1
|
Mallouhi J, Varga M, Sikora E, Gráczer K, Bánhidi O, Gaspard S, Goudou F, Viskolcz B, Szőri-Dorogházi E, Fiser B. Activated Carbon and Biochar Derived from Sargassum sp. Applied in Polyurethane-Based Materials Development. Polymers (Basel) 2024; 16:2914. [PMID: 39458742 PMCID: PMC11510917 DOI: 10.3390/polym16202914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Activated carbon (AC) and biochar (BC) are porous materials with large surface areas and widely used in environmental and industrial applications. In this study, different types of AC and BC samples were produced from Sargassum sp. by a chemical activation and pyrolysis process and compared to commercial activated carbon samples. All samples were characterized using various techniques to understand their structure and functionalities. The metal content of the samples was characterized by using an inductively coupled optical emission spectrometer (ICP-OES). A toxicity test was applied to investigate the effect of AC/BC on organisms, where Sinapis alba seed and Escherichia coli bacteria-based toxicity tests were used. The results revealed that the samples did not negatively affect these two organisms. Thus, it is safe to use them in various applications. Therefore, the samples were tested as fillers in polyurethane composites and, thus, polyurethane-AC/BC samples were prepared. The amounts of AC/BC mixed into the polyurethane formulation were 1%, 2%, and 3%. Mechanical and acoustic properties of these composites were analyzed, showing that by adding the AC/BC to the system an increase in the compression strength for all the samples was achieved. A similar effect of the AC/BC was noticed in the acoustic measurements, where adding AC/BC enhanced the sound adsorption coefficient (α) for all composite materials.
Collapse
Affiliation(s)
- Julie Mallouhi
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (J.M.); (M.V.); (E.S.); (K.G.); (O.B.); (B.V.)
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Miklós Varga
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (J.M.); (M.V.); (E.S.); (K.G.); (O.B.); (B.V.)
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Emőke Sikora
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (J.M.); (M.V.); (E.S.); (K.G.); (O.B.); (B.V.)
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Kitty Gráczer
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (J.M.); (M.V.); (E.S.); (K.G.); (O.B.); (B.V.)
| | - Olivér Bánhidi
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (J.M.); (M.V.); (E.S.); (K.G.); (O.B.); (B.V.)
| | - Sarra Gaspard
- Laboratory COVACHIM-M2E, EA 3592 Université des Antilles, BP 250, 97157 Pointe à Pitre, Cedex, France; (S.G.); (F.G.)
| | - Francesca Goudou
- Laboratory COVACHIM-M2E, EA 3592 Université des Antilles, BP 250, 97157 Pointe à Pitre, Cedex, France; (S.G.); (F.G.)
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (J.M.); (M.V.); (E.S.); (K.G.); (O.B.); (B.V.)
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Emma Szőri-Dorogházi
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (J.M.); (M.V.); (E.S.); (K.G.); (O.B.); (B.V.)
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (J.M.); (M.V.); (E.S.); (K.G.); (O.B.); (B.V.)
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- Department of Biology and Chemistry, Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Ukraine
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
2
|
Ganji H, Taghavijeloudar M. Efficient adsorption of lead and copper from water by modification of sand filter with a green plant-based adsorbent: Adsorption kinetics and regeneration. ENVIRONMENTAL RESEARCH 2024; 259:119529. [PMID: 38960359 DOI: 10.1016/j.envres.2024.119529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
In this study, pomegranate seed waste (PSW) was added into sand filter (SF) to increase removal efficiency of Lead (Pb(II)) and Copper (Cu(II)) from polluted water. The performance of PSW was compared with activated carbon (AC) as a typical adsorbent. Based on the SEM, EDX, FTIR, XRD, BET and proximate analyses, PSW had porous structure with specific surface area of 2.76 m2/g and active compounds which suggested PSW as an appropriate adsorbent for heavy metals (HMs) adsorption. According to the batch experiments, SF without treatment could only remove 46% and 35% of Pb(II) and Cu(II), respectively. These numbers increased to 88% and 75% for Pb(II) and Cu(II) by adding 3 g/kg PSW to the SF, respectively under the optimal conditions of HMs initial concentrations = 100 mg/L, pH = 7 and contact time = 60 min. The adsorption kinetic and isotherm followed the pseudo-first-order and Langmuir models, respectively indicating that mainly physisorption was involved in the HMs adsorption process of PSW. Based on the column experiments (flow rate = 62.5 mL/min), the Pb(II) and Cu(II) removal increased from 14% to 60% and 10%-55%, respectively after 5 pore volumes (40 min) by adding 3 g/kg PSW to the SF. Breakthrough curves matched better with Thomas mode rather than Adam's Bohart proving Langmuir adsorption isotherm. Our finding suggested modification of SF with PSW is a promising approach for efficient removal of HMs from water.
Collapse
Affiliation(s)
- Hoda Ganji
- Department of Water Engineering, Ferdowsi University of Mashhad, 917966-6549, Mashhad, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744, Seoul, South Korea.
| |
Collapse
|
3
|
Mirza M, Bodaghifard MA, Darvish F. Synthesis of a nitrogen-rich dendrimer grafted on magnetic nanoparticles for efficient removal of Pb(ii) and Cd(ii) ions. RSC Adv 2024; 14:32559-32572. [PMID: 39411254 PMCID: PMC11475519 DOI: 10.1039/d4ra06049k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Rapid industrialization, urbanization, and human activities in catchments have presented a significant global challenge in removing heavy metal contaminants from wastewater. Here, a study was conducted to synthesize a nano-magnetic dendrimer based on a trimesoyl core that can be easily separated from the environment using an external magnet (Fe3O4@NR-TMD-G1, Fe3O4@NR-TMD-G2). The synthesized structure was characterized using various conventional techniques such as Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), powder X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), and Brunauer-Emmett-Teller surface area analysis (BET). The prepared adsorbent showed good binding ability and excellent adsorption efficiency toward Pb(ii) and Cd(ii) metal ions from aqueous media (98.5%, 93.6%). The effect of different conditions including pH, adsorbate concentration, adsorbent dosage, isotherm, kinetics, and adsorption mechanism was considered. The highest adsorption efficiency was achieved at 25 °C and pH 4 using 0.08 g of Fe3O4@NR-TMD-G1, within 25 minutes for Pb(ii) and 120 minutes for Cd(ii), respectively. Batch adsorption experiments revealed that Fe3O4@NR-TMD-G1 was more effective in removing Pb(ii) and Cd(ii) compared to Fe3O4@NR-TMD-G2, with maximum capacities of 130.2 mg g-1 and 57 mg g-1, respectively. The adsorption process followed the Langmuir isotherm with a high correlation coefficient (R 2 = 0.9952, 0.9817) and non-linear pseudo-second-order kinetic model. Density functional theory (DFT) analysis indicated that the adsorbent transferred electrons to Pb(ii) and Cd(ii), forming stable chelates on the nanostructure surface. The heavy metal ions could be adsorbed by coordination to the heteroatoms of the nanostructure and also by electrostatic interactions. The recycled hybrid nanomaterial was dried and applied to different adsorption-desorption tests and the desorption efficiency was found to be 98%. So, the newly synthesized dendritic magnetic nanostructure demonstrated significant potential in efficient removal of metal ions from water and wastewater, highlighting its importance in addressing the global challenge of heavy metal contamination.
Collapse
Affiliation(s)
- Maziar Mirza
- Department of Organic Chemistry, Faculty of Chemistry, K. N. Toosi University of Technology Tehran 15418-49611 Iran
| | - Mohammad Ali Bodaghifard
- Department of Chemistry, Faculty of Science, Arak University Arak 38481-77584 Iran
- Institute of Nanosciences and Nanotechnology, Arak University Arak 38481-77584 Iran
| | - Fatemeh Darvish
- Department of Organic Chemistry, Faculty of Chemistry, K. N. Toosi University of Technology Tehran 15418-49611 Iran
| |
Collapse
|
4
|
Tripathi M, Pathak S, Singh R, Singh P, Singh PK, Shukla AK, Maurya S, Kaur S, Thakur B. A Comprehensive Review of Lab-Scale Studies on Removing Hexavalent Chromium from Aqueous Solutions by Using Unmodified and Modified Waste Biomass as Adsorbents. TOXICS 2024; 12:657. [PMID: 39330585 PMCID: PMC11435892 DOI: 10.3390/toxics12090657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Anthropogenic activities and increasing human population has led to one of the major global problems of heavy metal contamination in ecosystems and to the generation of a huge amount of waste material biomass. Hexavalent chromium [Cr(VI)] is the major contaminant introduced by various industrial effluents and activities into the ecosystem. Cr(VI) is a known mutagen and carcinogen with numerous detrimental effects on the health of humans, plants, and animals, jeopardizing the balance of ecosystems. Therefore, the remediation of such a hazardous toxic metal pollutant from the environment is necessary. Various physical and chemical methods are available for the sequestration of toxic metals. However, adsorption is recognized as a more efficient technology for Cr(VI) remediation. Adsorption by utilizing waste material biomass as adsorbents is a sustainable approach in remediating hazardous pollutants, thus serving the dual purpose of remediating Cr(VI) and exploiting waste material biomass in an eco- friendly manner. Agricultural biomass, industrial residues, forest residues, and food waste are the primary waste material biomass that could be employed, with different strategies, for the efficient sequestration of toxic Cr(VI). This review focuses on the use of diverse waste biomass, such as industrial and agricultural by-products, for the effective remediation of Cr(VI) from aqueous solutions. The review also focuses on the operational conditions that improve Cr(VI) remediation, describes the efficacy of various biomass materials and modifications, and assesses the general sustainability of these approaches to reducing Cr(VI) pollution.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India; (S.P.); (P.S.)
| | - Sukriti Pathak
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India; (S.P.); (P.S.)
| | - Ranjan Singh
- Department of Microbiology, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India;
| | - Pankaj Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India; (S.P.); (P.S.)
| | - Pradeep Kumar Singh
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India;
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224001, Uttar Pradesh, India; (A.K.S.)
| | - Sadanand Maurya
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224001, Uttar Pradesh, India; (A.K.S.)
| | - Sukhminderjit Kaur
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (B.T.)
| | - Babita Thakur
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (B.T.)
| |
Collapse
|
5
|
Ahmad F, Manefield M. Photosystem modulation and extracellular silicification in green microalgae: Key strategies for lead tolerance and removal. Heliyon 2024; 10:e36366. [PMID: 39253166 PMCID: PMC11382045 DOI: 10.1016/j.heliyon.2024.e36366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The escalating contamination caused by lead ions (Pb2⁺) and its harmful effects on all life forms has raised global concerns. Certain microalgae thrive in metal mining sites characterized by low pH and high concentrations of Pb2⁺, which are usually prohibitive for many microorganisms. Little is known about the mechanisms underlying the adaptation of such microalgae to these hostile conditions. In this study, we elucidated the adaptive strategies of the green microalga Micractinium belenophorum strain AUMW, isolated from a lead mining site, and its application for the removal of Pb+2. Results revealed that strain AUMW can efficiently tolerate up to 200 ppm of Pb+2 in an F/2 medium. Further experimental variables were optimized through response surface methodology (RSM), and 99.6 % removal of Pb2⁺ was achieved. Novel adaptive responses of strain AUMW to high levels of Pb2⁺ include: (i) activation of metal-protective response by modulation of quantum yield (F v /F m ) and non-photochemical quenching (NPQ) of photosystem II; (ii) extracellular silicification encapsulated cells of strain AUMW and altered cell morphology from oval to hexagonal; (iii) silicification prevented intracellular translocation of Pb+2; (iv) silicification boosted adsorption of Pb+2, thus enhanced its removal. This study offers new insights into the protective role of silicification in green microalgae and its potential for the removal of metals from metal-polluted sites, waste from energy storage battery industries, and spent batteries. It also provides a solid base to explore the genetic and metabolic pathways involved in the adaptation of strain AUMW to elevated levels of Pb+2.
Collapse
Affiliation(s)
- Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Michael Manefield
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, 2052, New South Wales, Australia
| |
Collapse
|
6
|
Rangu SD, Rangappa HS, Mon PP, Cho PP, Mudadla UR, Challapalli S. KOH-treated tire pyrolyzed carbon as green and easily available adsorbent for Bisphenol A and Methylene blue adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34698-5. [PMID: 39162895 DOI: 10.1007/s11356-024-34698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
The occurrence of micropollutants and dyes in water sources has sparked alarm due to their significant impacts on aquatic ecosystems and human health. This study aims to utilize the tire pyrolyzed carbon (TPC) as a source of the adsorbent for removing Bisphenol A (BPA) and Methylene Blue (MB). The adsorbent was synthesized by chemical activation of TPC with KOH at 750 °C. The activated TPC was characterized for different physical and chemical characterization techniques such as XRD, FTIR, SEM, BET, XPS, and TPD and exhibits a higher adsorption capacity of 49.2 and 72.1 mg/g respectively for BPA and MB. The effect of initial concentration, dosage of adsorbent, and initial pH are evaluated for BPA and MB. The adsorption is mainly driven by hydrophobic, electrostatic, π-π interactions, and hydrogen bonding. The removal process follows the second order and Langmuir isotherms. The adsorbent shows excellent recyclability which makes it a potential source of removal of different water-borne pollutants. The production of activated carbon from tire waste is advocated for its economic and environmental benefits.
Collapse
Affiliation(s)
- Shiva Deepti Rangu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
- Department of Chemistry, Tara Govt. Degree College(A), Sangareddy, 502001, Telangana, India
| | - Harsha S Rangappa
- Center for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Phyu Phyu Mon
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Phyu Phyu Cho
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Umamaheswara Rao Mudadla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Subrahmanyam Challapalli
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
7
|
Lin K, Jian J, Zhang Y, Liu Y, Li S, Zhao Y, Xu H. Study on Plant-blanket to reduce heavy metal migration caused by precipitation and to improve the soil environment of pyritic tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173376. [PMID: 38795991 DOI: 10.1016/j.scitotenv.2024.173376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
The increasing demand for mineral resources due to industrial development has led to significant tailings pollution during the mineral extraction process. In the southwestern region of China, a large amount of pyritic tailings containing pyrite cinder easily leaches heavy metals and other pollutants when exposed to precipitation, resulting in widespread soil contamination. Effective remediation methods are urgently needed to address this issue. This study utilized naturally occurring Plant-blanket formed by the symbiosis of moss and herbaceous plants on pyritic tailings as restoration material. Through leaching experiments and staining tracer techniques, the study investigated the ability of Plant-blanket to reduce the migration of heavy metals from pyrite cinder to soil under the influence of precipitation and its role in improving the soil environment. The results showed that within 12 h, the Plant-blanket could absorb water equivalent to 206.9 % of its own weight and had good water retention ability. It reduced the stained area ratio of soil horizontal and vertical profiles after precipitation leaching by a maximum of 76.08 % and 46.41 %, respectively, and improved the pH, cation exchange capacity (CEC), bulk density, and water content of soil at different depths. In addition, after being covered by Plant-blanket, the migration of Cd and Cu was reduced by a maximum of 44.35 % and 55.77 % respectively, and it increased the diversity and abundance of bacterial communities, promoting the recovery of soil microbial ecological functions. These findings indicate that Plant-blanket can regulate water and improve soil environment, and has certain control ability on the migration of Cd and Cu produced by pyritic tailings. Meanwhile, Plant-blanket plays an important role in improving the soil environment in mining areas and promoting ecosystem restoration, providing valuable reference for further exploration of ecological restoration of tailings.
Collapse
Affiliation(s)
- Kangkai Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jiannan Jian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yumei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yikai Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Shiyao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 61006510, Sichuan, PR China.
| |
Collapse
|
8
|
Shahrokhi R, Rahman A, Hubbe MA, Park J. Aminated clay-polymer composite as soil amendment for stabilizing the short- and long-chain per- and poly-fluoroalkyl substances in contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134470. [PMID: 38714051 DOI: 10.1016/j.jhazmat.2024.134470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 04/27/2024] [Indexed: 05/09/2024]
Abstract
Soils contaminated with per- and poly- fluoroalkyl substances (PFAS) require immediate remediation to protect the surrounding environment and human health. A novel animated clay-polymer composite was developed by applying polyethyleneimine (PEI) solution onto a montmorillonite clay-chitosan polymer composite. The resulting product, PEI-modified montmorillonite chitosan beads (MMTCBs) were characterized as an adsorptive soil amendment for immobilizing PFAS contaminants. The MMTCBs exhibited good efficiency to adsorb the PFAS, showing adsorption capacities of 12.2, 16.7, 18.5, and 20.8 mg g-1 for PFBA, PFBS, PFOA, and PFOS, respectively, which were higher than those obtained by granular activated carbon (GAC) (i.e., an adsorbent used as a reference). Column leaching tests demonstrated that amending soil with 10% MMTCBs resulted in a substantial decrease in the leaching of PFOA, PFOS, PFBA, and PFBS by 90%, 100%, 64%, and 68%, respectively. These reductions were comparable to the values obtained for GAC-modified soil, particularly for long-chain PFAS. Incorporating MMTCBs into the soil not only preserved the structural integrity of the soil matrix but also enhanced its shear strength (kPa). Conversely, adding GAC to the soil resulted in a reduction of the soil's mechanical properties.
Collapse
Affiliation(s)
- Rahim Shahrokhi
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea.
| | - Aneesu Rahman
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea
| | - Martin A Hubbe
- Department of Forest Biomaterials, North Carolina State University, NC, United States
| | - Junboum Park
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea; Institute of Construction and Environmental Engineering, Seoul National University, Seoul, South Korea.
| |
Collapse
|
9
|
Ismail UM, Vohra MS, Onaizi SA. Adsorptive removal of heavy metals from aqueous solutions: Progress of adsorbents development and their effectiveness. ENVIRONMENTAL RESEARCH 2024; 251:118562. [PMID: 38447605 DOI: 10.1016/j.envres.2024.118562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Increased levels of heavy metals (HMs) in aquatic environments poses serious health and ecological concerns. Hence, several approaches have been proposed to eliminate/reduce the levels of HMs before the discharge/reuse of HMs-contaminated waters. Adsorption is one of the most attractive processes for water decontamination; however, the efficiency of this process greatly depends on the choice of adsorbent. Therefore, the key aim of this article is to review the progress in the development and application of different classes of conventional and emerging adsorbents for the abatement of HMs from contaminated waters. Adsorbents that are based on activated carbon, natural materials, microbial, clay minerals, layered double hydroxides (LDHs), nano-zerovalent iron (nZVI), graphene, carbon nanotubes (CNTs), metal organic frameworks (MOFs), and zeolitic imidazolate frameworks (ZIFs) are critically reviewed, with more emphasis on the last four adsorbents and their nanocomposites since they have the potential to significantly boost the HMs removal efficiency from contaminated waters. Furthermore, the optimal process conditions to achieve efficient performance are discussed. Additionally, adsorption isotherm, kinetics, thermodynamics, mechanisms, and effects of varying adsorption process parameters have been introduced. Moreover, heavy metal removal driven by other processes such as oxidation, reduction, and precipitation that might concurrently occur in parallel with adsorption have been reviewed. The application of adsorption for the treatment of real wastewater has been also reviewed. Finally, challenges, limitations and potential areas for improvements in the adsorptive removal of HMs from contaminated waters are identified and discussed. Thus, this article serves as a comprehensive reference for the recent developments in the field of adsorptive removal of heavy metals from wastewater. The proposed future research work at the end of this review could help in addressing some of the key limitations facing this technology, and create a platform for boosting the efficiency of the adsorptive removal of heavy metals.
Collapse
Affiliation(s)
- Usman M Ismail
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Muhammad S Vohra
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
10
|
Danila V, Januševičius T. Adsorption of aqueous Pb(II) using non-devulcanized and devulcanized tyre rubber powder: a comparative study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39867-39883. [PMID: 37126161 DOI: 10.1007/s11356-023-27271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/24/2023] [Indexed: 06/19/2023]
Abstract
This study aimed to compare the adsorption of Pb(II) ions from an aqueous solution using non-devulcanized (NTR) and devulcanized tyre rubber (DTR) powder. Both types of rubber particles were prepared from used truck tyres, with DTR processed through mechano-chemical devulcanization. The adsorption experiments were conducted using 100-200 µm particles, with adsorbent doses ranging from 5 to 15 g/L. Effects of adsorbent dose, initial metal concentration and contact time were investigated. Characterization of both adsorbents was done using SEM-EDS, FTIR, and XRD analysis. Different adsorption isotherm and kinetic models were used to analyse the adsorption mechanisms. The results of the study showed that DTR was significantly more efficient at adsorbing Pb(II) compared to NTR. The maximum adsorption capacities estimated from the Langmuir equation were 75.1 mg/g and 6.61 mg/g for DTR and NTR, respectively. Among the kinetic models tested, pseudo 2nd order kinetic model was found to be the most suitable for tyre rubber adsorbents. The optimal dose and contact time were found to be 5 g/L and 120 min, respectively, for both adsorbents. The superior performance of DTR in Pb(II) adsorption was attributed to the change in the surface morphology of the rubber during the devulcanization process, resulting in increased surface roughness. The adsorption of Pb(II) was accompanied by the leaching of Zn from both types of rubber, suggesting that an ion exchange mechanism might be involved in the adsorption process. In conclusion, devulcanization appears to be a viable method for improving the adsorption properties of tyre rubber.
Collapse
Affiliation(s)
- Vaidotas Danila
- Research Institute of Environmental Protection, Vilnius Gediminas Technical University, Sauletekis Avenue 11, 10223, Vilnius, Lithuania.
| | - Tomas Januševičius
- Research Institute of Environmental Protection, Vilnius Gediminas Technical University, Sauletekis Avenue 11, 10223, Vilnius, Lithuania
| |
Collapse
|
11
|
Khan I, Ali A, Naz A, Baig ZT, Shah W, Rahman ZU, Shah TA, Attia KA, Mohammed AA, Hafez YM. Removal of Cr(VI) from Wastewater Using Acrylonitrile Grafted Cellulose Extracted from Sugarcane Bagasse. Molecules 2024; 29:2207. [PMID: 38792069 PMCID: PMC11124459 DOI: 10.3390/molecules29102207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 05/26/2024] Open
Abstract
A highly efficient low-cost adsorbent was prepared using raw and chemically modified cellulose isolated from sugarcane bagasse for decontamination of Cr(VI) from wastewater. First, cellulose pulp was isolated from sugarcane bagasse by subjecting it to acid hydrolysis, alkaline hydrolysis and bleaching with sodium chlorate (NaClO3). Then, the bleached cellulose pulp was chemically modified with acrylonitrile monomer in the presence Fenton's reagent (Fe+2/H2O2) to carry out grafting of acrylonitrile onto cellulose by atom transfer radical polymerization. The developed adsorbent (acrylonitrile grafted cellulose) was analyzed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Both raw cellulose and acrylonitrile grafted cellulose were used for chromium removal from wastewater. The effects of metal ion concentration, pH, adsorbent dose and time were studied, and their values were optimized. The optimum conditions for the adsorption of Cr(VI) onto raw and chemically modified cellulose were: metal ion concentration: 50 ppm, adsorbent dose: 1 g, pH: 6, and time: 60 min. The maximum efficiencies of 73% and 94% and adsorption capacities of 125.95 mg/g and 267.93 mg/g were achieved for raw and acrylonitrile grafted cellulose, respectively. High removal efficiency was achieved, owing to high surface area of 79.92 m2/g and functional active binding cites on grafted cellulose. Isotherm and kinetics studies show that the experimental data were fully fitted by the Freundlich isotherm model and pseudo first-order model. The adsorbent (acrylonitrile grafted cellulose) was regenerated using three different types of regenerating reagents and reused thirty times, and there was negligible decrease (19%) in removal efficiency after using it for 30 times. Hence, it is anticipated that acrylonitrile could be utilized as potential candidate material for commercial scale Cr(VI) removal from wastewater.
Collapse
Affiliation(s)
- Idrees Khan
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan; (I.K.); (Z.T.B.); (W.S.); (Z.U.R.)
| | - Ashraf Ali
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
- Department of Chemistry, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Alia Naz
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan; (I.K.); (Z.T.B.); (W.S.); (Z.U.R.)
| | - Zenab Tariq Baig
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan; (I.K.); (Z.T.B.); (W.S.); (Z.U.R.)
| | - Wisal Shah
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan; (I.K.); (Z.T.B.); (W.S.); (Z.U.R.)
| | - Zia Ur Rahman
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan; (I.K.); (Z.T.B.); (W.S.); (Z.U.R.)
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, China;
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (K.A.A.); (A.A.M.)
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (K.A.A.); (A.A.M.)
| | - Yaser M. Hafez
- EPCRS Excellence Center, Plant Pathology and Biotechnology Laboratory, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| |
Collapse
|
12
|
An BH, Xu DM, Wang RT, Wen YX, Geng R, Wu JY, Tang XC, Chen HB. The simultaneous removal of methylene blue (MB) and Ca 2+ by recyclable adsorbents based the scales derived from coal gasification system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32519-32537. [PMID: 38658508 DOI: 10.1007/s11356-024-33240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
The transformation of solid wastes from industrial production into effective adsorbents could significantly contribute to wastewater treatment. In this study, after acidizing and burning soft scale (SS) from coal gasification system, two magnetic adsorbents (mag-ASS and mag-BASS) were prepared via the combination of magnetite with ultrasonic, respectively. The treatment effects of mag-ASS and mag-BASS were then investigated for simulated wastewater containing macromolecular organic matter [i.e., methylene blue (MB)] and Ca2+. The results indicated that the pseudo second order kinetic, Elovich, Freundlich, Langmuir and Temkin model could well describe the adsorption behavior of MB and Ca2+ onto mag-ASS and mag-BASS. The maximum adsorption capacities of mag-ASS for MB and mag-BASS for Ca2+ were 600.53 mg/g and 102.54 mg/g, respectively. Surprisingly, the adsorption abilities of mag-ASS for MB and mag-BASS for Ca2+ show significantly higher than the others. The adsorption mechanisms of MB mainly included electrostatic interaction, π-π conjugate interaction and cation exchange, while those of Ca2+ were mainly electrostatic interaction and cation exchange. The diffusion of MB and Ca2+ onto the magnetic adsorbents might be controlled by the combined effects of intraparticle and liquid film diffusion. There was no significant reduction in adsorption capacity after 8 cycles of adsorption and desorption, indicating that SS-based magnetic adsorbents had good recyclability and stability. Moreover, the removal efficiency of mag-BASS for total hardness and total organic carbon in real coal gasification gray water (CGGW) was 82.60 and 64.10%, respectively. The treatment of CGGW and the resource of wastes would significantly promote the reasonable disposal of coal gasification scales.
Collapse
Affiliation(s)
- Bai-Hong An
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Da-Mao Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Run-Ting Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Ye-Xuan Wen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Rui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Jia-Yun Wu
- Sinopec Ningbo Engineering Co., LTD, Ningbo, 315103, China
| | - Xian-Chun Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hong-Bin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
13
|
Wiśniewska M, Urban T, Tokarska K, Marciniak P, Giel A, Nowicki P. Removal of Organic Dyes, Polymers and Surfactants Using Carbonaceous Materials Derived from Walnut Shells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1987. [PMID: 38730794 PMCID: PMC11084864 DOI: 10.3390/ma17091987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
A series of new granular carbonaceous adsorbents was prepared via single-stage physical and chemical activation of walnut shells. Their suitability for removing various types of organic pollutants (represented by dyes, surfactants and water-soluble polymers) from the liquid phase was assessed. The activation of the precursor was carried out with CO2 and H3PO4 using conventional heating. Activated biocarbons were characterized in terms of chemical composition, acidic-basic nature of the surface, textural and electrokinetic properties as well as thermal stability. Depending on the type of activating agent used during the activation procedure, the obtained biocarbons differed in terms of specific surface area (from 401 to 1361 m2/g) and the type of porous structure produced (microporosity contribution in the range of 45-75%). Adsorption tests proved that the effectiveness of removing organic pollutants from the liquid phase depended to a large extent on the type of prepared adsorbent as well as the chemical nature and the molecular size of the adsorbate used. The chemically activated sample showed greater removal efficiency in relation to all tested pollutants. Its maximum adsorption capacity for methylene blue, poly(acrylic acid), poly(ethylene glycol) and Triton X-100 reached the levels of 247.1, 680.9, 38.5 and 61.8 mg/g, respectively.
Collapse
Affiliation(s)
- Małgorzata Wiśniewska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland; (T.U.); (K.T.)
| | - Teresa Urban
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland; (T.U.); (K.T.)
| | - Karina Tokarska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland; (T.U.); (K.T.)
| | - Paulina Marciniak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (P.M.); (A.G.)
| | - Anna Giel
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (P.M.); (A.G.)
| | - Piotr Nowicki
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (P.M.); (A.G.)
| |
Collapse
|
14
|
Pattanshetti A, Koli A, Dhabbe R, Yu XY, Motkuri RK, Chavan VD, Kim DK, Sabale S. Polymer Waste Valorization into Advanced Carbon Nanomaterials for Potential Energy and Environment Applications. Macromol Rapid Commun 2024; 45:e2300647. [PMID: 38243849 DOI: 10.1002/marc.202300647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/23/2023] [Indexed: 01/22/2024]
Abstract
The rise in universal population and accompanying demands have directed toward an exponential surge in the generation of polymeric waste. The estimate predicts that world-wide plastic production will rise to ≈590 million metric tons by 2050, whereas 5000 million more tires will be routinely abandoned by 2030. Handling this waste and its detrimental consequences on the Earth's ecosystem and human health presents a significant challenge. Converting the wastes into carbon-based functional materials viz. activated carbon, graphene, and nanotubes is considered the most scientific and adaptable method. Herein, this world provides an overview of the various sources of polymeric wastes, modes of build-up, impact on the environment, and management approaches. Update on advances and novel modifications made in methodologies for converting diverse types of polymeric wastes into carbon nanomaterials over the last 5 years are given. A remarkable focus is made to comprehend the applications of polymeric waste-derived carbon nanomaterials (PWDCNMs) in the CO2 capture, removal of heavy metal ions, supercapacitor-based energy storage and water splitting with an emphasis on the correlation between PWDCNMs' properties and their performances. This review offers insights into emerging developments in the upcycling of polymeric wastes and their applications in environment and energy.
Collapse
Affiliation(s)
- Akshata Pattanshetti
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, 416101, India
| | - Amruta Koli
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, 416101, India
| | - Rohant Dhabbe
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, 416101, India
| | - Xiao-Ying Yu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Radha Kishan Motkuri
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, 99354, USA
| | - Vijay D Chavan
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, 05006, South Korea
| | - Deok-Kee Kim
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, 05006, South Korea
| | - Sandip Sabale
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, 416101, India
| |
Collapse
|
15
|
Hu Y, Wang J, Yang Y, Li S, Wu Q, Nepovimova E, Zhang X, Kuca K. Revolutionizing soil heavy metal remediation: Cutting-edge innovations in plant disposal technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170577. [PMID: 38311074 DOI: 10.1016/j.scitotenv.2024.170577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Soil contamination with heavy metals has emerged as a global environmental threat, compromising agricultural productivity, ecosystem integrity, and human health. Conventional remediation techniques often fall short due to high costs, operational complexities, and environmental drawbacks. Plant-based disposal technologies, including biochar, phytometallurgy, and phrolysis, have emerged as promising solutions in this regard. Grounded in a novel experimental framework, biochar is studied for its dual role as soil amendment and metal adsorbent, while phytometallurgy is explored for its potential in resource recovery and economic benefits derived from harvested metal-rich plant biomass. Pyrolysis, in turn, is assessed for transforming contaminated biomass into value-added products, thereby minimizing waste. These plant disposal technologies create a circular model of remediation and resource utilization that holds the potential for application in large-scale soil recovery projects, development of environmentally friendly agro-industries, and advancement in sustainable waste management practices. This review mainly discussed cutting-edge plant disposal technologies-biochar application, phytometallurgy, and pyrolysis-as revolutionary approaches to soil heavy metal remediation. The efficacy, cost-effectiveness, and environmental impact of these innovative technologies are especially evaluated in comparison with traditional methods. The success of these applications could signal a paradigm shift in how we approach both environmental remediation and resource recovery, with profound implications for sustainable development and circular economy strategies.
Collapse
Affiliation(s)
- Yucheng Hu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Junbang Wang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongsheng Yang
- The Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province/Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| | - Sha Li
- School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Qinghua Wu
- College Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Xiujuan Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic.
| |
Collapse
|
16
|
Mawlood IA, Saod WM, Al-Rawi AS, Aljumialy AM, Hilal N. Characterization and use of activated carbon synthesized from sunflower seed shell in the removal of Pb(II), Cd(II), and Cr(III) ions from aqueous solution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:364. [PMID: 38478183 DOI: 10.1007/s10661-024-12525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
In this work, carbon-based nanomaterials such as active carbon which is prepared from common sunflower (Helianthus annuus) seed shell, and the characterization of the activated carbon NPs were studied using FTIR (Fourier transform infrared spectroscopy), XRD, SEM, EDS, and DTA techniques. Activated carbon NPs have been used in the adsorption of Pb(II), Cd(II), and Cr(III) ions from the aqueous phase. The results showed the highest adsorption efficiency was 99.9%, 92.45%, and 98% for Pb(II), Cd(II), and Cr(III) ions respectively at a temperature of 25 °C, pH = 7-9, and a time of 60 and 180 min, in addition to the accordance of the adsorption models for activated carbon with the Freundlich isotherm model at the value of R2 (0.9976, 0.9756, and 0.9907) and Langmuir isotherm model (0.966, 0.999, and 0.9873) of the Pb(II), Cd(II), and Cr(III) ions, respectively. We conclude the possibility of using activated carbon to have an extremely high sorption capacity across the conditions tested, with the highest adsorption efficiency having been >99% for Pb(II), Cd(II), and Cr(III) ions within the pH range 7-9 and a contact time of 60 to 180 min.
Collapse
Affiliation(s)
- Ibtihal A Mawlood
- Department of Dams and Water Resources, College of Engineering, University of Anbar, Ramadi, Iraq.
| | - Wahran M Saod
- Department of Chemistry, College of Science, University of Anbar, Ramadi, Iraq
| | - Ahmed S Al-Rawi
- Department of Chemistry, College of Science, University of Anbar, Ramadi, Iraq
| | - Abdulsalam M Aljumialy
- Department of Applied Chemistry, College of Applied Science, University of Fallujah, Fallujah, Iraq
| | - Nahla Hilal
- Scientific Affairs Department, University Of Fallujah, Fallujah, Iraq
| |
Collapse
|
17
|
Zandifar A, Esmaeilzadeh F, Rodríguez-Mirasol J. Hydrogen-rich gas production via supercritical water gasification (SCWG) of oily sludge over waste tire-derived activated carbon impregnated with Ni: Characterization and optimization of activated carbon production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123078. [PMID: 38052340 DOI: 10.1016/j.envpol.2023.123078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
In this study, the production of activated carbon (AC) through the chemical activation of waste tire (WT) using H3PO4 and KOH for H2 production by SCWG of oily sludge (OS) donated by Persian Gulf Star Oil Company was investigated. H3PO4 was the best activating agent based on some pretests results, and then the synthesis of AC was optimized using Response Surface Methodology. Based on BET surface area of synthesized ACs, thirty combinations of the four variables namely; activation temperature (350-550 °C); activation time (1-4 h); H3PO4 to WT ratio (1-3 w.w-1); and H3PO4 concentration (20-40 wt%) were optimized. CHNS, TGA, FE-SEM, and EDS-mapping analyses were used to characterize the AC and catalyst synthesized in optimum condition (activation temperature: 450 °C; activation time: 2.5 h; H3PO4 to WT ratio: 2 w.w-1; and H3PO4 concentration: 40 wt%), which presented a surface area of 170 m2 g-1. Finally, Ni was impregnated on the optimized AC with different loadings (5-15 wt%) to evaluate its performance in H2 production by SCWG of OS. Although H2 yield in catalytic experiments was higher than that observed in non-catalytic experiment, results showed that the maximum H2 selectivity was 66% in SCWG of OS using AC impregnated with 10 wt% Ni.
Collapse
Affiliation(s)
- Ali Zandifar
- Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| | - Feridun Esmaeilzadeh
- Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran; Enhanced Oil and Gas Recovery Institute, Advanced Research Group for Gas Condensate Recovery, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| | - José Rodríguez-Mirasol
- Chemical Engineering Department, University of Málaga, Campus de Teatinos s/n, 29010, Málaga, Spain
| |
Collapse
|
18
|
Deng S, Ren B, Hou B, Deng X, Deng R, Zhu G, Cheng S. Adsorption of Sb(III) and Pb(II) in wastewater by magnetic γ-Fe 2O 3-loaded sludge biochar: Performance and mechanisms. CHEMOSPHERE 2024; 349:140914. [PMID: 38092173 DOI: 10.1016/j.chemosphere.2023.140914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Magnetically modified carbon-based adsorbent (BC@γ-Fe2O3) was prepared through facile route using activated sludge biomass and evaluated for the simultaneous removal of Sb(III) and Pb(II). BC@γ-Fe2O3 exhibited outstanding Sb(III) and Pb(II) adsorption capacity when 200 mg of adsorbent was employed at pH 5.0 for 240 min, with the removal efficiency higher than 90%. The experiments demonstrated the excellent reusability and the potent anti-interference properties of the prepared absorbent. Freundlich and pseudo-second-order kinetic were prior to describe the adsorption process. The adsorption of Sb(III) and Pb(II) onto BC@γ-Fe2O3 was spontaneous and endothermic. BC@γ-Fe2O3 with high specific surface area revealed the exceptional competence to absorb Sb(III) and Pb(II) through pore filling, electrostatic adsorption and complexation. The adsorption mechanisms of Sb(III) and Pb(II) showed similarities with slight disparities. The removal of Sb(III) involved the Fe-O-Sb bond and π-π bond, while the adsorption of Pb(II) was closely related to ion exchange. Moreover, Sb(III) was oxidized to Sb(V) in a minor part during adsorption. The Fe-O-Cl active sites on BC allowed for the binding of γ-Fe2O3, guaranteeing the abundant adsorption sites and stability. BC@γ-Fe2O3 provides an efficient and green insight into the simultaneous removal of complex heavy metals with promising application in wastewater treatment.
Collapse
Affiliation(s)
- Songyun Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Bozhi Ren
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Baolin Hou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xinping Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Hunan Geological Disaster Monitoring, Early Warning and Emergency Rescue Engineering Technology Research Center, Changsha, 410004, China
| | - Renjian Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Guocheng Zhu
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Shuangchan Cheng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
19
|
Tang X, Wang L, Zhang Q, Xu D, Tao Z. Performance optimization for Pb(II) -containing wastewater treatment in constructed wetland-microbial fuel cell triggered by biomass dosage and Pb(II) level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15039-15049. [PMID: 38285263 DOI: 10.1007/s11356-024-32137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Three identical sets of constructed wetland-microbial fuel cells (CW-MFCs) fabricated with biomass carbon source addition were constructed and underwent the short- and long-term experiments. For this, the efficacy of biomass dosage and Pb(II) concentration towards Pb(II) removal and concurrent bioelectricity production of CW-MFCs were systematically explored. From the perspective of integrated capabilities and economic benefits, the solid biomass carbon sources equivalent to 500 mg/L COD was regarded as the optimal dosage, and the corresponding device was labeled as CW-MFC-2. For the short-term experiment, the closed-circuit CW-MFC-2 produced maximum output voltages and power densities in a range of 386-657 mV and 1.55 × 103-6.31 × 103 mW/m2 with the increasing Pb(II) level, respectively. Also, Pb(II) removal up to 94.4-99.6% was obtained in CW-MFC-2. With respect to long-term experiment, Pb(II) removal, the maximum output voltage, and power density of CW-MFC-2 ranged from 98.7 to 99.2%, 322 to 387 mV, and 3.28 × 102 to 2.26 × 103 mW/m2 upon 200 mg/L Pb(II) level, respectively. The migration results confirmed the potential of substrate and biomass for Pb(II) adsorption and fixation. For the cathode, Pb(II) was fixed and removed via binding to O. This study enlarges our knowledge of effective modulation of CW-MFCs for the treatment of high-level Pb(II)-containing wastewater and bioelectricity generation via adopting desirable biomass dosage.
Collapse
Affiliation(s)
- Xiaolu Tang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Lu Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Qingyun Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
| | - Zhengkai Tao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| |
Collapse
|
20
|
Liu C, Shen Y, Li Y, Huang F, Wang S, Li J. Aerobic granular sludge for complex heavy metal-containing wastewater treatment: characterization, performance, and mechanisms analysis. Front Microbiol 2024; 15:1356386. [PMID: 38357352 PMCID: PMC10864496 DOI: 10.3389/fmicb.2024.1356386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Complex heavy metal (HM)-containing wastewater discharges pose substantial risks to global water ecosystems and human health. Aerobic granular sludge (AGS) has attracted increased attention as an efficient and low-cost adsorbent in HM-containing wastewater treatment. Therefore, this study systematically evaluates the effect of Cu(II), Ni(II), and Cr(III) addition on the characteristics, performance and mechanism of AGS in complex HM-containing wastewater treatment process by means of fourier transform infrared spectroscopy, inductively coupled plasma spectrocopcy, confocal laser scanning microscopy, extracellular polymeric substances (EPS) fractions detection and scanning electron microscope-energy dispersive X-ray. The results showed that AGS efficiently eliminated Cu(II), Ni(II), and Cr(III) by the orchestrated mechanisms of ion exchange, three-layer EPS adsorption [soluble microbial products EPS (SMP-EPS), loosely bound EPS (LB-EPS), tightly bound EPS (TB-EPS)], and inner-sphere adsorption; notably, almost 100% of Ni(II) was removed. Three-layer EPS adsorption was the dominant mechanism through which the HM were removed, followed by ion exchange and inner-sphere adsorption. SMP-EPS and TB-EPS were identified as the key EPS fractions for adsorbing Cr(III) and Cu(II), respectively, while Ni(II) was adsorbed evenly on SMP-EPS, TB-EPS, and LB-EPS. Moreover, the rates at which the complex HM penetrated into the granule interior and their affinity for EPS followed the order Cu(II) > Ni(II) > Cr(III). Ultimately, addition of complex HM stimulated microorganisms to excrete massive phosphodiesterases (PDEs), leading to a pronounced decrease in cyclic diguanylate (c-di-GMP) levels, which subsequently suppressed EPS secretion due to the direct linkage between c-di-GMP and EPS. This study unveils the adaptability and removal mechanism of AGS in the treatment of complex HM-containing wastewater, which is expected to provide novel insights for addressing the challenges posed by intricate real wastewater scenarios.
Collapse
Affiliation(s)
- Chong Liu
- Key Laboratory of Embalming Methodology and Cosmetology of Cadavers of the Ministry of Civil Affairs, 101 Institute of the Ministry of Civil Affairs, Beijing, China
| | - Yao Shen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Yuguang Li
- Key Laboratory of Embalming Methodology and Cosmetology of Cadavers of the Ministry of Civil Affairs, 101 Institute of the Ministry of Civil Affairs, Beijing, China
| | - Fengguang Huang
- Key Laboratory of Embalming Methodology and Cosmetology of Cadavers of the Ministry of Civil Affairs, 101 Institute of the Ministry of Civil Affairs, Beijing, China
| | - Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, China
- Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, China
- Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, China
| |
Collapse
|
21
|
Bai T, Zhao J, Tian L, Zhang L, Jin Z. The Adsorption of Pb(II) from Aqueous Solution Using KOH-Modified Banana Peel Hydrothermal Carbon: Adsorption Properties and Mechanistic Studies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:311. [PMID: 38255479 PMCID: PMC11154531 DOI: 10.3390/ma17020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
Adopting banana peel as a raw material, the adsorption properties of banana peel hydrothermal carbon modified with a KOH solution for lead ions in aqueous solution were studied. The surface structure and functional groups of the modified hydrothermal carbon were analyzed by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, the Brunner-Emmet-Teller (BET) method, element analysis, and Raman spectroscopy. The results showed that an adsorption capacity of 42.92 mg/g and a removal rate of 86.84% were achieved when the banana peel hydrothermal carbon was modified with a KOH solution of 0.5 mol/L, with a pH of 6 and a solid-liquid ratio of 1 g/L. The equilibrium adsorption time for lead ions in solution being adsorbed using KOH-modified hydrothermal carbon was 240 min, the adsorption process satisfied the quasi-second-order kinetic model and the Redlich-Peterson isotherm equation, and the equilibrium removal efficiency was 88.62%. The adsorption of lead ions using KOH-modified hydrothermal carbon is mainly chemical-physical adsorption.
Collapse
|
22
|
Shahrokhi R, Park J. Enhanced removal of short- and long-chain per- and poly-fluoroalkyl substances from aqueous phase using crushed grafted chitosan beads: Performance and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122836. [PMID: 37925012 DOI: 10.1016/j.envpol.2023.122836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
The widespread use of per- and poly-fluoroalkyl substances (PFASs), environmentally persistent halogenated hydrocarbons, in various industrial and commercial applications has caused significant concerns owing to their contamination of soil and groundwater. Chitosan is a biopolymer substance with abundant amine and hydroxyl functional groups, making it a good candidate for adsorption of PFASs. This study aimed to increase chitosan's adsorption capacity by grafting additional amine functional groups on its surface for the removal of long- and short-chain PFASs from an aqueous phase. Two types of chitosan-based sorbents were developed: crushed chitosan beads (CBs) and polyethyleneimine-grafted CBs (GCBs). Batch adsorption tests assessed the adsorption capacities of the sorbents in terms of the sorption kinetics, isotherms, selectivity, and reusability. Based on the results, the GCBs had significant potential for adsorbing PFASs. These capacities were significantly higher than those demonstrated by the CBs. The sorption kinetics data revealed that the GCBs had a fast sorption rate. Furthermore, the GCBs demonstrated a high adsorption affinity, with log Kd values ranging from 1.5 to 2.5 for PFASs at environmentally relevant concentrations (1000 ng L-1). They also demonstrated excellent selectivity sorption for these compounds, even in the presence of other organic and inorganic pollutants.
Collapse
Affiliation(s)
- Rahim Shahrokhi
- Department of Civil and Environmental Engineering, Seoul National University, South Korea
| | - Junboum Park
- Department of Civil and Environmental Engineering, Seoul National University, South Korea; Institute of Construction and Environmental Engineering, Seoul National University, South Korea.
| |
Collapse
|
23
|
Zerin NH, Rasul MG, Jahirul MI, Sayem ASM. End-of-life tyre conversion to energy: A review on pyrolysis and activated carbon production processes and their challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166981. [PMID: 37709084 DOI: 10.1016/j.scitotenv.2023.166981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
The number of end-of-life waste tyres has increased enormously worldwide, which is one of the non-biodegradable Municipal Solid Waste (MSW) piling up in an open space for a long time. Every year, various types of tyres are released in the environment from different vehicles, such as trucks, buses, cars, motorcycles, and bicycles, which negatively impact the environment. Nowadays, waste tyres are treated in several ways, whereas thermochemical conversion is one of them, including combustion, gasification, incineration, and pyrolysis. Many literatures revealed that pyrolysis is a more environmentally friendly process than others since it can convert waste tyres into crude oil, char, and syngas without emitting harmful gases. In this study, the pyrolysis of tyres and the chemical activation of tyres are reviewed in terms of their kinetic behaviour. According to the literature, the most influential factors of the pyrolysis process are reactors, temperature, heating rate, residence time, feedstock size and catalyst. As the main ingredient of the tyre is rubber, tyre pyrolysis starts from 300 °C and completely decomposed nearly 550 °C. It can be found from literature that Pyrolysed tyre can produce 30-65% oil, 25-45% char and 5-20 % gas. It is also explained how the properties of active carbon (AC) are affected by activating conditions, including activation temperature, agent, the ratio of reagent mixture and others. Generally, pyrolytic char has surface area between 20 and 80 m2/g, whereas tyre-derived activated carbon's (TDAC) surface area varied from 90 to 970 m2/g. For large surface area and porous structure, TDAC has large application in purification and energy storage sector. The individuality of this article is to depict the entire pathway of AC production from waste tyres. The findings of this literature review help to improve technologies for producing activated carbon from waste tyres pyrolysed char.
Collapse
Affiliation(s)
- N H Zerin
- Fuel and Energy Research Group, School of Engineering and Technology, Central Queensland University, North Rockhampton, Queensland 4702, Australia
| | - M G Rasul
- Fuel and Energy Research Group, School of Engineering and Technology, Central Queensland University, North Rockhampton, Queensland 4702, Australia.
| | - M I Jahirul
- Fuel and Energy Research Group, School of Engineering and Technology, Central Queensland University, North Rockhampton, Queensland 4702, Australia
| | - A S M Sayem
- Department of Mechanical Engineering, Chittagong University of Engineering & Technology, Chattogram, Bangladesh
| |
Collapse
|
24
|
Saravanan A, Karishma S, Kumar PS, Thamarai P, Yaashikaa PR. Recent insights into mechanism of modified bio-adsorbents for the remediation of environmental pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122720. [PMID: 37839681 DOI: 10.1016/j.envpol.2023.122720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Rapid industrialization has exacerbated the hazard to health and the environment. Wide spectrums of contaminants pose numerous risks, necessitating their disposal and treatment. There is a need for further remediation methods since pollutant residues cannot be entirely eradicated by traditional treatment techniques. Bio-adsorbents are gaining popularity due to their eco-friendly approach, broad applicability, and improved functional and surface characteristics. Adsorbents that have been modified have improved qualities that aid in their adsorptive nature. Adsorption, ion exchange, chelation, surface precipitation, microbial uptake, physical entrapment, biodegradation, redox reactions, and electrostatic interactions are some of the processes that participate in the removal mechanism of biosorbents. These processes can vary depending on the particular biosorbent and the type of pollutants being targeted. The systematic review focuses on the many modification approaches used to remove environmental contaminants. Different modification or activation strategies can be used depending on the type of bio-adsorbent and pollutant to be remediated. Physical activation procedures such as ultrasonication and pyrolysis are more commonly used to modify bio-adsorbents. Ultrasonication process improves the adsorption efficiency by 15-25%. Acid and alkali modified procedures are the most effective chemical activation strategies for adsorbent modification for pollution removal. Chemical modification increases the removal to around 95-99%. The biological technique involving microbial culture is an emerging field that needs to be investigated further for pollutant removal. A short evaluation of modified adsorbents with multi-pollutant adsorption capability that have been better eliminated throughout the adsorption process has been provided.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
25
|
Liang D, Ji BY, Wang Y, Li X, Gao WY. Effect of activated carbon microstructure and adsorption mechanism on the efficient removal of chlorophyll a and chlorophyll b from Andrographis paniculata extract. Sci Rep 2023; 13:21930. [PMID: 38081867 PMCID: PMC10713828 DOI: 10.1038/s41598-023-42011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/04/2023] [Indexed: 12/18/2023] Open
Abstract
In order to reveal the effect of activated carbon (AC) properties on the adsorption of chlorophyll a (Chl a) and chlorophyll b (Chl b) in Andrographis paniculata extract, four commercial activated carbons were first tested and characterized. The results showed that activated carbon 1 (AC1) had the best surface area, pore structure and adsorption capacity. Therefore, adsorption isotherms, adsorption kinetics and adsorption mechanism were further carried out on AC1. The application of Langmuir model (R2 > 0.978) and Freundlich model (R2 > 0.977) indicated that the adsorption process of Chl a and Chl b on AC1 may be a complex adsorption process of single-layer and multilayer adsorption. The adsorption kinetics indicated that the pseudo-second-order kinetic model (R2 > 0.999) was dominant and was mainly chemisorption. The intra-particle diffusion model (R2 > 0.937) shows that the intra-particle diffusion is the rate-limiting step. The decrease of adsorption of AC1 to Chl a and Chl b due to the oxidation of acrylic acid proves the importance of π-π interaction.
Collapse
Affiliation(s)
- Di Liang
- Tianjin Key Laboratory for Advanced Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300193, China
| | - Bao-Yu Ji
- Tianjin Key Laboratory for Advanced Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300193, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Yun Wang
- Tianjin Key Laboratory for Advanced Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300193, China
| | - Xia Li
- Tianjin Key Laboratory for Advanced Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300193, China.
| | - Wen-Yuan Gao
- Tianjin Key Laboratory for Advanced Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300193, China
- College of Pharmacy, Qinghai Minzu University, Qinghai, 810007, China
| |
Collapse
|
26
|
Zhou XR, Wang R, Tang CC, Varrone C, He ZW, Li ZH, Wang XC. Advances, challenges, and prospects in microalgal-bacterial symbiosis system treating heavy metal wastewater. CHEMOSPHERE 2023; 345:140448. [PMID: 37839742 DOI: 10.1016/j.chemosphere.2023.140448] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Heavy metal (HM) pollution, particularly in its ionic form in water bodies, is a chronic issue threatening environmental security and human health. The microalgal-bacterial symbiosis (MABS) system, as the basis of water ecosystems, has the potential to treat HM wastewater in a sustainable manner, with the advantages of environmental friendliness and carbon sequestration. However, the differences between laboratory studies and engineering practices, including the complexity of pollutant compositions and extreme environmental conditions, limit the applications of the MABS system. Additionally, the biomass from the MABS system containing HMs requires further disposal or recycling. This review summarized the recent advances of the MABS system treating HM wastewater, including key mechanisms, influence factors related to HM removal, and the tolerance threshold values of the MABS system to HM toxicity. Furthermore, the challenges and prospects of the MABS system in treating actual HM wastewater are analyzed and discussed, and suggestions for biochar preparation from the MABS biomass containing HMs are provided. This review provides a reference point for the MABS system treating HM wastewater and the corresponding challenges faced by future engineering practices.
Collapse
Affiliation(s)
- Xing-Rui Zhou
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Rong Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Cong-Cong Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Cristiano Varrone
- Department of Chemistry and BioScience, Aalborg University, Fredrik Bajers Vej 7H 9220, Aalborg Ø, Denmark
| | - Zhang-Wei He
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhi-Hua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| |
Collapse
|
27
|
Paluch D, Bazan-Wozniak A, Nosal-Wiercińska A, Pietrzak R. Removal of Methylene Blue and Methyl Red from Aqueous Solutions Using Activated Carbons Obtained by Chemical Activation of Caraway Seed. Molecules 2023; 28:6306. [PMID: 37687135 PMCID: PMC10488674 DOI: 10.3390/molecules28176306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
In this study, activated carbons were produced through the chemical activation of caraway seeds using three different activators: Na2CO3, K2CO3, and H3PO4. A 1:2 weight ratio of precursor to activator was maintained in every instance. Comprehensive analyses were conducted on the resultant activated carbons, including elemental analysis, textural parameters determination, Boehm titration for surface oxygen functional groups, pH assessment of aqueous extracts, and quantification of ash content. The produced materials were subjected to adsorption tests for methylene blue and methyl red sodium salt from the liquid phase and the effects of adsorbent dosage, pH of the aqueous dye solution, process temperature, and adsorbent-adsorbate contact time on sorption capacity obtained. To characterize the adsorption model of the examined pollutants, both the Langmuir and Freundlich equations were employed. In addition, the sorption capacity of the obtained carbon materials against an iodine aqueous solution was assessed. The specific surface area of the obtained adsorbents ranged from 269 to 926 m2/g. By employing potassium carbonate to chemically activate the starting substance, the resulting activated carbons show the highest level of specific surface area development and the greatest sorption capacity against the tested impurities-296 mg/g for methylene blue and 208 mg/g for methyl red sodium salt. The adsorption rate for both dyes was determined to align with a pseudo-second-order kinetic model. The experimental adsorption data for methylene blue were well-described by the Langmuir model, whereas the Freundlich model was found to be congruent with the data pertaining to methyl red sodium salt.
Collapse
Affiliation(s)
- Dorota Paluch
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (D.P.); (A.B.-W.); (R.P.)
| | - Aleksandra Bazan-Wozniak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (D.P.); (A.B.-W.); (R.P.)
| | - Agnieszka Nosal-Wiercińska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Robert Pietrzak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (D.P.); (A.B.-W.); (R.P.)
| |
Collapse
|
28
|
Lin W, Zhou J, Sun S. Cadmium and lead removal by Mg/Fe bimetallic oxide-loaded sludge-derived biochar: batch adsorption, kinetics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86866-86878. [PMID: 37410325 DOI: 10.1007/s11356-023-28574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Biochar is a valuable adsorbent for the removal of heavy metals from water, and it is important to explore ways to increase its heavy metal adsorption capacity. In this study, Mg/Fe bimetallic oxide was loaded onto sewage sludge-derived biochar to enhance its heavy metal adsorption capacity. Batch adsorption experiments for the removal of Pb(II) and Cd(II) were performed to evaluate the removal efficiency of Mg/Fe layer bimetallic oxide-loaded sludge-derived biochar ((Mg/Fe)LDO-ASB). The physicochemical properties of (Mg/Fe)LDO-ASB and corresponding adsorption mechanisms were studied. The maximum adsorption capacities of (Mg/Fe)LDO-ASB for Pb(II) and Cd(II), which were calculated by isotherm model, were 408.31 and 270.41 mg/g, respectively. Adsorption kinetics and isotherms analysis showed that the dominant adsorption process of Pb(II) and Cd(II) uptake by (Mg/Fe)LDO-ASB was spontaneous chemisorption and heterogeneous multilayer adsorption, and film diffusion was the rate-limiting step. SEM-EDS, FTIR, XRD, and XPS analyses revealed that the Pb and Cd adsorption processes of (Mg/Fe)LDO-ASB involved oxygen-containing functional group complexation, mineral precipitation, electron-π-metal interactions, and ion exchange. The order of their contribution was as follows: mineral precipitation (Pb: 87.92% and Cd: 79.91%) > ion exchange (Pb: 9.84% and Cd: 16.45%) > metal-π interaction (Pb: 0.85% and Cd: 0.73%) > oxygen-containing functional group complexation (Pb: 1.39% and Cd: 2.91%). Mineral precipitation was the main adsorption mechanism, and ion exchange played a crucial role in Pb and Cd adsorption.
Collapse
Affiliation(s)
- Weixiong Lin
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China.
| | - Jiali Zhou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China
| |
Collapse
|
29
|
Velarde L, Nabavi MS, Escalera E, Antti ML, Akhtar F. Adsorption of heavy metals on natural zeolites: A review. CHEMOSPHERE 2023; 328:138508. [PMID: 36972873 DOI: 10.1016/j.chemosphere.2023.138508] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/20/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Water pollution has jeopardized human health, and a safe supply of drinking water has been recognized as a worldwide issue. The increase in the accumulation of heavy metals in water from different sources has led to the search for efficient and environmentally friendly treatment methods and materials for their removal. Natural zeolites are promising materials for removing heavy metals from different sources contaminating the water. It is important to know the structure, chemistry, and performance of the removal of heavy metals from water, of the natural zeolites to design water treatment processes. This review focuses on critical analyses of the application of distinct natural zeolites for the adsorption of heavy metals from water, specifically, arsenic (As(III), As(V)), cadmium (Cd(II)), chromium (Cr(III), Cr(VI)), lead (Pb(II)), mercury(Hg(II)) and nickel (Ni(II)). The reported results of heavy-metal removal by natural zeolites are summarized, and the chemical modification of natural zeolites by acid/base/salt reagent, surfactants, and metallic reagents has been analyzed, compared, and described. Furthermore, the adsorption/desorption capacity, systems, operating parameters, isotherms, and kinetics for natural zeolites were described and compared. According to the analysis, clinoptilolite is the most applied natural zeolite to remove heavy metals. It is effective in removing As, Cd, Cr, Pb, Hg, and Ni. Additionally, an interesting fact is a variation between the natural zeolites from different geological origins regarding the sorption properties and capacities for heavy metals suggesting that natural zeolites from different regions of the world are unique.
Collapse
Affiliation(s)
- Lisbania Velarde
- Department of Chemistry, Faculty of Science and Technology, San Simon University, UMSS, Cochabamba, Bolivia; Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Mohammad Sadegh Nabavi
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Edwin Escalera
- Department of Chemistry, Faculty of Science and Technology, San Simon University, UMSS, Cochabamba, Bolivia
| | - Marta-Lena Antti
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Farid Akhtar
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden.
| |
Collapse
|
30
|
Ali A, Alharthi S, Al-Shaalan NH, Naz A, Fan HJS. Efficient Removal of Hexavalent Chromium (Cr(VI)) from Wastewater Using Amide-Modified Biochar. Molecules 2023; 28:5146. [PMID: 37446811 DOI: 10.3390/molecules28135146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The utilization of biochar, derived from agricultural waste, has garnered attention as a valuable material for enhancing soil properties and serving as a substitute adsorbent for the elimination of hazardous heavy metals and organic contaminants from wastewater. In the present investigation, amide-modified biochar was synthesized via low-temperature pyrolysis of rice husk and was harnessed for the removal of Cr(VI) from wastewater. The resultant biochar was treated with 1-[3-(trimethoxysilyl) propyl] urea to incorporate an amide group. The amide-modified biochar was characterized by employing Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. During batch experiments, the effect of various parameters, such as adsorbent dosage, metal concentration, time duration, and pH, on Cr(VI) removal was investigated. The optimal conditions for achieving maximum adsorption of Cr(VI) were observed at a pH 2, an adsorbent time of 60 min, an adsorbent dosage of 2 g/L, and a metal concentration of 100 mg/L. The percent removal efficiency of 97% was recorded for the removal of Cr(VI) under optimal conditions using amide-modified biochar. Freundlich, Langmuir, and Temkin isotherm models were utilized to calculate the adsorption data and determine the optimal fitting model. It was found that the adsorption data fitted well with the Langmuir isotherm model. A kinetics study revealed that the Cr(VI) adsorption onto ABC followed a pseudo-second-order kinetic model. The findings of this study indicate that amide-functionalized biochar has the potential to serve as an economically viable substitute adsorbent for the efficient removal of Cr(VI) from wastewater.
Collapse
Affiliation(s)
- Ashraf Ali
- Department of Chemistry, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Sarah Alharthi
- Center of Advanced Research in Science and Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Alia Naz
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Hua-Jun Shawn Fan
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643099, China
| |
Collapse
|
31
|
Sulejmanović J, Skopak E, Šehović E, Karadža A, Zahirović A, Smječanin N, Mahmutović O, Ansar S, Sher F. Surface engineered functional biomaterials for hazardous pollutants removal from aqueous environment. CHEMOSPHERE 2023:139205. [PMID: 37315864 DOI: 10.1016/j.chemosphere.2023.139205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
The issue of water contamination by heavy metal ions as highly persistent pollutants with harmful influence primarily on biological systems, even in trace levels, has become a great environmental concern globally. Therefore, there is a need for the use of highly sensitive techniques or preconcentration methods for the removal of heavy metal ions at trace levels. Thus, this research investigates a novel approach by examining the possibility of using pomegranate (Punica granatum) peel layered material for the simultaneous preconcentration of seven heavy metal ions; Cd(II), Co(II), Cr(III), Cu(II), Mn(II), Ni(II) and Pb(II) from aqueous solution and three river water samples. The quantification of the heavy metals was performed by the means of FAAS technique. The characterization of biomaterial was performed by SEM/EDS, FTIR analysis and pHpzc determination before and after the remediation process. The reusability study, as well as the influence of interfering ions (Ca, K, Mg, Na and Zn) were evaluated. The conditions of preconcentration by the column method included the optimization of solution pH (5); flow rate (1.5 mL/min), a dose of biosorbent (200 mg), type of the eluent (1 mol/L HNO3), sample volume (100 mL) and sorbent fraction (<0.25 mm). The biosorbent capacity ranged from 4.45 to 57.70 μmol/g for the investigated heavy metals. The practical relevance of this study is further extended by novel data regarding adsorbent cost analysis (17.49 $/mol). The Punica granatum sorbent represents a highly effective and economical biosorbent for the preconcentration of heavy metal ions for possible application in industrial sectors.
Collapse
Affiliation(s)
- Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Ena Skopak
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Amar Karadža
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Adnan Zahirović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Narcisa Smječanin
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Omer Mahmutović
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Educational Sciences, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
32
|
Liu Q, Feng P, Shao L, Liu X, Chen C, Lu J, Ling C, Zhang Y, Sun D, Ran Q. Ultra-purification of heavy metals and robustness of calcium silicate hydrate (C-S-H) nanocomposites. CHEMOSPHERE 2023:139063. [PMID: 37257659 DOI: 10.1016/j.chemosphere.2023.139063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
For the sake of remediating the contamination of heavy metal ions (HMs) that poses high risk to the global environment, a novel inorganic nanocomposite with excellent robustness, calcium silicate hydrate (C-S-H), is synthesized at extremely low cost yet presents rapid adsorption rate and superhigh adsorption capacity. High concentrations of Cu(Ⅱ), Cd(Ⅱ), Co(Ⅱ) and Cr(Ⅲ) in wastewater can be purified to ultra-low level (∼0.008 mg L-1) within 60 min at low C-S-H dosage, the concentration and pH indexes of which meet the standard for direct discharge in China. The adsorption processes are spontaneous, following the Langmuir adsorption isotherm model, and its kinetics conforms to pseudo-second order model. Meanwhile, C-S-H presents excellent anti-interference performance during the ultra-purification of HMs when exposed to the acid environments, solutions with various HMs as well as high salinity. The ultra-purification of HMs and robustness of C-S-H is realized through multiple mechanisms based on adsorption, involving hydrolysis of HMs, electrostatic interaction, chemical microprecipitation, surface complexation and interlayer complexation, among which interlayer complexation is dominant. All these verify the robust performance and broad applicability of C-S-H to complex aqueous systems.
Collapse
Affiliation(s)
- Qi Liu
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Pan Feng
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China.
| | - Lijing Shao
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Xin Liu
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Chen Chen
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Jinyuan Lu
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Chen Ling
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Youfa Zhang
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Dewen Sun
- State Key Laboratory of High Performance Civil Engineering Materials, Nanjing, 210008, China
| | - Qianping Ran
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; State Key Laboratory of High Performance Civil Engineering Materials, Nanjing, 210008, China
| |
Collapse
|
33
|
Iamsaard K, Weng CH, Tzeng JH, Anotai J, Jacobson AR, Lin YT. Systematic optimization of biochars derived from corn wastes, pineapple leaf, and sugarcane bagasse for Cu(II) adsorption through response surface methodology. BIORESOURCE TECHNOLOGY 2023; 382:129131. [PMID: 37182679 DOI: 10.1016/j.biortech.2023.129131] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023]
Abstract
Many industrial wastewaters contain an appreciable amount of toxic copper (Cu(II)) that needs to be properly treated before discharging into receiving water body. Adsorption can effectively remove Cu(II) with optimized parameters. This study investigates the critical pyrolysis parameters of biochar derived from agricultural waste. Optimized biochar showed maximum Cu(II) adsorption capacity of 60.7, 36.8, and 35.5 mg g-1 by PLB, SBB, and CWB at pyrolysis temperatures of 555 ℃, 559 ℃, 507 ℃, respectively, compared with commercial activated carbon (CAC, 40.8 mg g-1). Surface characterization confirmed surface complexation, electrostatic interaction, and cation exchange capacity as Cu(II) removal mechanisms. The presence of humic acid reduced the Cu(II) removal of both CAC and optimized biochars. Optimized PLB displayed high reusability (87% Cu(II) removal efficiency) after five consecutive cycles using pressure cooker regeneration. With excellent Cu(II) adsorption capacity and reusability, the investigated biochars show high applicability potential to Cu(II)-laden wastewater treatment.
Collapse
Affiliation(s)
- Kesinee Iamsaard
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 402227, Taiwan
| | - Chih-Huang Weng
- Department of Civil Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - Jing-Hua Tzeng
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 402227, Taiwan; Department of Civil and Environmental Engineering, University of Delaware, DE 19716, USA
| | - Jin Anotai
- Department of Environmental Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Astrid R Jacobson
- Department of Plants, Soils and Climate, Utah State University, Logan, UT 84322, USA
| | - Yao-Tung Lin
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 402227, Taiwan.
| |
Collapse
|
34
|
Gill SS, Goyal T, Goswami M, Patel P, Das Gupta G, Verma SK. Remediation of environmental toxicants using carbonaceous materials: opportunity and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27364-9. [PMID: 37160511 DOI: 10.1007/s11356-023-27364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Adsorption and photocatalytic properties of carbonaceous materials, viz., carbon nanotubes (CNTs), fullerene, graphene, graphene oxide, carbon nanofiber nanospheres, and activated carbon, are the legitimate weapons for the remediation of emerging and persistent inorganic/organic contaminants, heavy metals, and radionucleotides from the environment. High surface area, low or non-toxic nature, ease of synthesis, regeneration, and chemical modification of carbonaceous material make them ideal for the removal of toxicants. The research techniques investigated during the last decade for the elimination of environmental toxicants using carbonaceous materials are reviewed to offer comprehensive insight into the mechanism, efficiency, applications, advantages, and shortcomings. Opportunities and challenges associated with carbon materials have been discussed to suggest future perspectives in the remediation of environmental toxicants.
Collapse
Affiliation(s)
| | - Tanish Goyal
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | - Megha Goswami
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | - Preeti Patel
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | | | | |
Collapse
|
35
|
Wang X, Qian Y, Chen Y, Liu F, An D, Yang G, Dai R. Application of fluorescence spectra and molecular weight analysis in the identification of algal organic matter-based disinfection by-product precursors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163589. [PMID: 37087012 DOI: 10.1016/j.scitotenv.2023.163589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Algal organic matter (AOM) is considered to be threatening for the consumption of disinfectants and the formation of disinfection by-products (DBPs) during the disinfection process. Incompatible parameters in the conventional pretreatment of algal-laden water will lead to counterproductive results, such as AOM release. Therefore, the generation of AOM and its conversion to DBPs during pretreatment should be observed. The characteristics of DBPs from extracellular organic matter (EOM) and intracellular organic matter (IOM) were epitomized and simulation experiments were conducted in deionized (DI) water and source water under pretreatment conditions. Differences in DBP formation between the different backgrounds during chlorination and powdered activated carbon (PAC) treatment were investigated. Instead of monotonous excitation-emission matrix (EEM) spectra, molecular weight (MW) fractionation was simultaneously applied to elucidate the mechanisms of chlorination and PAC adsorption on AOM-based DBPs. The fluorescence regional integration (FRI) EEM results showed a clear correlation between the fluorescent properties and MW distribution of AOM. A decreasing trend was observed after a rapid increase in fluorescence intensity during the chlorination and PAC treatment of water samples in the simulation experiments in deionized (DI) water and source water. The DBP formation potential (FP) in the source water was consistent with the change in AOM during chlorination and PAC adsorption. In addition, EEM showed decent predictability of AOM-based trihalomethanes (THM) FPs (R2 = 0.77-0.99) invoking a combination with MW fractionation. Macromolecular protein compounds were highly correlated with the formation of dichloroacetonitrile (DCAN) (R2 = 0.89-0.98). These post-mortems results imply that EEM spectra are a useful tool for identifying AOM-based precursors to reveal the accurate environmental fate and risk assessments of AOM.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China
| | - Yunkun Qian
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China
| | - Yanan Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China; Department of the Built Environment, Aalborg University, Aalborg 9220, Denmark
| | - Fan Liu
- Department of the Built Environment, Aalborg University, Aalborg 9220, Denmark
| | - Dong An
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Guodong Yang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China
| | - Ruihua Dai
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China
| |
Collapse
|
36
|
Pallewatta S, Weerasooriyagedara M, Bordoloi S, Sarmah AK, Vithanage M. Reprocessed construction and demolition waste as an adsorbent: An appraisal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163340. [PMID: 37084906 DOI: 10.1016/j.scitotenv.2023.163340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Construction and Demolition (C&D) waste is solid wastes generated from the construction, demolition, and renovation activities that constitute almost 30-40 % of globally generated solid wastes. Improper disposal and management of these materials can cause negative impacts on the environment, economy, and human health. Most research on C&D waste is limited to reduction, recycling, and reuse of the wastes. However, there is no systematic review dedicated entirely to the applicability of C&D wastes as adsorbent for waste management. This review presents the utilization of C&D wastes-based adsorbents for removing contaminants from environmental matrices covering triple edge benefits in the viewpoints of waste treatment, solid waste management, and disposal. The properties, the capability of C&D waste adsorbents on contaminant removal, and the influence of various factors on the adsorptive removal is detailed. Further, the mechanisms involved in contaminant removal by C&D waste are summarized. The review revealed that, chemisorption is the prominent mechanism of contaminant removal by most C&D wastes. Among the three types of C&D waste reviewed; concrete-based adsorbents were the most efficient for contaminant removal. Limited studies are avaiable in the literature on binary and multiple contaminant systems, reusability studies, and high dependence on solution pH, therefore further studies are warrated. As C&D waste contain trace concentration of heavy metals and contaminants, its leaching potential at different pH levels and adsorbate concentration need to be conducted, which has been hitherto neglected. Finally, the approaches, obstacles, and potential solutions to build an industrially and economically efficient C&D adsorbent are discussed.
Collapse
Affiliation(s)
- Shiran Pallewatta
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Madara Weerasooriyagedara
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Sanandam Bordoloi
- Illinois Sustainable Technology Center, University of Illinois at Urbana Champaign, Champaign-, United States of America
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; The Institute of Agriculture, The University of Western Australia, Perth WA6009, Australia.
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; The Institute of Agriculture, The University of Western Australia, Perth WA6009, Australia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
37
|
Kumar A, Thakur A, Panesar PS. A review on the industrial wastewater with the efficient treatment techniques. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
38
|
Johnson VE, Liao Q, Jallawide BW, Anaman R, Amanze C, Huang P, Cao W, Ding C, Shi Y. Simultaneous removal of As(V) and Pb(II) using highly-efficient modified dehydrated biochar made from banana peel via hydrothermal synthesis. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
39
|
Wang S, Zhou Y, You X, Wang B, Du L. Quantification of the antagonistic and synergistic effects of Pb 2+, Cu 2+, and Zn 2+ bioaccumulation by living Bacillus subtilis biomass using XGBoost and SHAP. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130635. [PMID: 36584648 DOI: 10.1016/j.jhazmat.2022.130635] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Bioaccumulation and adsorption are efficient methods for removing heavy metal ions (HMIs) from aqueous environments. However, methods to quantifiably characterize the removal selectivity for co-existing HMIs are limited. In this study, we applied Shapley additive explanations (SHAP) following extreme gradient boosting (XGBoost) modeling, to generate SHAP values. We used these values to create an affinity interference index (AII) that quantitatively represented the interference between metal ions in a multi-metal bioaccumulation system. The selectivity for simultaneous bioaccumulation of Pb2+, Cu2+, and Zn2+ by living Bacillus subtilis biomass was then characterized as a proof of concept. The AII indicated that the bioaccumulation of Zn2+ was more strongly inhibited by Pb2+/Cu2+ (AII = 1) than that of Pb2+/Cu2+ by Zn2+. Moreover, the presence of Zn2+ promoted the bioaccumulation of Pb2+ (AII = 0.39), which was confirmed in further experiments where the bioaccumulation of Pb2+ (300 μM) was increased by 38% with Zn2+ (300 μM). This study demonstrated that the combination of XGBoost and SHAP is effective in the quantifiable characterization of the antagonistic and synergistic effects in a multi-metal simultaneous bioaccumulation system. This method could also be generalized to similar tasks for analyzing the selectivity effects in a multi-component system.
Collapse
Affiliation(s)
- Sheng Wang
- Institute of Eco-Environmental Sciences, Wenzhou Academy of Agricultural Sciences, Wenzhou 325006, Zhejiang, PR China.
| | - Ying Zhou
- Institute of Eco-Environmental Sciences, Wenzhou Academy of Agricultural Sciences, Wenzhou 325006, Zhejiang, PR China
| | - Xinxin You
- Institute of Eco-Environmental Sciences, Wenzhou Academy of Agricultural Sciences, Wenzhou 325006, Zhejiang, PR China
| | - Bing Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, Zhejiang, PR China
| | - Linna Du
- College of Advanced Materials Engineering, Jiaxing Nanhu Univerisity, Jiaxing 314001, Zhejiang, PR China.
| |
Collapse
|
40
|
Ahmadian M, Derakhshankhah H, Jaymand M. Recent advances in adsorption of environmental pollutants using metal-organic frameworks-based hydrogels. Int J Biol Macromol 2023; 231:123333. [PMID: 36682661 DOI: 10.1016/j.ijbiomac.2023.123333] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Water pollution is increasing significantly owing to industrialization and population growth that lead to serious environmental and health issues. Therefore, the design and development of more effective wastewater treatment approaches are necessary due to a significant upsurge in demand for freshwater. More recently, metal-organic frameworks (MOFs) have attracted attention in environmental science owing to their tunable porosity, unique structure, flexibility, and various composition. Despite these attractive advantages, some drawbacks, including intrinsic fragility, unsatisfied processability, dust formation, and poor reusability, have greatly limited their applications. Therefore, MOFs are often designed as supported-based MOFs (e.g., MOFs-coated composites) or 3D structured composites, such as MOFs-based hydrogels. MOFs-based hydrogels are excellent candidates in the sorption process because of their appropriate adsorption capacity, porous structure, good mechanical properties, durability as well as biodegradable features. In this review, the removal of different pollutants (e.g., synthetic dyes, phosphates, heavy metals, antibiotics, and some organic compounds) from aqueous media has been studied by the adsorption process using MOFs-based hydrogels. The important advancements in the fabrication of MOFs-based hydrogels and their capacities in the adsorption of pollutants under experimental conditions have been discussed. Finally, problems and future perspectives on the adsorption process using MOFs-based hydrogels have been investigated.
Collapse
Affiliation(s)
- Moslem Ahmadian
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
41
|
Matebese F, Moutloali RM. Integrating Ultrafiltration Membranes with Flocculation and Activated Carbon Pretreatment Processes for Membrane Fouling Mitigation and Metal Ion Removal from Wastewater. ACS OMEGA 2023; 8:9074-9085. [PMID: 36936310 PMCID: PMC10018693 DOI: 10.1021/acsomega.2c03524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/29/2022] [Indexed: 06/18/2023]
Abstract
The presence of metal ions in an aqueous medium is an ongoing challenge throughout the world. Processes employed for metal ion removal are developed continuously with the integration of these processes taking center stage. Herein, an integrated system consisting of flocculation, activated carbon (AC), and an ultrafiltration (UF) membrane was assessed for the removal of multiple metal ions contained in wastewater generated from a university chemistry research laboratory. The quality of the wastewater was established before and further determined after treatment with inductively coupled plasma optical emission spectrometry (ICP-OES) for metal content, total dissolved solids (TDS), turbidity, electrical conductivity (EC), and pH. Assessing the spent AC indicated minimal structural changes, indicating a potential for further reuse; for instance, the BET for both the pristine and spent AC exhibited type I isotherms with a mesoporous structure, indicating no major structural changes due to metal complexation. The relative performance of the integrated system indicated that the use of flocculation improved the water quality of metal-laden wastewater for safe disposal. The integrated treatment systems exhibited high removal efficiencies between 80 and 99.99% for all the metal ions except for Mn (<0.008 mg L-1) and Cr (<0.016 mg L-1) both at ca. 70%, indicative of the positive influence of the polyelectrolyte in the treatment process. The fabricated UiO-66-NH2@GO membranes (Z4 and Z5) exhibited high fouling resistance and reusability potential as well as relatively high pure water flux. Consequently, the integrated process employed for the treatment of laboratory metal-containing wastewater is promising as a generic approach to improving the quality of metal-containing wastewater to meet the standards of discharging limits in South Africa.
Collapse
Affiliation(s)
- Funeka Matebese
- Department
of Chemical Sciences, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028Johannesburg, South Africa
- DSI/Mintek
Nanotechnology Innovation Center−UJ Water Research Node, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028Johannesburg, South Africa
| | - Richard M. Moutloali
- Institute
for Nanotechnology and Water Sustainability, College of Science, Engineering
and Technology, University of South Africa, Florida, 1709Johannesburg, South Africa
| |
Collapse
|
42
|
Li J, Chen M, Yang X, Zhang L. Preparation of a novel hydrogel of sodium alginate using rural waste bone meal for efficient adsorption of heavy metals cadmium ion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160969. [PMID: 36549539 DOI: 10.1016/j.scitotenv.2022.160969] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Adsorption has been an important method for removing heavy metals from industrial wastewater. However, there has been a lack of an environmentally friendly, low-cost, biodegradable and easily recyclable material. China produces bones are not fully utilized leads to a waste of resources Therefore, efficient application of bone meal (BM) for remediation of contaminants in water would provide a promising alternative for resource utilization of bones. In this paper, we use a combination of BM and sodium alginate (SA) to prepare a novel BM/SA/calcium ion (BM/SA/Ca2+) double cross-linked composite hydrogel (BMSAH). Enhance the mechanical structure of SA while making the BM easy to recycle and reuse. The morphology and structure of the BMSAH were characterized using FT-IR spectroscopy and SEM-EDS. suggesting that the BMSAH can provide a larger specific surface area and high number of adsorption sites. The effects of the solution pH, ionic strength and contact time on the adsorption capacity of the BMSAH were investigated in depth, Under different conditions, BMSAH has a strong adsorption capacity of >90 %. XPS and FT-IR analysis showed that Cd2+ was adsorbed mainly via coordination interactions and hydrogen bonds with the carboxyl groups and nitrogen atoms in the BMSAH. A pseudo-second-order kinetic model, particle diffusion model and Isothermal adsorption lines indicate that the surface of the BMSAH is non-uniform suggesting that the adsorption of heavy metal ions by the BMSAH involves a combination of surface adsorption and intraparticle diffusion mechanisms, which is an overall chemical-physical adsorption process. In addition, the adsorption capacity of BMSAH remained above 90 % after three desorption cycles. Our work provides a new method for the preparation of a low-cost, high mechanical performance, biodegradable and easily recyclable physical hydrogels used for the removal of heavy metal ions.
Collapse
Affiliation(s)
- Jiapeng Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China
| | - Mengxin Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China
| | - Xiaoqian Yang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China
| | - Lei Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China.
| |
Collapse
|
43
|
Zuo Q, Zheng H, Zhang P, Zhang Y, Zhang J, Zhang B. Facile green preparation of single- and two-component modified activated carbon fibers for efficient trace heavy metals removal from drinking water. CHEMOSPHERE 2023; 316:137799. [PMID: 36634718 DOI: 10.1016/j.chemosphere.2023.137799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Trace heavy metals exist in drinking water, having great adverse effects on human health and making it a huge challenge to remove. Herein, novel materials have been prepared by a simple and green method using single- (polydopamine (PDA) or 2,3-dimercaptopropanesulfonic sodium (DMPS)) (PDA-OACF or DMPS-OACF) and two-component (PDA and DMPS) (DMPS-PDA-OACF) functionalized activated carbon fibers pretreated by hydrogen peroxide for the removal of trace heavy metals. The as-prepared DMPS-OACF (7.5,20) under DMPS addition of 7.5 mg and sonication time of 20 min retained large specific surface area, micro-mesoporous structure and rich functional groups and showed better adsorption performance for trace lead and mercury. It also exhibited wide applicable ranges of pH (3.50-10.50) and concentration (50-1136 μg L-1), rapid adsorption kinetics, and excellently selective removal performance for trace lead. The maximum lead adsorption capacity reached 16.03 mg g-1 when the effluent lead concentration met World Health Organization (WHO) standard and the adsorbent can be regenerated by EDTA solution. The fitting results of adsorption kinetics and isotherm models revealed that the lead adsorption process was multi-site adsorption on heterogeneous surfaces and chemical adsorption. The excellent adsorption properties for trace heavy metals were attributed that the sulfur/oxygen/nitrogen-containing functional groups boosted diffusion and adsorption by electrostatic attraction and coordination, suggesting that DMPS-OACF (7.5,20) has great application potential in the removal of trace heavy metals.
Collapse
Affiliation(s)
- Qi Zuo
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong Zheng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Pengyi Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yu Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiejing Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Baichao Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
44
|
Iron/cobalt-decorated nitrogen-rich 3D layer-stacked porous biochar as high-performance oxygen reduction air-cathode catalyst in microbial fuel cell. Biosens Bioelectron 2023; 222:114926. [PMID: 36455373 DOI: 10.1016/j.bios.2022.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Developing low-cost and high-efficiency oxygen reduction reaction (ORR) catalysts is crucial to the commercial application of microbial fuel cell (MFC). Herein, Fe/Co-decorated nitrogen-rich three-dimensional (3D) layer-stacked porous biochar (Fe/Co-NC-x) have been synthesized from silk gel through secondary carbonization of activated carbons which firstly adsorbed metal ions. The multilayer porous structure of Fe/Co-NC-3 contributes to construction of high specific surface area (576 m2 g-1), large pore volume (1.27 cm3 g-1) and many defect structure (ID/IG = 1.004). As expected, with Fe/Co synergistic effect, Fe/Co-NC-3 exhibits excellent ORR performance through 4e- pathway with good methanol resistance. In addition, the performance of MFC using Fe/Co-NC-3 as air-cathode catalyst is more prominent with higher maximum power density (1059.62 ± 30.00 mW m-2) compared to that using NC (668.19 ± 9.84 mW m-2) and commercial Pt/C catalyst (957.33 ± 10.50 mW m-2). Therefore, Fe/Co-NC-3 should be a prospective catalyst in the practical application of fuel cells and other energy devices.
Collapse
|
45
|
Burratti L, Zannotti M, Maranges V, Giovannetti R, Duranti L, De Matteis F, Francini R, Prosposito P. Poly(ethylene glycol) Diacrylate Hydrogel with Silver Nanoclusters for Water Pb(II) Ions Filtering. Gels 2023; 9:gels9020133. [PMID: 36826304 PMCID: PMC9957228 DOI: 10.3390/gels9020133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Poly(ethylene glycol) diacrylate (PEGDA) hydrogels modified with luminescent silver nanoclusters (AgNCs) are synthesized by a photo-crosslinking process. The hybrid material thus obtained is employed to filter Pb(II) polluted water. Under the best conditions, the nanocomposite is able to remove up to 80-90% of lead contaminant, depending on the filter composition. The experimental results indicate that the adsorption process of Pb(II) onto the modified filter can be well modeled using the Freundlich isotherm, thus revealing that the chemisorption is the driving process of Pb(II) adsorption. In addition, the parameter n in the Freundlich model suggests that the adsorption process of Pb(II) ions in the modified hydrogel is favored. Based on the obtained remarkable contaminant uptake capacity and the overall low cost, this hybrid system appears to be a promising sorbent material for the removal of Pb(II) ions from aqueous media.
Collapse
Affiliation(s)
- Luca Burratti
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
- Correspondence: (L.B.); (M.Z.)
| | - Marco Zannotti
- Department School of Science and Technology, Chemistry Division, ChIP Research Center, University of Camerino, Via Madonna delle Ceneri, 62032 Camerino, Italy
- Correspondence: (L.B.); (M.Z.)
| | - Valentin Maranges
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Rita Giovannetti
- Department School of Science and Technology, Chemistry Division, ChIP Research Center, University of Camerino, Via Madonna delle Ceneri, 62032 Camerino, Italy
| | - Leonardo Duranti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Fabio De Matteis
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Roberto Francini
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Paolo Prosposito
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
46
|
High efficiency removal of heavy metals and organic pollutants from brassware using raw coal: kinetic adsorption and optimized process. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
47
|
Yin Y, Yang S, Jia Z, Zhang H, Gao Y, Zhang X, Zhong H, Zhou Z, Zhang X, Zhou H. Magnetic biochar based on furfural residue as an excellent candidate for efficient adsorption of Tetracycline, Bisphenol A, Congo red, and Cr 6. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26510-26522. [PMID: 36367652 DOI: 10.1007/s11356-022-23978-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Magnetic porous adsorbent materials are widely favored for their large specific surface area, good adsorption performance, and ease of separation. This work provided a magnetic biochar derived from furfural residue (M-FRAC) with excellent adsorption properties for various pollutants, including Congo red (CR), Tetracycline (TC), Bisphenol A (BPA), and Cr6+. The influence of experimental parameters, such as pollutant concentration, contact time, and pH, on the adsorption properties of M-FRAC was studied in detail. The adsorption process was highly dependent on pH and initial contaminant concentration. All pollutant adsorption was favorable under acidic conditions. The optimal pH of the CR, TC, and Cr6+ adsorption was 5, 4, and 2, respectively, while that of BPA was in the range of 2-5. The experimental equilibrium adsorption amount of CR, TC, BPA, and Cr6+ by M-FRAC was 110.89, 602.81, 157.76, and 265.31 mg/g, respectively. The adsorption processes of pollutants on M-FRAC were in accordance with the Langmuir isotherm model. The adsorption kinetics fitted the pseudo-second-order (PSO) kinetics model. In addition, M-FRAC could be readily separated from solution by applying an external magnetic field. Therefore, the M-FRAC has a good application prospect in practical industrial wastewater treatment.
Collapse
Affiliation(s)
- Yanbo Yin
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shengqi Yang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zuoyu Jia
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Hao Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yuan Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xucheng Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Haojie Zhong
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhongqi Zhou
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xin Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Haifeng Zhou
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
48
|
Wang X, Zhao Z, Wang H, Wang F, Dong W. Decomplexation of Cu-1-hydroxyethylidene-1,1-diphosphonic acid by a three-dimensional electrolysis system with activated biochar as particle electrodes. J Environ Sci (China) 2023; 124:630-643. [PMID: 36182169 DOI: 10.1016/j.jes.2021.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 06/16/2023]
Abstract
The feasibility of decomplexation removal of typical contaminants in electroplating wastewater, complexed Cu(II) with 1-hydroxyethylidene-1,1-diphosphonic acid (Cu-HEDP), was first performed by a three-dimensional electrode reactor with activated biochar as particle electrodes. For the case of 50 mg/L Cu-HEDP, Cu(II) removal (90.7%) and PO43- conversion (34.9%) were achieved under the conditions of electric current 40 mA, initial pH 7, acid-treated almond shell biochar (AASB) addition 20 g/L, and reaction time 180 min, with second-order rate constants of 1.10 × 10-3 and 1.94 × 10-5 min-1 respectively. The growing chelating effect between Cu(II) and HEDP and the comprehensive actions of adsorptive accumulation, direct and indirect oxidation given by particle electrodes accounted for the enhanced removal of Cu-HEDP, even though the mineralization of HEDP was mainly dependent on anode oxidation. The performance attenuation of AASB particle electrodes was ascribed to the excessive consumption of oxygen-containing functionalities during the reaction, especially acidic carboxylic groups and quinones on particle electrodes, which decreased from 446.74 to 291.48 µmol/g, and 377.55 to 247.71 µmol/g, respectively. Based on the determination of adsorption behavior and indirect electrochemical oxidation mediated by in situ electrogenerated H2O2 and reactive oxygen species (e.g., •OH), a possible removal mechanism of Cu-HEDP by three-dimensional electrolysis was further proposed.
Collapse
Affiliation(s)
- Xing Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Feng Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
49
|
Rouibah K, Ferkous H, Delimi A, Himeur T, Benamira M, Zighed M, Darwish AS, Lemaoui T, Yadav KK, Bhutto JK, Ahmad A, Chaiprapat S, Benguerba Y. Biosorption of zinc (II) from synthetic wastewater by using Inula Viscosa leaves as a low-cost biosorbent: Experimental and molecular modeling studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116742. [PMID: 36375437 DOI: 10.1016/j.jenvman.2022.116742] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The use of biosorption as a strategy for lowering the amount of pollution caused by heavy metals is particularly encouraging. In this investigation, a low-cost and efficient biosorbent, Inula Viscosa leaves were used to remove zinc ions (Zn2+) from synthetic wastewater. A Fourier transform infrared spectroscopy experiment, a scanning electron microscopy experiment, and an energy dispersive X-ray spectroscopy experiment were used to describe the support. Several different physicochemical factors, such as the beginning pH value, contact duration, initial zinc concentration, biosorbent dose, and temperature, were investigated in this study. When the Langmuir, Freundlich, Temkin, Toth, and Redlich-Peterson models were used to match the data from the Inula Viscosa leaves biosorption isotherms, it was found that the biosorption isotherms correspond most closely with the Langmuir isotherm. On the other hand, the kinetic biosorption process was investigated using pseudo-first-order, pseudo-second-order (PS2), and Elovich models. The PS2 model was the one that provided the most accurate description of the biosorption kinetics. The thermodynamics process shows the spontaneous and endothermic character of Zn2+ sorption on Inula Viscosa leaves, which also entails the participation of physical interactions. In addition, the atom-in-molecule analysis, density functional theory, and the conductor like screening model for real solvents, were used to investigate the relationship that exists between quantum calculations and experimental outcomes.
Collapse
Affiliation(s)
- Karima Rouibah
- Laboratory of Materials-Elaboration- Properties-Applications (LMEPA), University of MSBY Jijel, PB98 OuledAissa, Jijel, 18000, Algeria; Department of Engineering Proceeding, Faculty of Sciences and Technology, University MSBY Jijel, PB98 Ouled Aissa, Jijel, 18000, Algeria
| | - Hana Ferkous
- Laboratoire de Génie Mécanique et Matériaux, Faculté de Technologie, Université de Skikda, 21000, Algeria; Département de Technologie, Université de Skikda, 21000, Skikda, Algeria
| | - Amel Delimi
- Laboratoire de Génie Mécanique et Matériaux, Faculté de Technologie, Université de Skikda, 21000, Algeria; Département de Technologie, Université de Skikda, 21000, Skikda, Algeria
| | - Touhida Himeur
- Laboratory of Materials-Elaboration- Properties-Applications (LMEPA), University of MSBY Jijel, PB98 OuledAissa, Jijel, 18000, Algeria; Department of Engineering Proceeding, Faculty of Sciences and Technology, University MSBY Jijel, PB98 Ouled Aissa, Jijel, 18000, Algeria
| | - Messaoud Benamira
- Laboratory of Materials Interaction and Environment (LIME), Department of Chemistry, University of MSBY Jijel, PB98 OuledAissa, Jijel, 18000, Algeria
| | - Mohammed Zighed
- Research Unit of Materials, Processes and Environment (URMPE), Faculty of Technology, M'Hamed Bougara University, Boumerdes, Algeria
| | - Ahmad S Darwish
- Department of Chemical Engineering, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Tarek Lemaoui
- Department of Process Engineering, Faculty of Technology, University Ferhat Abbas Setif 1, 19000, Setif, Algeria
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Department of Civil and Environmental Engineering, Faculty of Engineering, PSU Energy Systems Research Institute, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sumate Chaiprapat
- Department of Civil and Environmental Engineering, Faculty of Engineering, PSU Energy Systems Research Institute, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Université Ferhat ABBAS Sétif-1, Sétif, Algeria.
| |
Collapse
|
50
|
Adsorptive removal of Cd2+, Pb2+, and Fe2+ from acid mine drainage using a mixture of waste orange and lemon activated carbon (WOLAC): equilibrium study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|