1
|
An Z, Li Y, Li J, Jiang Z, Duan W, Guo M, Zhu Y, Zeng X, Wang L, Liu Y, Li A, Guo H, Zhang X. Associations between co-exposure to per- and polyfluoroalkyl substances and organophosphate esters and erythrogram in Chinese adults. CHEMOSPHERE 2024; 362:142750. [PMID: 38960049 DOI: 10.1016/j.chemosphere.2024.142750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/31/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Erythrogram, despite its prevalent use in assessing red blood cell (RBC) disorders and can be utilized to evaluate various diseases, still lacks evidence supporting the effects of per- and polyfluoroalkyl substances (PFASs) and organophosphate esters (OPEs) on it. A cross-sectional study involving 467 adults from Shijiazhuang, China was conducted to assess the associations between 12 PFASs and 11 OPEs and the erythrogram (8 indicators related to RBC). Three models, including multiple linear regression (MLR), sparse partial least squares regression, and Bayesian kernel machine regression (BKMR) were employed to evaluate both the individual and joint effects of PFASs and OPEs on the erythrogram. Perfluorohexane sulfonic acid (PFHxS) showed the strongest association with HGB (3.68%, 95% CI: 2.29%, 5.10%) when doubling among PFASs in MLR models. BKMR indicated that PFASs were more strongly associated with the erythrogram than OPEs, as evidenced by higher group posterior inclusion probabilities (PIPs) for PFASs. Within hemoglobin and hematocrit, PFHxS emerged as the most significant component (conditional PIP = 1.0 for both). Collectively, our study emphasizes the joint effect of PFASs and OPEs on the erythrogram and identified PFASs, particularly PFHxS, as the pivotal contributors to the erythrogram. Nonetheless, further investigations are warranted to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zexuan Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yiming Zhu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiuli Zeng
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Linfeng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, China.
| | - Xiaoguang Zhang
- Core Facilities and Centers of Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
2
|
He Z, Chen Y, Huo D, Gao J, Xu Y, Yang R, Yang Y, Yu G. Combined methods elucidate the multi-organ toxicity of cylindrospermopsin (CYN) on Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121250. [PMID: 36813104 DOI: 10.1016/j.envpol.2023.121250] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Global water bodies are now at risk from inevitable cyanobacterial blooms and their production of multiple cyanotoxins, in particular cylindrospermopsin (CYN). However, research on the CYN toxicity and its molecular mechanisms is still limited, whilst the responses of aquatic species against CYN are uncovered. By integrating behavioral observations, chemical detections and transcriptome analysis, this study demonstrated that CYN exerted multi-organ toxicity to model species, Daphnia magna. The present study confirmed that CYN could cause protein inhibition by undermining total protein contents, and altered the gene expression related to proteolysis. Meantime, CYN induced oxidative stress by increasing reactive oxygen species (ROS) level, decreasing the glutathione (GSH) concentration, and interfered with protoheme formation process molecularly. Neurotoxicity led by CYN was solidly determined by abnormal swimming patterns, reduced acetylcholinesterase (AChE), and downward expression of muscarinic acetylcholine receptor (CHRM). Importantly, for the first time, this research determined CYN directly interfered with energy metabolism in cladocerans. CYN distinctively reduced filtration and ingestion rate by targeting on heart and thoracic limbs, which declined the energy intake, and could be further displayed by the reduction of motional strength and the trypsin concentration. These phenotypic alterations were supported by transcriptomic profile, including the down-regulation of oxidative phosphorylation and ATP synthesis. Moreover, CYN was speculated to trigger the self-defense responses of D. magna, known as "abandon-ship" by moderating lipid metabolism and distribution. This study, overall, comprehensively demonstrated the CYN toxicity and the responses of D. magna against it, which is of great significance to the advancements of CYN toxicity knowledge.
Collapse
Affiliation(s)
- Zhongshi He
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youxin Chen
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Da Huo
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jin Gao
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yewei Xu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rui Yang
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Gongliang Yu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Ju J, Wu X, Mao W, Zhang C, Ge W, Wang Y, Ma S, Zhu Y. The growth toxicity and neurotoxicity mechanism of waterborne TBOEP to nematodes: Insights from transcriptomic and metabolomic profiles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106401. [PMID: 36736151 DOI: 10.1016/j.aquatox.2023.106401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Tris(2-butoxy) ethyl phosphate (TBOEP) is a typical organophosphorus flame retardant (OPFR), which has been detected in natural water bodies and drinking water and has reached a certain concentration. As a new type of organic pollutant, the environmental health risk of TBOEP needs to be assessed urgently. Here, Caenorhabditis elegans were exposed to 0, 50, 500, and 5000 ng/L TBOEP in water for 72 h. The results showed that TBOEP exposure caused concentration-dependent inhibition to the growth of nematodes, while exposure to 5000 ng/L TBOEP significantly inhibited the locomotor behavior of nematodes. Transcriptomic and metabolomic analysis showed that the disturbances in neurotransmitter transmission and amino acid, carbohydrate, and lipid metabolism were the reason for the neurotoxicity and growth toxicity of TBOEP to nematodes. These results provide basic data and a theoretical basis for evaluating the environmental health risks of organophosphorus flame retardants.
Collapse
Affiliation(s)
- Jingjuan Ju
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Weiya Mao
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chenran Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wenjie Ge
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yiran Wang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Siyang Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ya Zhu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Dou M, Wang L. A review on organophosphate esters: Physiochemical properties, applications, and toxicities as well as occurrence and human exposure in dust environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116601. [PMID: 36326529 DOI: 10.1016/j.jenvman.2022.116601] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in the world. The use of OPEs has increased rapidly due to the prohibition of polybrominated diphenyl ethers. However, OPEs are mainly added to various materials by physical mixing, they are therefore easy to be released into the environment through volatilization, leaching, and abrasion during their production, use, transportation, and after disposal. Dust, as an important medium for human exposure to OPEs, has attracted extensive attention. Here, this article reviewed the current knowledge on the physiochemical properties, consumptions and applications, and ecotoxicities of OPEs, also synthesized the available data on the occurrence of 13 OPEs in outdoor and indoor dust environments around the world over the past decade. The results showed that the sum of OPEs (ΣOPEs) was the highest in outdoor dust from an e-waste disposal area in Tianjin of China (range: 1390-42700 ng/g dw; mean: 11500 ng/g dw). The highest ΣOPEs was found in Japan for home dust (range: 9300-11000000 ng/g dw; mean: 266543 ng/g dw), Sweden for office dust (range: 14000-1600000 ng/g dw; mean: 360100 ng/g dw) and daycare center dust (range: 40000-4600000 ng/g dw; mean: 1990800 ng/g dw), and Brazil for car dust (range: 108000-2050000 ng/g dw; mean: 541000 ng/g dw). The use pattern of OPEs differed in different regions and countries. The exposure and risk assessment based on the data of OPEs in home dust indicated that the average daily intakes of OPEs via dust ingestion for children and adults were lower than the corresponding reference doses; and that the current human exposure to OPEs through indoor dust ingestion were not likely to pose risks to human health. Finally, the review pointed out the gaps of current research and provided the directions for further study on OPEs in dust environment.
Collapse
Affiliation(s)
- Mingshan Dou
- Department of Environmental Science and Engineering, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Wang
- Department of Environmental Science and Engineering, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
5
|
Abang AF, Nanga SN, Esi Ndanda RMO, Doumtsop Fotio AR, Gonder MK, Kouebou C, Suh C, Fotso Kuate A, Fiaboe KKKM, Hanna R. Reliability of Pheromone Trap Catches and Maize Plant Damage as Criteria for Timing Fall Armyworm Control Interventions in Humid Forest Agroecology of Central Africa. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1806-1816. [PMID: 36515108 DOI: 10.1093/jee/toac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 06/17/2023]
Abstract
Control of fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) since its invasion of Africa still depends on pesticides. Early detection of adults is considered the key to the success of larvae control in the crop field. However, FAW control thresholds based on current monitoring techniques are not well established in Africa. We investigated the efficacy of moth capture frequencies and FAW incidence levels as decision tools for FAW management. Experiments were conducted over two maize cropping seasons during which FAW incidence, severity, and larvae count were recorded during destructive sampling after the application of a homologated insecticide. During the first season, the FAW incidence ranged from 37.5 ± 5.6% in the 25% incidence threshold treatment to 48.1 ± 8.1% in the control. During the second season, the incidence was significantly lower in the 25% incidence threshold treatment (55.8 ± 5.7%) compared with the control (75.7 ± 3.0%). Over the two seasons, no significant difference in FAW damage severity was recorded between the treatments and control. The highest number of larvae per plant (4.0 ± 0.6) was observed in the 10% incidence threshold treatment. Insecticide application did not consistently contribute to reducing FAW incidence and observed plant damage did not translate into yield loss. FAW control needs further investigation to establish a threshold above which damage translates into yield loss, thus necessitating control intervention.
Collapse
Affiliation(s)
- Albert F Abang
- International Institute of Tropical Agriculture (IITA)-Cameroon, PO Box 2008, Messa, Yaoundé, Cameroon
| | - Samuel N Nanga
- International Institute of Tropical Agriculture (IITA)-Cameroon, PO Box 2008, Messa, Yaoundé, Cameroon
| | - Rosa M O Esi Ndanda
- National University of Equatorial Guinea, Avenida Hassan II, Malabo, Bioko Norte Province, Equatorial Guinea
| | - Armand R Doumtsop Fotio
- International Institute of Tropical Agriculture (IITA)-Cameroon, PO Box 2008, Messa, Yaoundé, Cameroon
- Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Mary K Gonder
- Department of Biology, Drexel University, 3141 Chestnut Street, Philadelphia, PA, USA
- Bioko Biodiversity Protection Program, Malabo, Equatorial Guinea
| | - Christian Kouebou
- Institute of Agricultural Research for Development BP 2123, Messa, Yaoundé, Cameroon
| | - Christopher Suh
- Institute of Agricultural Research for Development BP 2123, Messa, Yaoundé, Cameroon
| | - A Fotso Kuate
- International Institute of Tropical Agriculture (IITA)-Cameroon, PO Box 2008, Messa, Yaoundé, Cameroon
| | - Komi K K M Fiaboe
- International Institute of Tropical Agriculture (IITA)-Cameroon, PO Box 2008, Messa, Yaoundé, Cameroon
| | - Rachid Hanna
- International Institute of Tropical Agriculture (IITA)-Cameroon, PO Box 2008, Messa, Yaoundé, Cameroon
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Antibacterial and Antibiofilm Potential of Microbial Polysaccharide Overlaid Zinc Oxide Nanoparticles and Selenium Nanowire. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Here, we report on the synthesis of zinc oxide nanoparticles (ZnO NPs) and selenium nanowires (Se NWs) using microbial exopolysaccharides (EPS) as a mediator and then examine their antibacterial and ecotoxicity effects in vitro and in vivo, respectively. At 100 µg/mL, EPS, EPS-ZnO NPs, and EPS-Se NWs all exhibited potent in vitro antibacterial properties, drastically inhibiting the development of aquatic Gram(-) pathogens. In addition, antibiofilm studies using a microscope revealed that EPS, EPS-ZnO NPs, and EPS-Se NWs at 75 µg/mL prevented biofilm development. Furthermore, the in vivo toxicity was carried out via Danio rerio embryos and Ceriodaphnia cornuta. Danio rerio embryos were determined at different time intervals (6 hpf, 12 hpf, 24 hpf and 48 hpf). The maximum survival rate (100%) was obtained in a control group. Correspondingly, EPS, EPS-ZnO NPs and EPS-Se NWs treated embryos showed a considerable survival rate with 93.3%, 86.7% and 77.2%, respectively, at 100 µg/mL for 48 hpf. The total mortality of C. cornuta was seen at 100 µg/mL, with 56.7% in EPS, 60.0% in EPS-ZnO NPs, and 70.0% in EPS-Se NWs. For C. cornuta, the LC50 values for EPS, EPS-ZnO NPs, and EPS-Se NWs were 90.32, 81.99, and 62.99 µg/mL, respectively. Under a microscope, morphological alterations in C. cornuta were analyzed. After 24 h, an amount of dark substance was seen in the guts of C. cornuta exposed to 100 µg/mL, but in the control group, all of the living C. cornuta were swimming as usual. Our results show that EPS and EPS-ZnO NPs were less harmful than EPS-Se NWs, and that they were successfully employed to shield freshwater crustaceans from the toxins in aquatic environments.
Collapse
|
7
|
Pan HY, Cheng FJ, Huang KC, Kung CT, Huang WT, You HL, Li SH, Wang CC, Lee WC, Hsu PC. Exposure to tris(2-butoxyethyl) phosphate induces abnormal sperm morphology and testicular histopathology in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113718. [PMID: 35660377 DOI: 10.1016/j.ecoenv.2022.113718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Tris(2-butoxyethyl) phosphate (TBEP) is one of the most abundant organophosphate flame retardants in the environment. This study aimed to evaluate the effect of TBEP exposure during adolescence on male reproductive function in adult rats. Male Sprague-Dawley rats were treated with 20 and 200 mg/kg body weight of TBEP or corn oil from postnatal day (PND) 42 to PND 105. A significant increase in the proportion of sperm with abnormal morphology (flattened head and bent tail) and superoxide anion (O2-.) production in the sperm of the 200 mg/kg treated group was observed (p < 0.05). Excessive production of sperm hydrogen peroxide (H2O2) was found in both the 20 and 200 mg/kg treatment groups (p < 0.05). Disruption of testicular structure was observed in the 20 and 200 mg/kg treated groups and seminiferous tubule degeneration was observed in the 200 mg/kg treated group. Our study demonstrated the adverse effects of TBEP on male reproductive function in rats.
Collapse
Affiliation(s)
- Hsiu-Yung Pan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung County, Taiwan; Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung County, Taiwan
| | - Kuo-Chen Huang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung County, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung County, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Department of Occupational Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ping-Chi Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan.
| |
Collapse
|
8
|
Liu W, Zhang H, Ding J, He W, Zhu L, Feng J. Waterborne and Dietary Bioaccumulation of Organophosphate Esters in Zooplankton Daphnia magna. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159382. [PMID: 35954739 PMCID: PMC9367849 DOI: 10.3390/ijerph19159382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023]
Abstract
Organophosphate esters (OPEs) are widely used as an additive in flame retardants, plasticizers, lubricants, consumer chemicals, and foaming agents. They can accumulate in aquatic organisms from water (waterborne exposure) and food (dietary exposure). However, the bioaccumulation characteristics and relative importance of different exposure routes to the bioaccumulation of OPEs are relatively poorly understood. In this study, Daphnia magna were exposed to fo typical OPEs (tris(2-chloroethyl) phosphate (TCEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(2-butoxyethyl) phosphate (TBOEP), and triphenyl phosphate (TPHP)), and their toxicokinetics under waterborne and dietary exposure routes were analyzed. For the waterborne exposure route, the bioconcentration factors (BCFs) increased in the order of TBOEP, TCEP, TDCPP, and TPHP, which were consistent with their uptake rate constants. TPHP might have the most substantial accumulation potential while TBOEP may have the smallest potential. In dietary exposure, the depuration rate constants of four OPEs were different from those in the waterborne experiment, which may indicate other depuration mechanisms in two exposure routes. The biomagnification factors (BMFs) of fur OPEs were all below 1, suggesting trophic dilution in the transfer of four OPEs from Scenedesmus obliquus to D. magna. Except for TBOEP, the contributions of dietary exposure were generally lower than waterborne exposure in D. magna under two exposure concentrations. This study provides information on the bioaccumulation and contribution of OPEs in D. magna via different exposure routes and highlights the importance of considering different exposure routes in assessing the risk of OPEs.
Collapse
Affiliation(s)
| | | | | | | | - Lin Zhu
- Correspondence: (L.Z.); (J.F.)
| | | |
Collapse
|
9
|
Saquib Q, Al-Salem AM, Siddiqui MA, Ansari SM, Zhang X, Al-Khedhairy AA. Tris(2-butoxyethyl) phosphate (TBEP): A flame retardant in solid waste display hepatotoxic and carcinogenic risks for humans. CHEMOSPHERE 2022; 296:133977. [PMID: 35216979 DOI: 10.1016/j.chemosphere.2022.133977] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Recent reports have confirmed that tris(2-butoxyethyl) phosphate (TBEP), an organophosphorous flame retardants (OPFRs), profoundly detected in the dust from solid waste (SW), e-waste dumping sites, landfills, and wastewater treatment facilities. Herein, we evaluated the hepatotoxic and carcinogenic potential of TBEP in human liver cells (HepG2). HepG2 cells exhibited cytotoxicity after 3 days of exposure, especially at greater concentrations (100-400 μM). TBEP induced severe DNA damage and cell cycle disturbances that trigger apoptosis in HepG2. TBEP treated cells showed an elevated level of esterase, nitric oxide (NO), reactive oxygen species (ROS), and influx of Ca2+ in exposed cells. Thereby, causing oxidative stress and proliferation inhibition. TBEP exposed HepG2 cells exhibited dysfunction in mitochondrial membrane potential (ΔΨm). Immunofluorescence analysis demonstrated cytoplasmic and nucleolar localization of DNA damage (P53) and apoptotic (caspase 3 and 9) proteins in HepG2 grown in the presence of TBEP for 3 days. Within the cohort of 84 genes of cancer pathway, 10 genes were upregulated and 3 genes were downregulated. The transcriptomic and toxicological data categorically emphasize that TBEP is hepatotoxic, and act as a putative carcinogenic agent. Thereby, direct or indirect ingestion of TBEP containing dusts by workers involved in handling and disposal of SW, as well as residents living nearby the disposal areas are prone to its adverse health risks.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Abdullah M Al-Salem
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Maqsood A Siddiqui
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabiha M Ansari
- Botany & Microbiology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Abdulaziz A Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
10
|
Dao TS, Nguyen VT, Baduel C, Bui MH, Tran VT, Pham TL, Bui BT, Dinh KV. Toxicity of di-2-ethylhexyl phthalate and tris (2-butoxyethyl) phosphate to a tropical micro-crustacean (Ceriodaphnia cornuta) is higher in Mekong River water than in standard laboratory medium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39777-39789. [PMID: 35113371 DOI: 10.1007/s11356-022-18993-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Plasticizers such as di(2-ethylhexyl) phthalate (DEHP) and tris (2-butoxyethyl) phosphate (TBOEP) are manufactured chemicals produced in high volumes. These chemicals are frequently detected in the aquatic environment and cause toxic effects on organisms. In this study, we assessed the chronic impacts of DEHP and TBOEP, respectively, at the concentration of 100 µg L-1 dissolved in the artificial medium (M4/4) and Mekong River water on life history traits of a tropical micro-crustacean, Ceriodaphnia cornuta, for 14 days. DEHP and TBOEP substantially reduced the survival of C. cornuta. In M4/4 medium, both plasticizers strongly enhanced reproduction but did not influence the growth of C. cornuta. Mekong River water, plasticizers-exposed C. cornuta produced less neonates than those in the control. The detrimental impacts of DEHP and TBOEP on the fitness of C. cornuta were much stronger in natural river water than in M4/4. Our results suggest that plasticizers can cause adverse effects on tropical freshwater cladocerans, particularly in natural water. These results are of a deep concern, as national and international regulatory guidelines which are based on ecotoxicological tests using standard media may not fully capture these effects.
Collapse
Affiliation(s)
- Thanh-Son Dao
- Department of Environmental Management, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam.
- CARE, HCMUT, Vietnam National University, Ho Chi Minh City, Vietnam.
| | - Van-Tai Nguyen
- Department of Environmental Management, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- CARE, HCMUT, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Christine Baduel
- IRD, CNRS, Grenoble INP, Institut Des Géosciences Et de L'Environnement (IGE), Université Grenoble Alpes, 38050, Grenoble, France
| | - Manh-Ha Bui
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, Vietnam
| | - Viet Tuan Tran
- Environmental Monitoring Division, Institute for Tropical Technology and Environmental Protection, Ho Chi Minh City, Vietnam
| | - Thanh-Luu Pham
- Vietnam Academy of Science and Technology (VAST), Graduate University of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
- Institute of Tropical Biology, Vietnam Academy of Science and Technology (VAST), 85 Tran Quoc Toan Street, District 3, Ho Chi Minh City, Vietnam
| | - Ba-Trung Bui
- Department of Environmental Toxicology, Institute for Environment and Resources, Ho Chi Minh City, Vietnam
| | - Khuong V Dinh
- Department of Fisheries Biology, Nha Trang University, Nha Trang City, Vietnam
- Department of Biosciences, University of Oslo, Blindernvn. 31, 0371, Oslo, Norway
| |
Collapse
|
11
|
Sun T, Ji C, Li F, Wu H. Hormetic dose responses induced by organic flame retardants in aquatic animals: Occurrence and quantification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153295. [PMID: 35065129 DOI: 10.1016/j.scitotenv.2022.153295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The organic flame retardants (OFRs) have attracted global concerns due to their potential toxicity and ubiquitous presence in the aquatic environment. Hormesis refers to a biphasic dose response, characterized by low-dose stimulation and high-dose inhibition. The present study provided substantial evidence for the widespread occurrence of OFRs-induced hormesis in aquatic animals, including 202 hormetic dose response relationships. The maximum stimulatory response (MAX) was commonly lower than 160% of the control response, with a combined value of 134%. Furthermore, the magnitude of MAX varied significantly among multiple factors and their interactions, such as chemical types and taxonomic groups. Moreover, the distance from the dose of MAX to the no-observed-adverse-effect-level (NOAEL) (NOAEL: MAX) was typically below 10-fold (median = 6-fold), while the width of the hormetic zone (from the lowest dose inducing hormesis to the NOAEL) was approximately 20-fold. Collectively, the quantitative features of OFRs-induced hormesis in aquatic animals were in accordance with the broader hormetic literature. In addition, the implications of hormetic dose response model for the risk assessment of OFRs were discussed. This study offered a novel insight for understanding the biological effects of low-to-high doses of OFRs on aquatic animals and assessing the potential risks of OFRs in the aquatic environment.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
12
|
Talu M, Seyoum A, Yitayew B, Aseffa A, Jass J, Mamo G, Olsson PE. Transcriptional responses of Daphnia magna exposed to Akaki river water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:349. [PMID: 35394223 PMCID: PMC8993723 DOI: 10.1007/s10661-022-09973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Pollution of the aquatic environment is a global problem, with industrial waste, farming effluents, sewage, and wastewater as the main contributors. Many pollutants are biologically active at low concentrations, resulting in sublethal effects, which makes it a highly complex situation and difficult to assess. In many places, such as the Akaki river in Ethiopia, the pollution situation has resulted in streams with minimal presence of invertebrates or vertebrates. As it is difficult to perform a complete chemical analysis of the waters, the present study focused on using gene expression analysis as a biological end point to determine the effects of Akaki river contaminants. The present study was conducted using the small planktonic crustacean Daphnia magna with toxicogenomic molecular markers. Daphnia magna neonates were exposed to Akaki water samples collected from two different sites on the river and analyzed for mortality and expression of genes involved in different biological pathways. Despite the poor quality of Akaki river water, 48 h acute toxicity tests showed no mortality. Interestingly, analysis of sublethal toxicogenomic responses showed that exposure to Akaki water altered the expression of 25 out of 37 genes involved in metal regulation, immune response, oxidative stress, respiration, reproduction, and development. The toxicogenomic data gives insight into the mechanisms involved in causing potential adverse effects to aquatic biota harboring the Akaki river system.
Collapse
Affiliation(s)
- Meron Talu
- The Life Science Center-Biology, School of Science and Technology, Örebro University, 701 82, Orebro, Sweden
- Department of Microbiology, Immunology and Veterinary Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asmerom Seyoum
- The Life Science Center-Biology, School of Science and Technology, Örebro University, 701 82, Orebro, Sweden
| | - Berhanu Yitayew
- The Life Science Center-Biology, School of Science and Technology, Örebro University, 701 82, Orebro, Sweden
- College of Health Science Addis Ababa University, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Jana Jass
- The Life Science Center-Biology, School of Science and Technology, Örebro University, 701 82, Orebro, Sweden
| | - Gezahegne Mamo
- Department of Microbiology, Immunology and Veterinary Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Addis Ababa, Ethiopia
| | - Per-Erik Olsson
- The Life Science Center-Biology, School of Science and Technology, Örebro University, 701 82, Orebro, Sweden.
| |
Collapse
|
13
|
Wu X, Zhu Y, Yang M, Zhang J, Lin D. Biological responses of Eisenia fetida towards the exposure and metabolism of tris (2-butoxyethyl) phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152285. [PMID: 34933047 DOI: 10.1016/j.scitotenv.2021.152285] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The toxicity of various organophosphorus flame retardants (OPFRs) is of increasing concern. However, there is still a lack of research on the toxicity of OPFRs to terrestrial invertebrates and its metabolism in vivo. Herein, earthworms (Eisenia fetida) were exposed to soil spiked with 0, 0.05, 0.5, and 5 mg/kg tris(2-butoxyethyl) phosphate (TBOEP, a typical alkyl OPFRs) for 28 d to study the biological responses to the exposure and metabolism of TBOEP. TBOEP exposure inhibited the activity of acetyl-cholinesterase (64.4-68.6% of that in the control group), increased the energy consumption level, and affected calcium-dependent pathways of E. fetida, which caused a 3.6-12.4% reduction in the weight gain rate (developmental toxicity), a 10.6-69.4% reduction in the number of juveniles (reproduction toxicity), and neurotoxicity to E. fetida. The 5 mg/kg TBOEP exposure caused a significant accumulation of malondialdehyde (1.68 times higher than that in the control group) in E. fetida, which indicated that the balance of oxidation and anti-oxidation of E. fetida was broken. Meanwhile, E. fetida maintained the absorption and metabolic abilities to TBOEP under the environmental condition. The removal rate of soil TBOEP was increased by 25.1-35.5% by the presence of E. fetida. Importantly, TBOEP could accumulate in E. fetida (0.09-76.0 μg/kg) and the activation of cytochrome P450 and glutathione detoxification pathway promoted the metabolism of TBOEP in E. fetida. These findings link the biological responses and metabolic behavior of earthworms under pollution stress and provide fundamental data for the environmental risk assessment and pollution removal of OPFRs in soil.
Collapse
Affiliation(s)
- Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ya Zhu
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Meirui Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Occurrence, Distribution, and Risk of Organophosphate Flame Retardants in Sediments from Jiulong River Estuary and Adjacent Western Taiwan Strait, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042449. [PMID: 35206636 PMCID: PMC8872513 DOI: 10.3390/ijerph19042449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023]
Abstract
Organophosphate ester flame retardants (OPFRs) are widely prevalent in the environment and are of significant concern because of their potential toxicity to human health and wildlife. In this study, the concentration, frequency, spatial distribution, potential sources, and ecological risks of OPFRs in sediments from the Jiulong River estuary and the adjacent western Taiwan Strait were investigated. Concentrations of four of the five studied OPFRs were between <LOD and 36.6 ng/g. The distribution of all OPFRs, except 2-Ethylhexyl diphenyl phosphate (EHDPP), remained highly consistent with hydrological (salinity) trends. Furthermore, a significantly positive correlation between EHDPP and total concentrations suggested that it may be the dominant contaminant at both sites. Principal element analysis indicated multiple sources of OPFRs, which were categorized as emissions from road runoff and surface traffic, effects of atmospheric deposition and hydrologic conditions, and a combination of industrial and population effects. Ecological risk indicates that tris (chloroethyl) phosphate (TCEP) and triphosphate ester (2,3-dibromopropyl) (TDBPP) have almost no risk, tris (clorisopropyl) phosphate (TCPP) generally has low risk, while EHDPP has moderate risk with the highest value of 0.487 in the sediments from both sites. Meanwhile, TCPP and TCEP exhibit lower theoretical health risks but are still not negligible. Overall, this work provides data to support global pollutant studies and facilitate the implementation of pollutant control strategies.
Collapse
|
15
|
Chen MH, Zhang SH, Jia SM, Wang LJ, Ma WL. In vitro biotransformation of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate by mouse liver microsomes: Kinetics and key CYP isoforms. CHEMOSPHERE 2022; 288:132504. [PMID: 34627810 DOI: 10.1016/j.chemosphere.2021.132504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
As the result of the phase-out on polybrominated diphenyl ethers, organophosphate flame retardants (OPFRs) were widely used as substitutes in the world. Previous studies found that OPFRs were frequently detected in environmental, biological, and human samples. Considering their adverse effects, the absorption, bioaccumulation, metabolism and internal exposure processes of OPFRs attracted more attentions recently, especially for aryl-OPFR and Cl-OPFRs. In the present study, the biotransformation, metabolic kinetics and related CYP450 isoforms of typical Cl-OPFR (tris(1,3-dichloro-2-propyl) phosphate: TDCPP) and aryl-OPFR (triphenyl phosphate: TPhP) were studied in vitro by mouse liver microsomes. Metabolomic analysis revealed that TDCPP may be easier to bio-accumulate in organisms than TPhP, which can be explained by their metabolic rates and half-life values (TDCPP: t1/2 = 1.8083 h; TPhP: t1/2 = 0.1531 h). CYP2E1, CYP2D6, CYP1A2 and CYP2C19 were suggested to be the specific enzymes for the biotransformation of TDCPP via associated inhibition assay. CYP2E1 was the primary CYP450 isoform of metabolism in vitro for TPhP. These findings may provide new insights for the potential mechanism of hepatotoxicity in mammals induced by OPFRs and the detoxification process of OPFRs in hepatocytes.
Collapse
Affiliation(s)
- Mei-Hong Chen
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Sheng-Hu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Shi-Ming Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Li-Jun Wang
- Department of Physiology, Harbin Medical University, Harbin, 150081, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China.
| |
Collapse
|
16
|
Liu Y, Chen M, Ma Y, Guo R, Yan Z, Chen J. Reproductive stimulation and energy allocation variation of BDE-47 and its derivatives on Daphnia magna. CHEMOSPHERE 2022; 288:132492. [PMID: 34626654 DOI: 10.1016/j.chemosphere.2021.132492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
As endocrine disrupting chemical, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is widely distributed in water environment with a high detection rate. 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47) and 6-methoxy-2,2',4,4'-tetrabromodiphenyl ether (6-MeO-BDE-47) are two main derivatives of BDE-47. To explore the aquatic risk of BDE-47 and its derivatives, the effects of them and their ternary mixture on the reproduction, growth, energy allocation, and neurological and antioxidant responses of Daphnia magna were monitoring during different exposure periods, i.e., daphnids exposed to compounds for 21 days or pre-exposed to compounds for 14 days and then recovered 7 days in clean water. In general, in 21-day test, reproductive parameters of exposed daphnids were significantly stimulated, and the growth and enzymatic activities of super oxidase dimutase (SOD), glutathione peroxidase (GPx) and acetylcholinesterase (AChE) were significantly depressed by the single- or mixture compounds. In (14 + 7)-day test, the levels of body length, number of living offspring per female and the enzyme activities recovered to some degree. However, after 7 days of recovery in pollution free medium, the reproductive parameters and enzymatic activities of D. magna were unable to restore control values. These results showed that D. magna has a tendency that the energy allocated to reproduction was greater than that to grow after exposure. The energy distribution of D. magna occurred autonomously after being exposed, which can make it better adapt to environmental changes. Moreover, based on the behavioral and enzymology indicators of D. magna, the spider chart's application in the characteristic analysis of function indicators of D. magna implied that SOD, GPx and AChE could become sensitive biomarkers for different exposure periods. Those findings enable us to better understand BDE-47 and metabolites, and are conducive to better take measures to solve the pressure it brings.
Collapse
Affiliation(s)
- Yanhua Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Meilin Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yunfeng Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Ruixin Guo
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengyu Yan
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jianqiu Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
17
|
Mata MC, Castro V, Quintana JB, Rodil R, Beiras R, Vidal-Liñán L. Bioaccumulation of organophosphorus flame retardants in the marine mussel Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150384. [PMID: 34818755 DOI: 10.1016/j.scitotenv.2021.150384] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/03/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The bioaccumulation and depuration of seven organophosphorus flame retardants (OPFRs) in marine mussel Mytilus galloprovincialis were studied. OPFRs showed to be bioavailable in aquatic environments. When mussels are exposed to environmentally relevant concentrations of OPFRs, uptake kinetics fit well to a first-order model with a single compartment; in contrast depuration rates were generally underestimated by that model, most likely because it does not take into account the biotransformation of OPFRs by the organisms. The highest bioaccumulation rates were observed for tricresyl phosphate (TCrP), triphenyl phosphate (TPhP) and 2-ethylhexyldiphenylphosphate (EHDPP). This could be due to the presence of aryl groups in these compounds, their low solubility in water, and their affinity for fat tissues. According to these findings TCrP, with a BCF value of 4042 L kg-1 wet weight, should be classified in environmental regulations as an accumulative chemical.
Collapse
Affiliation(s)
- M C Mata
- ECIMAT-CIM, University of Vigo, Illa de Toralla s/n, Vigo E-36390, Galicia, Spain
| | - V Castro
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira 5, Santiago de Compostela E-15782, Galicia, Spain
| | - J B Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira 5, Santiago de Compostela E-15782, Galicia, Spain
| | - R Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira 5, Santiago de Compostela E-15782, Galicia, Spain
| | - R Beiras
- ECIMAT-CIM, University of Vigo, Illa de Toralla s/n, Vigo E-36390, Galicia, Spain
| | - L Vidal-Liñán
- ECIMAT-CIM, University of Vigo, Illa de Toralla s/n, Vigo E-36390, Galicia, Spain.
| |
Collapse
|
18
|
Trotter B, Wilde MV, Brehm J, Dafni E, Aliu A, Arnold GJ, Fröhlich T, Laforsch C. Long-term exposure of Daphnia magna to polystyrene microplastic (PS-MP) leads to alterations of the proteome, morphology and life-history. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148822. [PMID: 34328913 DOI: 10.1016/j.scitotenv.2021.148822] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
In the past years, the research focus on the effects of MP on aquatic organisms extended from marine systems towards freshwater systems. An important freshwater model organism in the MP field is the cladoceran Daphnia, which plays a central role in lacustrine ecosystems and has been established as a test organism in ecotoxicology. To investigate the effects of MP on Daphnia magna, we performed a chronic exposure experiment with polystyrene MP under strictly standardized conditions. Chronic exposure of D. magna to PS microparticles led to a significant reduction in body length and number of offspring. To shed light on underlying molecular mechanisms induced by microplastic ingestion in D. magna, we assessed the effects of PS-MP at the proteomic level, as proteins, e.g., enzymes, are especially relevant for an organism's physiology. Using a state-of-the-art mass spectrometry based approach, we were able to identify 28,696 different peptides, which could be assigned to 3784 different proteins. Using a customized bioinformatic workflow, we identified 41 proteins significantly altered in abundance (q-value <0.05) in the PS exposed D. magna. Among the proteins increased in the PS treated group were several sulfotransferases, involved in basic biochemical pathways, as well as GABA transaminase catalyzing the degradation of the neurotransmitter GABA. In the abundance decreased group, we found essential proteins such as the DNA-directed RNA polymerase subunit and other proteins connected to biotic and inorganic stress and reproduction. Strikingly, we further identified several digestive enzymes that are significantly downregulated in the PS treated animals, which could have interfered with the affected animal's nutrient supply. This may explain the altered morphological and life history traits of the PS exposed daphnids. Our results indicate that long-term exposure to PS microplastics, which are frequently detected in environmental samples, may affect the fitness of daphnids.
Collapse
Affiliation(s)
- Benjamin Trotter
- University of Bayreuth, Animal Ecology 1, Universitätsstraße 30, 95447 Bayreuth, Germany; Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen Straße 25, 81377 Munich, Germany
| | - Magdalena V Wilde
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen Straße 25, 81377 Munich, Germany.
| | - Julian Brehm
- University of Bayreuth, Animal Ecology 1, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Evdokia Dafni
- University of Bayreuth, Animal Ecology 1, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Arlinda Aliu
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen Straße 25, 81377 Munich, Germany.
| | - Georg J Arnold
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen Straße 25, 81377 Munich, Germany.
| | - Thomas Fröhlich
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen Straße 25, 81377 Munich, Germany.
| | - Christian Laforsch
- University of Bayreuth, Animal Ecology 1, Universitätsstraße 30, 95447 Bayreuth, Germany.
| |
Collapse
|
19
|
Chen MH, Ma WL. A review on the occurrence of organophosphate flame retardants in the aquatic environment in China and implications for risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147064. [PMID: 34088162 DOI: 10.1016/j.scitotenv.2021.147064] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 05/28/2023]
Abstract
Organophosphate flame retardants (OPFRs), used extensively as substitutes for polybrominated diphenyl ethers, are ubiquitous environmental contaminants. OPFR pollution in aquatic environments, the main sink of pollutants, has been studied extensively over the past decade. Here, we review the current knowledge on the consumption and applications of OPFRs, and on their ecotoxicity in aquatic environments worldwide. We also synthesize the available evidence on the occurrence of OPFRs in aquatic environments in China (wastewater treatment plant influent and effluent, surface water, sediment, aquatic biota, and drinking water). Across China, the measured concentrations of OPFRs differ by more than three orders of magnitude. Risk assessments based on these measurements indicate a low level of ecological risk from OPFRs in most aquatic environments in China, and a low risk to human health from drinking water and aquatic products. Finally, we identify gaps in the current knowledge and directions for further research on OPFRs in aquatic environments.
Collapse
Affiliation(s)
- Mei-Hong Chen
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China.
| |
Collapse
|
20
|
Duarte B, Gameiro C, Matos AR, Figueiredo A, Silva MS, Cordeiro C, Caçador I, Reis-Santos P, Fonseca V, Cabrita MT. First screening of biocides, persistent organic pollutants, pharmaceutical and personal care products in Antarctic phytoplankton from Deception Island by FT-ICR-MS. CHEMOSPHERE 2021; 274:129860. [PMID: 33607598 DOI: 10.1016/j.chemosphere.2021.129860] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 05/26/2023]
Abstract
In recent years, the Antarctic territory has seen a rise in the number of tourists and scientists. This has led to an increase in the anthropogenic footprint in Antarctic ecosystems, namely in terms of emerging contaminants, such as Biocides, Persistent Organic Pollutants (POPs) as well as Pharmaceutical and Personal Care Products (PPCPs). Yet scarce information on the presence of these emerging contaminants is available for trophic compartments, especially the phytoplankton community. Using high resolution Fourier-transform ion cyclotron-resonance mass spectrometry (FT-ICR-MS), an untargeted screening of the metabolome of the phytoplankton community was performed. Seventy different contaminant compounds were found to be present in phytoplankton collected at two sites in Port Foster Bay at Deception Island. These emerging contaminants included 1 polycyclic aromatic hydrocarbon (PAH), 10 biocides (acaricides, fungicides, herbicides, insecticides and nematicides), 11 POPs (flame retardants, paints and dyes, polychlorinated biphenyl (PCB), phthalates and plastic components), 5 PCPs (cosmetic, detergents and dietary compounds), 40 pharmaceutical compounds and 3 illicit drugs. Pharmaceutical compounds were, by far, the largest group of emerging contaminants found in phytoplankton cells (anticonvulsants, antihypertensives and beta-blockers, antibiotics, analgesic and anti-inflammatory drugs). The detection of several of these potentially toxic compounds at the basis of the marine food web has potentially severe impacts for the whole ecosystem trophic structure. Additionally, the present findings also point out that the guidelines proposed by the Antarctic Treaty and Protocol on Environmental Protection to the Antarctic Treaty should be revisited to avoid the proliferation of these and other PPCPs in such sensitive environments.
Collapse
Affiliation(s)
- Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Carla Gameiro
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Instituto Do Mar e da Atmosfera (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006, Algés, Lisboa, Portugal
| | - Ana Rita Matos
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Andreia Figueiredo
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Marta Sousa Silva
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo-Grande, 1749-016, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Carlos Cordeiro
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo-Grande, 1749-016, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Isabel Caçador
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Patrick Reis-Santos
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA, 5005, Australia
| | - Vanessa Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria Teresa Cabrita
- Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento Do Território (IGOT), Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276, Lisboa, Portugal
| |
Collapse
|
21
|
Yan Z, Jin X, Liu D, Hong Y, Liao W, Feng C, Bai Y. The potential connections of adverse outcome pathways with the hazard identifications of typical organophosphate esters based on toxicity mechanisms. CHEMOSPHERE 2021; 266:128989. [PMID: 33228983 DOI: 10.1016/j.chemosphere.2020.128989] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 05/03/2023]
Abstract
Following the world-wide ban of brominated flame retardants (BFRs), organophosphate esters (OPEs), which could potentially affect human health and ecosystem safety, have been frequently detected in various environmental media. However, the knowledge regarding the underlying toxicity effects of OPEs remains limited. In order to address these issues, this study reviewed the related reports which have been published in recent years. This analysis process included 12 OPEs, 10 model organisms, and 15 cell lines, which were used to systematically examine the mechanisms of endocrine disruption, neurotoxicity, hepatotoxicity, and cardiotoxicity, as well as reproductive and developmental toxicity. Subsequently, an adverse outcome pathway (AOP) framework of the toxicological effects of OPEs was built. The results demonstrated that multiple different pathways may lead to a single same adverse outcome (AO), and there was a certain degree of correlation among the different AOs. It was found that among all the 12 OPEs, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) may potentially be the most toxic. In addition, rather than the parent chemicals, the metabolites of OPEs may also have different degrees of toxicity effects on aquatic organisms and humans. Overall, the results of the present study also suggested that an AOP framework should be built via fully utilizing the existing toxicity data of OPEs based on in vivo-in vitro-in silico to completely and deeply understand the toxic mechanisms of OPEs. This improved knowledge could then provide a theoretical basis for ecological risk assessments and water quality criteria research in the near future.
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yajun Hong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Jiangxi Irrigation Experiment Central Station, Nanchang, 330201, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
22
|
Cuvillier-Hot V, Lenoir A. Invertebrates facing environmental contamination by endocrine disruptors: Novel evidences and recent insights. Mol Cell Endocrinol 2020; 504:110712. [PMID: 31962147 DOI: 10.1016/j.mce.2020.110712] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
The crisis of biodiversity we currently experience raises the question of the impact of anthropogenic chemicals on wild life health. Endocrine disruptors are notably incriminated because of their possible effects on development and reproduction, including at very low doses. As commonly recorded in the field, the burden they impose on wild species also concerns invertebrates, with possible specificities linked with the specific physiology of these animals. A better understanding of chemically-mediated endocrine disruption in these species has clearly gained from knowledge accumulated on vertebrate models. But the molecular pathways specific to invertebrates also need to be reckoned, which implies dedicated research efforts to decipher their basic functioning in order to be able to assess its possible disruption. The recent rising of omics technologies opens the way to an intensification of these efforts on both aspects, even in species almost uninvestigated so far.
Collapse
Affiliation(s)
| | - Alain Lenoir
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS, Faculté des Sciences, Parc de Grandmont, Université de Tours, Tours, France
| |
Collapse
|
23
|
Liu Y, Feng Y, Li J, Zhou D, Guo R, Ji R, Chen J. The bioaccumulation, elimination, and trophic transfer of BDE-47 in the aquatic food chain of Chlorella pyrenoidosa-Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113720. [PMID: 31831226 DOI: 10.1016/j.envpol.2019.113720] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
As a persistent organic pollutant, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) has been widely detected in aquatic environments. However, studies on the fate and transfer of BDE-47 in the aquatic food chain remain scarce. In this study, we investigated the bioaccumulation and elimination of BDE-47 in Chlorella pyrenoidosa, as well as the trophic transfer and biomagnification of BDE-47 in the "C. pyrenoidosa-Daphnia magna" food chain, using C-14 radioactive tracer technology. After 96 h of BDE-47 exposure, the algae accumulated 88.98% ± 0.59% of the initial radioactivity from the medium, and 36.09% ± 9.22% of the accumulated residues in the algae occurred in the form of bound residues. During 96 h of elimination, only 13% ± 0.50% of accumulated radioactivity in the algae was released into the medium. After 24 h of exposure, D. magna accumulated 35.99% ± 2.55% of the initial radioactivity via water filtration from the medium, and 31.35% ± 1.92% of the accumulated radioactivity in D. magna occurred as bound residues. However, D. magna accumulated 66.89% ± 2.37% of the accumulated radioactivity in the algae via food uptake from the contaminated algae, with a high portion of radioactivity observed as bound residues (83.40% ± 0.97% of accumulated radioactivity in D. magna). This indicated a reduction in the environmental risk of BDE-47. There was obvious biomagnification in the food chain between C. pyrenoidosa and D. magna (biomagnification factors, BMFs>1), resulting in environmental hazard transfer in the aquatic food chain. However, no metabolite was found during the exposure experiment, and further studies should be carried out to investigate the intrinsic mechanisms of the trophic transfer of BDE-47, especially in multilevel food chains. Therefore, this study elucidated the effect of dietary uptake on the bioaccumulation of BDE-47 in D. magna and provided new insight for future analysis regarding the bioaccumulation and biomagnification of organic pollutants in the food chain.
Collapse
Affiliation(s)
- Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yinmei Feng
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Jinrong Li
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Dashun Zhou
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
24
|
Žnideršič L, Mlakar A, Prosen H. Development of a SPME-GC-MS/MS method for the determination of some contaminants from food contact material in beverages. Food Chem Toxicol 2019; 134:110829. [PMID: 31542431 DOI: 10.1016/j.fct.2019.110829] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/22/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022]
Abstract
The development and validation of a simple, low-cost, and sensitive method for the determination of nine compounds expected in beverages and vinegar as a result of migration from food contact material (parabens, phenolic antioxidants, sulfonamide plasticizer, and flame retardant) is presented. The analytes were preconcentrated using solid-phase microextraction and analyzed by gas chromatography - tandem mass spectrometry. The method required no derivatization procedure and an affordable chemical was used as internal standard. The LODs were in the range of 0.005-0.2 μg/L, the relative standard deviations 0.8-5.4%, and the mean recoveries 98-109%. Different alcoholic beverages and vinegars were analyzed. A crown cap migration study using several food simulants was conducted for 6 months. Moreover, migration from a home brewing plastic fermenter in a time span of 4 weeks was studied. Analyte concentrations up to 2220.99 μg/L were detected in real samples and up to 4.75 μg/L in migration experiments.
Collapse
Affiliation(s)
- Luka Žnideršič
- Krka, d.d., Novo Mesto, Šmarješka Cesta 6, 8501, Novo Mesto, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Anita Mlakar
- Krka, d.d., Novo Mesto, Šmarješka Cesta 6, 8501, Novo Mesto, Slovenia
| | - Helena Prosen
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
25
|
Ma J, Zhu H, Kannan K. Organophosphorus Flame Retardants and Plasticizers in Breast Milk from the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2019; 6:525-531. [PMID: 31534982 PMCID: PMC6740186 DOI: 10.1021/acs.estlett.9b00394] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 05/09/2023]
Abstract
Organophosphate esters (OPEs) are used in consumer products as flame retardants and plasticizers. Little is known, however, about the occurrence and profiles of OPEs in human milk. In this study, 14 OPEs were measured in 100 breast milk samples collected from the United States during the period of 2009-2012, using high-performance liquid chromatography and tandem mass spectrometry. The sum concentrations of 14 OPEs in human milk ranged from 0.670 to 7.83 ng/mL, with a mean value of 3.61 ng/mL. The highest mean concentration was found for tris-2-butoxyethyl phosphate (TBOEP, 1.44 ± 0.789 ng/mL), followed by tri-iso-butyl phosphate (TIBP, 0.569 ± 0.272 ng/mL) and tri-n-butyl phosphate (TNBP, 0.539 ± 0.265 ng/mL), which were the dominant OPEs found in breast milk at detection frequencies of >80%. No significant differences were observed between various maternal/infant characteristics and OPE concentrations (p > 0.05), except for TBOEP, for which the median concentrations in Hispanic mothers (0.765 ng/mL) were 2 times lower than those in non-Hispanic mothers (1.48 ng/mL) (p < 0.05). On the basis of the recommended daily milk ingestion rate, the average and the highest daily intakes of total OPEs were calculated to be in the range of 300-542 and 504-911 ng (kg of body weight)-1 day-1, respectively. The estimated daily intakes of OPEs did not exceed the current reference doses. Our study establishes baseline data for OPE exposure in breast-fed American children.
Collapse
Affiliation(s)
- Jing Ma
- Wadsworth
Center, New York State Department of Health, Albany, New York 12201, United States
- School
of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hongkai Zhu
- Wadsworth
Center, New York State Department of Health, Albany, New York 12201, United States
| | - Kurunthachalam Kannan
- Wadsworth
Center, New York State Department of Health, Albany, New York 12201, United States
- Department
of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12201, United States
- Telephone: 518-474-0015. Fax: 518-473-2895. E-mail:
| |
Collapse
|
26
|
Swart E, de Boer TE, Chen G, Vooijs R, van Gestel CAM, van Straalen NM, Roelofs D. Species-specific transcriptomic responses in Daphnia magna exposed to a bio-plastic production intermediate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:399-408. [PMID: 31158668 DOI: 10.1016/j.envpol.2019.05.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/10/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Hydroxymethylfurfural (HMF) is a plant-based chemical building block that could potentially substitute petroleum-based equivalents, yet ecotoxicological data of this compound is currently limited. In this study, the effects of HMF on the reproduction and survival of Daphnia magna were assessed through validated ecotoxicological tests. The mechanism of toxicity was determined by analysis of transcriptomic responses induced by exposure to different concentrations of HMF using RNA sequencing. HMF exerted toxicity to D. magna with an EC50 for effects on reproduction of 17.2 mg/l. HMF exposure affected molecular pathways including sugar and polysaccharide metabolism, lipid metabolism, general stress metabolism and red blood cell metabolism, although most molecular pathways affected by HMF exposure were dose specific. Hemoglobin genes, however, responded in a sensitive and dose-related manner. No induction of genes involved in the xenobiotic metabolism or oxidative stress metabolism pathway could be observed, which contrasted earlier observations on transcriptional responses of the terrestrial model Folsomia candida exposed to the same compound in a similar dose. We found 4189 orthologue genes between D. magna and F. candida, yet only twenty-one genes of those orthologues were co-regulated in both species. The contrasting transcriptional responses to the same compound exposed at a similar dose between D. magna and F. candida indicates limited overlap in stress responses among soil and aquatic invertebrates. The dose-related expression of hemoglobin provides further support for using hemoglobin expression as a biomarker for general stress responses in daphnids.
Collapse
Affiliation(s)
- Elmer Swart
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands.
| | - Tjalf E de Boer
- MicroLife Solutions B.V., Science Park 406, 1098, XH, Amsterdam, the Netherlands
| | - Guangquan Chen
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Riet Vooijs
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Nico M van Straalen
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Dick Roelofs
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Giraudo M, Colson TLL, Pilote M, Gagnon C, Gagnon P, Houde M. A major release of urban untreated wastewaters in the St. Lawrence River (Quebec, Canada) altered growth, reproduction, and redox status in experimentally exposed Daphnia magna. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:843-851. [PMID: 31392632 DOI: 10.1007/s10646-019-02084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
In 2015, five billion liters of untreated urban wastewater (UWW) were released into the St. Lawrence River (Quebec, Canada) over the course of four days in order to repair the Montreal's sewer interceptor network related to the city's primary wastewater treatment plant. The UWW discharge originated mainly from household, industrial, and hospital sources. The objective of this study was to investigate the toxicological effects of this unprecedented punctual UWW release on aquatic invertebrates to gather information that could help understand the potential impacts to the receiving environment of overflow episodes occurring during heavy rain events. Water samples were collected at four impacted and non-impacted sites during and four weeks after the release. The freshwater crustacean Daphnia magna were experimentally exposed to surface water collected from UWW-impacted sites for 13 days and analyzed for life-history endpoints and suitable biomarkers related to oxidative stress (i.e., catalase, superoxide dismutase, lipid peroxidation, and glutathione-s-transferase) and reproduction (chitinase). Results indicated that D. magna growth and reproduction were significantly increased by exposure to UWWs. These effects were correlated with an increase in chitinase activity, which is primarily controlled by reproductive hormones and involved in growth, suggesting potential impacts on these processes. Results also indicated that some UWW samples might have caused oxidative stress during the release but that it was overcome by antioxidant defenses and did not lead to cellular damage. Overall, current results contribute to a better understanding of the biological impacts of UWW to aquatic invertebrates for a better stormwater management.
Collapse
Affiliation(s)
- M Giraudo
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, H2Y 2E7, QC, Canada.
| | - T-L L Colson
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, H2Y 2E7, QC, Canada
| | - M Pilote
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, H2Y 2E7, QC, Canada
| | - C Gagnon
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, H2Y 2E7, QC, Canada
| | - P Gagnon
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, H2Y 2E7, QC, Canada
| | - M Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, H2Y 2E7, QC, Canada
| |
Collapse
|
28
|
Huang Y, Liu J, Yu L, Liu C, Wang J. Gonadal impairment and parental transfer of tris (2-butoxyethyl) phosphate in zebrafish after long-term exposure to environmentally relevant concentrations. CHEMOSPHERE 2019; 218:449-457. [PMID: 30497028 DOI: 10.1016/j.chemosphere.2018.11.139] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Tris (2-butoxyethyl) phosphate (TBOEP) is a ubiquitous environmental contaminant due to its overuse. TBOEP has been found to cause reproductive toxicity and endocrine disruption during acute toxic experiment. In this study, we examined the effects of TBOEP on growth in initial generation (F0) zebrafish and transgenerational effects on growth of first generation (F1) larvae after parental long-term exposure (120 d) to environmentally relevant concentrations (0, 0.1, 1, 10 and 100 μg/L). Exposure to TBOEP resulted in significantly less growth as measured by body length, body weight and gonadosomatic index (GSI) in F0 females but not F0 males. Furthermore, the bioaccumulation of TBOEP in gonad, the alteration of the gene transcriptions in the hypothalamic-pituitary-gonadal (HPG) axis, and the delay in gonadal development in both female and male zebrafish were demonstrated. In addition, the residues of TBOEP were detected in F1 larvae after parental exposure, resulting in lower survival and shorter body length, as well as faster heart rate. And no significant changes in gene expressions along the growth hormone/insulin-like growth factor (GH/IGF) axis and the hypothalamic-pituitary-thyroid (HPT) axis were found in F1 larvae. In conclusion, these results indicated that long-term parental exposure to environmentally relevant concentrations of TBOEP could inhibit the development of progeny by parental gonadal impairment and by TBOEP transfer to offspring, instead of gene transcription in GH/IGF and HPT axes.
Collapse
Affiliation(s)
- Yangyang Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Gago-Ferrero P, Krettek A, Fischer S, Wiberg K, Ahrens L. Suspect Screening and Regulatory Databases: A Powerful Combination To Identify Emerging Micropollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6881-6894. [PMID: 29782800 DOI: 10.1021/acs.est.7b06598] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This study demonstrates that regulatory databases combined with the latest advances in high resolution mass spectrometry (HRMS) can be efficiently used to prioritize and identify new, potentially hazardous pollutants being discharged into the aquatic environment. Of the approximately 23000 chemicals registered in the database of the National Swedish Product Register, 160 potential organic micropollutants were prioritized through quantitative knowledge of market availability, quantity used, extent of use on the market, and predicted compartment-specific environmental exposure during usage. Advanced liquid chromatography (LC)-HRMS-based suspect screening strategies were used to search for the selected compounds in 24 h composite samples collected from the effluent of three major wastewater treatment plants (WWTPs) in Sweden. In total, 36 tentative identifications were successfully achieved, mostly for substances not previously considered by environmental scientists. Of these substances, 23 were further confirmed with reference standards, showing the efficiency of combining a systematic prioritization strategy based on a regulatory database and a suspect-screening approach. These findings show that close collaboration between scientists and regulatory authorities is a promising way forward for enhancing identification rates of emerging pollutants and expanding knowledge on the occurrence of potentially hazardous substances in the environment.
Collapse
Affiliation(s)
- Pablo Gago-Ferrero
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-75007 Uppsala , Sweden
| | - Agnes Krettek
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-75007 Uppsala , Sweden
- Institute of Soil Science and Land Evaluation, Soil Chemistry and Pedology , University of Hohenheim , Emil-Wolff-Straße 27 , 70599 Stuttgart , Germany
| | - Stellan Fischer
- The Swedish Chemicals Agency (KemI) , SE-172 67 Stockholm , Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-75007 Uppsala , Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-75007 Uppsala , Sweden
| |
Collapse
|
30
|
Kovacevic V, Simpson AJ, Simpson MJ. Investigation of Daphnia magna Sub-Lethal Exposure to Organophosphate Esters in the Presence of Dissolved Organic Matter Using ¹H NMR-Based Metabolomics. Metabolites 2018; 8:metabo8020034. [PMID: 29783758 PMCID: PMC6027453 DOI: 10.3390/metabo8020034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Organophosphate esters (OPEs) are frequently detected in aquatic environments. Hydrophobic OPEs with high octanol-water partition coefficients (Log KOW) will likely sorb to dissolved organic matter (DOM) and consequently alter OPE bioavailability and sub-lethal toxicity. 1H nuclear magnetic resonance (NMR)-based metabolomics was used to evaluate how DOM (5 mg organic carbon/L) alters the metabolic response of Daphnia magna exposed to sub-lethal concentrations of three individual OPEs with varying hydrophobicity. D. magna exposed to the hydrophilic contaminant (Log KOW = 1.43) tris(2-chloroethyl) phosphate (TCEP) did not have substantial metabolic changes and DOM did not alter the metabolic response. There were significant increases in amino acids and a decrease in glucose from exposure to the hydrophobic contaminant (Log KOW = 3.65) tris(2-butoxyethyl) phosphate (TBOEP) which DOM did not mitigate, likely due to the high sub-lethal toxicity of TBOEP. Exposure to DOM and the hydrophobic contaminant (Log KOW = 4.76) triphenyl phosphate (TPhP) resulted in a unique metabolic response which was unlike TPhP only exposure, perhaps because DOM may be an additional stressor with TPhP exposure. Therefore, Log KOW values may not always predict how sub-lethal contaminant toxicity will change with DOM and there should be more consideration to incorporate DOM in sub-lethal ecotoxicology testing.
Collapse
Affiliation(s)
- Vera Kovacevic
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - André J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
31
|
Krivoshiev BV, Beemster GTS, Sprangers K, Cuypers B, Laukens K, Blust R, Husson SJ. Transcriptome profiling of HepG2 cells exposed to the flame retardant 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO). Toxicol Res (Camb) 2018; 7:492-502. [PMID: 30090599 PMCID: PMC6060682 DOI: 10.1039/c8tx00006a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/09/2018] [Indexed: 12/31/2022] Open
Abstract
The flame retardant, 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO), has been receiving great interest given its superior fire protection properties, and its predicted low level of persistence, bioaccumulation, and toxicity. However, empirical toxicological data that are essential for a complete hazard assessment are severely lacking. In this study, we attempted to identify the potential toxicological modes of action by transcriptome (RNA-seq) profiling of the human liver hepatocellular carcinoma cell line, HepG2. Such insight may help in identifying compounds of concern and potential toxicological phenotypes. DOPO was found to have little cytotoxic potential, with lower effective concentrations compared to other flame retardants studied in the same cell line. Differentially expressed genes revealed a wide range of molecular effects including changes in protein, energy, DNA, and lipid metabolism, along with changes in cellular stress response pathways. In response to 250 μM DOPO, the most perturbed biological processes were fatty acid metabolism, androgen metabolism, glucose transport, and renal function and development, which is in agreement with other studies that observed similar effects of other flame retardants in other species. However, treatment with 2.5 μM DOPO resulted in very few differentially expressed genes and failed to indicate any potential effects on biology, despite such concentrations likely being orders of magnitude greater than would be encountered in the environment. This, together with the low levels of cytotoxicity, supports the potential replacement of the current flame retardants by DOPO, although further studies are needed to establish the nephrotoxicity and endocrine disruption of DOPO.
Collapse
Affiliation(s)
- Boris V Krivoshiev
- Department of Biology , Systemic Physiological & Ecotoxicological Research , University of Antwerp , Antwerp , Belgium .
| | - Gerrit T S Beemster
- Department of Biology , Integrated Molecular Plant Physiology Research , University of Antwerp , Antwerp , Belgium
| | - Katrien Sprangers
- Department of Biology , Integrated Molecular Plant Physiology Research , University of Antwerp , Antwerp , Belgium
| | - Bart Cuypers
- Department of Mathematics and Computer Science , Advanced Database Research and Modelling (ADReM) , University of Antwerp , Antwerp , Belgium
- Department of Biomedical Sciences , Unit of Molecular Parasitology , Institute of Tropical Medicine , Antwerp , Belgium
| | - Kris Laukens
- Department of Mathematics and Computer Science , Advanced Database Research and Modelling (ADReM) , University of Antwerp , Antwerp , Belgium
| | - Ronny Blust
- Department of Biology , Systemic Physiological & Ecotoxicological Research , University of Antwerp , Antwerp , Belgium .
| | - Steven J Husson
- Department of Biology , Systemic Physiological & Ecotoxicological Research , University of Antwerp , Antwerp , Belgium .
| |
Collapse
|
32
|
Toxicogenomics of the flame retardant tris (2-butoxyethyl) phosphate in HepG2 cells using RNA-seq. Toxicol In Vitro 2018; 46:178-188. [DOI: 10.1016/j.tiv.2017.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/10/2017] [Accepted: 10/08/2017] [Indexed: 11/20/2022]
|
33
|
Elliott SM, Brigham ME, Lee KE, Banda JA, Choy SJ, Gefell DJ, Minarik TA, Moore JN, Jorgenson ZG. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence. PLoS One 2017; 12:e0182868. [PMID: 28953889 PMCID: PMC5617142 DOI: 10.1371/journal.pone.0182868] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Human activities introduce a variety of chemicals to the Laurentian Great Lakes including pesticides, pharmaceuticals, flame retardants, plasticizers, and solvents (collectively referred to as contaminants of emerging concern or CECs) potentially threatening the vitality of these valuable ecosystems. We conducted a basin-wide study to identify the presence of CECs and other chemicals of interest in 12 U.S. tributaries to the Laurentian Great Lakes during 2013 and 2014. A total of 292 surface-water and 80 sediment samples were collected and analyzed for approximately 200 chemicals. A total of 32 and 28 chemicals were detected in at least 30% of water and sediment samples, respectively. Concentrations ranged from 0.0284 (indole) to 72.2 (cholesterol) μg/L in water and 1.75 (diphenhydramine) to 20,800 μg/kg (fluoranthene) in sediment. Cluster analyses revealed chemicals that frequently co-occurred such as pharmaceuticals and flame retardants at sites receiving similar inputs such as wastewater treatment plant effluent. Comparison of environmental concentrations to water and sediment-quality benchmarks revealed that polycyclic aromatic hydrocarbon concentrations often exceeded benchmarks in both water and sediment. Additionally, bis(2-ethylhexyl) phthalate and dichlorvos concentrations exceeded water-quality benchmarks in several rivers. Results from this study can be used to understand organism exposure, prioritize river basins for future management efforts, and guide detailed assessments of factors influencing transport and fate of CECs in the Great Lakes Basin.
Collapse
Affiliation(s)
- Sarah M. Elliott
- U.S. Geological Survey, Mounds View, Minnesota, United States of America
- * E-mail:
| | - Mark E. Brigham
- U.S. Geological Survey, Mounds View, Minnesota, United States of America
| | - Kathy E. Lee
- U.S. Geological Survey, Grand Rapids, Minnesota, United States of America
| | - Jo A. Banda
- U.S. Fish and Wildlife Service, Columbus, Ohio, United States of America
| | - Steven J. Choy
- U.S. Fish and Wildlife Service, Madison, Wisconsin, United States of America
| | - Daniel J. Gefell
- U.S. Fish and Wildlife Service, Cortland, New York, United States of America
| | - Thomas A. Minarik
- Metropolitan Water Reclamation District of Greater Chicago, Cicero, IL, United States of America
| | - Jeremy N. Moore
- U.S. Fish and Wildlife Service, Chubbuck, Idaho, United States of America
| | - Zachary G. Jorgenson
- Department of Biology, St. Cloud State University, St. Cloud, Minnesota, United States of America
- U.S. Fish and Wildlife Service, Bloomington, Minnesota, United States of America
| |
Collapse
|
34
|
Giraudo M, Dubé M, Lépine M, Gagnon P, Douville M, Houde M. Multigenerational effects evaluation of the flame retardant tris(2-butoxyethyl) phosphate (TBOEP) using Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:142-149. [PMID: 28711770 DOI: 10.1016/j.aquatox.2017.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Tris(2-butoxyethyl) phosphate (TBOEP) is an organophosphate ester used as substitute following the phase-out of brominated flamed retardants. Because of its high production volume and its use in a broad range of applications, this chemical is now frequently detected in the environment and biota. However, limited information is available on the long-term effects of TBOEP in aquatic organisms. In this study, Daphnia magna were exposed over three 21d generations to an environmentally relevant concentration of TBOEP (10μg/L) and effects were evaluated at the gene transcription, protein, and life-history (i.e., survival, reproduction and growth) levels. Chronic exposure to TBEOP did not impact survival or reproduction of D. magna but affected the growth output. The mean number of molts was also found to be lower in daphnids exposed to the chemical compared to control for a given generation, however there were no significant differences over the three generations. Molecular responses indicated significant differences in the transcription of genes related to growth, molting, ecdysteroid and juvenile hormone signaling, proteolysis, oxidative stress, and oxygen transport within generations. Levels of mRNA were also found to be significantly different for genes known to be involved in endocrine-mediated mechanisms such as reproduction and growth between generations F0, F1, and F2, indicating effects of parental exposure on offspring. Transcription results were supported by protein analyses with the significant decreased in catalase (CAT) activity in F1 generation, following the decreased transcription of cat in the parental generation. Taken together, these multi-biological level results suggest long-term potential endocrine disruption effects of TBOEP in D. magna exposed to an environmentally relevant concentration. This study highlights the importance of using chronic and multigenerational biological evaluation to assess risks of emerging chemicals.
Collapse
Affiliation(s)
- Maeva Giraudo
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate,105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Maxime Dubé
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate,105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Mélanie Lépine
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate,105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Pierre Gagnon
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate,105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Mélanie Douville
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate,105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate,105 McGill Street, Montreal, QC, H2Y 2E7, Canada.
| |
Collapse
|
35
|
Ren G, Hu J, Shang Y, Zhong Y, Yu Z, An J. Tributylphosphate (TBP) and tris (2-butoxyethyl) phosphate (TBEP) induced apoptosis and cell cycle arrest in HepG2 cells. Toxicol Res (Camb) 2017; 6:902-911. [PMID: 30090552 DOI: 10.1039/c7tx00180k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/29/2017] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to investigate the cytotoxic effects of tributylphosphate (TBP) and tris (2-butoxyethyl) phosphate (TBEP) and to explore the underlying molecular mechanism focusing on oxidative stress, apoptosis, and cell cycle arrest. The results showed that TBP and TBEP could inhibit cell proliferation, induce cellular reactive oxidative stress, and suppress the mitochondrial membrane potential in HepG2 cells. TBP and TBEP could induce both mitochondrial and p53 mediated apoptosis through different mitogen-activated protein kinase (MAPK) signal pathways. TBP activated the c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinase (ERK1/2) pathways, while TBEP activated the JNK pathway. Furthermore, TBP and TBEP caused a concentration-dependent decrease of cyclin D1 expression and an increase of cyclin-dependent kinase (CDK) inhibitor proteins such as p21 and p27, resulting in significant cell cycle arrest in the G0/G1 phase. Taken together, the toxicity of TBP and TBEP on the HepG2 cells was associated with apoptosis and cell cycle arrest induced by oxidative stress.
Collapse
Affiliation(s)
- Guofa Ren
- Institute of Environmental Pollution and Health , School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , P. R. China . ; ; Tel: +86-021-66137736
| | - Jingwen Hu
- Institute of Environmental Pollution and Health , School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , P. R. China . ; ; Tel: +86-021-66137736
| | - Yu Shang
- Institute of Environmental Pollution and Health , School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , P. R. China . ; ; Tel: +86-021-66137736
| | - Yufang Zhong
- Institute of Environmental Pollution and Health , School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , P. R. China . ; ; Tel: +86-021-66137736
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , P. R. China
| | - Jing An
- Institute of Environmental Pollution and Health , School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , P. R. China . ; ; Tel: +86-021-66137736
| |
Collapse
|
36
|
Giraudo M, Douville M, Cottin G, Houde M. Transcriptomic, cellular and life-history responses of Daphnia magna chronically exposed to benzotriazoles: Endocrine-disrupting potential and molting effects. PLoS One 2017; 12:e0171763. [PMID: 28196088 PMCID: PMC5308779 DOI: 10.1371/journal.pone.0171763] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/25/2017] [Indexed: 11/19/2022] Open
Abstract
Benzotriazoles (BZTs) are ubiquitous aquatic contaminants used in a wide range of industrial and domestic applications from aircraft deicers to dishwasher tablets. Acute toxicity has been reported in aquatic organisms for some of the BZTs but their mode of action remains unknown. The objectives of this study were to evaluate the transcriptomic response of D. magna exposed to sublethal doses of 1H-benzotriazole (BTR), 5-methyl-1H-benzotriazole (5MeBTR) and 5-chloro-1H-benzotriazole (5ClBTR) using RNA-sequencing and quantitative real-time PCR. Cellular and life-history endpoints (survival, number of neonates, growth) were also investigated. Significant effects on the molting frequency were observed after 21-d exposure to 5MeBTR and 5ClBTR. No effects on molting frequency were observed for BTR but RNA-seq results indicated that this BZT induced the up-regulation of genes coding for cuticular proteins, which could have compensated the molting disruption. Molting in cladocerans is actively controlled by ecdysteroid hormones. Complementary short-term temporal analysis (4- and 8-d exposure) of the transcription of genes related to molting and hormone-mediated processes indicated that the three compounds had specific modes of action. BTR induced the transcription of genes involved in 20-hydroxyecdysone synthesis, which suggests pro-ecdysteroid properties. 5ClBTR exposure induced protein activity and transcriptional levels of chitinase enzymes, associated with an impact on ecdysteroid signaling pathways, which could explain the decrease in molt frequency. Finally, 5MeBTR seemed to increase molt frequency through epigenetic processes. Overall, results suggested that molting effects observed at the physiological level could be linked to endocrine regulation impacts of BZTs at the molecular level.
Collapse
Affiliation(s)
- Maeva Giraudo
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
| | - Mélanie Douville
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
| | - Guillaume Cottin
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
- Université Paris Descartes, Paris, France
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
| |
Collapse
|
37
|
Ma Z, Yu Y, Tang S, Liu H, Su G, Xie Y, Giesy JP, Hecker M, Yu H. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:196-203. [PMID: 26562049 DOI: 10.1016/j.aquatox.2015.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/23/2015] [Accepted: 10/25/2015] [Indexed: 06/05/2023]
Abstract
As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane×receptor (P×R)) pathways at 120hpf. Exposure to 0.5μM TBOEP significantly (p<0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were affected by TBOEP at the concentrations studied. Receptor-mediated responses (in vivo) and mammalian cell lines receptor binding assay (in vitro) combined with published information suggest that TBOEP can modulate receptor-mediated, endocrine process (in vivo/in vitro), particularly ER and MR.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yijun Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Song Tang
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Guanyong Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuwei Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - John P Giesy
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|