1
|
He G, Zhao J, Liu Y, Wang D, Sheng Z, Zhou Q, Pan Y, Yang M. Advances in environmental analysis of high molecular weight disinfection byproducts. Anal Bioanal Chem 2024:10.1007/s00216-024-05627-9. [PMID: 39527292 DOI: 10.1007/s00216-024-05627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
The disinfection of drinking water, while critical for public health, leads to the formation of disinfection byproducts (DBPs). Toxicological and epidemiological studies have demonstrated that exposure to disinfected water samples may pose adverse effects on human health. Recent research highlights the potential greater toxicity contribution of DBP fractions with high molecular weight (MW) (with more than two carbon atoms) compared to regulated low MW DBPs, emphasizing the need for advanced analytical techniques to identify and characterize these fractions. In this review, we summarize different analytical techniques for indirectly assessing DBP precursors and directly analyzing DBPs, discussing their advantages and limitations. Additionally, since identifying DBP toxicity agents in complex water mixtures is crucial for further optimizing water disinfection and controlling DBP formation, key DBP identification methods based on both chemical and bioassay metrics are also included and discussed. Finally, we highlight three important aspects for the future development of analytical methods to enhance the understanding of high MW DBP formation.
Collapse
Affiliation(s)
- Guiying He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiayan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yan Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dongxiao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zan Sheng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Qian M, Zhang Y, Bian Y, Feng XS, Zhang ZB. Nitrophenols in the environment: An update on pretreatment and analysis techniques since 2017. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116611. [PMID: 38909393 DOI: 10.1016/j.ecoenv.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Nitrophenols, a versatile intermediate, have been widely used in leather, medicine, chemical synthesis, and other fields. Because these components are widely applied, they can enter the environment through various routes, leading to many hazards and toxicities. There has been a recent surge in the development of simple, rapid, environmentally friendly, and effective techniques for determining these environmental pollutants. This review provides a comprehensive overview of the latest research progress on the pretreatment and analysis methods of nitrophenols since 2017, with a focus on environmental samples. Pretreatment methods include liquid-liquid extraction, solid-phase extraction, dispersive extraction, and microextraction methods. Analysis methods mainly include liquid chromatography-based methods, gas chromatography-based methods, supercritical fluid chromatography. In addition, this review also discusses and compares the advantages/disadvantages and development prospects of different pretreatment and analysis methods to provide a reference for further research.
Collapse
Affiliation(s)
- Min Qian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Zhong-Bo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Hu S, Li X, He F, Qi Y, Zhang B, Liu R. Cytotoxicity of emerging halophenylacetamide disinfection byproducts in drinking water: Mechanism and prediction. WATER RESEARCH 2024; 256:121562. [PMID: 38604064 DOI: 10.1016/j.watres.2024.121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
Halophenylacetamides (HPAcAms) have been identified as a new group of nitrogenous aromatic disinfection byproducts (DBPs) in drinking water, but the toxicity mechanisms associated with HPAcAms remain almost completely unknown. In this work, the cytotoxicity of HPAcAms in human hepatoma (HepG2) cells was evaluated, intracellular oxidative stress/damage levels were analyzed, their binding interactions with antioxidative enzyme were explored, and a quantitative structure-activity relationship (QSAR) model was established. Results indicated that the EC50 values of HPAcAms ranged from 2353 μM to 9780 μM, and the isomeric structure as well as the type and number of halogen substitutions could obviously induce the change in the cytotoxicity of HPAcAms. Upon exposure to 2-(3,4-dichlorophenyl)acetamide (3,4-DCPAcAm), various important biomarkers linked to oxidative stress and damage, such as reactive oxygen species, 8‑hydroxy-2-deoxyguanosine, and cell apoptosis, exhibited a significant increase in a dose-dependent manner. Moreover, 3,4-DCPAcAm could directly bind with Cu/Zn-superoxide dismutase and induce the alterations in the structure and activity, and the formation of complexes was predominantly influenced by the van der Waals force and hydrogen bonding. The QSAR model supported that the nucleophilic reactivity as well as the molecular compactness might be highly important in their cytotoxicity mechanisms in HepG2 cells, and 2-(2,4-dibromophenyl)acetamide and 2-(3,4-dibromophenyl)acetamide deserved particular attention in future studies due to the relatively higher predicted cytotoxicity. This study provided the first comprehensive investigation on the cytotoxicity mechanisms of HPAcAm DBPs.
Collapse
Affiliation(s)
- Shaoyang Hu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao, 266237, China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao, 266237, China
| | - Falin He
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao, 266237, China
| | - Yuntao Qi
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao, 266237, China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
4
|
Wei X, Zhang Z, Li G. Preparation of MIL-101(Cr)-NH 2@TAPB-DVA-COF based membrane solid-phase extraction for efficient enrichment and sensitive determination of trace aromatic disinfection by-products in juice drinks. Talanta 2024; 273:125901. [PMID: 38503122 DOI: 10.1016/j.talanta.2024.125901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Aromatic disinfection by-products (DBPs) have garnered considerable interest in recent years for their potential carcinogenicity. However, efficient separation and enrichment of DBPs in complex samples is a challenge due to the extremely low content of aromatic DBPs and the complexity of sample matrices. In this study, a MIL-101(Cr)-NH2@TAPB-DVA-COF hybrid material was prepared as the enrichment medium of membrane solid-phase extraction (M-SPE) to efficiently determine trace emerging aromatic DBPs. This medium exhibited excellent enrichment capacity and selectivity for aromatic DBPs because of the strong hydrogen bonding, π-π stacking and hydrophobic interactions. An efficient analytical method for five aromatic DBPs in juice drinks was successfully established by use of this hybrid material as the enrichment medium for M-SPE in combination with liquid chromatography tandem mass spectrometry (LC-MS/MS). The limits of detection of the established method were from 0.50 to 3.00 ng/L. Moreover, the method had been successfully used in real juice drinks to determine trace five aromatic DBPs with the spiked recoveries ranging from 84.1% to 125%. The method possessed high analytical sensitivity and accuracy for these five aromatic DBPs in juice drinks with the aid of the efficient M-SPE technology proposed.
Collapse
Affiliation(s)
- Xueyun Wei
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
5
|
Pérez-Albaladejo E, Casado M, Postigo C, Porte C. Non-regulated haloaromatic water disinfection byproducts act as endocrine and lipid disrupters in human placental cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123092. [PMID: 38072025 DOI: 10.1016/j.envpol.2023.123092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
The disinfection of drinking water generates hundreds of disinfection byproducts (DBPs), including haloaromatic DBPs. These haloaromatic DBPs are suspected to be more toxic than haloaliphatic ones, and they are currently not regulated. This work investigates their toxicity and ability to interfere with estrogen synthesis in human placental JEG-3 cells, and their genotoxic potential in human alveolar A549 cells. Among the haloaromatic DBPs studied, halobenzoquinones (2,6-dichloro-1,4-benzoquinone (DCBQ) and 2,6-dibromo-1,4-benzoquinone (DBBQ)) showed the highest cytotoxicity (EC50: 18-26 μg/mL). They induced the generation of very high levels of reactive oxygen species (ROS) and up-regulated the expression of genes involved in estrogen synthesis (cyp19a1, hsd17b1). Increased ROS was linked to significant depletion of polyunsaturated lipid species from inner cell membranes. The other DBPs tested showed low or no significant cytotoxicity (EC50 ≥ 100 μg/mL), while 2,4,6-trichloro-phenol (TCP), 2,4,6-tribromo-phenol (TBP) and 3,5-dibromo-4-hydroxybenzaldehyde (DCHB) induced the formation of micronuclei at concentrations much higher than those typically found in water (100 μg/mL). This study reveals the different modes of action of haloaromatic DBPs, and highlights the toxic potential of halobenzoquinones, which had a significant impact on the expression of placenta steroid metabolism related genes and induce oxidative stress, implying potential adverse health effects.
Collapse
Affiliation(s)
| | - Marta Casado
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Cristina Postigo
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Avda Severo Ochoa s/n, Campus de Fuentenueva, Granada, 18071, Spain; Institute for Water Research (IdA), University of Granada, Ramón y Cajal 4, 18071, Granada, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
6
|
Xiang Y, Xu H. Occurrence, formation, and proteins perturbation of disinfection byproducts in indoor air resulting from chlorine disinfection. CHEMOSPHERE 2023; 343:140182. [PMID: 37716567 DOI: 10.1016/j.chemosphere.2023.140182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Increased amounts of chlorine disinfectant have been sprayed to inactivate viruses in the environment since the COVID-19 pandemic, and the health risk from chemicals, especially disinfection byproducts (DBPs), has unintentionally increased. In this study, we characterized the occurrence of haloacetic acids (HAAs) and trihalomethanes (THMs) in indoor air and evaluated their formation potential from typical indoor ingredients. Subsequently, the adverse effect of chloroacetic acid on A549 cells was depicted at the proteomic, transcriptional and silico levels. The results revealed that the total concentrations of HAAs and THMs ranged from 1.46 to 4.20 μg/m3 in ten indoor environments. Both classes of DBPs could be generated during the chlorination of prevalent terpenes by competing reactions, which are associated with the volatile state of indoor ingredients after disinfection. The C-type lectin receptor signaling pathway and cellular senescence were significantly perturbed pathways, which interfered with the development of lung fibrosis. The negative effect was further investigated by molecular docking and transcription, which showed that HAAs can interact with four C-type lectin receptor proteins by hydrogen bonds and inhibit the mRNA expression of related proteins. This study highlights the potential secondary biological risk caused by intensive DBPs generated from chlorination and draws our attention to the potential environmental factors leading to chronic respiratory disease.
Collapse
Affiliation(s)
- Yangwei Xiang
- Department of Lung Transplantation and Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.
| | - Huan Xu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
7
|
Li Z, Lu Y, Chen T, He A, Huang Y, Li L, Pan W, Li J, Zhu N, Wang Y, Jiang G. Generation Mechanism of Perfluorohexanesulfonic Acid from Polyfluoroalkyl Sulfonamide Derivatives During Chloramination in Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18462-18472. [PMID: 36633968 DOI: 10.1021/acs.est.2c07881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs), including perfluorohexanesulfonic acid (PFHxS), as emerging persistent organic pollutants widely detected in drinking water, have drawn increasing concern. The PFHxS contamination of drinking water always results from direct and indirect sources, especially the secondary generations through environmental transformations of precursors. However, the mechanism of the transformation of precursors to PFHXS during the drinking water treatment processes remains unclear. Herein, the potential precursors and formation mechanisms of PFHxS were explored during drinking water disinfection. Simultaneously, the factors affecting PFHxS generation were also examined. This study found PFHxS could be generated from polyfluoroalkyl sulfonamide derivatives during chlorination and chloramination. The fate and yield of PFHxS varied from different precursors and disinfection processes. In particular, monochloramine more favorably formed PFHxS. Several perfluoroalkyl oxidation products and decarboxylation intermediates were detected and identified in the chloraminated samples using Fourier-transform ion cyclotron resonance mass spectrometry. Combined with density functional theory calculations, the results indicated that the indirect oxidation via the attack of the nitrogen atom in sulfonamide groups might be the dominant pathway for generating PFHxS during chloramination, and the process could be highly affected by the monochloramine dose, pH, and temperature. This study provides important evidence of the secondary formation of PFHxS during drinking water disinfection and scientific support for chemical management of PFHxS and PFHxS-related compounds.
Collapse
Affiliation(s)
- Zhigang Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Yao Lu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Tianyu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Anen He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Ying Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Yawei Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| |
Collapse
|
8
|
Wu T, Karimi-Maleh H, Dragoi EN, Puri P, Zhang D, Zhang Z. Traditional methods and biosensors for detecting disinfection by-products in water: A review. ENVIRONMENTAL RESEARCH 2023; 237:116935. [PMID: 37625534 DOI: 10.1016/j.envres.2023.116935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
In recent years, pollution caused by disinfection by-products (DBPs) has become a global concern. Initially, there were fewer contaminants, and the mechanism of their generation was unclear; however, the number of contaminants has increased exponentially as a result of rapid industrialization and numerous economic activities (e.q., during the outbreak of COVID-19 a surge in the use of chlorinated disinfectants was observed). DBP toxicity results in various adverse health effects and organ failure in humans. In addition, it profoundly affects other forms of life, including animals, plants, and microorganisms. This review comprehensively discusses the pre-treatment methods of traditional and emerging DBPs and the technologies applied for their detection. Additionally, this paper provides a detailed discussion of the principles, applicability, and characteristics of traditional large-scale instrumentation methods (such as gas/liquid/ion chromatography coupled with mass spectrometry) for detecting DBPs based on their respective detection techniques. At the same time, the design, functionality, classification, and characteristics of rapid detection technologies (such as biosensors) are also detailed and analyzed.
Collapse
Affiliation(s)
- Tao Wu
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Elena Niculina Dragoi
- Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University, Bld. D Mangeron no 700050, Iasi, Romania
| | - Paridhi Puri
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Dongxing Zhang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen, Guangdong, 518110, China.
| | - Zhouxiang Zhang
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China
| |
Collapse
|
9
|
Dong F, Zhu J, Li J, Fu C, He G, Lin Q, Li C, Song S. The occurrence, formation and transformation of disinfection byproducts in the water distribution system: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161497. [PMID: 36634528 DOI: 10.1016/j.scitotenv.2023.161497] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Disinfection is an effective process to inactivate pathogens in drinking water treatment. However, disinfection byproducts (DBPs) will inevitably form and may cause severe health concerns. Previous research has mainly focused on DBPs formation during the disinfection in water treatment plants. But few studies paid attention to the formation and transformation of DBPs in the water distribution system (WDS). The complex environment in WDS will affect the reaction between residual chlorine and organic matter to form new DBPs. This paper provides an overall review of DBPs formation and transformation in the WDS. Firstly, the occurrence of DBPs in the WDS around the world was cataloged. Secondly, the primary factors affecting the formation of DBPs in WDS have also been summarized, including secondary chlorination, pipe materials, biofilm, deposits and coexisting anions. Secondary chlorination and biofilm increased the concentration of regular DBPs (e.g., trihalomethanes (THMs) and haloacetic acids (HAAs)) in the WDS, while Br- and I- increased the formation of brominated DBPs (Br-DBPs) and iodinated DBPs (I-DBPs), respectively. The mechanism of DBPs formation and transformation in the WDS was systematically described. Aromatic DBPs could be directly or indirectly converted to aliphatic DBPs, including ring opening, side chain breaking, chlorination, etc. Finally, the toxicity of drinking water in the WDS caused by DBPs transformation was examined. This review is conducive to improving the knowledge gap about DBPs formation and transformation in WDS to better solve water supply security problems in the future.
Collapse
Affiliation(s)
- Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiani Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinzhe Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chuyun Fu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guilin He
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Qiufeng Lin
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200433, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
10
|
Wang J, Zhang M, Hu S, Xian Q, Chen H, Gong T. Occurrence and Cytotoxicity of Aliphatic and Aromatic Halogenated Disinfection Byproducts in Indoor Swimming Pool Water and Their Incoming Tap Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17763-17775. [PMID: 36475631 DOI: 10.1021/acs.est.2c07175] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Disinfection byproducts (DBPs) in swimming pool water are of wide concern for public health. In this study, the occurrence of five categories of aliphatic halogenated DBPs, i.e., trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), halonitromethanes (HNMs), and haloketones (HKs), and six categories of aromatic halogenated DBPs, i.e., halophenols (HPs), halonitrophenols (HNPs), halohydroxy-benzaldehydes (HBALs), halohydroxybenzoic acids (HBAs), halobenzoquinones (HBQs), and haloanilines (HAs), was examined in seven indoor swimming pool water and their incoming tap water. The correlations between the DBP concentrations and water quality parameters were explored. Moreover, the cytotoxicity of the aliphatic and aromatic halogenated DBPs was tested with human hepatoma (HepG2) cells, and the concentration-cytotoxicity contributions of different DBP categories were calculated. The results demonstrate that 24 aliphatic (5 THMs, 8 HAAs, 5 HANs, 4 HNMs, and 2 HKs) and 50 aromatic halogenated DBPs (9 HPs, 8 HNPs, 9 HBALs, 8 HBAs, 11 HBQs, and 5 HAs) were present in the swimming pool water, among which 41 aromatic halogenated DBPs were detected in swimming pool water for the first time. The average concentrations of the five categories of aliphatic halogenated DBPs in the swimming pool water were in the order of HAAs > HANs > HKs > THMs > HNMs, while those in their incoming tap water were in the order of THMs > HAAs > HKs > HANs > HNMs. The average concentrations of the aromatic halogenated DBPs in the swimming pool water were significantly lower than those of the aliphatic halogenated DBPs, following the order of HBQs > HPs > HBAs > HBALs > HAs > HNPs, while those in their incoming tap water were in the order of HBALs > HBQs > HPs > HBAs > HAs > HNPs. The average concentration-cytotoxicity contributions of different DBP categories in the swimming pool water followed the order of HAAs > HANs > HNMs > HKs > HBQs > THMs > HPs > HNPs > HBAs > HBALs > HAs, with HAAs, HANs, and HNMs possessing the main concentration-cytotoxicity contributions (93.2% in total) among all DBP categories.
Collapse
Affiliation(s)
- Junjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
- School of Energy and Environment, Southeast University, Nanjing210096, China
| | - Meiqi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Haoran Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Tingting Gong
- School of Energy and Environment, Southeast University, Nanjing210096, China
| |
Collapse
|
11
|
Zhu J, Yang L, Wang M, Zhang Q, Zhang Y, Li Y. The influence of bromide and iodide ions on the sulfamethoxazole (SMX) halogenation during chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157687. [PMID: 35908709 DOI: 10.1016/j.scitotenv.2022.157687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Disinfection by-products (DBPs) were produced during the chlorination process, posing a threat to drinking water safety and human health. In the presence of bromide and iodide ions, brominated and iodinated DBPs will be generated, which might be more toxic than the parent compound. However, there are few studies on brominated and iodinated DBPs of antibiotics. Therefore, in this study, the fates of sulfamethoxazole (SMX) during chlorination in different systems (Blank; SMX + NaClO; SMX+ NaClO+ Br-; SMX+ NaClO+I-; SMX+ NaClO+ Br- + I-) were investigated. In different systems, all the reaction followed a pseudo-first-order kinetics, while the reaction rates of NaClO with SMX were different, the reaction rates were in order of SMX + NaClO + Br- + I- > SMX + NaClO + Br- > SMX + NaClO + I- > SMX + NaClO. When Br- and I- existed simultaneously, the reaction rate was the fastest. Iodide played an important role in oxidation and promoted the chlorination of SMX. SMX mainly underwent S-C cleavage, S-N hydrolysis, desulfonation, and substitution reactions. Nine disinfection by-products, including three reported for the first time, were identified using a non-targeted approach, and degradation pathways were proposed. Furthermore, EPI Suite software was applied to predict the environmental accumulation potential and environmental persistence of the degradation products. The results indicated that SMX and degradation products had little environmental accumulative potential and environmental persistence.
Collapse
Affiliation(s)
- Jingjing Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lumin Yang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mengyuan Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qing Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ying Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yuna Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Li J, Zhang Y, Zhou Y, Bian Y, Hu C, Wang ZH, Feng XS. Haloacetic Acids in the Aquatic Environment. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2141649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Li
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Pei-ching 100021, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Cong Hu
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhi-Hong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
13
|
Hu S, Chen X, Zhang B, Liu L, Gong T, Xian Q. Occurrence and transformation of newly discovered 2-bromo-6-chloro-1,4-benzoquinone in chlorinated drinking water. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129189. [PMID: 35739719 DOI: 10.1016/j.jhazmat.2022.129189] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Halobenzoquinones (HBQs) have been reported as an emerging category of disinfection byproducts (DBPs) in drinking water with relatively high toxicity, and the previously reported HBQs include 2,6-dichloro-1,4-benzoquinone, 2,3,6-trichloro-1,4-benzoquinone, 2,6-dichloro-3-methyl-1,4-benzoquinone, 2,6-dibromo-1,4-benzoquinone, 2,6-diiodo-1,4-benzoquinone, 2-chloro-6-iodo-1,4-benzoquinone, and 2-bromo-6-iodo-1,4-benzoquinone. In this study, another HBQ species, 2-bromo-6-chloro-1,4-benzoquinone (2,6-BCBQ), was newly detected and identified in drinking water. The occurrence frequency and levels of 2,6-BCBQ were investigated, and its cytotoxicity was evaluated. Since the formed 2,6-BCBQ was found to be not stable in chlorination, its transformation kinetics and mechanisms in chlorination were further studied. The results reveal that 2,6-BCBQ was generated from Suwannee River humic acid with concentrations in the range of 4.4-47.9 ng/L during chlorination within 120 h, and it was present in all the tap water samples with concentrations ranging from 1.5 to 15.7 ng/L. Among all the tested bromochloro-DBPs, 2,6-BCBQ showed the highest cytotoxicity on the human hepatoma cells. The transformation of 2,6-BCBQ in chlorination followed a pseudo-first-order decay, which was significantly affected by the chlorine dose, pH, and temperature. Seven polar chlorinated and brominated intermediates (including HBQs, halohydroxybenzoquinones, and halohydroxycyclopentenediones) were detected in chlorinated 2,6-BCBQ samples, according to which the transformation pathways of 2,6-BCBQ in chlorination were proposed. Besides, four trihalomethanes and four haloacetic acids were also generated during chlorination of 2,6-BCBQ with molar transformation percentages of 1.6-13.7%.
Collapse
Affiliation(s)
- Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao Chen
- Lower Changjiang River Bureau of Hydrological and Water Resources Survey, Nanjing 210011, China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lanyao Liu
- Water Resources Department of Linyi, Linyi 276037, China
| | - Tingting Gong
- School of Energy and Environment, Southeast University, Nanjing 210096, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
14
|
Hu S, Kaw HY, Zhu L, Wang W. Halohydroxybenzonitriles as a new group of halogenated aromatic DBPs in drinking water: Are they of comparable risk to halonitrophenols? WATER RESEARCH 2022; 219:118547. [PMID: 35561620 DOI: 10.1016/j.watres.2022.118547] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Halogenated aromatic disinfection byproducts (DBPs) exhibited similar total organic halogen levels in chlorinated drinking water samples as compared with aliphatic ones, and they predominantly accounted for the overall toxicity of the samples. Among the reported halogenated aromatic DBPs, halonitrophenols (HNPs) have received particular attention in recent years due to the relatively high risk in drinking water. In this study, a new group of halogenated aromatic DBPs were detected and then proposed to be halohydroxybenzonitriles (HHBNs) by employing the ultra-performance liquid chromatography/tandem mass spectrometers. Thereafter, the specific HHBN species in drinking water were theoretically speculated and then thoroughly identified with standard compounds. Their occurrence in drinking water was investigated, their cytotoxicity was evaluated, and their stability in the presence of chlorine was assessed. Seven newly identified HHBNs, including 3,5-dichloro-4-hydroxybenzonitrile, 3,5-dichloro-2-hydroxybenzonitrile, 5-bromo-3-chloro-4-hydroxybenzonitrile, 5-bromo-3-chloro-2-hydroxybenzonitrile, 3,5-dibromo-4-hydroxybenzonitrile, 3,5-dibromo-2-hydroxybenzonitrile, and 3,5-diiodo-4-hydroxybenzonitrile, showed 100% detection frequency in the collected drinking water samples with concentrations up to 36 ng/L. HHBNs exhibited significantly higher cytotoxicity in Chinese hamster ovary cells than regulated DBPs (e.g., trihalomethanes and haloacetic acids), which might be contributed by their cellular uptake efficiency and nucleophilicity. The seven HHBNs were proved to undergo transformation during chlorination following pseudo-first-order decay with half-lives in the range of 9-63 h. More importantly, in comparison to HNPs, which showed relatively high toxicity and strong stability among the halogenated aromatic DBPs, HHBNs presented comparable concentration-cytotoxicity contribution (50%) and slightly weaker stability (43%), suggesting that HHBNs should be a new group of DBPs of concern in drinking water.
Collapse
Affiliation(s)
- Shaoyang Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Han Yeong Kaw
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| |
Collapse
|
15
|
MacKeown H, von Gunten U, Criquet J. Iodide sources in the aquatic environment and its fate during oxidative water treatment - A critical review. WATER RESEARCH 2022; 217:118417. [PMID: 35452971 DOI: 10.1016/j.watres.2022.118417] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Iodine is a naturally-occurring halogen in natural waters generally present in concentrations between 0.5 and 100 µg L-1. During oxidative drinking water treatment, iodine-containing disinfection by-products (I-DBPs) can be formed. The formation of I-DBPs was mostly associated to taste and odor issues in the produced tap water but has become a potential health problem more recently due to the generally more toxic character of I-DBPs compared to their chlorinated and brominated analogues. This paper is a systematic and critical review on the reactivity of iodide and on the most common intermediate reactive iodine species HOI. The first step of oxidation of I- to HOI is rapid for most oxidants (apparent second-order rate constant, kapp > 103 M-1s-1 at pH 7). The reactivity of hypoiodous acid with inorganic and organic compounds appears to be intermediate between chlorine and bromine. The life times of HOI during oxidative treatment determines the extent of the formation of I-DBPs. Based on this assessment, chloramine, chlorine dioxide and permanganate are of the highest concern when treating iodide-containing waters. The conditions for the formation of iodo-organic compounds are also critically reviewed. From an evaluation of I-DBPs in more than 650 drinking waters, it can be concluded that one third show low levels of I-THMs (<1 µg L-1), and 18% exhibit concentrations > 10 µg L-1. The most frequently detected I-THM is CHCl2I followed by CHBrClI. More polar I-DBPs, iodoacetic acid in particular, have been reviewed as well. Finally, the transformation of iodide to iodate, a safe iodine-derived end-product, has been proposed to mitigate the formation of I-DBPs in drinking water processes. For this purpose a pre-oxidation step with either ozone or ferrate(VI) to completely oxidize iodide to iodate is an efficient process. Activated carbon has also been shown to be efficient in reducing I-DBPs during drinking water oxidation.
Collapse
Affiliation(s)
- Henry MacKeown
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratory of Advanced Spectroscopy for Interactions, Reactivity and Environment, Lille F-59000, France
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, Duebendorf 8600, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich 8092, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Justine Criquet
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratory of Advanced Spectroscopy for Interactions, Reactivity and Environment, Lille F-59000, France.
| |
Collapse
|
16
|
Hu S, Kaw HY, Zhu L, Wang W. Formation and Cytotoxicity of Halophenylacetamides: A New Group of Nitrogenous Aromatic Halogenated Disinfection Byproducts in Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3181-3192. [PMID: 35175050 DOI: 10.1021/acs.est.1c08419] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nitrogenous aromatic halogenated disinfection byproducts (DBPs) in drinking water have received considerable attention recently owing to their relatively high toxicity. In this study, a new group of nitrogenous aromatic halogenated disinfection byproducts, halophenylacetamides (HPAcAms), were successfully identified for the first time in both the laboratory experiments and realistic drinking water. The formation mechanism of HPAcAms during chlorination of phenylalanine in the presence of Br- and I-, occurrence frequencies, and concentrations in authentic drinking water were investigated, and a quantitative structure-activity relationship (QSAR) model was developed based on the acquired cytotoxicity data. The results demonstrated that HPAcAms could be formed from phenylalanine in chlorination via electrophilic substitution, decarboxylation, hydrochloric acid elimination, and hydrolysis. The HPAcAm yields from phenylalanine were significantly affected by contact time, pH, chlorine dose, and temperature. Nine HPAcAms with concentrations in the range of 0.02-1.54 ng/L were detected in authentic drinking water samples. Most tested HPAcAms showed significantly higher cytotoxicity compared with dichloroacetamide, which is the most abundant aliphatic haloacetamide DBP. The QSAR model demonstrated that the cellular uptake efficiency and the polarized distributions of electrons of HPAcAms play essential roles in their cytotoxicity mechanisms.
Collapse
Affiliation(s)
- Shaoyang Hu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Han Yeong Kaw
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| |
Collapse
|
17
|
Li S, Ma J, Wu G, Li J, Wang X, Chen L. Magnetic covalent-organic frameworks for the simultaneous extraction of eleven emerging aromatic disinfection byproducts in water samples coupled with UHPLC-MS/MS determination. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127687. [PMID: 34776299 DOI: 10.1016/j.jhazmat.2021.127687] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
A simple method based on magnetic solid-phase extraction (MSPE) was developed for the simultaneous extraction of eleven emerging aromatic disinfection byproducts (DBPs) in water samples coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) determination. A magnetic covalent-organic framework (COF) material, namely, Fe3O4 @TpBD, was facilely synthesized and fully characterized, followed by an MSPE process. Several important MSPE parameters, such as the magnetic ratio, Fe3O4 @TpBD amount and sample pH, were systematically investigated. Under optimal conditions, the limits of detection and quantification of this COF-MSPE-UHPLC-MS/MS method were as low as 0.07-1.81 ng/L and 0.24-5.99 ng/L, respectively. Good precision was obtained with relative standard deviations (RSDs) of 1.3-10.9% (intraday) and 4.3-15.9% (interday). Furthermore, the validated method was proven applicable to real water samples; for example, the recoveries were 86.8-115.1% for the secondary effluent, and several DBPs in swimming pool water were detected. Notably, the MSPE process required only 7 min, ensuring that the DBPs were relatively stable during the whole analysis process and that Fe3O4 @TpBD demonstrated excellent reusability. The COF-based MSPE method with simplicity, rapidity and efficiency provided an ideal sample pretreatment alternative to determine trace DBPs in complex matrices.
Collapse
Affiliation(s)
- Shuang Li
- School of Environmental & Municipal Engineering, State-Local Joint Engineering Research Center of Urban Sewage Treatment and Resource Recovery, Qingdao University of Technology, Qingdao 266033, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, State-Local Joint Engineering Research Center of Urban Sewage Treatment and Resource Recovery, Qingdao University of Technology, Qingdao 266033, China.
| | - Gege Wu
- School of Environmental & Municipal Engineering, State-Local Joint Engineering Research Center of Urban Sewage Treatment and Resource Recovery, Qingdao University of Technology, Qingdao 266033, China
| | - Jinhua Li
- Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lingxin Chen
- Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
18
|
Gao Y, Qiu J, Ji Y, Wawryk NJP, An T, Li XF. Formation Mechanism of Iodinated Aromatic Disinfection Byproducts: Acid Catalysis with H 2OI . ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1791-1800. [PMID: 35061374 DOI: 10.1021/acs.est.1c05484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Iodinated aromatic disinfection byproducts (I-DBPs) are a group of nonregulated but highly toxic DBPs. The formation of I-DBPs is attributed mainly to HOI because it is the most abundant reactive iodine species in chloraminated water. In this study, we used computational modeling of thermodynamics to examine the mechanism of iodination of aromatic contaminants, e.g., dipeptides and phenols. Computational prediction of the energy barriers of the formation of iodinated tyrosylglycine (I-Tyr-Gly) (66.9 kcal mol-1) and hydroxylated Tyr-Gly (OH-Tyr-Gly) (46.0 kcal mol-1) via iodination with HOI favors the formation of OH-Tyr-Gly over I-Tyr-Gly. Unexpectedly, mass spectrometry experiments detected I-Tyr-Gly but not OH-Tyr-Gly, suggesting that I-Tyr-Gly formation cannot be attributed to HOI alone. To clarify this result, we examined the thermodynamic role of the most reactive iodine species H2OI+ in the formation of aromatic I-DBPs under chloramination. Computational modeling of thermodynamic results shows that the formation of a loosely bonded complex of aromatic compounds with H2OI+ is the key step to initiate the iodination process. When H2OI+ serves as an acid catalyst and an iodinating agent, with HOI or H2O acting as a proton acceptor, the energy barrier of I-DBP formation was significantly lower (10.8-13.1 kcal mol-1). Therefore, even with its low concentration, H2OI+ can be involved in the formation of I-DBPs. These results provide insight into the mechanisms of aromatic I-DBP formation and important information for guiding research toward controlling I-DBPs in drinking water.
Collapse
Affiliation(s)
- Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Junlang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Nicholas J P Wawryk
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
19
|
Bai W, Takao Y, Kubo T. First evaluation of genotoxicity of strong bases and zwitterions in treated household effluents. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126053. [PMID: 34492893 DOI: 10.1016/j.jhazmat.2021.126053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Various genotoxic substances in household effluents have not been sufficiently studied. The purpose of this study is to evaluate them using the umu test after dividing them based on the acid-base properties of their functional groups by solid-phase extraction cartridges. The results of the samples concentrated with reverse-phase cartridges showed that the substances with acid functional groups had stronger genotoxicity as 4.1-12.1 ng-4-NQO/mL without S9 enzyme and 17.4-51.8 ng-2-AA/mL with S9 enzyme, while the basic substances also showed a certain degree of toxicity. The results of dividing the effluents by acid-base properties using ion-exchange cartridges showed that chemical substances with strong acid functional groups did not demonstrate genotoxicity. It was found that the genotoxicity of chemicals with functional groups of weak acids was half of that of the total amount. The genotoxicity of the neutral substance was not strong, and the genotoxicity of the weak basic substances was negligible. The zwitterions and substances with strong basic functional groups showed about half the total genotoxicity. This is the first report that has investigated the genotoxicity of zwitterions in effluents.
Collapse
Affiliation(s)
- Wenzhi Bai
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Yuji Takao
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takashi Kubo
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
20
|
Kali S, Khan M, Ghaffar MS, Rasheed S, Waseem A, Iqbal MM, Bilal Khan Niazi M, Zafar MI. Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:116950. [PMID: 33819670 DOI: 10.1016/j.envpol.2021.116950] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Disinfection is considered as a vital step to ensure the supply of clean and safe drinking water. Various approaches are adopted for this purpose; however, chlorination is highly preferred all over the world. This method is opted owing to its several advantages. However, it leads to the formation of certain by-products. These chlorination disinfection by-products (DBPs) are genotoxic, carcinogenic and mutagenic. Still chlorination is being practiced worldwide. Present review gives insights into the occurrence, toxicity and factors affecting the formation of regulated (THMs, HAAs) and emerging DBPs (N-DBPs, HKs, HAs and aromatic DBPs) found in drinking water. Furthermore, remediation techniques used to control DBPs have also been summarized here. Key findings are: (i) concentration of regulated DBPs surpassed the permissible limit in most of the regions, (ii) high chlorine dose, high NOM, more reaction time (up to 3 h) and high temperature (up to 30 °C) enhance the formation of THMs and HAAs, (iii) high pH favors the formation of THMs while low pH is suitable of the formation of HAAs, (iv) high NOM, low temperature, low chlorine dose and moderate pH favors the formation of unstable DBPs (N-DBPs, HKs and HAs), (v) DBPs are toxic not only for humans but for aquatic fauna as well, (vi) membrane technologies, enhanced coagulation and AOPs remove NOM, (vii) adsorption, air stripping and other physical and chemical methods are post-formation approaches (viii) step-wise chlorination is assumed to be an efficient method to reduce DBPs formation without any treatment. Toxicity data revealed that N-DBPs are found to be more toxic than C-DBPs and aromatic DBPs than aliphatic DBPs. In majority of the studies, merely THMs and HAAs have been studied and USEPA has regulated just these two groups. Future studies should focus on emerging DBPs and provide information regarding their regulation.
Collapse
Affiliation(s)
- Sundas Kali
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Marina Khan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Sheraz Ghaffar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Sajida Rasheed
- Department of Biotechnology, Faculty of Sciences, University of Kotli, Azad Jamu Kashmir, Pakistan.
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Mazhar Iqbal
- Laboratory of Analytical Chemistry and Applied Eco-chemistry, Department of Applied Analytical and Physical Chemistry, Ghent University, Ghent, Belgium; Soil and Water Testing Laboratory, Department of Agriculture, Chiniot, Government of Punjab, Pakistan.
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
21
|
Polymer brush-grafted cotton fiber for the efficient removal of aromatic halogenated disinfection by-products in drinking water. J Colloid Interface Sci 2021; 597:66-74. [PMID: 33865079 DOI: 10.1016/j.jcis.2021.03.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 11/24/2022]
Abstract
Apart from the activated carbon, other functional adsorbents are usually not frequently reported for the removal of disinfection by-products (DBPs) in drinking water. In this study, a novel polymer brush-grafted cotton fiber was prepared and for the first time used as adsorbents for the efficient removal of aromatic halogenated DBPs in drinking water in the column adsorption mode. Poly (glycidyl methacrylate) (PGMA) was grafted onto the surface of cotton fibers via UV irradiation, and then diethylenetriamine was immobilized on the PGMA polymer brush through amination reaction to obtain the aminated cotton fibers (ACFs). The adsorption performance of the prepared ACF was investigated with eight aromatic halogenated DBPs via dynamic adsorption experiments. The results revealed that ACF showed significantly longer breakthrough point (38,500-225,500 BV) for aromatic halogenated DBPs compared with the granular activated carbon (150-500 BV). Thomas model was used to fit the breakthrough curves, and the theoretical value of the maximum adsorption capacity ranged from 14.76 to 89.47 mg/g. The enhanced adsorption performance of the ACF for aromatic halogenated DBPs was mainly due to the formation of hydrogen bonds. Additionally, the partially protonated amine groups also improved the adsorption performance. Furthermore, the ACF also showed remarkable stability and reusability.
Collapse
|
22
|
Li Z, Song G, Bi Y, Gao W, He A, Lu Y, Wang Y, Jiang G. Occurrence and Distribution of Disinfection Byproducts in Domestic Wastewater Effluent, Tap Water, and Surface Water during the SARS-CoV-2 Pandemic in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4103-4114. [PMID: 33523638 PMCID: PMC7875339 DOI: 10.1021/acs.est.0c06856] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 05/13/2023]
Abstract
Intensified efforts to curb transmission of the Severe Acute Respiratory Syndrome Coronavirus-2 might lead to an elevated concentration of disinfectants in domestic wastewater and drinking water in China, possibly resulting in the generation of numerous toxic disinfection byproducts (DBPs). In this study, the occurrence and distribution of five categories of DBPs, including six trihalomethanes (THMs), nine haloacetic acids (HAAs), two haloketones, nine nitrosamines, and nine aromatic halogenated DBPs, in domestic wastewater effluent, tap water, and surface water were investigated. The results showed that the total concentration level of measured DBPs in wastewater effluents (78.3 μg/L) was higher than that in tap water (56.0 μg/L, p = 0.05), followed by surface water (8.0 μg/L, p < 0.01). Moreover, HAAs and THMs were the two most dominant categories of DBPs in wastewater effluents, tap water, and surface water, accounting for >90%, respectively. Out of the regulated DBPs, none of the wastewater effluents and tap water samples exceeded the corresponding maximum guideline values of chloroform (300 μg/L), THM4 (80 μg/L), NDMA (100 ng/L), and only 2 of 35 tap water samples (67.6 and 63.3 μg/L) exceeded the HAA5 (60 μg/L) safe limit. HAAs in wastewater effluents showed higher values of risk quotient for green algae. This study illustrates that the elevated use of disinfectants within the guidance ranges during water disinfection did not result in a significant increase in the concentration of DBPs.
Collapse
Affiliation(s)
- Zhigang Li
- School of Environment, Hangzhou
Institute for Advanced Study, University of Chinese
Academy of Sciences, Hangzhou 310000,
People’s Republic of China
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
| | - Gaofei Song
- State Key Laboratory of Freshwater
Ecology and Biotechnology, Institute of Hydrobiology,
Chinese Academy of Sciences, Wuhan 430072,
People’s Republic of China
| | - Yonghong Bi
- State Key Laboratory of Freshwater
Ecology and Biotechnology, Institute of Hydrobiology,
Chinese Academy of Sciences, Wuhan 430072,
People’s Republic of China
| | - Wei Gao
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
| | - Anen He
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
| | - Yao Lu
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
| | - Yawei Wang
- School of Environment, Hangzhou
Institute for Advanced Study, University of Chinese
Academy of Sciences, Hangzhou 310000,
People’s Republic of China
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
- University of Chinese
Academy of Sciences, Beijing 100049,
People’s Republic of China
| | - Guibin Jiang
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
| |
Collapse
|
23
|
Sayess R, Eyring AM, Reckhow DA. Source and drinking water organic and total iodine and correlation with water quality parameters. WATER RESEARCH 2021; 190:116686. [PMID: 33285455 DOI: 10.1016/j.watres.2020.116686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Iodinated disinfection by-products (I-DBPs) have recently emerged as part of the pool of DBPs of public health concern. Due to limitations in measuring individual I-DBPs in a water sample, the surrogate measure of total organic iodine (TOI) is often used to account for the sum of all I-DBPs. In this study, TOI and total iodine (TI) are quantified in raw and treated waters in treatment trains at three sites in the Northeast United States. The occurrence, magnitude, and seasonality of these species was investigated within each sampling train and across the different sites. A regression model was developed to explore how TOI occurrence varies with routinely measured physical and chemical parameters in a water sample. The TOI and TI concentration at the three sites ranged from below the method detection limit to 18 µg/L and from 3 and 18.9 µg/L, respectively. There was substantial inter-monthly variability in TOI without a clear seasonal signal, and the concentration of TOI did not increase upon treatment. The results of the multivariate regression model showed that dissolved organic carbon (DOC), specific UV254 absorbance (SUVA), combined chlorine residual (TCl2), and pH were all significantly related to TOI concentration to varying degrees. A Tobit model was fit to show TOI predictions against observed (measured) TOI values. The model could explain approximately 46% of the variance of TOI concentrations in the treated waters.
Collapse
Affiliation(s)
- Rassil Sayess
- New York State Water Resources Institute, Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States.
| | - Adam M Eyring
- Philadelphia Water Department, Philadelphia, PA 19124, United States
| | - David A Reckhow
- Department of Environmental and Water Resources Engineering, University of Massachusetts, Amherst 01003, United States
| |
Collapse
|
24
|
Cheng S, Wu YP, Young TR, Dodd MC, Wu J, Zhang H, Huo ZL, Qian YT, Li Y, Li WT, Li AM. Rapid determination of trace haloacetic acids in water and wastewater using non-suppressed ion chromatography with electrospray ionization-tandem mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142297. [PMID: 33254877 DOI: 10.1016/j.scitotenv.2020.142297] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/23/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
A simple and rapid method employing non-suppressed ion chromatography with electrospray ionization tandem mass spectrometry has been developed for the direct determination of trace-level haloacetic acids (HAAs) in water samples. Using 70/30 (v/v) acetonitrile/1 M aqueous methylamine as the mobile phase, three IC columns - AS16, AS18 and AS24 from Thermo-Scientific - were tested, respectively, with the AS16 column exhibiting the best overall performance with respect to resolution and retention time. To assess the effects of mobile phase composition on retention time of HAAs, the AS16 column was further tested using (i) different proportions of acetonitrile to aqueous methylamine, (ii) different proportions of acetonitrile to aqueous solution at fixed methylamine concentrations, and (iii) different concentrations of methylamine at fixed proportions of acetonitrile to aqueous solution. With a low proportion of aqueous solution, van der Waals and/or hydrogen-bonding interactions appeared to play an important role in governing HAA retention, i.e., HAAs with relatively higher apparent logKow* caused by elevated solvent sspKa exhibited longer retention times; whereas with a high proportion of aqueous solution, ionic interactions appeared to dominate retention of HAAs, with the more polarizable HAAs exhibiting longer retention times. Using 70/30 (v/v) acetonitrile/1 M aqueous methylamine, the method detection limits were in the range of 0.090-0.216 μg/L for the 11 selected chloro-, bromo- and iodoacetic acids. Finally, this method was applied to monitor HAAs yields in laboratory chlorination experiments and to determine concentrations of HAAs in tap water and wastewater effluent samples.
Collapse
Affiliation(s)
- Shi Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ya-Ping Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tessora R Young
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Ji Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hao Zhang
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Zong-Li Huo
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, China.
| | - Yu-Ting Qian
- Jiangyin Environmental Monitoring Station, Jiangyin, China
| | - Yan Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Wawryk NJP, Craven CB, Blackstock LKJ, Li XF. New methods for identification of disinfection byproducts of toxicological relevance: Progress and future directions. J Environ Sci (China) 2021; 99:151-159. [PMID: 33183692 DOI: 10.1016/j.jes.2020.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Disinfection byproducts (DBPs) represent a ubiquitous source of chemical exposure in disinfected water. While over 700 DBPs have been identified, the drivers of toxicity remain poorly understood. Additionally, ever evolving water treatment practices have led to a continually growing list of DBPs. Advancement of analytical technologies have enabled the identification of new classes of DBPs and the quantification of these chemically diverse sets of DBPs. Here we summarize advances in new workflows for DBP analysis, including sample preparation, chromatographic separation with mass spectrometry (MS) detection, and data processing. To aid in the selection of techniques for future studies, we discuss necessary considerations for each step in the strategy. This review focuses on how each step of a workflow can be optimized to capture diverse classes of DBPs within a single method. Additionally, we highlight new MS-based approaches that can be powerful for identifying novel DBPs of toxicological relevance. We discuss current challenges and provide perspectives on future research directions with respect to studying new DBPs of toxicological relevance. As analytical technologies continue to advance, new strategies will be increasingly used to analyze complex DBPs produced in different treatment processes with the aim to identify potential drivers of toxicity.
Collapse
Affiliation(s)
- Nicholas J P Wawryk
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Caley B Craven
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Lindsay K Jmaiff Blackstock
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
26
|
Liu D, Cheng S, Ji W, Shen H, Yuan J, Wang J, Zhang W, Liu H, Zhou Y. Determination and generating study on monoiodoacetic acid and diiodoacetic acid in water by liquid chromatography-inductively coupled plasma mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Liu X, Chen L, Yang M, Tan C, Chu W. The occurrence, characteristics, transformation and control of aromatic disinfection by-products: A review. WATER RESEARCH 2020; 184:116076. [PMID: 32698088 DOI: 10.1016/j.watres.2020.116076] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 05/27/2023]
Abstract
With the development of analytical technology, more emerging disinfection by-products (DBPs) have been identified and detected. Among them, aromatic DBPs, especially heterocyclic DBPs, possess relatively high toxicity compared with regulated DBPs, which has been proved by bioassays. Thus, the occurrence of aromatic DBPs is of great concern. This article provides a comprehensive review and summary of the characteristics, occurrence, transformation pathways and control of aromatic DBPs. Aromatic DBPs are frequently detected in drinking water, wastewater and swimming pool water, among which swimming pool water illustrates highest concentration. Considering the relatively high concentration and toxicity, halophenylacetonitriles (HPANs) and halonitrophenols (HNPs) are more likely to be toxicity driver among frequently detected phenyl DBPs. Aromatic DBPs can be viewed as important intermediate products of dissolved organic matter (DOM) during chlor(am)ination. High molecular weight DOM could convert to aromatic DBPs via direct or indirect pathways, and they can further decompose into regulated aliphatic DBPs such as trihalomethanes (THMs) and haloacetic acids (HAAs) by ring opening and side chain cleavage. Even though no single DBPs control strategy is efficient to all aromatic DBPs, the decrease of overall toxicity may be achieved by several methods including absorption, solar radiation and boiling. By systematically considering aromatic DBPs and aliphatic DBPs, a better trade-off can be made to reduce health risk induced by DBPs.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, China
| | - Li Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chaoqun Tan
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
28
|
Bibliometric review of research trends on disinfection by-products in drinking water during 1975–2018. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116741] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Hu S, Gong T, Zhu H, Wang J, Li Z, Chen H, Huang Z, Zhang M, Xian Q. Formation and Decomposition of New Iodinated Halobenzoquinones during Chloramination in Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5237-5248. [PMID: 32212715 DOI: 10.1021/acs.est.9b07564] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Previously four chlorinated and brominated halo-benzoquinones were reported as new disinfection byproducts (DBPs) in drinking water, which have drawn great concern due to their high toxicity. In this study, three new iodinated halobenzoquinones, including 2-chloro-6-iodo-1,4-benzoquinone (2,6-CIBQ), 2-bromo-6-iodo-1,4-benzoquinone (2,6-BIBQ), and 2,6-diiodo-1,4-benzoquinone (2,6-DIBQ), were detected and identified in drinking water for the first time. Their cytotoxicity was evaluated, and their formation under various conditions was examined. Since they were not stable during chloramination, their further decomposition during chloramination was also explored. The results indicated that the concentrations of 2,6-CIBQ, 2,6-BIBQ, and 2,6-DIBQ in drinking water were in the ranges of 0.7-1.3, 1.8-8.0, and 0.4-15.9 ng/L, respectively. Compared with 2,6-dibromo-1,4-benzoquinone, the iodinated halobenzoquinones were generally more cytotoxic. The formation of 2,6-DIBQ during chloramination was significantly affected by the iodide concentration, pH, and natural organic matter. The five tested iodinated halobenzoquinones decomposed during chloramination following pseudo-first-order decay, with the decomposition rate constants in the rank order of 2,6-CIBQ > 2,6-BIBQ > 2,6-DIBQ > 2,3-diiodo-1,4-benzoquinone >2-iodo-1,4-benzoquinone. Nine polar halogenated intermediates as well as ten aliphatic halogenated DBPs were detected as the decomposition products of 2,6-DIBQ during chloramination, based on which the decomposition pathways of 2,6-DIBQ during chloramination were proposed and verified.
Collapse
Affiliation(s)
- Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tingting Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hete Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Junjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhigang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haoran Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhijun Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Meiqi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
30
|
Höcker O, Bader T, Schmidt TC, Schulz W, Neusüß C. Enrichment-free analysis of anionic micropollutants in the sub-ppb range in drinking water by capillary electrophoresis-high resolution mass spectrometry. Anal Bioanal Chem 2020; 412:4857-4865. [PMID: 32147771 PMCID: PMC7334245 DOI: 10.1007/s00216-020-02525-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Abstract
Reversed-phase liquid chromatography (RPLC) used for water analysis is not ideal for the analysis of highly polar and ionic contaminants because of low retention. Capillary electrophoresis (CE), on the other hand, is perfectly suited for the separation of ionic compounds but rarely applied in environmental analysis due to the weak concentration sensitivity when coupled to mass spectrometry (MS). However, novel interface designs and MS technology strongly improve the sensitivity. Here, a method is presented enabling the screening of anionic micropollutants in drinking water without sample pretreatment by coupling of CE to an Orbitrap mass spectrometer by a nanoflow sheath liquid interface. Targeted analysis of halogenated acetic acids, trifluoromethanesulfonic acid, and perfluorooctanoic and perfluorooctanesulfonic acid was conducted in drinking water samples which were chlorinated for disinfection. A bare fused silica capillary with an optimized background electrolyte (BGE) for separation consisting of 10% acetic acid with 10% isopropanol with large volume sample injection and optimized interface parameters offer limits of quantification in the range of < 0.1 to 0.5 μg/L with good linearity (R2 > 0.993) and repeatability (14% standard deviation in area). Concentrations of the target analytes ranged from 0.1 to 6.2 μg/L in the water samples. Masses corresponding to halogenated methanesulfonic acids have been found as suspects and were subsequently verified by standards. Mono-, dichloro-, and bromochloro methanesulfonic acid were quantified in a range of 0.2 to 3.6 μg/L. Furthermore, five sulfonic acids, four organosulfates, and the artificial sweeteners acesulfame and cyclamate as well as inorganics such as halides, halogenates, phosphate, and sulfate could be determined as suspects among more than 300 features in a non-targeted screening. Overall, this approach demonstrates the great potential of CE-nanoESI-MS for the screening of ionic contaminants in environmental samples, complementary to chromatographic approaches.
Collapse
Affiliation(s)
- Oliver Höcker
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitaetsstrasse 5, 45141, Essen, Germany
| | - Tobias Bader
- Laboratory for Operation Control and Research, Zweckverband Landeswasserversorgung, Am Spitzigen Berg 1, 89129, Langenau, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitaetsstrasse 5, 45141, Essen, Germany
- IWW Zentrum Wasser, Moritzstrasse 26, 45476, Mülheim an der Ruhr, Germany
| | - Wolfgang Schulz
- Laboratory for Operation Control and Research, Zweckverband Landeswasserversorgung, Am Spitzigen Berg 1, 89129, Langenau, Germany
| | - Christian Neusüß
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany.
| |
Collapse
|
31
|
Wang Y, Luo C, Yang M, Ren J, Wang W, Yong L, Gao G, Ren L, Xiaoli Z. Target quantification and semi-target screening of halogenated carboxylic acids in drinking water using ultra-high performance liquid chromatography-quadrupole orbitrap high-resolution mass spectrometry. J Chromatogr A 2020; 1614:460710. [DOI: 10.1016/j.chroma.2019.460710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/25/2022]
|
32
|
Affiliation(s)
- Susan D. Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29205, United States
| | - Susana Y. Kimura
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
33
|
Hu S, Gong T, Wang J, Xian Q. Trihalomethane yields from twelve aromatic halogenated disinfection byproducts during chlor(am)ination. CHEMOSPHERE 2019; 228:668-675. [PMID: 31071557 DOI: 10.1016/j.chemosphere.2019.04.167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
As the first identified category of disinfection byproducts (DBPs), trihalomethanes (THMs) have received continuous attention. Previous studies have demonstrated that the transformation of aromatic halogenated DBPs during chlor (am)ination resulted in the formation of THMs, which may occur in both water treatment plants and drinking water distribution systems. In this study, THM yields from aromatic chlorinated/brominated DBPs during chlorination and aromatic iodinated DBPs during chloramination were investigated. The trichloromethane (TCM) yields from 3,5-dichloro-4-hydroxybenzaldehyde, 3,5-dichlorosalicylic acid, 2,6-dichloro-4-nitrophenol, and 2,4,6-trichlorophenol were in the range of 0-11.4%, 0-8.4%, 0-6.4%, and 0-17.8%, respectively. The THM4 (TCM, bromodichloromethane (BDCM), dibromochloromethane (DBCM), and tribromomethane (TBM)) yields from 3,5-dibromo-4-hydroxybenzaldehyde, 3,5-dibromosalicylic acid, 2,6-dibromo-4-nitrophenol, and 2,4,6-tribromophenol were in the range of 0-12.9%, 0-27.0%, 0-8.6%, and 0-29.4%, respectively. The TCM and triiodomethane (TIM) yields from 3,5-diiodo-4-hydroxybenzaldehyde, 3,5-diiodosalicylic acid, 2,6-diiodo-4-nitrophenol, and 2,4,6-triiodophenol were in the range of 0-5.2%, 0-7.0%, 0-2.2%, and 0-10.6%, respectively. After 72 h, TCM yields from aromatic chlorinated DBPs were generally higher than that from their brominated analogues; TBM yields from aromatic brominated DBPs were significantly lower than TCM yields, BDCM yields, and DBCM yields; and among aromatic halogenated DBPs, 2,4,6-trihalophenol had the highest THM yields while 2,6-dihalo-4-nitrophenol had the lowest THM yields. Moreover, the results revealed that alkaline conditions and higher temperatures favored the THM yields from the twelve aromatic halogenated DBPs during chlor (am)ination, and chlorine/monochloramine dose affected the yields and speciation of THMs from the aromatic halogenated DBPs.
Collapse
Affiliation(s)
- Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Tingting Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Junjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
34
|
Yang M, Zhang X, Liang Q, Yang B. Application of (LC/)MS/MS precursor ion scan for evaluating the occurrence, formation and control of polar halogenated DBPs in disinfected waters: A review. WATER RESEARCH 2019; 158:322-337. [PMID: 31051377 DOI: 10.1016/j.watres.2019.04.033] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Water disinfection can result in the unintended formation of halogenated disinfection byproducts (DBPs), which have been the subject of intensive investigation over the past 40 years. Robust methods for evaluating and characterizing the formation of halogenated DBPs are prerequisites for ultimately controlling the formation of DBPs and ensuring quality and safe disinfected water. Only a fraction of the total organic halogen (TOX) formed during disinfection has been chemically identified or even well characterized by the classical (derivatization-)gas chromatography/mass spectrometry (GC/MS) method. Such a method may not be amenable to the detection of polar halogenated DBPs, which constitute a major portion of the TOX that is still unaccounted for. Accordingly, a novel precursor ion scan (PIS) method using (liquid chromatography/) electrospray ionization-triple quadrupole mass spectrometry was developed for the rapid selective detection of all polar halogenated DBPs-no matter whether the DBPs are known or unknown-in water. This article reviews recent literature on the application of the PIS method for evaluating the occurrence, formation and control of polar halogenated DBPs in disinfected waters. The challenges in developing the PIS method were briefly summarized. Application of the powerful method pinpointed >150 previously unknown DBPs and revealed the formation, speciation and transformation of halogenated DBPs in disinfected drinking water, wastewater effluents, and swimming pool water. For the same source water, positive correlations were found between the total ion intensity (TII) levels in the PIS spectra of m/z 35/79/126.9 and the total organic chlorine/bromine/iodine levels in the disinfected water sample, and a disinfected sample with a higher TII level generally showed a higher toxic potency. Accordingly, the TII value can be used as a surrogate to comparatively reflect the water quality and assess the efficiency of a DBP control approach. To achieve a more comprehensive and systematic understanding of the DBP compositions in different waters and thus better control the DBP formation and reduce their overall toxicity, topics for future work were discussed.
Collapse
Affiliation(s)
- Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Qiuhong Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
35
|
Li Z, Liu X, Huang Z, Hu S, Wang J, Qian Z, Feng J, Xian Q, Gong T. Occurrence and ecological risk assessment of disinfection byproducts from chlorination of wastewater effluents in East China. WATER RESEARCH 2019; 157:247-257. [PMID: 30954700 DOI: 10.1016/j.watres.2019.03.072] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/23/2019] [Accepted: 03/02/2019] [Indexed: 05/04/2023]
Abstract
Effluents containing disinfection byproducts (DBPs) from wastewater treatment plants (WWTPs) may be discharged to the receiving water bodies or reused for irrigation, landscaping, and environmental supplies as well as a source to replenish groundwater. Thus the formation and risk of the DBPs in disinfected wastewater effluents should be concerned. In this study, the occurrence of 44 DBPs including 6 trihalomethanes (THMs), 9 haloaceticacids (HAAs), 2 haloketones (HKs), 9 halonitromethanes (HNMs), 9 haloacetonitriles (HANs) and 9 nitrosamines (NAs) was investigated in 12 chlorinated WWTP effluents from five cities of East China. The contribution of each class of DBPs to the total DBPs concentration and additive toxicity was calculated. The average concentrations of the 6 classes of DBPs were ranked as follows: HAAs (47.0 μg/L) > THMs (28.0 μg/L) > HANs (9.9 μg/L) > HNMs (2.9 μg/L) > HKs (0.79 μg/L) > NAs (0.69 μg/L). The significant positive correlations were observed between the formation of THMs and HAAs, THMs and HANs, as well as HAAs and HANs. The results showed that HAAs and THMs were the dominant DBPs on a mass concentration basis and accounted for 54% and 29%, respectively in the total measured DBPs, but they made a minor contribution to the calculated DBP-associated cytotoxicity. HANs and NAs dominated the DBP-associated cytotoxicity, accounting for 50% and 34% on an additive toxicity basis despite the minor contributions to the mass concentration with 10% and 1%, respectively. The risk quotients for three taxonomic groups (fish, daphnid, and green algae) were calculated to assess the ecological risk of DBPs, and the results demonstrated that both HAAs and HANs had high ecological risk for green algae in chlorinated wastewater effluents.
Collapse
Affiliation(s)
- Zhigang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xinyao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhijun Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Junjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zongyao Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jianfang Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Tingting Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
36
|
Zhang D, Bond T, Krasner SW, Chu W, Pan Y, Xu B, Yin D. Trace determination and occurrence of eight chlorophenylacetonitriles: An emerging class of aromatic nitrogenous disinfection byproducts in drinking water. CHEMOSPHERE 2019; 220:858-865. [PMID: 33395807 DOI: 10.1016/j.chemosphere.2018.12.127] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 06/12/2023]
Abstract
Two chlorophenylacetonitriles (CPANs) (2-chloro- and 3,4-dichlorophenylacetonitrile), representatives of an emerging class of aromatic nitrogenous disinfection byproducts, were recently identified in chlor(am)inated drinking water with liquid/liquid extraction and gas chromatography/mass spectrometry (GC/MS). Due to their high cytotoxicity, they are potentially significant drinking water contaminants. The detection limit for these two CPANs with the previous method was 100 ng L-1. To search for additional CPAN isomers, a more sensitive method for the simultaneous determination of eight CPANs was developed using solid-phase extraction (SPE)-GC/MS. GC/MS parameters and SPE pre-concentration conditions, including SPE cartridge, eluent type, eluent volume, and sample pH, were optimized. Under optimized conditions, the new method had method detection limits, method quantification limits, and precision ranging from 0.15 to 0.37 ng L-1, 0.50-0.95 ng L-1, and 5.8%-11%, respectively. The recoveries of the eight CPANs ranged from 92% to 102%. The concentrations of the eight CPANs in nine finished drinking waters were determined to be at concentrations ranging from 0.5 to 155 ng L-1. Seven CPANs were detectable in all samples. CPANs were detected at concentrations between 0.8 and 155 ng L-1 in chlorinated waters, and from 0.5 to 15 ng L-1 in chloraminated waters. Across all waters, the sum of all CPANs in chloraminated waters was 13% of that in chlorinated systems.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Tom Bond
- Department of Civil and Environmental Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | | | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
37
|
Hu S, Gong T, Xian Q, Wang J, Ma J, Li Z, Yin J, Zhang B, Xu B. Formation of iodinated trihalomethanes and haloacetic acids from aromatic iodinated disinfection byproducts during chloramination. WATER RESEARCH 2018; 147:254-263. [PMID: 30315993 DOI: 10.1016/j.watres.2018.09.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Iodinated disinfection byproducts (DBPs) are widely present in disinfected drinking waters and wastewater effluents, and they have drawn increasing concern owing to their high toxicity. To date, the reported iodinated DBPs mainly include aliphatic and aromatic ones, and iodinated trihalomethanes (THMs) and haloacetic acids (HAAs) are the most commonly detected aliphatic iodinated DBPs in disinfected waters. In this study, the formation of iodinated THMs and HAAs from aromatic iodinated DBPs during chloramination was investigated. The decomposition kinetics of the aromatic iodinated DBPs and the formation of iodinated THMs and HAAs were studied, the formation pathways of iodinated THMs and HAAs from the aromatic iodinated DBPs were explored, the factors affecting the formation were examined, and the toxicity change was evaluated. The results revealed that four aromatic iodinated DBPs (2,4,6-triiodophenol, 3,5-diiodo-4-hydroxybenzaldehyde, 3,5-diiodosalicylic acid, and 2,6-diiodo-4-nitrophenol) all underwent transformation to form triiodomethane (TIM), monoiodoacetic acid (MIAA), and diiodoacetic acid (DIAA) during chloramination. The decomposition of the aromatic iodinated DBPs all followed a pseudo-first-order decay during chloramination, and the rank order of the decomposition rate constants was as follows: 2,4,6-triiodophenol > 3,5-diiodo-4-hydroxybenzaldehyde ≥ 3,5-diiodosalicylic acid > 2,6-diiodo-4-nitrophenol. Several polar iodinated intermediates were detected and identified (e.g., 2,6-diiodo-1,4-benzoquinone and iodobutenedioic acid) during chloramination of 2,4,6-triiodophenol, based on which the formation pathways of TIM, MIAA, and DIAA from 2,4,6-triiodophenol during chloramination were proposed and further validated. The results also revealed that monochloramine dose, pH, temperature, and short free chlorine contact time all affected the formation of TIM, MIAA, and DIAA from 2,4,6-triiodophenol during chloramination. The cytotoxicity order of the eight iodinated DBPs was MIAA > 2,6-diiodo-4-nitrophenol > 2,4,6-triiodophenol > 2,6-diiodo-1,4-benzoquinone > DIAA ≥ 3,5-diiodosalicylic acid >3,5-diiodo-4-hydroxybenzaldehyde > TIM. The toxicity of the chloraminated 2,4,6-triiiodophenol sample first decreased and then increased over time due to the transformation.
Collapse
Affiliation(s)
- Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Tingting Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Junjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jian Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhigang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jinbao Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|