1
|
Jiang T, Wu W, Ma M, Hu Y, Li R. Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175664. [PMID: 39173760 DOI: 10.1016/j.scitotenv.2024.175664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Emerging contaminants are pervasive in aquatic environments globally, encompassing pharmaceuticals, personal care products, steroid hormones, phenols, biocides, disinfectants and various other compounds. Concentrations of these contaminants are detected ranging from ng/L to μg/L. Even at trace levels, these contaminants can pose significant risks to ecosystems and human health. This article systematically summarises and categorizes data on the concentrations of 54 common emerging contaminants found in the influent and effluent of wastewater treatment plants across various geographical regions: North America, Europe, Oceania, Africa, and Asia. It reviews the occurrence and distribution of these contaminants, providing spatial and causal analyses based on data from these regions. Notably, the maximum concentrations of the pollutants observed vary significantly across different regions. The data from Africa, in particular, show more frequent detection of pharmaceutical maxima in wastewater treatment plants.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenyong Wu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Meng Ma
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Yaqi Hu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Ruoxi Li
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| |
Collapse
|
2
|
Rincon I, Hidalgo T, Armani G, Rojas S, Horcajada P. Enzyme_Metal-Organic Framework Composites as Novel Approach for Microplastic Degradation. CHEMSUSCHEM 2024; 17:e202301350. [PMID: 38661054 DOI: 10.1002/cssc.202301350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
Plastic pollution is one of the main worldwide environmental concerns. Our lifestyle involves persistent plastic consumption, aggravating the low efficiency of wastewater treatment plants in its removal. Nano/microplastics are accumulated in living beings, pushing to identify new water remediation strategies to avoid their harmful effects. Enzymes (e. g., Candida rugosa-CrL) are known natural plastic degraders as catalysts in depolymerization reactions. However, their practical use is limited by their stability, recyclability, and economical concerns. Here, enzyme immobilization in metal-organic frameworks (CrL_MOFs) is originally presented as a new plastic degradation approach to achieve a boosted plastic decomposition in aqueous systems while allowing the catalyst cyclability. Bis-(hydroxyethyl)terephthalate (BHET) was selected as model substrate for decontamination experiments for being the main polyethylene terephthalate (PET) degradation product. Once in contaminated water, CrL_MOFs can eliminate BHET (37 %, 24 h), following two complementary mechanisms: enzymatic degradation (CrL action) and byproducts adsorption (MOF effect). As a proof-of-concept, the capacity of a selected CrL_MOF composite to eliminate the BHET degradation products and its reusability are also investigated. The potential of these systems is envisioned in terms of improving enzyme cyclability, reducing costs along with feasible co-adsorption of plastic byproducts and other harmful contaminants, to successfully remove them in a single step.
Collapse
Affiliation(s)
- Irene Rincon
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
| | - Tania Hidalgo
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
| | - Giacomo Armani
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
| | - Sara Rojas
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
| |
Collapse
|
3
|
Fortuna M, Varella ACC, Siqueira L, Soares SM, Freddo N, Nardi J, Barletto ÍP, Bertuol MZ, Barcellos LJG. Transgenerational effects of the levonorgestrel-based birth control pill in zebrafish offspring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104540. [PMID: 39173986 DOI: 10.1016/j.etap.2024.104540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
The consumption of hormone-derived medicines, such as levonorgestrel (LNG), is increasing worldwide, and its discharge into the environment reaches non-target organisms. In our previous study, we exposed the parental generation of zebrafish to environmentally relevant concentrations of LNG during the developmental phase. Subsequently, they had grown in a tank with clean water until adulthood. Now, we allowed this parental generation to reproduce to obtain F1 progeny unexposed to LGN, in order to analyze the transgenerational effects of parental LNG exposure on the survival and hatching of unexposed F1 embryos and the stress and behavior of F1 larvae. Here, we found decreased survival rates with higher LNG concentrations, providing a transgenerational effect. This highlights the environmental impact of exposure to LNG, causing damage at the individual and population level and affecting the next generation at the beginning of development, impacting qualities in the survival of the species.
Collapse
Affiliation(s)
- Milena Fortuna
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Lisiane Siqueira
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Suelen Mendonça Soares
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Natália Freddo
- Graduate Programa in Bioexperimentation, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Jéssica Nardi
- Graduate Programa in Bioexperimentation, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Ísis Piasson Barletto
- Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Milena Zanoello Bertuol
- Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Graduate Programa in Bioexperimentation, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Rangu SD, Rangappa HS, Mon PP, Cho PP, Mudadla UR, Challapalli S. KOH-treated tire pyrolyzed carbon as green and easily available adsorbent for Bisphenol A and Methylene blue adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34698-5. [PMID: 39162895 DOI: 10.1007/s11356-024-34698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
The occurrence of micropollutants and dyes in water sources has sparked alarm due to their significant impacts on aquatic ecosystems and human health. This study aims to utilize the tire pyrolyzed carbon (TPC) as a source of the adsorbent for removing Bisphenol A (BPA) and Methylene Blue (MB). The adsorbent was synthesized by chemical activation of TPC with KOH at 750 °C. The activated TPC was characterized for different physical and chemical characterization techniques such as XRD, FTIR, SEM, BET, XPS, and TPD and exhibits a higher adsorption capacity of 49.2 and 72.1 mg/g respectively for BPA and MB. The effect of initial concentration, dosage of adsorbent, and initial pH are evaluated for BPA and MB. The adsorption is mainly driven by hydrophobic, electrostatic, π-π interactions, and hydrogen bonding. The removal process follows the second order and Langmuir isotherms. The adsorbent shows excellent recyclability which makes it a potential source of removal of different water-borne pollutants. The production of activated carbon from tire waste is advocated for its economic and environmental benefits.
Collapse
Affiliation(s)
- Shiva Deepti Rangu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
- Department of Chemistry, Tara Govt. Degree College(A), Sangareddy, 502001, Telangana, India
| | - Harsha S Rangappa
- Center for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Phyu Phyu Mon
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Phyu Phyu Cho
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Umamaheswara Rao Mudadla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Subrahmanyam Challapalli
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
5
|
Wang F, Xiang L, Sze-Yin Leung K, Elsner M, Zhang Y, Guo Y, Pan B, Sun H, An T, Ying G, Brooks BW, Hou D, Helbling DE, Sun J, Qiu H, Vogel TM, Zhang W, Gao Y, Simpson MJ, Luo Y, Chang SX, Su G, Wong BM, Fu TM, Zhu D, Jobst KJ, Ge C, Coulon F, Harindintwali JD, Zeng X, Wang H, Fu Y, Wei Z, Lohmann R, Chen C, Song Y, Sanchez-Cid C, Wang Y, El-Naggar A, Yao Y, Huang Y, Cheuk-Fung Law J, Gu C, Shen H, Gao Y, Qin C, Li H, Zhang T, Corcoll N, Liu M, Alessi DS, Li H, Brandt KK, Pico Y, Gu C, Guo J, Su J, Corvini P, Ye M, Rocha-Santos T, He H, Yang Y, Tong M, Zhang W, Suanon F, Brahushi F, Wang Z, Hashsham SA, Virta M, Yuan Q, Jiang G, Tremblay LA, Bu Q, Wu J, Peijnenburg W, Topp E, Cao X, Jiang X, Zheng M, Zhang T, Luo Y, Zhu L, Li X, Barceló D, Chen J, Xing B, Amelung W, Cai Z, Naidu R, Shen Q, Pawliszyn J, Zhu YG, Schaeffer A, Rillig MC, Wu F, Yu G, Tiedje JM. Emerging contaminants: A One Health perspective. Innovation (N Y) 2024; 5:100612. [PMID: 38756954 PMCID: PMC11096751 DOI: 10.1016/j.xinn.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 05/18/2024] Open
Abstract
Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China
| | - Martin Elsner
- Technical University of Munich, TUM School of Natural Sciences, Institute of Hydrochemistry, 85748 Garching, Germany
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangguo Ying
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Bryan W. Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, USA
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Damian E. Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Timothy M. Vogel
- Laboratoire d’Ecologie Microbienne, Universite Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Myrna J. Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bryan M. Wong
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, USA
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Karl J. Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiankui Zeng
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Haijun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Changer Chen
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Concepcion Sanchez-Cid
- Environmental Microbial Genomics, UMR 5005 Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali El-Naggar
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanran Huang
- Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | | | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Natàlia Corcoll
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Daniel S. Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Sino-Danish Center (SDC), Beijing, China
| | - Yolanda Pico
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV), Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Philippe Corvini
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Huan He
- Jiangsu Engineering Laboratory of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weina Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fidèle Suanon
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), University of Abomey-Calavi, Republic of Benin, Cotonou 01 BP 526, Benin
| | - Ferdi Brahushi
- Department of Environment and Natural Resources, Agricultural University of Tirana, 1029 Tirana, Albania
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Syed A. Hashsham
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Marko Virta
- Department of Microbiology, University of Helsinki, 00010 Helsinki, Finland
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Louis A. Tremblay
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa 1142, New Zealand
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing 100083, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720 BA Bilthoven, The Netherlands
- Leiden University, Center for Environmental Studies, Leiden, the Netherlands
| | - Edward Topp
- Agroecology Mixed Research Unit, INRAE, 17 rue Sully, 21065 Dijon Cedex, France
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Taolin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120 Almeria, Spain
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, 53115 Bonn, Germany
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yong-guan Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias C. Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - James M. Tiedje
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Yang Y, Li G, Li Z, Lu L. The roles of typical emerging pollutants on N 2O emissions during biological nitrogen removal from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172851. [PMID: 38685430 DOI: 10.1016/j.scitotenv.2024.172851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
N2O as a potent greenhouse gas often generates in the biological nitrogen removal (BNR) processes during wastewater treatment, which makes BNR become an important greenhouse gas emission source. The emerging pollutants (EPs) are ubiquitous in wastewater and they have shown to influence the BNR processes. However, the deep discussion on potential impacts of EPs on N2O emissions during BNR is rare. Moreover, the experimental parameters for EPs investigation in most of literatures are generally not in line with real-world BNR processes, which calls for deep elucidating the roles of EPs on N2O production and emission. In this work, a critical review summarizes the existing literature about influences of typical EPs on N2O emissions and associated mechanisms during BNR, and it discusses the impacts of some easily overlooked factors, such as real EPs environmental concentrations, EPs bioaccumulation, and multiple EPs coexistence on N2O emissions. This review will provide an insight into exploring and mitigating threats posed by typical EPs on N2O emissions.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Guifeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Zhida Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
7
|
Li X, Shen X, Jiang W, Xi Y, Li S. Comprehensive review of emerging contaminants: Detection technologies, environmental impact, and management strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116420. [PMID: 38701654 DOI: 10.1016/j.ecoenv.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Emerging contaminants (ECs) are a diverse group of unregulated pollutants increasingly present in the environment. These contaminants, including pharmaceuticals, personal care products, endocrine disruptors, and industrial chemicals, can enter the environment through various pathways and persist, accumulating in the food chain and posing risks to ecosystems and human health. This comprehensive review examines the chemical characteristics, sources, and varieties of ECs. It critically evaluates the current understanding of their environmental and health impacts, highlighting recent advancements and challenges in detection and analysis. The review also assesses existing regulations and policies, identifying shortcomings and proposing potential enhancements. ECs pose significant risks to wildlife and ecosystems by disrupting animal hormones, causing genetic alterations that diminish diversity and resilience, and altering soil nutrient dynamics and the physical environment. Furthermore, ECs present increasing risks to human health, including hormonal disruptions, antibiotic resistance, endocrine disruption, neurological effects, carcinogenic effects, and other long-term impacts. To address these critical issues, the review offers recommendations for future research, emphasizing areas requiring further investigation to comprehend the full implications of these contaminants. It also suggests increased funding and support for research, development of advanced detection technologies, establishment of standardized methods, adoption of precautionary regulations, enhanced public awareness and education, cross-sectoral collaboration, and integration of scientific research into policy-making. By implementing these solutions, we can improve our ability to detect, monitor, and manage ECs, reducing environmental and public health risks.
Collapse
Affiliation(s)
- Xingyu Li
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China.
| | - Xiaojing Shen
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China
| | - Weiwei Jiang
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China
| | - Yongkai Xi
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China
| | - Song Li
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
8
|
Dagwar PP, Dutta D. Landfill leachate a potential challenge towards sustainable environmental management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171668. [PMID: 38485011 DOI: 10.1016/j.scitotenv.2024.171668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
The increasing amount of waste globally has led to a rise in the use of landfills, causing more pollutants to be released through landfill leachate. This leachate is a harmful mix formed from various types of waste at a specific site, and careful disposal is crucial to prevent harm to the environment. Understanding the physical and chemical properties, age differences, and types of landfills is essential to grasp how landfill leachate behaves in the environment. The use of Sustainable Development Goals (SDGs) in managing leachate is noticeable, as applying these goals directly is crucial in reducing the negative effects of landfill leachate. This detailed review explores the origin of landfill leachate, its characteristics, global classification by age, composition analysis, consequences of mismanagement, and the important role of SDGs in achieving sustainable landfill leachate management. The aim is to provide a perspective on the various aspects of landfill leachate, covering its origin, key features, global distribution, environmental impacts from poor management, and importance of SDGs which can guide for sustainable mitigation within a concise framework.
Collapse
Affiliation(s)
- Pranav Prashant Dagwar
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522 240, India
| | - Deblina Dutta
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522 240, India.
| |
Collapse
|
9
|
Brião GDV, da Costa TB, Antonelli R, Costa JM. Electrochemical processes for the treatment of contaminant-rich wastewater: A comprehensive review. CHEMOSPHERE 2024; 355:141884. [PMID: 38575083 DOI: 10.1016/j.chemosphere.2024.141884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Global water demand and environmental concerns related to climate change require industries to develop high-efficiency wastewater treatment methods to remove pollutants. Likewise, toxic pollutants present in wastewater negatively affect the environment and human health, requiring effective treatment. Although conventional treatment processes remove carbon and nutrients, they are insufficient to remove pharmaceuticals, pesticides, and plasticizers. Electrochemical processes effectively remove pollutants from wastewater through the mineralization of non-biodegradable pollutants with consequent conversion into biodegradable compounds. Its advantages include easy operation, versatility, and short reaction time. In this way, this review initially provides a global water scenario with a view to the future. It comprises global demand, treatment methods, and pollution of water resources, addressing various contaminants such as heavy metals, nutrients, organic compounds, and emerging contaminants. Subsequently, the fundamentals of electrochemical treatments are presented as well as electrochemical treatments, highlighting the latest studies involving electrocoagulation, electroflocculation, electroflotation, capacitive deionization and its derivatives, eletrodeionization, and electrochemical advanced oxidation process. Finally, the challenges and perspectives were discussed. In this context, electrochemical processes have proven promising and effective for the treatment of water and wastewater, allowing safe reuse practices and purification with high contaminant removal.
Collapse
Affiliation(s)
- Giani de Vargas Brião
- Center of Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, Trabalhador São Carlense Ave, 400, São Carlos 13566-590, SP, Brazil
| | | | - Raissa Antonelli
- Department of Chemical Engineering, University of São Paulo, Prof. Luciano Gualberto Ave, tr. 3, 380, São Paulo 05508-010, SP, Brazil
| | - Josiel Martins Costa
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
10
|
Abioye SO, Majooni Y, Moayedi M, Rezvani H, Kapadia M, Yousefi N. Graphene-based nanomaterials for the removal of emerging contaminants of concern from water and their potential adaptation for point-of-use applications. CHEMOSPHERE 2024; 355:141728. [PMID: 38499073 DOI: 10.1016/j.chemosphere.2024.141728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Considering the plethora of work on the exceptional environmental performance of 2D nanomaterials, there is still a missing link in addressing their practical application in point-of-use (POU) water treatment. By reviewing the exceptional environmental performance of 2D nanomaterials with specific emphasis on graphene and its derivatives, this review aims at inspiring further discussions and research in graphene-based POU water treatment with particular focus on the removal of emerging contaminants of concern (ECCs), which is largely missing in the literature. We outlined the prevalence of ECCs in the environment, their health effects both on humans and marine life, and the potential of efficiently removing them from water using three-dimensional graphene-based macrostructures to ensure ease of adsorbent recovery and reuse compared to nanostructures. Given various successful studies showing superior adsorption capacity of graphene nanosheets, we give an account of the recent developments in graphene-based adsorbents. Moreover, several cost-effective materials which can be easily self-assembled with nanosheets to improve their environmental performance and safety for POU water treatment purposes were highlighted. We highlighted the strategy to overcome challenges of adsorbent regeneration and contaminant degradation; and concluded by noting the need for policy makers to act decisively considering the conservative nature of the water treatment industry, and the potential health risks from ingesting ECCs through drinking water. We further justified the need for the development of advanced POU water treatment devices in the face of the growing challenges regarding ECCs in surface water, and the rising cases of drinking water advisories across the world.
Collapse
Affiliation(s)
- Samson Oluwafemi Abioye
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Yalda Majooni
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada; Department of Aerospace Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Mahsa Moayedi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Hadi Rezvani
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Mihir Kapadia
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Nariman Yousefi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada.
| |
Collapse
|
11
|
Marumure J, Simbanegavi TT, Makuvara Z, Karidzagundi R, Alufasi R, Goredema M, Gufe C, Chaukura N, Halabowski D, Gwenzi W. Emerging organic contaminants in drinking water systems: Human intake, emerging health risks, and future research directions. CHEMOSPHERE 2024; 356:141699. [PMID: 38554874 DOI: 10.1016/j.chemosphere.2024.141699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Few earlier reviews on emerging organic contaminants (EOCs) in drinking water systems (DWS) focused on their detection, behaviour, removal and fate. Reviews on multiple exposure pathways, human intake estimates, and health risks including toxicokinetics, and toxicodynamics of EOCs in DWS are scarce. This review presents recent advances in human intake and health risks of EOCs in DWS. First, an overview of the evidence showing that DWS harbours a wide range of EOCs is presented. Multiple human exposure to EOCs occurs via ingestion of drinking water and beverages, inhalation and dermal pathways are discussed. A potential novel exposure may occur via the intravenous route in dialysis fluids. Analysis of global data on pharmaceutical pollution in rivers showed that the cumulative concentrations (μg L-1) of pharmaceuticals (mean ± standard error of the mean) were statistically more than two times significantly higher (p = 0.011) in South America (11.68 ± 5.29), Asia (9.97 ± 3.33), Africa (9.48 ± 2.81) and East Europe (8.09 ± 4.35) than in high-income regions (2.58 ± 0.48). Maximum cumulative concentrations of pharmaceuticals (μg L-1) decreased in the order; Asia (70.7) had the highest value followed by South America (68.8), Africa (51.3), East Europe (32.0) and high-income regions (17.1) had the least concentration. The corresponding human intake via ingestion of untreated river water was also significantly higher in low- and middle-income regions than in their high-income counterparts. For each region, the daily intake of pharmaceuticals was highest in infants, followed by children and then adults. A critique of the human health hazards, including toxicokinetics and toxicodynamics of EOCs is presented. Emerging health hazards of EOCs in DWS include; (1) long-term latent and intergenerational effects, (2) the interactive health effects of EOC mixtures, (3) the challenges of multifinality and equifinality, and (4) the Developmental Origins of Health and Disease hypothesis. Finally, research needs on human health hazards of EOCs in DWS are presented.
Collapse
Affiliation(s)
- Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, P. O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Rangarirayi Karidzagundi
- Materials Development Unit, Zimbabwe Open University, P.O. Box MP1119 Mount Pleasant, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Marvelous Goredema
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, Box CY55, 18A Borrowdale Road, Harare, Zimbabwe
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| | - Willis Gwenzi
- Currently: Biosystems and Environmental Engineering Research Group, 380, New Adylin, Westgate, Harare, Zimbabwe; Formerly: Alexander von Humboldt Fellow & Guest/Visiting Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213, Witzenhausen, Germany; Formerly: Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| |
Collapse
|
12
|
Qian Y, Guan L, Ke Y, Wang L, Wang X, Yu N, Yu Q, Wei S, Geng J. Unveiling intricate transformation pathways of emerging contaminants during wastewater treatment processes through simplified network analysis. WATER RESEARCH 2024; 253:121299. [PMID: 38387265 DOI: 10.1016/j.watres.2024.121299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
As the key stage for purifying wastewater, elimination of emerging contaminants (ECs) is found to be fairly low in wastewater treatment plants (WWTPs). However, less knowledge is obtained regarding the transformation pathways between various chemical structures of ECs under different treatment processes. This study unveiled the transformation pathways of ECs with different structures in 15 WWTPs distributed across China by simplified network analysis (SNA) we proposed. After treatment, the molecular weight of the whole component of wastewater decreased and the hydrophilicity increased. There are significant differences in the structure of eliminated, consistent and formed pollutants. Amino acids, peptides, and analogues (AAPAs) were detected most frequently and most removable. Benzenoids were refractory. Triazoles were often produced. The high-frequency reactions in different WWTPs were similar, (de)methylation and dehydration occurred most frequently. Different biological treatment processes performed similarly, while some advanced treatment processes differed, such as a significant increase of -13.976 (2HO reaction) paired mass distances (PMDs) in the chlorine alone process. Further, the common structural transformation was uncovered. 4 anti-hypertensive drugs, including irbesartan, valsartan, olmesartan, and losartan, were identified, along with 22 transformation products (TPs) of them. OH2 and H2O PMDs occurred most frequently and in 80.81 % of the parent-transformation product pairs, the intensity of the product was higher than parent in effluents, whose risk should be considered in future assessment activity. Together our results provide a macrography perspective on the transformation processes of ECs in WWTPs. In the future, selectively adopting wastewater treatment technology according to structures is conductive for eliminating recalcitrant ECs in WWTPs.
Collapse
Affiliation(s)
- Yuli Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Linchang Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Yunhao Ke
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Liye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Qingmiao Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China.
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
13
|
Li X, Niu H, Huang Z, Zhang M, Xing M, Chen Z, Wu L, Xu P. Deciphering the Role of the Gut Microbiota in Exposure to Emerging Contaminants and Diabetes: A Review. Metabolites 2024; 14:108. [PMID: 38393000 PMCID: PMC10890638 DOI: 10.3390/metabo14020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Emerging pollutants, a category of compounds currently not regulated or inadequately regulated by law, have recently become a focal point of research due to their potential toxic effects on human health. The gut microbiota plays a pivotal role in human health; it is particularly susceptible to disruption and alteration upon exposure to a range of toxic environmental chemicals, including emerging contaminants. The disturbance of the gut microbiome caused by environmental pollutants may represent a mechanism through which environmental chemicals exert their toxic effects, a mechanism that is garnering increasing attention. However, the discussion on the toxic link between emerging pollutants and glucose metabolism remains insufficiently explored. This review aims to establish a connection between emerging pollutants and glucose metabolism through the gut microbiota, delving into the toxic impacts of these pollutants on glucose metabolism and the potential role played by the gut microbiota.
Collapse
Affiliation(s)
- Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Huixia Niu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Zhengliang Huang
- Disease Prevention and Control Center of Jingning She Autonomous County, Lishui 323500, China
| | - Man Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| |
Collapse
|
14
|
Johnson TA, Abrahamsson DP. Quantification of chemicals in non-targeted analysis without analytical standards - Understanding the mechanism of electrospray ionization and making predictions. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2024; 37:100529. [PMID: 38312491 PMCID: PMC10836048 DOI: 10.1016/j.coesh.2023.100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The constant creation and release of new chemicals to the environment is forming an ever-widening gap between available analytical standards and known chemicals. Developing non-targeted analysis (NTA) methods that have the ability to detect a broad spectrum of compounds is critical for research and analysis of emerging contaminants. There is a need to develop methods that make it possible to identify compound structures from their MS and MS/MS information and quantify them without analytical standards. Method refinements that utilize machine learning algorithms and chemical descriptors to estimate the instrument response of particular compounds have made progress in recent years. This narrative review seeks to summarize the current state of the field of non-targeted analysis (NTA) toward quantification of unknowns without the use of analytical standards. Despite the limited accumulation of validation studies on real samples, the ongoing enhancement in data processing and refinement of machine learning tools could lead to more comprehensive chemical coverage of NTA and validated quantitative NTA methods, thus boosting confidence in their usage and enhancing the utility of quantitative NTA.
Collapse
Affiliation(s)
- Trevor A Johnson
- Division of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University
| | - Dimitri P Abrahamsson
- Division of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University
| |
Collapse
|
15
|
Mofijur M, Hasan MM, Ahmed SF, Djavanroodi F, Fattah IMR, Silitonga AS, Kalam MA, Zhou JL, Khan TMY. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122889. [PMID: 37972679 DOI: 10.1016/j.envpol.2023.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Emerging contaminants (ECs) are increasingly recognized as threats to human health and ecosystems. This review evaluates advanced analytical methods, particularly mass spectrometry, for detecting ECs and understanding their toxicity, transformation pathways, and environmental distribution. Our findings underscore the reliability of current techniques and the potential of upcoming methods. The adverse effects of ECs on aquatic life necessitate both in vitro and in vivo toxicity assessments. Evaluating the distribution and degradation of ECs reveals that they undergo physical, chemical, and biological transformations. Remediation strategies such as advanced oxidation, adsorption, and membrane bioreactors effectively treat EC-contaminated waters, with combinations of these techniques showing the highest efficacy. To minimize the impact of ECs, a proactive approach involving monitoring, regulations, and public education is vital. Future research should prioritize the refining of detection methods and formulation of robust policies for EC management.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - I M R Fattah
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - A S Silitonga
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - M A Kalam
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - John L Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
16
|
Niu H, Xu M, Tu P, Xu Y, Li X, Xing M, Chen Z, Wang X, Lou X, Wu L, Sun S. Emerging Contaminants: An Emerging Risk Factor for Diabetes Mellitus. TOXICS 2024; 12:47. [PMID: 38251002 PMCID: PMC10819641 DOI: 10.3390/toxics12010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Abstract
Emerging contaminants have been increasingly recognized as critical determinants in global public health outcomes. However, the intricate relationship between these contaminants and glucose metabolism remains to be fully elucidated. The paucity of comprehensive clinical data, coupled with the need for in-depth mechanistic investigations, underscores the urgency to decipher the precise molecular and cellular pathways through which these contaminants potentially mediate the initiation and progression of diabetes mellitus. A profound understanding of the epidemiological impact of these emerging contaminants, as well as the elucidation of the underlying mechanistic pathways, is indispensable for the formulation of evidence-based policy and preventive interventions. This review systematically aggregates contemporary findings from epidemiological investigations and delves into the mechanistic correlates that tether exposure to emerging contaminants, including endocrine disruptors, perfluorinated compounds, microplastics, and antibiotics, to glycemic dysregulation. A nuanced exploration is undertaken focusing on potential dietary sources and the consequential role of the gut microbiome in their toxic effects. This review endeavors to provide a foundational reference for future investigations into the complex interplay between emerging contaminants and diabetes mellitus.
Collapse
Affiliation(s)
- Huixia Niu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Manjin Xu
- School of Public Health, Xiamen University, Xiang’an South Road, Xiang’an District, Xiamen 361102, China; (M.X.); (Y.X.)
| | - Pengcheng Tu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Yunfeng Xu
- School of Public Health, Xiamen University, Xiang’an South Road, Xiang’an District, Xiamen 361102, China; (M.X.); (Y.X.)
| | - Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
17
|
Zeb A, Liu W, Ali N, Shi R, Wang Q, Wang J, Li J, Yin C, Liu J, Yu M, Liu J. Microplastic pollution in terrestrial ecosystems: Global implications and sustainable solutions. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132636. [PMID: 37778309 DOI: 10.1016/j.jhazmat.2023.132636] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Microplastic (MPs) pollution has become a global environmental concern with significant impacts on ecosystems and human health. Although MPs have been widely detected in aquatic environments, their presence in terrestrial ecosystems remains largely unexplored. This review examines the multifaceted issues of MPs pollution in terrestrial ecosystem, covering various aspects from additives in plastics to global legislation and sustainable solutions. The study explores the widespread distribution of MPs worldwide and their potential antagonistic interactions with co-occurring contaminants, emphasizing the need for a holistic understanding of their environmental implications. The influence of MPs on soil and plants is discussed, shedding light on the potential consequences for terrestrial ecosystems and agricultural productivity. The aging mechanisms of MPs, including photo and thermal aging, are elucidated, along with the factors influencing their aging process. Furthermore, the review provides an overview of global legislation addressing plastic waste, including bans on specific plastic items and levies on single-use plastics. Sustainable solutions for MPs pollution are proposed, encompassing upstream approaches such as bioplastics, improved waste management practices, and wastewater treatment technologies, as well as downstream methods like physical and biological removal of MPs. The importance of international collaboration, comprehensive legislation, and global agreements is underscored as crucial in tackling this pervasive environmental challenge. This review may serve as a valuable resource for researchers, policymakers, and stakeholders, providing a comprehensive assessment of the environmental impact and potential risks associated with MPs.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Chuan Yin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianv Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
18
|
Pesce S, Sanchez W, Leenhardt S, Mamy L. Recommendations to reduce the streetlight effect and gray areas limiting the knowledge of the effects of plant protection products on biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-31310-0. [PMID: 38051484 DOI: 10.1007/s11356-023-31310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Preserving biodiversity against the adverse effects of plant protection products (PPPs) is a major environmental and societal issue. However, despite intensive investigation into the ecotoxicological effects of PPPs, the knowledge produced remains fragmented given the sheer diversity of PPPs. This is due, at least in part, to a strong streetlight effect in the field of ecotoxicology. Indeed, while some PPPs have been investigated in numerous ecotoxicological studies, there are many for which the scientific literature still has little or no information on their ecotoxicological risks and effects. The PPPs under the streetlight include a large variety of legacy substances and a more limited number of more recent or currently-in-use substances, such as the herbicide glyphosate and the neonicotinoid insecticides. Furthermore, many of the most recent PPPs (including those used in biocontrol) and PPP transformation products (TPs) resulting from abiotic and/or biotic degradation are rarely addressed in the international literature in the field of ecotoxicology. Here, based on a recent collective scientific assessment of the effects of PPPs on biodiversity and ecosystem services in the French and European contexts, this article sets out to illustrate the limitations and biases caused by the streetlight effect and numbers of gray areas, and issue recommendations on how to overcome them.
Collapse
Affiliation(s)
| | | | | | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| |
Collapse
|
19
|
Zhang Z, He D, Zhang K, Yang H, Zhao S, Qu J. Recent Advances in Black Phosphorous-Based Photocatalysts for Degradation of Emerging Contaminants. TOXICS 2023; 11:982. [PMID: 38133383 PMCID: PMC10747269 DOI: 10.3390/toxics11120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The recalcitrant nature of emerging contaminants (ECs) in aquatic environments necessitates the development of effective strategies for their remediation, given the considerable impacts they pose on both human health and the delicate balance of the ecosystem. Semiconductor-based photocatalytic technology is recognized for its dual benefits in effectively addressing both ECs and energy-related challenges simultaneously. Among the plethora of photocatalysts, black phosphorus (BP) stands as a promising nonmetallic candidate, offering a host of advantages including its tunable direct band gap, broad-spectrum light absorption capabilities, and exceptional charge mobility. Nevertheless, pristine BP frequently underperforms, primarily due to issues related to its limited ambient stability and the rapid recombination of photogenerated electron-hole pairs. To overcome these challenges, substantial research efforts have been devoted to the creation of BP-based photocatalysts in recent years. However, there is a noticeable absence of reviews regarding the advancement of BP-based materials for the degradation of ECs in aqueous solutions. Therefore, to fill this gap, a comprehensive review is undertaken. In this review, we first present an in-depth examination of the fabrication processes for bulk BP and BP nanosheets (BPNS). The review conducts a thorough analysis and comparison of the merits and limitations inherent in each method, thereby delineating the most auspicious avenues for future research. Then, in line with the pathways followed by photogenerated electron-hole pairs at the interface, BP-based photocatalysts are systematically categorized into heterojunctions (Type I, Type II, Z-scheme, and S-scheme) and hybrids, and their photocatalytic performances against various ECs and the corresponding degradation mechanisms are comprehensively summarized. Finally, this review presents personal insights into the prospective avenues for advancing the field of BP-based photocatalysts for ECs remediation.
Collapse
Affiliation(s)
- Zhaocheng Zhang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China;
| | - Dongyang He
- School of Environment, Northeast Normal University, Changchun 130117, China; (K.Z.); (H.Y.); (S.Z.)
| | - Kangning Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China; (K.Z.); (H.Y.); (S.Z.)
| | - Hao Yang
- School of Environment, Northeast Normal University, Changchun 130117, China; (K.Z.); (H.Y.); (S.Z.)
| | - Siyu Zhao
- School of Environment, Northeast Normal University, Changchun 130117, China; (K.Z.); (H.Y.); (S.Z.)
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun 130117, China; (K.Z.); (H.Y.); (S.Z.)
| |
Collapse
|
20
|
Subramanian A, Saravanan M, Rajasekhar B, Chakraborty S, Sivagami K, Tamizhdurai P, Mangesh VL, Selvaraj M, Kumar NS, Al-Fatesh AS. Comparative risk assessment studies estimating the hazard posed by long-term consumption of PPCPs in river water. Food Chem Toxicol 2023; 182:114169. [PMID: 37940032 DOI: 10.1016/j.fct.2023.114169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
This study assesses the risk due to Emerging Contaminants (ECs), present in Indian rivers - Ganga (650 million inhabitants), Yamuna (57 million inhabitants), and Musi (7,500,000 inhabitants), 13 ECs in total, have been used for risk assessment studies. Their concentrations (e.g., Fluconazole: 236950 μg/l, Ciprofloxacin: 31000 μg/l, Caffeine: 21.57 μg/l, etc.) were higher than the threshold concentrations for safe consumption (e.g. Fluconazole allowable level is 3.8 μg/l, and Ciprofloxacin allowable level is 0.51 μg/l). Three different pathways of emerging contaminants (ECs) transfer (oral water ingestion, oral fish ingestion, and dermal water contact) have been considered and the study is carried out in 2 ways: (i) deterministic and (ii) probabilistic approaches (using Monte Carlo iterative methods with 10000 simulations) with the aid of a software - Risk (version 7.5). The risk value, quantified by Hazard Quotient (HQ) is higher than the allowable limit of 1 for several compounds in the three rivers like Fluconazole (HQ = 18276.713), Ciprofloxacin (HQ = 278.675), Voriconazole (HQ = 14.578), Cetirizine (HQ = 1006.917), Moxifloxacin (HQ = 8.076), Caffeine (HQ = 55.150), and Ibuprofen (HQ = 9.503). Results show that Fluconazole and Caffeine pose the maximum risk in the rivers via the "oral pathway" that allows maximum transfer of the ECs present in the river (93% and 82% contribution to total risk). The risk values vary from nearly 25 times to 19000 times the United States Environmental Protection Agency (USEPA) threshold limit of 1 (e.g., Caffeine Infant Risk = 25.990 and Fluconazole Adult Risk = 18276.713). The most susceptible age group, from this study, is "Adults" (19-70 years old), who stand the chance of experiencing the adverse health hazards associated with prolonged over-exposure to the ECs present in the river waters. Musi has the maximum concentration of pollutants and requires immediate remediation measures. Further, both methods indicate that nearly 60-70% of the population in all the three study areas are at risk of developing health hazards associated with over-exposure to ECs regularly, making the areas inhabitable.
Collapse
Affiliation(s)
- Aishwarya Subramanian
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - Mridula Saravanan
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - Bokam Rajasekhar
- Research Associate, Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Madras, Chennai, India
| | - Samarshi Chakraborty
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - Krishanasamy Sivagami
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India.
| | - Perumal Tamizhdurai
- Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous) (Affiliated to the University of Madras, Chennai), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai, 600 106, Tamil Nadu, India.
| | - V L Mangesh
- Department of Marine Engineering, Indian Maritime University, 600119, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Nadavala Siva Kumar
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Ahmed S Al-Fatesh
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| |
Collapse
|
21
|
Shafi M, Jan R, Gani KM. Selection of priority emerging contaminants in surface waters of India, Pakistan, Bangladesh, and Sri Lanka. CHEMOSPHERE 2023; 341:139976. [PMID: 37657704 DOI: 10.1016/j.chemosphere.2023.139976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The challenge of emerging contaminants (ECs) in global surface water bodies and particularly in low- and middle-income countries such as India, Pakistan, Bangladesh, and Sri Lanka, is evident from the literature. The complexity arises from the high costs involved in EC analysis and the extensive list of ECs, which complicates the selection of essential compounds for scientific and regulatory investigations. Consequently, monitoring programs often include ECs that may have minimal significance within a region and do not pose known or suspected ecological or human health risks. This study aims to address this issue by employing a multi-risk assessment approach to identify priority ECs in the surface waters of the aforementioned countries. Through an analysis of occurrence levels and frequency data gathered from published literature, an optimized risk quotient (RQ) was derived. The findings reveal a priority list of 38 compounds that exhibit potential environmental risks and merit consideration in future water quality monitoring programs. Furthermore, the majority of antibiotics in India (12 out of 17) and Pakistan (7 out of 17) exhibit a risk quotient for antimicrobial resistance selection (RQAMR) greater than 1, highlighting the need for devising effective strategies to mitigate the escalation of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Mozim Shafi
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India; Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Ruby Jan
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India.
| |
Collapse
|
22
|
Narwal N, Katyal D, Kataria N, Rose PK, Warkar SG, Pugazhendhi A, Ghotekar S, Khoo KS. Emerging micropollutants in aquatic ecosystems and nanotechnology-based removal alternatives: A review. CHEMOSPHERE 2023; 341:139945. [PMID: 37648158 DOI: 10.1016/j.chemosphere.2023.139945] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
There is a significant concern about the accessibility of uncontaminated and safe drinking water, a fundamental necessity for human beings. This concern is attributed to the toxic micropollutants from several emission sources, including industrial toxins, agricultural runoff, wastewater discharges, sewer overflows, landfills, algal blooms and microbiota. Emerging micropollutants (EMs) encompass a broad spectrum of compounds, including pharmaceutically active chemicals, personal care products, pesticides, industrial chemicals, steroid hormones, toxic nanomaterials, microplastics, heavy metals, and microorganisms. The pervasive and enduring nature of EMs has resulted in a detrimental impact on global urban water systems. Of late, these contaminants are receiving more attention due to their inherent potential to generate environmental toxicity and adverse health effects on humans and aquatic life. Although little progress has been made in discovering removal methodologies for EMs, a basic categorization procedure is required to identify and restrict the EMs to tackle the problem of these emerging contaminants. The present review paper provides a crude classification of EMs and their associated negative impact on aquatic life. Furthermore, it delves into various nanotechnology-based approaches as effective solutions to address the challenge of removing EMs from water, thereby ensuring potable drinking water. To conclude, this review paper addresses the challenges associated with the commercialization of nanomaterial, such as toxicity, high cost, inadequate government policies, and incompatibility with the present water purification system and recommends crucial directions for further research that should be pursued.
Collapse
Affiliation(s)
- Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India.
| | - Navish Kataria
- Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India.
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Sudhir Gopalrao Warkar
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur Village, Rohini, 110042, New Delhi, India
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Suresh Ghotekar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
23
|
Lami R, Urios L, Molmeret M, Grimaud R. Quorum sensing in biofilms: a key mechanism to target in ecotoxicological studies. Crit Rev Microbiol 2023; 49:786-804. [PMID: 36334083 DOI: 10.1080/1040841x.2022.2142089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Our environment is heavily contaminated by anthropogenic compounds, and this issue constitutes a significant threat to all life forms, including biofilm-forming microorganisms. Cell-cell interactions shape microbial community structures and functions, and pollutants that affect intercellular communications impact biofilm functions and ecological roles. There is a growing interest in environmental science fields for evaluating how anthropogenic pollutants impact cell-cell interactions. In this review, we synthesize existing literature that evaluates the impacts of quorum sensing (QS), which is a widespread density-dependent communication system occurring within many bacterial groups forming biofilms. First, we examine the perturbating effects of environmental contaminants on QS circuits; and our findings reveal that QS is an essential yet underexplored mechanism affected by pollutants. Second, our work highlights that QS is an unsuspected and key resistance mechanism that assists bacteria in dealing with environmental contamination (caused by metals or organic pollutants) and that favors bacterial growth in unfavourable environments. We emphasize the value of considering QS a critical mechanism for monitoring microbial responses in ecotoxicology. Ultimately, we determine that QS circuits constitute promising targets for innovative biotechnological approaches with major perspectives for applications in the field of environmental science.
Collapse
Affiliation(s)
- Raphaël Lami
- Sorbonne Université, USR3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer, France
- Centre National de la Recherche Scientifique, USR 3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Laurent Urios
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Maëlle Molmeret
- Université de Toulon, Laboratoire MAPIEM, EA4323, Avenue de l'université, BP 20132, La Garde Cedex, France
| | - Régis Grimaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
24
|
Giráldez A, Fdez-Sanromán A, Terrón D, Sanromán MA, Pazos M. Nanostructured copper-organic frameworks for the generation of sulphate radicals: application in wastewater disinfection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-29394-9. [PMID: 37670094 DOI: 10.1007/s11356-023-29394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
In recent years, the presence of pathogens in the environment has become an issue of widespread concern in society. Thus, new research lines have been developed regarding the removal of pathogens and persistent pollutants in water. In this research, the efficacy of nanostructure copper-organic framework, HKUST-1, has been evaluated for its ability to eliminate Escherichia coli and generate sulphate radicals as catalyst for the treatment of effluents with a high microbiological load via peroxymonosulphate (PMS) activation. The disinfection process has been optimized, achieving complete elimination of Escherichia coli growth after 30 min of testing using a concentration of 60.5 mg/L HKUST-1 and 0.1 mM of PMS. To overcome the operational limitations of this system and facilitate its handling and reutilization in a flow disinfection process, HKUST-1 has been efficiently encapsulated on polyacrylonitrile as a novel development that could be scaled up to achieve continuous treatment.
Collapse
Affiliation(s)
- Alba Giráldez
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Antía Fdez-Sanromán
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Daniel Terrón
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - M Angeles Sanromán
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Marta Pazos
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain.
| |
Collapse
|
25
|
Pozzebon EA, Seifert L. Emerging environmental health risks associated with the land application of biosolids: a scoping review. Environ Health 2023; 22:57. [PMID: 37599358 PMCID: PMC10440945 DOI: 10.1186/s12940-023-01008-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Over 40% of the six million dry metric tons of sewage sludge, often referred to as biosolids, produced annually in the United States is land applied. Biosolids serve as a sink for emerging pollutants which can be toxic and persist in the environment, yet their fate after land application and their impacts on human health have not been well studied. These gaps in our understanding are exacerbated by the absence of systematic monitoring programs and defined standards for human health protection. METHODS The purpose of this paper is to call critical attention to the knowledge gaps that currently exist regarding emerging pollutants in biosolids and to underscore the need for evidence-based testing standards and regulatory frameworks for human health protection when biosolids are land applied. A scoping review methodology was used to identify research conducted within the last decade, current regulatory standards, and government publications regarding emerging pollutants in land applied biosolids. RESULTS Current research indicates that persistent organic compounds, or emerging pollutants, found in pharmaceuticals and personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS) have the potential to contaminate ground and surface water, and the uptake of these substances from soil amended by the land application of biosolids can result in contamination of food sources. Advanced technologies to remove these contaminants from wastewater treatment plant influent, effluent, and biosolids destined for land application along with tools to detect and quantify emerging pollutants are critical for human health protection. CONCLUSIONS To address these current risks, there needs to be a significant investment in ongoing research and infrastructure support for advancements in wastewater treatment; expanded manufacture and use of sustainable products; increased public communication of the risks associated with overuse of pharmaceuticals and plastics; and development and implementation of regulations that are protective of health and the environment.
Collapse
Affiliation(s)
- Elizabeth A Pozzebon
- California Conference of Directors of Environmental Health, P.O. Box 2017, Cameron Park, CA, 95682-2017, USA
| | - Lars Seifert
- California Conference of Directors of Environmental Health, P.O. Box 2017, Cameron Park, CA, 95682-2017, USA.
| |
Collapse
|
26
|
Vargas-Berrones K, Ocampo-Perez R, Rodríguez-Torres I, Medellín-Castillo NA, Flores-Ramírez R. Molecularly imprinted polymers (MIPs) as efficient catalytic tools for the oxidative degradation of 4-nonylphenol and its by-products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90741-90756. [PMID: 37462867 DOI: 10.1007/s11356-023-28653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/02/2023] [Indexed: 08/24/2023]
Abstract
Water pollution is a current global concern caused by emerging pollutants like nonylphenol (NP). This endocrine disruptor cannot be efficiently removed with traditional wastewater treatment plants (WTPs). Therefore, this work aimed to evaluate the adsorption influence of molecularly imprinted polymers (MIPs) on the oxidative degradation (ozone and ultraviolet irradiations) of 4-nonylphenol (4-NP) and its by-products as a coadjuvant in WTPs. MIPs were synthesized and characterized; the effect of the degradation rate under system operating conditions was studied by Box-Behnken response surface design of experiments. The variables evaluated were 4-NP concentration, ozone exposure time, pH, and MIP amount. Results show that the MIPs synthesized by co-precipitation and bulk polymerizations obtained the highest retention rates (> 90%). The maximum adsorption capacities for 4-NP were 201.1 mg L-1 and 500 mg L-1, respectively. The degradation percentages under O3 and UV conditions reached 98-100% at 120 s of exposure at different pHs. The degradation products of 4-NP were compounds with carboxylic and ketonic acids, and the MIP adsorption was between 50 and 60%. Our results present the first application of MIPs in oxidation processes for 4-NP, representing starting points for the use of highly selective materials to identify and remove emerging pollutants and their degradation by-products in environmental matrices.
Collapse
Affiliation(s)
- Karla Vargas-Berrones
- Instituto Tecnológico Superior de Rioverde, Ma del Rosario, San Ciro de Acosta-Rioverde 165, CP 79610, Rioverde, SLP, Mexico
| | - Raul Ocampo-Perez
- Centro de Investigación Y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Israel Rodríguez-Torres
- Instituto de Metalurgia-Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a Sección, 78210, San Luis Potosí, San Luis Potosí, Mexico
| | - Nahúm A Medellín-Castillo
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 8, 78290, San Luis Potosí, SLP, Mexico
| | - Rogelio Flores-Ramírez
- Coordinación Para La Innovación Y Aplicación de La Ciencia Y La Tecnología (CIACYT), Colonia Lomas Segunda Sección, Avenida Sierra Leona No. 550, CP 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
27
|
Giri A, Pant D, Chandra Srivastava V, Kumar M, Kumar A, Goswami M. Plant -microbe assisted emerging contaminants (ECs) removal and carbon cycling. BIORESOURCE TECHNOLOGY 2023:129395. [PMID: 37380038 DOI: 10.1016/j.biortech.2023.129395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Continuous increase in the level of atmospheric CO2 and environmental contaminates has aggravated various threats resulting from environmental pollution and climate change. Research into plant -microbe interaction has been a central concern of ecology for over the year. However, despite the clear contribution of plant -microbe to the global carbon cycle, the role of plant -microbe interaction in carbon pools, fluxes and emerging contaminants (ECs) removal are still a poorly understood. The use of plant and microbes in ECs removal and carbon cycling is an attractive strategy because microbes operate as biocatalysts to remove contaminants and plant roots offer a rich niche for their growth and carbon cycling. However, bio-mitigation of CO2 and removal of ECs is still under research phase because of the CO2 capture and fixation efficiency is too low for industrial purposes and cutting-edge removal methods have not been created for such emerging contaminants.
Collapse
Affiliation(s)
- Anand Giri
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Deepak Pant
- Departments of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala 176215, India.
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand 247667, India
| | - Manoj Kumar
- Indian Oil Corporation R&D Centre, Sector 13, Faridabad, India
| | - Ashok Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, India
| | - Meera Goswami
- Department of Zoology and Environmental Science, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India
| |
Collapse
|
28
|
Intisar A, Ramzan A, Hafeez S, Hussain N, Irfan M, Shakeel N, Gill KA, Iqbal A, Janczarek M, Jesionowski T. Adsorptive and photocatalytic degradation potential of porous polymeric materials for removal of pesticides, pharmaceuticals, and dyes-based emerging contaminants from water. CHEMOSPHERE 2023:139203. [PMID: 37315851 DOI: 10.1016/j.chemosphere.2023.139203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/04/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Life on earth is dependent on clean water, which is crucial for survival. Water supplies are getting contaminated due to the growing human population and its associated industrialization, urbanization, and chemically improved agriculture. Currently, a large number of people struggle to find clean drinking water, a problem that is particularly serious in developing countries. To meet the enormous demand of clean water around the world, there is an urgent need of advanced technologies and materials that are affordable, easy to use, thermally efficient, portable, environmentally benign, and chemically durable. The physical, chemical and biological methods are used to eliminate insoluble materials and soluble pollutants from wastewater. In addition to cost, each treatment carries its limitations in terms of effectiveness, productivity, environmental effect, sludge generation, pre-treatment demands, operating difficulties, and the creation of potentially hazardous byproducts. To overcome the problems of traditional methods, porous polymers have distinguished themselves as practical and efficient materials for the treatment of wastewater because of their distinctive characteristics such as large surface area, chemical versatility, biodegradability, and biocompatibility. This study overviews improvement in manufacturing methods and the sustainable usage of porous polymers for wastewater treatment and explicitly discusses the efficiency of advanced porous polymeric materials for the removal of emerging pollutants viz. pesticides, dyes, and pharmaceuticals whereby adsorption and photocatalytic degradation are considered to be among the most promising methods for their effective removal. Porous polymers are considered excellent adsorbents for the mitigation of these pollutants as they are cost-effective and have greater porosities to facilitate penetration and adhesion of pollutants, thus enhance their adsorption functionality. Appropriately functionalized porous polymers can offer the potential to eliminate hazardous chemicals and making water useful for a variety of purposes thus, numerous types of porous polymers have been selected, discussed and compared especially in terms of their efficiencies against specific pollutants. The study also sheds light on numerous challenges faced by porous polymers in the removal of contaminants, their solutions and some associated toxicity issues.
Collapse
Affiliation(s)
- Azeem Intisar
- School of Chemistry, University of the Punjab, 54590, Pakistan.
| | - Arooj Ramzan
- School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Shahzar Hafeez
- School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab Lahore, Pakistan
| | - Muhammad Irfan
- Department of Biomedical Physics, Doctoral School of Exact Sciences, Adam Mickiewicz University Poznan, Poland
| | - Nasir Shakeel
- Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Komal Aziz Gill
- Division of Geochronology and Environmental Isotopes, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland
| | - Amjad Iqbal
- Department of Materials Technologies, Faculty of Materials Engineering, Silesian University of Technology, 44-100, Gliwice, Poland; Centre for Mechanical Engineering Materials and Processes, Department of Mechanical Engineering, University of Coimbra, Rua Lui's Reis Santos, 3030-788, Coimbra, Portugal
| | - Marcin Janczarek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland.
| |
Collapse
|
29
|
Long Y, Song L, Shu Y, Li B, Peijnenburg W, Zheng C. Evaluating the spatial and temporal distribution of emerging contaminants in the Pearl River Basin for regulating purposes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114918. [PMID: 37086620 DOI: 10.1016/j.ecoenv.2023.114918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Little information is available on how the types, concentrations, and distribution of chemicals have evolved over the years. The objective of the present study is therefore to review the spatial and temporal distribution profile of emerging contaminants with limited toxicology data in the pearl river basin over the years to build up the emerging contaminants database in this region for risk assessment and regulatory purposes. The result revealed that seven groups of emerging contaminants were abundant in this region, and many emerging contaminants had been detected at much higher concentrations before 2011. Specifically, antibiotics, phenolic compounds, and acidic pharmaceuticals were the most abundant emerging contaminants detected in the aquatic compartment, while phenolic compounds were of the most profound concern in soil. Flame retardants and plastics were the most frequently studied chemicals in organisms. The abundance of the field concentrations and frequencies varied considerably over the years, and currently available data can hardly be used for regulation purposes. It is suggested that watershed management should establish a regular monitoring scheme and comprehensive database to monitor the distribution of emerging contaminants considering the highly condensed population in this region. The priority monitoring list should be formed in consideration of historical abundance, potential toxic effects of emerging contaminants as well as the distribution of heavily polluting industries in the region.
Collapse
Affiliation(s)
- Ying Long
- Shenzhen Institute of Sustainable Development, Southern University of Science and Technology, Shenzhen 518055, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lan Song
- Shenzhen Institute of Sustainable Development, Southern University of Science and Technology, Shenzhen 518055, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yaqing Shu
- School of Navigation, Wuhan University of Technology, Wuhan 430063, China
| | - Bing Li
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Willie Peijnenburg
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Institute of Environmental Sciences (CML), Leiden University, Leiden RA 2300, the Netherlands
| | - Chunmiao Zheng
- Shenzhen Institute of Sustainable Development, Southern University of Science and Technology, Shenzhen 518055, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
30
|
Fan Y, Pan D, Yang M, Wang X. Radiolabelling and in vivo radionuclide imaging tracking of emerging pollutants in environmental toxicology: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161412. [PMID: 36621508 DOI: 10.1016/j.scitotenv.2023.161412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Emerging pollutants (EPs) have become a global concern, attracting tremendous attention because of serious threats to human and animal health. EP diversity emanates from their behaviour and ability to enter the body via multiple pathways and exhibit completely different distribution, transport, and excretion. To better understand the in vivo behaviour of EPs, we reviewed radiolabelling and in vivo radionuclide imaging tracking of various EPs, including micro- and nano-plastics, perfluoroalkyl substances, metal oxides, pharmaceutical and personal care products, and so on. Because this accurate and quantitative imaging approach requires the labelling of radionuclides onto EPs, the main strategies for radiolabelling were reviewed, such as synthesis with radioactive precursors, element exchange, proton beam activation, and modification. Spatial and temporal biodistribution of various EPs was summarised in a heat map, revealing that the absorption, transport, and excretion of EPs are markedly related to their type, size, and pathway into the body. These findings implicate the potential toxicity of diverse EPs in organs and tissues. Finally, we discussed the potential and challenges of radionuclide imaging tracking of EPs, which can be considered in future EPs studies.
Collapse
Affiliation(s)
- Yeli Fan
- School of Environmental Engineering, Wuxi University, Wuxi 214105, PR China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China.
| |
Collapse
|
31
|
Neumann KC, La D, Yoo H, Burkepile DE. Programmable Autonomous Water Samplers (PAWS): An inexpensive, adaptable and robust submersible system for time-integrated water sampling in freshwater and marine ecosystems. HARDWAREX 2023; 13:e00392. [PMID: 36683605 PMCID: PMC9852790 DOI: 10.1016/j.ohx.2022.e00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 12/02/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Water chemistry conditions in freshwater and marine environments can change rapidly over both space and time. This is especially true in environments that are exposed to anthropogenic impacts such as sedimentation, sewage, runoff and other types of pollution. It is critical in studying these systems that researchers have tools capable of accurately collecting water samples across relevant spatial and temporal scales. Here we present an inexpensive, open-source Programmable Autonomous Water Sampler (PAWS) that is open source, compact, robust, highly adaptable and submersible to 40 m. PAWS utilizes a time-integrated sampling approach by collecting a single sample in a syringe slowly over minutes to days. Once analyzed, data from the sample collected represents and integrated average of water chemistry conditions over time. Due to its adaptability and low cost, PAWS has the potential to improve the spatial and temporal coverage of many freshwater and marine studies.
Collapse
|
32
|
da Silva Montes C, Fernandes da Paixão L, Nunes B, Pimentel Nunes ZM, Pantoja Ferreira MA, Martins da Rocha R. Investigating spatial-temporal contamination for two environments of the Amazon estuary: A multivariate approach. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105883. [PMID: 36709654 DOI: 10.1016/j.marenvres.2023.105883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
An assessment of environmental quality in Amazonian estuaries utilizing histological and immunohistochemical biomarkers concomitantly with analyses of trace metals in the tissues of Sciades herzbergii, also considering physical chemical analyzes of the water. 352 animals were captured from two sites and during two periods (dry and rainy). Site 1: São Marcos Bay - heavy anthropic influence and Site 2: Caeté estuary-preserved estuary. In the laboratory, the fish were weighed (g) and measured (cm). Fragments of gills and liver were analyzed using histology and immunohistochemistry (Caspase 3). The specimens from Site 1 presented a low-value condition factor, with the highest concentrations of Al, Cd, and Hg appearing in the muscle, and most severe damages to gills and liver. In contrast, individuals from Site 2 presented a high-value condition factor and showed low metal concentrations in the muscle with only slight tissue lesions. Furthermore, our results demonstrated that seasonal changes affect metal modulation and pathologies in fish at Site 1. The sentinel species chosen in this study is considered a strong bioindicator of pollution and the combination of different biomarkers was efficient in providing a clear view of the signs of exposure to pollutants, and the risks posed to fish health by the presence of metals in the environment, especially in Site 1.
Collapse
Affiliation(s)
- Caroline da Silva Montes
- Laboratory of Cellular Ultrastructure and Immunohistochemistry, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, 66075-110, Brazil; Department of Zoology, Faculty of Natural Science and Oceanography, University of Concepción, Concepción, Chile.
| | - Leonardo Fernandes da Paixão
- Laboratory of Cellular Ultrastructure and Immunohistochemistry, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, 66075-110, Brazil
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Zélia Maria Pimentel Nunes
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Alameda Leandro Ribeiro S/n Aldeia, Bragança, PA, 68600-000, Brazil
| | - Maria Auxiliadora Pantoja Ferreira
- Laboratory of Cellular Ultrastructure and Immunohistochemistry, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, 66075-110, Brazil
| | - Rossineide Martins da Rocha
- Laboratory of Cellular Ultrastructure and Immunohistochemistry, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, 66075-110, Brazil
| |
Collapse
|
33
|
Khan AUH, Naidu R, Dharmarajan R, Fang C, Shon H, Dong Z, Liu Y. The interaction mechanisms of co-existing polybrominated diphenyl ethers and engineered nanoparticles in environmental waters: A critical review. J Environ Sci (China) 2023; 124:227-252. [PMID: 36182134 DOI: 10.1016/j.jes.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 06/16/2023]
Abstract
This review focuses on the occurrence and interactions of engineered nanoparticles (ENPs) and brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) in water systems and the generation of highly complex compounds in the environment. The release of ENPs and BFRs (e.g. PBDEs) to aquatic environments during their usage and disposal are summarised together with their key interaction mechanisms. The major interaction mechanisms including electrostatic, van der Waals, hydrophobic, molecular bridging and steric, hydrogen and π-bonding, cation bridging and ligand exchange were identified. The presence of ENPs could influence the fate and behaviour of PBDEs through the interactions as well as induced reactions under certain conditions which increases the formation of complex compounds. The interaction leads to alteration of behaviour for PBDEs and their toxic effects to ecological receptors. The intermingled compound (ENPs-BFRs) would show different behaviour from the parental ENPs or BFRs, which are currently lack of investigation. This review provided insights on the interactions of ENPs and BFRs in artificial, environmental water systems and wastewater treatment plants (WWTPs), which are important for a comprehensive risk assessment.
Collapse
Affiliation(s)
- Anwar Ul Haq Khan
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Raja Dharmarajan
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hokyong Shon
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW 2007, Australia
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijging 100191, China
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
34
|
Yuan Y, Jia H, Xu D, Wang J. Novel method in emerging environmental contaminants detection: Fiber optic sensors based on microfluidic chips. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159563. [PMID: 36265627 DOI: 10.1016/j.scitotenv.2022.159563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Recently, human industrial practices and certain activities have caused the widespread spread of emerging contaminants throughout the environmental matrix, even in trace amounts, which constitute a serious threat to human health and environmental ecology, and have therefore attracted the attention of research scholars. Different traditional techniques are used to monitor water pollutants, However, they still have some disadvantages such as high costs, ecological problems and treatment times, and require technicians and researchers to operate them effectively. There is therefore an urgent need to develop simple, inexpensive and highly sensitive methods to sense and detect these toxic environmental contaminants. Optical fiber microfluidic coupled sensors offer different advantages over other detection technologies, allowing manipulation of light through controlled microfluidics, precise detection results and good stability, and have therefore become a logical device for screening and identifying environmental contaminants. This paper reviews the application of fiber optic microfluidic sensors in emerging environmental contaminant detection, focusing on the characteristics of different emerging contaminant types, different types of fiber optic microfluidic sensors, methodological principles of detection, and specific emerging contaminant detection applications. The optical detection methods in fiber optic microfluidic chips and their respective advantages and disadvantages are analyzed in the discussion. The applications of fiber optic biochemical sensors in microfluidic chips, especially for the detection of emerging contaminants in the aqueous environment, such as personal care products, endocrine disruptors, and perfluorinated compounds, are reviewed. Finally, the prospects of fiber optic microfluidic coupled sensors in environmental detection and related fields are foreseen.
Collapse
Affiliation(s)
- Yang Yuan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - DanYu Xu
- Tianjin Academy of Eco-enviromental Sciences, Tianjin 300191, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
35
|
Behling L, da Luz VC, Pasquali GDL, Bazoti SF, Dalla Rosa C, Pereira P. Ibuprofen removal from synthetic effluents using Electrocoagulation-Peroxidation (ECP). ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:271. [PMID: 36607457 DOI: 10.1007/s10661-022-10879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Concerning water resources, several ordinances and legislation determine standards and conditions for the discharge of effluents into water bodies. However, several contaminants are not covered by these guidelines due to little knowledge of their long-term effects and because they are found in low concentrations. These contaminants are called emergent and this category includes drugs, such as anti-inflammatory drugs. The electrocoagulation process associated with advanced oxidation comes up as an alternative to conventional effluent treatment processes, and the objective of this study was to evaluate this process using scrap iron as sacrificial electrodes in the treatment of synthetic effluents containing ibuprofen. High-performance liquid chromatography was used to quantify the drug in synthetic effluents. The Central Rotational Composite Design 24 was used in an experimental design, considering independent variables the concentration of contaminants, applied current, the concentration of the primary oxidizing agent H2O2, and the reaction time. The optimized conditions determined by statistical analysis were drug concentration of 5 mg L-1, H2O2 concentration of 200 mg L-1, current of 5 A, and 150 min. The removals obtained under these conditions were higher than 92% in the aqueous phase, showing that electrocoagulation peroxidation technique has the potential to treat contaminants such as drugs present in effluents and waters.
Collapse
Affiliation(s)
- Laura Behling
- Post-Graduation Program in Science and Environmental Technology, Erechim, Brazil
| | - Vilson Conrado da Luz
- Environmental and Sanitary Engineering Department, Federal University of Fronteira Sul, ERS 135 -Km 72, No 200, PO Box 764, Erechim, RS, 99700-970, Brazil
| | | | - Suzana Fátima Bazoti
- Post-Graduation Program in Science and Environmental Technology, Erechim, Brazil
| | - Clarissa Dalla Rosa
- Post-Graduation Program in Science and Environmental Technology, Erechim, Brazil
| | - Paulo Pereira
- Environmental and Sanitary Engineering Department, Federal University of Fronteira Sul, ERS 135 -Km 72, No 200, PO Box 764, Erechim, RS, 99700-970, Brazil
| |
Collapse
|
36
|
Diniz V, Gasparini Fernandes Cunha D, Rath S. Adsorption of recalcitrant contaminants of emerging concern onto activated carbon: A laboratory and pilot-scale study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116489. [PMID: 36257229 DOI: 10.1016/j.jenvman.2022.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
According to the World Health Organization (WHO), the definition of water quality indicators, including contaminants of emerging concern (CECs), associated with the development of multi-barrier approaches for wastewater treatment, are crucial steps towards direct potable reuse of water. The aims of this study were 1) quantifying twelve CECs (including pharmaceutical, stimulant, and artificial sweetener compounds) in both untreated and treated wastewater samples in a Brazilian wastewater treatment plant (WWTP) using bidimensional liquid chromatography coupled with tandem mass spectrometry, allowing the selection of five marker (i.e., priority) CECs; 2) evaluating the adsorption potential of such selected CECs [caffeine, hydrochlorothiazide, saccharin, sucralose (SUC), and sulfamethoxazole (SMX)] onto coconut-shell granular activated carbon (GAC); and 3) investigating the removal of the same CECs by a multi-barrier system (pilot-scale, 350 L h-1) treating the effluent of the WWTP and composed of reverse osmosis (RO), photoperoxidation (UV/H2O2), and filtration with GAC. Such technologies were tested separately and in binary or ternary combinations. Eleven and eight CECs were detected and quantified on the untreated and treated wastewater samples of the Brazilian WWTP, respectively. For the treated wastewater, the concentrations ranged from 499 ng L-1 (SMX) to 87,831 ng L-1 (SUC). The adsorption onto AC data fitted the Sips isotherm model, indicating monolayer chemisorption, which was also suggested by the mean adsorption energy values (>16 kJ mol-1). SMX and SUC were the most and the least adsorbed CECs (4.33 and 1.21 mg g-1, respectively). Concerning the pilot-scale treatment plant, the ternary combination (RO + UV/H2O2+GAC) removed >99% of the five marker CECs and promoted reductions on water color, turbidity, as well as on nitrogen and phosphorus concentrations. Further studies on water reuse could prioritize the selected marker CECs as quality indicators. While the removal of marker CECs is one of the WHO performance requirements, the RO + UV/H2O2+GAC system showed promising results as a first approach to direct potable reuse of water.
Collapse
Affiliation(s)
- Vinicius Diniz
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Rua Josué de Castro, Cidade Universitária, Campinas, SP, 13083-970, Brazil.
| | - Davi Gasparini Fernandes Cunha
- São Carlos School of Engineering, Department of Hydraulics and Sanitation, University of São Paulo, Avenida Trabalhador São-Carlense, Centro, São Carlos, SP, 13566-590, Brazil
| | - Susanne Rath
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Rua Josué de Castro, Cidade Universitária, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
37
|
Rojas-Hucks S, Rodriguez-Jorquera IA, Nimpstch J, Bahamonde P, Benavides JA, Chiang G, Pulgar J, Galbán-Malagón CJ. South American National Contributions to Knowledge of the Effects of Endocrine Disrupting Chemicals in Wild Animals: Current and Future Directions. TOXICS 2022; 10:toxics10120735. [PMID: 36548568 PMCID: PMC9781241 DOI: 10.3390/toxics10120735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 05/28/2023]
Abstract
Human pressure due to industrial and agricultural development has resulted in a biodiversity crisis. Environmental pollution is one of its drivers, including contamination of wildlife by chemicals emitted into the air, soil, and water. Chemicals released into the environment, even at low concentrations, may pose a negative effect on organisms. These chemicals might modify the synthesis, metabolism, and mode of action of hormones. This can lead to failures in reproduction, growth, and development of organisms potentially impacting their fitness. In this review, we focused on assessing the current knowledge on concentrations and possible effects of endocrine disruptor chemicals (metals, persistent organic pollutants, and others) in studies performed in South America, with findings at reproductive and thyroid levels. Our literature search revealed that most studies have focused on measuring the concentrations of compounds that act as endocrine disruptors in animals at the systemic level. However, few studies have evaluated the effects at a reproductive level, while information at thyroid disorders is scarce. Most studies have been conducted in fish by researchers from Brazil, Argentina, Chile, and Colombia. Comparison of results across studies is difficult due to the lack of standardization of units in the reported data. Future studies should prioritize research on emergent contaminants, evaluate effects on native species and the use of current available methods such as the OMICs. Additionally, there is a primary focus on organisms related to aquatic environments, and those inhabiting terrestrial environments are scarce or nonexistent. Finally, we highlight a lack of funding at a national level in the reviewed topic that may influence the observed low scientific productivity in several countries, which is often negatively associated with their percentage of protected areas.
Collapse
Affiliation(s)
- Sylvia Rojas-Hucks
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
| | | | - Jorge Nimpstch
- Facultad de Ciencias, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Paulina Bahamonde
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados—HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso 2360004, Chile
- Millennium Nucleus of Austral Invasive Salmonids (INVASAL), Concepción 4070386, Chile
- Cape Horn International Center (CHIC), Universidad de Magallanes, Punta Arenas 6210427, Chile
| | - Julio A. Benavides
- Doctorado en Medicina de la Conservación, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
- Centro de Investigación para la Sustentabilidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
- MIVEGEC, IRD, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Gustavo Chiang
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
- Centro de Investigación para la Sustentabilidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
| | - Cristóbal J. Galbán-Malagón
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago 8580000, Chile
- Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA
| |
Collapse
|
38
|
Fan Y, Wang X, Funk T, Rashid I, Herman B, Bompoti N, Mahmud MS, Chrysochoou M, Yang M, Vadas TM, Lei Y, Li B. A Critical Review for Real-Time Continuous Soil Monitoring: Advantages, Challenges, and Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13546-13564. [PMID: 36121207 DOI: 10.1021/acs.est.2c03562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Most soil quality measurements have been limited to laboratory-based methods that suffer from time delay, high cost, intensive labor requirement, discrete data collection, and tedious sample pretreatment. Real-time continuous soil monitoring (RTCSM) possesses a great potential to revolutionize field measurements by providing first-hand information for continuously tracking variations of heterogeneous soil parameters and diverse pollutants in a timely manner and thus enable constant updates essential for system control and decision-making. Through a systematic literature search and comprehensive analysis of state-of-the-art RTCSM technologies, extensive discussion of their vital hurdles, and sharing of our future perspectives, this critical review bridges the knowledge gap of spatiotemporal uninterrupted soil monitoring and soil management execution. First, the barriers for reliable RTCSM data acquisition are elucidated by examining typical soil monitoring techniques (e.g., electrochemical and spectroscopic sensors). Next, the prevailing challenges of the RTCSM sensor network, data transmission, data processing, and personalized data management are comprehensively discussed. Furthermore, this review explores RTCSM data application for updating diverse strategies including high-fidelity soil process models, control methodologies, digital soil mapping, soil degradation, food security, and climate change mitigation. Finally, the significance of RTCSM implementation in agricultural and environmental fields is underscored through illuminating future directions and perspectives in this systematic review.
Collapse
Affiliation(s)
- Yingzheng Fan
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xingyu Wang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Thomas Funk
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ishrat Rashid
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Brianna Herman
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Nefeli Bompoti
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Md Shaad Mahmud
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Maria Chrysochoou
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Meijian Yang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Timothy M Vadas
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yu Lei
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Center for Environmental Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
39
|
Karengera A, Verburg I, Sterken MG, Riksen JAG, Murk AJ, Dinkla IJT. Determining Toxic Potencies of Water-Soluble Contaminants in Wastewater Influents and Effluent Using Gene Expression Profiling in C. elegans as a Bioanalytical Tool. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:284-294. [PMID: 36190544 PMCID: PMC9556352 DOI: 10.1007/s00244-022-00959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
With chemical analysis, it is impossible to qualify and quantify the toxic potency of especially hydrophilic bioactive contaminants. In this study, we applied the nematode C. elegans as a model organism for detecting the toxic potency of whole influent wastewater samples. Gene expression in the nematode was used as bioanalytical tool to reveal the presence, type and potency of molecular pathways induced by 24-h exposure to wastewater from a hospital (H), nursing home (N), community (C), and influent (I) and treated effluent (E) from a local wastewater treatment plant. Exposure to influent water significantly altered expression of 464 genes, while only two genes were differentially expressed in nematodes treated with effluent. This indicates a significant decrease in bioactive pollutant-load after wastewater treatment. Surface water receiving the effluent did not induce any genes in exposed nematodes. A subset of 209 genes was differentially expressed in all untreated wastewaters, including cytochromes P450 and C-type lectins related to the nematode's xenobiotic metabolism and immune response, respectively. Different subsets of genes responded to particular waste streams making them candidates to fingerprint-specific wastewater sources. This study shows that gene expression profiling in C. elegans can be used for mechanism-based identification of hydrophilic bioactive compounds and fingerprinting of specific wastewaters. More comprehensive than with chemical analysis, it can demonstrate the effective overall removal of bioactive compounds through wastewater treatment. This bioanalytical tool can also be applied in the process of identification of the bioactive compounds via a process of toxicity identification evaluation.
Collapse
Affiliation(s)
- Antoine Karengera
- Department of Animal Sciences, Marine Animal Ecology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Ilse Verburg
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Mark G. Sterken
- Plant Sciences, Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joost A. G. Riksen
- Plant Sciences, Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Albertinka J. Murk
- Department of Animal Sciences, Marine Animal Ecology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Inez J. T. Dinkla
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|
40
|
Mohammadi A, Dobaradaran S, Schmidt TC, Malakootian M, Spitz J. Emerging contaminants migration from pipes used in drinking water distribution systems: a review of the scientific literature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75134-75160. [PMID: 36127528 DOI: 10.1007/s11356-022-23085-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Migration of emerging contaminants (ECs) from pipes into water is a global concern due to potential human health effects. Nevertheless, a review of migration ECs from pipes into water distribution systems is presently lacking. This paper reviews, the reported occurrence migration of ECs from pipes into water distribution systems in the world. Furthermore, the results related to ECs migration from pipes into water distribution systems, their probable sources, and their hazards are discussed. The present manuscript considered the existing reports on migration of five main categories of ECs including microplastics (MPs), bisphenol A (BPA), phthalates, nonylphenol (NP), perfluoroalkyl, and polyfluoroalkyl substances (PFAS) from distribution network into tap water. A focus on tap water in published literature suggests that pipes type used had an important role on levels of ECs migration in water during transport and storage of water. For comparison, tap drinking water in contact with polymer pipes had the highest mean concentrations of reviewed contaminants. Polyvinyl chloride (PVC), polyamide (PA), polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET) were the most frequently detected types of microplastics (MPs) in tap water. Based on the risk assessment analysis of ECs, levels of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) were above 1, indicating a potential non-carcinogenic health risk to consumers. Finally, there are still scientific gaps on occurrence and migration of ECs from pipes used in distribution systems, and this needs more in-depth studies to evaluate their exposure hazards on human health.
Collapse
Affiliation(s)
- Azam Mohammadi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
- Systems Environmental Health and Energy Research Center, Boostan 19 Alley, Imam Khomeini Street, Bushehr, 7514763448, Iran.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU) Universitätsstraße 5, 45141, Essen, Germany
| | - Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Jörg Spitz
- Akademie Für Menschliche Medizin GmbH, Krauskopfallee 27, 65388, Schlangenbad, Germany
| |
Collapse
|
41
|
Nunes RF, Teixeira ACSC. An overview on surfactants as pollutants of concern: Occurrence, impacts and persulfate-based remediation technologies. CHEMOSPHERE 2022; 300:134507. [PMID: 35395256 DOI: 10.1016/j.chemosphere.2022.134507] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/20/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Surfactants are molecules that reduce interfacial energy and increase solubility of other pollutants in water. These properties make them suitable for various domestic and industrial applications, soil remediation, pesticide formulation, among others. The increase in their use and the lack of strict regulations regarding their disposal and management is a matter of concern and requires more attention since the release and distribution of these compounds into the environment can modify important water quality parameters. As a result of these changes, different toxicological effects to aquatic organisms are discussed and exposed herein. On this basis, we provide an overview of the classes of surfactants, as well as their occurrence in different aqueous matrices. In addition, existing regulations around the world regarding their concentration limit for different environments are discussed. Current research focuses on the application of conventional treatments, such as biological treatments; notwithstanding, more toxic and bioaccumulative products can be generated. Advanced Oxidation Processes are promising alternatives and have also been widely applied for the removal of surfactants. This study provides, for the first time, an overview of the application of persulfate-based processes for surfactants degradation based on recent literature findings, as well as the various factors related to the activation of the persulfate anions. This review also highlights the challenges and opportunities for future research to overcome the obstacles to the practical application of this process.
Collapse
Affiliation(s)
- Roberta Frinhani Nunes
- Research Group in Advanced Oxidation Processes, Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, 380, São Paulo, Brazil.
| | - Antonio Carlos Silva Costa Teixeira
- Research Group in Advanced Oxidation Processes, Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, 380, São Paulo, Brazil.
| |
Collapse
|
42
|
Gao Y, Chen Y, Song T, Su R, Luo J. Activated peroxymonosulfate with ferric chloride-modified biochar to degrade bisphenol A: characteristics, influencing factors, reaction mechanism and reuse performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
43
|
The impact of sewage sludge processing on the safety of its use. Sci Rep 2022; 12:12227. [PMID: 35851096 PMCID: PMC9293921 DOI: 10.1038/s41598-022-16354-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022] Open
Abstract
Particular attention is devoted to pharmaceutical residues in sewage sludge caused by their potential ecotoxicological effects. Diclofenac, ibuprofen and carbamazepine, 17-α-ethinylestradiol, β-estradiol, were analysed in four types of fertilizers, based on sewage sludge commercial products, in compliance with Polish requirements. The release of active pharmaceutical compounds from fertilizers to water the phase after 24 h and 27 days was analysed. Solid-water partition coefficients (Kd) and partitioning coefficient values normalized on organic carbon content (log KOC) were evaluated. The environmental risk to terrestrial ecosystems, due to the application of fertilizers onto soils, was estimated. Cumulative mass of pharmaceuticals emitted to water from fertilizers ranged from 0.4 to 30.8 µg/kg after 24 h contact. The greatest amount of the material that was released, over 70%, was observed for carbamazepine. No presence of compounds except ibuprofen was observed after 27 days of testing. The highest environmental risk in fertilizers is due to carbamazepine, risk quotation, RQ = 0.93 and diclofenac RQ = 0.17. The values of risk quotation estimated for soil were below RQ = 0.01. This fact means that no risk to terrestrial ecosystems is expected to occur. The important decrease of the concentrations of active compounds after passing from sewage sludge to fertilizers [and] to fertilized soil could be observed.
Collapse
|
44
|
Stefano PHP, Roisenberg A, Santos MR, Dias MA, Montagner CC. Unraveling the occurrence of contaminants of emerging concern in groundwater from urban setting: A combined multidisciplinary approach and self-organizing maps. CHEMOSPHERE 2022; 299:134395. [PMID: 35339518 DOI: 10.1016/j.chemosphere.2022.134395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/13/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, changes in human behavior and new technologies have introduced thousands of new compounds into the environment called "contaminants of emerging concern" (CEC). These compounds have been detected in different environmental compartments such as soil, surface water, air, and groundwater. The presence of these contaminants in groundwater may pose risks to human health when used as potable water. In some urban areas in Brazil, groundwater is normally consumed without previous treatment. This study aimed to use statistical analysis by self-organizing maps (SOM) to evaluate the trends of CEC in urban groundwater systems. A total of 23 CEC compounds including pesticides, pharmaceuticals, and hormones were determined in groundwater samples using solid phase extraction and liquid chromatography-mass spectrometry. The CEC most frequently detected were atrazine and degradation products, fipronil, simazine, tebuconazole, hexazinone, and caffeine in concentrations up to 300 ng L-1. All studied compounds were detected in groundwater at least in one sample. Patterns in the data through SOM have shown a strong positive correlation between atrazine, hexazinone, simazine, tebuthiuron, 2-hydroxyatrazine, and 17β-estradiol. The hormones estrone and testosterone also show a positive correlation due to their similar chemical properties. On the other hand, caffeine was detected in 90% of the samples, likely due to a population habit of taking daily a hot drink made of yerba mate associated with low rates of treated domestic sewage in the study area.
Collapse
Affiliation(s)
- Paulo Henrique Prado Stefano
- Hydrogeochemistry Laboratory, Geosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Environmental Chemistry Laboratory, Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Ari Roisenberg
- Hydrogeochemistry Laboratory, Geosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Matheus Rossi Santos
- Hydrogeochemistry Laboratory, Geosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana Amaral Dias
- Environmental Chemistry Laboratory, Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Cassiana Carolina Montagner
- Environmental Chemistry Laboratory, Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
45
|
Comparative Life-Cycle Cost Analysis of Alternative Technologies for the Removal of Emerging Contaminants from Urban Wastewater. WATER 2022. [DOI: 10.3390/w14121919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Emerging contaminants (ECs) continue to threaten our fragile ecosystem, yet their mitigation remains limited by economic factors. Meanwhile, a relatively expensive material, Graphene Oxide (GO), has shown promise as a solution for EC removal following further development into three graphene-based materials (GBMs): Porous graphene adsorbent (PGa), Graphene-oxide foam adsorbent (GOFa), and the hybrid filter. Due to the nuances of each synthesis process, financial costs will differ throughout the GBMs’ life cycle which have been quantified and compared in the present work at a range of possible breakthrough times. Finally, economic and environmental costs have been combined for each technology to compare eco-efficiency. Results demonstrated a substantial economic advantage of the GBMs when compared to alternative technologies, most notably the GOFa filter that incurred the lowest life-cycle costs at $1.73 ± 0.09/m3. This was mainly attributed to the lower demand of GOFa on the most expensive material required for material synthesis, hydrazine. In addition, the material demands of GOFa were more evenly distributed which suggest a higher resilience of the overall costs to price hikes of individual materials required for synthesis. In terms of eco-efficiency the GOFa filter also demonstrated the greatest improvement when compared to the reference technology These results have provided robust total investment costs for several technologies that can now offer contrast to other EC-removal solutions.
Collapse
|
46
|
Khan S, Naushad M, Govarthanan M, Iqbal J, Alfadul SM. Emerging contaminants of high concern for the environment: Current trends and future research. ENVIRONMENTAL RESEARCH 2022; 207:112609. [PMID: 34968428 DOI: 10.1016/j.envres.2021.112609] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 05/11/2023]
Abstract
Wastewater is contaminated water that must be treated before it may be transferred into other rivers and lakes in order to prevent further groundwater pollution. Over the last decade, research has been conducted on a wide variety of contaminants, but the emerging contaminants are those caused primarily by micropollutants, endocrine disruptors (EDs), pesticides, pharmaceuticals, hormones, and toxins, as well as industrially-related synthetic dyes and dye-containing hazardous pollutants. Most emerging pollutants did not have established guidelines, but even at low concentrations they could have harmful effects on humans and aquatic organisms. In order to combat the above ecological threats, huge efforts have been done with a view to boosting the effectiveness of remediation procedures or developing new techniques for the detection, quantification and efficiency of the samples. The increase of interest in biotechnology and environmental engineering gives an opportunity for the development of more innovative ways to water treatment remediation. The purpose of this article is to provide an overview of emerging sources of contaminants, detection technologies, and treatment strategies. The goal of this review is to evaluate adsorption as a method for treating emerging pollutants, as well as sophisticated and cost-effective approaches for treating emerging contaminants.
Collapse
Affiliation(s)
- Shamshad Khan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, 641100, China.
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Sulaiman M Alfadul
- King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| |
Collapse
|
47
|
Malnes D, Ahrens L, Köhler S, Forsberg M, Golovko O. Occurrence and mass flows of contaminants of emerging concern (CECs) in Sweden's three largest lakes and associated rivers. CHEMOSPHERE 2022; 294:133825. [PMID: 35114267 DOI: 10.1016/j.chemosphere.2022.133825] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 05/08/2023]
Abstract
Contaminants of emerging concern (CECs) are a concern in aquatic environments due to possible adverse effects on the environment and humans. This study assessed the occurrence and mass flows of CECs in Sweden's three largest lakes and 24 associated rivers. The occurrence and distribution of 105 CECs was investigated, comprising 71 pharmaceuticals, 13 perfluoroalkyl substances (PFASs), eight industrial chemicals, four personal care products (PCPs), three parabens, two pesticides, and four other CECs (mostly anthropogenic markers). This is the first systematic study of CECs in Sweden's main lakes and one of the first to report environmental concentrations of the industrial chemicals tributyl citrate acetate and 2,2'-dimorpholinyldiethyl-ether. The ∑CEC concentration was generally higher in river water (31-5200 ng/L; median 440 ng/L) than in lake water (36-900 ng/L; median 190 ng/L). At urban lake sites, seasonal variations were observed for PCPs and parabens, and also for antihistamines, antidiabetics, antineoplastic agents, antibiotics, and fungicides. The median mass CEC load in river water was 180 g/day (range 4.0-4300 g/day), with a total mass load of 5000 g/day to Lake Vänern, 510 g/day to Lake Vättern, and 5600 g/day to Lake Mälaren. All three lakes are used as drinking water reservoirs, so further investigations of the impact of CECs on the ecosystem and human health are needed.
Collapse
Affiliation(s)
- Daniel Malnes
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, SE, 750 07, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, SE, 750 07, Sweden.
| | - Stephan Köhler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, SE, 750 07, Sweden; Uppsala Water and Waste AB, Uppsala, SE, 754 50, Sweden
| | - Malin Forsberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, SE, 750 07, Sweden
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, SE, 750 07, Sweden.
| |
Collapse
|
48
|
Monoethanolamine adsorption on oxide surfaces. J Colloid Interface Sci 2022; 614:75-83. [DOI: 10.1016/j.jcis.2022.01.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 11/17/2022]
|
49
|
Sivaranjanee R, Senthil Kumar P, Saravanan R, Govarthanan M. Electrochemical sensing system for the analysis of emerging contaminants in aquatic environment: A review. CHEMOSPHERE 2022; 294:133779. [PMID: 35114262 DOI: 10.1016/j.chemosphere.2022.133779] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
This survey distinguishes understudied spaces of arising impurity research in wastewaters and the habitat, and suggests bearing for future checking. Thinking about the impeding effect of toxins on human wellbeing and biological system, their discovery in various media including water is fundamental. This review sums up and assesses the latest advances in the electrochemical detecting of emerging contaminants (ECs). This survey is expected to add to the advancement in electrochemical applications towards the ECs. Different electrochemical insightful procedures like Amperometry, Voltammetry has been examined in this overview. The improvement of cutting edge nanomaterial-based electrochemical sensors and biosensors for the discovery of drug compounds has accumulated monstrous consideration because of their benefits, like high affectability and selectivity, continuous observing, and convenience has been reviewed in this survey. This survey likewise features the diverse electrochemical treatment procedures accessible for the removal of ECs.
Collapse
Affiliation(s)
- R Sivaranjanee
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
50
|
Ahmad A, Kurniawan SB, Abdullah SRS, Othman AR, Hasan HA. Contaminants of emerging concern (CECs) in aquaculture effluent: Insight into breeding and rearing activities, alarming impacts, regulations, performance of wastewater treatment unit and future approaches. CHEMOSPHERE 2022; 290:133319. [PMID: 34922971 DOI: 10.1016/j.chemosphere.2021.133319] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The contamination of aquaculture products and effluents by contaminants of emerging concern (CECs) from the direct chemical use in aquaculture activities or surrounding industries is currently an issue of increasing concern as these CECs exert acute and chronic effects on living organisms. CECs have been detected in aquaculture water, sediment, and culture species, and antibiotics, antifoulants, and disinfectants are the commonly detected groups. Through accumulation, CECs can reside in the tissue of aquaculture products and eventually consumed by humans. Currently, effluents containing CECs are discharged to the surrounding environment while producing sediments that eventually contaminate rivers as receiving bodies. The rearing (grow-out) stages of aquaculture activities are issues regarding CECs-contamination in aquaculture covering water, sediment, and aquaculture products. Proper regulations should be imposed on all aquaculturists to control chemical usage and ensure compliance to guidelines for appropriate effluent treatment. Several techniques for treating aquaculture effluents contaminated by CECs have been explored, including adsorption, wetland construction, photocatalysis, filtration, sludge activation, and sedimentation. The challenges imposed by CECs on aquaculture activities are discussed for the purpose of obtaining insights into current issues and providing future approaches for resolving associated problems. Stakeholders, such as researchers focusing on environment and aquaculture, are expected to benefit from the presented results in this article. In addition, the results may be useful in establishing aquaculture-related CECs regulations, assessing toxicity to living biota, and preventing pollution.
Collapse
Affiliation(s)
- Azmi Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia; Department of Polytechnic Education and Community College, Ministry of Higher Education, 62100, Putrajaya, Malaysia.
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|