1
|
Pietron WJ, Warenik-Bany M. Brominated flame retardant in animal feeds from Poland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125180. [PMID: 39490512 DOI: 10.1016/j.envpol.2024.125180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The safety of food of animal origin is closely related to feed quality. Feed pollution by brominated flame retardants (BFRs) leads to the exposure of animals and consumers of food of animal origin to these substances. The study aimed to assess the concentration of ten PBDE (BDE-28, 47, 49, 99, 100, 138, 153, 154, 183, and 209) congeners and eight nBFRs (TBX, PBT, HBB, PBEB, EH-TBB, BTBPE, BEH-TBPH, and DBDPE) in 59 feed and feed materials from six different feed categories (277/2012/EU). The quantification of analytes was based on isotopic dilution and gas chromatography-high-resolution mass spectrometry (GC-HRMS). All 59 feed samples were contaminated with at least one of the analytes. PBDEs and nBFRs were found in 78% and 91% of the samples, respectively. BFR content ranged from 0.18 to 5.87 μg kg-1 in feed with a 12% moisture content, and the most contaminated category was vegetable oils, followed by fishmeal, feeds for fish, animal fats, and compound feeds for pigs. The least contaminated samples turned out to be compound feeds for chickens. This study confirms the general trend of decreasing PBDE concentrations in fishmeal. In the investigated samples, BDE-47 and BDE-209 contributed the most to the ∑PBDE content. DBDPE, HBB, and PBT contributed the most to the investigated ∑nBFRs. The widespread occurrence of nBFRs in feed seems disturbing because these compounds have replaced PBDEs. Their concentrations in the feed may most likely exceed those of PBDEs in the coming years.
Collapse
Affiliation(s)
- Wojciech Jerzy Pietron
- Radiobiology Department, National Veterinary Research Institute, Pulawy, 24-100, Poland.
| | | |
Collapse
|
2
|
Knutsen HK, Åkesson A, Bampidis V, Bignami M, Bodin L, Chipman JK, Degen G, Hernández‐Jerez A, Hofer T, Landi S, Leblanc J, Machera K, Ntzani E, Rychen G, Sand S, Schwerdtle T, Vejdovszky K, Viviani B, Benford D, Hart A, Rose M, Schroeder H, Vleminckx C, Vrijheid M, Gkimprixi E, Kouloura E, Riolo F, Bordajandi LR, Hogstrand C. Update of the risk assessment of brominated phenols and their derivatives in food. EFSA J 2024; 22:e9034. [PMID: 39444985 PMCID: PMC11496907 DOI: 10.2903/j.efsa.2024.9034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The European Commission asked EFSA to update its 2012 risk assessment on brominated phenols and their derivatives in food, focusing on five bromophenols and one derivative: 2,4,6-tribromophenol (2,4,6-TBP), 2,4-dibromophenol (2,4-DBP), 4-bromophenol (4-BP), 2,6-dibromophenol (2,6-DBP), tetrabrominated bisphenol S (TBBPS), tetrabromobisphenol S bismethyl ether (TBBPS-BME). Based on the overall evidence, the CONTAM Panel considered in vivo genotoxicity of 2,4,6-TBP to be unlikely. Effects in liver and kidney were considered as the critical effects of 2,4,6-tribromophenol (2,4,6-TBP) in studies in rats. A BMDL10 of 353 mg/kg body weight (bw) per day for kidney papillary necrosis in male rats was identified and was selected as the reference point for the risk characterisation. The derivation of a health-based guidance value was not considered appropriate due to major limitations in the toxicological database. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Around 78,200 analytical results for 2,4,6-TBP in food were used to estimate dietary exposure for the European population. Considering the resulting MOE values, all far above an MOE of 6000 that does not raise a health concern, and accounting for the uncertainties affecting the exposure and hazard assessments, the CONTAM Panel concluded with at least 95% probability that the current dietary exposure to 2,4,6-TBP does not raise a health concern. Due to lack of occurrence data, no risk assessment could be performed for breastfed or formula-fed infants. No risk characterisation could be performed for any of the other brominated phenols and derivatives included in the assessment, due to lack of data both on the toxicity and occurrence.
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Hart A, Schroeder H, Rose M, Vrijheid M, Kouloura E, Bordajandi LR, Riolo F, Vleminckx C. Update of the scientific opinion on tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA J 2024; 22:e8859. [PMID: 39010865 PMCID: PMC11247339 DOI: 10.2903/j.efsa.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 μg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.
Collapse
|
4
|
Mahmudiono T, Fakhri Y, Ranaei V, Pilevar Z, Limam I, Sahlabadi F, Rezaeiarshad N, Torabbeigi M, Jalali S. Concentration of Tetrabromobisphenol-A in fish: systematic review and meta-analysis and probabilistic health risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2023-0157. [PMID: 38386608 DOI: 10.1515/reveh-2023-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Tetrabromobisphenol A (TBBP-A) is an emerging pollutant that enters water resources and affects various marine organisms, such as fish. Consequently, numerous studies globally investigated TBBP-A concentrations in fish fillets of the current study were meta-analyze concentration of TBBP-A in fish fillets and estimate the associated health risks for consumers. The search encompassed international databases, including Science Direct, PubMed, Scopus, Embase, and Web of Science from January 1, 2005, to July 20, 2023. The ranking of countries based on the pooled (Mean) concentration of TBBP-A in fish was as follows: China (1.157 µg/kg-ww) > Czech Republic (1.027 µg/kg-ww) > France (0.500 µg/kg-ww) ∼ Switzerland (0.500 µg/kg-ww) > Netherlands (0.405 µg/kg-ww) > Germany (0.33 µg/kg-ww) > Sweden (0.165 µg/kg-ww)>UK (0.078 µg/kg-ww) > Belgium (0.065 µg/kg-ww) > South Korea (0.013 µg/kg-ww) ∼ Japan (0.013 µg/kg-ww) > Ireland (0.005 µg/kg-ww). The risk assessment showed that the carcinogenic and non-carcinogenic risks of TBBP-A in China and France are higher compared to other countries; however, within all countries, these risks were found to be within acceptable limits.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, 148005 Universitas Airlangga , Surabaya, Indonesia
| | - Yadolah Fakhri
- Food Health Research Center, 14656 Hormozgan University of Medical Sciences , Bandar Abbas, Iran
| | - Vahid Ranaei
- School of Health, 48412 Arak University of Medical Sciences , Arak, Iran
| | - Zahra Pilevar
- School of Health, 48412 Arak University of Medical Sciences , Arak, Iran
| | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis, Biotechpole Sidi-Thabet, and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Fatemeh Sahlabadi
- Department of Environmental Health Engineering, School of Health, Social Determinants of Health Research Center, 125609 Birjand University of Medical Sciences , Birjand, Iran
| | - Negin Rezaeiarshad
- Department of Environmental Health Engineering, School of Public Health and Safety, 556492 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Marzieh Torabbeigi
- Department of Environmental Health Engineering, School of Public Health and Safety, 556492 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Samaneh Jalali
- Department of Environmental Health Engineering, School of Public Health and Safety, 556492 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| |
Collapse
|
5
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
6
|
Xiao Y, Han D, Currell M, Song X, Zhang Y. Review of Endocrine Disrupting Compounds (EDCs) in China's water environments: Implications for environmental fate, transport and health risks. WATER RESEARCH 2023; 245:120645. [PMID: 37769420 DOI: 10.1016/j.watres.2023.120645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/25/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
Endocrine Disrupting Compounds (EDCs) are ubiquitous in soil and water system and have become a great issue of environmental and public health concern since the 1990s. However, the occurrence and mechanism(s) of EDCs' migration and transformation at the watershed scale are poorly understood. A review of EDCs pollution in China's major watersheds (and comparison to other countries) has been carried out to better assess these issues and associated ecological risks, compiling a large amount of data. Comparing the distribution characteristics of EDCs in water environments around the world and analyzing various measures and systems for managing EDCs internationally, the significant insights of the review are: 1) There are significant spatial differences and concentration variations of EDCs in surface water and groundwater in China, yet all regions present non-negligible ecological risks. 2) The hyporheic zone, as a transitional zone of surface water and groundwater interaction, can effectively adsorb and degrade EDCs and prevent the migration of high concentrations of EDCs from surface water to groundwater. This suggests that more attention needs to be paid to the role played by critical zones in water environments, when considering the removal of EDCs in water environments. 3) In China, there is a lack of comprehensive and effective regulations to limit and reduce EDCs generated during human activities and their discharge into the water environment. 4) To prevent the deterioration of surface water and groundwater quality, the monitoring and management of EDCs in water environments should be strengthened in China. This review provides a thorough survey of scientifically valid data and recommendations for the development of policies for the management of EDCs in China's water environment.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Han
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Matthew Currell
- School of Engineering, RMIT University, Melbourne, VIC, 3001, SA; Australian Rivers Institute, Griffith University, Nathan, Queensland, 4111, SA
| | - Xianfang Song
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Zhang
- Chinese Academy of Surveying and Mapping, Beijing, 100036, China
| |
Collapse
|
7
|
Ma Y, Romanak KA, Capozzi SL, Xia C, Lehman DC, Harrad S, Cline-Cole R, Venier M. Socio-Economic Factors Impact US Dietary Exposure to Halogenated Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:478-484. [PMID: 37333937 PMCID: PMC10269323 DOI: 10.1021/acs.estlett.3c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023]
Abstract
Although diet is an important route of exposure for brominated flame retardants (BFRs), little is known of their presence in US food. Therefore, we purchased meat, fish, and dairy product samples (n = 72) in Bloomington, IN, from 3 stores representing national retail chains at different price levels. Composite samples (n = 42) were analyzed for polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDD), novel BFRs (NBFRs), and dechlorane plus (DP). Concentrations of total halogenated flame retardants (HFRs) ranged between 54 and 1,400 pg/g ww, with PBDEs being the predominant compounds. Concentrations of NBFRs, but not PBDEs, in US food items were significantly impacted by price, raising the issue of environmental justice. Nonorganic food generally had a higher abundance of BDE-209 than organic food items. Estimates of dietary exposure revealed that meat and cheese consumption contribute most to the overall HFR intake and that intakes are highest for children and for non-Hispanic Asians. Taking into account several caveats and limitations of this study, these results as a whole suggest that health burdens from dietary exposure to HFRs have become minimal for US citizens, highlighting the positive impact of regulatory efforts.
Collapse
Affiliation(s)
- Yulong Ma
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Kevin Andrew Romanak
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Staci Lynn Capozzi
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Chunjie Xia
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Daniel Crawford Lehman
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Reginald Cline-Cole
- Department of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, U.K
| | - Marta Venier
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
8
|
Ma Y, Stubbings WA, Abdallah MAE, Cline-Cole R, Harrad S. Temporal trends in concentrations of brominated flame retardants in UK foodstuffs suggest active impacts of global phase-out of PBDEs and HBCDD. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160956. [PMID: 36528953 DOI: 10.1016/j.scitotenv.2022.160956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Global restrictions on use of legacy brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) have generated demand for novel BFRs (NBFRs) as substitutes. Our research group has previously reported decreased concentrations of PBDEs and HBCDD and increased concentrations of NBFRs in UK indoor environments, suggesting that restrictions on PBDEs and HBCDD are exerting an impact. In this study, we analysed UK foodstuffs collected in 2020-21 and compared the BFR concentrations found with those found in similar samples collected in 2015 to investigate whether similar trends in BFR concentrations would be observed. Concentrations of PBDEs and HBCDD isomers detected in our samples had declined by 78-92 % and 59-97 % since the 2015 study, respectively. Moreover, concentrations of NBFRs (dominated by 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE or TBE), and bis(2-ethyl hexyl) tetrabromophthalate (BEH-TEBP or TBPH)) in UK foodstuffs increased significantly (28-1400 %) between 2015 and 2020-21. Combined, these findings suggest that restrictions on use of PBDEs and HBCDD have had a discernible impact on concentrations of these legacy BFRs and their NBFR replacements in UK foodstuffs. Interestingly, given recent reports of a significant increase in concentrations of decabromodiphenyl ethane (DBDPE) in UK house dust between 2014 and 2019, a significant decline (70-84 %) in concentrations of DBDPE was observed in UK foodstuffs.
Collapse
Affiliation(s)
- Yulong Ma
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Reginald Cline-Cole
- Department of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, UK
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
9
|
Zhao X, Lyu B, Zhang L, Li J, Zhao Y, Wu Y, Shi Z. Legacy and novel brominated flame retardants in animal-derived foods from China Total Diet Study (CTDS): Temporal trends, evidence of substitution, and dietary exposure assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130223. [PMID: 36367471 DOI: 10.1016/j.jhazmat.2022.130223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Based on the 6th China Total Diet Study (CTDS) conducted in 2016-2019, the occurrence of both legacy and novel brominated flame retardants (BFRs) was measured in animal-derived foods collected across China. Most BFRs could be frequently detected in food samples, indicating their ubiquity in the environment. Decabromodiphenyl ethane (DBDPE), a typical novel BFR, presented the highest contamination level, whereas legacy BFRs, including decabrominated diphenyl ether (BDE-209), tetrabromobisphenol A (TBBPA), and hexabromocyclododecane (HBCDD), still presented high detection frequencies and relatively abundant proportions in total BFRs. Compared with previous CTDSs conducted from 2007 to 2011, the levels and estimated dietary intakes (EDIs) of most BFRs showed a significant downtrend, which suggested that flame retardant consumption in China has transferred from legacy BFRs to novel BFRs (mainly DBDPE) and from BFRs to other kinds of flame retardants. Based on probabilistic estimation, the median EDIs of mainly used BFRs for the Chinese population ranged from 41.0 to 1.67 × 103 pg/kg bw/day, and meat consumption was the primary source in dietary BFR intake. By conducting the margin of exposure (MOE) approach or comparing with the reference dose (RfD), it can be concluded that daily dietary intakes of BFRs were still unable to cause significant health risks to the general population in China.
Collapse
Affiliation(s)
- Xuezhen Zhao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Bing Lyu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China.
| | - Lei Zhang
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Jingguang Li
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Yunfeng Zhao
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
10
|
Cunha SC, Menezes-Sousa D, Mello FV, Miranda JAT, Fogaca FHS, Alonso MB, Torres JPM, Fernandes JO. Survey on endocrine-disrupting chemicals in seafood: Occurrence and distribution. ENVIRONMENTAL RESEARCH 2022; 210:112886. [PMID: 35150711 DOI: 10.1016/j.envres.2022.112886] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Currently, the presence of endocrine disrupting chemicals (EDCs) in the marine environment pose а potential risk to both wildlife and human health. The occurrence of EDCs in seafood depends of several factors such as source and amounts of EDCs that reach the aquatic environment, physicochemical features of EDCs, and its accumulation in trophic chain. This review highlights the occurrence and distribution of EDCs along the seafood in the last 6 years. The following EDCs were included in this review: brominated flame retardants (PBDEs, PBBs, HBCDDs, TBBPA, and novel flame retardants); pharmaceuticals (paracetamol, ibuprofen, diclofenac, carbamazepine), bisphenols, hormones, personal care products (Musk and UV Filters), and pesticides (organochlorides, organophosphates, and pyrethroids). Some of them were found above the threshold that may cause negative effects on human, animal, and environmental health. More control in some countries, as well as new legislation and inspection over the purchase, sale, use, and production of these compounds, are urgently needed. This review provides data to support risk assessment and raises critical gaps to stimulate and improve future research.
Collapse
Affiliation(s)
- Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Dhoone Menezes-Sousa
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal; Micropollutants Laboratory Jan Japenga, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho, 373 - CCS - Bl. G, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Flávia V Mello
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal; Micropollutants Laboratory Jan Japenga, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho, 373 - CCS - Bl. G, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Joyce A T Miranda
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal; Micropollutants Laboratory Jan Japenga, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho, 373 - CCS - Bl. G, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Fabiola H S Fogaca
- Bioacessiblity Laboratory, Embrapa Agroindustria de Alimentos, Av. Das Americas, 29501, 23020-470, Guaratiba, Rio de Janeiro, RJ, Brazil
| | - Mariana B Alonso
- Micropollutants Laboratory Jan Japenga, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho, 373 - CCS - Bl. G, 21941-902, Rio de Janeiro, RJ, Brazil
| | - João Paulo M Torres
- Micropollutants Laboratory Jan Japenga, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho, 373 - CCS - Bl. G, 21941-902, Rio de Janeiro, RJ, Brazil
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| |
Collapse
|
11
|
Michałowicz J, Włuka A, Bukowska B. A review on environmental occurrence, toxic effects and transformation of man-made bromophenols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152289. [PMID: 34902422 DOI: 10.1016/j.scitotenv.2021.152289] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/18/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Brominated phenols (BPs) of anthropogenic origin are aromatic substances widely used in the industry as flame retardants (FRs) and pesticides as well as the components of FRs and polymers. In this review, we have focused on describing 2,4-dibromophenol (2,4-DBP), 2,4,6-tribromophenol (2,4,6-TBP) and pentabromophenol (PBP), which are the most commonly used in the industry and are the most often detected in the air, aquatic and terrestrial ecosystems and the human body. This review describes human-related sources of these BPs that influence their occurrence in the environment (atmosphere, surface water, sediment, soil, biota), indoor air and dust, food, drinking water and the human organism. Data from in vitro and in vivo studies showing 2,4-DBP, 2,4,6-TBP and PBP toxicity, including their estrogenic activity, effects on development and reproduction, perturbations of cellular redox balance and cytotoxic action have been described. Moreover, the processes of BPs transformation that occur in human and other mammals, plants and bacteria have been discussed. Finally, the effect of abiotic factors (e.g. UV irradiation and temperature) on BPs conversion to highly toxic brominated dioxins and brominated furans as well as polybrominated biphenyls and polybrominated diphenyl ethers has been presented.
Collapse
Affiliation(s)
- Jaromir Michałowicz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, Pomorska Str. 141/143, 90-236 Lodz, Poland.
| | - Anna Włuka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, Pomorska Str. 141/143, 90-236 Lodz, Poland
| | - Bożena Bukowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, Pomorska Str. 141/143, 90-236 Lodz, Poland
| |
Collapse
|
12
|
Fernandes AR, Zwickel T, Schächtele A. Ensuring the reliability of brominated flame retardant data on food and feed occurrence through harmonised analytical criteria and proficiency testing. CHEMOSPHERE 2022; 286:131921. [PMID: 34426293 DOI: 10.1016/j.chemosphere.2021.131921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The volume of occurrence data on food and animal feed contaminants such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDDs) is slowly increasing as more laboratories develop analytical capability. This data allows an evaluation of current background levels in different countries and regions and is also useful for estimating the health risk through dietary exposure and as evidence for the formulation of future control strategies. Existing data varies in the number of analytes reported and the quality measures applied. In order to ensure reliability and comparability, guidance on analytical criteria such as precision and trueness, limits of quantitation, recovery, positive identification, etc. is provided. These parameters are based on several years of collective experience and allow validation and regular quality control of analysis of individual PBDE congeners and HBCDD stereoisomers. The criteria-based approach also allows laboratories the flexibility to use different analytical methodologies and techniques for generating data. The effectiveness of this approach has been demonstrated by a successful proficiency testing scheme that has been used for a number of years and has attracted an increasing number of participants. The majority of participating laboratories (>80%) have been able to demonstrate performance within the 95% confidence interval (│z-score│≤ 2) and a further 10% of laboratories demonstrated performance with a z-score of (2 <│z-score│< 3). The combined support of these guidance criteria backed by successful proficiency testing will ensure the reliability and comparability of results, in particular, to refine risk assessments and to help the formulation of regulatory policy.
Collapse
Affiliation(s)
- Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Theresa Zwickel
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, Bissierstraße 5, Freiburg, D-79114, Germany
| | - Alexander Schächtele
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, Bissierstraße 5, Freiburg, D-79114, Germany
| |
Collapse
|
13
|
Pietron WJ, Warenik-Bany M, Wozniak B. Polybrominated diphenyl ethers (PBDEs) in raw milk from different animal species and in infant formula. Occurrence and risk assessment. CHEMOSPHERE 2021; 278:130479. [PMID: 34126691 DOI: 10.1016/j.chemosphere.2021.130479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 05/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widespread, persistent in the environment, and classified as global pollutants. Their presence has been confirmed in various types of food which adversely affect human health when consumed in sufficient amounts. Although milk has advantageous nutritional qualities and there are health benefits associated with its consumption, it could also contain toxic PBDEs. The aim of the study was the determination of the concentrations of ten congeners (BDE -28, -47, -49, -99, -100, -138, -153, -154, -183, and 209) in cow's, sheep's, and goat's milk obtained from Polish farms and their determination in infant formula. A total of 103 samples of raw milk and infant formula were tested using an accredited high-resolution gas chromatography-high-resolution mass spectrometry method. PBDEs were detected in all analyzed samples, the highest concentration being found in sheep's milk (11.9 ng g-1 fat), and cow's milk containing the least contamination. BDE-209 makes the predominant contribution to the sum of the ten congeners, constituting at least 38%. The profiles of PBDEs were dependent on the milk type and the differences between its varieties are discussed. The highest median concentration of the sum of ten PBDEs (0.473 ng g-1 fat) was determined in infant formula, which was identified as an important source of infants' exposure (5.48 ng kg-1 b.w. day-1 calculated based on P95 concentration). Milk is a source of PBDE in the diet; however, considered in isolation its consumption does not pose a risk to either adults' or children's health.
Collapse
Affiliation(s)
- Wojciech Jerzy Pietron
- Radiobiology Department, National Veterinary Research Institute (NVRI), 57 Partyzantow Avenue, 24-100, Pulawy, Poland.
| | - Malgorzata Warenik-Bany
- Radiobiology Department, National Veterinary Research Institute (NVRI), 57 Partyzantow Avenue, 24-100, Pulawy, Poland
| | - Barbara Wozniak
- Pharmacology and Toxicology Department, National Veterinary Research Institute (NVRI), 57 Partyzantow Avenue, 24-100, Pulawy, Poland
| |
Collapse
|
14
|
Niu Y, Yang R, Wu Y, Zhao Y, Zhang J, Duan H, Shao B. Emerging Brominated Flame Retardants 2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (EHTBB) and Bis(2-ethylhexyl)-tetrabromophthalate (BEH-TEBP) in Chinese Food and Their Health Implications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8546-8554. [PMID: 34292724 DOI: 10.1021/acs.jafc.1c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (EHTBB) and bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP) have been frequently detected in the environment, whereas studies in food are scare. The European Food Safety Authority has requested data for their risk assessment. Herein, dietary exposure and hazard quotient (HQ) were studied based on the 5th (2009-2012) and 6th (2015-2018) Chinese total diet studies (TDSs). EHTBB was found in 61.1 and 75.9% of the two TDS sample sets, respectively. The concentrations of EHTBB in animal-derived food were higher than those in plant-derived food. The estimated daily intakes (EDIs) were 1.33 and 0.97 ng/kg bw/day, and vegetables contributed to 48.5 and 39.2% of the EDIs based on the 5th and 6th TDS, respectively. The dietary exposure to EHTBB was similar to that to hexabromocyclododecane, brominated diphenyl ether-209, and tetrabromobisphenol A (TBBPA). The HQ for EHTBB was similar to that for decabromodiphenyl ethane and surpassed that for TBBPA. Therefore, EHTBB warrants further study in food.
Collapse
Affiliation(s)
- Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Runhui Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Hejun Duan
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Sokal A, Jarmakiewicz-Czaja S, Tabarkiewicz J, Filip R. Dietary Intake of Endocrine Disrupting Substances Presents in Environment and Their Impact on Thyroid Function. Nutrients 2021; 13:867. [PMID: 33800806 PMCID: PMC7998837 DOI: 10.3390/nu13030867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
According to the available data, environmental pollution is a serious problem all over the world. Between 2015 and 2016, pollution was responsible for approximately nine million deaths worldwide. They also include endocrine disrupting chemicals (EDCs) that can interfere with the functioning of the thyroid gland. They are characterized by high persistence in the environment. These substances can enter the body through the gastrointestinal tract, respiratory system, as well as contact with the skin and overcome the placental barrier. EDC can be found in food, water, and personal care products. They can get into food from the environment and as a result of their migration to food products and cosmetics from packaging. EDCs can disrupt the functioning of the thyroid gland through a number of mechanisms, including disrupting the activation of thyroid receptors and the expression of genes that are related to the metabolism, synthesis, and transport of thyroid hormones (HT). There is a need to strengthen the food safety policy that aimed at the use of appropriate materials in direct contact with food. At the same time, an important action is to reduce the production of all waste and, when possible, use biodegradable packaging, which may contribute to the improvement of the quality of the entire ecosystem and the health of food, thus reducing the risk of developing thyroid diseases.
Collapse
Affiliation(s)
- Aneta Sokal
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Jacek Tabarkiewicz
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (J.T.); (R.F.)
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (J.T.); (R.F.)
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
16
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Rose M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of hexabromocyclododecanes (HBCDDs) in food. EFSA J 2021; 19:e06421. [PMID: 33732387 PMCID: PMC7938899 DOI: 10.2903/j.efsa.2021.6421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on hexabromocyclododecanes (HBCDDs) in food. HBCDDs, predominantly mixtures of the stereoisomers α-, β- and γ-HBCDD, were widely used additive flame retardants. Concern has been raised because of the occurrence of HBCDDs in the environment, food and in humans. Main targets for toxicity are neurodevelopment, the liver, thyroid hormone homeostasis and the reproductive and immune systems. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour in mice can be considered the critical effects. Based on effects on spontaneous behaviour in mice, the Panel identified a lowest observed adverse effect level (LOAEL) of 0.9 mg/kg body weight (bw) as the Reference Point, corresponding to a body burden of 0.75 mg/kg bw. The chronic intake that would lead to the same body burden in humans was calculated to be 2.35 μg/kg bw per day. The derivation of a health-based guidance value (HBGV) was not considered appropriate. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Over 6,000 analytical results for HBCDDs in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary LB exposure to HBCDDs were fish meat, eggs, livestock meat and poultry. The CONTAM Panel concluded that the resulting MOE values support the conclusion that current dietary exposure to HBCDDs across European countries does not raise a health concern. An exception is breastfed infants with high milk consumption, for which the lowest MOE values may raise a health concern.
Collapse
|
17
|
Zacs D, Perkons I, Abdulajeva E, Pasecnaja E, Bartkiene E, Bartkevics V. Polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDD), dechlorane-related compounds (DRCs), and emerging brominated flame retardants (EBFRs) in foods: The levels, profiles, and dietary intake in Latvia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141996. [PMID: 33207505 DOI: 10.1016/j.scitotenv.2020.141996] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
This study was performed to assess the Latvian population exposure to polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDD), dechlorane-related compounds (DRCs), and emerging brominated flame retardants (EBFRs). Food items including fish, fish products, meat, dairy products, cereals and bread, eggs, vegetable oils, and sweets were analyzed for the content of these contaminants, followed by per capita intake calculations and risk assessment. The highest dietary exposure for general population was observed in the case of HBCDD, .reaching an estimated daily intake (EDI) value of 2.92 ng kg-1 b.w. (or 3.35 ng kg-1 b.w. if an outlying data point is included), followed by PBDEs with EDI of 1.24 ng kg-1 b.w., including ~25% contribution of PBDE-209 to the overall EDI from PBDEs. DRCs and EBFRs were secondary contributors to the total intake of selected flame retardants (FRs), with the observed EDIs of 0.46 and 0.47 ng kg-1 b.w, respectively. The obtained occurrence data and risk characterization according to the European Food Safety Authority (EFSA) approach showed the calculated margin of exposure (MOE) values higher than the critical values for PBDE-47, -99 and -153as well as for HBCDD, indicating that the estimated dietary exposures are unlikely to be of significant health concern for the Latvian population. At the same time, it should be pointed out that the risk assessment was performed only for five out of the twenty-five selected halogenated flame retardants (HFRs), while cumulative effects due to the potential presence of other HFRs and their biodegradation products were not considered.
Collapse
Affiliation(s)
- D Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia.
| | - I Perkons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia
| | - E Abdulajeva
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia
| | - E Pasecnaja
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia
| | - E Bartkiene
- Lithuanian University of Health Sciences, Tilzes g. 18, Kaunas LT-47181, Lithuania
| | - V Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia
| |
Collapse
|
18
|
Dechlorane Plus and Related Compounds in Food-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020690. [PMID: 33466958 PMCID: PMC7830114 DOI: 10.3390/ijerph18020690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022]
Abstract
Dechlorane Plus is a polychlorinated compound which has exclusively anthropic origin. This compound has been manufactured for close to 60 years for various applications, but mainly as flame retardant. Dechlorane Plus and other Dechlorane-related compounds (DRCs) are currently marketed as a replacement for Dechlorane, also known as Mirex, banned in 1978. These compounds share comparable properties to persistent organic pollutants (POPs), such as persistence in the environment, high lipophilicity, bioaccumulation through the food web and adverse effects on the environment and human health. Despite their long production history, they have been only recently reported in various environmental compartments, such as air, soil, and foodstuff. The aim of this review is to provide a picture of the current state of knowledge on worldwide DRC levels in food, in order to highlight gaps and research needs. The review compares the data on DRC contamination available in literature, considering different food categories and sampling country. In addition, it is specified whether the data were obtained from studies on foodstuff to estimate dietary intake, to evaluate the contamination near the e-waste treatment area or for environmental monitoring purposes.
Collapse
|
19
|
Optimization and validation of an analytical method for the quantification of short- and medium-chained chlorinated paraffins in food by gas chromatography-mass spectrometry. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Cariou R, Malysheva SV, Goscinny S, Le Bizec B, Van Loco J, Dervilly G. Enantiomeric fraction of hexabromocyclododecanes in foodstuff from the Belgian market. CHEMOSPHERE 2020; 260:127607. [PMID: 32698116 DOI: 10.1016/j.chemosphere.2020.127607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Diet is considered a major route of human exposure to hexabromocyclododecane, a chiral environmental contaminant. A previous study reported on the occurrence of hexabromocyclododecane diastereoisomers in food items of animal origin collected in Belgium. The present study reports further results on corresponding enantiomeric fractions of the same samples. None of the samples could be considered as racemic for the α-isomer suggesting that foodstuff contamination occurred prior to death of the corresponding producing animal and was not the result of the food item being in contact with technical HBCDD. Non-racemic chiral signatures were also observed for β- and γ-isomers. We conclude that, depending on their dietary habits, different individuals might be overall exposed to non-racemic profiles. Considering that toxicological effects are enantiomer-dependent, this could modulate potential adverse effects.
Collapse
Affiliation(s)
| | - Svetlana V Malysheva
- Organic Contaminants and Additives, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Séverine Goscinny
- Organic Contaminants and Additives, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | | | - Joris Van Loco
- Organic Contaminants and Additives, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | | |
Collapse
|
21
|
Śmiełowska M, Zabiegała B. Current trends in analytical strategies for the determination of polybrominated diphenyl ethers (PBDEs) in samples with different matrix compositions – Part 2: New approaches to PBDEs determination. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Maia ML, Sousa S, Correia-Sá ML, Delerue-Matos C, Calhau C, Domingues VF. Organochlorine pesticides, brominated flame retardants, synthetic musks and polycyclic aromatic hydrocarbons in shrimps. An overview of occurrence and its implication on human exposure. Heliyon 2020; 6:e04870. [PMID: 32964162 PMCID: PMC7490540 DOI: 10.1016/j.heliyon.2020.e04870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/20/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022] Open
Abstract
Shrimps are widely distributed in coastal areas, estuaries and rivers. Although this shellfish is a good source of nutrients, it can also accumulate environmental contaminants, such as organochlorine pesticides (OCPs), brominated flame retardants (BFRs), synthetic musks (SMs) and polycyclic aromatic hydrocarbons (PAHs). Due to their bioaccumulative properties, these pollutants are endocrine disruptors. In this review, an overview of the world's shrimp market, pollutants legislation and values found in shrimp samples will be discussed. Shrimps analysed from all continents showed the presence of contaminants, Asia being the continent with the highest values reported. The concentration values reached a maximum of 26100 ng/g wet weight (ww) for OCPs, of 226.45 ng/g ww for BFRs, of 12.1 ng/g ww for SMs and of 50650 ng/g ww for PAHs. Exposure data and risk, taken from different studies, are very variable and indicate that shrimp's consumption may represent a risk especially in certain geographic areas.
Collapse
Affiliation(s)
- Maria Luz Maia
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
- Center for Research in Health Technologies and Information Systems (Centro de Investigação em Tecnologias e Serviços de Saúde –CINTESIS), Porto, Portugal
| | - Sara Sousa
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
- Center for Research in Health Technologies and Information Systems (Centro de Investigação em Tecnologias e Serviços de Saúde –CINTESIS), Porto, Portugal
| | - Maria Luísa Correia-Sá
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - Conceição Calhau
- Center for Research in Health Technologies and Information Systems (Centro de Investigação em Tecnologias e Serviços de Saúde –CINTESIS), Porto, Portugal
- Nutrition and Metabolism, NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
| | - Valentina Fernandes Domingues
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| |
Collapse
|
23
|
Zuiderveen EAR, Slootweg JC, de Boer J. Novel brominated flame retardants - A review of their occurrence in indoor air, dust, consumer goods and food. CHEMOSPHERE 2020; 255:126816. [PMID: 32417508 DOI: 10.1016/j.chemosphere.2020.126816] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
This critical review summarizes the occurrence of 63 novel brominated flame retardants (NBFRs) in indoor air, dust, consumer goods and food. It includes their EU registration and (potential) risks. The increasing application of NBFRs calls for more research on their occurrence, environmental fate and toxicity. This review reports which NBFRs are actually being studied, which are detected and which are of most concern. It also connects data from the European Chemical Association on NBFRs with other scientific information. Large knowledge gaps emerged for 28 (out of 63) NBFRs, which were not included in any monitoring programs or other studies. This also indicates the need for optimized analytical methods including all NBFRs. Further research on indoor environments, emission sources and potential leaching is also necessary. High concentrations of 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB), bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP), decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) were often reported. The detection of hexabromobenzene (HBB), pentabromotoluene (PBT), 1,4-dimethyltetrabromobenzene (TBX), 4-(1,2-dibromoethyl)-1,2-dibromocyclohexane (DBE-DBCH) and tetrabromobisphenol A bis(2,3-dibromopropyl) ether (TBBPA-BDBPE) also raises concern.
Collapse
Affiliation(s)
- Emma A R Zuiderveen
- Department Environment and Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands.
| | - J Chris Slootweg
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090, GD, Amsterdam, the Netherlands
| | - Jacob de Boer
- Department Environment and Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| |
Collapse
|
24
|
Aznar-Alemany Ò, Eljarrat E. Food contamination on flame retardants. EMERGING HALOGENATED FLAME RETARDANTS IN THE ENVIRONMENT 2020. [DOI: 10.1016/bs.coac.2019.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
García-Zamora JL, Santacruz-Vázquez V, Valera-Pérez MÁ, Moreira MT, Cardenas-Chavez DL, Tapia-Salazar M, Torres E. Oxidation of Flame Retardant Tetrabromobisphenol A by a Biocatalytic Nanofiber of Chloroperoxidase. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16244917. [PMID: 31817344 PMCID: PMC6950518 DOI: 10.3390/ijerph16244917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022]
Abstract
Background: Tetrabromobisphenol (TBBPA), a flame retardant compound, is considered a ubiquitous pollutant, with potential impact on the environment and human health. Several technologies have been applied to accelerate its degradation and minimize environmental impacts. Due to its aromaticity character, peroxidase enzymes may be employed to carry out its transformation in mild conditions. Therefore, the purpose of this work was to determine the capacity of the enzyme chloroperoxidase (CPO) to oxidize TBBPA in several water samples. Methods: The oxidation capacity of CPO was evaluated in catalytic conditions using water samples from surface and groundwater, as well as effluents from wastewater treatment plants. The biocatalytic performance of CPO was improved due to its immobilization on nanofibers composed of polyvinyl alcohol and chitosan (PVA/chitosan). Results: Free and immobilized CPO were able to transform more than 80% in short reaction times (60 min); producing more biodegradable and less toxic products. Particularly, the immobilized enzyme was catalytically active in a wider range of pH than the free enzyme with the possibility of reusing it up to five times. Conclusions: The biocatalytic oxidation of TBBPA under environmental conditions is highly efficient, even in complex media such as treated effluents of wastewater treatment plants.
Collapse
Affiliation(s)
| | | | - Miguel Ángel Valera-Pérez
- Departamento de Investigaciones en Ciencias Agrícolas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - María Teresa Moreira
- Department of Chemical Engineering, CRETUS Institute, Universidade de Santiago de Compostela, Santiago de Compostela, E-15782 Galicia, Spain;
| | - Diana L. Cardenas-Chavez
- Tecnologico de Monterrey, School of Engineering and Science, Atlixcayotl 5718, Reserva Territorial Atrixcayotl, Puebla 72570, Mexico;
| | - Mireya Tapia-Salazar
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Pedro de Alba, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico;
| | - Eduardo Torres
- Centro de Química, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
- Correspondence:
| |
Collapse
|
26
|
Tavoloni T, Stramenga A, Stecconi T, Siracusa M, Bacchiocchi S, Piersanti A. Single sample preparation for brominated flame retardants in fish and shellfish with dual detection: GC-MS/MS (PBDEs) and LC-MS/MS (HBCDs). Anal Bioanal Chem 2019; 412:397-411. [DOI: 10.1007/s00216-019-02250-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/11/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022]
|
27
|
DOPO-Functionalized Molybdenum Disulfide and its Impact on the Thermal Properties of Polyethylene and Poly(Lactic Acid) Composites. NANOMATERIALS 2019; 9:nano9111637. [PMID: 31752223 PMCID: PMC6915400 DOI: 10.3390/nano9111637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022]
Abstract
The fabrication of conventional or biodegradable polymers with improved thermal and fire-resistant properties is an important task for their successful application in various branches of the industry. In this work, few-layered molybdenum disulfide was functionalized with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and introduced into polyethylene and poly(lactic acid) matrixes. The obtained polyethylene composite samples displayed improved thermal stability, significant reduction in CO emissions, improved fire-resistant properties, and over 100% increases in thermal conductivity. Poly(lactic acid) composites displayed less impressive results, but have managed to improve some values, such as CO emissions, peak heat release rate, and total heat release in comparison to pristine polymer.
Collapse
|
28
|
Tay JH, Sellström U, Papadopoulou E, Padilla-Sánchez JA, Haug LS, de Wit CA. Serum concentrations of legacy and emerging halogenated flame retardants in a Norwegian cohort: Relationship to external exposure. ENVIRONMENTAL RESEARCH 2019; 178:108731. [PMID: 31539819 DOI: 10.1016/j.envres.2019.108731] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/21/2019] [Accepted: 09/05/2019] [Indexed: 05/22/2023]
Abstract
Sixty-one serum samples from a Norwegian cohort were analyzed for 43 emerging and legacy halogenated flame retardants (HFRs). BDE-47, -153, -197 and -209 were detected in >56% of the samples with median concentrations of 0.23, 1.0, 0.64 and 1.5 ng/g lipid, respectively. BDE-49, -85, -99, -100, -154, -206, -207, -208 as well as HBB, syn- and anti-DDC-CO, OBTMPI, DBDPE, α-HBCDD and TBBPA were also detected in some serum samples (detection frequencies of 2-36%). Other tri-octaBDEs, TBP-AE, α- and β-DBE-DBCH, BATE, pTBX, αβ-TBCO, PBBz, TBCT, PBT, PBEB, DPTE, EH-TBB, BTBPE, BEH-TEBP, HCDBCO, β- and γ-HBCDD were below the limits of detection (mLOD). Concentrations of individual BDE congeners detected in this study were within the range from previous European studies. Positive correlations were seen between concentrations of BDE-47 in dust and BDE-153 in serum, between BDE-153 in dust and BDE-153 in serum, and between BDE-153 masses in handwipes and BDE-47 concentrations in serum (Spearman's rank, 0.29 < r < 0.43). Associations between the number of phones/mobiles, numbers of electronic equipment per person in the home and the consumption of specific food categories (such as soups/spices/sauces and alcoholic beverages) with BDE-47 and -153 serum levels were confirmed by multivariate linear regression analyses. The measured median serum level of BDE-47 was slightly over-predicted by a factor of 5.5 whereas other BDE congeners were under-predicted by factors of 13-6000 when compared to serum concentrations predicted from external exposure media (inhalation, dermal uptake, dietary intake from duplicate diet and dust ingestion) using a simple one compartment pharmacokinetic (PK) model. BDE-153 was not detected and BDE-197 not analyzed in food so no dietary intake assessments for these could be made, which may partially explain the discrepancies between their measured and predicted serum concentrations. Overall, our results suggest that exposure via diet is the most important exposure pathway for BDE-47 and -209, with diet being responsible for more than 96% of the total daily intake of these two BDEs in the Norwegian cohort.
Collapse
Affiliation(s)
- Joo Hui Tay
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91, Stockholm, Sweden
| | - Ulla Sellström
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91, Stockholm, Sweden
| | - Eleni Papadopoulou
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health (NIPH), PO Box 222, Skøyen, 0213, Oslo, Norway
| | - Juan Antonio Padilla-Sánchez
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health (NIPH), PO Box 222, Skøyen, 0213, Oslo, Norway
| | - Line Småstuen Haug
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health (NIPH), PO Box 222, Skøyen, 0213, Oslo, Norway
| | - Cynthia A de Wit
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
29
|
Abdel Malak I, Cariou R, Guiffard I, Vénisseau A, Dervilly-Pinel G, Jaber F, Le Bizec B. Assessment of Dechlorane Plus and related compounds in foodstuffs and estimates of daily intake from Lebanese population. CHEMOSPHERE 2019; 235:492-497. [PMID: 31276863 DOI: 10.1016/j.chemosphere.2019.06.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Dechlorane Related Compounds (DRCs), including Dechlorane Plus (syn/anti-DP or syn/anti-DDC-CO) and related compounds (Dec-601 or DDC-ID, Dec-602 or DDC-DBF, Dec-603 or DDC-Ant and Chlordene Plus or DDC-PDD), are a group of polychlorinated flame retardants of concern since they were first reported in various environmental and biota matrices about one decade ago. In this work, we investigated the dietary intake of the Lebanese population to these lipophilic environmental contaminants upon the evaluation of selected foodstuff contamination. Collected food samples (n = 58) were selected to be representative of the lipid fraction of the whole diet of the Beiruti population. The samples were analysed using pressurized liquid extraction, silica multilayer column followed by gel permeation chromatography for purification and GC-EI-HRMS for separation and detection. Detection frequency of at least one compound among Dechlorane Plus (syn-DP and anti-DP), Dechlorane 602, 603 and Chlordene Plus) was 91%. The mean concentrations of ∑6DRCs, by food group, ranged from 4.7 to 29.5 pg g-1 wet weight in lowerbound (LB) and from 6.7 to 76.9 pg g-1 wet weight in upperbound (UB). Based on food habits, the dietary intake of Beiruti adults was estimated to be between 3.71 (LB) and 5.61 (UB) ng day-1. Dechlorane Plus and Dechlorane 602 were the dominant compounds, contributing to 70 and 24% of the total intake (LB value), respectively. This study reports for the first time the occurrence of Dechloranes in Lebanese foods and proposes corresponding deterministic dietary exposure scenario.
Collapse
Affiliation(s)
- Inas Abdel Malak
- LABERCA, Oniris, INRA, F-44307, Nantes, France; Lebanese University, Faculty of Sciences I, Laboratory of Analysis of Organic Compounds (LACO), 508 Hadath, Beirut, Lebanon
| | | | | | | | | | - Farouk Jaber
- Lebanese University, Faculty of Sciences I, Laboratory of Analysis of Organic Compounds (LACO), 508 Hadath, Beirut, Lebanon
| | | |
Collapse
|
30
|
Gebbink WA, van der Lee MK, Peters RJB, Traag WA, Dam GT, Hoogenboom RLAP, van Leeuwen SPJ. Brominated flame retardants in animal derived foods in the Netherlands between 2009 and 2014. CHEMOSPHERE 2019; 234:171-178. [PMID: 31207422 DOI: 10.1016/j.chemosphere.2019.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenylethers (PBDEs), hexabromocyclododecanes (HBCDDs) and tetrabromobisphenol A (TBBPA) were monitored in various foods from terrestrial and aquatic animal origin (>850 samples), collected in the Netherlands between 2009 and 2014. The terrestrial samples included meat/fat from 7 animal species (including bovines, pigs, broilers and sheep), bovine milk and hen eggs. Dominant PBDE congeners in these samples were BDE-47, -99, -100, -153 and -183. The meat/fat generally contained the highest ∑PBDE concentrations compared to eggs and milk, with meat from deer, horse and sheep containing the highest concentrations. Generally declining ∑PBDE concentrations were observed between 2009 and 2014, however, this was only significant in pig meat and hen's eggs. The aquatic samples included fillets from 18 species (including herring, haddock and salmon), brown crab parts, shrimp and mussels, and the highest ∑PBDE concentrations were seen in body parts of brown crab, herring, mackerel, salmon and sea bass (on wet weight basis). Patterns generally contained more congeners (i.e., BDE-28, -49 and -66) additional to the aforementioned congeners found in terrestrial samples. Herring, sea bass and brown crab (body parts) contained among the highest PBDE concentrations. TBBPA was only detected in 3 individual samples (bovine and broiler meat and haddock), while α-HBCDD was the dominant diastereomer detected in several terrestrial and aquatic samples. When detected, TBBPA and HBCDD concentrations were generally in the same order as ∑PBDE concentrations in the same sample types.
Collapse
Affiliation(s)
- Wouter A Gebbink
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700, AE Wageningen, the Netherlands
| | - Martijn K van der Lee
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700, AE Wageningen, the Netherlands
| | - Ruud J B Peters
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700, AE Wageningen, the Netherlands
| | - Wim A Traag
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700, AE Wageningen, the Netherlands
| | - Guillaume Ten Dam
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700, AE Wageningen, the Netherlands
| | - Ron L A P Hoogenboom
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700, AE Wageningen, the Netherlands
| | - Stefan P J van Leeuwen
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700, AE Wageningen, the Netherlands.
| |
Collapse
|
31
|
Sprengel J, Wieselmann S, Kröpfl A, Vetter W. High amounts of chlorinated paraffins in oil-based vitamin E dietary supplements on the German market. ENVIRONMENT INTERNATIONAL 2019; 128:438-445. [PMID: 31082722 DOI: 10.1016/j.envint.2019.04.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 05/26/2023]
Abstract
Chlorinated paraffins (CPs) are a group of man-made pollutants of growing environmental concern. Short-chain chlorinated paraffins (SCCPs) were recently classified as persistent organic pollutants (POPs), while medium-chain chlorinated paraffins (MCCPs) are still unregulated. Foodstuff is a major pathway for the human CP intake, and the regular diet has been analyzed in several studies recently. However, dietary supplements (DS) had not been analyzed on CPs. Our goal was to investigate the occurrence of CPs in DS and to evaluate the possible threat for the consumers. DS (n = 25) made from plant or fish oils were selected on the German market with main emphasis on vitamin E products. The lipid components were removed by sulphuric acid treatment and silica gel column chromatography. CP quantification was performed via gas chromatography coupled to electron capture negative ion mass spectrometry. Six vitamin E preparations containing palm oil showed alarmingly high CP concentrations of >35 μg/g fat. Six other DS contained much lower CP amounts (<4 μg/g fat). If consumed as recommended, the mean daily intake of CPs (5.5 μg SCCPs + 38 μg MCCPs) via palm oil based DS surpassed that of the regular diet by a factor of 4 for SCCPs and 13 for MCCPs, exceeding the PCB intake via food by up to two orders of magnitude. Samples reached up to 26% of the TDI of MCCPs for an average European adult. Consequently, the P95 intake of those samples would amount to ~43 mg CPs per year. The CP contamination probably originated from raw material, as CPs were also found in palm oils and vitamin E concentrates made from palm oil. Our findings suggest that DS can contain high amounts of contaminants that compromise the purpose of the product and should be considered for regular CP monitoring.
Collapse
Affiliation(s)
- Jannik Sprengel
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599 Stuttgart, Germany
| | - Sina Wieselmann
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599 Stuttgart, Germany
| | - Alexander Kröpfl
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599 Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599 Stuttgart, Germany.
| |
Collapse
|
32
|
Wang J, Zhao X, Wang Y, Shi Z. Tetrabromobisphenol A, hexabromocyclododecane isomers and polybrominated diphenyl ethers in foodstuffs from Beijing, China: Contamination levels, dietary exposure and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:812-820. [PMID: 30818205 DOI: 10.1016/j.scitotenv.2019.02.324] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Hexabromocyclododecane (HBCD), tetrabromobisphenol A (TBBPA) and polybrominated diphenyl ether (PBDEs) are three legacy brominated flame retardants (BFRs); however, they are still produced and used in China. In this study, these three BFRs were measured in commonly consumed animal-based and plant-based foodstuffs from Beijing, China, and the dietary intakes of these BFRs by adults in Beijing were estimated to assess the related health concerns. The median levels of TBBPA in animal-based foodstuffs ranged from <LOD to 8.03 ng/g lipid weight (lw), whereas those in all the plant-based food groups were lower than the LOD. The median levels of total HBCD in animal-based foodstuffs were from 1.14 to 5.65 ng/g lw, and α-HBCD was the predominant isomer. The median HBCD level in vegetables was 0.266 ng/g wet weight (ww), whereas γ-HBCD was the most abundant isomer. The median levels of total PBDEs in animal-based foodstuffs were from 3.22 to 13.7 ng/g lw, and BDE-209 was the most abundant congener, comprising a proportion of at least 85% of total PBDEs. The daily dietary intakes of TBBPA, HBCD and PBDEs for adults in Beijing were 2.52, 2.74 and 9.77 ng/kg body weight/day, respectively. Meat consumption was found to be the primary source of BFR dietary intake. A comparison between the calculated estimated daily intakes (EDIs) and the corresponding threshold reference values (TRVs) indicated that daily intake of BFRs via food consumption is unable to cause significant health risks. Likewise, the margin of exposures (MOEs) calculated following the European Food Safety Authority (EFSA) approach were far higher than the threshold, which also proved that the EDIs of BFRs are unlikely to raise significant health concerns.
Collapse
Affiliation(s)
- Jiandi Wang
- Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Capital Medical University, Beijing 110113, China; School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xuezhen Zhao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yifei Wang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
33
|
Pajurek M, Pietron W, Maszewski S, Mikolajczyk S, Piskorska-Pliszczynska J. Poultry eggs as a source of PCDD/Fs, PCBs, PBDEs and PBDD/Fs. CHEMOSPHERE 2019; 223:651-658. [PMID: 30798060 DOI: 10.1016/j.chemosphere.2019.02.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Regardless of the country or region of the world, poultry eggs are one of the most important components of the human diet. Nutritional value is derived from them, but chicken eggs can be contaminated with POPs. The aim of the study was to compare the impact of different types of chicken husbandry system on bioaccumulation of selected POPs. The HRGC/HRMS method was used for determination of 58 congeners of chlorinated and brominated halogenated aromatic hydrocarbons. The influence of the farm rearing system on concentration and congener profile was seen for most groups of tested contaminants, of which the eggs were a source. Human exposure to dioxins and dioxin-like compounds as a result of consumption of contaminated eggs should be a subject of concern. The occurrence of PCDD/Fs, PCBs, PBDEs, and PBDD/Fs in commonly consumed foodstuffs such as eggs supports the need for further research on environmental pollutants and for determination of exposure as the result of their occurrence in different food categories.
Collapse
Affiliation(s)
- Marek Pajurek
- Department of Radiobiology, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland.
| | - Wojciech Pietron
- Department of Radiobiology, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland.
| | - Sebastian Maszewski
- Department of Radiobiology, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland.
| | - Szczepan Mikolajczyk
- Department of Radiobiology, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland.
| | | |
Collapse
|
34
|
Poma G, Sales C, Bruyland B, Christia C, Goscinny S, Van Loco J, Covaci A. Occurrence of Organophosphorus Flame Retardants and Plasticizers (PFRs) in Belgian Foodstuffs and Estimation of the Dietary Exposure of the Adult Population. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2331-2338. [PMID: 29376341 DOI: 10.1021/acs.est.7b06395] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The occurrence of 14 organophosphorus flame retardants and plasticizers (PFRs) was investigated in 165 composite food samples purchased from the Belgian market and divided into 14 food categories, including fish, crustaceans, mussels, meat, milk, cheese, dessert, food for infants, fats and oils, grains, eggs, potatoes and derived products, other food (stocks), and vegetables. Seven PFRs [namely, tri-n-butyl phosphate (TnBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), triphenyl phosphate (TPHP), 2-ethylhexyldiphenyl phosphate (EHDPHP), and tris(2-ethylhexyl) phosphate (TEHP)] were detected at concentrations above quantification limits. Fats and oils were the most contaminated category, with a total PFR concentration of 84.4 ng/g of wet weight (ww), followed by grains (36.9 ng/g of ww) and cheese (20.1 ng/g of ww). Our results support the hypothesis that PFR contamination may occur during industrial processing and manipulation of food products (e.g., packaging, canning, drying, etc.). Considering the daily average intake of food for the modal adult Belgian (15-64 years of age), the dietary exposure to sum PFRs was estimated to be ≤7500 ± 1550 ng/day [103 ± 21 ng/kg of body weight (bw)/day]. For individual PFRs, TPHP contributed on average 3400 ng/day (46.6 ng/kg of bw/day), TCIPP 1350 ng/day (18.5 ng/kg of bw/day), and EHDPHP 1090 ng/day (15 ng/kg of bw/day), values that were lower than their corresponding health-based reference doses. The mean dietary exposure mainly originated from grains (39%), followed by fats and oils (21%) and dairy products (20%). No significant differences between the intakes of adult men and women were observed.
Collapse
Affiliation(s)
- Giulia Poma
- Toxicological Center, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Carlos Sales
- Research Institute for Pesticides and Water, University Jaume I , E-12071 Castellón, Spain
| | - Bram Bruyland
- Toxicological Center, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Christina Christia
- Toxicological Center, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Séverine Goscinny
- Food, Medicines and Consumer Safety, The Scientific Institute of Public Health , Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Joris Van Loco
- Food, Medicines and Consumer Safety, The Scientific Institute of Public Health , Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|