1
|
Yu S, Wang S, Tang M, Pan S, Wang M. Integrative study of subcellular distribution, chemical forms, and physiological responses for understanding cadmium tolerance in two garden shrubs. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154419. [PMID: 39864245 DOI: 10.1016/j.jplph.2025.154419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Urban ornamental shrubs have significant potential for restoring cadmium (Cd)-contaminated soil. The Cd enrichment characteristics and tolerance mechanisms of Buxus sinica and Ligustrum × vicaryi were investigated through a simulated pot pollution experiment. Specifically, the Cd content and accumulation in different plant tissues, the subcellular distribution and chemical forms of Cd in the roots, and the effects of Cd on the ultrastructure of root cells under various Cd concentrations (0, 25, 50, 100, and 200 mg kg⁻1) were analyzed. The results showed that: (1) As the Cd treatment levels increased, the total biomass of B. sinica gradually decreased, while L. × vicaryi exhibited a stimulation effect at low Cd concentrations but inhibition at high Cd concentrations. (2) The Cd content in different tissues of both shrubs increased with rising Cd levels. The bioconcentration factor (BCF) and translocation factor (TF) indicated that L. × vicaryi has the potential for Cd phytostabilization. (3) Cd in the roots of both shrubs was primarily present in NaCl-extractable form, and was mostly bound to the cell wall. (4) Excessive Cd caused damage to the cellular structure of B. sinica, while the cells of L. × vicaryi maintained normal morphology. (5) In both shrubs, Cd primarily bound to the cell wall through hydroxyl and amino functional groups, as well as soluble sugars. In summary, converting Cd to less active forms, immobilizing Cd in the cell wall, and providing binding sites through functional groups may be crucial resistance mechanisms for both shrubs in response to Cd stress.
Collapse
Affiliation(s)
- Shiyin Yu
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Shan Wang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Min Tang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Shuzhen Pan
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Meixian Wang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| |
Collapse
|
2
|
Li R, Qin M, Yan J, Jia T, Sun X, Pan J, Li W, Liu Z, El-Sheikh MA, Ahmad P, Liu P. Hormesis effect of cadmium on pakchoi growth: Unraveling the ROS-mediated IAA-sugar metabolism from multi-omics perspective. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137265. [PMID: 39827793 DOI: 10.1016/j.jhazmat.2025.137265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Previous research on cadmium (Cd) focused on toxicity, neglecting hormesis and its mechanisms. In this study, pakchoi seedlings exposed to varying soil Cd concentrations (CK, 5, 10, 20, 40 mg/kg) showed an inverted U-shaped growth trend (hormesis characteristics): As Cd concentration increases, biomass exhibited hormesis character (Cd5) and then disappear (Cd40). ROS levels rose in both Cd treatments, with Cd5 being intermediate between CK and Cd40. But Cd5 preserved cellular structure, unlike damaged Cd40, hinting ROS in Cd5 acted as signaling regulators. To clarify ROS controlled subsequent metabolic processes, a multi-omics study was conducted. The results revealed 143 DEGs and 793 DEMs across all Cd treatment. KEGG indicated among all Cd treatments, the functional differences encompass: "plant hormone signal transduction" and "starch and sucrose metabolism". Through further analysis, we found that under the influence of ROS, the expression of IAA synthesis and signaling-related genes was significantly up-regulated, especially under Cd5 treatment. This further facilitated the accumulation of reducing sugars, which provided more energy for plant growth. Our research results demonstrated the signaling pathway involving ROS-IAA-Sugar metabolism, thereby providing a novel theoretical basis for cultivating more heavy metal hyperaccumulator crops and achieving phytoremediation of contaminated soils.
Collapse
Affiliation(s)
- Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Tao Jia
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiaodong Sun
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jiawen Pan
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Wenwen Li
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhiguo Liu
- College of Horticulture, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, Jammu and Kashmir 192301, India
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
3
|
Mo X, Huang Q, Chen C, Xia H, Riaz M, Liang X, Li J, Chen Y, Tan Q, Wu S, Hu C. Characteristics of Rhizosphere Microbiome, Soil Chemical Properties, and Plant Biomass and Nutrients in Citrus reticulata cv. Shatangju Exposed to Increasing Soil Cu Levels. PLANTS (BASEL, SWITZERLAND) 2024; 13:2344. [PMID: 39273828 PMCID: PMC11397084 DOI: 10.3390/plants13172344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
The prolonged utilization of copper (Cu)-containing fungicides results in Cu accumulation and affects soil ecological health. Thus, a pot experiment was conducted using Citrus reticulata cv. Shatangju with five Cu levels (38, 108, 178, 318, and 388 mg kg-1) to evaluate the impacts of the soil microbial processes, chemistry properties, and citrus growth. These results revealed that, with the soil Cu levels increased, the soil total Cu (TCu), available Cu (ACu), organic matter (SOM), available potassium (AK), and pH increased while the soil available phosphorus (AP) and alkali-hydrolyzable nitrogen (AN) decreased. Moreover, the soil extracellular enzyme activities related to C and P metabolism decreased while the enzymes related to N metabolism increased, and the expression of soil genes involved in C, N, and P cycling was regulated. Moreover, it was observed that tolerant microorganisms (e.g., p_Proteobacteria, p_Actinobacteria, g_Lysobacter, g_Sphingobium, f_Aspergillaceae, and g_Penicillium) were enriched but sensitive taxa (p_Myxococcota) were suppressed in the citrus rhizosphere. The citrus biomass was mainly positively correlated with soil AN and AP; plant N and P were mainly positively correlated with soil AP, AN, and acid phosphatase (ACP); and plant K was mainly negatively related with soil β-glucosidase (βG) and positively related with the soil fungal Shannon index. The dominant bacterial taxa p_Actinobacteriota presented positively correlated with the plant biomass and plant N, P, and K and was negatively correlated with plant Cu. The dominant fungal taxa p_Ascomycota was positively related to plant Cu but negatively with the plant biomass and plant N, P, and K. Notably, arbuscular mycorrhizal fungi (p_Glomeromycota) were positively related with plant P below soil Cu 108 mg kg-1, and pathogenic fungi (p_Mortierellomycota) was negatively correlated with plant K above soil Cu 178 mg kg-1. These findings provided a new perspective on soil microbes and chemistry properties and the healthy development of the citrus industry at increasing soil Cu levels.
Collapse
Affiliation(s)
- Xiaorong Mo
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, College of Resources and Environment, Beibu Gulf University, Qinzhou 535011, China
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qichun Huang
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Chuanwu Chen
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Hao Xia
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences (AAAS), Hefei 230001, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaomin Liang
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinye Li
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Yilin Chen
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Songwei Wu
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Sheri V, Kumar M, Jaconis S, Zhang B. Antioxidant defense in cotton under environmental stresses: Unraveling the crucial role of a universal defense regulator for enhanced cotton sustainability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108141. [PMID: 37926000 DOI: 10.1016/j.plaphy.2023.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Cotton (Gossypium spp.) is a globally significant crop that provides natural fibers for the textile industry and also an important oil and biopharmaceutical resources. However, the production of cotton faces substantial challenges due to various biotic and abiotic stress factors that can negatively impact cotton growth, yield, and fiber quality. This review offers a comprehensive overview of the effects of biotic stress factors, such as insect pests, bacterial, fungal, and viral pathogens, and nematodes, as well as abiotic stress factors, including extreme hot and cold temperature, drought, toxicity induced by heavy metal and salinity, on the antioxidant systems in cotton. We discuss the crucial antioxidants, such as glutathione, proline, and phenolics, and highlight major antioxidant enzymes, including ascorbate peroxidase (APX), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione reductase (GR), and their roles in cotton's response to these stress factors. Furthermore, we explore the potential mechanisms and the crosstalk between different stress factors signaling pathways. We also examine the implications of stress-induced changes in antioxidant levels and enzyme activities for cotton productivity and breeding strategies. Additionally, we shed light on the unanswered questions, research gaps, and future perspectives in this field, paving the way for further investigations to enhance our understanding of cotton's antioxidant defenses and develop novel strategies for improving cotton stress tolerance and yield stability.
Collapse
Affiliation(s)
- Vijay Sheri
- Department of Biology, East Carolina University, Greenville, 27858, USA
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Susan Jaconis
- Agricultural & Environmental Research Department, Cotton Incorporated, Cary, NC, 27513, USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, 27858, USA.
| |
Collapse
|
5
|
Uddin MM, Chen Z, Xu F, Huang L. Physiological and Cellular Ultrastructural Responses of Sesuvium portulacastrum under Cd Stress Grown Hydroponically. PLANTS (BASEL, SWITZERLAND) 2023; 12:3381. [PMID: 37836122 PMCID: PMC10574335 DOI: 10.3390/plants12193381] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 10/15/2023]
Abstract
This study aimed to investigate the physiological and cellular mechanisms of Sesuvium portulacastrum under heavy metal stress to evaluate possible tolerance and adaptation mechanisms in a metal-polluted environment. The physiological and cellular ultrastructural responses of S. portulacastrum were studied hydroponically under exposure to a range of cadmium (Cd) concentrations (50 µM to 600 µM) for 28 days. The activity of antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), changes in chlorophyll, and cellular ultrastructural content were examined. There was no significant difference in chlorophyll content in the leaf under the stress of 300 μM, but 400 μM and 600 μM Cd stress showed significantly decreased chlorophyll content. The SOD activity indicates an increase under the Cd stress of 100 μM for leaves, 300 μM for stems, and 50 μM for roots; after that, the SOD activity gradually decreased with increasing Cd concentrations. But POD activity was considerably increased with increasing Cd stress. CAT activity showed a gradual increase in concentrations until 300 μM of Cd stress and then decreased sharply in roots, stems, and leaf tissues. Cd stress had a considerable impact on the structure of the roots, stems, and leaves cells, such as distorted and thinner cell walls and the deformation of chloroplasts, mitochondria, and other organelles. Therefore, the increased number of nucleolus in the cell nucleus suggests that cells may be able to maintain their protein synthesis in a stressful environment. This study concludes that SOD is the dominant antioxidant enzyme activity during low Cd toxicity (<100 μM), while POD is the dominant enzyme activity during higher Cd toxicity (>100 μM).
Collapse
Affiliation(s)
- Mohammad Mazbah Uddin
- Key Laboratory of the Ministry of Education for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China;
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China;
| | - Zhenfang Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China;
| | - Fuliu Xu
- Key Laboratory of the Ministry of Education for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China;
| | - Lingfeng Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China;
| |
Collapse
|
6
|
Wang Q, Meng L, Liu W, Zeb A, Shi R, Lian Y, Su C. Single and combined effects of polystyrene nanoplastics and Cd on submerged plants Ceratophyllum demersum L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162291. [PMID: 36801330 DOI: 10.1016/j.scitotenv.2023.162291] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastics (NPs) and heavy metals are widely distributed in aquatic ecosystem, posing a potential threat to ecosystem function. Submerged macrophytes play an important role in water purification and maintaining ecological functions. However, the coupled effects of NPs and cadmium (Cd) on submerged macrophytes physiology and the mechanisms involved are still unclear. Here, the potential effects of single and co-Cd/PSNPs exposure on Ceratophyllum demersum L. (C. demersum) were explored. Our results showed that NPs aggravated the inhibition of Cd on plant growth ate (a decrease of 35.54 %), reduced chlorophyll synthesis (a decrease of 15.84 %), and disrupted the antioxidant enzyme system (a decrease of 25.07 % on SOD activity) of C. demersum. Massive PSNPs adhered to the surface of C. demersum when exposed to co-Cd/PSNPs while they did not adhere when exposed to single-NPs. The metabolic analysis further demonstrated that co-exposure down-regulated plant cuticle synthesis and that Cd exacerbated the physical damage and shadowing effects of NPs. In addition, co-exposure upregulated pentose phosphate metabolism, leading to the accumulation of starch grains. Furthermore, PSNPs reduced Cd enrichment capacity of C. demersum. Our results unraveled distinct regulatory networks for submerged macrophytes exposed to single and composite of Cd and PSNPs, providing a new theoretical basis for assessing the risks of heavy metals and NPs in the freshwater environment.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingzuo Meng
- College of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Weitao Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Aurang Zeb
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhang Lian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chen Su
- Key Laboratory of Regional Environment and Eco-Remediation (Ministry of Education), Shenyang University, Shenyang 110044, China.
| |
Collapse
|
7
|
Li H, Li Y, Li X, Chen XW, Chen A, Wu L, Wong MH, Li H. Low-Arsenic Accumulating Cabbage Possesses Higher Root Activities against Oxidative Stress of Arsenic. PLANTS (BASEL, SWITZERLAND) 2023; 12:1699. [PMID: 37111922 PMCID: PMC10146792 DOI: 10.3390/plants12081699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Cabbage grown in contaminated soils can accumulate high levels of arsenic (As) in the edible parts, posing serious health risks. The efficiency of As uptake varies drastically among cabbage cultivars, but the underlying mechanisms are not clear. We screened out low (HY, Hangyun 49) and high As accumulating cultivars (GD, Guangdongyizhihua) to comparatively study whether the As accumulation is associated with variations in root physiological properties. Root biomass and length, reactive oxygen species (ROS), protein content, root activity, and ultrastructure of root cells of cabbage under different levels of As stress (0 (control), 1, 5, or 15 mg L-1) were measured As results, at low concentration (1 mg L-1), compared to GD, HY reduced As uptake and ROS content, and increased shoot biomass. At a high concentration (15 mg L-1), the thickened root cell wall and higher protein content in HY reduced arsenic damage to root cell structure and increased shoot biomass compared to GD. In conclusion, our results highlight that higher protein content, higher root activity, and thickened root cell walls result in lower As accumulation properties of HY compared to GD.
Collapse
Affiliation(s)
- Hanhao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yongtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xing Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xun Wen Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Aoyu Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Xin J, Yuan H, Yang L, Liao Q, Luo J, Wang Y, Ye Z, Huang B. Effect of boron supply on the uptake and translocation of cadmium in Capsicum annuum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114925. [PMID: 37080127 DOI: 10.1016/j.ecoenv.2023.114925] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/23/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Large areas of soil in southern China are contaminated with cadmium (Cd) and are deficient in boron (B). Previously, we suggested that B supplementation could reduce Cd accumulation in hot peppers (Capsicum annuum L.); however, the physiological mechanisms underlying this reduction remain unclear. In this study, the uptake and translocation of Cd in hot pepper plants were investigated using hydroponic experiments with different B and Cd treatments. A pot experiment was performed to verify whether B decreased the Cd concentration in hot peppers by minimizing the Cd translocation rate. The results of the dose- and time-dependent experiments showed that B supplementation reduced root Cd uptake and root-to-shoot Cd translocation. Additionally, B supplementation increased the root length, diameter, volume, surface area, and number of root forks and tips, as well as improving the relative absorbance of carboxyl groups under Cd exposure, leading to enhanced Cd fixation in the cell walls of the roots. As a result, the fruit Cd concentration decreased because B inhibited Cd translocation from the roots. Overall, the results demonstrate that B supplementation can reduce Cd accumulation in hot peppers by promoting normal root growth and development and by limiting the uptake and translocation of Cd.
Collapse
Affiliation(s)
- Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Haiwei Yuan
- Hunan Huanbaoqiao Ecology and Environment Engineering Co., Ltd., Changsha 410221, China
| | - Lang Yang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China; School of Humanity, Shanghai University of Finance and Economics, Shanghai 200433, China
| | - Qiong Liao
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jiemei Luo
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yating Wang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Ziyi Ye
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
9
|
Qu L, Jia W, Dai Z, Xu Z, Cai M, Huang W, Han D, Dang B, Ma X, Gao Y, Xu J. Selenium and molybdenum synergistically alleviate chromium toxicity by modulating Cr uptake and subcellular distribution in Nicotiana tabacum L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114312. [PMID: 36455352 DOI: 10.1016/j.ecoenv.2022.114312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Chromium (Cr) is a harmful heavy metal that poses a serious threat to plants and animals. Selenium (Se) and molybdenum (Mo) are two beneficial elements for plant growth and resistance. However, their interactive effects on Cr uptake and distribution are poorly understood. Therefore, a hydroponics experiment was conducted to explore the effects of the use of Se and Mo alone and simultaneously on mitigating Cr toxicity. In this study, Nicotiana tabacum L. seedlings were exposed to control, 50 µM Cr, 50 μM Cr + 2 μM Se, 50 μM Cr + 1 μM Mo, or 50 μM Cr + 2 μM Se + 1 μM Mo in Hoagland solution. After 2 weeks, the plant biomass, Cr, Se and Mo contents, photosynthesis, leaf ultrastructure, antioxidant system, subcellular distribution and associated gene expression in Nicotiana tabacum L. were determined. The results showed that simultaneous use of Se and Mo promoted tobacco growth under Cr stress, as evidenced by reducing reactive oxygen species (ROS) content and reducing Cr translocation factor (TF) and inducing a 51.3% reduction in Cr content in shoots. Additionally, Se-Mo interactions increased the levels of glutathione (GSH) and phytochelatin (PC) and the distribution of Cr in the cell walls and organelles. Furthermore, the relative expression of PCS1 was upregulated, while those of NtST1 and MSN1 were downregulated. The results concluded that the simultaneous use of Se and Mo effectively alleviated Cr toxicity in Nicotiana tabacum L., which not only offers an efficient way for crops to resist Cr toxicity but also provides evidence for the benefit of Se combined with Mo.
Collapse
Affiliation(s)
- Lili Qu
- College of tobacco Science, Henan agricultural university, National tobacco cultivation and physiology and Biochemistry Research center, Key laboratory for tobacco cultivation of tobacco industry, Zhengzhou, Henan, China
| | - Wei Jia
- College of tobacco Science, Henan agricultural university, National tobacco cultivation and physiology and Biochemistry Research center, Key laboratory for tobacco cultivation of tobacco industry, Zhengzhou, Henan, China
| | - Zhihua Dai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zicheng Xu
- College of tobacco Science, Henan agricultural university, National tobacco cultivation and physiology and Biochemistry Research center, Key laboratory for tobacco cultivation of tobacco industry, Zhengzhou, Henan, China
| | - Miaomiao Cai
- Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wuxing Huang
- College of tobacco Science, Henan agricultural university, National tobacco cultivation and physiology and Biochemistry Research center, Key laboratory for tobacco cultivation of tobacco industry, Zhengzhou, Henan, China
| | - Dan Han
- College of tobacco Science, Henan agricultural university, National tobacco cultivation and physiology and Biochemistry Research center, Key laboratory for tobacco cultivation of tobacco industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of tobacco Science, Henan agricultural university, National tobacco cultivation and physiology and Biochemistry Research center, Key laboratory for tobacco cultivation of tobacco industry, Zhengzhou, Henan, China
| | - Xiaohan Ma
- College of tobacco Science, Henan agricultural university, National tobacco cultivation and physiology and Biochemistry Research center, Key laboratory for tobacco cultivation of tobacco industry, Zhengzhou, Henan, China
| | - Yun Gao
- College of tobacco Science, Henan agricultural university, National tobacco cultivation and physiology and Biochemistry Research center, Key laboratory for tobacco cultivation of tobacco industry, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan agricultural university, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Zhu Y, Gu W, Tian R, Li C, Ji Y, Li T, Wei C, Chen Z. Morphological, physiological, and secondary metabolic responses of Taraxacum officinale to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:71-82. [PMID: 36055055 DOI: 10.1016/j.plaphy.2022.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/17/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Salt stress has a major effect on growth and secondary metabolism in medicinal plants, however, the effect of salt stress on Taraxacum officinale F. H. Wigg. is still scarce. In this study, we evaluated the effects of salt stress on the physiology, morphology, phenolic acid accumulation, and expression of genes involved in phenolic acid biosynthesis in T. officinale. We found that plants grew well at 1 g kg-1 NaCl, and the state of photosystem Ⅱ (PSⅡ) and the organization of the chloroplasts at 0.5 g kg-1 NaCl showed no significant differences compared with the control. However, 2 g kg-1 and 4 g kg-1 NaCl inhibited growth and accelerated leaf senescence. At 4 g kg-1 NaCl, the fresh and dry weights decreased to 28% and 42% of the control, while chlorosis and necrosis were observed on the leaves. Furthermore, up-regulation of the expression of ToC3'H corresponded with an increase in the levels of caffeoylquinic acids (chlorogenic acid and isochlorogenic acid A) at NaCl concentration ≤ 1 g kg-1. Expressions of four phenolic acid biosynthesis genes, ToC4H, To4CL, ToHCT, and ToHQT, were down-regulated with increasing NaCl concentrations, consistent with the observed decreases in caftaric and cichoric acids. In summary, cultivation of T. officinale under mild salt stress (NaCl ≤ 1 g kg-1) is feasible and facilitates the accumulation of caffeoylquinic acids; thus this species may be recommended for saline soils.
Collapse
Affiliation(s)
- Yu Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Rong Tian
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Chao Li
- Chinese Medicine Research Institute, Jumpcan Pharmaceutical Group Co., Ltd, 8 Baotawan, Daqing West Road, Taixing, 25441, China
| | - Yuanyuan Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Tao Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Chenbin Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Ziyun Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| |
Collapse
|
11
|
Basit F, Nazir MM, Shahid M, Abbas S, Javed MT, Naqqash T, Liu Y, Yajing G. Application of zinc oxide nanoparticles immobilizes the chromium uptake in rice plants by regulating the physiological, biochemical and cellular attributes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1175-1190. [PMID: 35910447 PMCID: PMC9334463 DOI: 10.1007/s12298-022-01207-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 05/13/2023]
Abstract
Zinc oxide nano particles (ZnO NPs) have been employed as a novel strategy to regulate plant tolerance and alleviate heavy metal stress, but our scanty knowledge regarding the systematic role of ZnO NPs to ameliorate chromium (Cr) stress especially in rice necessitates an in-depth investigation. An experiment was performed to evaluate the effect of different concentrations of ZnO NPs (e.g., 0, 25, 50, 100 mg/L) in ameliorating the Cr toxicity and accumulation in rice seedlings in hydroponic system. Our results demonstrated that Cr (100 µM) severely inhibited the rice seedling growth, whereas exogenous treatment of ZnO NPs significantly alleviated Cr toxicity stress and promoted the plant growth. Moreover, application of ZnO NPs significantly augmented the germination energy, germination percentage, germination index, and vigor index. In addition, biomass accumulation, antioxidants (SOD, CAT, POD), nutrient acquisition (Zn, Fe) was also improved in ZnO NPs-treated plants, while the lipid peroxidation (MDA, H2O2), electrolyte leakage as well as Cr uptake and in-planta accumulation was significantly decreased. The burgeoning effects were more apparent at ZnO NPs (100 mg/L) suggesting the optimum treatment to ameliorate Cr induced oxidative stress in rice plants. Furthermore, the treatment of ZnO NPs (100 mg/L) reduced the level of endogenous abscisic acid (ABA) and stimulated the growth regulator hormones such as brassinosteroids (BRs) possibly linked with enhanced phytochelatins (PCs) levels. The ultrastructure analysis at cellular level of rice revealed that the application of 100 mg/L ZnO NPs protected the chloroplast integrity and other cell organells via improvement in plant ionomics, antioxidant activities and down regulating Cr induced oxidative stress in rice plants. Conclusively, observations of the current study will be helpful in developing stratigies to decrease Cr contamination in food chain by employing ZnO NPs and to mitigate the drastic effects of Cr in plants for the sustainable crop growth.
Collapse
Affiliation(s)
- Farwa Basit
- Seed Science Center, Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Muhammad Mudassir Nazir
- Seed Science Center, Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000 Pakistan
| | - Saghir Abbas
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| | | | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | - Yihan Liu
- Seed Science Center, Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Guan Yajing
- Seed Science Center, Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
12
|
Kumar V, Ameen F, Islam MA, Agrawal S, Motghare A, Dey A, Shah MP, Américo-Pinheiro JHP, Singh S, Ramamurthy PC. Evaluation of cytotoxicity and genotoxicity effects of refractory pollutants of untreated and biomethanated distillery effluent using Allium cepa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118975. [PMID: 35157935 DOI: 10.1016/j.envpol.2022.118975] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Environmental pollution caused by the discharge of raw and partly treated distillery effluent has become a serious and threatening problem due to its high pollution load. The aim of the present study was to assess the physicochemical load in alcohol distillery effluent before and after biomethanation treatment and the cyto- and genotoxicity effects of refractory pollutants emanated in raw/untreated and biomethanated distillery effluent on the ultrastructural and biochemical responses of Allium cepa root tip cells. Physicochemical analysis revealed high biochemical oxygen demand (BOD: 47840-36651 mg L-1), chemical oxygen demand (COD: 93452-84500 mg L-1) and total dissolved solids (TDS: 64251-74652 mg L-1) in raw and biomethanated effluent along with metal(loid)s (Fe: 456.152-346.26; Zn: 1.654-1.465; Cu: 0.648-0.562; Ni: 1.012-0.951, and Pb: 0.264 mg L-1) which were beyond the safe discharge values prescribed by the environmental regulatory agencies. The UV-Visible and Fourier transform infrared spectrophotometry analyses confirmed the high levels of organic, inorganic, and mixed contaminants discharged in raw and biomethanated distillery effluents. Furthermore, GC-MS analysis characterised chemical contaminants, such as hexadecanoic acid, butanedioic acid, bis(trimethylsilyl) ester; hexadecane, 2,6,11,15-tetramethyl, stigmasterol, and β-sitosterol trimethylsilyl ether that have been reported as androgenic-mutagenic, and endocrine disrupting chemicals by the United States Environmental Protection Agency (U.S. EPA). The cytotoxicity measured by A. cepa showed dose depended inhibition root growth inhibition and simultaneous reduction in mitotic index in tested effluents. The chromosomal aberrations studies resulted in laggard chromosomes, sticky chromosomes, vagrant chromosomes, chromosome loss, c-mitosis, chromosome bridge, abnormal metaphase, and disturbed anaphase as found in a dose-dependent manner. Furthermore, dose-dependent enhancement in the levels of malondialdehyde, hydrogen peroxide, and antioxidative enzymes, such as superoxide dismutase, ascorbate peroxidase, and catalase were found to be higher in raw effluents treated root cells compared to biomethanated distillery effluent. Analysis of ultrastructural changes in root tip cells by TEM analysis revealed dramatic changes in the morphology of cell organelles and accumulation of metallic elements in and on the surface tissues. The results concluded that the discharged distillery effluents retained certain toxic pollutants which imposed cytotoxic and genotoxic hazards to A. cepa. Thus, for the sake of environmental protection, the raw as well as the disposed biomethanated effluent must be efficiently treated before its dumping into the terrestrial ecosystem.
Collapse
Affiliation(s)
- Vineet Kumar
- Department of Botany, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India; Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M Amirul Islam
- Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Sakshi Agrawal
- Department of Botany, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Ankit Motghare
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Maulin P Shah
- Enviro Tech Laboratory, Ankeleshwar, 393002, Gujarat, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- School of Engineering, São Paulo State University (UNESP), Ave. Brasil Sul, number 56, ZIP Code 15385-000, Ilha Solteira, SP, Brazil; Brazil University, Street Carolina Fonseca, number 584, ZIP Code 08230-030, São Paulo, SP, Brazil
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science (IISc), Bangalore, 56001, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science (IISc), Bangalore, 56001, India
| |
Collapse
|
13
|
Mo F, Li H, Li Y, Ma C, Wang M, Li Z, Deng N, Zhang C, Xing B, Xu J, Li G, Wang L, Zheng Y, Yang Y. Exploration of defense and tolerance mechanisms in dominant species of mining area - Trifolium pratense L. upon exposure to silver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151380. [PMID: 34780825 DOI: 10.1016/j.scitotenv.2021.151380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
This present study investigated detoxification mechanisms of leguminous forage Trifolium pratense L. (red clover) seedlings upon exposure to Ag ions (Ag+) on an atomic level. Depressed plant growth (maximum inhibition rate: 46.57%) and significantly altered antioxidase/antioxidant substances levels (maximum inhibition rate: 65.45%/55.41%) revealed that the physiological metabolism was disturbed. Notable lesions were observed in both leaf and root cells at 588 μM Ag+ treatment. All differentially expressed genes (DEGs) were remarkably mapped to biological metabolism related pathways. Red clover seedlings were speculated to initially transform and immobilize Ag+ in the culture medium, then transporting and fixing them inside the cell, mainly as unreduced Ag+ bound to oxygen-, nitrogen-, sulfur-, chloride-containing biological molecules. A portion of Ag+ was reduced to Ag0 and aggregated to form crystalline argentiferous nanoparticles. Effective reducing agents such as alcohols, carboxylic acid, and etc, which are capable of coordinating heavy metals to reduce and stabilize them, were assumed to play a role in Ag+ reduction. The research results are of great value to understand the defense and tolerance mechanisms of red clover to Ag+ and explore the main existing forms of Ag+ in vivo and in vitro, which could indicate contamination condition in regional ecological environment such as mining area and its potential effects.
Collapse
Affiliation(s)
- Fan Mo
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Mingshuai Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ningcan Deng
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| | - Jianing Xu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Geng Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Lixin Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yaqin Zheng
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yue Yang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
14
|
Wan H, Yang F, Zhuang X, Cao Y, He J, Li H, Qin S, Lyu D. Malus rootstocks affect copper accumulation and tolerance in trees by regulating copper mobility, physiological responses, and gene expression patterns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117610. [PMID: 34174667 DOI: 10.1016/j.envpol.2021.117610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
We investigated the roles of rootstocks in Cu accumulation and tolerance in Malus plants by grafting 'Hanfu' (HF) scions onto M. baccata (Mb) and M. prunifolia (Mp) rootstocks, which have different Cu tolerances. The grafts were exposed to basal or excess Cu for 20 d. Excess Cu-treated HF/Mb had less biomass, and pronounced root architecture deformation and leaf ultrastructure damage than excess Cu-challenged HF/Mp. Root Cu concentrations and bio-concentration factor (BCF) were higher in HF/Mp than HF/Mb, whereas HF/Mb had higher stem and leaf Cu concentrations than HF/Mp. Excess Cu lowered root and aerial tissue BCF and translocation factor (Tf) in all plants; however, Tf was markedly higher in HF/Mb than in HF/Mp. The subcellular distribution of Cu in the roots and leaves indicated that excess Cu treatments increased Cu fixation in the root cell walls, which decreased Cu mobility. Compared to HF/Mb, HF/Mp sequestered more Cu in its root cell walls and less Cu in leaf plastids, nuclei, and mitochondria. Moreover, HF/Mp roots and leaves had higher concentrations of water-insoluble Cu compounds than HF/Mb, which reduced Cu mobility and toxicity. Fourier transform infrared spectroscopy analysis showed that the carboxyl, hydroxyl and acylamino groups of the cellulose, hemicellulose, pectin and proteins were the main Cu binding sites in the root cell walls. Excess Cu-induced superoxide anion and malondialdehyde were 28.6% and 5.1% lower, but soluble phenolics, ascorbate and glutathione were 10.5%, 41.9% and 17.7% higher in HF/Mp than HF/Mb leaves. Compared with HF/Mb, certain genes involved in Cu transport were downregulated, while other genes involved in detoxification were upregulated in HF/Mp roots and leaves. Our results show that Mp inhibited Cu translocation and mitigated Cu toxicity in Malus scions by regulating Cu mobility, antioxidant defense mechanisms, and transcription of key genes involved in Cu translocation and detoxification.
Collapse
Affiliation(s)
- Huixue Wan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China
| | - Fengying Yang
- Dalian Institute of Agricultural Sciences, Dalian, Liaoning, 116036, People's Republic of China
| | - Xiaolei Zhuang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China
| | - Yanhong Cao
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China
| | - Jiali He
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China.
| | - Huifeng Li
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, Shandong, 271000, People's Republic of China
| | - Sijun Qin
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China
| | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China
| |
Collapse
|
15
|
Mei L, Zhu Y, Zhang X, Zhou X, Zhong Z, Li H, Li Y, Li X, Daud MK, Chen J, Zhu S. Mercury-Induced Phytotoxicity and Responses in Upland Cotton ( Gossypium hirsutum L.) Seedlings. PLANTS 2021; 10:plants10081494. [PMID: 34451539 PMCID: PMC8398479 DOI: 10.3390/plants10081494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
Cotton is a potential and excellent candidate to balance both agricultural production and remediation of mercury-contained soil, as its main production fiber hardly involves into food chains. However, in cotton, there is known rarely about the tolerance and response to mercury (Hg) environments. In this study, the biochemical and physiological damages, in response to Hg concentrations (0, 1, 10, 50 and 100 µM), were investigated in upland cotton seedlings. The results on germination of cottonseeds indicated the germination rates were suppressed by high Hg levels, as the decrease of percentage was more than 10% at 1000 µM Hg. Shoots and roots' growth were significantly inhibited over 10 µM Hg. The inhibitor rates (IR) in fresh weight were close in values between shoots and roots, whereas those in dry weight the root growth were more obviously influenced by Hg. In comparison of organs, the growth inhibition ranked as root > leaf > stem. The declining of translocation factor (TF) opposed the Hg level as even low to 0.05 at 50 µM Hg. The assimilation in terms of photosynthesis, of cotton plants, was affected negatively by Hg, as evidenced from the performances on pigments (chlorophyll a and b) and gas exchange (Intercellular CO2 concentration (Ci), CO2 assimilation rate (Pn) and stomatal conductance (Gs)). Sick phenotypes on leaf surface included small white zone, shrinking and necrosis. Membrane lipid peroxidation and leakage were Hg dose-dependent as indicated by malondialdehyde (MDA) content and relative conductivity (RC) values in leaves and roots. More than 10 µM Hg damaged antioxidant enzyme system in both leaves and roots (p < 0.05). Concludingly, 10 µM Hg post negative consequences to upland cotton plants in growth, physiology and biochemistry, whereas high phytotoxicity and damage appeared at more than 50 µM Hg concentration.
Collapse
Affiliation(s)
- Lei Mei
- Institution of Crop Science, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (X.Z.); (Z.Z.); (H.L.); (J.C.)
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China
- Correspondence: (L.M.); (S.Z.)
| | - Yueyi Zhu
- Institution of Crop Science, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (X.Z.); (Z.Z.); (H.L.); (J.C.)
| | - Xianwen Zhang
- The Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China;
| | - Xiujuan Zhou
- Institution of Crop Science, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (X.Z.); (Z.Z.); (H.L.); (J.C.)
| | - Zhentao Zhong
- Institution of Crop Science, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (X.Z.); (Z.Z.); (H.L.); (J.C.)
| | - Huazu Li
- Institution of Crop Science, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (X.Z.); (Z.Z.); (H.L.); (J.C.)
| | - Yingjun Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Khan Daud
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Jinhong Chen
- Institution of Crop Science, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (X.Z.); (Z.Z.); (H.L.); (J.C.)
| | - Shuijin Zhu
- Institution of Crop Science, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (X.Z.); (Z.Z.); (H.L.); (J.C.)
- Correspondence: (L.M.); (S.Z.)
| |
Collapse
|
16
|
Bora MS, Sarma KP. Anatomical and ultrastructural alterations in Ceratopteris pteridoides under cadmium stress: A mechanism of cadmium tolerance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112285. [PMID: 33957421 DOI: 10.1016/j.ecoenv.2021.112285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 05/08/2023]
Abstract
The present research is an appraisal of anatomical and ultrastructural alterations in aquatic fern, Ceratopteris pteridoides under cadmium (Cd) exposure. Plants were cultured hydroponically for 12 consecutive days in different Cd treatments: 10 µM L-1 (CDT1), 20 µM L-1 (CDT2), 40 µM L-1 (CDT3) and 60 µM L-1 (CDT4). Anatomical and ultrastructural changes of different vegetative tissues of C. pteridoides were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cd stress significantly (P < 0.05) decreased water content percentage (WC%), relative growth rate (RGR) and root activity in C. pteridoides, especially at highest Cd concentration (treatment CDT4). Significant (P < 0.05) drop of stress tolerance indices (STI) was noticed in C. pteridoides under treatment CDT4. Anatomical study of the Cd-treated C. pteridoides showed stomatal closure of leaves, reduction of diameter in xylem tracheids of stem and root, and decrease of intercellular spaces. Furthermore, ultrastructural alterations of leaf, stem, and root cells were evident with a damaged membrane system of chloroplast and mitochondria, disorganization of chloroplastic components, accumulation of large starch grains and plastoglobules, and formation of multivesicular bodies. The deposition of electron-dense material in the cell wall of root cells can be regarded as an important tolerance mechanism of C. pteridoides under Cd stress. Fourier transform infrared (FTIR) spectroscopy analysis of Cd-treated C. pteridoides biomass illustrated Cd-binding interaction with O-H, N-H, C-H, C≡C, C˭O, P˭O, -C-OH and CS functional groups of different metabolites.
Collapse
Affiliation(s)
- Monashree Sarma Bora
- Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam, India
| | - Kali Prasad Sarma
- Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam, India.
| |
Collapse
|
17
|
Liu B, Wang S, Wang J, Zhang X, Shen Z, Shi L, Chen Y. The great potential for phytoremediation of abandoned tailings pond using ectomycorrhizal Pinus sylvestris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137475. [PMID: 32114237 DOI: 10.1016/j.scitotenv.2020.137475] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/26/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
To explore the potential of ectomycorrhizal (ECM) Pinus sylvestris (P. sylvestris) utilizing in the phytoremediation of a combined heavy metal contaminated tailings pond, Pisolithus sp.1(P1)-. Pisolithus sp.2 (P2)-. Cenococcum geophilum (Cg)-. Laccaria sp. (L1)- ECM, and non-ectomycorrhizal (NM) P. sylvestris were planted separately in lead (Pb)-zinc-(Zn)-cadmium-(Cd)-combined polluted soil, collected from a tailings pond. After four months, growth, photosynthetic parameters, nutrient and heavy metal levels of the plants were evaluated. The physical and chemical properties and enzyme activities of soil before and after ECM plants planting were also investigated. The results showed that inoculation with ECM fungi improved the survival rates of host plants by increasing the biomass, photosynthesis (photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci)), and mineral nutrients (phosphorus (Pi), magnesium (Mg), iron (Fe), calcium (Ca)), while it decreased the transfer factors of Cd, Pb, and Zn. In addition, ECM P. sylvestris significantly accumulated much more Cd, Pb, and Zn than NM seedlings, while it reduced pH and the availability of heavy metals (DTPA-Cd, DTPA-Pb, DTPA-Zn) in soil and increased activity of soil enzymes (acid phosphatase, alkaline phosphatase, urease). Therefore, the ECM symbionts have the great potential for phytoremediation of abandoned tailings pond, and this study provides a theoretical basis and application premise for the phytoremediation of abandoned tailings pond.
Collapse
Affiliation(s)
- Binhao Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengxiao Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinzhe Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing 210095, China; The Collaborated Lab. of Plant Molecular Ecology (between College of Life Sciences of Nanjing Agricultural University and Asian Natural Environmental Science Center of the University of Tokyo), Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing 210095, China; The Collaborated Lab. of Plant Molecular Ecology (between College of Life Sciences of Nanjing Agricultural University and Asian Natural Environmental Science Center of the University of Tokyo), Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
18
|
Jia H, Hou D, O'Connor D, Pan S, Zhu J, Bolan NS, Mulder J. Exogenous phosphorus treatment facilitates chelation-mediated cadmium detoxification in perennial ryegrass (Lolium perenne L.). JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121849. [PMID: 31843404 DOI: 10.1016/j.jhazmat.2019.121849] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/16/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is an on-going environmental pollutant associated with hindered plant growth. In response, plants possess various strategies to alleviate Cd stress, including reactive oxygen species (ROS) scavenging and chelation-mediated Cd detoxification. The present study examined the Cd defense mechanism of perennial ryegrass (Lolium perenne L.), taking into account the effect of exogenous phosphorus (P) input. It was found that despite triggering antioxidant enzyme activity, Cd stress heightened lipid peroxidation levels. Exogenous P input partially mitigated the lipid peroxidation impact and decreased the levels of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) antioxidant enzymes, revealing reduced ROS-scavenging activity. Importantly, notable relationships were determined between the amount of Cd uptake in the root and the amount of non-protein thiols (R2 = 0.914), glutathione (R2 = 0.805) and phytochelatins (R2 = 0.904) in proportion to the amount of exogenous P applied. The levels of amino acids proline and cysteine were also enhanced by exogenous P input showing their influence in alleviating Cd stress. Overall, it is reported that Cd detoxification in ryegrass plants can be stimulated by exogenous P input, which facilitates chelation-mediated Cd detoxification processes.
Collapse
Affiliation(s)
- Hui Jia
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - David O'Connor
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shizhen Pan
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jin Zhu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, ATC Building, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jan Mulder
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
19
|
Comparative Study of Growth, Cadmium Accumulation and Tolerance of Three Chickpea ( Cicer arietinum L.) Cultivars. PLANTS 2020; 9:plants9030310. [PMID: 32121615 PMCID: PMC7154813 DOI: 10.3390/plants9030310] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 11/17/2022]
Abstract
Trace metals (TM) contamination is a severe problem in the environment and produced an adverse effect on the productivity of crops. Cadmium (Cd) is a TM ranked seven among the top 20 pollutants due to its high toxicity and solubility in water, taken up by the plants and affects their growth and metabolism. In this study, we evaluated the growth, Cd accumulation and tolerance capacities of three chickpea (Cicer arietinum L.) cultivars (NC234 (NC2), ICCV89310 (IC8) and ICCV89323-B (IC8-B)), subjected to two Cd concentrations (25 and 50 µM) in hydroponic culture. The toxicity of Cd reduced the plant height and fresh and dry biomass in all cultivars. The maximum reduction was observed at 50 µM of Cd. Compared with IC8-B, cultivars IC8 and NC2 exhibited better performance with high growth, biomass, root to shoot (R/S) ratio and water content under high Cd stress. To measure the accumulation of Cd in root and shoot, an inductively coupled plasma optical emission spectrometer (ICP-OES) was used. IC8 and NC2 had comparatively high Cd tolerance and accumulation ability (> 100 µg g-1 dry weight), with IC8 being more tolerant and accumulated higher Cd in shoot than NC2, while cultivar IC8-B was sensitive. Root accumulated more Cd than shoot in a dose-dependent manner. The bioconcentration factors (BCF) and bioaccumulation coefficients (BAC) were far higher than one (> 1) and increased with an increase in Cd concentrations, while the translocation factor (TF) was less than one (< 1), suggesting that all the three cultivars were unable to transfer Cd from the root to the shoot efficiently. Our results indicated that IC8 and NC2 proved to be resistant, while IC8-B showed sensitivity when exposed to high Cd stress (50 µM).
Collapse
|
20
|
Li Y, Shen R, Wu H, Yu L, Wang Z, Wang D. Liver changes induced by cadmium poisoning distinguished by confocal Raman imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117483. [PMID: 31493713 DOI: 10.1016/j.saa.2019.117483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal pollution has become an important issue threatening human health and the liver is a very important metabolic organ. Here, we use label-free Raman confocal imaging to study the alterations of the liver tissue after cadmium pollution. Raman imaging has been performed on 100μmx100μm liver tissues to study the distribution of important macromolecules and the average Raman spectrum of the entire region has been used to characterize and quantize the change of biochemical compositions in liver tissue. The poisoned livers displayed a significant decrease in the intensity of 748 cm-1, 1128 cm-1 and 1585 cm-1 bands of cytochrome C, in comparison to the control. The collagen peak at 1082 cm-1 is significantly higher than that of control, suggesting the increasing fibrosis of Cd liver tissues. To confirm the results, we selected a 30μmx15μm liver cell area for high-resolution Raman imaging. We observed a substantial increase of lipids and proteins at specific points of hepatocytes. The confocal Raman imaging of liver tissues provided a unique tool to better understand disease-induced changes in the biochemical phenotype of primary liver tissues. Our study provides valuable references as in vitro models for studying Cd accumulation and toxicity in human liver.
Collapse
Affiliation(s)
- Yuee Li
- School of Information Science and Engineering, Lanzhou University, Gansu 730000, China.
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu 73000, China
| | - Haining Wu
- School of Information Science and Engineering, Lanzhou University, Gansu 730000, China
| | - Linghui Yu
- School of Basic Medical Sciences, Lanzhou University, Gansu 73000, China
| | - Zhong Wang
- School of Information Science and Engineering, Lanzhou University, Gansu 730000, China
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu 73000, China.
| |
Collapse
|
21
|
Dong X, Yang F, Yang S, Yan C. Subcellular distribution and tolerance of cadmium in Canna indica L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109692. [PMID: 31585391 DOI: 10.1016/j.ecoenv.2019.109692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Canna indica L. is a promising species for heavy metal phytoremediation due to its fast growth rate and large biomass. However, few studies have investigated cadmium (Cd) tolerance mechanisms. In the present study, Canna plants were cultivated under hydroponic conditions with increasing Cd concentrations (0, 5, 10, 15 mg/L). We found that the plants performed well under 5 mg/L Cd2+ stress, but damage was observed under higher Cd exposure, such as leaf chlorosis, growth inhibition, a decreased chlorophyll content, and destruction of the ultrastructure of leaf cells. Additionally, Canna alleviated Cd toxicity to a certain extent. After Canna was exposed to 5, 10 and 15 mg/L Cd2+ for 45 d, the highest Cd concentration was exhibited in roots, which was almost 17-47 times the Cd concentration in leaves and 8-20 times that in stems. At the subcellular level, cellular debris and heat-stable proteins (HSPs) were the main binding sites for Cd, and the proportion of Cd in the two subcellular fractions accounted for 71.4-94.2% of the total Cd. Furthermore, we found that granules could participate in the detoxification process when Cd stress was enhanced. Our results indicated that Canna indica L. can tolerate Cd toxicity by sequestering heavy metals in root tissues, fencing out by cell wall, and binding with biologically detoxified fractions (granules and HSPs).
Collapse
Affiliation(s)
- Xiaoxia Dong
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; China Everbright International Limited, 26/F, Block A, Orientel Xintiandi Plaza, No.1003, Shennan Avenue, Futian District, Shenzhen, China
| | - Fan Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shuping Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
22
|
Pan G, Yan W, Zhang H, Xiao Z, Li X, Liu W, Zheng L. Subcellular distribution and chemical forms involved in manganese accumulation and detoxification for Xanthium strumarium L. CHEMOSPHERE 2019; 237:124531. [PMID: 31404737 DOI: 10.1016/j.chemosphere.2019.124531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/24/2019] [Accepted: 08/05/2019] [Indexed: 05/22/2023]
Abstract
Xanthium strumarium L. is a candidate species for manganese (Mn)-phyto-remediation. To reveal the mechanism of this species adaptive to Mn stress, the growth, Mn subcellular distribution, chemical forms, as well as micro-structure and ultra-structure responses of the mining ecotype (ME) of X. strumarium to Mn stress were studied with the non-mining ecotype (NME) as the reference by a hydroponic experiment. The results showed the ME demonstrated a higher tolerance to Mn stress with a superior growth and a higher tolerance index (TI) when compared with the NME. The concentrations of Mn in leaves, stems, and roots of the ME were 1.1-1.8, 1.2-1.9, and 1.3-1.9 times higher than those in the corresponding organs of the NME, respectively. The micro-structure and ultra-structure showed abnormal alterations, such as shrunken ducts and sieve canals, round-shaped chloroplasts, increased starch and osmiophilic granules, as well as expanded and non-compact granum thylakoids in the NME, compared to the ME. More than 83% of Mn was localized in cell wall and soluble fraction, while the Mn concentration in all fractions had a direct linear relationship with Mn treatment in the ME. The proportions of pectates and protein integrated-Mn, phosphate-Mn, and oxalate-Mn forms were dominant in leaves and stems of the ME, whereas, in the NME the relative proportions of inorganic Mn and water-soluble Mn forms in the roots was higher than the other forms. Altogether, the combination of preferential distribution of Mn in the cell wall and soluble fraction, and storage of Mn in low toxicity forms, such as phosphate-Mn, pectates and protein-bound Mn, and oxalate-Mn, might be responsible for alleviating Mn toxicity in the ME.
Collapse
Affiliation(s)
- Gao Pan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, 410004, PR China
| | - Wende Yan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, 410004, PR China
| | - Heping Zhang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Zehua Xiao
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Xinhang Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Wensheng Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Li Zheng
- Research Academy of Green Development, Southwest Forestry University, Kunming, 650224, PR China.
| |
Collapse
|
23
|
Pan G, Zhang H, Liu W, Liu P. Integrative study of subcellular distribution, chemical forms, and physiological responses for understanding manganese tolerance in the herb Macleaya cordata (papaveraceae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:455-462. [PMID: 31228821 DOI: 10.1016/j.ecoenv.2019.06.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Macleaya cordata is a perennial herb, a candidate phytoremediation plant with high biomass and manganese (Mn) tolerance. To study the mechanism underlying its Mn adaptability, Mn2+ at various concentrations (0, 1000, 5000, 10000, 15000, and 20000 μM) were applied to M. cordata to investigate the subcellular distribution and chemical forms of Mn, as well as the resulting physiological and biochemical changes by pot culture experiment under natural light in a greenhouse. According to our results, Mn level in M. cordata increased with exogenous Mn concentrations; and Mn contents in different tissues exhibited a leaf > root > stem pattern. Meanwhile, biomass and the level of photosynthetic pigments increased at lower Mn concentrations but declined as Mn concentration further ascended. Subcellular distribution analysis revealed that Mn was sequestered in cell wall and vacuole; in addition, it was incorporated into pectates and protein, phosphates, and oxalates. These findings revealed a possible effective strategy for M. cordata to reduce Mn mobility and toxicity. Moreover, a continuous boost in the level of malondialdehyde was observed with Mn gradient; whereas contents of soluble proteins and proline, and the activities of superoxide dismutase and peroxidase were initially increased and then dropped. Altogether, these results indicated that most Mn was trapped in the cell wall and soluble fractions in low toxicity forms such as pectates and protein, phosphates, and oxalates. These strategies, that is functioning cooperatively with the well-coordinated antioxidant defense systems and the non-enzymatic metabolites, confer strong resistance to Mn in M. cordata.
Collapse
Affiliation(s)
- Gao Pan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, 410004, PR China.
| | - Heping Zhang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Wensheng Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Peng Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, 410004, PR China
| |
Collapse
|
24
|
Zhao Y, Hu C, Wang X, Qing X, Wang P, Zhang Y, Zhang X, Zhao X. Selenium alleviated chromium stress in Chinese cabbage (Brassica campestris L. ssp. Pekinensis) by regulating root morphology and metal element uptake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:314-321. [PMID: 30784794 DOI: 10.1016/j.ecoenv.2019.01.090] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 05/03/2023]
Abstract
Excessive chromium (Cr) causes toxicity to plants, while the beneficial effects of selenium (Se) have been verified in plants under various adverse conditions. Under Cr stress, the impacts of exogenous Se on root morphology and metal element uptake were investigated in root of Chinese cabbage by cellular and biochemical approaches. Exogenous Se alleviated Cr-induced irreversible damage to root morphology, plasma membrane integrity and ultrastructure of root tip cells. Compared with Cr treatment alone, exogenous Se reduced root Cr content by 17%. Se supply changed the subcellular distribution of Cr in root, and the concentration of Cr was reduced in the fractions of plastids and mitochondria, while increased in soluble fraction. Besides, exogenous Se counteracted the nutrient elements (Na, Ca, Fe, Mn, Cu and Zn) loss induced by Cr. For plant with Se pretreatment, the increase rate of Cr influx was lower than that of plant without Se pretreatment, particularly in solution containing high concentration (100-400 μmol L-1) of Cr. In addition, higher Km value was observed in plant with Se pretreatment, which indicated a lower Cr affinity than that of plant without Se pretreatment. The results suggest that Se modified root morphology and regulated nutrient elements uptake by root, which might play a combined role in reducing Cr uptake by root, consequently alleviating Cr stress and maintaining plant growth.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan 430070, China; Research Center of Trace Elements, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan 430070, China; Research Center of Trace Elements, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Wang
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture, Guangzhou 510640, China
| | - Xuejiao Qing
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan 430070, China; Research Center of Trace Elements, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan 430070, China; Research Center of Trace Elements, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan 430070, China; Research Center of Trace Elements, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuan Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan 430070, China; Research Center of Trace Elements, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan 430070, China; Research Center of Trace Elements, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture, Guangzhou 510640, China.
| |
Collapse
|
25
|
Kurt-Gür G, Demirci H, Sunulu A, Ordu E. Stress response of NAD +-dependent formate dehydrogenase in Gossypium hirsutum L. grown under copper toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31679-31690. [PMID: 30209765 DOI: 10.1007/s11356-018-3145-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Cotton (Gossypium hirsutum L.), which is not directly involved in the food chain, appears to be a suitable candidate to remove heavy metals from the food chain and to be a commercial plant which could be planted in contaminated soils. The key point of this approach is selection of the right genotype, which has heavy metal resistance or hyperaccumulation properties. Therefore, in the present study, two G. hirsutum genotypes, Erşan-92 and N-84S, were grown under copper stress and investigated to obtain further insights about the heavy metal tolerance mechanisms of plants by focusing on the expression of NAD+-dependent formate dehydrogenase (FDH). In accordance with the results, which were obtained from RT-PCR analysis and activity measurements, in the Erşan-92 root tissue, FDH activity increased significantly with increasing metal concentrations and a 6.35-fold higher FDH activity was observed in the presence of 100-μM Cu. As opposed to Erşan-92, the maximum FDH activity in the roots of N-84S, which were untreated with copper as the control plants, was measured as 0.0141-U mg-1 g-1 FW, and the activity decreased significantly with the increasing metal concentrations. The metallothionein (GhMT3a) transcript level of the plants grown in a medium containing different Cu concentrations showed nearly the same pattern as that of the FDH gene transcription. It was observed that while the tolerance of N-84S in the lower Cu concentration reduces remarkably, Erşan-92 continues to struggle up to 100-μM Cu. The results of the SOD analysis also confirm this activity of Erşan-92 against the Cu stress.
Collapse
Affiliation(s)
- Günseli Kurt-Gür
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Hasan Demirci
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Akın Sunulu
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Emel Ordu
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey.
| |
Collapse
|
26
|
Wang K, Wang F, Song N, Liu J, Zhang T, Wang M, Wang Y. Contribution of root uptake to cadmium accumulation in two peanut cultivars: evidence from a split-column soil experiment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15036-15043. [PMID: 29552720 DOI: 10.1007/s11356-018-1719-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Cadmium (Cd) accumulation and internal Cd translocation in the peanut (Arachis hypogaea L.) are highly related to root uptake, which may largely depend on the cultivar variation and the depth of the Cd-contaminated soil. A split-column soil experiment was conducted using two common Chinese peanut cultivars (Huayu-20 and Huayu-23) known to relocate Cd to different tissues. The growth medium was separated into four layers and Cd solution was solely applied to one layer to determine the key depth affecting the Cd accumulation in a plant via root uptakes. The results showed that the biomass of Huayu-23 was significantly higher biomass (3.28-94.0%) than that of Huayu-20, especially in the aerial parts (stems and leaves) and kernels, implying the dilution of Cd. Following the addition of Cd to the soil, the Cd concentrations in peanut tissues increased on average by 28.9-172 and 28.3-111% in Huayu-20 and Huayu-23, respectively. The largest presence of Cd in a peanut plant was observed in the aerial parts, followed by the kernels. Huayu-20 accumulated more Cd in plant tissues than did Huayu-23 due to the former's high Cd translocation. These findings imply that peanut cultivars vary widely in biomass, Cd accumulation, and the percentage distribution of Cd among various plant tissues, especially kernels. Different Cd treatments in the full depth of the root zone induced significant alterations in Cd accumulation of peanut tissues, especially kernels, for both cultivars. The percentage distribution of Cd accumulation by kernels was significantly higher in the deeper layer than in the top layer of the root zone for both peanut cultivars. This study suggests that soil modifications performed during agronomic activities should take into account the full depth of root exploration as well as the peanut cultivars to manage plant Cd uptake.
Collapse
Affiliation(s)
- Kairong Wang
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Fangli Wang
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ningning Song
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun Liu
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Tingting Zhang
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Minglun Wang
- Shandong Provincial Key Laboratory for Dryland Farming Technique, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yongxian Wang
- Shandong Rural Environment and Energy Agency, Qingdao, 266109, China
| |
Collapse
|
27
|
Pereira LS, de Araújo RP, de Oliveira PS, da Silva LD, Alves PAC, Fernandes VF, Gross E. Cadmium induced changes in Solidago chilensis Meyen (Asteraceae) grown on organically fertilized soil with reference to mycorrhizae, metabolism, anatomy and ultrastructure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:76-85. [PMID: 29268118 DOI: 10.1016/j.ecoenv.2017.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/01/2017] [Accepted: 12/09/2017] [Indexed: 06/07/2023]
Abstract
Solidago chilensis Meyen (Asteraceae) is a medicinal important plant with few studies on nutrition and metabolism and none information on cadmium phytotoxicity. The objective of this study was to investigate Cd induced responses on the growth and metabolism in S. chilensis and on arbuscular mycorrhiza (AM). The experiment was carried out in a greenhouse, consisting of a 5 × 4 factorial with five doses of manure (0, 3.5, 7, 14 and 21gdm-3) and four doses of cadmium (0, 25, 50 and 75mgdm-3) applied to a Dystrophic Ultisol. After 250 days of plant cultivation, biomass, nutrient content, photosynthetic rate, guaiacol peroxidase activity, mycorrhizal colonization, glomalin content, anatomical and ultrastucture were evaluated. Plants were significantly affected by interaction of manure and Cd doses with anatomical, ultrastructural, physiological and nutritional modifications. Manure applied into Cd contaminated soil significantly improved mycorrhizal colonization and glomalin production. The highest organic manure dose (21gdm-3) alleviated toxicity symptoms of Cd on S. chilensis.
Collapse
Affiliation(s)
- Lidiane Silva Pereira
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microorganismos, Universidade Estadual de Santa Cruz, Ilheus, Bahia, Brazil.
| | - Romária Pereira de Araújo
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilheus, Bahia, Brazil.
| | - Priscila Souza de Oliveira
- Programa de Pós-Graduação em Produção Vegetal, Universidade Estadual de Santa Cruz, Ilheus, Bahia, Brazil.
| | - Leandro Dias da Silva
- Programa de Pós-Graduação em Produção Vegetal, Universidade Estadual de Santa Cruz, Ilheus, Bahia, Brazil.
| | - Patricia Alves Casaes Alves
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microorganismos, Universidade Estadual de Santa Cruz, Ilheus, Bahia, Brazil.
| | | | - Eduardo Gross
- Departmento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Ilheus, Bahia, Brazil.
| |
Collapse
|
28
|
Sun L, Cao X, Li M, Zhang X, Li X, Cui Z. Enhanced bioremediation of lead-contaminated soil by Solanum nigrum L. with Mucor circinelloides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9681-9689. [PMID: 28251531 DOI: 10.1007/s11356-017-8637-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
Strain selected from mine tailings in Anshan for Pb bioremediation was characterized at the genetic level by internal transcribed spacer (ITS) sequencing. Results revealed that the strain belongs to Mucor circinelloides. Bioremediation of lead-contaminated soil was conducted using Solanum nigrum L. combined with M. circinelloides. The removal efficacy was in the order microbial/phytoremediation > phytoremediation > microbial remediation > control. The bioremediation rates were 58.6, 47.2, and 40.2% in microbial/phytoremediation, microbial remediation, and phytoremediation groups, respectively. Inoculating soil with M. circinelloides enhanced Pb removal and S. nigrum L. growth. The bioaccumulation factor (BF, 1.43), enrichment factor (EF, 1.56), and translocation factor (TF, 1.35) were higher than unit, suggesting an efficient ability of S. nigrum L. in Pb bioremediation. Soil fertility was increased after bioremediation according to change in enzyme activities. The results indicated that inoculating S. nigrum L. with M. circinelloides enhanced its efficiency for phytoremediation of soil contaminated with Pb.
Collapse
Affiliation(s)
- Liqun Sun
- School of Environmental Science and Engineering, Shandong University, Ji'nan, 250100, China
| | - Xiufeng Cao
- Weifang University of Science and Technology, Shouguang, 262700, China
| | - Min Li
- School of Environmental Science and Engineering, Shandong University, Ji'nan, 250100, China
| | - Xu Zhang
- School of Environmental Science and Engineering, Shandong University, Ji'nan, 250100, China
| | - Xinxin Li
- School of Environmental Science and Engineering, Shandong University, Ji'nan, 250100, China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Ji'nan, 250100, China.
| |
Collapse
|
29
|
Zhou L, Yang G, Sun H, Tang J, Yang J, Wang Y, Garran TA, Guo L. Effects of different doses of cadmium on secondary metabolites and gene expression in Artemisia annua L. Front Med 2017; 11:137-146. [PMID: 27928651 DOI: 10.1007/s11684-016-0486-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/26/2016] [Indexed: 11/26/2022]
Abstract
This study aims to elucidate the underlying molecular mechanisms of artemisinin accumulation induced by Cd. The effects of different Cd concentrations (0, 20, 60, and 120 μmol/L) on the biosynthesis of Artemisia annua L. were examined. Intermediate and end products were quantified by HPLC-ESI-MS/MS analysis. The expression of key biosynthesis enzymes was also determined by qRT-PCR. The results showed that the application of treatment with 60 and 120 μmol/L Cd for 3 days significantly improved the biosynthesis of artemisinic acid, arteannuin B, and artemisinin. The concentrations of artemisinic acid, arteannuin B, and artemisinin in the 120 μmol/L Cd-treated group were 2.26, 102.08, and 33.63 times higher than those in the control group, respectively. The concentrations of arteannuin B and artemisinin in 60 μmol/L Cd-treated leaves were 61.10 and 26.40 times higher than those in the control group, respectively. The relative expression levels of HMGR, FPS, ADS, CYP71AV1, DBR2, ALDH1, and DXR were up-regulated in the 120 μmol/L Cd-treated group because of increased contents of artemisinic metabolites after 3 days of treatment. Hence, appropriate doses of Cd can increase the concentrations of artemisinic metabolites at a certain time point by up-regulating the relative expression levels of key enzyme genes involved in artemisinin biosynthesis.
Collapse
Affiliation(s)
- Liangyun Zhou
- The State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guang Yang
- The State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haifeng Sun
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Jinfu Tang
- The State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian Yang
- The State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yizhan Wang
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, 100523, China
| | - Thomas Avery Garran
- The State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lanping Guo
- The State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
30
|
Jia W, Lv S, Feng J, Li J, Li Y, Li S. Morphophysiological characteristic analysis demonstrated the potential of sweet sorghum (Sorghum bicolor (L.) Moench) in the phytoremediation of cadmium-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18823-31. [PMID: 27318481 DOI: 10.1007/s11356-016-7083-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/13/2016] [Indexed: 05/26/2023]
Abstract
Cadmium (Cd) contamination is a worldwide environmental problem, and remediation of Cd pollution is of great significance for food production as well as human health. Here, the responses of sweet sorghum cv. 'M-81E' to cadmium stress were studied for its potential as an energy plant in restoring soils contaminated by cadmium. In hydroponic experiments, the biomass of 'M-81E' showed no obvious change under 10 μM cadmium treatment. Cadmium concentration was the highest in roots of seedlings as well as mature plants, but in agricultural practice, the valuable and harvested parts of sweet sorghum are shoots, so promoting the translocation of cadmium to shoots is of great importance in order to improve its phytoremediation capacity. Further histochemical assays with dithizone staining revealed that cadmium was mainly concentrated in the stele of roots and scattered in intercellular space of caulicles. Moreover, the correlation analysis showed that Cd had a negative relationship with iron (Fe), zinc (Zn), and manganese (Mn) in caulicles and leaves and a positive relationship with Fe in roots. These results implied that cadmium might compete with Fe, Zn, and Mn for the transport binding sites and further prevent their translocation to shoots. In addition, transmission electron microscopic observations showed that under 100 μM cadmium treatment, the structure of chloroplast was impaired and the cell wall of vascular bundle cells in leaves and xylem and phloem cells in roots turned thicker compared to control. In summary, morphophysiological characteristic analysis demonstrated sweet sorghum can absorb cadmium and the growth is not negatively affected by mild level cadmium stress; thus, it is a promising material for the phytoremediation of cadmium-contaminated soils considering its economic benefit. This study also points out potential strategies to improve the phytoremediation capacity of sweet sorghum through genetic modification of transporters and cell wall components.
Collapse
Affiliation(s)
- Weitao Jia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jihong Li
- Beijing Engineering Research Center for Biofuels, Tsinghua University, Beijing, 100084, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Shizhong Li
- Beijing Engineering Research Center for Biofuels, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
31
|
Sharma SS, Dietz KJ, Mimura T. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. PLANT, CELL & ENVIRONMENT 2016; 39:1112-26. [PMID: 26729300 DOI: 10.1111/pce.12706] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 05/02/2023]
Abstract
Plant cells orchestrate an array of molecular mechanisms for maintaining plasmatic concentrations of essential heavy metal (HM) ions, for example, iron, zinc and copper, within the optimal functional range. In parallel, concentrations of non-essential HMs and metalloids, for example, cadmium, mercury and arsenic, should be kept below their toxicity threshold levels. Vacuolar compartmentalization is central to HM homeostasis. It depends on two vacuolar pumps (V-ATPase and V-PPase) and a set of tonoplast transporters, which are directly driven by proton motive force, and primary ATP-dependent pumps. While HM non-hyperaccumulator plants largely sequester toxic HMs in root vacuoles, HM hyperaccumulators usually sequester them in leaf cell vacuoles following efficient long-distance translocation. The distinct strategies evolved as a consequence of organ-specific differences particularly in vacuolar transporters and in addition to distinct features in long-distance transport. Recent molecular and functional characterization of tonoplast HM transporters has advanced our understanding of their contribution to HM homeostasis, tolerance and hyperaccumulation. Another important part of the dynamic vacuolar sequestration syndrome involves enhanced vacuolation. It involves vesicular trafficking in HM detoxification. The present review provides an updated account of molecular aspects that contribute to the vacuolar compartmentalization of HMs.
Collapse
Affiliation(s)
- Shanti S Sharma
- Department of Biosciences, Himachal Pradesh University, Shimla, 171005, India
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, D-33501, Bielefeld, Germany
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
32
|
Khan M, Daud MK, Basharat A, Khan MJ, Azizullah A, Muhammad N, Muhammad N, Ur Rehman Z, Zhu SJ. Alleviation of lead-induced physiological, metabolic, and ultramorphological changes in leaves of upland cotton through glutathione. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8431-40. [PMID: 26782322 DOI: 10.1007/s11356-015-5959-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/10/2015] [Indexed: 05/24/2023]
Abstract
Plants face changes in leaves under lead (Pb) toxicity. Reduced glutathione (GSH) has several functions in plant metabolism, but its role in alleviating Pb toxicity in cotton leaves is still unknown. In the present study, cotton seedlings (28 days old) were exposed to 500 μM Pb and 50 μM GSH, both alone and in combination, for a period of 10 days, in the Hoagland solution under controlled growth conditions. Results revealed Pb-induced changes in cotton's leaf morphology, photosynthesis, and oxidative metabolism. However, exogenous application of GSH restored leaf growth. GSH triggered build up of chlorophyll a, chlorophyll b, and carotenoid contents and boosted fluorescence ratios (F v/F m and F v/F 0). Moreover, GSH reduced the malondialdehyde (MDA), hydrogen peroxide (H2O2), and Pb contents in cotton leaves. Results further revealed that total soluble protein contents were decreased under Pb toxicity; however, exogenously applied GSH improved these contents in cotton leaves. Activities of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), and ascorbate peroxidase (APX)) were also increased by GSH application under Pb toxicity. Microscopic analysis showed that excess Pb shattered thylakoid membranes in chloroplasts. However, GSH stabilized ultrastructure of Pb-stressed cotton leaves. These findings suggested that exogenously applied GSH lessened the adverse effects of Pb and improved cotton's tolerance to oxidative stress.
Collapse
Affiliation(s)
- Mumtaz Khan
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - M K Daud
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Ali Basharat
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Muhammad Jamil Khan
- Department of Soil and Environmental Sciences, Faculty of Agriculture, Gomal University, Dera Ismail Khan, 29050, KPK, Pakistan
| | - Azizullah Azizullah
- Department of Botany, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Niaz Muhammad
- Department of Microbiology, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Zia Ur Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Shui Jin Zhu
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
33
|
Wang P, Deng X, Huang Y, Fang X, Zhang J, Wan H, Yang C. Root morphological responses of five soybean [Glycine max (L.) Merr] cultivars to cadmium stress at young seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1860-72. [PMID: 26403248 DOI: 10.1007/s11356-015-5424-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
To examine the differences in root morphological responses of soybean cultivars with different cadmium (Cd) tolerance and accumulation to Cd stress, the biomass, Cd concentration, and root morphological features of five soybean cultivars were determined under 0, 9, 23, 45, and 90 μM Cd stress via hydroponic experiments. Significantly genotypic differences in Cd tolerance and Cd concentration were observed between five soybean cultivars at four Cd levels. For Cd tolerance, HX3 showed a strong Cd tolerance with tolerance indexes of shoot biomass at 92.49, 76.44, 60.21, and 46.45% after 18 days at four Cd levels, and others had similar weak tolerance at young seedling. For Cd accumulation, Cd concentration in roots showed far higher than that in shoots. The different accumulation features in roots and shoots among five cultivars were found at four Cd levels. Comparing with the control, the total root length (RL), root surface area (SA), and root volume (RV) of all cultivars were decreased significantly at four Cd levels. Tolerant cultivar HX3 had the largest root system and sensitive cultivar BX10 had the smallest root system at young seedling stage. Correlation analysis indicated that RL, SA, and RV were positively correlated with root biomass and shoot biomass under 9 and 23 μM Cd treatments, but root average diameter (RD) was negatively correlated with shoot biomass and root biomass only under 9 μM Cd treatments, while RL and SA were negatively correlated with root Cd concentration under 23 and 45 μM Cd treatments. The results suggested that root morphological traits were closely related to Cd tolerance at young seedlings under Cd treatments.
Collapse
Affiliation(s)
- Peng Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiaojuan Deng
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yian Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiaolong Fang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Haibo Wan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Cunyi Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
34
|
Simioni C, Schmidt ÉC, Rover T, dos Santos R, Filipin EP, Pereira DT, Costa GB, Oliveira ER, Chow F, Ramlov F, Ouriques L, Maraschin M, Bouzon ZL. Effects of cadmium metal on young gametophytes of Gelidium floridanum: metabolic and morphological changes. PROTOPLASMA 2015; 252:1347-1359. [PMID: 25666304 DOI: 10.1007/s00709-015-0768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
By evaluating carotenoid content, photosynthetic pigments and changes in cellular morphology, growth rates, and photosynthetic performance, this study aimed to determine the effect of cadmium (Cd) on the development of young gametophytes of Gelidium floridanum. Plants were exposed to 7.5 and 15 μM of Cd for 7 days. Control plants showed increased formation of new filamentous thallus, increased growth rates, presence of starch grains in the cortical and subcortical cells, protein content distributed regularly throughout the cell periphery, and intense autofluorescence of chloroplasts. On the other hand, plants treated with Cd at concentrations of 7.5 and 15 μM showed few formations of new thallus with totally depigmented regions, resulting in decreased growth rates. Plants exposed to 7.5 μM Cd demonstrated alterations in the cell wall and an increase in starch grains in the cortical and subcortical cells, while plants exposed to 15 μM Cd showed changes in medullary cells with no organized distribution of protein content. The autofluorescence and structure of chloroplasts decreased, forming a thin layer on the periphery of cells. Cadmium also affected plant metabolism, as visualized by a decrease in photosynthetic pigments, in particular, phycoerythrin and phycocyanin contents, and an increase in carotenoids. This result agrees with decreased photosynthetic performance and chronic photoinhibition observed after treatment with Cd, as measured by the decrease in electron transport rate. Based on these results, it was concluded that exposure to Cd affects cell metabolism and results in significant toxicity to young gametophytes of G. floridanum.
Collapse
Affiliation(s)
- Carmen Simioni
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900, CP 476, Florianópolis, SC, Brazil,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mei L, Daud MK, Ullah N, Ali S, Khan M, Malik Z, Zhu SJ. Pretreatment with salicylic acid and ascorbic acid significantly mitigate oxidative stress induced by copper in cotton genotypes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9922-31. [PMID: 25655749 DOI: 10.1007/s11356-015-4075-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/02/2015] [Indexed: 05/15/2023]
Abstract
Higher uptake and translocation of copper (Cu) into plant tissues can cause serious physiological and biochemical alterations in root and leaf tissues of plants. The present study investigates the ameliorative role of salicylic acid (SA) and ascorbic acid (AsA) against Cu-induced toxicity changes in cotton genotypes (two parental lines (J208, Z905) and their hybrid line (ZD14)). To study the tolerance potential against Cu (100 μM) stress, 2-week-old cotton seedlings were pretreated with 100 μM either SA or AsA for three days. Elevated Cu concentration in nutrient media increased Cu accumulation in roots and shoots of all the three cotton genotypes studied. Roots were the main Cu storage site, followed by leaves and stems. Increased cellular Cu concentration significantly inhibited the root and shoot development, although leaf growth was more sensitive toward Cu toxicity. Cu-induced oxidative stress to cotton leaves was evident from significantly increased hydrogen peroxide (H2O2) contents and lipid membrane damage. Increasing Cu translocation toward cotton leaves strongly influenced the malondialdehyde (MDA) contents, which, in turn, inhibited biomass production. SA and AsA pretreated cotton seedlings showed better growth under Cu stress. Despite increase in overall Cu uptake, the SA-pretreated seedlings could defy Cu toxicity through inhibited Cu translocation and modification in the activities of antioxidative enzymes. Whereas, tolerance to Cu-induced toxicity in AsA pretreated plants was associated with Cu exclusion from tissues and reduction of the overall Cu uptake. The present study revealed that the alleviatory role of AsA was significantly higher than SA regarding Cu stress in our experimental cotton genotypes. Furthermore, the hybrid cotton genotype (ZD14) performed well followed by J208 and Z905 in the present experimental setup.
Collapse
Affiliation(s)
- Lei Mei
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Qing X, Zhao X, Hu C, Wang P, Zhang Y, Zhang X, Wang P, Shi H, Jia F, Qu C. Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:179-89. [PMID: 25638524 DOI: 10.1016/j.ecoenv.2015.01.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 05/11/2023]
Abstract
The beneficial role of selenium (Se) in alleviation of chromium (Cr)-induced oxidative stress is well established. However, little is known about the underlying mechanism. The impacts of exogenous Se (0.1mg/L) on Cr(1mg/L)-induced oxidative stress and antioxidant systems in leaves of cabbage (Brassica campestris L. ssp. Pekinensis) were investigated by using cellular and biochemical approaches. The results showed that supplementation of the medium with Se was effective in reducing Cr-induced increased levels of lipid peroxides and superoxide free radicals (O(-)2(·)), as well as increasing activities of superoxide dismutase (SOD) and peroxidase (POD). Meanwhile, 1mg/L Cr induced loss of plasma membrane integrity, growth inhibition, as well as ultrastructural changes of leaves were significantly reversed due to Se supplementation in the medium. In addition, Se application significantly altered the subcellular distribution of Cr which transported from mitochondria, nucleus and the cell-wall material to the soluble fraction and chloroplasts. However, Se application did no significant alteration of Cr effects on osmotic adjustment accumulating products. The study suggested that Se is able to protect leaves of cabbage against Cr toxicity by alleviation of Cr induced oxidative stress, and re-distribution of Cr in the subcellular of the leaf. Furthermore, free radicals, lipid peroxides, activity of SOD and POD, and subcellular distribution of Cr can be considered the efficient biomarkers to indicate the efficiency of Se to detoxification Cr.
Collapse
Affiliation(s)
- Xuejiao Qing
- Hubei Provincial Engineering Laboratory for New-type Fertilizer, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhao
- Hubei Provincial Engineering Laboratory for New-type Fertilizer, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, Tianjin 300071, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture, Guanghou 510640, China.
| | - Chengxiao Hu
- Hubei Provincial Engineering Laboratory for New-type Fertilizer, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Wang
- Hubei Provincial Engineering Laboratory for New-type Fertilizer, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Zhang
- Hubei Provincial Engineering Laboratory for New-type Fertilizer, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuan Zhang
- Hubei Provincial Engineering Laboratory for New-type Fertilizer, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengcheng Wang
- Hubei Provincial Engineering Laboratory for New-type Fertilizer, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanzhi Shi
- Hubei Provincial Engineering Laboratory for New-type Fertilizer, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Fen Jia
- Hubei Provincial Engineering Laboratory for New-type Fertilizer, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chanjuan Qu
- Hubei Provincial Engineering Laboratory for New-type Fertilizer, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
37
|
Daud MK, Quiling H, Lei M, Ali B, Zhu SJ. Ultrastructural, metabolic and proteomic changes in leaves of upland cotton in response to cadmium stress. CHEMOSPHERE 2015; 120:309-20. [PMID: 25169734 DOI: 10.1016/j.chemosphere.2014.07.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/09/2014] [Accepted: 07/22/2014] [Indexed: 05/11/2023]
Abstract
Present study explores physiological, biochemical and proteomic changes in leaves of upland cotton (ZMS-49) using 500 μM cadmium (Cd) along with control. Leaves' biomass and chlorophyll pigments decreased at 500 μM Cd. Cd contents in roots were higher than leaves. Levels of ROS ( [Formula: see text] and H2O2) both in vivo and in vitro and MDA contents were significantly increased. Chlorophyll parameters (F0, Fm, Fm(') and Fv/Fm), total soluble protein contents and APX showed a decline at 500 μM Cd. SOD, CAT and POD and GR activities significantly enhanced. Less ultrastructural alterations in leaves under Cd stress could be observed. Scanning micrographs at 500 μM Cd possessed less number of stomata as well as near absence of closed stomata. Cd could be located in cell wall, vacuoles and intracellular spaces. Important upregulated proteins were methionine synthase, ribulose 1,5-bisphosphate carboxylase, apoplastic anionic guaiacol peroxidase, glyceraldehydes-3-phosphate dehydrogenase (chloroplastic isoform) and ATP synthase D chain, (mitochondrial). Important downregulated proteins were seed storage proteins (vicilin and legumin), molecular chaperones (hsp70, chaperonin-60 alpha subunit; putative protein disulfide isomerase), ATP-dependent Clp protease, ribulose-1,5-bisphophate carboxylase/oxygenase large subunit. Increase in the activities of ROS-scavenging enzymes, less ultrastructural modification, Cd-deposition in dead parts of cells as well as active regulation of different proteins showed Cd-resistant nature of ZMS-49.
Collapse
Affiliation(s)
- M K Daud
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, PR China; Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - He Quiling
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, PR China
| | - Mei Lei
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, PR China
| | - Basharat Ali
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, PR China
| | - S J Zhu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
38
|
Gill RA, Zang L, Ali B, Farooq MA, Cui P, Yang S, Ali S, Zhou W. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. CHEMOSPHERE 2015; 120:154-64. [PMID: 25016339 DOI: 10.1016/j.chemosphere.2014.06.029] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 06/04/2014] [Accepted: 06/10/2014] [Indexed: 05/20/2023]
Abstract
In nature, plants are continuously exposed to several biotic and abiotic stresses. Among these stresses, chromium (Cr) stress is one of the most adverse factors that affects the plant growth, and productivity, and imposes a severe threat for sustainable crop production. In the present study, toxic effects of Cr were studied in hydroponically grown seedlings of four different cultivars of Brassica napus L. viz. ZS 758, Zheda 619, ZY 50 and Zheda 622. The study revealed that elevated Cr concentrations reduced the plant growth rate and biomass as compared to respective controls in all the cultivars and this decline was more obvious in Zheda 622. It was observed that reduction of photosynthetic attributes was more pronounced in Zheda 622 as compared to other cultivars; while, cultivar ZS 758 performed better under Cr-toxicity. Results showed that Cr contents in different parts of seedlings were higher in Zheda 622 as compared to other cultivars and Cr contents were higher in roots than shoots in all the cultivars. Accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) were induced under different Cr concentrations. Results showed that some of anti-oxidant enzyme activities in leaves and roots were increased under the Cr-toxicity. The electron microscopic study showed that ultrastructural damages in leaf mesophyll and root tip cells were more prominent in Zheda 622 as compared to other cultivars under 400 μM Cr stress. Under 400 μM Cr concentration, changes like broken cell wall, immature nucleus, a number of mitochondria, ruptured thylakoid membranes and large size of vacuole and starch grains were observed in leaf ultrastructures. The damages in root cells were observed in the form of disruption of golgibodies and diffused cell wall under the higher concentration of Cr (400 μM). On the basis of these observations, it was concluded that Zheda 622 was found to be more sensitive as followed by ZY 50, Zheda 619 and ZS 758 under Cr-toxicity.
Collapse
Affiliation(s)
- Rafaqat A Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Lili Zang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Muhammad A Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Peng Cui
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Su Yang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Huang B, Xin J, Dai H, Liu A, Zhou W, Yi Y, Liao K. Root morphological responses of three hot pepper cultivars to Cd exposure and their correlations with Cd accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:1151-1159. [PMID: 25119279 DOI: 10.1007/s11356-014-3405-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/30/2014] [Indexed: 06/03/2023]
Abstract
Cultivars of hot pepper (Capsicum annuum L.) differ widely in their fruit cadmium (Cd) concentrations. Previously, we suggested that low-Cd cultivars are better able to prevent the translocation of Cd from roots to aboveground parts, but the corresponding mechanisms are still unknown. In this study, we aimed to improve understanding of the root morphological characteristics of the mechanisms involved in two low-Cd and a high-Cd cultivar. Seedlings were grown in nutrient solutions containing 0 (control), 2, and 10 μM Cd for 20 days, and Cd contents for the three cultivars were compared with changes in root morphology. The total root length (RL), root surface area (SA), number of root tips (RT), and specific root length (SRL) of all cultivars were decreased significantly by the 10 μM Cd treatment with the exception of the SA in JFZ, which showed no obvious change. For each cultivar, the 10 μM Cd treatment decreased significantly RL and SA specifically in roots with diameters (RD) of RD ≤ 0.2 mm or 0.2 mm < RD ≤ 0.4 mm, and increased significantly RL and SA specifically in roots with diameters of 0.6 mm < RD ≤ 0.8 mm. Hot pepper cultivars differ greatly in Cd accumulation and root morphology. In the 10 μM Cd treatment, root volume (RV), SA, and RT of all cultivars were negatively correlated with Cd concentration and amount in roots. However, RL, SA, RV, and RT of all cultivars were positively correlated with Cd concentration and amount in shoots, and translocation rate of Cd. The two low-Cd cultivars of hot pepper had less root tips, shorter root length, and smaller root surface area than the high-Cd cultivar in 10 μM Cd treatment, which may play a vital role in reducing root-to-shoot Cd translocation.
Collapse
Affiliation(s)
- Baifei Huang
- Research Center for Environmental Pollution Control Technology, Department of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | | | | | | | | | | | | |
Collapse
|
40
|
He Q, Zhu S, Zhang B. MicroRNA-target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.). Funct Integr Genomics 2014; 14:507-15. [PMID: 24879091 DOI: 10.1007/s10142-014-0378-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/27/2014] [Accepted: 05/12/2014] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) play key roles in plant responses to various metal stresses. To investigate the miRNA-mediated plant response to heavy metals, cotton (Gossypium hirsutum L.), the most important fiber crop in the world, was exposed to different concentrations (0, 25, 50, 100, and 200 µM) of lead (Pb) and then the toxicological effects were investigated. The expression patterns of 16 stress-responsive miRNAs and 10 target genes were monitored in cotton leaves and roots by quantitative real-time PCR (qRT-PCR); of these selected genes, several miRNAs and their target genes are involved in root development. The results show a reciprocal regulation of cotton response to lead stress by miRNAs. The characterization of the miRNAs and the associated target genes in response to lead exposure would help in defining the potential roles of miRNAs in plant adaptation to heavy metal stress and further understanding miRNA regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Qiuling He
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | | | | |
Collapse
|
41
|
Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: physiological, biochemical and ultrastructural analyses. Biometals 2014; 27:389-401. [DOI: 10.1007/s10534-014-9720-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
42
|
Impact assessment of cadmium toxicity and its bioavailability in human cell lines (Caco-2 and HL-7702). BIOMED RESEARCH INTERNATIONAL 2014; 2014:839538. [PMID: 24695876 PMCID: PMC3947789 DOI: 10.1155/2014/839538] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/23/2013] [Accepted: 11/09/2013] [Indexed: 01/27/2023]
Abstract
Cadmium (Cd) is a widespread environmental toxic contaminant, which causes serious health-related problems. In this study, human intestinal cell line (Caco-2 cells) and normal human liver cell line (HL-7702 cells) were used to investigate the toxicity and bioavailability of Cd to both cell lines and to validate these cell lines as in vitro models for studying Cd accumulation and toxicity in human intestine and liver. Results showed that Cd uptake by both cell lines increased in a dose-dependent manner and its uptake by Caco-2 cells (720.15 µg mg(-1) cell protein) was significantly higher than HL-7702 cells (229.01 µg mg(-1) cell protein) at 10 mg L(-1). A time- and dose-dependent effect of Cd on cytotoxicity assays (LDH release, MTT assay) was observed in both Cd-treated cell lines. The activities of antioxidant enzymes and differentiation markers (SOD, GPX, and AKP) of the HL-7702 cells were higher than those of Caco-2 cells, although both of them decreased significantly with raising Cd levels. The results from the present study indicate that Cd above a certain level inhibits cellular antioxidant activities and HL-7702 cells are more sensitive to Cd exposure than Caco-2 cells. However, Cd concentrations <0.5 mg L(-1) pose no toxic effects on both cell lines.
Collapse
|
43
|
Cadmium-induced upregulation of lipid peroxidation and reactive oxygen species caused physiological, biochemical, and ultrastructural changes in upland cotton seedlings. BIOMED RESEARCH INTERNATIONAL 2013; 2013:374063. [PMID: 24459668 PMCID: PMC3888702 DOI: 10.1155/2013/374063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/28/2013] [Indexed: 11/17/2022]
Abstract
Cadmium (Cd) toxicity was investigated in cotton cultivar (ZMS-49) using physiological, ultrastructural, and biochemical parameters. Biomass-based tolerance index decreased, and water contents increased at 500 μM Cd. Photosynthetic efficiency determined by chlorophyll fluorescence and photosynthetic pigments declined under Cd stress. Cd contents were more in roots than shoots. A significant decrease in nutrient levels was found in roots and stem. A significant decrease in nutrient levels was found in roots and stems. In response to Cd stress, more MDA and ROS contents were produced in leaves than in other parts of the seedlings. Total soluble proteins were reduced in all parts except in roots at 500 μM Cd. Oxidative metabolism was higher in leaves than aerial parts of the plant. There were insignificant alterations in roots and leaves ultrastructures such as a little increase in nucleoli, vacuoles, starch granules, and plastoglobuli in Cd-imposed stressful conditions. Scanning micrographs at 500 μM Cd showed a reduced number of stomata as well as near absence of closed stomata. Cd depositions were located in cell wall, vacuoles, and intracellular spaces using TEM-EDX technology. Upregulation of oxidative metabolism, less ultrastructural modification, and Cd deposition in dead parts of cells show that ZMS-49 has genetic potential to resist Cd stress, which need to be explored.
Collapse
|