1
|
Žaltauskaitė J, Miškelytė D, Sujetovienė G, Dikšaitytė A, Kacienė G, Januškaitienė I, Dagiliūtė R. Comprehensive tetracycline, ciprofloxacin and sulfamethoxazole toxicity evaluation to earthworm Dendrobaena veneta through life-cycle, behavioral and biochemical parameters. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104609. [PMID: 39667546 DOI: 10.1016/j.etap.2024.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Veterinary antibiotics are widely spread in the environment, however, the knowledge about their impact on soil key species is still limited. This study evaluated the short-term and long-term effects of tetracycline (TC), ciprofloxacin (CIP) and sulfamethoxazole (SMX) (1-500 mg kg) on earthworm Dendrobaena veneta by measuring multiple parameters (survival, growth, reproduction, behavior and biochemical responses). Neither antibiotic induced acute toxicity and low mortality was observed after chronic exposure. TC and CIP had a negligible effect on the earthworm's weight from the 6th week of exposure, SMX inhibited the earthworm growth when was present in the range of 50-500 mg kg-1. In parallel, SMX reduced earthworm reproduction at environmentally relevant concentrations. Antibiotics altered superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and gluthathione-S-transferase (GST) activities and induced lipid peroxidation. Overall, earthworms showed no apparent acute response at environmentally relevant concentrations except for avoidance behavior; after long-term exposure earthworms experienced biochemical, physiological, and reproductive impairments and reduced survival at high soil contamination.
Collapse
Affiliation(s)
- Jūratė Žaltauskaitė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania.
| | - Diana Miškelytė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Gintarė Sujetovienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Austra Dikšaitytė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Giedrė Kacienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Irena Januškaitienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Renata Dagiliūtė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| |
Collapse
|
2
|
Sujetovienė G, Jasas M, Miškelytė D, Dikšaitytė A, Januškaitienė I, Kacienė G, Dagiliūtė R, Žaltauskaitė J. Toxic effects of tetracycline on non-target lichen Evernia prunastri. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024:1-14. [PMID: 39718831 DOI: 10.1080/15287394.2024.2445081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Tetracycline (TC) antibiotics are one of the class of drugs widely used in clinical practice but also constitute a significant environmental concern. However, the adverse effects of TC on non-target organisms have not been well studied. The aim of this study was to examine the influence of exposure to high levels of TC on thalli of lichens to determine the impact on (1) physiological parameters including integrity of cell membranes, photosynthetic efficiency and viability, (2) oxidative stress response such as membrane lipid peroxidation, and (3) enzymatic antioxidant activities as catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR). Data demonstrated that exposure to tetracycline did not markedly affect the lichen membrane damage as indicated by no change in conductivity. This antibiotic diminished the potential photosystem II efficiency (FV/FM) indicating enhanced susceptibility as evidenced by lower chlorophyll fluorescence and chlorophyll content. The viability of lichens exposed to high concentrations of tetracycline was significantly reduced. The concentrations of thiobarbituric acid reactive substances were markedly elevated with increasing concentrations of antibiotics. At higher TC concentrations, 500 mg/L SOD activity was significantly elevated. In the case of CAT, APX and GR, TC at higher concentrations significantly decreased these enzymic activities. The findings of this study contribute to the knowledge that TC antibiotics exert adverse ecotoxicological effects on lichens at high concentrations and provided a better understanding of the mechanisms underlying toxicity. Data also indicates that lichens may serve as an effective biomonitoring species for TC antibiotic exposure.
Collapse
Affiliation(s)
- Gintarė Sujetovienė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Akademija, Lithuania
| | - Martynas Jasas
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Akademija, Lithuania
| | - Diana Miškelytė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Akademija, Lithuania
| | - Austra Dikšaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Akademija, Lithuania
| | - Irena Januškaitienė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Akademija, Lithuania
| | - Giedrė Kacienė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Akademija, Lithuania
| | - Renata Dagiliūtė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Akademija, Lithuania
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Akademija, Lithuania
| |
Collapse
|
3
|
Eichberg C, Leiß A, Stothut M, Bernheine J, Jurczyk K, Paulus L, Thiele-Bruhn S, Thomas FM, Donath TW. Tetracycline but not sulfamethazine inhibits early root growth of wild grassland species, while seed germination is hardly affected by either antibiotic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125178. [PMID: 39447628 DOI: 10.1016/j.envpol.2024.125178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/20/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Seed germination and early growth of grassland species might be influenced by veterinary antibiotics that are extensively released into agricultural habitats. Therefore, we tested impacts of the commonly used antibiotics tetracycline and sulfamethazine, single and in mixture, on seed germination and seedling root growth of six typical species of temperate European grasslands (Carum carvi, Centaurea jacea, Galium mollugo, Plantago lanceolata, Silene latifolia, Dactylis glomerata). In standardised germination experiments, we assessed three germination variables (germination percentage, mean germination time, synchrony of germination) and one post-germination variable (seedling root length) under different environmentally realistic antibiotic concentrations (0.1, 1, 10 mg l-1 and a water control). While the germination variables were only irregularly and weakly affected by both antibiotics, seedling root length was strongly reduced by tetracycline, but not by sulfamethazine. Among the test species, D. glomerata was most sensitive to tetracycline with the average root length reduced up to 81 % in the 10 mg l-1 treatment. Its germination behaviour, however, was almost insensitive to the two antibiotics. Mixture effects were only shown in relation to the germination of single species, where the binary mixture produced effects but not the two single antibiotics or, conversely, effects of single antibiotics were lost in the mixture. These findings highlight the potential threat of plant regeneration from seed by veterinary antibiotics, particularly affecting early root growth and potentially influencing plant population growth in natural habitats.
Collapse
Affiliation(s)
- Carsten Eichberg
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany.
| | - Angela Leiß
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Manuel Stothut
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Jan Bernheine
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Kim Jurczyk
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Lena Paulus
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Sören Thiele-Bruhn
- Soil Science, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Frank M Thomas
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Tobias W Donath
- Department of Landscape Ecology, Institute for Natural Resource Conservation, Kiel University, Olshausenstraße 75, 24118, Kiel, Germany
| |
Collapse
|
4
|
Sacristán C, Guerrero M, Sánchez S, Rodríguez A, García RM, Ewbank AC, Gros M, Rodríguez-Mozaz S, Martínez IM, Guasch L, de la Torre A. Comparison of Oxytetracycline and Sulfamethazine Effects Over Root Elongation in Selected Wild and Crop Plants Commonly Present in the Mediterranean Cropland and Pasture Scenarios. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024:10.1007/s00244-024-01104-7. [PMID: 39645540 DOI: 10.1007/s00244-024-01104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
Fertilization with animal manure and sewage sludge, and the use of sewage water for irrigation, can lead to high antimicrobial concentrations in agricultural soils. Once in soil, antimicrobials can exert direct and indirect toxic effects on plants by misbalancing plant-microbe symbiotic relationships. We performed germination tests to determine the optimum germination conditions of 24 plant species (10 crop and 14 wild species). Subsequently, we analyzed the differences in oxytetracycline and sulfamethazine phytotoxicity in 19 plant species for which optimum germination conditions could be established. The root elongation of the majority of wild species was inhibited in the presence of oxytetracycline and sulfamethazine, whereas crops were mainly affected by oxytetracycline. There were no differences in sensitivity to oxytetracycline between crop and wild plant species, whereas wild plants were significantly more susceptible to sulfamethazine than crop species. Thus, to cover both productivity and biodiversity protection goals, we recommend pharmaceuticals' predicted no-effect concentration (PNEC) values based on crop and wild plant species phytotoxicity data.
Collapse
Affiliation(s)
- Carlos Sacristán
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA/CSIC), Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130, Valdeomos, Madrid, Spain
| | - Marta Guerrero
- Spanish Plant Genetic Resources Centre (CRF) (INIA-CRF/CSIC), 28805, Alcalá de Henares, Madrid, Spain
| | - Sonia Sánchez
- Spanish Plant Genetic Resources Centre (CRF) (INIA-CRF/CSIC), 28805, Alcalá de Henares, Madrid, Spain
| | - Antonio Rodríguez
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA/CSIC), Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130, Valdeomos, Madrid, Spain
- INRAE, URP3F, 86600, Lusignan, France
| | - Rosa María García
- Spanish Plant Genetic Resources Centre (CRF) (INIA-CRF/CSIC), 28805, Alcalá de Henares, Madrid, Spain
| | - Ana Carolina Ewbank
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA/CSIC), Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130, Valdeomos, Madrid, Spain.
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit 101, 17003, Girona, Spain
- Universitat de Girona (UdG), 17004, Girona, Spain
| | | | - Isaura Martín Martínez
- Spanish Plant Genetic Resources Centre (CRF) (INIA-CRF/CSIC), 28805, Alcalá de Henares, Madrid, Spain
| | - Luis Guasch
- Spanish Plant Genetic Resources Centre (CRF) (INIA-CRF/CSIC), 28805, Alcalá de Henares, Madrid, Spain
| | - Ana de la Torre
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA/CSIC), Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130, Valdeomos, Madrid, Spain.
| |
Collapse
|
5
|
Sikorski Ł, Bęś A, Karetko-Sikorska E, Truszkowski W, Tomaszewska K. Ion-exchange chromatography in the assessment of environmental pollution with chlortetracycline. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107142. [PMID: 39504861 DOI: 10.1016/j.aquatox.2024.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Chemical substances such as drugs pose a threat to the environment. One of the substances recorded in soil and water is chlortetracycline, an antibiotic used in veterinary medicine. Plants exposed to such xenobiotics show changes in the content of biogenic amines. An analytical technique - ion exchange chromatography is used to assess their content. The occurrence of these active compounds is used to determine the degree of environmental pollution with chemical substances. The study aimed to evaluate the toxicity of chlortetracycline (CTC) at concentrations of 0; 0.05; 0.1; 0.2 0.5;1; 2; 3; and 5 mM towards the test organism Lemna minor, and determine the content of biogenic amines in the plant tissues. The content of biogenic amines was analyzed by ion-exchange chromatography with post-column ninhydrin derivatization and photometric detection. The Lemna test proved that increasing concentrations of CTC had a toxic effect on the plants. It was calculated that the Lowest Observed Effects Concentration (LOEC) of CTC at >0.04 mM and >0.05 mM was phytotoxic to L. minor growth and yield. It was determined that the levels of histamine, tyramine, and cadaverine exhibited an increase, reaching 1.04, 1.90, and 3.10 µg g-1 of tissue at 2.00 mM CTC. Simultaneously, spermine and putrescine increased to 1.21 and 3.89 µg g-1 of tissue at concentrations of 0.10 and 0.50 mM of the drug. Conversely, the study revealed an over 88 % reduction in spermidine in plants at 5 mM of CTC. Using ion-exchange chromatography, analysis of biogenic amines, particularly spermidine and cadaverine, highlighted these intra-tissue compounds as sensitive biomarkers for water contamination with the tested drug. This research confirmed that the Lemna test is effective for assessing CTC toxicity and that ion-exchange chromatography is useful for evaluating environmental pollution by this antibiotic.
Collapse
Affiliation(s)
- Łukasz Sikorski
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4,10-727 Olsztyn, Poland.
| | - Agnieszka Bęś
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4,10-727 Olsztyn, Poland
| | - Elżbieta Karetko-Sikorska
- Experiment and Education Station, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 1,10-724 Olsztyn, Poland
| | - Wojciech Truszkowski
- Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego 8,10-719 Olsztyn, Poland
| | - Katarzyna Tomaszewska
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4,10-727 Olsztyn, Poland
| |
Collapse
|
6
|
Chen X, Song Y, Ling C, Shen Y, Zhan X, Xing B. Fate of emerging antibiotics in soil-plant systems: A case on fluoroquinolones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175487. [PMID: 39153616 DOI: 10.1016/j.scitotenv.2024.175487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Fluoroquinolones (FQs), a class of broad-spectrum antibiotics widely used to treat human and animal diseases globally, have limited adsorption and are often excreted unchanged or as metabolites. These compounds enter the soil environment through feces, urban wastewater, or discharge of biological solids. The fluorine atoms in FQs impart high electronegativity, chemical stability, and resistance to microbial degradation, allowing them to potentially enter food chains. The persistence of FQs in soils raises questions about their impacts on plant growth, an aspect not yet conclusively determined. We reviewed whether, like other organic compounds, FQs are actively absorbed by plants, resulting in bioaccumulation and posing threats to human health. The influx of FQs has led to antibiotic resistance in soil microbes by exerting selective pressure and contributing to multidrug-resistant bacteria. Therefore, the environmental risks of FQs warrant further attention. This work provides a comprehensive review of the fate and behavior of FQs at the plant-environment interface, their migration and transport from the environment into plants, and associated toxicity. Current limitations in research are discussed and prospects for future investigations outlined. Thus, understanding antibiotic behavior in plants and translocation within tissues is not only crucial for ecosystem health (plant health), but also assessing potential human health risks. In addition, it can offer insights into the fate of emerging soil pollutants in plant-soil systems.
Collapse
Affiliation(s)
- Xiaohan Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yixuan Song
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Ling
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yu Shen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
7
|
Kummerová M, Zezulka Š, Babula P. Response of crop seed germination and primary root elongation to a binary mixture of diclofenac and naproxen. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1039-1046. [PMID: 39259420 DOI: 10.1007/s10646-024-02797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Non-steroidal anti-inflammatory drugs, diclofenac (DCF) and naproxen (NPX), represent a group of environmental contaminants often detected in various water and soil samples. This work aimed to assess possible phytotoxic effects of DCF and NPX in concentrations 0.1, 1 and 10 mg/L, both individually and in binary mixtures, on the seed germination and primary root elongation of crops, monocots Allium porrum and Zea mays, and dicots Lactuca sativa and Pisum sativum. Results proved that the seed germination was affected by neither individual drugs nor their mixture. The response of primary root length in monocot and dicot species to the same treatment was different. The Inhibition index (%) comparing the root length of drug-treated plants to controls proved to be approximately 10% inhibition in the case of dicots lettuce and pea, and nearly 20% inhibition in monocot leek, but almost 20% stimulation in monocot maize. Assessment of the binary mixture effect confirmed neither synergistic nor antagonistic interaction of DCF and NPX on early plant development in the applied concentration range.
Collapse
Affiliation(s)
- Marie Kummerová
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Brno, Czechia
| | - Štěpán Zezulka
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Brno, Czechia.
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University Brno, Brno, Czechia
| |
Collapse
|
8
|
Razzaq U, Nguyen TB, Saleem MU, Le VR, Chen CW, Bui XT, Dong CD. Recent progress in electro-Fenton technology for the remediation of pharmaceutical compounds in aqueous environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174253. [PMID: 38936713 DOI: 10.1016/j.scitotenv.2024.174253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The global focus on wastewater treatment has intensified in the contemporary era due to its significant environmental and human health impacts. Pharmaceutical compounds (PCs) have become an emerging concern among various pollutants, as they resist conventional treatment methods and pose a severe environmental threat. Advanced oxidation processes (AOPs) emerge as a potent and environmentally benign approach for treating recalcitrant pharmaceuticals. To address the shortcomings of traditional treatment methods, a technology known as the electro-Fenton (EF) method has been developed more recently as an electrochemical advanced oxidation process (EAOP) that connects electrochemistry to the chemical Fenton process. It has shown effective in treating a variety of pharmaceutically active compounds and actual wastewaters. By producing H2O2 in situ through a two-electron reduction of dissolved O2 on an appropriate cathode, the EF process maximizes the benefits of electrochemistry. Herein, we have critically reviewed the application of the EF process, encompassing diverse reactor types and configurations, the underlying mechanisms involved in the degradation of pharmaceuticals and other emerging contaminants (ECs), and the impact of electrode materials on the process. The review also addresses the factors influencing the efficiency of the EF process, such as (i) pH, (ii) current density, (iii) H2O2 concentration, (iv) and others, while providing insight into the scalability potential of EF technology and its commercialization on a global scale. The review delves into future perspectives and implications concerning the ongoing challenges encountered in the operation of the electro-Fenton process for the treatment of PCs and other ECs.
Collapse
Affiliation(s)
- Uzma Razzaq
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Muhammad Usman Saleem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; Department of Environmental Engineering, University of Engineering and Technology, Taxila 47050, Pakistan
| | - Van-Re Le
- Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 700000, Viet Nam
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
9
|
Pawłowska B, Biczak R. Drugs in the environment - Impact on plants: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104557. [PMID: 39245245 DOI: 10.1016/j.etap.2024.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Medicines, like food, are necessities. Many of the commonly used pharmaceuticals, especially antibiotics and NSAIDs end up in the environment and are detected in it (especially in water) at concentrations in the ng·L-1- μg·L-1 range. Although the concentrations of individual drugs in the environment are low, their high biological activity can cause them to be toxic to the environment. This review analyzes and summarizes the effects of drugs, primarily antibiotics and NSAIDs on photosynthesizing organisms, i.e., algae, aquatic and terrestrial plants. Acute drug toxicity to algae and plants occurs most often at high, often non-existent environmental concentrations, while sublethal effects occur at low drug concentrations. The review also points out the problems associated with ecotoxicological studies and the lack of systemic solutions to better assess the risks associated with the presence of drugs in the environment.
Collapse
Affiliation(s)
- Barbara Pawłowska
- Jan Długosz University in Czestochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., Częstochowa 42-200, Poland.
| | - Robert Biczak
- Jan Długosz University in Czestochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., Częstochowa 42-200, Poland
| |
Collapse
|
10
|
Wang Y, Wang P, Fan T, Ren T, Zhang N, Zhao L, Zhong R, Sun G. From molecular descriptors to the developmental toxicity prediction of pesticides/veterinary drugs/bio-pesticides against zebrafish embryo: Dual computational toxicological approaches for prioritization. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134945. [PMID: 38905984 DOI: 10.1016/j.jhazmat.2024.134945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
The escalating introduction of pesticides/veterinary drugs into the environment has necessitated a rapid evaluation of their potential risks to ecosystems and human health. The developmental toxicity of pesticides/veterinary drugs was less explored, and much less the large-scale predictions for untested pesticides, veterinary drugs and bio-pesticides. Alternative methods like quantitative structure-activity relationship (QSAR) are promising because their potential to ensure the sustainable and safe use of these chemicals. We collected 133 pesticides and veterinary drugs with half-maximal active concentration (AC50) as the zebrafish embryo developmental toxicity endpoint. The QSAR model development adhered to rigorous OECD principles, ensuring that the model possessed good internal robustness (R2 > 0.6 and QLOO2 > 0.6) and external predictivity (Rtest2 > 0.7, QFn2 >0.7, and CCCtest > 0.85). To further enhance the predictive performance of the model, a quantitative read-across structure-activity relationship (q-RASAR) model was established using the combined set of RASAR and 2D descriptors. Mechanistic interpretation revealed that dipole moment, the presence of C-O fragment at 10 topological distance, molecular size, lipophilicity, and Euclidean distance (ED)-based RA function were main factors influencing toxicity. For the first time, the established QSAR and q-RASAR models were combined to prioritize the developmental toxicity of a vast array of true external compounds (pesticides/veterinary drugs/bio-pesticides) lacking experimental values. The prediction reliability of each query molecule was evaluated by leverage approach and prediction reliability indicator. Overall, the dual computational toxicology models can inform decision-making and guide the design of new pesticides/veterinary drugs with improved safety profiles.
Collapse
Affiliation(s)
- Yutong Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
11
|
Rodríguez-Rodríguez CE, Ramírez-Morales D, Gutiérrez-Quirós JA, Rodríguez-Saravia S, Villegas-Solano D. Occurrence of pharmaceuticals in Latin America: case study on hazard assessment and prioritization in Costa Rica. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:739. [PMID: 39012428 DOI: 10.1007/s10661-024-12872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
Pharmaceuticals are considered as contaminants of emerging concern, and their occurrence in diverse environmental matrices has been described during the last 25 years. Nonetheless, pharmaceutical occurrence has not been evenly described worldwide, and reports from some geographical areas such as most parts of Latin America are scarce. This work aims to address the situation of water pollution due to pharmaceuticals in Latin America by means of two main goals: i. First, reviewing the monitoring studies performed in Latin America on this topic (period 2009-2024), which were conducted in Brazil, Mexico, Colombia, Ecuador, Peru and Argentina, to highlight the most frequently detected compounds from each therapeutic group in the region. ii. Second, analyzing the case of Costa Rica through the hazard assessment and prioritization of pharmaceuticals based on the monitoring performed in this country (years 2011; 2018-2019). The monitoring in Costa Rica comprised a total of 163 sampling points: wastewater treatment plants (WWTPs) (14 urban WWTPs plus two landfill WWTPs; total samples n = 44 influents and n = 34 effluents), nine hospital effluents (n = 32), wastewater from livestock farms (six swine farms and seven dairy farms; n = 23 influents and n = 37 effluents), 64 continental surface water sampling points (n = 137), and 61 coastal seawater sampling points (n = 61). Risk assessment of detected concentrations by the hazard quotient (HQ) approach (period 2018-2019) revealed a total of 25 medium or high-hazard compounds (out of 37 detected compounds). The prioritization approach (which included the Frequency of Appearance (FoA), the Frequency of PNEC exceedance (FoE), and the Extent of predicted no-effect concentration (PNEC) exceedance (EoE)), showed a critical list of nine pharmaceuticals: caffeine, diphenhydramine, acetaminophen, lovastatin, gemfibrozil, ciprofloxacin, ibuprofen, doxycycline and norfloxacin. These compounds should be taken into account as a first concern during the implementation of environmental policies related to pharmaceutical products in the region.
Collapse
Grants
- 802-B8-510 Vicerrectoría de Investigación, Universidad de Costa Rica
- 802-B8-510 Vicerrectoría de Investigación, Universidad de Costa Rica
- 802-C1-034 Vicerrectoría de Investigación, Universidad de Costa Rica,Costa Rica
- 802-C1-034 Vicerrectoría de Investigación, Universidad de Costa Rica,Costa Rica
- FI-197B-17 Ministerio de Ciencia Tecnología y Telecomunicaciones,Costa Rica
- FI-197B-17 Ministerio de Ciencia Tecnología y Telecomunicaciones,Costa Rica
- FI-197B-17 Ministerio de Ciencia Tecnología y Telecomunicaciones,Costa Rica
- FI-197B-17 Ministerio de Ciencia Tecnología y Telecomunicaciones,Costa Rica
Collapse
Affiliation(s)
- Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica.
| | - Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | | | - Sebastián Rodríguez-Saravia
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Diego Villegas-Solano
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| |
Collapse
|
12
|
Ramírez-Morales D, Rojas-Jiménez K, Castro-Gutiérrez V, Rodríguez-Saravia S, Vaglio-Garro A, Araya-Valverde E, Rodríguez-Rodríguez CE. Ecotoxicological effects of ketoprofen and fluoxetine and their mixture in an aquatic microcosm. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106924. [PMID: 38678909 DOI: 10.1016/j.aquatox.2024.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
The effects of fluoxetine (antidepressant) and ketoprofen (analgesic) on aquatic ecosystems are largely unknown, particularly as a mixture. This work aimed at determining the effect of sublethal concentrations of both compounds individually (0.050 mg/L) and their mixture (0.025 mg/L each) on aquatic communities at a microcosm scale for a period of 14 d. Several physicochemical parameters were monitored to estimate functional alterations in the ecosystem, while model organisms (Daphnia magna, Lemna sp., Raphidocelis subcapitata) and the sequencing of 16S/18S rRNA genes permitted to determine effects on specific populations and changes in community composition, respectively. Disturbances were more clearly observed after 14 d, and overall, the microcosms containing fluoxetine (alone or in combination with ketoprofen) produced larger alterations on most physicochemical and biological variables, compared to the microcosm containing only ketoprofen, which suffered less severe changes. Differences in nitrogen species suggest alterations in the N-cycle due to the presence of fluoxetine; similarly, all pharmaceutical-containing systems decreased the brood rate of D. magna, while individual compounds inhibited the growth of Lemna sp. No clear trends were observed regarding R. subcapitata, as indirectly determined by chlorophyll quantification. The structure of micro-eukaryotic communities was altered in the fluoxetine-containing systems, whereas the structure of bacterial communities was affected to a greater extent by the mixture. The disruptions to the equilibrium of the microcosm demonstrate the ecological risk these compounds pose to aquatic ecosystems.
Collapse
Affiliation(s)
- Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | | | - Víctor Castro-Gutiérrez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Sebastián Rodríguez-Saravia
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Annette Vaglio-Garro
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Emanuel Araya-Valverde
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica.
| |
Collapse
|
13
|
Abdallah M, Bethäuser J, Tettenborn F, Hein A, Hamann M. Survey of drug use and its association with herd-level and farm-level characteristics on German dairy farms. J Dairy Sci 2024; 107:2954-2967. [PMID: 38101741 DOI: 10.3168/jds.2023-23945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
The use of veterinary drugs is of similar importance to that of human drugs in addressing health challenges. In this context, pharmaceuticals and their metabolites inevitably enter soil and water in unknown quantities. Therefore, this study collects and analyzes drug data from 2020 for 50 dairy farms located in Germany. The most frequently used substance group is antibiotics (40.13%), followed by antiphlogistics (18.86%), antiparasitics (13.09%), and hormones (9.29%). Treatment frequencies record the number of days per year on which an average animal on a farm was treated with a substance. The calculated values range from 0.94 to 21.69 d/yr and are distributed heterogeneously across farms. In this study, on average, a cow was treated on 6 d in 2020: 2.34 d with antibiotics, 1.07 d with antiphlogistics, 0.76 d with antiparasitics, and 0.41 d with hormones. In addition to individual farm management practices, other factors are related to treatment frequency. Farms with a veterinary care contract used more hormonal substances than farms without a care contract. In addition, higher milk yield coincides with more frequent treatments with antiphlogistic or hormonal substances. Other related factors include grazing, longevity, farm size, and use of a claw bath. Our study represents an important first step in describing the amounts and determinants of veterinary drugs used in livestock farming. Such insights on magnitudes and farm parameters are essential to estimate potential environmental effects and derive strategies to reduce veterinary drug use.
Collapse
Affiliation(s)
- M Abdallah
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, D-35392 Giessen, Germany.
| | - J Bethäuser
- Faculty of Economics, Chair for Statistics and Econometrics, Justus Liebig University Giessen, D-35394 Giessen, Germany
| | - F Tettenborn
- Fraunhofer Institute for Systems and Innovation Research (ISI), 76139 Karlsruhe, Germany
| | - A Hein
- German Environment Agency, 06844 Dessau-Rosslau, Germany
| | - M Hamann
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| |
Collapse
|
14
|
Żandarek J, Żmudzki P, Obradović D, Lazović S, Bogojević A, Koszła O, Sołek P, Maciąg M, Płazińska A, Starek M, Dąbrowska M. Analysis of pharmacokinetic profile and ecotoxicological character of cefepime and its photodegradation products. CHEMOSPHERE 2024; 353:141529. [PMID: 38428534 DOI: 10.1016/j.chemosphere.2024.141529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
An important problem is the impact of photodegradation on product toxicity in biological tests, which may be complex and context-dependent. Previous studies have described the pharmacology of cefepime, but the toxicological effects of its photodegradation products remain largely unknown. Therefore, photodegradation studies were undertaken in conditions similar to those occurring in biological systems insilico, in vitro, in vivo and ecotoxicological experiments. The structures of four cefepime photodegradation products were determined by UPLC-MS/MS method. The calculated in silico ADMET profile indicates that carcinogenic potential is expected for compounds CP-1, cefepime, CP-2 and CP-3. The Cell Line Cytomotovity Predictor 2.0 tool was used to predict the cytotoxic effects of cefepime and related compounds in non-transformed and cancer cell lines. The results indicate that possible actions include: non-small cell lung cancer, breast adenocarcinoma, prostate cancer and papillary renal cell carcinoma. OPERA models were used to predict absorption, distribution, metabolism and excretion (ADME) endpoints, and potential bioactivity of CP-2, cefepime and CP-4. The results obtained in silico show that after 96h of exposure, cefepime, CP-1, CP-2, and CP-3 are moderately toxic in the zebrafish model, while CP-4 is highly toxic. On the contrary, cefepime is more toxic to T. platyurus (highly toxic) compared to the zebrafish model, similar to products CP-4, CP-3 and CP-2. In vitro cytotoxicity studies were performed by MTT assay and in vivo acute embryo toxicity studies using Danio rerio embryos and larvae. In vitro showed an increase in the cytotoxicity of products with the longest exposure period i.e. for 8 h. Additionally, at a concentration of 200 μg/mL, statistically significant changes in metabolic activity were observed depending on the irradiation time. In vivo studies conducted with Zebrafish showed that both cefepime and its photodegradation products have only low toxicity. Assessment of potential ecotoxicity included Microbiotests on invertebrates (Thamnotoxkit F and Daphtoxkit F), and luminescence inhibition tests (LumiMara). The observed toxicity of the tested solutions towards both Thamnocephalus platyurus and Daphnia magna indicates that the parent substance (unexposed) has lower toxicity, which increases during irradiation. The acute toxicity (Lumi Mara) of nonirradiated cefepime solution is low for all tested strains (<10%), but mixtures of cefepime and its photoproducts showed growth inhibition against all tested strains (except #6, Photobacterium phoreum). Generally, it can be concluded that after UV-Vis irradiation, the mixture of cefepime phototransformation products shows a significant increase in toxicity.
Collapse
Affiliation(s)
- Joanna Żandarek
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza St, 31-530, Kraków, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Medical College, Jagiellonian University, 9 Medyczna, 30-688 Kraków, Poland
| | - Darija Obradović
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Saša Lazović
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Aleksandar Bogojević
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Oliwia Koszła
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki St, 20-093 Lublin, Poland
| | - Przemysław Sołek
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki St, 20-093 Lublin, Poland; Department of Biochemistry and Toxicology, University of Life Sciences, 13 Akademicka St, 20-950 Lublin, Poland
| | - Monika Maciąg
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki St, 20-093 Lublin, Poland; Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4a Chodźki St, 20-093 Lublin, Poland
| | - Anita Płazińska
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki St, 20-093 Lublin, Poland
| | - Małgorzata Starek
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Monika Dąbrowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland.
| |
Collapse
|
15
|
Wu X, Jin C, Du G, Wang J, Su J, Li R. Urea promoted soil microbial community and reduced the residual ciprofloxacin in soil and its uptake by Chinese flowering cabbage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30137-30148. [PMID: 38602632 DOI: 10.1007/s11356-024-33213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Antibiotics in agricultural soil can be accumulated in crops and might pose a potential risk to human health. Nevertheless, there is a lack of knowledge about the impact of nitrogen fertilizers on the dissipation and uptake of antibiotics in soils. Therefore, our aim in this study is to investigate the effects of urea fertilizer on the residues of ciprofloxacin and its uptake by Chinese flowering cabbage (Brassica parachinensis L.) as affected by the associated changes on the soil microbial community. A pot experiment has been conducted using spiked soil with 20 mg ciprofloxacin /kg soil and fertilized with urea at dosages equal to 0, 0.2, 0.4, 0.8 t/ha. Application urea especially at 0.4 t/ha decreased the residue of ciprofloxacin in the soil and its uptake by the roots and its translocation to the shoots of Chinese flowering cabbage. The translocation factors (TFs) for ciprofloxacin were significantly decreased (P < 0.05) only at the treatment of 0.4 t/ha, while no significant difference of bio-concentration factors (BCFs). The average well color development (AWCD) values, Shannon diversity, and richness index were higher in the fertilized than the un-fertilized soils, and all such indicators were greater at the treatment of 0.4 t/ha than at 0.2 and 0.8 t/ha. The carbon substrate utilization of phenolic acids at the treatments of 0.4 t/ha were greater than with other levels of urea fertilizer. In conclusion, moderate urea addition significantly increased soil microbial activity and abundance, which in turn promoted the ciprofloxacin dissipation in soil and plant tissue. The present study provides an economical and operational strategy for the remediation of ciprofloxacin contaminated soils.
Collapse
Affiliation(s)
- Xiaolian Wu
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China.
| | - Chenze Jin
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Gengying Du
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Jianan Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Jiayi Su
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Rongxuan Li
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| |
Collapse
|
16
|
Xu X, Lin X, Ma W, Huo M, Tian X, Wang H, Huang L. Biodegradation strategies of veterinary medicines in the environment: Enzymatic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169598. [PMID: 38157911 DOI: 10.1016/j.scitotenv.2023.169598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One Health closely integrates healthy farming, human medicine, and environmental ecology. Due to the ecotoxicity and risk of transmission of drug resistance, veterinary medicines (VMs) are regarded as emerging environmental pollutants. To reduce or mitigate the environmental risk of VMs, developing friendly, safe, and effective removal technologies is an important means of environmental remediation for VMs. Many previous studies have proved that biodegradation has significant advantages in removing VMs, and biodegradation based on enzyme catalysis presents higher operability and specificity. This review focused on biodegradation strategies of environmental pollutants and reviewed the enzymatic degradation of VMs including antimicrobial drugs, insecticides, and disinfectants. We reviewed the sources and catalytic mechanisms of peroxidase, laccase, and organophosphorus hydrolases, and summarized the latest research status of immobilization methods and bioengineering techniques in improving the performance of degrading enzymes. The mechanism of enzymatic degradation for VMs was elucidated in the current research. Suggestions and prospects for researching and developing enzymatic degradation of VMs were also put forward. This review will offer new ideas for the biodegradation of VMs and have a guide significance for the risk mitigation and detoxification of VMs in the environment.
Collapse
Affiliation(s)
- Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xvdong Lin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Meixia Huo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xiaoyuan Tian
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Hanyu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
17
|
Odey TOJ, Tanimowo WO, Afolabi KO, Jahid IK, Reuben RC. Antimicrobial use and resistance in food animal production: food safety and associated concerns in Sub-Saharan Africa. Int Microbiol 2024; 27:1-23. [PMID: 38055165 PMCID: PMC10830768 DOI: 10.1007/s10123-023-00462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
The use of antimicrobials in food animal (FA) production is a common practice all over the world, with even greater usage and dependence in the developing world, including Sub-Saharan Africa (SSA). However, this practice which serves obvious economic benefits to producers has raised public health concerns over the last decades, thus driving the selection and dissemination of antimicrobial resistance and adversely impacting food safety and environmental health. This review presents the current and comprehensive antimicrobial usage practices in food animal production across SSA. We further highlighted the overall regional drivers as well as the public health, environmental, and economic impact of antimicrobial use in the production of food animals. Antimicrobial use is likely to increase with even exacerbated outcomes unless cost-effective, safe, and sustainable alternatives to antibiotics, especially probiotics, prebiotics, bacteriocins, antimicrobial peptides, bacteriophages, vaccines, etc. are urgently advocated for and used in food animal production in SSA. These, in addition to the implementation of strong legislation on antimicrobial use, and improved hygiene will help mitigate the public health concerns associated with antimicrobial use in food animals and improve the well-being and safety of food animals and their products.
Collapse
Affiliation(s)
- Timothy Obiebe Jason Odey
- Department of Biological Sciences, Faculty of Natural, Applied, and Health Sciences, Anchor University, Lagos, Nigeria
| | - Williams Omotola Tanimowo
- Department of Biological Sciences, Faculty of Natural, Applied, and Health Sciences, Anchor University, Lagos, Nigeria
| | - Kayode Olayinka Afolabi
- Department of Biological Sciences, Faculty of Natural, Applied, and Health Sciences, Anchor University, Lagos, Nigeria
- Pathogenic Yeasts Research Group, Department of Microbiology and Biochemistry, University of The Free State, Bloemfontein, South Africa
| | - Iqbal Kabir Jahid
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Rine Christopher Reuben
- Department of Biological Sciences, Faculty of Natural, Applied, and Health Sciences, Anchor University, Lagos, Nigeria.
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| |
Collapse
|
18
|
Ramírez-Morales D, Masís-Mora M, Montiel-Mora JR, Méndez-Rivera M, Gutiérrez-Quirós JA, Brenes-Alfaro L, Rodríguez-Rodríguez CE. Pharmaceuticals, hazard and ecotoxicity in surface and wastewater in a tropical dairy production area in Latin America. CHEMOSPHERE 2024; 346:140443. [PMID: 38303394 DOI: 10.1016/j.chemosphere.2023.140443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 02/03/2024]
Abstract
Pharmaceuticals comprise a complex group of emerging pollutants. Despite the significant number of pharmaceuticals used in veterinary medicine, the input of these compounds into the environment due to livestock activities has been scarcely described. This work assays for the first time in Central America the occurrence of pharmaceuticals in farm wastewater in an area devoted to dairy production, and in the surrounding surface waters. Among 69 monitored pharmaceuticals, a total of eight compounds were detected in wastewater samples collected from seven dairy farms after three sampling campaigns. Six pharmaceuticals were considered either of high (albendazole, lovastatin and caffeine) or intermediate estimated hazard (ciprofloxacin, acetaminophen and ketoprofen) based on the HQ approach, while 26% of the samples were considered of high estimated hazard according to the cumulative ∑HQ approach. Similarly, when ecotoxicological tests were applied, all the samples showed some level of toxicity towards Daphnia magna, and most samples towards Vibrio fischeri and Lactuca sativa. Fourteen pharmaceuticals were detected in surface water samples collected in the surroundings of the dairy production farms, including rural and urban areas. Seven out of these compounds showed high estimated risk (risperidone, diphenhydramine, trimethoprim, fluoxetine, ofloxacin, caffeine and ibuprofen), while three (gemfibrozil, ciprofloxacin and cephalexin) exhibited intermediate estimated risk. In a similar worrisome way, 27% of these samples were estimated to pose high environmental risk according to the pharmaceutical content. Despite being nontoxic for D. magna or V. fischeri, frequent inhibition (>20%) of GI in L. sativa was determined in 34% of surface water samples; such findings raise concern on the apparent inceptive environmental pollution and risk within the area. According to the pharmaceutical content patterns in both kinds of studied matrices, no clear evidence of significant contamination in surface water due to livestock activities could be retrieved, suggesting a main role of urban influence.
Collapse
Affiliation(s)
- Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | | | - Laura Brenes-Alfaro
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
19
|
Laber L, Jandowsky A, Frölich K, Heinrich AP, Düring RA, Donath TW, Eichberg C. Dose-dependent in vivo effects of formulated moxidectin on seedling emergence of temperate grassland species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167152. [PMID: 37730042 DOI: 10.1016/j.scitotenv.2023.167152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Sheep function as effective endozoochorous seed vectors in grasslands. Recent laboratory-based studies showed that this important function can be impaired by macrocyclic lactone anthelmintics, which are used to control parasites and enter into the environment mainly via faeces; however, there is a lack of in vivo studies. We conducted a seed-feeding experiment with sheep that included four temperate grassland species from four different families (Achillea ptarmica, Asteraceae; Agrostis capillaris, Poaceae; Dianthus deltoides, Caryophyllaceae; Plantago lanceolata, Plantaginaceae). A series of three feeding trials was carried out after one of two groups of sheep received a single administration of a common oral formulation of the macrocyclic lactone moxidectin. Faeces were collected to determine seedling emergence rate and emergence timing as well as moxidectin concentration via HPLC. Seedling emergence differed significantly between the anthelmintic-treated sheep and the control group. This impact depended on time of seed uptake after anthelmintic administration. Number of emerging seedlings was significantly reduced (27.1 %) when faeces moxidectin concentrations were high (on average 3153 ng g-1; 1 d post treatment) and significantly increased (up to 68.8 %) when moxidectin concentrations were low (≤86 ng g-1; 7, 14 d pt). Mean emergence time was significantly lowered at low moxidectin concentrations. These results demonstrate dose-related effects of deworming on seedling emergence which might affect endozoochory and eventually plant population dynamics in grasslands.
Collapse
Affiliation(s)
- Lars Laber
- Department of Landscape Ecology, Institute for Natural Resource Conservation, Kiel University, Kiel, Germany.
| | | | - Kai Frölich
- Arche Warder Center for Old and Rare Breeds, Warder, Germany
| | - Andre P Heinrich
- Institute of Soil Science and Soil Conservation, Research Center for Biosystems, Land Use and Nutrition (iFZ), Justus Liebig University, Gießen, Germany
| | - Rolf-Alexander Düring
- Institute of Soil Science and Soil Conservation, Research Center for Biosystems, Land Use and Nutrition (iFZ), Justus Liebig University, Gießen, Germany
| | - Tobias W Donath
- Department of Landscape Ecology, Institute for Natural Resource Conservation, Kiel University, Kiel, Germany
| | - Carsten Eichberg
- Geobotany, Spatial and Environmental Sciences, Trier University, Trier, Germany
| |
Collapse
|
20
|
Dai H, Wang C, Yu W, Han J. Tracing COVID-19 drugs in the environment: Are we focusing on the right environmental compartment? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122732. [PMID: 37838316 DOI: 10.1016/j.envpol.2023.122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic led to over 770 million confirmed cases, straining public healthcare systems and necessitating extensive and prolonged use of synthetic chemical drugs around the globe for medical treatment and symptom relief. Concerns have arisen regarding the massive release of active pharmaceutical ingredients (APIs) and their metabolites into the environment, particularly through domestic sewage. While discussions surrounding this issue have primarily centered on their discharge into aquatic environments, particularly through treated effluent from municipal wastewater treatment plants (WWTPs), one often overlooked aspect is the terrestrial environment as a significant receptor of pharmaceutical-laden waste. This occurs through the disposal of sewage sludge, for instance, by applying biosolids to land or non-compliant disposal of sewage sludge, in addition to the routine disposal of expired and unused medications in municipal solid wastes. In this article, we surveyed sixteen approved pharmaceuticals for treating COVID-19 and bacterial co-infections, along with their primary metabolites. For this, we delved into their physiochemical properties, ecological toxicities, environmental persistence, and fate within municipal WWTPs. Emphasis was given on lipophilic substances with log Kow >3.0, which are more likely to be found in sewage sludge at significant factions (25.2%-75.0%) of their inputs in raw sewage and subsequently enter the terrestrial environment through land application of biosolids, e.g., 43% in the United States and as high as 96% in Ireland or non-compliant practices of sewage sludge disposal in developing communities, such as open dumping and land application without prior anaerobic digestion. The available evidence underscores the importance of adequately treating and disposing of sewage sludge before its final disposal or land application in an epidemic or pandemic scenario, as mismanaged sewage sludge could be a significant vector for releasing pharmaceutical compounds and their metabolites into the terrestrial environment.
Collapse
Affiliation(s)
- Han Dai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Chaoqi Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Wangyang Yu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
21
|
Vokřál I, Podlipná R, Matoušková P, Skálová L. Anthelmintics in the environment: Their occurrence, fate, and toxicity to non-target organisms. CHEMOSPHERE 2023; 345:140446. [PMID: 37852376 DOI: 10.1016/j.chemosphere.2023.140446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Anthelmintics are drugs used for the treatment and prevention of diseases caused by parasitic worms (helminths). While the importance of anthelmintics in human as well as in veterinary medicine is evident, they represent emerging contaminants of the environment. Human anthelmintics are mainly used in tropical and sub-tropical regions, while veterinary anthelmintics have become frequently-occurring environmental pollutants worldwide due to intensive agri- and aquaculture production. In the environment, anthelmintics are distributed in water and soil in relation to their structure and physicochemical properties. Consequently, they enter various organisms directly (e.g. plants, soil invertebrates, water animals) or indirectly through food-chain. Several anthelmintics elicit toxic effects in non-target species. Although new information has been made available, anthelmintics in ecosystems should be more thoroughly investigated to obtain complex knowledge on their impact in various environments. This review summarizes available information about the occurrence, behavior, and toxic effect of anthelmintics in environment. Several reasons why anthelmintics are dangerous contaminants are highlighted along with options to reduce contamination. Negative effects are also outlined.
Collapse
Affiliation(s)
- Ivan Vokřál
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, Praha 6, CZ-165 02, Czech Republic.
| | - Petra Matoušková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| |
Collapse
|
22
|
Larson VJ, Rico JL, Wolfe LM, Sharvelle S, Prenni J, De Long SK. Composting post-anaerobic digestion for emerging contaminant biodegradation: Impacts of operating conditions. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:1152-1165. [PMID: 37729590 DOI: 10.1002/jeq2.20515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Sustainable manure management technologies are needed, and combining anaerobic digestion (AD) for energy generation and aerobic composting (AC) to stabilize digestate and remove emerging contaminants (ECs), including veterinary pharmaceuticals and steroid hormones, is promising. This study identified post-AD, AC operating conditions that maximized degradation of study ECs, expected to be present in cattle manure digested using treated municipal wastewater as the water source. Study ECs included sulfamethoxazole (SMX), chlortetracycline (CTC), oxytetracycline (OTC), estrone (E1), and naproxen (NPX). Composting conditions were simulated in bench-scale reactors, with microorganisms from digestate produced in an AD system (25L scale), by varying temperatures, pH, and carbon source compositions (representing food waste/manure co-digestion with different residence times). Results indicate maximum SMX biodegradation occurred at 35°C, pH 7, and with high levels of easily degradable carbon (≥99%, 99%, and 98%), and maximum E1 biodegradation occurred at 35°C, and with low levels of easily degradable carbon (≥97% and 99%). Abiotic degradation was responsible for the nearly complete removal of tetracyclines under all conditions and for partial degradation of NPX (between 20% and 48%). Microorganisms originating from the AD system putatively capable of SMX and E1 biodegradation, or of contributing to biodegradation during the AC phase, were identified, including phylotypes previously shown to biodegrade SMX (Brevundimonas and Alcaligenes).
Collapse
Affiliation(s)
- Victoria J Larson
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Jorge L Rico
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Lisa M Wolfe
- Proteomics and Metabolomics Core Facility, Colorado State University, Fort Collins, Colorado, USA
| | - Sybil Sharvelle
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica Prenni
- Proteomics and Metabolomics Core Facility, Colorado State University, Fort Collins, Colorado, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
23
|
Zhao Z, Yang C, Gao B, Wu Y, Ao Y, Ma S, Jiménez N, Zheng L, Huang F, Tomberlin JK, Ren Z, Yu Z, Yu C, Zhang J, Cai M. Insights into the reduction of antibiotic-resistant bacteria and mobile antibiotic resistance genes by black soldier fly larvae in chicken manure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115551. [PMID: 37832484 DOI: 10.1016/j.ecoenv.2023.115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
The increasing prevalence of antibiotic-resistant bacteria (ARB) from animal manure has raised concerns about the potential threats to public health. The bioconversion of animal manure with insect larvae, such as the black soldier fly larvae (BSFL, Hermetia illucens [L.]), is a promising technology for quickly attenuating ARB while also recycling waste. In this study, we investigated BSFL conversion systems for chicken manure. Using metagenomic analysis, we tracked ARB and evaluated the resistome dissemination risk by investigating the co-occurrence of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial taxa in a genetic context. Our results indicated that BSFL treatment effectively mitigated the relative abundance of ARB, ARGs, and MGEs by 34.9%, 53.3%, and 37.9%, respectively, within 28 days. Notably, the transferable ARGs decreased by 30.9%, indicating that BSFL treatment could mitigate the likelihood of ARG horizontal transfer and thus reduce the risk of ARB occurrence. In addition, the significantly positive correlation links between antimicrobial concentration and relative abundance of ARB reduced by 44.4%. Moreover, using variance partition analysis (VPA), we identified other bacteria as the most important factor influencing ARB, explaining 20.6% of the ARB patterns. Further analysis suggested that antagonism of other bacteria on ARB increased by 1.4 times, while nutrient competition on both total nitrogen and crude fat increased by 2.8 times. Overall, these findings provide insight into the mechanistic understanding of ARB reduction during BSFL treatment of chicken manure and provide a strategy for rapidly mitigating ARB in animal manure.
Collapse
Affiliation(s)
- Zhengzheng Zhao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China
| | - Chongrui Yang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China
| | - Bingqi Gao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China
| | - Yushi Wu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China
| | - Yue Ao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Shiteng Ma
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China
| | - Núria Jiménez
- Department of Chemical Engineering, Vilanova i la Geltrú School of Engineering (EPSEVG), Universitat Politècnica de Catalunya·BarcelonaTech, Vilanova i la Geltrú 08800, Spain
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China
| | - Feng Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China
| | | | - Zhuqing Ren
- Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China; Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China.
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
24
|
Delgado N, Orozco J, Zambrano S, Casas-Zapata JC, Marino D. Veterinary pharmaceutical as emerging contaminants in wastewater and surface water: An overview. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132431. [PMID: 37688873 DOI: 10.1016/j.jhazmat.2023.132431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
Veterinary pharmaceuticals have become of interest due to their indiscriminate use. Thus, this paper compiles studies on detection in surface and wastewater, and the treatment applied for their removal. Additionally, a case study was performed to evaluate its commercialization, as the ecological risk assessment for the most relevant compounds. 241 compounds were detected. The highest concentrations were found for antibiotics such as oxytetracycline, amoxicillin, and monensin, with values up to 3732.4 µg/L. Biological treatments have been mainly reported, obtaining removal greater than 80% for sulfadiazine, sulfamethazine, sulfamethoxazole, enrofloxacin, and oxytetracycline. Considering the case study, enrofloxacin and oxytetracycline were widely commercialized. Finally, there was a low risk for the species exposed to enrofloxacin, in contrast, the species exposed to oxytetracycline presented a high risk of long-term mortality. Concluding that veterinary compounds have emerged as a significant concern regarding water source contamination, owing to their potential adverse effects on aquatic biota and even human. This is particularly relevant because many water bodies that receive wastewater are utilized for drinking water purposes. Consequently, the development of comprehensive, full-scale systems for efficient antibiotic removal before their introduction into water sources becomes imperative. Equally important is the need to reconsider their extensive use altogether.
Collapse
Affiliation(s)
- Nasly Delgado
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia.
| | - Jessica Orozco
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia
| | - Santiago Zambrano
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia
| | - Juan C Casas-Zapata
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia
| | - Damián Marino
- Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de la Plata (UNLP), 47y 115, La Plata 1900, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| |
Collapse
|
25
|
Higham LE, Halfacree ZJ, Stonehewer J, Black DH, Ravetz G, Moran D, Boden L, Oxtoby C. Sustainability policies and practices at veterinary centres in the UK and Republic of Ireland. Vet Rec 2023; 193:e2998. [PMID: 37227247 DOI: 10.1002/vetr.2998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Veterinary professionals operate at the human-animal-environment interface and are concerned about sustainability issues. This study examined the extent to which sustainability is represented in policy and enacted in veterinary practice settings, as reported by practice representatives. METHODS An online survey was completed by 392 veterinary centre representatives in the UK and Republic of Ireland to identify existing policies and practices around the environmental impacts of veterinary services and animal husbandry, responsible medicine use, animal welfare and social wellbeing. RESULTS A minority of respondents were aware of an environmental policy at their practice (17%, 68/392). Many others were undertaking waste reduction initiatives, but wider environmental interventions were infrequently reported. The majority were aware of medicine stewardship and animal welfare policies or guidelines, but a minority reported social wellbeing policies (40%, 117/289) and the provision of advice to clients on the environmental impacts of animal husbandry (31%, 92/300). LIMITATIONS The bias arising from the small convenience sample of practice representatives and potential discrepancies between the claims of survey respondents and their practices' policies and activities are acknowledged. CONCLUSION Results depict a value-action gap between the concern of veterinary professionals towards sustainability and the policies and practices at their workplaces. Building on progress in the sector, wider adoption of comprehensive policies and practices, with guidance, could enhance veterinary contributions to the sustainability agenda, in particular to mitigate the environmental externalities of veterinary services and animal care and ensure safe, fair and inclusive workplaces.
Collapse
Affiliation(s)
- Laura E Higham
- Vet Sustain, Carlisle, UK
- Global Academy of Agriculture and Food Systems, Royal (Dick) School of Veterinary Studies, Easter Bush Campus, Midlothian, UK
| | | | | | - David H Black
- Vet Sustain, Carlisle, UK
- The Veterinary Defence Society, Knutsford, UK
| | - Gudrun Ravetz
- Vet Sustain, Carlisle, UK
- The Veterinary Defence Society, Knutsford, UK
| | - Dominic Moran
- Global Academy of Agriculture and Food Systems, Royal (Dick) School of Veterinary Studies, Easter Bush Campus, Midlothian, UK
| | - Lisa Boden
- Global Academy of Agriculture and Food Systems, Royal (Dick) School of Veterinary Studies, Easter Bush Campus, Midlothian, UK
| | | |
Collapse
|
26
|
Porto VA, da Rocha Júnior ER, Ursulino JS, Porto RS, da Silva M, de Jesus LWO, Oliveira JMD, Crispim AC, Santos JCC, Aquino TMD. NMR-based metabolomics applied to ecotoxicology with zebrafish (Danio rerio) as a prominent model for metabolic profiling and biomarker discovery: Overviewing the most recent approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161737. [PMID: 36693575 DOI: 10.1016/j.scitotenv.2023.161737] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Metabolomics is an innovative approach used in the medical, toxicological, and biological sciences. As an interdisciplinary topic, metabolomics and its relation with the environment and toxicological research are extensive. The use of substances, such as drugs and pesticides, contributes to the continuous releasing of xenobiotics into the environment, harming organisms and their habitats. In this context, fish are important bioindicators of the environmental condition and have often been used as model species. Among them, zebrafish (Danio rerio) presents itself as a versatile and straightforward option due to its unique attributes for research. Zebrafish proves to be a valuable model for toxicity assays and also for metabolomics profiling by analytical tools. Thus, NMR-based metabolomics associated with statistical analysis can reasonably assist researchers in critical factors related to discovering and validating biomarkers through accurate diagnosis. Therefore, this review aimed to report the studies that applied zebrafish as a model for (eco)toxicological assays and essentially utilized NMR-based metabolomics analysis to assess the biochemical profile and thus suggest the potential biological marker.
Collapse
Affiliation(s)
- Viviane Amaral Porto
- Research Group on Therapeutic Strategies, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil.
| | | | - Jeferson Santana Ursulino
- Research Group on Therapeutic Strategies, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Ricardo Silva Porto
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Marciliano da Silva
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Alessandre Carmo Crispim
- Research Group on Therapeutic Strategies, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| |
Collapse
|
27
|
Rehman L, Ullah R, Rehman A, Khan MAH, Beg MA, Wasim S, Farhat F, Ahammad SPA, Abidi SMA. Clinostomum complanatum: Anthelmintic potential of curcumin on the infective progenetic metacercarial stage. Exp Parasitol 2023; 249:108514. [PMID: 36963743 DOI: 10.1016/j.exppara.2023.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
The emerging resistance against commonly used antiparasitic drugs has driven investigators to explore alternative approaches using plant-derived active ingredients. These compounds have been tested for antiviral, antibacterial, and anthelmintic properties, particularly against adult worms. However, their effects on larval forms have been neglected. Curcumin is a polyphenol that is a significant constituent of the rhizome of Curcuma longa and possesses various biological activities, including antioxidant, anti-inflammatory, anti-infectious, and anti-carcinogenic. In the present study, the anthelmintic potential of curcumin was tested in vitro for its efficacy against the zoonotically important larval form, the progenetic metacercariae of Clinostomum complanatum, which were procured from the forage fish, Trichogaster fasciatus. Curcumin produced time and concentration-dependent inhibition in the motility of treated metacercarial worms, with the maximum inhibition of motility reported at 60 μM along with a significant increase of (36-92%) in ROS and (57-112%) in GSH levels at the end of a period of 6 h. In contrast, curcumin at the highest concentration significantly inhibited the activities of the antioxidant and detoxification enzymes SOD (36%) and GST (16%), respectively, in addition to altering the polypeptide profile and inhibiting cysteine proteases. The tegumental surface appeared to be highly disrupted in curcumin-treated worms, exhibiting severe blebbing, shearing of the tegument, and spine erosion. Such changes would affect the tegumental functions and survival of worms in the hostile microenvironment. This would render worms more susceptible to host-mediated rejection responses. Based on the results of the present study, it is inferred that C. complanatum could serve as an excellent model for screening novel anthelmintic drugs against larval trematodes of great economic significance. Furthermore, we conclude that curcumin could be exploited as an excellent phytotherapeutic agent against the virulent larval form under investigation.
Collapse
Affiliation(s)
- Lubna Rehman
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202 002, India.
| | - Rizwan Ullah
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202 002, India
| | - Abdur Rehman
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202 002, India
| | - M A Hannan Khan
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202 002, India; Department of Zoology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India
| | - Mirza Ahmar Beg
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202 002, India
| | - Sobia Wasim
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202 002, India
| | - Faiza Farhat
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202 002, India
| | - Shareef P A Ahammad
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202 002, India; Parasitology Research Laboratory, Department of Zoology, PSMO College (Affiliated to the University of Calicut), Tirurangadi, Kerala, 676 306, India
| | - S M A Abidi
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202 002, India.
| |
Collapse
|
28
|
Bastos MC, Rheinheimer DDS, Le Guet T, Vargas Brunet J, Aubertheau E, Mondamert L, Labanowski J. Presence of pharmaceuticals and bacterial resistance genes in river epilithic biofilms exposed to intense agricultural and urban pressure. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:328. [PMID: 36697888 DOI: 10.1007/s10661-022-10899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The continuous discharge of pharmaceutical compounds into the aquatic environment has raised concerns over the contamination of water resources. Urban activities and intensive animal breeding are important sources of contamination. The accumulation of antibiotics may lead to the transfer or alternatively maintain the presence of resistance genes in natural microbial communities existing in epilithic biofilms. The objective of this study was to evaluate the pharmaceutical contamination levels and the presence of resistance genes in biofilms from a South Brazilian watershed. The Guaporé watershed exhibits a high diversity of land use, including agricultural and urban areas with differing levels of anthropogenic pressure. Seventeen sites along the Guaporé watershed were monitored. Biofilm samples were collected in two seasons (winter and summer), and the pharmaceutical concentration and quantity of resistance genes were analyzed. All monitored sites were contaminated with pharmaceuticals. Agricultural activities contribute through transferring pharmaceuticals derived from the application of animal waste to agricultural fields. The most contaminated site (pharmaceuticals and bacterial resistance genes) was located in an urban area exposed to high pressure. Decreases in the contamination of biofilms were also observed, exemplifying processes of natural attenuation in the watershed. The quality of the biofilms sampled throughout the watershed served as a useful tool to understand and monitor environmental pollution.
Collapse
Affiliation(s)
- Marília Camotti Bastos
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Avenida Roraima, N° 1000, Bairro Camobi, Rio Grande Do Sul, CEP, 97105-900, Brazil.
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France.
| | - Danilo Dos Santos Rheinheimer
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Avenida Roraima, N° 1000, Bairro Camobi, Rio Grande Do Sul, CEP, 97105-900, Brazil
| | - Thibaut Le Guet
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Jocelina Vargas Brunet
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Avenida Roraima, N° 1000, Bairro Camobi, Rio Grande Do Sul, CEP, 97105-900, Brazil
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Elodie Aubertheau
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Leslie Mondamert
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Jérôme Labanowski
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| |
Collapse
|
29
|
Svobodníková L, Kummerová M, Zezulka Š, Martinka M, Klemš M, Čáslavský J. Pea root responses under naproxen stress: changes in the formation of structural barriers in the primary root in context with changes of auxin and abscisic acid levels. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1-11. [PMID: 36542231 DOI: 10.1007/s10646-022-02613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Pharmaceuticals belong to pseudo-persistent pollutants because of constant entry into the environment and hazardous potential for non-target organisms, including plants, in which they can influence biochemical and physiological processes. Detailed analysis of results obtained by microscopic observations using fluorescent dyes (berberine hemisulphate, Fluorol Yellow 088), detection of phytohormone levels (radioimmunoassay, enzyme-linked immune sorbent assay) and thermogravimetric analysis of lignin content proved that the drug naproxen (NPX) can stimulate the formation of root structural barriers. In the primary root of plants treated with 0.5, 1, and 10 mg/L NPX, earlier Casparian strip formation and development of the whole endodermis circle closer to its apex were found after five days of cultivation (by 9-20% as compared to control) and after ten days from 0.1 mg/L NPX (by 8-63%). Suberin lamellae (SL) were deposited in endodermal cells significantly closer to the apex under 10 mg/L NPX by up to 75%. Structural barrier formation under NPX treatment can be influenced indirectly by auxin-supported cell division and differentiation caused by its eight-times higher level under 10 mg/L NPX and directly by stimulated SL deposition induced by abscisic acid (higher from 0.5 mg/L NPX), as proved by the higher proportion of cells with SL in the primary root base (by 8-44%). The earlier modification of endodermis in plant roots can help to limit the drug transfer and maintain the homeostasis of the plant.
Collapse
Affiliation(s)
- Lucie Svobodníková
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Marie Kummerová
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Štěpán Zezulka
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Science, Comenius University in Bratislava, Mlynská dolina B2, 842 15, Bratislava, Slovakia
| | - Marek Klemš
- Institute of Plant Biology, Faculty of Agronomy, Mendel University Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Josef Čáslavský
- Laboratory of Metabolomics and Isotope Analyses, Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| |
Collapse
|
30
|
Udebuani AC, Pereao O, Akharame MO, Fatoki OS, Opeolu BO. The potential ecological risk of veterinary pharmaceuticals from swine wastewater on freshwater aquatic environment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10833. [PMID: 36635228 PMCID: PMC10107316 DOI: 10.1002/wer.10833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/30/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The impact of pharmaceutical residue transport in the aquatic ecosystem has become an increasing subject of environmental interest due to the inherent bioactivity of trace levels of antibiotics and the negative environmental and public health impact. In this study, three veterinary pharmaceuticals including tetracycline, ivermectin, and salicylic acid were investigated in a piggery effluent from Western Cape, South Africa. Three freshwater organisms' taxonomic groups (Pseudokirchneriella subcapitata, Daphnia magna, and Tetrahymena thermophila) were used to determine the ecological risk of different treated piggery effluent concentration range of 1%, 10%, and 20% and a cocktail mixture of veterinary pharmaceuticals of environmental concerns. The average concentration of veterinary pharmaceuticals was in the range of 47.35, 7.19, and 1.46 μg L-1 for salicylic acid, chloro-tetracycline, and ivermectin, respectively. P. subcapitata exposed to 20% piggery wastewater effluent at 24- and 48-h EC50 showed a toxicity value of 14.2% and 13.6% (v/v), respectively. The study established the ecological risk of the test compounds as low to medium risk for low-level dose and low concentrations of piggery effluent. The relative sensitivity ranking of the taxa drawn is microalgae > protozoa > Cladocera. The study results demonstrated that a high dose of piggery effluent and mixtures of veterinary pharmaceutical can pose a high risk in freshwater ecosystems. PRACTITIONER POINTS: Transport processes of veterinary antibiotics into the environment were investigated. Dilution effect of the veterinary pharmaceutical on the antibiotic levels exists. High dose of piggery effluent presented an ecological risk.
Collapse
Affiliation(s)
| | - Omoniyi Pereao
- Environmental Chemistry and Toxicology LaboratoryCape Peninsula University of TechnologyBellvilleSouth Africa
| | | | | | - Beatrice Olutoyin Opeolu
- Environmental Chemistry and Toxicology LaboratoryCape Peninsula University of TechnologyBellvilleSouth Africa
| |
Collapse
|
31
|
Geng J, Liu X, Wang J, Li S. Accumulation and risk assessment of antibiotics in edible plants grown in contaminated farmlands: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158616. [PMID: 36089029 DOI: 10.1016/j.scitotenv.2022.158616] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/04/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The extensive occurrence of antibiotics in farmland soil might threaten food safety. The bioaccumulation potential of antibiotics in edible vegetables and crops grown under realistic farming scenarios was reviewed and the human health risk was assessed. A total of 51 antibiotics were documented in 37 species of daily consumed crops. Among different classes of antibiotics, tetracyclines (TCs) exhibited higher residue levels in plants than quinolones (QNs), sulfonamides (SAs), and macrolides (MLs), with median values ranging from 5.10 to 15.4 μg/kg dry weight. The favored accumulation of TCs in plants was probably linked to their relatively higher residual concentrations in soils and greater bioconcentration factors. Compared with the plants grown in open field, accumulation of antibiotics was higher in plant grown under greenhouse condition, probably due to the higher residue levels of antibiotics in the greenhouse soil with intensive application of manure. Cocktails of antibiotics were investigated in potato, corn, carrot, tomato, lettuce, and wheat. Among them, corn exhibited relatively high median concentrations of antibiotics (0.400-203 μg/kg dry weight). Antibiotics tended to accumulate in plant root and their concentrations in fruit were generally low. Risk assessment revealed that human health risk was under the alert line through the daily consumption of antibiotic contaminated vegetables and food crops.
Collapse
Affiliation(s)
- Jiagen Geng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoying Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Yantai Institute of China Agriculture University, Yantai 264670, China.
| |
Collapse
|
32
|
Hu J, Tang X, Qi M, Cheng J. New Models for Estimating the Sorption of Sulfonamide and Tetracycline Antibiotics in Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16771. [PMID: 36554653 PMCID: PMC9778684 DOI: 10.3390/ijerph192416771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Sulfonamides (SAs) and tetracyclines (TCs) are two classes of widely used antibiotics. There is a lack of easy models for estimating the parameters of antibiotic sorption in soils. In this work, a dataset of affinity coefficients (Kf and Kd) of seven SA/TC antibiotics (i.e., sulfachlorpyridazine, sulfamethazine, sulfadiazine, sulfamethoxazole, oxytetracycline, tetracycline, and chlortetracycline) and associated soil properties was generated. Correlation analysis of these data showed that the affinity coefficients of the SAs were predominantly affected by soil organic matter and cation exchange capacity, while those of the TCs were largely affected by soil organic matter and pH. Pedotransfer functions for estimating Kf and Kd were built by multiple linear regression analysis and were satisfactorily validated. Their performances would be better for soils having higher organic matter content and lower pH. These pedotransfer functions can be used to aid environmental risk assessment, prioritization of antibiotics and identification of vulnerable soils.
Collapse
Affiliation(s)
- Jinsheng Hu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiangyu Tang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Minghui Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jianhua Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
33
|
Eichberg C, Hartman AM, Kronenberger AM, Düring RA, Donath TW. Temperature moderates impact of formulated moxidectin on seed germination of three temperate grassland species. PLoS One 2022; 17:e0277865. [PMID: 36409735 PMCID: PMC9678283 DOI: 10.1371/journal.pone.0277865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Formulations of macrocyclic lactone anthelmintics such as moxidectin are regularly administered to sheep to combat parasites. A disadvantage of these pharmaceuticals are their side effects on non-target organisms when entering the environment. Little is known about anthelmintic effects on plant reproduction and whether the effects depend on environmental factors. For ecological and methodological reasons, we aimed at testing whether temperature affects the efficacy of a common moxidectin-based formulation on seed germination. We carried out a germination experiment including three typical species of temperate European grasslands (Centaurea jacea, Galium mollugo, Plantago lanceolata). We applied three temperature regimes (15/5, 20/10, 30/20°C), and a four-level dilution series (1:100-1:800) of formulated moxidectin (i.e., Cydectin oral drench). These solutions represent seed-anthelmintic contacts in the digestive tract of sheep shortly after deworming. In addition, a control was carried out with purified water only. We regularly counted emerging seedlings and calculated final germination percentage, mean germination time and synchrony of germination. Formulated moxidectin significantly reduced percentage, speed and synchrony of germination. A 1:100 dilution of the formulation reduced germination percentage by a quarter and increased mean germination time by six days compared to the control. Temperature moderated effects of the anthelmintic drug on germination in all response variables and all species, but in different patterns and magnitudes (significant anthelmintic x temperature x species interactions). In all response variables, the two more extreme temperature regimes (15/5, 30/20°C) led to the strongest effects of formulated moxidectin. With respect to germination percentage, G. mollugo was more sensitive to formulated moxidectin at the warmest temperature regime, whereas P. lanceolata showed the highest sensitivity at the coldest regime. This study shows that it is important to consider temperature dependencies of the effects of pharmaceuticals on seed germination when conducting standardised germination experiments.
Collapse
Affiliation(s)
- Carsten Eichberg
- Geobotany, Regional and Environmental Sciences, University of Trier, Trier, Germany
- * E-mail:
| | - Alwin M. Hartman
- Analytical and Ecological Chemistry, Regional and Environmental Sciences, University of Trier, Trier, Germany
| | | | - Rolf-Alexander Düring
- Institute of Soil Science and Soil Conservation, Justus Liebig University, Gießen, Germany
| | - Tobias W. Donath
- Department of Landscape Ecology, Institute for Natural Resource Conservation, Kiel University, Kiel, Germany
| |
Collapse
|
34
|
Rutkoski CF, Grott SC, Israel NG, Carneiro FE, de Campos Guerreiro F, Santos S, Horn PA, Trentini AA, Barbosa da Silva E, Coelho de Albuquerque CA, Alves TC, Alves de Almeida E. Hepatic and blood alterations in Lithobates catesbeianus tadpoles exposed to sulfamethoxazole and oxytetracycline. CHEMOSPHERE 2022; 307:136215. [PMID: 36041517 DOI: 10.1016/j.chemosphere.2022.136215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/10/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In this study the effects of environmentally realistic concentrations of the antibiotics sulfamethoxazole (SMX) and oxytetracyclyne (OTC) on Lithobates catesbeianus tadpoles were evaluated, through the analyzes of the frequencies of micronucleus and nuclear abnormalities in erythrocytes, alterations in leucocytes, liver histopathology, and changes in hepatic esterase activities and oxidative stress biomarkers. The animals were exposed for 16 days at concentrations of 0 (control), 20, 90 and 460 ng L-1. No significant difference was found in the frequencies of micronucleus and nuclear abnormalities. The two highest concentrations of SMX and all concentrations of OTC caused a significant increase in the number of lymphocytes. A significant decrease in the number of neutrophils compared to the control group was observed for all concentrations tested of both antibiotics. Also, decrease in the activity of glutathione S-transferase and high histopathological severity scores, indicating liver damage, were found in tadpoles exposed to the two highest concentrations of SMX and all concentrations of OTC. The main changes in the liver histopathology were the presence of inflammatory infiltrate, melanomacrophages, vascular congestion, blood cells and eosinophils. Esterase activities were unchanged. Indeed, the two highest concentrations of OTC caused a reduction in the activities of superoxide dismutase and glucose 6-phosphate dehydrogenase, while the highest concentration inhibited the activity of glutathione peroxidase and increased protein carbonyl levels. These results evidences that environmentally realistic concentrations of SMX and OTC in aquatic environments are capable to significantly disrupt tadpoles' physiology, possibly affecting negatively their survival rate in natural environments.
Collapse
Affiliation(s)
- Camila Fatima Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Suelen Cristina Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Nicole Grasmuk Israel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | | | - Sabrina Santos
- Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - Priscila Aparecida Horn
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Amanda Alves Trentini
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | | | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Eduardo Alves de Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
35
|
de Souza RB, de Souza CP, Guimarães JR. Environmentally realistic concentrations of eprinomectin induce phytotoxic and genotoxic effects in Allium cepa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80983-80993. [PMID: 35727508 PMCID: PMC9209316 DOI: 10.1007/s11356-022-21403-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Eprinomectin, a veterinary drug within the family of avermectins, is widely used in the agricultural sector to combat a variety of parasites, mainly nematodes. However, only 10% of the drug is metabolized in the organism, so large quantities of the drug are released into the environment through urine and/or feces. Soil is the first and main environmental compartment to be contaminated by it, and nontargeted organisms can be affected. Thus, the present study aims to evaluate the phytotoxicity (through the evaluation of germination, root development, and germination speed) and genotoxicity (through an assessment of the induction of micronuclei and chromosomal aberrations) of eprinomectin. For the analyses, Allium cepa seeds were germinated in soil contaminated with a range of concentrations of eprinomectin: from 0.5 to 62.5 μg/g for the genotoxicity test and from 0.5 to 128.0 μg/g for the phytotoxicity test. The results showed that seed germination was not affected, but root development was affected at concentrations of 0.5 μg/g, 1.0 μg/g, 4.0 μg/g, 8.0 μg/g, 64.0 μg/g, and 128.0 μg/g, and germination speed was significantly changed at concentrations of 1.0 μg/g, 4.0 μg/g, 16.0 μg/g, 32.0 μg/g, and 64.0 μg/g. Significant differences in the mitotic index and genotoxicity index were observed only at concentrations of 2.5 μg/g and 12.5 μg/g, respectively. Only the 0.5 μg/g concentration did not show significant induction of micronuclei in the meristematic cells, but the damage observed at other concentrations did not persist in F1 cells. According to the results, eprinomectin is both phytotoxic and genotoxic, so the release of eprinomectin into the environment should be minimized.
Collapse
Affiliation(s)
- Raphael B de Souza
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, Campinas, Brazil.
| | | | - José Roberto Guimarães
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, Campinas, Brazil
| |
Collapse
|
36
|
Bigott Y, Gallego S, Montemurro N, Breuil MC, Pérez S, Michas A, Martin-Laurent F, Schröder P. Fate and impact of wastewater-borne micropollutants in lettuce and the root-associated bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154674. [PMID: 35318055 DOI: 10.1016/j.scitotenv.2022.154674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The reuse of water for agricultural practices becomes progressively more important due to increasing demands for a transition to a circular economy. Treated wastewater can be an alternative option of blue water used for the irrigation of crops but its risks need to be evaluated. This study assesses the uptake and metabolization of pharmaceuticals and personal care products (PPCPs) derived from treated wastewater into lettuce as well as the impact on root-associated bacteria under a realistic and worst-case scenario. Lettuce was grown in a controlled greenhouse and irrigated with water or treated wastewater spiked with and without a mixture of fourteen different PPCPs at 10 μg/L or 100 μg/L. After harvesting the plants, the same soil was reused for a consecutive cultivation campaign to test for the accumulation of PPCPs. Twelve out of fourteen spiked PPCPs were detected in lettuce roots, and thirteen in leaves. In roots, highest concentrations were measured for sucralose, sulfamethoxazole and citalopram, while sucralose, acesulfame and carbamazepine were the highest in leaves. Higher PPCP concentrations were found in lettuce roots irrigated with spiked treated wastewater than in those irrigated with spiked water. The absolute bacterial abundance remained stable over both cultivation campaigns and was not affected by any of the treatments (type of irrigation water (water vs. wastewater) nor concentration of PPCPs). However, the irrigation of lettuce with treated wastewater had a significant effect on the microbial α-diversity indices at the end of the second cultivation campaign, and modified the structure and community composition of root-associated bacteria at the end of both campaigns. Five and fourteen bacterial families were shown to be responsible for the observed changes at the end of the first and second cultivation campaign, respectively. Relative abundance of Haliangium and the clade Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium was significantly affected in response to PCPPs exposure. Caulobacter, Cellvibrio, Hydrogenophaga and Rhizobacter were significantly affected in microcosms irrigated with wastewater.
Collapse
Affiliation(s)
- Yvonne Bigott
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Sara Gallego
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Nicola Montemurro
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, (Spain)
| | - Marie-Christine Breuil
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Sandra Pérez
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, (Spain)
| | - Antonios Michas
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Fabrice Martin-Laurent
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Peter Schröder
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
37
|
Ramírez-Morales D, Fajardo-Romero D, Rodríguez-Rodríguez CE, Cedergreen N. Single and mixture toxicity of selected pharmaceuticals to the aquatic macrophyte Lemna minor. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:714-724. [PMID: 35348978 DOI: 10.1007/s10646-022-02537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Plants represent uncommon targets to evaluate pharmaceuticals toxicity. In this work, Lemna minor was employed as a plant model to determine the toxicity of selected pharmaceuticals, and to assay if such toxicity could be predicted by QSAR models based on green algae. Among eight compounds, measurable toxicity was determined for ketoprofen (EC50 = 11.8 ± 1.9 mg/L), fluoxetine (EC50 = 27.0 ± 8.7 mg/L) and clindamycin 2-phosphate (EC50 = 57.7 ± 1.7 mg/L). Even though a correlation of r2 = 0.87 was observed between experimental toxicity towards algae and L. minor, QSAR estimations based on algae data poorly predicted the toxicity of pharmaceuticals on the plant. More experimental data for L. minor are necessary to determine the applicability of these predictions; nonetheless, these results remark the importance of measuring experimental ecotoxicological parameters for individual taxa. The toxicity of pharmaceutical binary mixtures (ketoprofen, fluoxetine and clindamycin) revealed in some cases deviations from the concentration addition model; nonetheless these deviations were small, thus the interactions are unlikely to be of severe biological significance. Moreover, the EC50 concentrations determined for these pharmaceuticals are significantly higher than those detected in the environment, suggesting that acute effects on L. minor would not take place at ecosystem level.
Collapse
Affiliation(s)
- Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental, Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Daniela Fajardo-Romero
- Centro de Investigación en Contaminación Ambiental, Universidad de Costa Rica, 2060, San José, Costa Rica
| | | | - Nina Cedergreen
- University of Copenhagen, Department of Plant and Environmental Science, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| |
Collapse
|
38
|
de Souza RB, Guimarães JR. Effects of Avermectins on the Environment Based on Its Toxicity to Plants and Soil Invertebrates-a Review. WATER, AIR, AND SOIL POLLUTION 2022; 233:259. [PMID: 35789787 PMCID: PMC9243718 DOI: 10.1007/s11270-022-05744-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Avermectins are pharmaceutical drugs widely used mainly in livestock to combat both ectoparasites and endoparasites. Drugs belonging to this family include ivermectin, abamectin, doramectin, selamectin, eprinomectin, and emamectin benzoate, and they share similar chemical characteristics. When administered to livestock, between 80 and 98% of the drug is estimated to leave the body without being metabolized in feces, thus reaching the soil. For this reason, concern for avermectin contamination in soil is increasing, and researchers are focused on estimating the effects on non-target organisms, such as plants and soil invertebrates. This review aimed to compile and discuss updated data of avermectin toxicity on non-target organisms to better comprehend its effect on the environment. Effects on plants are scarcely studied, since they were not believed to absorb these drugs. However, recent studies suggest that plants can be negatively affected. Regarding soil invertebrates, negative effects such as increased mortality and reduced reproduction are best known to dung-beetles. Recently, some studies have also suggested that earthworms, springtails, and enchytraeids can be adversely affected by avermectin exposure. Since ivermectin was the first avermectin marketed, most of the data refers to this product. According to new data on scientific literature, avermectins can now be considered harmful to non-target organisms, and its prudent use is recommended in order to reduce negative effects on the environment. For future investigations, inclusion of avermectins other than ivermectin, as well as field and "omics" studies is suggested.
Collapse
Affiliation(s)
- Raphael B. de Souza
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, R. Saturnino de Brito, 224 - Cidade Universitária, Campinas, SP 13083-889 Brazil
| | - José Roberto Guimarães
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, R. Saturnino de Brito, 224 - Cidade Universitária, Campinas, SP 13083-889 Brazil
| |
Collapse
|
39
|
Zhao W, Teng M, Zhang J, Wang K, Zhang J, Xu Y, Wang C. Insights into the mechanisms of organic pollutant toxicity to earthworms: Advances and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119120. [PMID: 35283202 DOI: 10.1016/j.envpol.2022.119120] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Earthworms play positive ecological roles in soil formation, structure, and fertility, environmental protection, and terrestrial food chains. For this review, we searched the Web of Science database for articles published from 2011 to 2021 using the keywords "toxic" and "earthworm" and retrieved 632 publications. From the perspective of bibliometric analysis, we conducted a co-occurrence network analysis using the keywords "toxic" and "earthworm" to identify the most and least reported topics. "Eisenia fetida," "bioaccumulation," "heavy metals," "oxidative stress," and "pesticides" were the most common terms, and "microbial community," "bacteria," "PFOS," "bioaugmentation," "potentially toxic elements," "celomic fluid," "neurotoxicity," "joint toxicity," "apoptosis," and "nanoparticles" were uncommon terms. Additionally, in this review we highlight the main routes of organic pollutant entry into soil, and discuss the adverse effects on the soil ecosystem. We then systematically review the mechanisms underlying organic pollutant toxicity to earthworms, including oxidative stress, energy and lipid metabolism disturbances, neurological toxicity, intestinal inflammation and injury, gut microbiota dysbiosis, and reproductive toxicity. We conclude by discussing future research perspectives, focusing on environmentally relevant concentrations and conditions, novel data processing approaches, technologies, and detoxification and mitigation methods. This review has implications for soil management in the context of environmental pollution.
Collapse
Affiliation(s)
- Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Kai Wang
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, People's Republic Of China
| | - Jialu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
40
|
Ortúzar M, Esterhuizen M, Olicón-Hernández DR, González-López J, Aranda E. Pharmaceutical Pollution in Aquatic Environments: A Concise Review of Environmental Impacts and Bioremediation Systems. Front Microbiol 2022; 13:869332. [PMID: 35558129 PMCID: PMC9087044 DOI: 10.3389/fmicb.2022.869332] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of emerging contaminants in the environment, such as pharmaceuticals, is a growing global concern. The excessive use of medication globally, together with the recalcitrance of pharmaceuticals in traditional wastewater treatment systems, has caused these compounds to present a severe environmental problem. In recent years, the increase in their availability, access and use of drugs has caused concentrations in water bodies to rise substantially. Considered as emerging contaminants, pharmaceuticals represent a challenge in the field of environmental remediation; therefore, alternative add-on systems for traditional wastewater treatment plants are continuously being developed to mitigate their impact and reduce their effects on the environment and human health. In this review, we describe the current status and impact of pharmaceutical compounds as emerging contaminants, focusing on their presence in water bodies, and analyzing the development of bioremediation systems, especially mycoremediation, for the removal of these pharmaceutical compounds with a special focus on fungal technologies.
Collapse
Affiliation(s)
- Maite Ortúzar
- Department of Microbiology and Genetics, Edificio Departamental, University of Salamanca, Salamanca, Spain
| | - Maranda Esterhuizen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Finland and Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland.,Joint Laboratory of Applied Ecotoxicology, Korea Institute of Science and Technology Europe, Saarbrücken, Germany.,University of Manitoba, Clayton H. Riddell Faculty of Environment, Earth, and Resources, Winnipeg, MB, Canada
| | - Darío Rafael Olicón-Hernández
- Instituto Politécnico Nacional, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Jesús González-López
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Elisabet Aranda
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
41
|
Rizzo PF, Young BJ, Pin Viso N, Carbajal J, Martínez LE, Riera NI, Bres PA, Beily ME, Barbaro L, Farber M, Zubillaga MS, Crespo DC. Integral approach for the evaluation of poultry manure, compost, and digestate: Amendment characterization, mineralization, and effects on soil and intensive crops. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 139:124-135. [PMID: 34968898 DOI: 10.1016/j.wasman.2021.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The egg industry has increased its production worldwide during the last decades. Several waste management strategies have been proposed to treat large volumes of poultry manure. Composting and anaerobic digestion are the main stabilization processes used. However, there are disagreements on the criteria for applying raw and treated poultry manure to the soil. We studied the relationship between physicochemical, toxicological, microbiological, parasitological, and metabarcoding parameters of raw and treated poultry manure (compost and digestate). Subsequently, we evaluated the mineralization of C, N and P, and the effects of amended soil on horticultural and ornamental crops. Compost and digestate presented better general conditions than poultry manure for use as organic soil amendments. The highest pathogenic microorganism content (total and fecal coliforms, Escherichia coli, and Salmonella spp.) was recorded for poultry manure. Multivariate analyses allowed associating a lower phytotoxicity with compost and a higher microbial diversity with digestate. Therefore, only compost presented stability and maturity conditions. We found high released CO2-C, N loss, and P accumulation in soil amended with a high dose of poultry manure during mineralization. However, high doses of poultry manure and digestate increased the biomass production in the valorization assay. We recommend the soil application of stabilized and mature poultry manure-derived amendments, which reduce the negative impacts on the environment and promote more sustainable practices in agricultural systems.
Collapse
Affiliation(s)
- Pedro Federico Rizzo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Brian Jonathan Young
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Natalia Pin Viso
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Jazmín Carbajal
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Laura Elizabeth Martínez
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Mendoza, San Martin 3853, M5534, Luján de Cuyo, Mendoza, Argentina.
| | - Nicolás Iván Riera
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Patricia Alina Bres
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - María Eugenia Beily
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Lorena Barbaro
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Cerro Azul, Ruta Nacional 14. Km. 836, 3313, Cerro Azul, Misiones, Argentina.
| | - Marisa Farber
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| | - Marta Susana Zubillaga
- Cátedra de Fertilidad y Fertilizantes, Departamento de Ingeniería Agrícola y Uso de la Tierra, Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, C1417DSE Buenos Aires, Argentina.
| | - Diana Cristina Crespo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Laboratorio de Transformación de Residuos, Las Cabañas y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Biczak R, Pawłowska B. Reaction of spring barley seedlings and H. incongruens crustaceans to the presence of acetylsalicylic acid in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113936. [PMID: 34700078 DOI: 10.1016/j.jenvman.2021.113936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Acetylsalicylic acid (ASA) is one of the more commonly used analgesic, antipyretic, and anti-inflammatory as well as anticoagulant drugs available in the OTC (over the counter) segment. Due to the considerable use of this drug, an attempt was made to determine the effect of ASA on the crustacean Heterocypris incongruens and the monocotyledonous plant spring barley. The tested compounds were introduced into soil in which these organisms "lived". The study showed that ASA had an adverse effect on seed germination potential as well as a negative effect on spring barley growth; however, and photosynthetic pigments content was observed only at the highest concentrations of the studied compounds. ASA did not cause oxidative stress in plants but did also cause disturbances in the growth of H. incongruens, without causing their mortality. As a result, ASA may have certain negative effects on both crustaceans and monocots.
Collapse
Affiliation(s)
- Robert Biczak
- Jan Długosz University in Częstochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., 42-200, Częstochowa, Poland.
| | - Barbara Pawłowska
- Jan Długosz University in Częstochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., 42-200, Częstochowa, Poland
| |
Collapse
|
43
|
Li J, Yang L, Wu Z. Toxicity of chlortetracycline and oxytetracycline on Vallisneria natans (Lour.) Hare. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62549-62561. [PMID: 34212323 DOI: 10.1007/s11356-021-14922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Tetracyclines are frequently detected in water bodies due to their widespread use in aquaculture and animal husbandry. A hydroponic experiment was conducted to explore the phytotoxic effects of Vallisneria natans (Lour.) Hare exposed to various concentrations of chlortetracycline (CTC) and oxytetracycline (OTC) (0, 0.1, 1, 10, 30, 50, and 100 mg/L) for 7 days (7 D) and 14 days (14 D), respectively. The results showed that similar to OTC treatment for 7 D, the relative growth rates (RGR) and catalase (CAT) activity of V. natans, after 7 D of CTC exposure, decreased significantly at 10 mg/L and 30 mg/L, respectively. The content of soluble protein notably decreased when CTC ≥ 10 mg/L and OTC ≥ 30 mg/L. The hydrogen peroxide (H2O2) content was significantly stimulated when OTC ≥ 10 mg/L, while it hardly changed when exposed to CTC. After 14 D, the malondialdehyde (MDA) and H2O2 contents of V. natans were significantly higher than those of the control group under a high concentration of OTC (≥ 30 mg/L), but they did not change significantly under a high concentration of CTC. The activity of polyphenol oxidase (PPO), under CTC treatment after 14 D, showed first a significant increase then decreases; the maximum value (125% of the control) was noticed at 10 mg/L CTC, while it remained unchanged when exposed to OTC. The soluble protein content significantly decreased at 10 mg/L CTC and 0.1 mg/L OTC, respectively. The RGR, CAT, and peroxidase (POD) activities, similar to OTC treatment after 14 D, decreased evidently when CTC was 10 mg/L, 30 mg/L, and 0.1 mg/L, respectively. CTC and OTC harm the chlorophyll content of V. natans after 14 D, and the reductions of chlorophyll a and carotenoid were more pronounced than chlorophyll b. The results suggest that CTC and OTC both have a negative effect on the growth of V. natans, and OTC can cause oxidative damage in V. natans but CTC harms the metabolism process without inducing oxidative damage. Overall, the toxicity of OTC to V. natans is stronger than that of CTC.
Collapse
Affiliation(s)
- Jing Li
- Water Pollution Ecology Laboratory, College of Life Science, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Lu Yang
- Water Pollution Ecology Laboratory, College of Life Science, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Zhonghua Wu
- Water Pollution Ecology Laboratory, College of Life Science, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China.
| |
Collapse
|
44
|
Cheong MS, Choe H, Jeong MS, Yoon YE, Jung HS, Lee YB. Different Inhibitory Effects of Erythromycin and Chlortetracycline on Early Growth of Brassica campestris Seedlings. Antibiotics (Basel) 2021; 10:antibiotics10101273. [PMID: 34680853 PMCID: PMC8532913 DOI: 10.3390/antibiotics10101273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 01/14/2023] Open
Abstract
Veterinary antibiotics, including erythromycin (Ery) and chlortetracycline (CTC), are often detected in agricultural land. Although these contaminants affect plant growth and development, their effects on crops remain elusive. In this study, the effects of Ery and CTC on plant growth were investigated and compared by analyzing transcript abundance in Brassica campestris seedlings. Treatment with Ery and/or CTC reduced chlorophyll content in leaves and photosynthetic efficiency. Examination of the chloroplast ultrastructure revealed the presence of abnormally shaped plastids in response to Ery and CTC treatments. The antibiotics produced similar phenotypes of lower accumulation of photosynthetic genes, including RBCL and LHCB1.1. Analysis of the transcript levels revealed that Ery and CTC differentially down-regulated genes involved in the tetrapyrrole biosynthetic pathway and primary root growth. In the presence of Ery and CTC, chloroplasts were undeveloped and photosynthesis efficiency was reduced. These results suggest that both Ery and CTC individually affect gene expression and influence plant physiological activity, independently of one another.
Collapse
Affiliation(s)
- Mi Sun Cheong
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea;
| | - Hyeonji Choe
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (H.C.); (Y.-E.Y.)
| | - Myeong Seon Jeong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea; (M.S.J.); (H.S.J.)
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea
| | - Young-Eun Yoon
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (H.C.); (Y.-E.Y.)
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea; (M.S.J.); (H.S.J.)
| | - Yong Bok Lee
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea;
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (H.C.); (Y.-E.Y.)
- Correspondence: ; Tel.: +82-55-772-1967
| |
Collapse
|
45
|
Rial-Berriel C, Acosta-Dacal A, Zumbado M, Henríquez-Hernández LA, Rodríguez-Hernández Á, Macías-Montes A, Boada LD, Travieso-Aja MDM, Martin-Cruz B, Suárez-Pérez A, Cabrera-Pérez MÁ, Luzardo OP. Epidemiology of Animal Poisonings in the Canary Islands (Spain) during the Period 2014-2021. TOXICS 2021; 9:toxics9100267. [PMID: 34678963 PMCID: PMC8540516 DOI: 10.3390/toxics9100267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/23/2022]
Abstract
Animal poisoning is one of the greatest conservation threats facing wildlife. In a preliminary study in the oceanic archipelago of the Canary Islands, we showed that the degree of threat from this circumstance was very high-even higher than that reported in other regions of continental Europe. Consequently, a legal framework for the effective prosecution of the crime of wildlife poisoning came into force in 2014 in this region. We present the results of the investigation of 961 animals and 84 baits sent to our laboratory for the diagnosis of animal poisonings during the period 2014–2021. We were able to identify poison as the cause of death in 251 animals and 61 baits. Carbofuran stands out as the main agent used in this archipelago. We have also detected an increasing tendency to use mixtures of several pesticides in the preparation of baits. The entry into operation of two canine patrols has led to the detection of more dead animals in the wild and a greater number of poisoned animals. The percentage of poison positives is significantly higher in areas with lower population density, corresponding to rural environments, as well as in areas with greater agricultural and livestock activity.
Collapse
Affiliation(s)
- Cristian Rial-Berriel
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; (C.R.-B.); (A.A.-D.); (M.Z.); (L.A.H.-H.); (Á.R.-H.); (A.M.-M.); (L.D.B.); (B.M.-C.)
- Study Group on Wild Animal Conservation Medicine (GEMAS), 28040 Madrid, Spain
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; (C.R.-B.); (A.A.-D.); (M.Z.); (L.A.H.-H.); (Á.R.-H.); (A.M.-M.); (L.D.B.); (B.M.-C.)
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; (C.R.-B.); (A.A.-D.); (M.Z.); (L.A.H.-H.); (Á.R.-H.); (A.M.-M.); (L.D.B.); (B.M.-C.)
- Study Group on Wild Animal Conservation Medicine (GEMAS), 28040 Madrid, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), 28029 Madrid, Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; (C.R.-B.); (A.A.-D.); (M.Z.); (L.A.H.-H.); (Á.R.-H.); (A.M.-M.); (L.D.B.); (B.M.-C.)
- Study Group on Wild Animal Conservation Medicine (GEMAS), 28040 Madrid, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), 28029 Madrid, Spain
| | - Ángel Rodríguez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; (C.R.-B.); (A.A.-D.); (M.Z.); (L.A.H.-H.); (Á.R.-H.); (A.M.-M.); (L.D.B.); (B.M.-C.)
| | - Ana Macías-Montes
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; (C.R.-B.); (A.A.-D.); (M.Z.); (L.A.H.-H.); (Á.R.-H.); (A.M.-M.); (L.D.B.); (B.M.-C.)
| | - Luis D. Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; (C.R.-B.); (A.A.-D.); (M.Z.); (L.A.H.-H.); (Á.R.-H.); (A.M.-M.); (L.D.B.); (B.M.-C.)
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), 28029 Madrid, Spain
| | | | - Beatriz Martin-Cruz
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; (C.R.-B.); (A.A.-D.); (M.Z.); (L.A.H.-H.); (Á.R.-H.); (A.M.-M.); (L.D.B.); (B.M.-C.)
| | | | - Miguel Ángel Cabrera-Pérez
- General Directorate to Combat Climate Change and the Environment, Biodiversity Service, Canary Islands Government, Plaza de los Derechos Humanos, 35071 Las Palmas de Gran Canaria, Spain;
| | - Octavio P. Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; (C.R.-B.); (A.A.-D.); (M.Z.); (L.A.H.-H.); (Á.R.-H.); (A.M.-M.); (L.D.B.); (B.M.-C.)
- Study Group on Wild Animal Conservation Medicine (GEMAS), 28040 Madrid, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-928451424
| |
Collapse
|
46
|
Xu L, Wang XF, Liu B, Sun T, Wang X. Fabrication of ferrous tungstate with enhanced sonocatalytic performance for meloxicam removal. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Park Y, Park J, Lee HS. Endocrine disrupting potential of veterinary drugs by in vitro stably transfected human androgen receptor transcriptional activation assays. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117201. [PMID: 33965802 DOI: 10.1016/j.envpol.2021.117201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
We describe the androgen receptor (AR) agonistic/antagonistic effects of 140 veterinary drugs regulated in Republic of Korea, by setting maximum residue limits. It was conducted using two in vitro test guidelines of the Organization for Economic Cooperation and Development (OECD)-the AR-EcoScreen AR transactivation (TA) assay and the 22Rv1/MMTV_GR-KO AR TA assay. These were performed alongside the AR binding affinity assay to confirm whether their AR agonistic/antagonistic effects are based on the binding affinity to AR. Prior to conducting the AR TA assay, the proficiency test was passed the proficiency performance criterion for the AR agonist and AR antagonist assays. Among the veterinary drugs tested, four veterinary drugs (dexamethasone, trenbolone, altrenogest, and nandrolone) and six veterinary drugs (cymiazole, dexamethasone, zeranol, phenothiazine, bromopropylate, and isoeugenol) were determined as AR agonist and AR antagonist, respectively in both in vitro AR TA assays. Zeranol exhibited weak AR agonistic effects with a PC10 value only in the 22Rv1/MMTV_GR-KO AR TA assay. Regarding changing the AR agonistic/antagonistic effects through metabolism, the AR antagonistic activities of zeranol, phenothiazine, and isoeugenol decreased significantly in the presence of phase I + II enzymes. These data indicate that various veterinary drugs could have the potential to disrupt AR-mediated human endocrine system. Furthermore, this is the first report providing information on AR agonistic/antagonistic effects of veterinary drugs using in vitro OECD AR TA assays.
Collapse
Affiliation(s)
- Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Juhee Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
48
|
Navrátilová M, Raisová Stuchlíková L, Matoušková P, Ambrož M, Lamka J, Vokřál I, Szotáková B, Skálová L. Proof of the environmental circulation of veterinary drug albendazole in real farm conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117590. [PMID: 34438501 DOI: 10.1016/j.envpol.2021.117590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Anthelmintics, drugs against parasitic worms, are frequently used in livestock and might act as danger environmental microcontaminants. The present study was designed to monitor the possible circulation of common anthelmintic drug albendazole (ABZ) and its metabolites in the real agriculture conditions. The sheep were treated with the recommended dose of ABZ. Collected faeces were used for the fertilization of a field with fodder plants (alfalfa and clover) which served as feed for sheep from a different farm. The selective ultrasensitive mass spectrometry revealed surprisingly high concentrations of active ABZ metabolite (ABZ-sulphoxide) in all samples (dung, plants, ovine plasma, rumen content and faeces). Our results prove for the first time an undesirable permeation of ABZ metabolites from sheep excrement into plants (used as fodder) and subsequently to other sheep in real agricultural conditions. This circulation causes the permanent exposition of the ecosystems and food-chain to the drug and can promote the development of drug resistance in helminths.
Collapse
Affiliation(s)
- Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Martin Ambrož
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Jiří Lamka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic.
| |
Collapse
|
49
|
A Method Scope Extension for the Simultaneous Analysis of POPs, Current-Use and Banned Pesticides, Rodenticides, and Pharmaceuticals in Liver. Application to Food Safety and Biomonitoring. TOXICS 2021; 9:toxics9100238. [PMID: 34678934 PMCID: PMC8539179 DOI: 10.3390/toxics9100238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
The screening of hundreds of substances belonging to multiple chemical classes in liver is required in areas such as food safety or biomonitoring. We adapted a previous QuEChERS-based method in blood to the liver matrix and applied to these fields of study. The validation of the method allowed the inclusion of 351 contaminants, 80% with a LOQ < 2 ng/g. In the analysis of 42 consumer liver samples, we detected trace levels of 29 different contaminants. The most frequent and concentrated was 4,4’-DDE. POPs accounted for 66% of the compounds detected. In no case was the MRL reached for any of the contaminants detected. We also applied the method to 151 livers of wild birds to perform a biomonitoring pilot study in the Canary Islands. We detected 52 contaminants in 15 bird species. These were also mostly POPs, although high frequencies and concentrations of anticoagulant rodenticides (AR) and some other agricultural pesticides also stand out. POPs and AR contamination levels were significantly higher in terrestrial birds, raptors and particularly in nocturnal birds. Pesticide contamination levels were also higher in terrestrial birds, as well as in non-raptors and diurnal birds. The validated method is simple, robust, and sensitive and performs well in a variety of practical scenarios, where it can be carried out relatively quickly and inexpensively.
Collapse
|
50
|
Green H, Wilder M, Wiedmann M, Weller D. Integrative Survey of 68 Non-overlapping Upstate New York Watersheds Reveals Stream Features Associated With Aquatic Fecal Contamination. Front Microbiol 2021; 12:684533. [PMID: 34475855 PMCID: PMC8406625 DOI: 10.3389/fmicb.2021.684533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/05/2021] [Indexed: 12/03/2022] Open
Abstract
Aquatic fecal contamination poses human health risks by introducing pathogens in water that may be used for recreation, consumption, or agriculture. Identifying fecal contaminant sources, as well as the factors that affect their transport, storage, and decay, is essential for protecting human health. However, identifying these factors is often difficult when using fecal indicator bacteria (FIB) because FIB levels in surface water are often the product of multiple contaminant sources. In contrast, microbial source-tracking (MST) techniques allow not only the identification of predominant contaminant sources but also the quantification of factors affecting the transport, storage, and decay of fecal contaminants from specific hosts. We visited 68 streams in the Finger Lakes region of Upstate New York, United States, between April and October 2018 and collected water quality data (i.e., Escherichia coli, MST markers, and physical–chemical parameters) and weather and land-use data, as well as data on other stream features (e.g., stream bed composition), to identify factors that were associated with fecal contamination at a regional scale. We then applied both generalized linear mixed models and conditional inference trees to identify factors and combinations of factors that were significantly associated with human and ruminant fecal contamination. We found that human contaminants were more likely to be identified when the developed area within the 60 m stream buffer exceeded 3.4%, the total developed area in the watershed exceeded 41%, or if stormwater outfalls were present immediately upstream of the sampling site. When these features were not present, human MST markers were more likely to be found when rainfall during the preceding day exceeded 1.5 cm. The presence of upstream campgrounds was also significantly associated with human MST marker detection. In addition to rainfall and water quality parameters associated with rainfall (e.g., turbidity), the minimum distance to upstream cattle operations, the proportion of the 60 m buffer used for cropland, and the presence of submerged aquatic vegetation at the sampling site were all associated based on univariable regression with elevated levels of ruminant markers. The identification of specific features associated with host-specific fecal contaminants may support the development of broader recommendations or policies aimed at reducing levels of aquatic fecal contamination.
Collapse
Affiliation(s)
- Hyatt Green
- Department of Environmental Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
| | - Maxwell Wilder
- Department of Environmental Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Daniel Weller
- Department of Environmental Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
| |
Collapse
|