zezulka
- Department of Plant Physiology and Anatomy, Institute of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 267/2, 611 37 Brno, Czech Republic.
| | | | | | | |
Collapse
|
29
|
Li Q, Lu Y, Shi Y, Wang T, Ni K, Xu L, Liu S, Wang L, Xiong Q, Giesy JP. Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings. J Environ Sci (China) 2013; 25:1936-46. [PMID: 24520738 DOI: 10.1016/s1001-0742(12)60264-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The single and combinational effects of cadmium (Cd) and fluoranthene (FLT) on germination, growth and photosynthesis of soybean seedlings were investigated. Exposure to 5, 10, or 15 mg Cd/L or 1, 5, or 10 mg FLT/L individually or in combination significantly decreased germination vigor (3 days) and final germination rate of soybean seeds, except at 1 and 5 mg FLT/L. The results of two-way ANOVA analysis and the Bliss independence model showed that at lower concentrations of FLT (1 mg/L), the interaction between Cd and FLT on germination was antagonistic, whereas the interaction was synergistic when the concentration of FLT was 5 or 10 mg/L and the concentration of Cd was 15 mg/L. Growth, expressed as dry weight, length of shoot and root, leaf area, and photosynthesis, expressed as net photosynthetic rate, intercellular CO2 concentration, chlorophyll contents and fluorescence of soybean seedlings were also reduced by exposure to 5 or 10 mg Cd/L or 1 or 5 mg FLT/L, singly or jointly. Significant antagonistic effects of exposure to 5 or 10 mg Cd/L or 1 or 5 mg FLT/L on shoot growth and photosynthesis were observed, whereas synergy and antagonism of Cd and FLT were both observed for root growth.
Collapse
Affiliation(s)
- Qiushuang Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tieyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kun Ni
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shijie Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lin Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinli Xiong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Canada
| |
Collapse
|
30
|
Khan MI, Cheema SA, Tang X, Hashmi MZ, Shen C, Park J, Chen Y. A battery of bioassays for the evaluation of phenanthrene biotoxicity in soil. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:47-55. [PMID: 23440446 DOI: 10.1007/s00244-013-9879-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/29/2013] [Indexed: 06/01/2023]
Abstract
A battery of bioassays was used to assess the ecotoxicological risk of soil spiked with a range of phenanthrene levels (0.95, 6.29, 38.5, 58.7, 122, and 303 μg g(-1) dry soil) and aged for 69 days. Multiple species (viz. Brassica rapa, Eisenia feotida, Vibrio fischeri), representing different trophic levels, were used as bioindicator organisms. Among acute toxicity assays tested, the V. fischeri luminescence inhibition assay was the most sensitive indicator of phenanthrene biotoxicity. More than 15 % light inhibition was found at the lowest phenanthrene level (0.95 μg g(-1)). Furthermore, comet assay using E. fetida was applied to assess genotoxicity of phenanthrene. The strong correlation (r (2) ≥ 0.94) between phenanthrene concentration and DNA damage indicated that comet assay is appropriate for testing the genotoxic effects of phenanthrene-contaminated soil. In the light of these results, we conclude that the Microtox test and comet assay are robust and sensitive bioassays to be employed for the risk evaluation of polycyclic aromatic hydrocarbon-contaminated soil.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029, Poeples's Republic of China
| | | | | | | | | | | | | |
Collapse
|
31
|
Desalme D, Binet P, Chiapusio G. Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydrocarbon deposition in vascular plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3967-3981. [PMID: 23560697 DOI: 10.1021/es304964b] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants that raise environmental concerns because of their toxicity. Their accumulation in vascular plants conditions harmful consequences to human health because of their position in the food chain. Consequently, understanding how atmospheric PAHs are taken up in plant tissues is crucial for risk assessment. In this review we synthesize current knowledge about PAH atmospheric deposition, accumulation in both gymnosperms and angiosperms, mechanisms of transfer, and ecological and physiological effects. PAHs emitted in the atmosphere partition between gas and particulate phases and undergo atmospheric deposition on shoots and soil. Most PAH concentration data from vascular plant leaves suggest that contamination occurs by both direct (air-leaf) and indirect (air-soil-root) pathways. Experimental studies demonstrate that PAHs affect plant growth, interfering with plant carbon allocation and root symbioses. Photosynthesis remains the most studied physiological process affected by PAHs. Among scientific challenges, identifying specific physiological transfer mechanisms and improving the understanding of plant-symbiont interactions in relation to PAH pollution remain pivotal for both fundamental and applied environmental sciences.
Collapse
Affiliation(s)
- Dorine Desalme
- UMR CNRS-UFC 6249 ChronoEnvironnement, Université de Franche Comté BP 71427, 25 211 Montbéliard, France
| | | | | |
Collapse
|