1
|
Zhao L, Li Y, Gan Z, Sun W, Su S, Li Z, Shi L. Distribution, fate and removal efficiency of anthelmintic drugs in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168240. [PMID: 37914119 DOI: 10.1016/j.scitotenv.2023.168240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/14/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
The distribution and fate of 19 anthelmintic drugs (ADs) were investigated in two wastewater treatment plants (WWTPs) using different wastewater treatment technologies, including anaerobic-anoxic-aerobic (A2/O) biological process and cyclic activated sludge system (CASS) process. All the 19 ADs were found in the two WWTPs, with concentrations ranging from N.D. to 324.6 ng/L in the influent and from N.D. to 1579.2 ng/L in the effluent. Benzimidazoles were the primary pollutants in the wastewater and suspended particulate matter, accounting for more than half of the total concentration. The concentrations of macrocyclic lactones in the sludge were significantly higher than that of other two media. The ADs removal efficiency of A2/O ranged from -330 % (albendazole sulfoxide) to 100 % (fenbendazole, mebendazole and pyrantel). While the ADs removal efficiency of CASS process ranged from -425 % (albendazole sulfoxide) to 100 % (abamectin, moxidectin and ivermectin). There was no significant difference in the average removal efficiency of the ADs between the two processes (64 % and 63 %, except albendazole sulfoxide). The removal efficiencies of the ADs in the biodegradation stage were better than them in the sedimentation stage. The load per capita of the 19 ADs in two WWTPs ranged from 0 (moxidectin) to 36 μg.d-1.p-1 (albendazole), and the emission in the effluent ranged from 0 (moxidectin) to 163 μg.d-1.p-1 (albendazole sulfoxide). This study provided the first comprehensive data on the occurrence and fate of the 19 ADs and evaluated the removal efficiencies of the 19 ADs in two WWTPs using A2O process and CASS process in the city.
Collapse
Affiliation(s)
- Li Zhao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhi Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Lingling Shi
- Research Center for Environmental Management, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Hachgenei N, Robinet N, Baduel C, Nord G, Spadini L, Martins JMF, Duwig C. Catchment-scale rapid transfer of livestock pharmaceuticals under Mediterranean climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:166650. [PMID: 37652379 DOI: 10.1016/j.scitotenv.2023.166650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Various pharmaceuticals are essential for livestock farming, but some are highly toxic to aquatic life if they reach surface water bodies. Mediterranean Climate is characterized by dry summers followed by intense autumn storms. We studied the effect of these climatic conditions on the risk of pharmaceutical residues transfer to streams at the catchment-scale. Pharmaceutical products routinely used in the study area, as well as their application frequency and season, were identified through interviews with farmers. As a proof a concept, three veterinary pharmaceuticals (Fenbendazole (FBZ), Mebendazole (MBZ) and Ivermectin (IVM)) were chosen as model chemicals based on their relatively high usage, their specificity to represent different types of livestock (swine, sheep and cattle), and their ability to be analyzed using the same analytical method. Stream water was analyzed during low flow periods and at high frequency (up to 2 h-1) during flood events. The selected veterinary pharmaceuticals were not detected during low flow, but FBZ and MBZ reached high concentrations for short periods during floods. Due to the event-driven nature of their transfer, a significant load of veterinary pharmaceuticals can reach the river and cause temporary but significant degradation of water quality (e.g. for FBZ, the water concentration reached up to 355 times the predicted no effect concentration (PNEC)). This indicates that special care should be taken to avoid keeping freshly treated livestock on pastures that may become hydrologically connected under wet conditions. In addition, it suggests that low-frequency monitoring is not sufficient to detect those high concentration levels that exist during very short periods.
Collapse
Affiliation(s)
- Nico Hachgenei
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France.
| | - Nicolas Robinet
- UMR CNRS 5194 Pacte, Université Grenoble Alpes, Cermosem, 1064 chemin du Pradel, 07170 Mirabel, France
| | - Christine Baduel
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France
| | - Guillaume Nord
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France
| | - Lorenzo Spadini
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France
| | - Jean M F Martins
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France
| | - Céline Duwig
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France
| |
Collapse
|
3
|
Vokřál I, Podlipná R, Matoušková P, Skálová L. Anthelmintics in the environment: Their occurrence, fate, and toxicity to non-target organisms. CHEMOSPHERE 2023; 345:140446. [PMID: 37852376 DOI: 10.1016/j.chemosphere.2023.140446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Anthelmintics are drugs used for the treatment and prevention of diseases caused by parasitic worms (helminths). While the importance of anthelmintics in human as well as in veterinary medicine is evident, they represent emerging contaminants of the environment. Human anthelmintics are mainly used in tropical and sub-tropical regions, while veterinary anthelmintics have become frequently-occurring environmental pollutants worldwide due to intensive agri- and aquaculture production. In the environment, anthelmintics are distributed in water and soil in relation to their structure and physicochemical properties. Consequently, they enter various organisms directly (e.g. plants, soil invertebrates, water animals) or indirectly through food-chain. Several anthelmintics elicit toxic effects in non-target species. Although new information has been made available, anthelmintics in ecosystems should be more thoroughly investigated to obtain complex knowledge on their impact in various environments. This review summarizes available information about the occurrence, behavior, and toxic effect of anthelmintics in environment. Several reasons why anthelmintics are dangerous contaminants are highlighted along with options to reduce contamination. Negative effects are also outlined.
Collapse
Affiliation(s)
- Ivan Vokřál
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, Praha 6, CZ-165 02, Czech Republic.
| | - Petra Matoušková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| |
Collapse
|
4
|
Park H, Kim E, Lee TH, Park S, Choi JD, Moon G. Multiclass Method for the Determination of Anthelmintic and Antiprotozoal Drugs in Livestock Products by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Sci Anim Resour 2023; 43:914-937. [PMID: 37701750 PMCID: PMC10493560 DOI: 10.5851/kosfa.2023.e41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 09/14/2023] Open
Abstract
The objective of this study was to establish a multi-residue quantitative method for the analysis of anthelmintic and antiprotozoal drugs in various livestock products (beef, pork, and chicken) using ultra-high-performance liquid chromatography-tandem mass spectrometry. Each compound performed validation at three different levels i.e., 0.5, 1, and 2× the maximum residue limit according to the CODEX guidelines (CAC/GL 71-2009). This study was conducted according to the modified quick, easy, cheap, effective, rugged, and safe procedure. The matrix-matched calibrations gave correlation coefficients >0.98, and the obtained recoveries were in the range of 60.2%-119.9%, with coefficients of variation ≤32.0%. Furthermore, the detection and quantification limits of the method were in the ranges of 0.03-3.2 and 0.1-9.7 μg/kg, respectively. Moreover, a survey of residual anthelmintic and antiprotozoal drugs was also carried out in 30 samples of beef, pork, and chicken collected in Korea. Toltrazuril sulfone was detected in all three samples. Thus, our results indicated that the developed method is suitable for determining the anthelmintic and antiprotozoal drug contents in livestock products.
Collapse
Affiliation(s)
- Hyunjin Park
- Pesticide and Veterinary Drug Residues
Division, National Institute of Food and Drug Safety Evaluation, Ministry of
Food and Drug Safety, Osong 28159, Korea
| | - Eunjung Kim
- Pesticide and Veterinary Drug Residues
Division, National Institute of Food and Drug Safety Evaluation, Ministry of
Food and Drug Safety, Osong 28159, Korea
| | - Tae Ho Lee
- Pesticide and Veterinary Drug Residues
Division, National Institute of Food and Drug Safety Evaluation, Ministry of
Food and Drug Safety, Osong 28159, Korea
| | - Sihyun Park
- Pesticide and Veterinary Drug Residues
Division, National Institute of Food and Drug Safety Evaluation, Ministry of
Food and Drug Safety, Osong 28159, Korea
| | - Jang-Duck Choi
- Pesticide and Veterinary Drug Residues
Division, National Institute of Food and Drug Safety Evaluation, Ministry of
Food and Drug Safety, Osong 28159, Korea
| | - Guiim Moon
- Pesticide and Veterinary Drug Residues
Division, National Institute of Food and Drug Safety Evaluation, Ministry of
Food and Drug Safety, Osong 28159, Korea
| |
Collapse
|
5
|
Yang S, Liao M, Su S, Ding S, Li Y, Gan Z. Occurrence, distribution and environmental risk of 19 anthelmintic drugs in river water and sediment from the Jinjiang River, China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1407-1417. [PMID: 37545439 DOI: 10.1039/d3em00160a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
This study explored the occurrence and distribution of 19 anthelmintic drugs (ADs) including the benzimidazole group, salicylanilide group, imidazothiazole group, tetrahydropyrimidine group, diphenylsulfide group, macrocyclic lactone group and hexahydropyrazine group in river water and sediment of the Jinjiang River in Sichuan, China, during summer and winter seasons. All targets were detected in river water (up to 74.64 ng L-1) and sediment (up to 1701 ng g-1) samples. The predominant ADs were benzimidazoles regardless of seasons and matrices, accounting for 43-82% of the total anthelmintic abundance. Obvious seasonal variation of AD concentrations in the two matrices was observed, which could be attributed to the seasonality of human and veterinary uses of ADs. Evident spatial variation (urban and rural areas) of ADs in winter was indicative of the influence of anthropogenic activities on the environmental concentration of ADs. Though benzimidazoles accumulated in the water and sediment with the highest concentration among all the ADs, macrocyclic lactones were of the highest risk to non-target organisms through ecological risk assessment, with an RQEcotox value up to 2713. This work contributes to comprehensively assessing the contamination level, ecological level and transmission characteristics of ADs in the environment.
Collapse
Affiliation(s)
- Sheng Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Mengxi Liao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Sanglan Ding
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Yiwen Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Lan T, Chen S, Zhang Y, Gan Z, Su S, Ding S, Sun W. Occurrence, ecology risk assessment and exposure evaluation of 19 anthelmintics in dust and soil from China. CHEMOSPHERE 2023; 334:138971. [PMID: 37207903 DOI: 10.1016/j.chemosphere.2023.138971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
In order to fill the blank of domestic research on anthelmintics in dust and soil, 159 paired dust (including indoor and outdoor dust) and soil samples were collected nationwide. All 19 kinds of the anthelmintics were detected in the samples. The total concentration of the target substances in the outdoor dust, indoor dust and soil samples ranged from 1.83 to 1.30 × 103 ng/g, from 2.99 to 6.00 × 103 ng/g and from 0.23 to 8.03 × 102 ng/g, respectively. The total concentration of the 19 anthelmintics in northern China were significantly higher than those in southern China in the outdoor dust and soil samples. No significant correlation was found in the total concentration of anthelmintics between the indoor and outdoor dust because of strong human activities interference, however, a significant correlation existed between the outdoor dust and soil samples and between the indoor dust and soil samples. High ecological risk was found at 35% and 28% of all the sampling sites to non-target organisms in the soil respectively for IVE and ABA, and merits further study. The daily anthelmintics intakes were evaluated via ingestion and dermal contact of soil and dust samples for both children and adults. Ingestion was the predominant way for anthelmintics exposure, and the anthelmintics in soil and dust did not pose a health threat to human health at present.
Collapse
Affiliation(s)
- Tianyang Lan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Sibei Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yujue Zhang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Sanglan Ding
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
7
|
Chemtai C, Kengara FO, Ngigi AN. Levels and ecological risk of pharmaceuticals in River Sosiani, Kenya. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:431. [PMID: 36849593 DOI: 10.1007/s10661-023-11022-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The continued frequent detection of pharmaceuticals in the environment is of major concern due to potential human and ecological risks. This study evaluated 30 antibiotics from 8 classes: sulphonamides (SAs), penicillins (PNs), fluoroquinolones (FQs), macrolides (MLs), lincosamides (LINs), nitroimidazoles (NIs), diaminopyrimidines (DAPs), salfones and 4 anthelmintics benzimidazoles (BZs) in surface water and sediments from River Sosiani in Eldoret, Kenya. Samples were collected during the wet and dry seasons and subjected to solid phase extraction using HLB cartridges. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method was used for the simultaneous quantification of the compounds. Chromatographic separation was on a reversed-phase Zorkax Eclipse Plus C18 column eluted in a gradient program and compounds detected by mass spectrometer operated in a positive electrospray ionization (+ ESI) mode. Twenty-eight antibiotics were detected in water where 22 had a 100% detection frequency and the remaining 4 showed detection frequencies ranging from 5 to 47%. Three BZs had a 100% detection frequency. Detectable concentrations of the pharmaceuticals in water ranged between 0.1 and 247 ng L-1 and 0.01 and 974 µg kg-1 in the sediments. The sulfonamide, sulfamethoxazole, had the highest concentration in water (247 ng L-1), whereas penicillin G showed the highest concentrations in sediments (414-974 µg kg-1). Quantified pharmaceuticals decreased in the order SAs > DAPs > FQs > ATs > PNs ≈ MCs ≈ LNs > NIs in water, and followed the order PNs > BZs > FQs > MLs > DAPs ≈ LNs > NIs > SAs in sediments. Risk quotients (RQw) showed that sulfamethoxazole and ciprofloxacin were of high ecological risk in the surface water (RQw values of 1.11 and 3.24, respectively), whereas penicillin V, ampicillin, penicillin G, norfloxacin, enrofloxacin, erythromycin, tylosin, and lincomycin were of medium ecological risk in the aquatic system. The findings show high prevalence of pharmaceuticals in surface water and sediments and are therefore potential ecological hazards. Such information is vital when devising mitigation strategies.
Collapse
Affiliation(s)
- Catherine Chemtai
- School of Sciences and Aerospace Studies, Department of Chemistry & Biochemistry, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Fredrick O Kengara
- School of Pure and Applied Sciences, Bomet University College, P.O. Box 701-20400, Bomet, Kenya
| | - Anastasiah N Ngigi
- Faculty of Science and Technology, Department of Chemistry, Multimedia University of Kenya, P.O. Box, 15653-00503, Nairobi, Kenya.
| |
Collapse
|
8
|
Effects of praziquantel on common carp embryos and larvae. Sci Rep 2022; 12:17290. [PMID: 36241766 PMCID: PMC9568519 DOI: 10.1038/s41598-022-21679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
This study aimed to assess the toxicity of praziquantel (anthelmintic drug) in different developmental stages of common carp (Cyprinus carpio) based on mortality, early ontogeny, growth, oxidative stress, antioxidant enzymes, histology and behaviour. Praziquantel at all tested concentrations ranging from 1 to 4 mg/L showed no significant adverse effects on mortality, the early ontogeny and behaviour locomotory (activity, moved distance and velocity) of carp after 35-day exposure. Concentrations of 3 and 4 mg/L caused significantly (P < 0.01) lower growth, total superoxide dismutase and catalase activities compared with controls. Praziquantel is safe for the early life of carp in concentrations ≤ 2 mg/L.
Collapse
|
9
|
Zuskova E, Piackova V, Valentova O, Zalohova K, Velisek J. Acute toxicity of praziquantel to fish Danio rerio and planktonic crustacean Daphnia magna. VET MED-CZECH 2022; 67:579-584. [PMID: 38623477 PMCID: PMC11016302 DOI: 10.17221/7/2022-vetmed] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/19/2022] [Indexed: 04/17/2024] Open
Abstract
This study evaluated the toxicity of the pyrazino isoquinoline anthelmintic praziquantel (PZQ) to the Danio rerio zebrafish and Daphnia magna water flea. The estimated 24 h and 96 h LC50 of PZQ to the zebrafish was 39.9 mg/l and 30.4 mg/l, respectively. The highest 24 h and 96 h non-lethal concentration (LC0) was 21.7 mg/l and 21.2 mg/l, respectively. The mobility inhibition test of the juvenile Daphnia magna revealed a 48 h EC50 of 42.7 mg/l.
Collapse
Affiliation(s)
- Eliska Zuskova
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Veronika Piackova
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Olga Valentova
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Klara Zalohova
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Josef Velisek
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| |
Collapse
|
10
|
Davey CJE, Kraak MHS, Praetorius A, Ter Laak TL, van Wezel AP. Occurrence, hazard, and risk of psychopharmaceuticals and illicit drugs in European surface waters. WATER RESEARCH 2022; 222:118878. [PMID: 35878520 DOI: 10.1016/j.watres.2022.118878] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to provide insights into the risk posed by psychopharmaceuticals and illicit drugs in European surface waters, and to identify current knowledge gaps hampering this risk assessment. First, the availability and quality of data on the concentrations of psychopharmaceuticals and illicit drugs in surface waters (occurrence) and on the toxicity to aquatic organisms (hazard) were reviewed. If both occurrence and ecotoxicity data were available, risk quotients (risk) were calculated. Where abundant ecotoxicity data were available, a species sensitivity distribution (SSD) was constructed, from which the hazardous concentration for 5% of the species (HC5) was derived, allowing to derive integrated multi-species risks. A total of 702 compounds were categorised as psychopharmaceuticals and illicit drugs based on a combination of all 502 anatomical therapeutic class (ATC) 'N' pharmaceuticals and a list of illicit drugs according to the Dutch Opium Act. Of these, 343 (49%) returned occurrence data, while only 105 (15%) returned ecotoxicity data. Moreover, many ecotoxicity tests used irrelevant endpoints for neurologically active compounds, such as mortality, which may underestimate the hazard of psychopharmaceuticals. Due to data limitations, risks could only be assessed for 87 (12%) compounds, with 23 (3.3%) compounds indicating a potential risk, and several highly prescribed drugs returned neither occurrence nor ecotoxicity data. Primary bottlenecks in risk calculation included the lack of ecotoxicity data, a lack of diversity of test species and ecotoxicological end points, and large disparities between well studied and understudied compounds for both occurrence and toxicity data. This study identified which compounds merit concern, as well as the many compounds that lack the data for any calculation of risk, driving research priorities. Despite the large knowledge gaps, we concluded that the presence of a substantial part (26%) of data-rich psychopharmaceuticals in surface waters present an ecological risk for aquatic non-target organisms.
Collapse
Affiliation(s)
- Charlie J E Davey
- FAME, UvA IBED: Universiteit van Amsterdam Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands.
| | - Michiel H S Kraak
- FAME, UvA IBED: Universiteit van Amsterdam Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands
| | - Antonia Praetorius
- FAME, UvA IBED: Universiteit van Amsterdam Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands
| | - Thomas L Ter Laak
- FAME, UvA IBED: Universiteit van Amsterdam Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands; KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Annemarie P van Wezel
- FAME, UvA IBED: Universiteit van Amsterdam Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands
| |
Collapse
|
11
|
Białk-Bielińska A, Grabarczyk Ł, Mulkiewicz E, Puckowski A, Stolte S, Stepnowski P. Mixture toxicity of six pharmaceuticals towards Aliivibrio fischeri, Daphnia magna, and Lemna minor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26977-26991. [PMID: 34907475 PMCID: PMC8989911 DOI: 10.1007/s11356-021-17928-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
As the knowledge on the joint effects of pharmaceuticals towards different non-target organisms is still limited, the aim of our study was to evaluate the toxicity of mixtures of pharmaceuticals, as well as their baseline toxicity towards three selected organisms, namely the bioluminescent bacteria Aliivibrio fischeri, the crustacean Daphnia magna, and the duckweed Lemna minor. Different mixtures composed of three up to five pharmaceuticals having the same or different mechanisms of action in terms of their therapeutic activity (non-steroidal anti-inflammatory drugs, opioid analgesic, antibacterial and anti-epileptic drugs) were investigated. The observed EC50s were compared with those predicted using the concentration addition (CA) and independent action (IA) models. In general, the EC50 values for mixtures predicted with the CA model were lower than those obtained with the IA model, although, in some cases, test predictions of these two models were almost identical. Most of the experimentally determined EC50 values for the specific mixtures were slightly higher than those predicted with the CA model; hence, a less than additive effect was noted. Based on the obtained results, it might be concluded that the CA model assumes the worst-case scenario and gives overall closer predictions; therefore, it should be recommended also for modeling the mixture toxicity of pharmaceuticals with different modes of action.
Collapse
Affiliation(s)
- Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Łukasz Grabarczyk
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Alan Puckowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
12
|
Benzimidazoles and Plants: Uptake, Transformation and Effect. TOXICS 2022; 10:toxics10030135. [PMID: 35324760 PMCID: PMC8951012 DOI: 10.3390/toxics10030135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
|
13
|
Javaid A, Latif S, Imran M, Hussain N, Rajoka MSR, Iqbal HMN, Bilal M. Nanohybrids-assisted photocatalytic removal of pharmaceutical pollutants to abate their toxicological effects - A review. CHEMOSPHERE 2022; 291:133056. [PMID: 34838839 DOI: 10.1016/j.chemosphere.2021.133056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
Advancement in medication by health care sector has undoubtedly improved our life but at the same time increased the chemical burden on our natural ecosystem. The residuals of pharmaceutical products become part of wastewater streams by different sources such as excretion after their usage, inappropriate way of their disposal during production etc. Hence, they are serious health hazards for human, animal, and aquatic lives. Due to rapid urbanization, the increased demand for clean drinking water is a burning global issue. In this regard it is need of the present era to explore efficient materials which could act as photocatalyst for mitigation of pharmaceuticals in wastewater. Nanohybrid as photocatalyst is one of the widely explored class of materials in photocatalytic degradation of such harmful pollutants. Among these nanohybrids; metal based nanohybrids (metals/metal oxides) and carbon based nanohybrids (carbon nanotubes, graphene, fullerenes etc.) have been explored to remove pharmaceutical drugs. Keeping in view the increasing harmful impacts of pharmaceuticals; the sources of pharmaceuticals in wastewater, their health risk factors and their mitigation using efficient nanohybrids as photocatalysts have been discussed in this review.
Collapse
Affiliation(s)
- Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 53700, Pakistan
| | - Muhammad Shahid Riaz Rajoka
- Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
14
|
Pereira Cordeiro R, Aparecida de Campos Braga P, Souza Rocha MJ, Campos Chagas E, Reyes Reyes FG. Depletion study and estimation of the withdrawal period for albendazole in tambaqui ( Colossoma macropomum) parasitised by acanthocephalan ( Neoechinorhynchus buttnerae) treated with albendazole-containing feed. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1883-1896. [PMID: 34477497 DOI: 10.1080/19440049.2021.1954700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study provides the first data related to albendazole (ABZ) and its main metabolites [albendazole sulphoxide (ABZSO), albendazole sulphone (ABZSO2), and albendazole-2-amino sulphone (ABZ-2-NH2-SO2)] residue depletion in tambaqui (Colossoma macropomum) parasitised by acanthocephalan (Neoechinorhynchus buttnerae). The ABZ withdrawal period was also calculated. The fish received a daily dose of 10 mg ABZ kg-1 body weight (b.w.) via medicated feed for 34 days. Samples of target tissue (muscle plus skin in natural proportions) were collected 24, 48, 72, 120, 168, 240, and 336 h after the end of ABZ administration. The quantitation of ABZ residues and its metabolites in the target tissue was performed using a validated ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analytical method. After treatment, ABZ in the target tissue was rapidly metabolised over time, and ABZSO was the most persistent metabolite and was shown to be at the highest levels in the target tissue. Considering the maximum residue limit (MRL) established by Codex Alimentarius in the muscle (100 μg kg-1, species not specified), a withdrawal period of 4 days (112 °C-day) was estimated for the total residue (sum of ABZ and its metabolite residues). Considering data reported in the literature and data obtained in this study, it is suggested that the total residue be considered as marker residue to be adopted for fish in the legislative framework.
Collapse
Affiliation(s)
- Rafaelle Pereira Cordeiro
- Department of Food Science, School of Food Engineering, University of Campinas -UNICAMP, Campinas, SP, Brazil
| | | | | | | | - Felix Guillermo Reyes Reyes
- Department of Food Science, School of Food Engineering, University of Campinas -UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
15
|
Chen S, Gan Z, Li Z, Li Y, Ma X, Chen M, Qu B, Ding S, Su S. Occurrence and risk assessment of anthelmintics in Tuojiang River in Sichuan, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112360. [PMID: 34058680 DOI: 10.1016/j.ecoenv.2021.112360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Recently, emerging pollutants, such as anthelmintics have attracted an increasing attention worldwide due to their extensive use and notable stability. However, the information on anthelmintics in the environment of southwest China is scarce. Thus, the occurrence, ecological risk and exposure evaluation of nineteen anthelmintics in Tuojiang River, which is one of the largest tributaries of Yangtze River, and drinking water source of Sichuan, southwest China, were investigated. The result showed that the detection frequency of anthelmintics was relatively high in Tuojiang River, ranging from 65% to 100% in river water. Among the seven kinds of anthelmintics, benzimidazoles are the primary anthelmintics, with concentrations up to 61.12 ng/L and 596.06 ng/g in water and sediment of the Tuojiang river, respectively. The total concentration of 19 anthelmintics in sediment samples from non-agricultural area was higher than that in agricultural area(p = 0.000 < 0.05). This could be attributed to anthropogenic activities, which lead to greater discharge and accumulation of anthelmintics in residential area along the river. It's worth to mention that the highest total concentrations of anthelmintics (109.28 ng/L) was found at the junction of rivers in R31 site. The results could be ascribed to the complexity of junction of Tuojiang River and Yangtze River, which could influence the distribution of pollutant. Besides, the ecological risk assessment showed that the macrocyclic lactones rather than benzimidazoles had relatively high toxicity to non-target organisms in aquatic environment (p = 0.000 < 0.05), with the highest RQEcotox value of 101 for Daphnia magna, while benzimidazoles had relatively high concentrations. The exposure risk could be ignored for both children and adults because the daily intake of anthelmintics via water ingestion were below 10 ng/kg/d. In addition, strong correlations were found between sucralose and most of the selected anthelmintics in Tuojiang River, indicating that sucralose might be a good tracer to evaluated the source of anthelmintics in surface water. This study provides the levels, risks and even some tracer information of pollutants for better understanding of anthelmintics in southwest China.
Collapse
Affiliation(s)
- Sibei Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Zhi Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Yiwen Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xuan Ma
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Mengqin Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Bing Qu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Sanglan Ding
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Muniz MS, Halbach K, Alves Araruna IC, Martins RX, Seiwert B, Lechtenfeld O, Reemtsma T, Farias D. Moxidectin toxicity to zebrafish embryos: Bioaccumulation and biomarker responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117096. [PMID: 33866217 DOI: 10.1016/j.envpol.2021.117096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Moxidectin is an antiparasitic drug belonging to the class of the macrocyclic lactones, subgroup mylbemicins. It is used worldwide in veterinary practice, but little is known about its potential environmental risks. Thus, we used the zebrafish embryo as a model system to study the potential effects of moxidectin on aquatic non-target organisms. The analyses were performed in two experimental sets: (1) acute toxicity and apical endpoints were characterized, with biomarker assays providing information on the activity levels of catalase (CAT), glutathione S-transferase (GST), lactate dehydrogenase (LDH), and acetylcholinesterase (AChE); and (2) internal concentration and spatial distribution of moxidectin were determined using ultraperformance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-QToF-MS) and matrix-assisted laser desorption/ionization-MS imaging (MALDI-MSi). The acute toxicity to zebrafish embryos (96 hpf) appeared mainly as a decrease in hatching rates (EC50 = 20.75 μg/L). It also altered the enzymatic activity of biomarker enzymes related to xenobiotic processing, anaerobic metabolism, and oxidative stress (GST, LDH, and CAT, respectively) and strongly accumulated in the embryos, as internal concentrations were 4 orders of magnitude higher than those detected in exposure solutions. MALDI-MSi revealed accumulations of the drug mainly in the head and eyes of the embryos (72 and 96 hpf). Thus, our results show that exposure to moxidectin decreases hatching success by 96 h and alters biochemical parameters in the early life stages of zebrafish while accumulating in the head and eye regions of the animals, demonstrating the need to prioritize this compound for environmental studies.
Collapse
Affiliation(s)
- Marta Silva Muniz
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Katharina Halbach
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Igor Cauê Alves Araruna
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Rafael Xavier Martins
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Oliver Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
17
|
Zhu S, Gao M, Tian S, Bu Y, Cui H, Gan Z, Ma X, Li Y, Li Z. Simultaneous Determination of 19 Antibiotics and 19 Anthelmintics Residues in Edible Fungi by UHPLC-MS/MS in Combination with QuEChERS Method. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Mooney D, Richards KG, Danaher M, Grant J, Gill L, Mellander PE, Coxon CE. An analysis of the spatio-temporal occurrence of anthelmintic veterinary drug residues in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144804. [PMID: 33485200 DOI: 10.1016/j.scitotenv.2020.144804] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Anthelmintics are antiparasitic drugs used to control helminthic parasites such as nematodes and trematodes in animals, particularly those exposed through pasture-based production systems. Even though anthelmintics have been shown to be excreted into the environment in relatively high amounts as unmetabolized drug or transformation products (TPs), there is still only limited information available on their environmental occurrence, particularly in groundwater, which has resulted in them being considered as potential emerging contaminants of concern. A comprehensive study was carried out to investigate the occurrence of 40 anthelmintic residues (including 13 TPs) in groundwaters (and associated surface waters) throughout the Republic of Ireland. The study focused on investigating the occurrence of these contaminants in karst and fractured bedrock aquifers, with a total of 106 sites (88 groundwaters and 18 surface waters) samples during spring 2017. Seventeen anthelmintic compounds consisting of eight parent drugs and nine TPs were detected at 22% of sites at concentrations up to 41 ng L-1. Albendazole and its TPs were most frequently detected residues, found at 8% of groundwater sites and 28% of surface water sites. Multivariate statistical analysis identified several source and pathway factors as being significantly related to the occurrence of anthelmintics in groundwater, however there was an evident localised effect which requires further investigation. An investigation of the temporal variations in occurrence over a 13 month period indicated a higher frequency and concentration of anthelmintics during February/March and again later during August/September 2018, which coincided with periods of increased usage and intensive meteorological events. This work presents the first detections of these contaminants in Irish groundwater and it contributes to broadening our understanding of anthelmintics in the environment. It also provides insight to seasonal trends in occurrence, which is critical for assessing potential future effects and implications of climate change.
Collapse
Affiliation(s)
- D Mooney
- Geology Department/Trinity Centre for the Environment, School of Natural Sciences, Trinity College Dublin, Ireland; Food Safety Department, Teagasc, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland; Irish Centre for Research in Applied Geosciences (iCRAG), Ireland.
| | - K G Richards
- Irish Centre for Research in Applied Geosciences (iCRAG), Ireland; Environment, Soils and Land-Use Department, Environment Research Centre, Teagasc, Johnstown Castle, Wexford, Ireland
| | - M Danaher
- Food Safety Department, Teagasc, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - J Grant
- Statistics and Applied Physics, Research Operations Group, Teagasc, Ashtown, Dublin 15, Ireland
| | - L Gill
- Irish Centre for Research in Applied Geosciences (iCRAG), Ireland; Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Ireland
| | - P-E Mellander
- Environment, Soils and Land-Use Department, Environment Research Centre, Teagasc, Johnstown Castle, Wexford, Ireland
| | - C E Coxon
- Geology Department/Trinity Centre for the Environment, School of Natural Sciences, Trinity College Dublin, Ireland; Irish Centre for Research in Applied Geosciences (iCRAG), Ireland
| |
Collapse
|
19
|
Rathi BS, Kumar PS, Show PL. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124413. [PMID: 33183841 DOI: 10.1016/j.jhazmat.2020.124413] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/16/2020] [Accepted: 10/24/2020] [Indexed: 05/17/2023]
Abstract
Wastewater is water that has already been contaminated by domestic, industrial and commercial activity that needs to be treated before it could be discharged into some other water bodies to avoid even more groundwater contamination supplies. It consists of various contaminants like heavy metals, organic pollutants, inorganic pollutants and Emerging contaminants. Research has been doing on all types of contaminates more than a decade, but this emerging contaminants is the contaminants which arises mostly from pharmaceuticals, personal care products, hormones and fertilizer industries. The majority of emerging contaminants did not have standardized guidelines, but may have adverse effects on human and marine organisms, even at smaller concentrations. Typically, extremely low doses of emerging contaminants are found in the marine environment and cause a potential risk to the aquatic animals living there. When contaminants emerge in the marine world, they are potentially toxic and pose many risks to the health of both man and livestock. The aim of this article is to review the Emerging contaminate sources, detection methods and treatment methods. The purpose of this study is to consider the adsorption as a beneficial treatment of emerging contaminants also advanced and cost effective emerging contaminates treatment methods.
Collapse
Affiliation(s)
- B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; SSN-Centre for Radiation, Environmental Science and Technology (SSN-CREST), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Malaysia
| |
Collapse
|
20
|
Venancio WAL, Rodrigues-Silva C, Spina M, Diniz V, Guimarães JR. Degradation of benzimidazoles by photoperoxidation: metabolites detection and ecotoxicity assessment using Raphidocelis subcapitata microalgae and Vibrio fischeri. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23742-23752. [PMID: 33099741 DOI: 10.1007/s11356-020-11294-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Benzimidazoles (BZ) are among the most used drugs to treat parasitic diseases in both human and veterinary medicine. In this study, solutions fortified with albendazole (ABZ), fenbendazole (FBZ), and thiabendazole (TBZ) were subjected to photoperoxidation (UV/H2O2). The hydroxyl radicals generated by the process removed up to 99% of ABZ, and FBZ, in the highest dosage of H2O2 (i.e., 1.125 mmol L-1; 4.8 kJ L-1). In contrast, 20% of initial TBZ concentration remained in the residual solution. In the first 5 min of reaction (i.e., up to 0.750 mmol L-1 of H2O2), formation of the primary metabolites of ABZ-ricobendazole (RBZ), albendazole sulfone (ABZ-SO2), and oxfendazole (OFZ)-was observed. However, these reaction products were converted after the reaction time was doubled. The residual ecotoxicity was investigated using the Raphidocelis subcapitata microalgae and the marine bacteria Vibrio fischeri. The results for both microorganisms evidence that the residual solutions are less harmful to these microorganisms. However, after 30 min of reaction, the treated solution still presents a toxic effect for V. fischeri, meaning that longer reaction times are required to achieve an innocuous effluent.
Collapse
Affiliation(s)
- Wilson Augusto Lima Venancio
- School of Civil Engineering, Architecture, and Urban Design, University of Campinas, P.O. Box 6021, Campinas, SP, 13083-889, Brazil
| | - Caio Rodrigues-Silva
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, SP P.O. Box 6154, Campinas, SP, 13084-971, Brazil.
| | - Mylena Spina
- School of Civil Engineering, Architecture, and Urban Design, University of Campinas, P.O. Box 6021, Campinas, SP, 13083-889, Brazil
| | - Vinicius Diniz
- School of Civil Engineering, Architecture, and Urban Design, University of Campinas, P.O. Box 6021, Campinas, SP, 13083-889, Brazil
| | - José Roberto Guimarães
- School of Civil Engineering, Architecture, and Urban Design, University of Campinas, P.O. Box 6021, Campinas, SP, 13083-889, Brazil.
| |
Collapse
|
21
|
Kim E, Park S, Park H, Choi J, Yoon HJ, Kim JH. Determination of Anthelmintic and Antiprotozoal Drug Residues in Fish Using Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2021; 26:2575. [PMID: 33925124 PMCID: PMC8125621 DOI: 10.3390/molecules26092575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
The objective of this study is to develop a comprehensive and simple method for the simultaneous determination of anthelmintic and antiprotozoal drug residues in fish. For sample preparation, we used the "quick, easy, cheap, effective, rugged, and safe" (QuEChERS) method with a simple modification. The sample was extracted with water and 1% formic acid in acetonitrile/methanol (MeCN/MeOH) (95:5, v/v), followed by phase separation (salting out) with MgSO4 and NaCl (4:1, w/w). After centrifugation, an aliquot of the extract was purified by dispersive solid-phase extraction (d-SPE) prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The method was validated at three concentration levels for all matrices, in accordance with the Codex guidelines (CAC/GL-71). Quantitative analysis was performed using the method of matrix-matched calibration. The recoveries were between 60.6% and 119.9%, with coefficients of variation (CV) <30% for all matrices. The limit of quantitation (LOQ) of the method ranged from 0.02 μg kg-1 to 4.8 μg kg-1 for all matrices. This comprehensive method can be used for the investigation of both anthelmintic and antiprotozoal drugs belonging to different chemical families in fishery products.
Collapse
Affiliation(s)
- Eunjung Kim
- Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju 28159, Korea; (E.K.); (S.P.); (H.P.); (J.C.); (H.J.Y.)
- Pesticide Chemistry and Toxicology Laboratory, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sihyun Park
- Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju 28159, Korea; (E.K.); (S.P.); (H.P.); (J.C.); (H.J.Y.)
| | - Hyunjin Park
- Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju 28159, Korea; (E.K.); (S.P.); (H.P.); (J.C.); (H.J.Y.)
| | - Jangduck Choi
- Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju 28159, Korea; (E.K.); (S.P.); (H.P.); (J.C.); (H.J.Y.)
| | - Hae Jung Yoon
- Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju 28159, Korea; (E.K.); (S.P.); (H.P.); (J.C.); (H.J.Y.)
| | - Jeong-Han Kim
- Pesticide Chemistry and Toxicology Laboratory, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
22
|
Pretreatment and determination methods for benzimidazoles: An update since 2005. J Chromatogr A 2021; 1644:462068. [PMID: 33836299 DOI: 10.1016/j.chroma.2021.462068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/08/2023]
Abstract
Benzimidazoles, commonly used as pesticides and veterinary drugs, have posed a threat to human health and the environment due to unreasonable use and lack of valid regulation. Therefore, an up-to-date and comprehensive summary of the pretreatment and analytical approaches in different substrates is urgently needed. The present review consequently updates and covers various newly developed pretreatment methods (e.g., cationic micellar precipitation, magnetic-solid phase extraction, hollow fiber liquid phase microextraction, disperse liquid-liquid microextraction-solidified floating organic drop, stir cake sorptive extraction, solid phase microextraction method, QuEChERS, and molecular imprinted polymer-based methods) since 2005. The review also elaborates and discusses different determination methods (e.g., newly developed HPLC and related methods, improved spectrofluorimetry methods, capillary electrophoresis, and the electrochemical sensor). Furthermore, some critical points and prospects are highlighted, to describe the trends in this area.
Collapse
|
23
|
Belew S, Suleman S, Wynendaele E, Duchateau L, De Spiegeleer B. Environmental risk assessment of the anthelmintic albendazole in Eastern Africa, based on a systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116106. [PMID: 33272795 DOI: 10.1016/j.envpol.2020.116106] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
This study performs an environmental risk assessment (ERA) of the anthelmintic medicine albendazole (ABZ) in the eastern African region. A systematic literature search strategy was applied to obtain quantitative information on the physicochemical characteristics, the metabolization-fate, the ecotoxicity and the environmental occurrence in different countries worldwide serving as model regions. In addition, insilico tools were employed to obtain data on physicochemical characteristics and toxic hazards of ABZ and its metabolites. Moreover, ERA models were used to predict environmental concentrations in different compartments and compare them with the measured environmental concentrations. Finally, the environmental risk of ABZ in the eastern Africa was estimated by calculating the risk quotient (RQ), and its uncertainty estimated by Monte Carlo simulation. The predicted environmental concentrations of ABZ in surface water in the model region based on consumption (1.6-267 ng/L) were within the range of values obtained from the measured environmental concentrations of the same region (0.05-101,000 ng/L). Using these models with adapted input variables for eastern Africa, the predicted surface water concentration in that region was 19,600 ± 150 ng/L (95% CI). The calculated soil concentrations of ABZ in the model regions and the eastern Africa were found to be 0.057 ± 0.0 μg/kg and 0.022 ± 0.0 μg/kg, respectively. The environmental risk expressed as risk quotient of ABZ in eastern Africa estimated for the aquatic compartment (146 ± 1) indicated a significant environmental risk calling on appropriate actions from the competent authorities to reduce this risk in this region.
Collapse
Affiliation(s)
- Sileshi Belew
- Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Jimma University, PO Box 378, Jimma, Ethiopia; Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Sultan Suleman
- Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Jimma University, PO Box 378, Jimma, Ethiopia.
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Luc Duchateau
- Biometrics Research Group, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
24
|
Goessens T, Baere SD, Troyer ND, Deknock A, Goethals P, Lens L, Pasmans F, Croubels S. Highly sensitive multi-residue analysis of veterinary drugs including coccidiostats and anthelmintics in pond water using UHPLC-MS/MS: application to freshwater ponds in Flanders, Belgium. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2117-2131. [PMID: 32969449 DOI: 10.1039/d0em00215a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Veterinary drugs, such as coccidiostats and anthelmintics are routinely administered in extensive animal husbandry, finding their way into the aquatic environment through urine and/or feces of treated animals kept outdoors or by the application of contaminated liquid manure on agricultural fields and subsequent mechanisms of surface run-off, leaching and drift. Several of these compounds are known to exert acute and chronic toxicity effects on aquatic organisms, and can lead to changes in biodiversity and ecosystem functioning. The overall objective of this research was to develop, validate and apply a highly sensitive, multi-residue SPE-UHPLC-MS/MS method for the determination of 12 coccidiostats, registered as a feed supplement or veterinary medicine in Europe and three regularly used anthelmintics, in pond water, often functioning as amphibian habitat. Sample extraction was optimized using a fractional factorial resolution design. Pond water filtration efficiency (i.e. 80-118%, ≤25% RSD) and matrix effects (i.e. 72-119%, ≤39% RSD) were evaluated using water from respectively 3 and 20 different ponds in Flanders. By incorporating internal standards, overall results improved and adequate precision values (i.e.≤15%) were obtained according to the EMA guidelines. Acceptable within-run and between-run apparent recoveries, satisfactory precision as well as good linearity were demonstrated according to the CD 2002/657/EC, SANTE/12682/2019 and VICH 49 guidelines, except for robenidine for which the between-day precision was between 21.0 and 34.5%. Sample storage stability studies indicated that storage at 4 °C and analysis performed within 96 hours after sampling was sufficient to avoid loss by degradation for all compounds, excluding robenidine. Values for the limit of detection (LOD) and quantification (LOQ) were in nanograms per liter, which was essential for the environmental application of this novel method. The method was successfully applied on grab water samples from the water surface of 18 different ponds across Flanders, Belgium, detecting amprolium and levamisole at concentrations below the LOQ of 2.5 ng L-1 and at 250.0 ng L-1 or below the LOQ of 250.0 ng L-1, respectively. In conclusion, our newly developed method may provide insights about the contamination status of amphibian breeding ponds.
Collapse
Affiliation(s)
- T Goessens
- Ghent University, Department of Pharmacology, Toxicology and Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hao K, Suryoprabowo S, Kuang H, Song S. Ultrasensitive detection of praziquantel in sea bass (Lateolabrax japonicus) using a lateral flow immunochromatographic assay. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1776685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Kai Hao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, People’s Republic of China
| | - Steven Suryoprabowo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
26
|
Li Y, Gan Z, Liu Y, Chen S, Su S, Ding S, Tran NH, Chen X, Long Z. Determination of 19 anthelmintics in environmental water and sediment using an optimized PLE and SPE method coupled with UHPLC-MS/MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137516. [PMID: 32120113 DOI: 10.1016/j.scitotenv.2020.137516] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
A sensitive quantification method using pressurized liquid extraction (PLE) and solid phase extraction (SPE) coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for determination of 19 anthelmintic drugs (ADs) belonging to seven structural groups (Benzimidazoles, Diphenylsulfides, Imidazothiazoles, Hexahydropyrazines, Macrocylic lactones, Salicylanilides, Tetrahydropyrimidines) in environmental water and sediment samples. Eleven SPE cartridges, sample pH, elution solvents were tested to determine the optimal conditions for extraction. Among these investigated SPE types, the best recoveries for 19 target ADs were obtained from Oasis HLB cartridge with 37-102%, 45-103%, 37-88%, 28-82% and 31-90% for spiked river water, tap water, rainwater, wastewater, and sediment respectively (with RSD < 15%), except for closantel. The 19 ADs were separated within 10 min by a BEH C18 column and monitored in both positive and negative ions modes with switching electrospray ionization source. The cross-talk interferences were solved by identification of secondary mass spectrum of substances through MRM-IDA-EPI scanning using Qtrap. These interference peaks could be efficiently eliminated by setting MRM segments or using Qtrap to obtain tertiary fragmented information. The developed methods were satisfactory in terms of linearity, accuracy, and precision, and used eight isotopically labeled compounds as internal standards to correct matrix effects. Method quantification limit (MQL) for 19 ADs was below 1.1 ng/L, 0.4 ng/L, 5.4 ng/L and 2.3 ng/g for river water, tap water, wastewater, and sediment, respectively. The validated method was successfully used to investigate the occurrence of anthelmintics in water and sediment samples from Chengdu, China. All ADs were detected in environment with the concentrations at ng/L level.
Collapse
Affiliation(s)
- Yiwen Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Yunxiang Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Sibei Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Sanglan Ding
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Ngoc Han Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Xi Chen
- SCIEX, Analytical Instrument Trading Co., Shanghai 200335, China
| | - Zhimin Long
- SCIEX, Analytical Instrument Trading Co., Shanghai 200335, China
| |
Collapse
|
27
|
Rodrigues ET, Varela AT, Pardal MA, Sardão VA. Cell-based assays as an alternative for the study of aquatic toxicity of pharmaceuticals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7145-7155. [PMID: 31883075 DOI: 10.1007/s11356-019-07384-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/10/2019] [Indexed: 05/13/2023]
Abstract
An increasing number and amount of pharmaceuticals for human and veterinary use currently reach the aquatic environment, and the determination of their effects on aquatic organisms becomes of major importance. The 96-h fish lethal test is one of the conventional assays required for environmental hazardous assessment, but it is extremely time-consuming and costly, and it raises ethical concerns. In a broad study, we compared the ability of cell-based assays to detect, in absolute terms, lethal toxicity in fish due to pharmaceuticals in order to select sensitive cell lines to be posteriorly used as an alternative to fish testing. This study also explored the sensitivity of the rat cardiomyoblast H9c2(2-1) cell line and the suitability of the sulforhodamine B colorimetric assay regarding 15 pharmaceuticals belonging to 9 different therapeutic classes. The relation between in vivo and in vitro data was expressed as LC50,96h/EC50 ratios, and 66% of concordant data were attained. Accordingly, it was possible to conclude that cell-based assays could be considered a suitable alternative to fish lethal testing for pharmaceuticals, which, after validation, may dramatically reduce the number of fish required for environmental hazardous assessment. Several cell lines were selected as promising alternatives, but H9c2(2-1), HepG2, PLHC-1, and RTG-2 could be considered suitable starting cell types for further studies, as relevant results were obtained with low exposure times.
Collapse
Affiliation(s)
- Elsa T Rodrigues
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Ana T Varela
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Miguel A Pardal
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Vilma A Sardão
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Lot 8A, Biocant Park, 3060-197, Cantanhede, Portugal
| |
Collapse
|
28
|
Pavlović DM, Kraljević TG, Pavić R, Mrđa J. Determination of Anthelmintic Pharmaceuticals in Wastewater by Solid-Phase Extraction and Thin-Layer Chromatography. JPC-J PLANAR CHROMAT 2019. [DOI: 10.1556/1006.2019.32.5.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Tatjana Gazivoda Kraljević
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Romana Pavić
- Department of Analytical Chemistry Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Jasna Mrđa
- Department of Analytical Chemistry Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
29
|
Shen X, Liu L, Xu L, Ma W, Wu X, Cui G, Kuang H. Rapid detection of praziquantel using monoclonal antibody-based ic-ELISA and immunochromatographic strips. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1641068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Xinyi Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Wei Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Gang Cui
- Yancheng Teachers University, Yancheng, People’s Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
30
|
Ma X, Liu X, Ding S, Su S, Gan Z. Sorption and leaching behavior of bithionol and levamisole in soils. CHEMOSPHERE 2019; 224:519-526. [PMID: 30831504 DOI: 10.1016/j.chemosphere.2019.02.170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
The batch experiments were conducted to understand sorption process of bithionol (BIT) in yellow soil (YS) and red soil (RS), while column leaching experiments were performed to evaluate the leaching behavior of BIT and levamisole (LEV) in the tested soils. The adsorption and desorption data fitted well with the Freundlich isotherms (R2 ≥ 0.94). The distribution coefficient of BIT in the YS and RS were 104 and 98.3 L/kg, respectively. Hysteresis was observed for bithionol desorption in the YS and RS, with hysteresis coefficient of 0.917 and 0.928, respectively. Dissolved organic matter (DOM) addition and acid condition enhanced the adsorption of BIT in the soil. Both BIT and LEV showed poor leaching potential in the tested soils. More than 80% of BIT and LEV remained in the surface soil layer and the amount of the two target compounds in the leachates accounted for less than 1% of overall recovery. DOM showed little influence on the concentration of BIT and LEV in the leachates collected at different time. The results could fill the gap on the behavior of BIT and LEV in soil under laboratory conditions.
Collapse
Affiliation(s)
- Xuan Ma
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xueping Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Sanglan Ding
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
31
|
Mooney D, Coxon C, Richards KG, Gill L, Mellander PE, Danaher M. Development and Optimisation of a Multiresidue Method for the Determination of 40 Anthelmintic Compounds in Environmental Water Samples by Solid Phase Extraction (SPE) with LC-MS/MS Detection. Molecules 2019; 24:E1978. [PMID: 31121991 PMCID: PMC6572551 DOI: 10.3390/molecules24101978] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 11/26/2022] Open
Abstract
A comprehensive multiresidue method was developed and validated for the determination of 40 anthelmintic compounds, including 13 transformation products, in surface and groundwater samples at sub nanogram per litre (ng L-1) levels. Anthelmintic residues were extracted from unfiltered water samples using polymeric divinylbenzene solid phase extraction (SPE) cartridges, and eluted with methanol: acetone (50:50, v/v). Purified extracts were concentrated, filtered and injected for UHPLC-MS/MS determination. The method recovery (at a concentration representative of realistic expected environmental water levels based on literature review) ranged from 83-113%. The method was validated, at three concentration levels, in accordance to Commission Decision 2002/657/EC and SANTE/11813/2017 guidelines. Trueness and precision, under within-laboratory reproducibility conditions, ranged from 88-114% and 1.1-19.4%, respectively. The applicability of the method was assessed in a pilot study whereby 72 different surface and groundwater samples were collected and analysed for the determination of these 40 compounds for the first time in Ireland. This is the most comprehensive method available for the investigation of the occurrence of both anthelmintic parent compounds and their transformation products in raw, unfiltered environmental waters.
Collapse
Affiliation(s)
- Damien Mooney
- School of Natural Sciences, Geology Department, Trinity College Dublin, D02PN40 Dublin, Ireland.
- Food Safety Department, Teagasc Food Research Centre, Ashtown, D15KN3K Dublin 15, Ireland.
- Groundwater spoke, Irish Centre for Research in Applied Geosciences (iCRAG), D04N2E5 Dublin, Ireland.
| | - Catherine Coxon
- School of Natural Sciences, Geology Department, Trinity College Dublin, D02PN40 Dublin, Ireland.
- Groundwater spoke, Irish Centre for Research in Applied Geosciences (iCRAG), D04N2E5 Dublin, Ireland.
| | - Karl G Richards
- Groundwater spoke, Irish Centre for Research in Applied Geosciences (iCRAG), D04N2E5 Dublin, Ireland.
- Environment, Soils and Land-Use Department, Environment Research Centre, Teagasc, Johnstown Castle, Y35TC97 Wexford, Ireland.
| | - Laurence Gill
- Groundwater spoke, Irish Centre for Research in Applied Geosciences (iCRAG), D04N2E5 Dublin, Ireland.
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02PN40 Dublin, Ireland.
| | - Per-Erik Mellander
- Environment, Soils and Land-Use Department, Environment Research Centre, Teagasc, Johnstown Castle, Y35TC97 Wexford, Ireland.
| | - Martin Danaher
- Food Safety Department, Teagasc Food Research Centre, Ashtown, D15KN3K Dublin 15, Ireland.
| |
Collapse
|
32
|
Charuaud L, Jardé E, Jaffrézic A, Liotaud M, Goyat Q, Mercier F, Le Bot B. Veterinary pharmaceutical residues in water resources and tap water in an intensive husbandry area in France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:605-615. [PMID: 30763841 DOI: 10.1016/j.scitotenv.2019.01.303] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 05/25/2023]
Abstract
In intensive livestock areas, veterinary pharmaceutical residues (VPRs) can occur in water resources, but also in tap water because treatment processes are not designed to remove these contaminants. The main objective of this study is to assess the occurrence of VPRs in water resources and tap waters in Brittany. As several identical compounds are used in both veterinary and human medicine, a toolbox (stanols and pharmaceuticals) is used to help determine the origin of contamination in the case of mixed-use molecules. Water resources samples were collected from 25 sites (23 surface waters and two groundwaters) used for tap water production and located in watersheds considered as sensitive due to intensive husbandry activities. Samples were also taken at 23 corresponding tap water sites. A list of 38 VPRs of interest was analyzed. In water resources, at least one VPR was quantified in 32% of the samples. 17 different VPRs were quantified, including antibiotics, antiparasitic drugs and anti-inflammatory drugs. Concentration levels ranged between 5 ng/L and 2946 ng/L. Mixed-use pharmaceuticals were quantified in twelve samples of water resources and among these samples nine had a mixed overall fecal contamination. In the context of this large-scale study, it appeared difficult to determine precisely the factors impacting the occurrence of VPRs. VPRs were quantified in 20% of the tap water samples. Twelve VPRs were quantified, including ten compounds exclusively used in veterinary medicine and two mixed-use compounds. Concentration levels are inferior to 40 ng/L for all compounds, with the exception of the antibiotic florfenicol which was quantified at 159 ng/L and 211 ng/L. The population of Brittany may therefore be exposed to these contaminants through tap water. These observations should be put into perspective with the detection frequencies per compound which are all below 10% in both water resources and tap water.
Collapse
Affiliation(s)
- Lise Charuaud
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35043 Rennes, France
| | - Emilie Jardé
- Univ Rennes, CNRS, Géosciences Rennes, UMR6118, 35000 Rennes, France
| | | | - Marine Liotaud
- Univ Rennes, CNRS, Géosciences Rennes, UMR6118, 35000 Rennes, France
| | - Quentin Goyat
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35043 Rennes, France
| | - Fabien Mercier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35043 Rennes, France
| | - Barbara Le Bot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35043 Rennes, France.
| |
Collapse
|
33
|
Syslová E, Landa P, Stuchlíková LR, Matoušková P, Skálová L, Szotáková B, Navrátilová M, Vaněk T, Podlipná R. Metabolism of the anthelmintic drug fenbendazole in Arabidopsis thaliana and its effect on transcriptome and proteome. CHEMOSPHERE 2019; 218:662-669. [PMID: 30502705 DOI: 10.1016/j.chemosphere.2018.11.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Fenbendazole, a broad spectrum anthelmintic used especially in veterinary medicine, may impact non-target organisms in the environment. Nevertheless, information about the effects of fenbendazole in plants is limited. We investigated the biotransformation of fenbendazole and the effect of fenbendazole and its metabolites on gene expression in the model plant Arabidopsis thaliana. High-sensitive UHPLC coupled with tandem mass spectrometry, RNA-microarray analysis together with qPCR verification and nanoLC-MS proteome analysis were used in this study. Twelve fenbendazole metabolites were identified in the roots and leaves of A. thaliana plants. Hydroxylation, S-oxidation and glycosylation represent the main fenbendazole biotransformation pathways. Exposure of A. thaliana plants to 5 μM fenbendazole for 24 and 72 h significantly affected gene and protein expression. The changes in transcriptome were more pronounced in the leaves than in roots, protein expression was more greatly affected in the roots at a shorter period of exposure (24 h) and in leaf rosettes over a longer period (72 h). Up-regulated (>2-fold change, p < 0.1) proteins are involved in various biological processes (electron transport, energy generating pathways, signal transduction, transport), and in response to stresses (e.g. catalase, superoxide dismutase, cytochromes P450, UDP-glycosyltransferases). Some of the proteins which were up-regulated after fenbendazole-exposure probably participate in fenbendazole biotransformation (e.g. cytochromes P450, UDP-glucosyltransferases). Finally, fenbendazole in plants significantly affects many physiological and metabolic processes and thus the contamination of ecosystems by manure containing this anthelmintic should be restricted.
Collapse
Affiliation(s)
- Eliška Syslová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; Laboratory of Plant Biotechnology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 313, 165 02, Praha 6 - Lysolaje, Czech Republic.
| | - Přemysl Landa
- Laboratory of Plant Biotechnology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 313, 165 02, Praha 6 - Lysolaje, Czech Republic.
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Tomáš Vaněk
- Laboratory of Plant Biotechnology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 313, 165 02, Praha 6 - Lysolaje, Czech Republic.
| | - Radka Podlipná
- Laboratory of Plant Biotechnology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 313, 165 02, Praha 6 - Lysolaje, Czech Republic.
| |
Collapse
|
34
|
Porto RS, Rodrigues-Silva C, Schneider J, Rath S. Benzimidazoles in wastewater: Analytical method development, monitoring and degradation by photolysis and ozonation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:729-737. [PMID: 30529415 DOI: 10.1016/j.jenvman.2018.11.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/05/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Pharmaceutical residues are constantly released into natural waters, mainly from wastewater treatment plants (WWTPs) whose processes are unable to completely eliminate them. Among these drugs, the occurrence of benzimidazoles, a class of antiparasitics for human and veterinary use, has been reported in WWTP effluents and surface waters. In this study, an SPE-UHPLC-MS/MS method was developed and optimized for extraction and quantitation of benzimidazoles in influents and effluents of a local WWTP and in hospital wastewater. The extraction procedure was optimized using response surface methodology (Box-Behnken design) and the optimal parameters were as follows: 2.0 mL of loading solvent consisting of a mixture of water:methanol (95:5, v/v) and temperature at 43 °C. In hospital wastewater, albendazole (ABZ) and its principal metabolite ricobendazole (RBZ) were the main benzimidazole-related contaminants and were found at concentrations of up to 3810 and 3894 ng L-1, respectively. The WWTP system was able to remove from 46% to 95% of the ABZ quantified in the influent, discharging an effluent with 16-441 ng L-1 of ABZ. The concentrations of other benzimidazoles and metabolites in the WWTP effluents remained below 350 ng L-1. WWTP effluents fortified with 50 μg L-1 of ABZ required 26.7 mgO3 L-1 to remove ABZ and RBZ. After ozonation, the COD and BOD5 of the effluents were reduced by 27%. Photolysis by UVA radiation was not effective to remove ABZ and FBZ from the effluent samples.
Collapse
Affiliation(s)
- Rafael Silveira Porto
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, SP, Brazil
| | - Caio Rodrigues-Silva
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, SP, Brazil
| | - Jerusa Schneider
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, P.O. Box 6143, 13083-889, Campinas, SP, Brazil
| | - Susanne Rath
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
35
|
Charuaud L, Jarde E, Jaffrezic A, Thomas MF, Le Bot B. Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate. JOURNAL OF HAZARDOUS MATERIALS 2019; 361:169-186. [PMID: 30179788 DOI: 10.1016/j.jhazmat.2018.08.075] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 05/21/2023]
Abstract
Veterinary pharmaceuticals (VPs) increasingly used in animal husbandry have led to their presence in aquatic environments -surface water (SW) or groundwater (GW) - and even in tap water. This review focuses on studies from 2007 to 2017. Sixty-eight different veterinary pharmaceutical residues (VPRs) have been quantified worldwide in natural waters at concentrations ranging from nanograms per liter (ng L-1) to several micrograms per liter (μg L-1). An extensive up-to-date on sales and tonnages of VPs worldwide has been performed. Tetracyclines (TCs) antibiotics are the most sold veterinary pharmaceuticals worldwide. An overview of VPRs degradation pathways in natural waters is provided. VPRs can be degraded or transformed by biodegradation, hydrolysis or photolysis. Photo-degradation appears to be the major degradation pathway in SW. This review then reports occurrences of VPRs found in tap water, and presents data on VPRs removal in drinking water treatment plants (DWTPs) at each step of the process. VPRs have been quantified in tap water at ng L-1 concentration levels in four studies of the eleven studies dealing with VPRs occurrence in tap water. Overall removals of VPRs in DWTPs generally exceed 90% and advanced treatment processes (oxidation processes, adsorption on activated carbon, membrane filtration) greatly contribute to these removals. However, studies performed on full-scale DWTPs are scarce. A large majority of fate studies in DWTPs have been conducted under laboratory at environmentally irrelevant conditions (high concentration of VPRs (mg L-1), use of deionized water instead of natural water, high concentration of oxidant, high contact time etc.). Also, studies on VPRs occurrence and fate in tap water focus on antibiotics. There is a scientific gap on the occurrence and fate of antiparatic drugs in tap waters.
Collapse
Affiliation(s)
- Lise Charuaud
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Emilie Jarde
- Univ Rennes, CNRS, Géosciences Rennes - UMR6118, 35000 Rennes, France
| | | | - Marie-Florence Thomas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Barbara Le Bot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
36
|
Landa P, Prerostova S, Langhansova L, Marsik P, Vankova R, Vanek T. Transcriptomic response of Arabidopsis thaliana roots to naproxen and praziquantel. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:301-310. [PMID: 30273854 DOI: 10.1016/j.ecoenv.2018.09.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Exposition to pharmaceutical compounds released to the environment is considered as a potential risk for various organisms. We exposed Arabidopsis thaliana plants to naproxen (NAP) and praziquantel (PZQ) in 5 µM concentration for 2 days and recorded transcriptomic response in their roots with the aim to estimate ecotoxicity and to identify gene candidates potentially involved in metabolism of both compounds. Nonsteroidal anti-inflammatory drug NAP up-regulated 105 and down-regulated 29 genes (p-value ≤ 0.1, fold change ≥ 2), while anthelmintic PZQ up-regulated 389 and down-regulated 353 genes with more rigorous p-value ≤ 0.001 (fold change ≥ 2). High number of up-regulated genes coding for heat shock proteins and other genes involved in response to biotic and abiotic stresses as well as down-regulation of genes involved in processes such as cell proliferation, transcription and water transport indicates serious negative effect of PZQ. NAP up-regulated mostly genes involved in various biological processes and signal transduction and down-regulated mainly genes involved in signal transduction and electron transport or energy pathways. Further, two cytochrome P450s (demethylation) and one methyltransferase (methylation of carboxyl group) were identified as candidates for phase I and several glutathione- and glycosyltransferases (conjugation) for phase II of NAP metabolism. Cytochrome P450s, glutathione and glycosyltransferases seem to play role also in metabolism of PZQ. Up-regulation of several ABC and MATE transporters by NAP and PZQ indicated their role in transport of both compounds.
Collapse
Affiliation(s)
- Premysl Landa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Lenka Langhansova
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Petr Marsik
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic.
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Tomas Vanek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic.
| |
Collapse
|
37
|
Simu GM, Atchana J, Soica CM, Coricovac DE, Simu SC, Dehelean CA. Pharmaceutical Mixtures: Still A Concern for Human and Environmental Health. Curr Med Chem 2018; 27:121-153. [PMID: 30406736 DOI: 10.2174/0929867325666181108094222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/09/2018] [Accepted: 01/29/2018] [Indexed: 11/22/2022]
Abstract
In the present work, recent data on the sources, occurrence and fate of human-use pharmaceutical active compounds (PhACs) in the aquatic environment have been reviewed. Since PhACs and their metabolites are usually present as mixtures in the environment at very low concentrations, a particular emphasis was placed onto the PhACs mixtures, as well as on their short-term and long-term effects against human and environmental health. Moreover, a general overview of the main conventional as well as of the latest trends in wastewaters decontaminant technologies was outlined. Advantages and disadvantages of current processes were also pointed out. It appears that numerous gaps still exist in the current knowledge related to this field of interest, and further studies should be conducted at the global level in order to ensure a more efficient monitorisation of the presence of PhACs and their metabolites into the aquatic environment and to develop new mitigation measures.
Collapse
Affiliation(s)
- Georgeta M Simu
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| | - Jeanne Atchana
- University of Maroua, Faculty of Sciences, Department of Chemistry, P.O. Box 46, University of Maroua, Maroua, Cameroon
| | - Codruta M Soica
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| | - Dorina E Coricovac
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| | - Sebastian C Simu
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| | - Cristina A Dehelean
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| |
Collapse
|
38
|
Ranjan P, Athar M, Vijayakrishna K, Meena LK, Vasita R, Jha PC. Deciphering the anthelmintic activity of benzimidazolium salts by experimental and in-silico studies. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Babić S, Pavlović DM, Biošić M, Ašperger D, Škorić I, Runje M. Fate of febantel in the aquatic environment-the role of abiotic elimination processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:28917-28927. [PMID: 30105676 DOI: 10.1007/s11356-018-2935-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Febantel is widely used anthelmintic drug active against a range of gastrointestinal parasites in animals. Despite the fact that it has been detected in the aquatic environment, there is no information on its environmental fate. Therefore, abiotic elimination processes of febantel in the aquatic environment have been studied. The results of direct and indirect photodegradation experiments showed that febantel was persistent against solar radiation. Kinetics of hydrolytic elimination was pH and temperature dependent with half-lives in the range from 210 min to 99 days. Febantel metabolites, fenbendazole and fenbendazole sulfone, were found as major degradation products using high-resolution mass spectrometry. The proposed hydrolytic degradation pathway consisted of the base catalyzed hydrolysis followed by consecutive oxidative cyclization to the five-membered ring of the benzo-imidazole derivative. Aquatic toxicity of febantel and its hydrolytic mixture were evaluated toward the luminescence bacteria Vibrio fischeri. Investigation of febantel sorption onto river sediments showed that the best agreement was obtained with the linear model (R2 > 0.99), while the rate of sorption is the best described with the kinetic model of pseudo-second order. The organic carbon-normalized sorption coefficient, KOC, ranged from 1490 to 3894 L kg-1 for five sediment samples. The results of this research demonstrate that febantel persist in the natural waters and potentially could travel far from the source.
Collapse
Affiliation(s)
- Sandra Babić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, 10000, Zagreb, Croatia.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, 10000, Zagreb, Croatia
| | - Martina Biošić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, 10000, Zagreb, Croatia
| | - Danijela Ašperger
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, 10000, Zagreb, Croatia
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, 10000, Zagreb, Croatia
| | | |
Collapse
|
40
|
Ranjan P, Athar M, Rather H, Vijayakrishna K, Vasita R, Jha PC. Rational design of imidazolium based salts as anthelmintic agents. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Zuskova E, Piackova V, Machova J, Chupani L, Steinbach C, Stara A, Velisek J. Efficacy and toxicity of praziquantel in helminth-infected barbel (Barbus barbus L.). JOURNAL OF FISH DISEASES 2018; 41:643-649. [PMID: 29349797 DOI: 10.1111/jfd.12764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated efficacy and toxicity of the pyrazinoisoquinoline anthelmintic praziquantel (PZQ) in barbel infected with metacercariae of Diplostomum spathaceum and adult Pomphorhynchus laevis, and assessed antioxidant biomarkers and the lipid peroxidation response in juvenile barbel post-treatment. The estimated 96-hr LC50 of PZQ was 28.6 mg/L. For evaluation of efficacy, barbel naturally infected with D. spathaceum were exposed to a 10 and 20 mg/L PZQ 4-day bath treatment. Both concentrations were 100% effective against D. spathaceum and significantly (p < .01) affected the activity of catalase, superoxide dismutase, glutathione reductase and glutathione-S-transferase as well as levels of reduced glutathione in liver and muscle. The efficacy of orally administered PZQ was assessed in adult barbel naturally infected with P. laevis. Fish were administered 10, 30 and 50 mg/kg of body weight and examined via gut dissection after 6 days. The 50 mg/kg dose significantly decreased the intensity of infection. Praziquantel is a feasible bath treatment for barbel infected with D. spathaceum and has potential for oral treatment of broodfish infected with P. laevis.
Collapse
Affiliation(s)
- E Zuskova
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - V Piackova
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - J Machova
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - L Chupani
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - C Steinbach
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - A Stara
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - J Velisek
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| |
Collapse
|
42
|
Stuchlíková LR, Skálová L, Szotáková B, Syslová E, Vokřál I, Vaněk T, Podlipná R. Biotransformation of flubendazole and fenbendazole and their effects in the ribwort plantain (Plantago lanceolata). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:681-687. [PMID: 28934712 DOI: 10.1016/j.ecoenv.2017.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/04/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Although veterinary anthelmintics represent an important source of environmental pollution, the fate of anthelmintics and their effects in plants has not yet been studied sufficiently. The aim of our work was to identify metabolic pathways of the two benzimidazole anthelmintics fenbendazole (FBZ) and flubendazole (FLU) in the ribwort plantain (Plantago lanceolata L.). Plants cultivated as in vitro regenerants were used for this purpose. The effects of anthelmintics and their biotransformation products on plant oxidative stress parameters were also studied. The obtained results showed that the enzymatic system of the ribwort plantain was able to uptake FLU and FBZ, translocate them in leaves and transform them into several metabolites, particularly glycosides. Overall, 12 FLU and 22 FBZ metabolites were identified in the root, leaf base and leaf top of the plant. Concerning the effects of FLU and FBZ, both anthelmintics in the ribwort plantain cells caused significant increase of proline concentration (up to twice), a well-known stress marker, and significant decrease of superoxide dismutase activity (by 50%). In addition, the activities of four other antioxidant enzymes were significantly changed after either FLU or FBZ exposition. This could indicate a certain risk of oxidative damage in plants influenced by anthelmintics, particularly when they are under other stress conditions.
Collapse
Affiliation(s)
- Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Eliška Syslová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; Laboratory of Plant Biotechnology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 313, 165 02 Praha 6 - Lysolaje, Czech Republic.
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| | - Tomáš Vaněk
- Laboratory of Plant Biotechnology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 313, 165 02 Praha 6 - Lysolaje, Czech Republic.
| | - Radka Podlipná
- Laboratory of Plant Biotechnology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 313, 165 02 Praha 6 - Lysolaje, Czech Republic.
| |
Collapse
|
43
|
Čizmić M, Babić S, Kaštelan-Macan M. Multi-class determination of pharmaceuticals in wastewaters by solid-phase extraction and liquid chromatography tandem mass spectrometry with matrix effect study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20521-20539. [PMID: 28710734 DOI: 10.1007/s11356-017-9660-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/27/2017] [Indexed: 05/23/2023]
Abstract
In this work, a multi-class analytical method for determination of 22 frequently used pharmaceuticals was developed and validated. Analytes were from different classes for example macrolides, fluoroquinolones, tetracyclines, sulfonamides, anthelmintics, anesthetics, and others. Method was intended for analysis of aqueous samples so the sample preparation was done using solid-phase extraction (SPE). Different sorbents (C8, C18, polymeric, and ion exchange sorbents) combining different eluents (methanol, ethanol, acetonitrile, acetone, ethyl acetate) were investigated during development of sample preparation step. Samples were analyzed using HPLC-MS/MS, and therefore, chromatographic and mass spectrometer conditions were investigated. Optimal extraction efficiencies for most of the investigated analytes were obtained with Oasis HLB polymeric sorbents with acetonitrile as eluent. A study of matrix effect was carried out for wastewater treatment plant (WWTP) influent and effluent. The method was validated for linearity, detection limits and quantification limits, repeatability, and reproducibility. Method detection limits were in the range of 2.0-204.0 ng L-1 for WWTP influent except for sulfaguanidine and dexamethasone. Also, method detection limits for WWTP effluent were from 1.0 to 115.4 ng L-1. Method was successfully applied for analysis of real wastewater samples from municipal wastewater treatment plant. In the influent, pharmaceuticals from all investigated groups were present and the concentrations were from 50.0 to 4914.3 ng L-1 for influent and 26.9 to 1699.2 ng L-1 for effluent. It was also reported that some pharmaceuticals showed higher concentrations in the wastewater effluent than in the influent.
Collapse
Affiliation(s)
- Mirta Čizmić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, HR-10000, Zagreb, Croatia.
| | - Sandra Babić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, HR-10000, Zagreb, Croatia
| | - Marija Kaštelan-Macan
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, HR-10000, Zagreb, Croatia
| |
Collapse
|
44
|
Čizmić M, Ljubas D, Ćurković L, Škorić I, Babić S. Kinetics and degradation pathways of photolytic and photocatalytic oxidation of the anthelmintic drug praziquantel. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:500-512. [PMID: 27174626 DOI: 10.1016/j.jhazmat.2016.04.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/13/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
In this study, an anthelmintic drug, praziquantel(PZQ), was degraded using the direct photolysis, photocatalysis, and oxidation processes including UV radiation, TiO2 film, and hydrogen peroxide. The photolytic degradation with predominant wavelengths of 185/254nm (UV-C) proved to be more efficient with a half-life of 3.13min compared to the radiation of 365nm (UV-A) where the degradation did not occur. In order to enhance the rate of PZQ photolytic degradation, H2O2 was added, which resulted in two to three times higher degradation rates. In the photocatalytic degradation, TiO2 film was used as catalyst. The degradation was ten times faster in the photocatalytic experiments where UV-C light (k=0.2390min-1) was used than in those with UV-A (k=0.0201min-1). Comparing the results from all performed experiments it can be concluded that the UV-C/TiO2/H2O2 process yielded the highest degradation rate and complete degradation of PZQ was obtained in less than 7min. The degradation of PZQ followed the first order kinetics in all the experiments. The photo degradation was inhibited in the presence of methanol. The degradation pathways and the structural formulae of five degradation products (m/z 273, 269, 189, 147, 132) were proposed based on the liquid chromatography tandem mass spectrometry analysis.
Collapse
Affiliation(s)
- Mirta Čizmić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Croatia.
| | - Davor Ljubas
- Department of Energy, Power Engineering and Environment, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia.
| | - Lidija Ćurković
- Department of Materials, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Croatia
| | - Sandra Babić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Croatia
| |
Collapse
|
45
|
Puckowski A, Stolte S, Wagil M, Markiewicz M, Łukaszewicz P, Stepnowski P, Białk-Bielińska A. Mixture toxicity of flubendazole and fenbendazole to Daphnia magna. Int J Hyg Environ Health 2017; 220:575-582. [PMID: 28214179 DOI: 10.1016/j.ijheh.2017.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/18/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
Nowadays, residual amounts of many pharmaceuticals can be found in various environmental compartments including surface and ground waters, soils and sediments as well as biota. Even though they undergo degradability, their environmental discharge is relatively continuous, thus they may be regarded as quasi-persistent contaminants, and are also frequently regarded as emerging organic pollutants. Benzimidazoles, especially flubendazole (FLU) and fenbendazole (FEN), represent two anthelmintic drugs belonging to this group. Although their presence in environmental matrices has been reported, there is relatively little data concerning their (eco)toxicological impact. Furthermore, no data is available on their mixture toxicity. FLU and FEN have been found to have a strong impact on an environmentally important non-target organism - Daphnia magna. Moreover, these compounds are usually present in the environment as a part of pharmaceutical mixtures. Therefore, there is a need to evaluate their mixture toxicity, which was the main aim of this study. Single substance toxicity tests were carried out in parallel with mixture studies of FLU and FEN, with the application of two well established concepts of Concentration Addition (CA) and Independent Action (IA). As a result, both models (CA and IA) were found to underestimate the toxicity of mixtures, however CA yielded more accurate predictions.
Collapse
Affiliation(s)
- Alan Puckowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul.Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Stefan Stolte
- Department of Sustainable Chemistry, Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Straße, D-28359 Bremen, Germany
| | - Marta Wagil
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul.Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Marta Markiewicz
- Department of Sustainable Chemistry, Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Straße, D-28359 Bremen, Germany
| | - Paulina Łukaszewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul.Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul.Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul.Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
46
|
Obimakinde S, Fatoki O, Opeolu B, Olatunji O. Veterinary pharmaceuticals in aqueous systems and associated effects: an update. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3274-3297. [PMID: 27752951 DOI: 10.1007/s11356-016-7757-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
Environmental studies have shown that pharmaceuticals can contaminate aqueous matrices, such as groundwater, surface water, sediment as well as aquatic flora and fauna. Effluents from sewage and wastewater treatment plants, pharmaceutical industries and hospitals have been implicated in such contamination. Recent studies have however revealed significant concentrations of pharmaceuticals in wastewater from animal facilities in proximal aquatic habitats. Furthermore, epidemiological studies have shown a consistent positive correlation between exposure to some drugs of veterinary importance and increased adverse effects in aquatic biota largely due to induction of endocrine disruption, antibiotic resistance, neurotoxicity, genotoxicity and oxidative stress. The aquatic habitats and associated biota are important in the maintenance of global ecosystem and food chain. For this reason, anything that compromises the integrity and functions of the aquatic environment may lead to major upset in the world's ecosystems. Therefore, knowledge about this route of exposure cannot be neglected and monitoring of their occurrence in the environment is required. This review focuses on scientific evidence that link the presence of pharmaceuticals in aqueous matrices to animal production facilities and presents means to reduce the occurrence of veterinary pharmaceutical residues in the aquatic habitats.
Collapse
Affiliation(s)
- Samuel Obimakinde
- Department of Chemistry, Cape Peninsula University of Technology, Zonnebloem, Cape Town, 8000, South Africa.
| | - Olalekan Fatoki
- Department of Chemistry, Cape Peninsula University of Technology, Zonnebloem, Cape Town, 8000, South Africa
| | - Beatrice Opeolu
- Department of Environmental and Occupational Health, Cape Peninsula University of Technology, Zonnebloem, Cape Town, 8000, South Africa
| | - Olatunde Olatunji
- Department of Chemistry, Cape Peninsula University of Technology, Zonnebloem, Cape Town, 8000, South Africa
| |
Collapse
|
47
|
Yuan J, Duan J, Li W, Saint CP, Mulcahy D. Evaluation of Methylated Silica Solid-Phase Extraction Sorbent to Retain a Surfactant in the Detection of Pesticides in Water Using Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry. Chromatographia 2017. [DOI: 10.1007/s10337-016-3233-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
|
49
|
Felici E, Casado C, Wang CC, Raba J, Gomez MR. A green alternative method for analysis of ivermectin and moxidectin in environmental water samples using automatized preconcentration previous MEEKC. Electrophoresis 2016; 37:2977-2985. [DOI: 10.1002/elps.201600303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/01/2016] [Accepted: 08/10/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Emiliano Felici
- INQUISAL, CONICET, Facultad de Química, Bioquímica y Farmacia; Universidad Nacional de San Luis, Chacabuco; San Luis Argentina
| | - Cristian Casado
- Centro de Excelencia en Productos y Procesos de Córdoba, CEPROCOR; Santa Marı́a de Punilla; Córdoba Argentina
| | - Chien C. Wang
- INQUISAL, CONICET, Facultad de Química, Bioquímica y Farmacia; Universidad Nacional de San Luis, Chacabuco; San Luis Argentina
- Departamento de Farmacia, Facultad de Química Bioquímica y Farmacia; Universidad Nacional de San Luis; San Luis Argentina
| | - Julio Raba
- INQUISAL, CONICET, Facultad de Química, Bioquímica y Farmacia; Universidad Nacional de San Luis, Chacabuco; San Luis Argentina
| | - María R. Gomez
- INQUISAL, CONICET, Facultad de Química, Bioquímica y Farmacia; Universidad Nacional de San Luis, Chacabuco; San Luis Argentina
- Departamento de Farmacia, Facultad de Química Bioquímica y Farmacia; Universidad Nacional de San Luis; San Luis Argentina
| |
Collapse
|
50
|
Gao J, Cui Y, Tao Y, Huang L, Peng D, Xie S, Wang X, Liu Z, Chen D, Yuan Z. Multiclass method for the quantification of 92 veterinary antimicrobial drugs in livestock excreta, wastewater, and surface water by liquid chromatography with tandem mass spectrometry. J Sep Sci 2016; 39:4086-4095. [PMID: 27593397 DOI: 10.1002/jssc.201600531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 11/07/2022]
Abstract
A simple multiresidue method was developed for detecting and quantifying 92 veterinary antimicrobial drugs from eight classes (β-lactams, quinolones, sulfonamides, tetracyclines, lincomycins, macrolides, chloramphenicols, and pleuromutilin) in livestock excreta and water by liquid chromatography with tandem mass spectrometry. The feces samples were extracted by ultrasound-assisted extraction with a mixture of acetonitrile/water (80:20, v/v) and edetate disodium, followed by a cleanup using solid-phase extraction with an amino cartridge. Water samples were purified with hydrophilic-lipophilic balance solid-phase extraction column. Urine samples were extracted with acetonitrile and edetate disodium. Detection of veterinary antimicrobial drugs was achieved by liquid chromatography with tandem mass spectrometry using both positive and negative electrospray ionization mode. The recovery values of veterinary antimicrobial drugs in feces, urine, and water samples were 75-99, 85-110, and 85-101% and associated relative standard deviations were less than 15, 10, and 8%, respectively. The limits of quantification in feces, urine, and water samples were 0.5-1, 0.5-1, and 0.01-0.05 μg/L, respectively. This method was applied to determine real samples obtained from local farms and provides reliable quantification and identification results of 92 veterinary antimicrobial drugs in livestock excreta and water.
Collapse
Affiliation(s)
- Jinfang Gao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yonghui Cui
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|