1
|
Wang B, Lan X, Kong D, Xu H, Hu Y, Zhang H. Identification of 2, 4-di-tert-butylphenol from Microcystis lysate after bloom control and its potential risks to aquatic ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136153. [PMID: 39413518 DOI: 10.1016/j.jhazmat.2024.136153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
With the increasing concern of cyanobacterial blooms, numerous techniques have been developed to mitigate these environmental nuisances. During bloom control, the allelopathic effects of compounds released from cyanobacterial cells are considered as secondary hazards. In this study, the findings indicated that Microcystis lysate inhibited algal proliferation and disrupted the development of zebrafish embryos. Then, allelochemicals in Microcystis lysate were identified using gas chromatography-mass spectrometry, with 2, 4-di-tert-butylphenol (2, 4-DTBP) being the only identified phenol, which was selected for further study. The results showed that 2,4-DTBP caused oxidative damages, disrupted metabolic activity, and suppressed photosynthetic activity, consequently impeding the growth of Microcystis aeruginosa (M. aeruginosa) and Chlorella pyrenoidosa (C. pyrenoidosa). Moreover, it enhanced the interspecies competitive advantages of M. aeruginosa by increasing phosphate uptake rate. Furthermore, at a concentration of 2 mg L-1, 2, 4-DTBP negatively affected the development of zebrafish embryos, manifesting in mortality, malformation, and hatching delay. Therefore, the investigation identified 2, 4-DTBP as a potential allelochemical within Microcystis lysate. Although the effective concentration for freshwater algae and zebrafish embryos was higher than that found in Microcystis lysate, it highlighted the need for careful monitoring of aquatic ecosystem health during cyanobacterial bloom mitigation.
Collapse
Affiliation(s)
- Binliang Wang
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, PR China
| | - Xuan Lan
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, PR China
| | - Danni Kong
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, PR China
| | - Hong Xu
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, PR China
| | - Yiwei Hu
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, PR China.
| | - He Zhang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, PR China.
| |
Collapse
|
2
|
Famurewa AC, George MY, Ukwubile CA, Kumar S, Kamal MV, Belle VS, Othman EM, Pai SRK. Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity-a review of literature evidence. Biometals 2024; 37:1325-1378. [PMID: 39347848 DOI: 10.1007/s10534-024-00637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Anticancer chemotherapy (ACT) remains a cornerstone in cancer treatment, despite significant advances in pharmacology over recent decades. However, its associated side effect toxicity continues to pose a major concern for both oncology clinicians and patients, significantly impacting treatment protocols and patient quality of life. Current clinical strategies to mitigate ACT-induced toxicity have proven largely unsatisfactory, leaving a critical unmet need to block toxicity mechanisms without diminishing ACT's therapeutic efficacy. This review aims to document the molecular mechanisms underlying ACT toxicity and highlight research efforts exploring the protective effects of trace elements (TEs) and their nanoparticles (NPs) against these mechanisms. Our literature review reveals that the primary driver of ACT toxicity is redox imbalance, which triggers oxidative inflammation, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, autophagy, and dysregulation of signaling pathways such as PI3K/mTOR/Akt. Studies suggest that TEs, including zinc, selenium, boron, manganese, and molybdenum, and their NPs, can potentially counteract ACT-induced toxicity by inhibiting oxidative stress-mediated pathways, including NF-κB/TLR4/MAPK/NLRP3, STAT-3/NLRP3, Bcl-2/Bid/p53/caspases, and LC3/Beclin-1/CHOP/ATG6, while also upregulating protective signaling pathways like Sirt1/PPAR-γ/PGC-1α/FOXO-3 and Nrf2/HO-1/ARE. However, evidence regarding the roles of lncRNA and the Wnt/β-catenin pathway in ACT toxicity remains inconsistent, and the impact of TEs and NPs on ACT efficacy is not fully understood. Further research is needed to confirm the protective effects of TEs and their NPs against ACT toxicity in cancer patients. In summary, TEs and their NPs present a promising avenue as adjuvant agents for preventing non-target organ toxicity induced by ACT.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike Ikwo, Abakaliki, Ebonyi, Nigeria.
- Centre for Natural Products Discovery, School of P harmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cletus A Ukwubile
- Department of Pharmacognosy, Faculty of Pharmacy, University of Maiduguri, Bama Road, Maiduguri, Borno, Nigeria
| | - Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mehta V Kamal
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vijetha S Belle
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Cancer Therapy Research Center, Department of Biochemistry-I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Department of Bioinformatics, University of Würzburg, Am Hubland, 97074, BiocenterWürzburg, Germany
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
3
|
Xiao Y, Hu L, Duan J, Che H, Wang W, Yuan Y, Xu J, Chen D, Zhao S. Polystyrene microplastics enhance microcystin-LR-induced cardiovascular toxicity and oxidative stress in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124022. [PMID: 38679130 DOI: 10.1016/j.envpol.2024.124022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
The health risks associated with combined exposure to microplastics (MPs) and cyanobacteria toxins have gained increasing attention due to the large-scale prevalence of cyanobacterial blooms and accumulation of MPs in aquatic environments. Therefore, we explored the cardiovascular toxic effects of microcystin-LR (MC-LR, 1, 10, 100 μg/L) in the presence of 5 μm polystyrene microplastics (PS-MPs, 100 μg/L) and 80 nm polystyrene nanoplastics (PS-NPs, 100 μg/L) in zebrafish models. Embryos were exposed to certain PS-MPs and PS-NPs conditions in water between 3 h post-fertilization (hpf) and 168 hpf. Compared to MC-LR alone, a significant decrease in heart rate was observed as well as notable pericardial edema in the MC-LR + PS-MPs/NPs groups. At the same time, sinus venosus and bulbus arteriosus (SV-BA) distances were significantly increased. Furthermore, the addition of PS-MPs/NPs caused thrombosis in the caudal vein and more severe vascular damage in zebrafish larvae compared to MC-LR alone. Our findings revealed that combined exposure to PS-NPs and MC-LR could significantly decreased the expression of genes associated with cardiovascular development (myh6, nkx2.5, tnnt2a, and vegfaa), ATPase (atp1a3b, atp1b2b, atp2a1l, atp2b1a, and atp2b4), and the calcium channel (cacna1ab and ryr2a) compared to exposure to MC-LR alone. In addition, co-exposure with PS-MPs/NPs exacerbated the MC-LR-induced reactive oxygen species (ROS) production, as well as the ROS-stimulated apoptosis and heightened inflammation. We also discovered that astaxanthin (ASTA) treatment partially attenuated these cardiovascular toxic effects. Our findings confirm that exposure to MC-LR and PS-MPs/NPs affects cardiovascular development through calcium signaling interference and ROS-induced cardiovascular cell apoptosis. This study highlights the potential environmental risks of the co-existence of MC-LR and PS-MPs/NPs for fetal health, particularly cardiovascular development.
Collapse
Affiliation(s)
- Yuchun Xiao
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Liwen Hu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jiayao Duan
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Huimin Che
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Wenxin Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yuan Yuan
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jiayi Xu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Daojun Chen
- School of Medical Technology, Anhui Medical College, Hefei, 230601, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Lin W, Hu F, Liu F, Liao L, Ling L, Li L, Yang J, Yang P. Microcystin-LR and polystyrene microplastics jointly lead to hepatic histopathological damage and antioxidant dysfunction in male zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123789. [PMID: 38490526 DOI: 10.1016/j.envpol.2024.123789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The co-occurrence of cyanobacterial blooms and nano-microplastic pollution in the water is becoming an emerging risk. To assess the combined hepatotoxicity of microcystin-LR (MC-LR) and polystyrene microplastics (PSMPs) on zebrafish (Danio rerio), male adult zebrafish were exposed to single MC-LR (0, 1, 5, 25 μg/L) and a mixture of MC-LR and PSMPs (100 μg/L). After 60 d exposure, the results indicated that PSMPs significantly increased the MC-LR bioaccumulation in the livers in contrast to the single 25 μg/L MC-LR treatment group. Moreover, the severity of hepatic pathological lesions was aggravated in the MC-LR + PSMPs treatment groups, which were mainly characterized by cellular vacuolar degeneration, swollen hepatocytes, and pyknotic nucleus. The ultrastructural changes also proved that PSMPs combined with MC-LR could enhance the swollen mitochondria and dilated endoplasmic reticulum. The biochemical results, including increased malondialdehyde (MDA) and decreased glutathione (GSH), indicated that PSMPs intensified the MC-LR-induced oxidative damage in the combined treatment groups. Concurrently, alterations of sod1 and keap1a mRNA levels also confirmed that PSMPs together with MC-LR jointly lead to enhanced oxidative injury. Our findings demonstrated that PSMPs enhanced the MC-LR bioavailability by acting as a vector and exacerbating the hepatic injuries and antioxidant dysfunction in zebrafish.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, PR China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, PR China
| | - Fen Hu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Fang Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Ling Liao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Ling Ling
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jifeng Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, PR China.
| |
Collapse
|
5
|
Zhan C, Gong J. Mutations at Two Key Sites in PP2A Safeguard Caenorhabditis elegans Neurons from Microcystin-LR Toxicity. Toxins (Basel) 2024; 16:145. [PMID: 38535811 PMCID: PMC10974068 DOI: 10.3390/toxins16030145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 11/12/2024] Open
Abstract
Microcystin-LR (MC-LR) is a secondary metabolite produced by cyanobacteria, globally renowned for its potent hepatotoxicity. However, an increasing body of research suggests that it also exhibits pronounced neurotoxicity. PP2A is a fundamental intracellular phosphatase that plays a pivotal role in cell development and survival. Although extensive research has focused on the binding of MC-LR to the C subunit of PP2A, few studies have explored the key amino acid sites that can prevent the binding of MC-LR to PP2A-C. Due to the advantages of Caenorhabditis elegans (C. elegans), such as ease of genetic editing and a short lifespan, we exposed nematodes to MC-LR in a manner that simulated natural exposure conditions based on MC-LR concentrations in natural water bodies (immersion exposure). Our findings demonstrate that MC-LR exerts comprehensive toxicity on nematodes, including reducing lifespan, impairing reproductive capabilities, and diminishing sensory functions. Notably, and for the first time, we observed that MC-LR neurotoxic effects can persist up to the F3 generation, highlighting the significant threat that MC-LR poses to biological populations in natural environments. Furthermore, we identified two amino acid sites (L252 and C278) in PP2A-C through mutations that prevented MC-LR binding without affecting PP2A activity. This discovery was robustly validated through behavioral studies and neuronal calcium imaging using nematodes. In conclusion, we identified two crucial amino acid sites that could prevent MC-LR from binding to PP2A-C, which holds great significance for the future development of MC-LR detoxification drugs.
Collapse
Affiliation(s)
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan 430074, China;
| |
Collapse
|
6
|
Li H, Kang S, Gu X, Yang H, Chen H, Mao Z, Zeng Q, Chen Y, Wang W, Gong C. The toxicological effects of life-cycle exposure to harmful benthic cyanobacteria Oscillatoria on zebrafish growth and reproduction: A comparative study with planktonic Microcystis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169302. [PMID: 38104816 DOI: 10.1016/j.scitotenv.2023.169302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The risks of planktonic cyanobacteria blooms have been the focus of much scientific research, but studies on the ecotoxicological effects of benthic cyanobacteria are lagging. The impacts of cyanobacteria cells on fish populations might be more complex in contrast to purified cyanotoxins or cyanobacteria extracts. This study systematically compared the chronic effects of benthic Oscillatoria sp. (producing cylindrospermopsins) and planktonic Microcystis aeruginosa (producing microcystins) on the growth and reproduction of zebrafish through life-cycle exposure (5- 90 days post fertilization). The results showed that both Oscillatoria sp. and M. aeruginosa exposure caused growth inhibition and fecundity reduction in F0 generation by disrupting sex hormone levels, delayed ovarian and sperm development, and induced pathological lesions in zebrafish gonads. Furthermore, exposure to Oscillatoria sp. or M. aeruginosa in adult zebrafish increased mortality and teratogenicity in F1 embryos (without exposure), indicating a parental transmission effect of developmental toxicity. The difference was that M. aeruginosa exposure led to significant alterations in pathways, such as tissue development, redox processes, and steroid hormone synthesis. In contrast, Oscillatoria sp. exposure primarily disrupted the PPAR signaling pathway, cell adhesion molecules, and lipid transport pathways. Interestingly, the differentially expressed genes revealed that male fish were more sensitive to harmful cyanobacteria than females, whether exposed to Oscillatoria sp. or M. aeruginosa. These findings contribute to a better mechanistic understanding of the chronic toxic effects of distinct types of harmful cyanobacteria, suggesting that the ecological risk of benthic cyanobacteria requires further attention.
Collapse
Affiliation(s)
- Hongmin Li
- School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
| | - Siqi Kang
- School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yanfeng Chen
- School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
| | - Wenxia Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Life Sciences, Linyi University, Linyi, Shandong 276000, China
| | - Chen Gong
- School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
| |
Collapse
|
7
|
Huttner IG, Santiago CF, Jacoby A, Cheng D, Trivedi G, Cull S, Cvetkovska J, Chand R, Berger J, Currie PD, Smith KA, Fatkin D. Loss of Sec-1 Family Domain-Containing 1 ( scfd1) Causes Severe Cardiac Defects and Endoplasmic Reticulum Stress in Zebrafish. J Cardiovasc Dev Dis 2023; 10:408. [PMID: 37887855 PMCID: PMC10607167 DOI: 10.3390/jcdd10100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a common heart muscle disorder that frequently leads to heart failure, arrhythmias, and death. While DCM is often heritable, disease-causing mutations are identified in only ~30% of cases. In a forward genetic mutagenesis screen, we identified a novel zebrafish mutant, heart and head (hahvcc43), characterized by early-onset cardiomyopathy and craniofacial defects. Linkage analysis and next-generation sequencing identified a nonsense variant in the highly conserved scfd1 gene, also known as sly1, that encodes sec1 family domain-containing 1. Sec1/Munc18 proteins, such as Scfd1, are involved in membrane fusion regulating endoplasmic reticulum (ER)/Golgi transport. CRISPR/Cas9-engineered scfd1vcc44 null mutants showed severe cardiac and craniofacial defects and embryonic lethality that recapitulated the phenotype of hahvcc43 mutants. Electron micrographs of scfd1-depleted cardiomyocytes showed reduced myofibril width and sarcomere density, as well as reticular network disorganization and fragmentation of Golgi stacks. Furthermore, quantitative PCR analysis showed upregulation of ER stress response and apoptosis markers. Both heterozygous hahvcc43 mutants and scfd1vcc44 mutants survived to adulthood, showing chamber dilation and reduced ventricular contraction. Collectively, our data implicate scfd1 loss-of-function as the genetic defect at the hahvcc43 locus and provide new insights into the role of scfd1 in cardiac development and function.
Collapse
Affiliation(s)
- Inken G. Huttner
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (I.G.H.); (C.F.S.); (A.J.); (D.C.); (G.T.); (S.C.); (J.C.); (R.C.)
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Celine F. Santiago
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (I.G.H.); (C.F.S.); (A.J.); (D.C.); (G.T.); (S.C.); (J.C.); (R.C.)
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Arie Jacoby
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (I.G.H.); (C.F.S.); (A.J.); (D.C.); (G.T.); (S.C.); (J.C.); (R.C.)
| | - Delfine Cheng
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (I.G.H.); (C.F.S.); (A.J.); (D.C.); (G.T.); (S.C.); (J.C.); (R.C.)
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Gunjan Trivedi
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (I.G.H.); (C.F.S.); (A.J.); (D.C.); (G.T.); (S.C.); (J.C.); (R.C.)
| | - Stephen Cull
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (I.G.H.); (C.F.S.); (A.J.); (D.C.); (G.T.); (S.C.); (J.C.); (R.C.)
| | - Jasmina Cvetkovska
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (I.G.H.); (C.F.S.); (A.J.); (D.C.); (G.T.); (S.C.); (J.C.); (R.C.)
| | - Renee Chand
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (I.G.H.); (C.F.S.); (A.J.); (D.C.); (G.T.); (S.C.); (J.C.); (R.C.)
| | - Joachim Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (J.B.); (P.D.C.)
- European Molecular Biology Labs (EMBL) Australia, Victorian Node, Monash University, Clayton, VIC 3800, Australia
| | - Peter D. Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (J.B.); (P.D.C.)
- European Molecular Biology Labs (EMBL) Australia, Victorian Node, Monash University, Clayton, VIC 3800, Australia
| | - Kelly A. Smith
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (I.G.H.); (C.F.S.); (A.J.); (D.C.); (G.T.); (S.C.); (J.C.); (R.C.)
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW 2052, Australia
- Cardiology Department, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
8
|
Yan C, Liu Y, Yang Y, Massey IY, Cao L, Osman MA, Yang F. Cardiac Toxicity Induced by Long-Term Environmental Levels of MC-LR Exposure in Mice. Toxins (Basel) 2023; 15:427. [PMID: 37505696 PMCID: PMC10467107 DOI: 10.3390/toxins15070427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023] Open
Abstract
Cyanobacterial blooms are considered a serious global environmental problem. Recent studies provided evidence for a positive association between exposure to microcystin-LR (MC-LR) and cardiotoxicity, posing a threat to human cardiovascular health. However, there are few studies on the cardiotoxic effects and mechanisms of long-term low-dose MC-LR exposure. Therefore, this study explored the long-term toxic effects and toxic mechanisms of MC-LR on the heart and provided evidence for the induction of cardiovascular disease by MC-LR. C57BL/6 mice were exposed to 0, 1, 30, 60, 90, and 120 μg/L MC-LR via drinking water for 9 months and subsequently necropsied to examine the hearts for microstructural changes using H&E and Masson staining. The results demonstrated fibrotic changes, and qPCR and Western blots showed a significant up-regulation of the markers of myocardial fibrosis, including TGF-β1, α-SMA, COL1, and MMP9. Through the screening of signaling pathways, it was found the expression of PI3K/AKT/mTOR signaling pathway proteins was up-regulated. These data first suggested MC-LR may induce myocardial fibrosis by activating the PI3K/AKT/mTOR signaling pathway. This study explored the toxicity of microcystins to the heart and preliminarily explored the toxic mechanisms of long-term toxicity for the first time, providing a theoretical reference for preventing cardiovascular diseases caused by MC-LR.
Collapse
Affiliation(s)
- Canqun Yan
- Department of Health Management Center, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421009, China;
| | - Ying Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China; (Y.L.); (I.Y.M.)
| | - Yue Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410017, China; (Y.Y.); (M.A.O.)
| | - Isaac Yaw Massey
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China; (Y.L.); (I.Y.M.)
| | - Linghui Cao
- Changsha Central Hospital, Changsha 410004, China;
| | - Muwaffak Al Osman
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410017, China; (Y.Y.); (M.A.O.)
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China; (Y.L.); (I.Y.M.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410017, China; (Y.Y.); (M.A.O.)
- Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421009, China
| |
Collapse
|
9
|
He Y, Hou J, Qiu Y, Ouyang K, Li D, Li L. Microcystin-LR immersion caused sequential endocrine disruption and growth inhibition in zebrafish (Danio rerio) from fertilization to sexual differentiation completion. Toxicology 2023:153569. [PMID: 37295766 DOI: 10.1016/j.tox.2023.153569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Microcystin-LR (MC-LR) is a highly toxic congener and is also one of the most commonly found. Recent studies have demonstrated that MC-LR can disrupt growth and endocrine in fish, but how it works at the stage of the sex differentiation period had not been determined to date. In this study, zebrafish (Danio rerio) embryos were exposed to MC-LR (0 and 10μg/L), and sampled at 14, 28, and 42 days post fertilization (dpf), respectively. The results demonstrated that MC-LR caused the growth inhibition of zebrafish at 42 dpf. The expression levels of genes related to the growth hormone/insulin-like growth factor (GH/IGF) and hypothalamic-pituitary-thyroid (HPT) axes, as well as the levels of hormone 3,5,3'- Triiodothyronine (T3) and thyroxine (T4), were significantly decreased at all time points. A Significant decrease in the ratio of testosterone and estradiol (T/E2) were detected at 28 and 42 dpf in MC-LR group along with changes in genes related to the hypothalamic-pituitary-gonadal (HPG) axis. The result of sex ratio showed that the percentage of females was up to 61.84%, indicating a estrogenic effect induced by MC-LR. The significant changes on hormone levels and gene transcripts occurred mainly in the stage of sex differentiation. The correlation analysis further suggested that key cross-talks among three endocrine axes may be the growth hormone releasing hormone (GHRH), Transthyretin (TTR) and gonadotropin releasing hormone (GnRH) signaling molecules. Overall, our findings provide a new insight for understanding the mechanisms by which MC-LR affects fish growth and reproduction during gonadal development.
Collapse
Affiliation(s)
- Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jie Hou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yuming Qiu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, P.R. China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, P.R. China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, P.R. China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, P.R. China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China.
| |
Collapse
|
10
|
Zhao X, Liu Y, Guo YM, Xu C, Chen L, Codd GA, Chen J, Wang Y, Wang PZ, Yang LW, Zhou L, Li Y, Xiao SM, Wang HJ, Paerl HW, Jeppesen E, Xie P. Meta-analysis reveals cyanotoxins risk across African inland waters. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131160. [PMID: 36907061 DOI: 10.1016/j.jhazmat.2023.131160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Global eutrophication and climate warming exacerbate production of cyanotoxins such as microcystins (MCs), presenting risks to human and animal health. Africa is a continent suffering from severe environmental crises, including MC intoxication, but with very limited understanding of the occurrence and extent of MCs. By analysing 90 publications from 1989 to 2019, we found that in various water bodies where MCs have been detected so far, the concentrations were 1.4-2803 times higher than the WHO provisional guideline for human lifetime exposure via drinking water (1 µg/L) in 12 of 15 African countries where data were available. MCs were relatively high in the Republic of South Africa (averaged 2803 μg/L) and Southern Africa as a whole (702 μg/L) when compared to other regions. Values were higher in reservoirs (958 μg/L) and lakes (159 μg/L) than in other water types, and much higher in temperate (1381 μg/L) than in arid (161 μg/L) and tropical (4 μg/L) zones. Highly significant positive relationships were found between MCs and planktonic chlorophyll a. Further assessment revealed high ecological risk for 14 of the 56 water bodies, with half used as human drinking water sources. Recognizing the extremely high MCs and exposure risk in Africa, we recommend routine monitoring and risk assessment of MCs be prioritized to ensure safe water use and sustainability in this region.
Collapse
Affiliation(s)
- Xu Zhao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Ying Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Yu-Ming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Chi Xu
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Geoffrey A Codd
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK; Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Ying Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Pu-Ze Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Li-Wei Yang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Long Zhou
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Yan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shi-Man Xiao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Hai-Jun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China.
| | - Hans W Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC 28557, USA
| | - Erik Jeppesen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Department of Ecoscience, Aarhus University, Aarhus, 8000, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100190, China; Limnology Laboratory, Department of Biological Sciences, and Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, Ankara, 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin, 33731, Turkey
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| |
Collapse
|
11
|
Sree Kumar H, Wisner AS, Refsnider JM, Martyniuk CJ, Zubcevic J. Small fish, big discoveries: zebrafish shed light on microbial biomarkers for neuro-immune-cardiovascular health. Front Physiol 2023; 14:1186645. [PMID: 37324381 PMCID: PMC10267477 DOI: 10.3389/fphys.2023.1186645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Zebrafish (Danio rerio) have emerged as a powerful model to study the gut microbiome in the context of human conditions, including hypertension, cardiovascular disease, neurological disorders, and immune dysfunction. Here, we highlight zebrafish as a tool to bridge the gap in knowledge in linking the gut microbiome and physiological homeostasis of cardiovascular, neural, and immune systems, both independently and as an integrated axis. Drawing on zebrafish studies to date, we discuss challenges in microbiota transplant techniques and gnotobiotic husbandry practices. We present advantages and current limitations in zebrafish microbiome research and discuss the use of zebrafish in identification of microbial enterotypes in health and disease. We also highlight the versatility of zebrafish studies to further explore the function of human conditions relevant to gut dysbiosis and reveal novel therapeutic targets.
Collapse
Affiliation(s)
- Hemaa Sree Kumar
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
- Department of Neuroscience and Neurological Disorders, University of Toledo, Toledo, OH, United States
| | - Alexander S. Wisner
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Jeanine M. Refsnider
- Department of Environmental Sciences, University of Toledo, Toledo, OH, United States
| | - Christopher J. Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, OH, United States
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
12
|
Llanos-Rivera A, Álvarez-Muñoz K, Astuya-Villalón A, López-Rosales L, García-Camacho F, Sánchez-Mirón A, Krock B, Gallardo-Rodríguez JJ. Sublethal effect of the toxic dinoflagellate Karlodinium veneficum on early life stages of zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27113-27124. [PMID: 36378374 DOI: 10.1007/s11356-022-24149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Dinoflagellates of the genus Karlodinium are ichthyotoxic species that produce toxins including karlotoxins and karmitoxins. Karlotoxins show hemolytic and cytotoxic activities and have been associated with fish mortality. This study evaluated the effect of toxins released into the environment of Karlodinium veneficum strain K10 (Ebro Delta, NW Mediterranean) on the early stages of Danio rerio (zebrafish). Extracts of the supernatant of K10 contained the mono-sulfated KmTx-10, KmTx-11, KmTx-12, KmTx-13, and a di-sulfated form of KmTx-10. Total egg mortality was observed for karlotoxin concentration higher than 2.69 μg L-1. For 1.35 μg L-1, 87% of development anomalies were evidenced (all concentrations were expressed as KmTx-2 equivalent). Larvae of 8 days postfertilization exposed to 1.35 µg L-1 presented epithelial damage with 80% of cells in the early apoptotic stage. Our results indicate that supernatants with low concentration of KmTxs produce both lethal and sublethal effects in early fish stages. Moreover, apoptosis was induced at concentrations as low as 0.01 μg L-1. This is of great relevance since detrimental long-term effects due to exposure to low concentrations of these substances could affect wild and cultured fish.
Collapse
Affiliation(s)
- Alejandra Llanos-Rivera
- Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Katia Álvarez-Muñoz
- Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Allisson Astuya-Villalón
- Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Programa Sur Austral, Centro de Investigaciones Oceanográficas en El Pacífico Sur-Oriental (COPAS Sur-Austral), Facultad de Ciencias Naturales Y Oceanográficas, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
| | | | | | | | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum Für Polar- Und Meeresforschung, Chemische Ökologie, Bremerhaven, Germany
| | - Juan José Gallardo-Rodríguez
- Department of Chemical Engineering, University of Almería, Almería, Spain.
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
13
|
Köktürk M. In vivo toxicity assessment of Remazol Gelb-GR (RG-GR) textile dye in zebrafish embryos/larvae (Danio rerio): Teratogenic effects, biochemical changes, immunohistochemical changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158473. [PMID: 36063928 DOI: 10.1016/j.scitotenv.2022.158473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Dyes, which are very important for various industries, have very adverse effects on the aquatic environment and aquatic life. However, there are limited studies on the toxic properties of dyes on living things. This research elucidated the sublethal toxicity of acute exposure of the textile dye remazol gelb-GR (RG-GR) using zebrafish embryos and larvae for 96 h. The 96 h-LC50 for RG-GR in zebrafish embryos/larvae was determined to be 151.92 mg/L. Sublethal 96 hpf exposure was performed in RG-GR concentrations (0.5; 1.0; 10.0; 100.0 mg/L) to determine the development of toxicity in zebrafish embryos/larvae. RG-GR dye affected morphological development, and decreased heart rate, hatching, blood flow, and survival rates in zebrafish embryos/larvae. The immunopositivity of 8-hydroxy 2 deoxyguanosine (8-OHdG) in larvae exposed to RG-GR at high concentrations was found to be intense. Depending on the RG-GR dose increase, some biochemical parameters such as glutathione peroxidase (GSH) level, acetylcholinesterase (AChE) activity, catalase (CAT) activities, superoxide dismutase (SOD), and nuclear factor erythroid 2 (Nrf-2) levels were detected to be decreased in larvae, while malondialdehyde (MDA) content, nuclear factor kappa (NF-kB), tumor necrosis factor-α (TNF-α), DNA damage (8-OHdG level), interleukin-6 (IL-6) and apoptosis (Caspase-3) levels were found to be increased. The experimental results revealed that RG-GR dye has high acute toxicity on zebrafish embryo/larvae.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Agriculture Management, Faculty of Applied Sciences, Igdir University, TR-76000, Igdir, Turkey; Research Laboratory Application and Research Center (ALUM), Igdir University, TR-76000 Igdir, Turkey.
| |
Collapse
|
14
|
Svirčev Z, Chen L, Sántha K, Drobac Backović D, Šušak S, Vulin A, Palanački Malešević T, Codd GA, Meriluoto J. A review and assessment of cyanobacterial toxins as cardiovascular health hazards. Arch Toxicol 2022; 96:2829-2863. [PMID: 35997789 PMCID: PMC9395816 DOI: 10.1007/s00204-022-03354-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Eutrophicated waters frequently support bloom-forming cyanobacteria, many of which produce potent cyanobacterial toxins (cyanotoxins). Cyanotoxins can cause adverse health effects in a wide range of organisms where the toxins may target the liver, other internal organs, mucous surfaces and the skin and nervous system. This review surveyed more than 100 studies concerning the cardiovascular toxicity of cyanotoxins and related topics. Over 60 studies have described various negative effects on the cardiovascular system by seven major types of cyanotoxins, i.e. the microcystin (MC), nodularin (NOD), cylindrospermopsin (CYN), anatoxin (ATX), guanitoxin (GNTX), saxitoxin (STX) and lyngbyatoxin (LTX) groups. Much of the research was done on rodents and fish using high, acutely toxin concentrations and unnatural exposure routes (such as intraperitoneal injection), and it is thus concluded that the emphasis in future studies should be on oral, chronic exposure of mammalian species at environmentally relevant concentrations. It is also suggested that future in vivo studies are conducted in parallel with studies on cells and tissues. In the light of the presented evidence, it is likely that cyanotoxins do not constitute a major risk to cardiovascular health under ordinary conditions met in everyday life. The risk of illnesses in other organs, in particular the liver, is higher under the same exposure conditions. However, adverse cardiovascular effects can be expected due to indirect effects arising from damage in other organs. In addition to risks related to extraordinary concentrations of the cyanotoxins and atypical exposure routes, chronic exposure together with co-existing diseases could make some of the cyanotoxins more dangerous to cardiovascular health.
Collapse
Affiliation(s)
- Zorica Svirčev
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Kinga Sántha
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Stamenko Šušak
- University of Novi Sad, Faculty of Medicine, UNS, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Aleksandra Vulin
- University of Novi Sad, Faculty of Medicine, UNS, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Tamara Palanački Malešević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Geoffrey A Codd
- School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Jussi Meriluoto
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
15
|
Liu F, Zhang Y, Wang F. Environmental relevant concentrations of triclosan affected developmental toxicity, oxidative stress, and apoptosis in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY 2022; 37:848-857. [PMID: 34981884 DOI: 10.1002/tox.23448] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Triclosan (TCS), as a broad-spectrum antibacterial agent, is widely used in various pharmaceutical and personal care products. However, the details of ecological environmental health risks of TCS are not clear. In this study, zebrafish embryos/larval were exposed to environmentally relevant concentrations of TCS to evaluate the developmental toxicity. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to 0, 2, 10, 50, and 250 μg/L TCS until 96 h. The heart beats at 72 hpf were significantly increased in 2 μg/L TCS group, while significantly decreased in 250 μg/L TCS treated group compared with control. The results of acridine orange staining, terminal deoxynucleotide transferase-mediated UTPnick end labeling assay, and detection of mitochondrial membrane potential showed that 50 and 250 μg/L TCS resulted in apoptosis. Meanwhile, reactive oxygen species (ROS) and DNA damage were induced, but SOD activity was significantly decreased in 250 μg/L TCS treated group. In addition, SOD(Mn) and GPx gene mRNA expressions were significantly down-regulated in 50 and 250 μg/L TCS treated groups, while Casp3, Casp9, Puma, Casp8, Apaf1, and Bid genes in 250 μg/L TCS and Mdm2 gene in 50 μg/L treated groups were significantly up-regulated. P53 protein was significantly up-regulated in 250 μg/L TCS treated group. The overall results showed that TCS can cause oxidative stress and result in apoptosis via the involvement of ROS-p53-caspase-dependent apoptotic pathway in zebrafish embryos. The present findings suggest the potential mechanisms of TCS-induced developmental toxicity appears to be the generation of ROS and the consequent triggering of apoptosis genes.
Collapse
Affiliation(s)
- Fei Liu
- School of Biological Science, Luoyang Normal University, Luoyang, China
| | - Ying Zhang
- School of Biological Science, Luoyang Normal University, Luoyang, China
| | - Fan Wang
- School of Biological Science, Luoyang Normal University, Luoyang, China
| |
Collapse
|
16
|
Sergi E, Orfanakis M, Dimitriadi A, Christou M, Zachopoulou A, Kourkouta C, Printzi A, Zervou SK, Makridis P, Hiskia A, Koumoundouros G. Sublethal exposure to Microcystis aeruginosa extracts during embryonic development reduces aerobic swimming capacity in juvenile zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106074. [PMID: 35030472 DOI: 10.1016/j.aquatox.2022.106074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
In the last decades, cyanobacterial harmful algal blooms (CyanoHABs) pose an intensifying ecological threat. Microcystis aeruginosa is a common CyanoHAB species in freshwater ecosystems, with severe toxic effects in a wide range of organisms. In the present paper we examined whether transient and short (48 h) exposure of fish embryos to sublethal levels of M. aeruginosa crude extract (200 mg biomass dw L-1) affects swimming performance at later life stages (end of metamorphosis, ca 12 mm TL, 22,23 days post-fertilization). Pre-exposed metamorphosing larvae presented a significant decrease in swimming performance (9.7 ± 1.6 vs 11.4 ± 1.7 TL s-1 in the control group, p < 0.01), and a significant decrease in the ventricle length-to-depth ratio (1.23 ± 0.15 vs 1.42 ± 0.15 in control fish, p < 0.05). In addition, extract-exposed fish presented significantly elevated rates of vertebral abnormalities (82 ± 13% vs 7 ± 4% in the control group), mainly consisting of the presence of extra neural and haemal processes. No significant differences between groups were detected in survival and growth rates. Results are discussed in respect to the mechanisms that might mediate the detected cyanobacterial effects. This is the first evidence of a direct link between sublethal exposure to M. aeruginosa during the embryonic period and swimming performance at later life-stages. Decreased swimming performance, altered cardiac shape, and elevated vertebral abnormalities in response to early exposure to M. aeruginosa could have significant effects on fish populations in the wild.
Collapse
Affiliation(s)
| | | | | | - Maria Christou
- Biology Department, University of Crete, Heraklion, Greece
| | | | | | - Alice Printzi
- Biology Department, University of Crete, Heraklion, Greece
| | - Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece
| | | | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece
| | | |
Collapse
|
17
|
Zhao WJ, Li X, Xu ZQ, Fang KM, Hong HC, Sun HJ, Guan DX, Yu XW. Environmentally relevant concentrations of arsenic induces apoptosis in the early life stage of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112883. [PMID: 34653941 DOI: 10.1016/j.ecoenv.2021.112883] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) in the aquatic environment is a considerable environmental issue, previous studies have reported the toxic effects of low concentrations (≤ 150 μg/L) of As on fish. However, limited information is available regarding the impact of low levels of As on apoptosis. To evaluate this, zebrafish embryos were exposed to different concentrations (0, 25, 50, 75, and 150 μg/L) of As (arsenite [AsIII] and arsenate [AsV]) for 120 h. Our results indicated that low concentrations of AsIII exposure significantly inhibited the survival of zebrafish larvae, and significantly increased the transcription of Caspase-9 and Caspase-3, the ratio of Bax/Bcl-2 transcription, and protein levels of Caspase-3. In contrast, AsV decreased the ratios of Bax/Bcl-2 transcription and protein levels, as well as protein levels of Caspase-3. Our data demonstrated that AsIII and AsV exert different toxic effects, AsIII induced apoptosis via the mitochondrial pathway and the extrinsic pathway, while AsV induced apoptosis only via the mitochondrial pathway.
Collapse
Affiliation(s)
- Wen-Jun Zhao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xiang Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ze-Qiong Xu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ke-Ming Fang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hua-Chang Hong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hong-Jie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China; Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Dong-Xing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Wei Yu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316021, China.
| |
Collapse
|
18
|
Zhang Y, Wu D, Fan Z, Li J, Gao L, Wang Y, Wang L. Microcystin-LR induces ferroptosis in intestine of common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112610. [PMID: 34365207 DOI: 10.1016/j.ecoenv.2021.112610] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Previous studies provide comprehensive evidence of the environmental hazards and intestinal toxicity of microcystin-LR (MC-LR) exposure. However, little is known about the mechanisms underlying the injury of intestine exposed to MC-LR. Juvenile common carp (Cyprinus carpio) were exposed to MC-LR (0 and 10 μg/L) for 15 days. The results suggest that organic anion-transporting polypeptides 3a1, 4a1, 2b1, and 1d1 mediate MC-LR entry into intestinal tissues. Lesion morphological features (vacuolization, deformation and dilation of the endoplasmic reticulum [ER], absence of mitochondrial cristae in mid-intestine), up-regulated mRNA expressions of ER stress (eukaryotic translation initiation factor 2-alpha kinase 3, endoplasmic reticulum to nucleus signaling 1, activating transcription factor [ATF] 6, ATF4, DNA damage-inducible transcript 3), iron accumulation, and down-regulated activity of glutathione peroxidase (GPx) and glutathione (GSH) content were all typical characteristics of ferroptosis in intestinal tissue following MC-LR exposure. GSH levels in intestinal tissue corroborated as the most influential GSH/GPx 4- related metabolic pathway in response to MC-LR exposure. Verrucomicrobiota, Planctomycetes, Bdellovibrionota, Firmicutes and Cyanobacteria were correlated with the ferroptosis-related GSH following MC-LR exposure. These findings provide new perspectives of the ferroptosis mechanism of MC-LR-induced intestinal injury in the common carp.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Lei Gao
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Yu'e Wang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| |
Collapse
|
19
|
Ding W, Shangguan Y, Zhu Y, Sultan Y, Feng Y, Zhang B, Liu Y, Ma J, Li X. Negative impacts of microcystin-LR and glyphosate on zebrafish intestine: Linked with gut microbiota and microRNAs? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117685. [PMID: 34438504 DOI: 10.1016/j.envpol.2021.117685] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-LR (MC-LR) and glyphosate (GLY) have been classified as a Group 2B and Group 2A carcinogens for humans, respectively, and frequently found in aquatic ecosystems. However, data on the potential hazard of MC-LR and GLY exposure to the fish gut are relatively scarce. In the current study, a subacute toxicity test of zebrafish exposed to MC-LR (35 μg L-1) and GLY (3.5 mg L-1), either alone or in combination was performed for 21 d. The results showed that MC-LR or/and GLY treatment reduced the mRNA levels of tight junction genes (claudin-5, occludin, and zonula occludens-1) and altered the levels of diamine oxidase and D-lactic, indicating increased intestinal permeability in zebrafish. Furthermore, MC-LR and/or GLY treatment remarkably increased the levels of intestinal IL-1β and IL-8 but decreased the levels of IL-10 and TGF-β, indicating that MC-LR and/or GLY exposure induced an inflammatory response in the fish gut. MC-LR and/or GLY exposure also activated superoxide dismutase and catalase, generally upregulated the levels of p53, bax, bcl-2, caspase-3, and caspase-9, downregulated the levels of caspase-8 and caused notable histological injury in the fish gut. Moreover, MC-LR and/or GLY exposure also significantly altered the microbial community in the zebrafish gut and the expression of miRNAs (miR-146a, miR-155, miR-16, miR-21, and miR-223). Chronic exposure to MC-LR and/or GLY can induce intestinal damage in zebrafish, and this study is the first to demonstrate an altered gut microbiome and miRNAs in the zebrafish gut after MC-LR and GLY exposure.
Collapse
Affiliation(s)
- Weikai Ding
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yingying Shangguan
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yuqing Zhu
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Yiyi Feng
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Bangjun Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yang Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
20
|
Refsnider JM, Garcia JA, Holliker B, Hulbert AC, Nunez A, Streby HM. Effects of harmful algal blooms on stress levels and immune functioning in wetland-associated songbirds and reptiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147790. [PMID: 34034177 DOI: 10.1016/j.scitotenv.2021.147790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Harmful algal blooms (HABs), caused primarily by nutrient input from agricultural runoff, are a threat to freshwater systems worldwide, and are further predicted to increase in size, frequency, and intensity due to climate change. HABs occur annually in the Western Basin of Lake Erie (Ohio, USA), and these blooms become toxic when dominated by cyanobacteria that produce the liver toxin microcystin. Although we are making substantial inroads toward understanding how microcystin affects human health, less is known about effects of microcystin on wildlife exposed to HABs. Wetland-associated songbirds (barn swallows, Hirundo rustica, and red-winged blackbirds, Agelaius phoeniceus) and reptiles (Northern watersnakes, Nerodia sipedon, and painted turtles, Chrysemys picta) were sampled from wetlands exposed to chronically high microcystin levels due to a prolonged HAB event, and from unexposed, control wetlands. Physiological stress levels and several measures of immune functioning were compared between the HAB-exposed and control populations. Physiological stress levels, measured as heterophil:lymphocyte ratios, were higher in barn swallows, red-winged blackbirds, and Northern watersnakes exposed to a chronic HAB compared to unexposed, control individuals, but painted turtles did not differ in physiological stress levels between HAB-exposed and control individuals. Neither barn swallows nor red-winged blackbirds differed in immune functioning between populations, but HAB-exposed watersnakes had higher bactericidal capacity than control snakes, and HAB-exposed painted turtles had lower bactericidal capacity than control turtles. These results suggest that even when HABs do not cause direct mortality of exposed wildlife, they can potentially act as a physiological stressor across several taxa, and furthermore may compromise immune functioning in some species.
Collapse
Affiliation(s)
- Jeanine M Refsnider
- Department of Environmental Sciences, University of Toledo, Wolfe Hall Room 1235, 3050 West Towerview Blvd., Toledo, OH 43606-3390, USA.
| | - Jessica A Garcia
- Department of Environmental Sciences, University of Toledo, Wolfe Hall Room 1235, 3050 West Towerview Blvd., Toledo, OH 43606-3390, USA
| | - Brittany Holliker
- Department of Environmental Sciences, University of Toledo, Wolfe Hall Room 1235, 3050 West Towerview Blvd., Toledo, OH 43606-3390, USA
| | - Austin C Hulbert
- Department of Environmental Sciences, University of Toledo, Wolfe Hall Room 1235, 3050 West Towerview Blvd., Toledo, OH 43606-3390, USA
| | - Ashley Nunez
- Department of Environmental Sciences, University of Toledo, Wolfe Hall Room 1235, 3050 West Towerview Blvd., Toledo, OH 43606-3390, USA; Department of Biology, Ursinus College, 601 East Main St., Collegeville, PA 19426-1000, USA
| | - Henry M Streby
- Department of Environmental Sciences, University of Toledo, Wolfe Hall Room 1235, 3050 West Towerview Blvd., Toledo, OH 43606-3390, USA
| |
Collapse
|
21
|
Wu Z, Wang F, Hu L, Zhang J, Chen D, Zhao S. Inhibition of endoplasmic reticulum stress-related autophagy attenuates MCLR-induced apoptosis in zebrafish testis and mouse TM4 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112438. [PMID: 34175825 DOI: 10.1016/j.ecoenv.2021.112438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-leucine arginine (MCLR), a widespread environmental contaminant produced by cyanobacteria, poses a severe threat to the male reproductive system. However, the mechanisms of MCLR-induced testis injury accompanied by autophagy are still obscure. This study aimed to investigate the effects of MCLR on autophagy and apoptosis on the male reproductive system and its mechanism both in vitro and in vivo. MCLR caused damage to the testis of zebrafish, resulting in decreased hatching and growth retardation in the offspring. It also remarkably enhanced autophagic flux by elevating the expression of LC3BII, ATG5, and ATG12 proteins. The autophagic flux was also confirmed through the formation of autophagosomes in the ultrastructure of the zebrafish testis and the accumulation of LC3-positive puncta in zebrafish testis and mouse TM4 cells. Further evaluations revealed that inhibition of autophagy by 3-methyladenine (3-MA) significantly attenuated MCLR-induced apoptosis. This finding indicated that autophagy plays an essential role in cell death in the male reproductive system. Besides, inhibiting endoplasmic reticulum (ER) stress using 4-phenylbutyrate (4-PBA) remarkably blocked autophagy and partially suppressed apoptosis in TM4 cells induced by MCLR. This phenomenon suggested that ER stress-related autophagy was involved in MCLR-induced apoptosis. This study reveals crosstalk between ER stress and autophagy via the PERK/eIF2α/ATF4 signaling pathway. It further suggests that ER stress-related autophagy contributes to MCLR-induced apoptosis and injury in the male reproductive system. These findings provide a novel insight into MCLR-induced impairments of the testis.
Collapse
Affiliation(s)
- Zaiwei Wu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Fang Wang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Liwen Hu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jianrong Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Daojun Chen
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
22
|
Hu Z, He L, Wei J, Su Y, Wang W, Fan Z, Xu J, Zhang Y, Wang Y, Peng M, Zhao K, Zhang H, Liu C. tmbim4 protects against triclocarban-induced embryonic toxicity in zebrafish by regulating autophagy and apoptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116873. [PMID: 33714789 DOI: 10.1016/j.envpol.2021.116873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/04/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Triclocarban (TCC), an antibacterial agent widely used in personal care products, can affect embryonic development. However, the specific molecular mechanism of TCC-induced embryonic developmental damage remains unclear. In this study, TCC exposure was found to increase the expression of tmbim4 gene in zebrafish embryos. The tmbim4 mutant embryos are more susceptible to TCC exposure than wild-type (WT) embryos, with tmbim4 overexpression reducing TCC-induced embryonic death in the former. Exposure of tmbim4 mutant larvae to 400 μg/L TCC substantially increased apoptosis in the hindbrain and eyes. RNA-sequencing of WT and tmbim4 mutant larvae indicated that knockout of the tmbim4 gene in zebrafish affects the autophagy pathway. Abnormalities in autophagy can increase apoptosis and TCC exposure caused abnormal accumulation of autophagosomes in the hindbrain of tmbim4 mutant zebrafish embryos. Pretreatment of TCC-exposed tmbim4 mutant zebrafish embryos with autophagosome formation inhibitors, substantially reduced the mortality of embryos and apoptosis levels. These results indicate that defects in the tmbim4 gene can reduce zebrafish embryo resistance to TCC. Additionally, apoptosis induced by abnormal accumulation of autophagosomes is involved in this process.
Collapse
Affiliation(s)
- Zhiyong Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Liting He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Jiajing Wei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yufang Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Wei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Jia Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yuan Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yongfeng Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Meilin Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
23
|
Li H, Gu X, Chen H, Mao Z, Zeng Q, Yang H, Kan K. Comparative toxicological effects of planktonic Microcystis and benthic Oscillatoria on zebrafish embryonic development: Implications for cyanobacteria risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115852. [PMID: 33246764 DOI: 10.1016/j.envpol.2020.115852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Planktonic and benthic cyanobacteria blooms are increasing in frequency in recent years. Although many studies have focused on the effects of purified toxins or cyanobacteria extracts on fish developments, the more complex impacts of cyanobacteria cells on fish populations are still considered insufficient. This study compared the toxicological effects of harmful planktonic Microcystis and benthic Oscillatoria on zebrafish (Danio rerio) early stages of development. Zebrafish embryos, at 1-2 h post fertilization (hpf), were exposed to 5, 10, and 20 × 105 cells/mL Microcystis (producing microcystins) or Oscillatoria (producing cylindrospermopsins) until 96 hpf. The results indicated that the effects of benthic Oscillatoria on embryonic development of zebrafish were different from those of planktonic Microcystis. Reduced hatching rates, increased mortality, depressed heart rates and elevated malformation rates were observed following exposures to increased concentrations of Microcystis, whilst Oscillatoria exposures only caused yolk sac edemas. Exposure to a high concentration of Microcystis induced severe oxidative damage, growth inhibition and transcriptional downregulations of genes (GH, GHR1, IGF1, IGF1rb) associated with the growth hormone/insulin-like growth factor (GH/IGF) axis. Although Oscillatoria exposure did not affect the body growth, it obviously enhanced the antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and up-regulated the expressions of several oxidative stress-related genes. Discrepancies in the developmental toxicity caused by Microcystis and Oscillatoria may not only attributed to the different secondary metabolites they secrete, but also to the different adhesion behaviors of algal cells on embryonic chorion. These results suggested that harmful cyanobacteria cells could influence the successful recruitment of fish, while the effects of benthic cyanobacteria should not be ignored. It also highlighted that the necessity for further investigating the ecotoxicity of intact cyanobacterial samples when assessing the risk of cyanobacterial blooms.
Collapse
Affiliation(s)
- Hongmin Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China.
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Kecong Kan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Xia M, Wang X, Xu J, Qian Q, Gao M, Wang H. Tris (1-chloro-2-propyl) phosphate exposure to zebrafish causes neurodevelopmental toxicity and abnormal locomotor behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143694. [PMID: 33267995 DOI: 10.1016/j.scitotenv.2020.143694] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
The organophosphate flame retardant, tris (1-chloro-2-propyl) phosphate (TCPP), is ubiquitous in environmental matrices; however, there is a paucity of information concerning its systemic toxicity. Herein, we investigated the effects of TCPP exposure on zebrafish neurodevelopment and swimming behavior to elucidate the underlying molecular mechanisms of neurotoxicity. Under TCPP gradient concentration exposure, the hatching rates were declined by up to 33.3% in 72 hpf, and the malformation rates increased from 15% to 50%. Meanwhile, TCPP led to abnormal behaviors including decreased locomotive activity in the dark and slow/insensitive responses to sound and light stimulation of larvae. TCPP caused excessive apoptosis and ROS accumulation in early embryonic development, with hair cell defects and structural deformity of neuromast. Abnormal expression of neurodevelopment (pax6a, nova1, sox11b, syn2a, foxo3a and robo2) and apoptosis-related genes (baxa, bcl2a and casp8) revealed molecular mechanisms regarding abnormal behavioral and phenotypic symptoms. Chronic TCPP exposure led to anxiety-like behavior and excessive panic, lower capacity for discrimination and risk avoidance, and conditioned place preference in adults. Social interaction tests demonstrated that long-term TCPP stress resulted in unsociable, eccentric, lonely and silent behaviors in adults. Zebrafish memory and cognitive function were severely reduced as concluded from T-maze tests. Potential mechanisms triggering behavioral abnormality were attributed to histopathological injury of diencephalon, abnormal changes in nerve-related genes at transcription and expression levels, and inhibited activity of AChE by TCPP stress. These findings provide an important reference for risk assessment and early warning to TCPP exposure, and offer insights for prevention/mitigation of pollutant-induced nervous system diseases.
Collapse
Affiliation(s)
- Min Xia
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jiaqi Xu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ming Gao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
25
|
Xiong H, Huang Y, Mao Y, Liu C, Wang J. Inhibition in growth and cardiotoxicity of tris (2-butoxyethyl) phosphate through down-regulating Wnt signaling pathway in early developmental stage of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111431. [PMID: 33069947 DOI: 10.1016/j.ecoenv.2020.111431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
As a common organophosphorus flame retardant, tris (2-butoxyethyl) phosphate (TBOEP) is detected in water environment and aquatic animals extensively. Despite previous researches have reported the developmental toxicity of TBOEP in zebrafish (Danio rerio) larvae, few research focused on its underlying mechanisms. In this study, zebrafish embryos were exposed to 0, 20, 200, 1000 and 2000 µg/L TBOEP from 2 until 120 h post-fertilization (hpf) to determine potential mechanisms of developmental toxicity of this compound. Early developmental stage parameters such as body length, survival rate, hatching rate and heart rate were decreased, while malformation rate was ascended. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay was carried out at 12, 24, 72 and 120 hpf to demonstrate alterations in expression of genes of Wnt signaling pathway. The results indicated that axin1 was significantly up-regulated, while β-catenin, pkc and wnt11 were down-regulated. Correlation analysis indicated that expression of these genes was significantly correlated with body length. Furthermore, apoptosis was detected in heart region by acridine orange (AO) staining and terminal deoxynucleotide transferase-mediated deoxy-UTP nick end labeling (TUNEL) assay. In addition, at 120 hpf, occurrence of oxidative stress was observed in zebrafish larvae. Moreover, 6-Bromoindirubin-3'-oxime (BIO), an activator of Wnt pathway, was found to alleviate the inhibiting effects of TBOEP on zebrafish growth. The overall outcomes offered novel viewpoints in toxic effects of TBOEP, and down-regulating Wnt signaling pathway were able to reveal some potential mechanisms of developmental toxicity of TBOEP in zebrafish larvae.
Collapse
Affiliation(s)
- Hao Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangyang Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuchao Mao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
26
|
Zhang S, Du X, Liu H, Losiewic MD, Chen X, Ma Y, Wang R, Tian Z, Shi L, Guo H, Zhang H. The latest advances in the reproductive toxicity of microcystin-LR. ENVIRONMENTAL RESEARCH 2021; 192:110254. [PMID: 32991922 DOI: 10.1016/j.envres.2020.110254] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Microcystin-LR (MC-LR) is an emerging environmental pollutant produced by cyanobacteria that poses a threat to wild life and human health. In recent years, the reproductive toxicity of MC-LR has gained widespread attention, a large number of toxicological studies have filled the gaps in past research and more molecular mechanisms have been elucidated. Hence, this paper reviews the latest research advances on MC-LR-induced reproductive toxicity. MC-LR can damage the structure and function of the testis, ovary, prostate, placenta and other organs of animals and then reduce their fertility. Meanwhile, MC-LR can also be transmitted through the placenta to the offspring causing trans-generational and developmental toxicity including death, malformation, growth retardation, and organ dysfunction in embryos and juveniles. The mechanisms of MC-LR-induced reproductive toxicity mainly include the inhibition of protein phosphatase 1/2 A (PP1/2 A) activity and the induction of oxidative stress. On the one hand, MC-LR triggers the hyperphosphorylation of certain proteins by inhibiting intracellular PP1/2 A activity, thereby activating multiple signaling pathways that cause inflammation and blood-testis barrier destruction, etc. On the other hand, MC-LR-induced oxidative stress can result in cell programmed death via the mitochondrial and endoplasmic reticulum pathways. It is worth noting that epigenetic modifications are also involved in reproductive cell apoptosis, which may be an important direction for future research. Furthermore, this paper proposes for the first time that MC-LR can produce estrogenic effects in animals as an environmental estrogen. New findings and suggestions in this review could be areas of interest for future research.
Collapse
Affiliation(s)
- Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Michael D Losiewic
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
27
|
He L, Liu L, Lin C, Ruan J, Liang X, Zhou Y, Wei L. Effects of MC-LR on histological structure and cell apoptosis in the kidney of grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2005-2014. [PMID: 32712898 DOI: 10.1007/s10695-020-00833-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Microcystin-LR (MC-LR) is a well-known hepatotoxin; however, increasing evidence suggests that it might induce kidney injury. Grass carp (Ctenopharyngodon idella) is one of the most important farmed species and may be affected by MC-LR releasing into waterbody during cyanobacterial bloom. Here, this present study aimed to explore the nephrotoxicity of grass carp by MC-LR. The grass carp received a single intraperitoneal injection of different doses of MC-LR (0, 25, 75, and 100 μg/kg body weight (BW)), and the kidneys were isolated at 24 and 96 h post-injection (hpi). Histopathological examination revealed kidney lesions, with severe hemorrhage, necrosis of the interstitium, and dilation of Bowman's capsule in the 75 and 100 μg MC-LR/kg BW groups. Under transmission electron microscopy, a larger number of swelling and vacuolated degeneration of mitochondria were observed; moreover, apoptotic features, such as condensed chromatin and shrinkage of cells, were observed in the 75 and 100 μg MC-LR/kg BW groups at 96 hpi. MC-LR significantly upregulated the number of apoptotic cells in the 75 and 100 μg/kg BW groups at 96 hpi as indicated by terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay (P < 0. 05). The results of quantitative assays showed that the mRNA expression of Bax, caspase-9, and caspase-3 in grass carp kidney were significantly increased at 96 hpi in the 75 and 100 μg MC-LR/kg BW groups compared with that in the control group, but Bcl-2 mRNA expression was significantly decreased in all the treatment groups at 24 and 96 hpi. Taken together, these results indicated that MC-LR damaged the kidney structure and resulted in renal apoptosis which may occur via the mitochondrial pathway.
Collapse
Affiliation(s)
- Li He
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Lin Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Changgao Lin
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Ximei Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Ying Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China.
| |
Collapse
|
28
|
Zhou W, Wang J, Zhang J, Peng C, Li G, Li D. Environmentally relevant concentrations of geosmin affect the development, oxidative stress, apoptosis and endocrine disruption of embryo-larval zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139373. [PMID: 32473435 DOI: 10.1016/j.scitotenv.2020.139373] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Geosmin (trans-1, 10-dimethyl-trans-9-decalol), a volatile organic compound, has been widely detected in aquatic ecosystems. However, the ecological effects of geosmin are not clear. Here, using zebrafish (Danio rerio) embryo as a model, we investigated biological activity effects of environmentally relevant concentrations (50, 500, 5000 ng/L) of geosmin on the developing zebrafish starting from 2 h post-fertilization (hpf) to 96 hpf. Results showed geosmin had no effect on hatchability, malformations and mortality. However, we observed that geosmin exposure significantly increased zebrafish body length in a concentration dependent manner. This effect was possibly due to up-regulation of expression of genes along the growth hormone/insulin-like growth factor (GH/IGF) axis and hypothalamic-pituitary-thyroid (HPT) axis. In addition, superoxide dismutase (SOD) activities and catalase (CAT) activities significantly increased at 96 hpf when the embryos were exposed to 500 and 5000 ng/L of geosmin. The malondialdehyde (MDA) contents and glutathione S-transferase (GST) activities decreased significantly after the exposure to 5000 ng/L geosmin. Simultaneously, exposure to geosmin resulted in significant increase in cell apoptosis, mainly in the heart area. The mRNA levels of the genes related to oxidative stress and apoptosis were also altered significantly after geosmin exposure. These findings indicated that geosmin can simultaneously induce multiple responses during zebrafish embryonic development, including oxidative stress, apoptosis, and endocrine disruption.
Collapse
Affiliation(s)
- Weicheng Zhou
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; College of Chemistry, Biology and Environmental Engineering, Xiangnan University, Chenzhou 423000, PR China
| | - Jinglong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinli Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Genbao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
29
|
Su RC, Meyers CM, Warner EA, Garcia JA, Refsnider JM, Lad A, Breidenbach JD, Modyanov N, Malhotra D, Haller ST, Kennedy DJ. Harmful Algal Bloom Toxicity in Lithobates catesbeiana Tadpoles. Toxins (Basel) 2020; 12:toxins12060378. [PMID: 32521650 PMCID: PMC7354472 DOI: 10.3390/toxins12060378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/23/2020] [Accepted: 06/03/2020] [Indexed: 11/16/2022] Open
Abstract
Harmful algal blooms (HAB) have become a major health concern worldwide, not just to humans that consume and recreate on contaminated waters, but also to the fauna that inhabit the environments surrounding affected areas. HABs contain heterotrophic bacteria, cyanobacterial lipopolysaccharide, and cyanobacterial toxins such as microcystins, that can cause severe toxicity in many aquatic species as well as bioaccumulation within various organs. Thus, the possibility of trophic transference of this toxin through the food chain has potentially important health implications for other organisms in the related food web. While some species have developed adaptions to attenuate the toxic effects of HAB toxins, there are still numerous species that remain vulnerable, including Lithobates catesbeiana (American bullfrog) tadpoles. In the current study we demonstrate that acute, short-term exposure of tadpoles to HAB toxins containing 1 µg/L (1 nmol/L) of total microcystins for only 7 days results in significant liver and intestinal toxicity within tadpoles. Exposed tadpoles had increased intestinal diameter, decreased intestinal fold heights, and a constant number of intestinal folds, indicating pathological intestinal distension, similar to what is seen in various disease processes, such as toxic megacolon. HAB-toxin-exposed tadpoles also demonstrated hepatocyte hypertrophy with increased hepatocyte binucleation consistent with carcinogenic and oxidative processes within the liver. Both livers and intestines of HAB-toxin-exposed tadpoles demonstrated significant increases in protein carbonylation consistent with oxidative stress and damage. These findings demonstrate that short-term exposure to HAB toxins, including microcystins, can have significant adverse effects in amphibian populations. This acute, short-term toxicity highlights the need to evaluate the influence HAB toxins may have on other vulnerable species within the food web and how those may ultimately also impact human health.
Collapse
Affiliation(s)
- Robin C. Su
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; (R.C.S.); (E.A.W.); (A.L.); (J.D.B.); (D.M.)
| | - Casey M. Meyers
- Department of Biology, Wittenberg University, Springfield, OH 45504, USA;
| | - Emily A. Warner
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; (R.C.S.); (E.A.W.); (A.L.); (J.D.B.); (D.M.)
| | - Jessica A. Garcia
- Department of Environmental Sciences, The University of Toledo, Toledo, OH 43606, USA; (J.A.G.); (J.M.R.)
| | - Jeanine M. Refsnider
- Department of Environmental Sciences, The University of Toledo, Toledo, OH 43606, USA; (J.A.G.); (J.M.R.)
| | - Apurva Lad
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; (R.C.S.); (E.A.W.); (A.L.); (J.D.B.); (D.M.)
| | - Joshua D. Breidenbach
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; (R.C.S.); (E.A.W.); (A.L.); (J.D.B.); (D.M.)
| | - Nikolai Modyanov
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA;
| | - Deepak Malhotra
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; (R.C.S.); (E.A.W.); (A.L.); (J.D.B.); (D.M.)
| | - Steven T. Haller
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; (R.C.S.); (E.A.W.); (A.L.); (J.D.B.); (D.M.)
- Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Correspondence: (S.T.H.); (D.J.K.); Tel.: +1-419-383-6822 (D.J.K. & S.T.H.)
| | - David J. Kennedy
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; (R.C.S.); (E.A.W.); (A.L.); (J.D.B.); (D.M.)
- Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Correspondence: (S.T.H.); (D.J.K.); Tel.: +1-419-383-6822 (D.J.K. & S.T.H.)
| |
Collapse
|
30
|
Yan M, Leung PTY, Gu J, Lam VTT, Murray JS, Harwood DT, Wai TC, Lam PKS. Hemolysis associated toxicities of benthic dinoflagellates from Hong Kong waters. MARINE POLLUTION BULLETIN 2020; 155:111114. [PMID: 32469761 DOI: 10.1016/j.marpolbul.2020.111114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Benthic dinoflagellates produce a diverse range of phycotoxins, which are responsible for intoxication events in marine fauna. This study assessed the hemolysis associated toxicities of six species of benthic dinoflagellates from the genera Coolia, Fukuyoa, Amphidinium and Prorocentrum. Results demonstrated that Amphidinium carterae, Coolia tropicalis and Fukuyoa ruetzleri were the three most toxic species, while Prorocentrum cf. lima did not have significant hemolytic effect. Grouper samples (Cephalopholis boenak) were more tolerant to the hemolytic algae than the blackhead seabream (Acanthopagrus schlegelii), with decreased heart rate and blood flow being observed in medaka larvae after exposure to toxic algal extracts. LC-MS/MS analysis detected a gambierone analogue called 44-methylgambierone produced by the C. tropicalis isolate. This analogue was also detected in the F. ruetzleri isolate. This study provided new information on the hemolysis associated toxicities of local toxic benthic dinoflagellates, which contributes to better understanding of their emerging threats to marine fauna and reef systems in Hong Kong.
Collapse
Affiliation(s)
- Meng Yan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| | - Jiarui Gu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Veronica T T Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - J Sam Murray
- Cawthron Institute, Nelson, New Zealand; New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - D Tim Harwood
- Cawthron Institute, Nelson, New Zealand; New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Tak-Cheung Wai
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Cao XF, Jiang GZ, Xu C, Abasubong KP, Wang CC, Liu WB. Molecular characterization and expression pattern of inositol-requiring enzyme 1 (IRE1) in blunt snout bream (Megalobrama amblycephala): its role of IRE1 involved in inflammatory response induced by lipopolysaccharide. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:843-860. [PMID: 31981002 DOI: 10.1007/s10695-019-00753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to characterize the full-length cDNA of IRE1 from fish Megalobrama amblycephala and investigate its role in the pro-inflammatory response. A full-length cDNA coding IRE1 was cloned from blunt snout bream by RT-PCR and RACE approaches. The cDNA obtained covered 3665 bp with an open reading frame of 3096 bp encoding 1031 amino acids. Sequence alignment and phylogenetic analysis revealed a high degree of conservation (74-92%) among various species, retaining one signal peptide, one luminal domain, one serine/threonine kinase domain, one RNase domain, one activation loop, two N-linked glycosylation sites, and several phosphorylation sites. The highest IRE1 expression was observed in the trunk kidney followed by the brain and spleen, whereas relatively low expression levels were detected in the liver, intestine, adipose, skin, and heart. After lipopolysaccharide (LPS) challenge, the expressions of glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1 (IRE1), spliced X-box binding protein 1 (XBP1s), C/EBP homologous protein (CHOP), nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNFα), and interleukin-6 (IL-6) all increased remarkably in the spleen and brain at different sampling time points, while LPS also upregulated all the genes tested in the intestine except C/EBP homologous protein. Overall, the results indicated that the IRE1 gene of Megalobrama amblycephala shared a high similarity compared with other vertebrates including several bony fish species. Its expression in three tissues was induced remarkably by the LPS challenge, which indicated that IRE1 played a vital role in LPS-induced inflammation on fish.
Collapse
Affiliation(s)
- Xiu-Fei Cao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Kenneth Prudence Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Cong-Cong Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
32
|
Zhan C, Liu W, Zhang F, Zhang X. Microcystin-LR triggers different endoplasmic reticulum stress pathways in the liver, ovary, and offspring of zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121939. [PMID: 31884362 DOI: 10.1016/j.jhazmat.2019.121939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/12/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
The existence of microcystins (MCs), the secondary metabolite of cyanobacteria, has become a growing public health concern. Previous researches have proved that MCs can trigger endoplasmic reticulum stress (ERS), but the underlying mechanisms remain unclear. In the present study, adult female zebrafish were exposed to MC-LR (0, 1, 5 and 20 μg/L) for 30 d, and the offspring derived from the treated females and healthy males were cultured in water without MC-LR until 96 h post fertilization (hpf). Our data suggested that MC-LR causes a significant increase in the eif2s1a, atf4, and eif2ak3 transcription levels in the liver and ovary. The mRNA levels of atf4, atf6, bcl-2, hspa5, eif2s1a and eif2ak3 upregulated notably in the offspring. JNK phosphorylation level and cleaved-caspase3 protein expression elevated obviously in the liver and ovary, but had no remarkable change in the offspring. Furthermore, TUNEL results showed that MC-LR significantly induced apoptosis in the liver and ovary, while acridine orange (AO) staining indicated that MC-LR did not cause abnormal apoptosis in offspring. Concisely, the present study indicated that MC-LR leads to apoptosis through different ERS pathways in the liver, ovary and offspring, and also provides a new perspective for understanding the apoptosis caused by MC-LR.
Collapse
Affiliation(s)
- Chunhua Zhan
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Wanjing Liu
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Feng Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
33
|
Li S, Jiang Y, Sun Q, Coffin S, Chen L, Qiao K, Gui W, Zhu G. Tebuconazole induced oxidative stress related hepatotoxicity in adult and larval zebrafish (Danio rerio). CHEMOSPHERE 2020; 241:125129. [PMID: 31683439 DOI: 10.1016/j.chemosphere.2019.125129] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Tebuconazole is widely used as fungicide and has frequently been detected at elevated concentrations in environmental media. To characterize the potential toxicity of tebuconazole on vertebrate and humans. Using zebrafish as a vertebrate model, the toxic effects in liver that produced by low-toxic concentrations of tebuconazole were assessed in adult zebrafish. We further focused on tebuconazole-induced toxicity and its possible mechanism in larval zebrafish using a hepatotoxicity assay. The induction of oxidative stress in adult fish was evaluated by superoxide dismutase (T-SOD), catalase (CAT), peroxidase (POD), glutathione S-transferase (GST) activity, and the increased aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio. Significantly increased enzyme activity was observed in the liver of male and female fish at both exposure and depuration stage. Exposure to maximum non-lethal (MNLC) concentration of tebuconazole from 72 to 120 h post-fertilization (hpf) affected the liver size and yolk retention in larval zebrafish. Decreased fluorescence intensity was observed in larval Tg(Apo14:GFP) zebrafish, indicating liver degeneration after tebuconazole treated. Histopathological examination confirmed the alterations in liver histoarchitecture in exposed zebrafish. Significant 1.28-fold and 1.65-fold increases in reactive oxygen species levels were observed in juveniles exposed to MNLC and lethal concentration 10 (LC10) group, respectively. The acridine orange staining assay showed that apoptotic cells occurred in the liver regions. These results indicated that tebuconazole exposure resulted in impacts on the ecological risk in fish and vertebrate. Overall, the present study suggested further research in needed to better understand the tebuconazole-induced toxicity mechanism that associated with oxidative stress.
Collapse
Affiliation(s)
- Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Yao Jiang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Qianqian Sun
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Scott Coffin
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Lili Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
34
|
Liu J, Huang Y, Cai F, Dang Y, Liu C, Wang J. MicroRNA-181a regulates endoplasmic reticulum stress in offspring of mice following prenatal microcystin-LR exposure. CHEMOSPHERE 2020; 240:124905. [PMID: 31563103 DOI: 10.1016/j.chemosphere.2019.124905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Microcystin-LR (MCLR) was commonly regarded as a potent hepatotoxin and has been reported to cause neurotoxicity. This study was aimed to investigate how maternal MCLR exposure during pregnancy alters behavioral responses in offspring mice and the possible molecular mechanism involved in this procedure. Three doses of MCLR solutions (0, 3 or 15 μg/kg body weight) were administered subcutaneously to pregnant C57bl/6 from gestation day (GD) 6-19. Our results showed that MCLR prenatal exposure led to the impairment of learning and memory function in offspring on postnatal days (PND) 35, accompanied by endoplasmic reticulum (ER) stress and neuronal apoptosis in hippocampal CA1 regions of mice. Sixteen miRNAs in hippocampus of pups on PND 35 were significantly affected by MCLR exposure with the markedly decreased transcription of miR-181a-5p. We then found that miR-181a-5p was down-regulated, accompanied by activation of ER stress after prenatal exposure to MCLR using qPCR analysis. Furthermore, glucose-regulated protein, 78kDa/binding immunoglobulin protein (Grp78/BIP), a major ER chaperone and signaling regulator, was identified as a target of miR-181a-5p. Our study showed that miR-181a could lead to a decrease in the mRNA expression and protein levels of Grp78 by directly binding to its 3'-untranslated region (3'-UTR) in primary hippocampal neurons. Our findings indicate that the up-regulation of Grp78 mediated by inhibition of miR-181a-5p is a possible mechanism resulting in ER stress and cognitive impairment in pups following prenatal MCLR exposure.
Collapse
Affiliation(s)
- Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yangyang Huang
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Cai
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, 437100, Hubei, China; Department of Pharmacology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Yao Dang
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunsheng Liu
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianghua Wang
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
35
|
Liu L, Zhang H, He J, Dong S. Investigation on the stress response of microbes in acute toxicity assay. Anal Chim Acta 2020; 1099:46-51. [DOI: 10.1016/j.aca.2019.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
|
36
|
Alosman M, Cao L, Massey IY, Yang F. The lethal effects and determinants of microcystin-LR on heart: a mini review. TOXIN REV 2020. [DOI: 10.1080/15569543.2019.1711417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Muwaffak Alosman
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Linghui Cao
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Isaac Yaw Massey
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
- Key laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
37
|
Sarkar S, Alhasson F, Kimono D, Albadrani M, Seth RK, Xiao S, Porter DE, Scott GI, Brooks B, Nagarkatti M, Nagarkatti P, Chatterjee S. Microcystin exposure worsens nonalcoholic fatty liver disease associated ectopic glomerular toxicity via NOX-2-MIR21 axis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103281. [PMID: 31706246 PMCID: PMC7100051 DOI: 10.1016/j.etap.2019.103281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/03/2023]
Abstract
NAFLD often results in cardiovascular, intestinal and renal complications. Previous reports from our laboratory highlighted NAFLD induced ectopic inflammatory manifestations in the kidney that gave rise to glomerular inflammation. Extending our studies, we hypothesized that existing inflammatory conditions in NAFLD could make the kidneys more susceptible to environmental toxicity. Our results showed that exposure of Microcystin-LR (MC) in NAFLD mice caused a marked increase in cellular scarring with a concomitant increase in mesangial cell activation as observed by increased α-SMA in the extracellular matrix surrounding the glomeruli. Renal tissue surrounding the glomeruli also showed increased NOX2 activation as shown by greater co-localization of p47 Phox and its membrane component gp91Phox both in the mesangial cell and surrounding tissue. Mechanistically, mesangial cells incubated with apocynin, nitrone spin trap DMPO and miR21 inhibitor showed significantly decreased α-SMA, miR21 levels and proinflammatory cytokine release in the supernatant. In parallel, mice lacking miR21, known to be activated by NOX2, when exposed to MC in NAFLD showed decreased mesangial cell activation. Strikingly, phenyl boronic acid incubated cells that were exposed to MC showed significantly decreased mesangial cell activation showing that peroxynitrite might be the major reactive species involved in mediation of the activation process, release of proinflammatory micro RNAs and cytokines that are crucial for renal toxicity. Thus, in conclusion, MC exposure causes NOX2 activation that leads to mesangial cell activation and toxicity via release of peroxynitrite that also represses PTEN by the upregulation of miR21 thus amplifying the toxicity.
Collapse
Affiliation(s)
- Sutapa Sarkar
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, United States; NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, United States
| | - Firas Alhasson
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, United States
| | - Diana Kimono
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, United States; NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, United States
| | - Muayad Albadrani
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, United States; NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, United States
| | - Ratanesh K Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, United States; NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, United States
| | - Shuo Xiao
- NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, United States
| | - Dwayne E Porter
- NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, United States
| | - Geoff I Scott
- NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, United States
| | - Bryan Brooks
- Department of Environmental Science, Baylor University, United States
| | - Mitzi Nagarkatti
- Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, United States
| | - Prakash Nagarkatti
- Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, United States; NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, United States.
| |
Collapse
|
38
|
Dong G, Zhang Z, Duan K, Shi W, Huang R, Wang B, Luo L, Zhang Y, Ruan H, Huang H. Beclin 1 deficiency causes hepatic cell apoptosis via endoplasmic reticulum stress in zebrafish larvae. FEBS Lett 2019; 594:1155-1165. [PMID: 31823348 DOI: 10.1002/1873-3468.13712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023]
Abstract
Beclin 1/Atg6 is an essential autophagy gene, and deficiency of this gene in organisms leads to impaired autophagic flux, usually with cell apoptosis; however, the causative mechanism of cell apoptosis is not clear. Here, we knocked out the beclin 1 gene in zebrafish and found that autophagic flux is disrupted in mutants. Beclin 1-deficient zebrafish live through embryogenesis but die at larval stage. We found accumulated protein aggregates and vigorous apoptosis in mutant larvae, predominantly in the liver. The hepatic cell apoptosis in mutants results from an endoplasmic reticulum (ER) stress response; however, it is not the leading cause of mutant larval lethality. Our work proposes that ER stress induces cell apoptosis in Beclin 1-deficient organisms.
Collapse
Affiliation(s)
- Guoping Dong
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhe Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Kun Duan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenpeng Shi
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Rui Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Bangjun Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Yaoguang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Hua Ruan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Honghui Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
39
|
Wu Q, Yan W, Liu C, Hung TC, Li G. Co-exposure with titanium dioxide nanoparticles exacerbates MCLR-induced brain injury in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133540. [PMID: 31374495 DOI: 10.1016/j.scitotenv.2019.07.346] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/12/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Owing to the eutrophication in freshwater and industrial emissions, the detected concentrations of MCLR and nano-TiO2 in nature water increase year by year. The purpose of this study was to evaluate the joint effect of microcystin-LR (MCLR) and titanium dioxide nanoparticles (nano-TiO2) on the zebrafish brain and to investigate the underlying mechanisms. In this study, four-month old zebrafish were exposed to 0, 0.5, 4, and 32 μg/L MCLR and MCLR-co-nano-TiO2 (100 μg/L) for 45 days. Obvious brain injury characterized by formation of glial scars and ventriculomegaly was observed in both MCLR groups and MCLR-co-nano-TiO2 groups. In addition, our results showed the existence of nano-TiO2 aggravated MCLR-induced abnormity of swimming behavior and social behavior of zebrafish. To clarify the mechanisms of nano-TiO2 aggravated MCLR-induced brain injury, we firstly examined the reactive oxygen species (ROS) generation in the zebrafish brain. The results showed that co-exposure with nano-TiO2 could further increase ROS content compared with MCLR only groups. We also detected a significant change of lipid peroxidation products (MDA, malondialdehyde) content, antioxidant enzyme (SOD, superoxide dismutase) activity, and non-enzymatic antioxidant (GSH, glutathione) content in MCLR-co-nano-TiO2 groups. Transcriptional analysis indicated the expression of genes related to the antioxidant system was significantly altered in the zebrafish brain. Collectively, the observations in this study showed that the existence of nano-TiO2 could exacerbate the damage of the zebrafish brain through the aggravation of MCLR-induced oxidative stress, ultimately leading to the abnormity of swimming behavior and social behavior.
Collapse
Affiliation(s)
- Qin Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Yan
- Institute of Quality Standard & Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
40
|
Du B, Liu G, Ke M, Zhang Z, Zheng M, Lu T, Sun L, Qian H. Proteomic analysis of the hepatotoxicity of Microcystis aeruginosa in adult zebrafish (Danio rerio) and its potential mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113019. [PMID: 31419664 DOI: 10.1016/j.envpol.2019.113019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/03/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Microcystis aeruginosa is one of the main species of cyanobacteria that causes water blooms. M. aeruginosa can release into the water several types of microcystins (MCs), which are harmful to aquatic organisms and even humans. However, few studies have investigated the hepatotoxicity of M. aeruginosa itself in zebrafish in environments that simulate natural aquatic systems. The objective of this study was to evaluate the hepatotoxicity of M. aeruginosa in adult zebrafish (Danio rerio) after short-term (96 h) exposure and to elucidate the potential underlying mechanisms. Distinct histological changes in the liver, such as enlargement of the peripheral nuclei and sinusoids and the appearance of fibroblasts, were observed in zebrafish grown in M. aeruginosa culture. In addition, antioxidant enzyme activity was activated and protein phosphatase (PP) activity was significantly decreased with increasing microalgal density. A proteomic analysis revealed alterations in a number of protein pathways, including ribosome translation, immune response, energy metabolism and oxidative phosphorylation pathways. Western blot and real-time PCR analyses confirmed the results of the proteomic analysis. All results indicated that M. aeruginosa could disrupt hepatic functions in adult zebrafish, thus highlighting the necessity of ecotoxicity assessments for M. aeruginosa at environmentally relevant densities.
Collapse
Affiliation(s)
- Benben Du
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Guangfu Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Meng Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
41
|
Cao L, Massey IY, Feng H, Yang F. A Review of Cardiovascular Toxicity of Microcystins. Toxins (Basel) 2019; 11:toxins11090507. [PMID: 31480273 PMCID: PMC6783932 DOI: 10.3390/toxins11090507] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022] Open
Abstract
The mortality rate of cardiovascular diseases (CVD) in China is on the rise. The increasing burden of CVD in China has become a major public health problem. Cyanobacterial blooms have been recently considered a global environmental concern. Microcystins (MCs) are the secondary products of cyanobacteria metabolism and the most harmful cyanotoxin found in water bodies. Recent studies provide strong evidence of positive associations between MC exposure and cardiotoxicity, representing a threat to human cardiovascular health. This review focuses on the effects of MCs on the cardiovascular system and provides some evidence that CVD could be induced by MCs. We summarized the current knowledge of the cardiovascular toxicity of MCs, with regard to direct cardiovascular toxicity and indirect cardiovascular toxicity. Toxicity of MCs is mainly governed by the increasing level of reactive oxygen species (ROS), oxidative stress in mitochondria and endoplasmic reticulum, the inhibition activities of serine/threonine protein phosphatase 1 (PP1) and 2A (PP2A) and the destruction of cytoskeletons, which finally induce the occurrence of CVD. To protect human health from the threat of MCs, this paper also puts forward some directions for further research.
Collapse
Affiliation(s)
- Linghui Cao
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Isaac Yaw Massey
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Hai Feng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
42
|
Liu M, Ai W, Sun L, Fang F, Wang X, Chen S, Wang H. Triclosan-induced liver injury in zebrafish (Danio rerio) via regulating MAPK/p53 signaling pathway. Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:108-117. [PMID: 31048017 DOI: 10.1016/j.cbpc.2019.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022]
Abstract
Long-term exposure of triclosan (TCS), an important antimicrobial agent, can lead to deleterious effects on liver growth and development. However, the related mechanisms on TCS-induced hepatocyte injury remain unclear. Herein, we found that after long-time TCS exposure to adult zebrafish (Danio rerio) from 6 hpf (hours post-fertilization) to 90 dpf (days post-fertilization), the body weight and hepatic weight were significantly increased in concomitant with a large amount of lipid droplet accumulation in liver. Also, TCS exposure resulted in occurrence of oxidative stress by increasing the concentrations of malondialdehyde and reducing the activity of superoxide dismutase both in zebrafish larvae (120 hpf) and adult liver. By H&E staining, we observed a series of abnormal phenomena such as severely hepatocellular atrophy and necrosis, as well as prominently increased hepatic plate gap in TCS-exposure treatment groups. Through AO staining, TCS induced obvious apoptosis in larval heart and liver; through TUNEL assay, a concentration-dependent apoptosis was found to mainly occur in adult liver and its surrounding tissues. The mRNA and protein expression of anti-apoptotic protein Bcl-2 decreased, while that of pro-apoptosis protein Bax significantly increased, identifying that liver injury was closely related to hepatocyte apoptosis. The significant up-regulation of MAPK and p53 at both mRNA and protein levels proved that TCS-induced hepatocyte apoptosis was closely related to activating the MAPK/p53 signaling pathway. These results strongly suggest that long-term TCS-exposure may pose a great injury to zebrafish liver development by means of activating MAPK/p53 apoptotic signaling pathway, also lay theoretical foundation for further assessing TCS-induced ecological healthy risk.
Collapse
Affiliation(s)
- Mi Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Weiming Ai
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Limei Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Fang Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shaobo Chen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Zhejiang Mariculture Research Institute, Wenzhou 325005, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
43
|
Hu Z, Dang Y, Liu C, Zhou L, Liu H. Acute exposure to ustiloxin A affects growth and development of early life zebrafish, Danio rerio. CHEMOSPHERE 2019; 226:851-857. [PMID: 30978596 DOI: 10.1016/j.chemosphere.2019.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Ustiloxin A is a cyclopeptide mycotoxin originally isolated from rice false smut balls (FSBs) that formed in rice spikelets infected by the fungal pathogen Ustilaginoidea virens. Studies have shown that ustiloxin A was toxic to animals, but the toxicological evidence is still lacking. To reveal the negative influence of ustiloxin A on model organism, zebrafish were selected and exposed to ustiloxin A at concentrations of 0, 0.25, 2.5 or 25 μM from 2 h post-fertilization (hpf) to 144 hpf. The hatching rates of embryos in the 25 μM exposure group was 12.85% less than the control group at 96 hpf. Meanwhile, exposure to 0.25, 2.5 or 25 μM ustiloxin A resulted in a distinct dose-dependent increase in mortality rate of embryos at 96 hpf. We also found that exposed to ustiloxin A could cause some other damages on zebrafish larvae, such as growth delay and increased heart rate. In addition, the athletic behavior of zebrafish larvae exposed to ustiloxin A at 25 μM was dramatically different with that of control. Transcriptome sequencing showed that abundances of 339 transcripts (125 up-regulated and 214 down-regulated) were significantly altered in larvae exposed to 25 μM of ustiloxin A. Several of the crucial genes were validated by RT-qPCR. This is the first report on the toxicologic study of ustiloxins against model organism zebrafish. Results suggested that ustiloxins have become a potential danger for food security.
Collapse
Affiliation(s)
- Zheng Hu
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Yao Dang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Ligang Zhou
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Hao Liu
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
44
|
Qian H, Zhang M, Liu G, Lu T, Sun L, Pan X. Effects of different concentrations of Microcystis aeruginosa on the intestinal microbiota and immunity of zebrafish (Danio rerio). CHEMOSPHERE 2019; 214:579-586. [PMID: 30286424 DOI: 10.1016/j.chemosphere.2018.09.156] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Microcystis aeruginosa is a primary species of toxin-producing cyanobacteria. This study explored the effects of short-term exposure (96 h) to M. aeruginosa on the intestinal microflora variation and immune function of zebrafish. After exposure to different cell concentrations of M. aeruginosa, marked histological variation was observed in the intestine, such as goblet cells proliferation and intestinal desquamation. In addition high-concentration M. aeruginosa treatment (initial concentration: 1.59 × 105 cells mL-1) induced a significant increase in cytokine levels compared with other groups. Low-concentration M. aeruginosa treatment (initial concentration: 0.88 × 105 cells mL-1) promoted the transcription of inflammatory genes, while high-concentration treatment restrained the transcription of these genes. Moreover, M. aeruginosa exposure also changed the intestinal microbial diversity. At the phylum level, bacteria belonging to Proteobacteria were the most abundant in all groups, and Gammaproteobacteria were the dominant bacteria with major changes. Pathogenic microorganisms such as Shewanella, Plesiomonas, Halomonas, Pseudomonas, and Lactobacillus increased greatly after treatment with different cell concentrations of M. aeruginosa. This study indicates that M. aeruginosa induces an increase in zebrafish goblet cells and enhances the inflammatory response, which may produce detrimental effects in zebrafish, resulting in a greater proportion of pathogenic bacteria and intestinal injury. The results of this study will help improve the understanding of the effects of M. aeruginosa on the intestines of aquatic organisms.
Collapse
Affiliation(s)
- Haifeng Qian
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China; College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| | - Meng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Guangfu Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
45
|
Wang Z, Li G, Wu Q, Liu C, Shen J, Yan W. Microcystin-LR exposure induced nephrotoxicity by triggering apoptosis in female zebrafish. CHEMOSPHERE 2019; 214:598-605. [PMID: 30290360 DOI: 10.1016/j.chemosphere.2018.09.103] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Recently, several studies showed that microcystin-LR (MCLR) can accumulate and induce toxicity in kidney. However, the exact mechanism is unknown. The aim of this study was to explore the mechanism of MCLR-induced nephrotoxicity. To this end, adult zebrafish were exposed to MCLR (0, 1, 5 and 25 μg/L) for 60 days. Exposure to MCLR caused histopathological lesions, which were characterized by renal tubules filled with eosinophilic casts, abnormal renal tubules, intertubular space decrease, and blood infiltration in renal cells. RNA-Seq analysis indicated that exposure to MCLR significantly interfered with renal gene expressions, and these genes were enriched in various pathways, such as oxidative phosphorylation, cell cycle, and protein processing in endoplasmic reticulum, which were related to apoptosis. Furthermore, terminal deoxynucleotide transferase-mediated deoxy-UTP nick end labelling (TUNEL) assay showed that MCLR exposure induced renal cell apoptosis. In addition, negative changes of the reactive oxygen species (ROS) level as well as apoptotic-related gene, protein expressions and enzyme activities suggested that MCLR could induce production of ROS, subsequently triggering apoptosis via p53-bcl-2 and caspase-dependent pathway in the kidney of zebrafish. Therefore, it can be concluded that apoptosis is a primary case of MCLR-induced nephrotoxicity.
Collapse
Affiliation(s)
- Zhikuan Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - JianZhong Shen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wei Yan
- Institute of Quality Standard & Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
46
|
Bostan HB, Taghdisi SM, Bowen JL, Demertzis N, Rezaee R, Panahi Y, Tsatsakis AM, Karimi G. Determination of microcystin-LR, employing aptasensors. Biosens Bioelectron 2018; 119:110-118. [DOI: 10.1016/j.bios.2018.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 01/26/2023]
|
47
|
Neuroprotective Effects of dl-3-n-Butylphthalide against Doxorubicin-Induced Neuroinflammation, Oxidative Stress, Endoplasmic Reticulum Stress, and Behavioral Changes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9125601. [PMID: 30186550 PMCID: PMC6116408 DOI: 10.1155/2018/9125601] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/16/2018] [Accepted: 06/06/2018] [Indexed: 11/24/2022]
Abstract
Doxorubicin (DOX) is a broad-spectrum antitumor drug while its use is limited due to its neurobiological side effects associated with depression. We investigated the neuroprotective efficacy of dl-3-n-butylphthalide (dl-NBP) against DOX-induced anxiety- and depression-like behaviors in rats. dl-NBP was given (30 mg/kg) daily by gavage over three weeks starting seven days before DOX administration. Elevated plus maze (EPM) test, forced swimming test (FST), and sucrose preference test (SPT) were performed to assess anxiety- and depression-like behaviors. Our study showed that the supplementation of dl-NBP significantly mitigated the behavioral changes induced by DOX. To further explore the mechanism of neuroprotection induced by dl-NBP, several biomarkers including oxidative stress markers, endoplasmic reticulum (ER) stress markers, and neuroinflammatory cytokines in the hippocampus were quantified. The results showed that dl-NBP treatment alleviated DOX-induced neural apoptosis. Meanwhile, DOX-induced oxidative stress and ER stress in the hippocampus were significantly ameliorated in dl-NBP pretreatment group. Our study found that dl-NBP alleviated the upregulation of malondialdehyde (MDA), nitric oxide (NO), CHOP, glucose-regulated protein 78 kD (GRP-78), and caspase-12 and increased the levels of reduced glutathione (GSH) and activities of catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPx) in the hippocampus of rats exposed to DOX. Additionally, the gene expression of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) and protein levels of inducible nitric oxide synthase (iNOS) were significantly increased in DOX-treated group, whereas DOX-induced neuroinflammation was significantly attenuated in dl-NBP supplementation group. In conclusion, dl-NBP could alleviate DOX-induced anxiety- and depression-like behaviors via attenuating oxidative stress, ER stress, inflammatory reaction, and neural apoptosis, providing a basis as a therapeutic potential against DOX-induced neurotoxicity.
Collapse
|
48
|
Zhao S, Liu Y, Wang F, Xu D, Xie P. N-acetylcysteine protects against microcystin-LR-induced endoplasmic reticulum stress and germ cell apoptosis in zebrafish testes. CHEMOSPHERE 2018; 204:463-473. [PMID: 29679867 DOI: 10.1016/j.chemosphere.2018.04.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Previous studies have shown that microcystin-LR (MCLR) is a reproductive toxicant that induces germ cell apoptosis in the testes, but the underlying mechanisms have not been well understood. In this study, we investigated that MCLR induces germ cell apoptosis is through activation of endoplasmic reticulum (ER) stress and N-acetylcysteine (NAC), an antioxidant could protect against germ cell apoptosis by inhibiting the ER stress. Healthy male zebrafish were intraperitoneally injected with NAC (500 nM), beginning at 2 h before different doses of MCLR (0, 50, 100, 200 μg/kg). As expected, acute MCLR exposure resulted in oxidative stress and germ cell apoptosis in zebrafish testes. Further analysis showed that NAC significantly alleviated MCLR-induced testicular germ cell apoptosis and inhibited the caspase-dependent apoptotic proteins. Meanwhile H&E staining showed that NAC could rescue testicular damage induced by MCLR. Moreover, MCLR induced activation of ER stress which consequently triggered apoptosis in zebrafish testes. Interestingly, NAC was effective in improving the total antioxidant capacity (T-AOC) level and activity of antioxidant enzymes in NAC pretreated groups. NAC significantly attenuated MCLR-induced upregulation of GRP78 in testes. In addition, NAC significantly attenuated MCLR-triggered testicular eIF2s1 and MAPK8 activation, indicating that NAC counteracts MCLR-induced unfolded protein response (UPR) in testes. Taken together, the results observed in this study suggested that ER stress plays a critical role in germ cell apoptosis exposed to MCLR and NAC could protect against apoptosis via inhibiting ER stress in zebrafish testes.
Collapse
Affiliation(s)
- Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ying Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Fang Wang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Dexiang Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
49
|
Liu G, Ke M, Fan X, Zhang M, Zhu Y, Lu T, Sun L, Qian H. Reproductive and endocrine-disrupting toxicity of Microcystis aeruginosa in female zebrafish. CHEMOSPHERE 2018; 192:289-296. [PMID: 29112878 DOI: 10.1016/j.chemosphere.2017.10.167] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Microcystis aeruginosa, a primary species in cyanobacterial blooms, is ubiquitously distributed in water. Microcystins (MCs) purified from M. aeruginosa can exert reproductive toxicity in fish. However, the effects of M. aeruginosa at environmentally relevant levels on the reproductive and endocrine systems of zebrafish are still unknown. The present study investigated the reproductive and endocrine-disrupting toxicity of M. aeruginosa on female zebrafish (Danio rerio) by short-term exposure (96 h). After exposure, marked histological lesions in the liver or gonads, such as nuclear pyknosis and deformation, were observed, and the fertilization rate and hatchability of eggs spawned from treated females were both significantly lower than they were in females in the control group, suggesting the possibility of transgenerational effects of M. aeruginosa exposure. Moreover, M. aeruginosa exposure decreased the concentration of 17β-estradiol (E2) and testosterone (T) in female zebrafish. Interestingly, the vtg1 transcriptional level significantly decreased in the liver, whereas plasma vitellogenin (VTG) protein levels increased. The present findings indicate that M. aeruginosa could modulate endocrine function by disrupting transcription of hypothalamic-pituitary-gonadal-liver (HPGL) axis-related genes, and impair the reproductive capacity of female zebrafish, suggesting that M. aeruginosa causes potential adverse effects on fish reproduction in Microcystis bloom-contaminated aquatic environments.
Collapse
Affiliation(s)
- Guangfu Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China; Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Xiaoji Fan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Meng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Youchao Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
50
|
Zhang Y, Liu M, Liu J, Wang X, Wang C, Ai W, Chen S, Wang H. Combined toxicity of triclosan, 2,4-dichlorophenol and 2,4,6-trichlorophenol to zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:9-18. [PMID: 29169085 DOI: 10.1016/j.etap.2017.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/14/2017] [Indexed: 05/10/2023]
Abstract
Triclosan (TCS), 2,4,6-trichlorophenol (2,4,6-TCP) and 2,4-dichlorophenol (2,4-DCP) are the most prevalent chlorinated phenolic pollutants in aquatic environments. Our results showed LC50 and EC50 values of 0.51, 1.11, 2.45mg/L, and 0.36, 0.74, 1.53mg/L for TCS, 2,4,6-TCP and 2,4-DCP, respectively, to 120hpf zebrafish. The highest TCSD (the mixture of TCS, 2,4,6-TCP and 2,4-DCP) toxicity was observed at a TCS:2,4,6-TCP:2,4-DCP concentration ratio of 1:2:4. LC50 and EC50 values of TCSD mixtures for 120-hpf zebrafish were 2.28 and 1.16mg/L, respectively. Two toxicity assessment methods (Toxic Unit and Mixture Toxicity Index) indicated that TCSD interactions produced partly additive toxicity. TCSD exposure decreased zebrafish hatching rate and led to a series of malformations. Following alkaline phosphatase staining, a large area of vascular ablation was observed with almost complete disappearance of vascular branches and a smaller coverage range. Prominent reddening of the yolk sac and visceral mass after oil red O staining implied that TCSD exposure severely affected fat metabolism. Following acridine orange staining, cell death occurred in eyes while high TCSD concentrations (0.84mg/L) induced cardiovascular circulation dysfunction. Alcian blue staining increased the α angle between Meckel's cartilages and β angle between two ceratobranchial. Basihyal and palatoquadrate became shorter and developmental abnormality or defects occurred in the fifth ceratobranchial. Overall, these results provide a theoretical basis for systematically evaluating the combined toxicity of the prevalent chlorinated phenolic pollutants in real-world aquatic environments.
Collapse
Affiliation(s)
- Yuhuan Zhang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Mi Liu
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinfeng Liu
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Caihong Wang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiming Ai
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shaobo Chen
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|