1
|
Gambino I, Terzaghi E, Baldini E, Bergna G, Palmisano G, Di Guardo A. Microcontaminants and microplastics in water from the textile sector: a review and a database of physicochemical properties, use in the textile process, and ecotoxicity data for detected chemicals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:297-319. [PMID: 39820688 DOI: 10.1039/d4em00639a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Microcontaminants (MCs) and microplastics (MPs) originating from the textile sector are today receiving a great deal of attention due to potential environmental concerns. Environmental pressures and impacts related to the textile system include not only the use of resources (e.g., water) but also the release of a wide variety of pollutants. This review's main objective is to highlight the presence of textile MCs and MPs in water, in their full path from textile factories (from raw materials to the final product) to wastewater treatment plants (WWTPs), and finally to the receiving surface waters. Their environmental fate and ecotoxicity were also addressed. Overall, more than 500 compounds were found, many of which are so called "contaminants of environmental concern" such as per- and polyfluoroalkyl substances (PFAS) and alkylphenol compounds. A database of physicochemical properties, ecotoxicity, and place of detection (specific textile process, WWTP, surface water or sediment) (classification by several international agencies) was compiled for the chemical detected. Preliminary risk assessment was conducted for those MCs for which the reported environmental concentrations exceeded the Predicted No Effect Concentration (PNEC). These chemicals were some nonylphenols, nonylphenol ethoxylates and organophosphate esters. Among MPs, polyester and nylon fibres were the most abundant. The highest concentration of MPs was reported in sludge (about 1.4 × 106 MPs per kg) compared to wastewater and surface water which showed MP concentrations at least two orders of magnitude lower. The role of transboundary contamination due to the release of chemicals from imported textile products was also assessed.
Collapse
Affiliation(s)
- Isabella Gambino
- Environmental Modelling Group, Department of Science and High Technology (DiSAT), University of Insubria, Como, 22100, Italy.
| | - Elisa Terzaghi
- Environmental Modelling Group, Department of Science and High Technology (DiSAT), University of Insubria, Como, 22100, Italy.
| | | | | | - Giovanni Palmisano
- Environmental Modelling Group, Department of Science and High Technology (DiSAT), University of Insubria, Como, 22100, Italy.
| | - Antonio Di Guardo
- Environmental Modelling Group, Department of Science and High Technology (DiSAT), University of Insubria, Como, 22100, Italy.
| |
Collapse
|
2
|
Li Z, Chen F, Liu J, Zhi L, Junaid M, Chen G, Xiao Z, Wang J, Chong Y. Polystyrene nanoplastics sequester the toxicity mitigating potential of probiotics by altering gut microbiota in grass carp (Ctenopharyngodon idella). JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136778. [PMID: 39644853 DOI: 10.1016/j.jhazmat.2024.136778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
This study evaluated the role of probiotics in enhancing intestinal immunity and mitigating polystyrene nanoplastics (PS-NPs)-induced toxicity in grass carp (Ctenopharyngodon idella). Grass carp were fed probiotics (Bacillus subtilis, Bacillus velezensis, Lactobacillus reuteri, and Lactococcus lactis) for two weeks before being exposed to PS-NPs for five days. Probiotic pretreatment alleviated PS-NPs-induced intestinal damage, with Bacillus velezensis and Lactococcus lactis groups showing milder vacuolation and villus breakage than other groups. Probiotic-treated fish exhibited transient increases in antioxidant enzyme activities (CAT, SOD, MPO) and immune gene expression (IL-6, IL-8, IL-10, IL-1β, TNF-α, and IFN-γ2) shortly after exposure, followed by significant downregulation over time. Higher abundance of the gut dominant phylum Proteobacteria was observed in four probiotic groups exposed to PS-NPs than that in the blank control group. The Clostridium phylum showed a significant decrease in the abundance both in the LRS-PS100 and LLS-PS100 groups, while the abundance of the Thick-walled phylum increased. The Spearman correlation matrix revealed that specific gut microbiota, such as Serratia, Neisseria, and Lactococcus, were significantly associated with enzymatic activities and immune system related genes' expressions. Probiotic pretreatment enhanced the intestinal immune response of grass carp. However, this enhanced immune response was insufficient to counteract the toxic effects of PS-NPs exposure, particularly in terms of oxidative stress levels and gut microbial diversity. This study offers new insights into the potential of probiotics to combat NPs pollution in aquaculture. It emphasizes the need for further research to explore various probiotic combinations. Future studies should also investigate optimal dosages and durations to effectively mitigate the biological toxicity of NPs pollution.
Collapse
Affiliation(s)
- Zhen Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Fang Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Liu
- College of Science and Technology, University of Macau, Macau 999078, China
| | - Linyong Zhi
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhengzhong Xiao
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Jun Wang
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Yunxiao Chong
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Yuan KK, Yu YY, Liu YJ, Yang XL, Mo YH, Shi W, Liu GX, Li HY, Yang WD. Microplastics-exposure experience aggravates the accumulation of diarrhetic shellfish toxins (DSTs) in thick-shell mussel Mytilus coruscus through impairing detoxification processes. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136782. [PMID: 39644847 DOI: 10.1016/j.jhazmat.2024.136782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Possessing sessile filter-feeding lifestyle, bivalves are more susceptible to contamination by benthic phycotoxins such as the diarrhetic shellfish toxins (DSTs). Due to the prevalence of microplastics (MPs) in aquatic environments, bivalve that experienced MP-exposure are potentially at higher risk from exposure to DSTs-producing microalgae, however, little is known about the impacts of past MP-exposure experience on the accumulation of DSTs. In this study, taking polystyrene (PS) MPs and DSTs-producing Prorocentrum lima as representatives, the impacts of MP-exposure on DSTs accumulation were evaluated in the thick-shell mussel Mytilus coruscus. Our results demonstrated that mussels with MP-exposure experience accumulated markedly higher levels of DSTs in their digestive glands, which may result from a significant impairment of detoxification. In addition, although might exert their effects through different mechanisms, both MP- and/or P. lima-exposure aggravated the level of oxidative stress and led to significant histological lesion of the digestive glands, with the highest stress and lesion observed in mussels that exposed to P. lima after a 21-day MP-exposure. Collectively, our results indicate the risk of DSTs-contamination of bivalves could be markedly aggravated by the ubiquitous presence of MPs, which may pose a severe threat to human consumers and warrants upmost attention.
Collapse
Affiliation(s)
- Kuan-Kuan Yuan
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ying-Ying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Jie Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiu-Lin Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Hang Mo
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guang-Xu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Wei Y, Gao Y, Zhang S, Li Y, Wang Z, Zhang X, Li Z, Li J, Chen Y, Wu D. Gibberellic acid (GA) induces developmental toxicity in zebrafish (Danio rerio) embryos via oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107247. [PMID: 39924290 DOI: 10.1016/j.aquatox.2025.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 02/11/2025]
Abstract
Gibberellic acid (GA) is a plant growth regulator that stimulates the growth of leaves and increases yield in agricultural production. However, GA is also regarded as an environmental endocrine disruptor, and its effect on aquatic life remains unclear. In this study, the toxic effects of GA on the development of zebrafish (Danio rerio) embryos were evaluated, and the mechanisms were revealed. The expression of genes related to development and function in zebrafish embryos at 96 h post fertilization (96 hpf) were detected by RT-qPCR method. Furthermore, the level of reactive oxygen species (ROS) and the expression of genes related to oxidative stress were detected. The results showed that the hatching and survival rates of zebrafish embryos were inhibited by 25 and 50 μmol/L GA, and the phenotype of pericardial edema was observed, indicating that GA may have cardiotoxicity on zebrafish embryos. Further RT-qPCR experiments showed that the above results may attributed to the down-regulation of Myl7 and Vmhc genes. Besides, the phenotypes of liver degeneration, and the decrease of eye size were led by 10-50 μmol/L GA, along with the alteration of Fabp10a, Gclc, Gsr, Gnat1, and Gnat2 genes, suggesting that GA may exhibit toxicities on liver and eye in zebrafish embryos. In addition, the phenotype of kidney edema and the up-regulation of Kim1, Plce1, and Pkd2 genes were triggered by 50 μmol/L GA, indicating that GA may have toxic effect on kidney in zebrafish embryos. The level of ROS and the expression of genes related to oxidative stress were up-regulated under 10-50 μmol/L GA exposure, which may contribute to the developmental toxicity in zebrafish embryos. In summary, GA may affect the ecological environment of aquatic life, and its harm to aquatic ecology should be given special attention in the future.
Collapse
Affiliation(s)
- Ying Wei
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154000, PR China
| | - Yan Gao
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Sida Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Yue Li
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154000, PR China
| | - Zuoying Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Xu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Zan Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China.
| | - Ying Chen
- First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154007, PR China.
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China.
| |
Collapse
|
5
|
Dai J. Wavelet-Based Method for Variations of Microplastics over a Monthly Lunar Tidal Cycle in Beach Sediments of Maowei Bay, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:29. [PMID: 39890670 DOI: 10.1007/s00128-024-04005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/27/2024] [Indexed: 02/03/2025]
Abstract
While microplastics from lake, beach and ocean environment has become a growing global concern, tidal variations of microplastics in beach sediments are not well documented. Here, sediments were sampled over one monthly lunar tidal cycle during low tidal period in Shajing Beach along the Maowei Bay, China. The shape and abundance of microplastics were measured in sediments to determine their periodic variations by wavelet analysis method. The results showed that microplastics are generally granule, fiber and film shapes on Shajing Beach. The dominant type was fiber, followed by the granule. Meanwhile, the microplastic abundances showed a periodic change about 15 days. The granule and fiber but not film also followed such periodic variations. Tourism and human activities along the bay are the most likely causes for microplastics in Shajing Beach, while half-mouth of tidal cycle is responsible for the periodic variation of microplastic abundances and types.
Collapse
Affiliation(s)
- Jiaxi Dai
- Faculty of Science, the Chinese University of Hongkong, Hongkong, China.
| |
Collapse
|
6
|
Parrilla-Lahoz S, Zambrano MC, Pawlak JJ, Venditti RA, Ramirez Reina T, Odriozola JA, Duyar MS. Textile microfibers valorization by catalytic hydrothermal carbonization toward high-tech carbonaceous materials. iScience 2024; 27:111427. [PMID: 39697596 PMCID: PMC11652939 DOI: 10.1016/j.isci.2024.111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Microplastics fibers shed from washing synthetic textiles are released directly into the waters and make up 35% of primary microplastics discharged to the aquatic environment. While filtration devices and regulations are in development, safe disposal methods remain absent. Herein, we investigate catalytic hydrothermal carbonization (HTC) as a means of integrating this waste (0.28 million tons of microfibers per year) into the circular economy by catalytic upcycling to carbon nanomaterials. Herein, we show that cotton and polyester can be converted to filamentous solid carbon nanostructures using a Fe-Ni catalyst during HTC. Results revealed the conversion of microfibers into amorphous and graphitic carbon structures, including carbon nanotubes from a cotton/polyethylene terephthalate (PET) mixture. HTC at 200°C and 22 bar pressure produced graphitic carbon in all samples, demonstrating that mixed microfiber wastes can be valorized to provide potentially valuable carbon structures by modifying reaction parameters and catalyst formulation.
Collapse
Affiliation(s)
- Silvia Parrilla-Lahoz
- School of Chemistry and Chemical Engineering, University of Surrey, GU2 7XH Guildford, UK
- Inorganic Chemistry Department & Materials Science Institute, University of Seville-CSIC, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Marielis C. Zambrano
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695-8005, USA
| | - Joel J. Pawlak
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695-8005, USA
| | - Richard A. Venditti
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695-8005, USA
| | - Tomas Ramirez Reina
- School of Chemistry and Chemical Engineering, University of Surrey, GU2 7XH Guildford, UK
- Inorganic Chemistry Department & Materials Science Institute, University of Seville-CSIC, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Jose Antonio Odriozola
- Inorganic Chemistry Department & Materials Science Institute, University of Seville-CSIC, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Melis S. Duyar
- School of Chemistry and Chemical Engineering, University of Surrey, GU2 7XH Guildford, UK
| |
Collapse
|
7
|
Duong LTK, Nguyen TTT, Tran TV. Combined pollution of tetracyclines and microplastics in the aquatic environment: Insights into the occurrence, interaction mechanisms and effects. ENVIRONMENTAL RESEARCH 2024; 263:120223. [PMID: 39448014 DOI: 10.1016/j.envres.2024.120223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Tetracyclines, a widely used class of antibiotics, and synthetic plastic products are both prevalent in the environment. When released into water bodies, these pollutants can pose significant risks due to their daily influx into aquatic ecosystems. Microplastics can adsorb tetracyclines, acting as a transport vector that enhances their impact on aquatic species. Understanding the co-exposure effects of microplastics and tetracyclines is crucial. This review comprehensively examines the occurrence and distribution of microplastics and tetracyclines across various environmental contexts. The interactions between these two contaminants are primarily driven by electrostatic interactions, hydrophobic effects, hydrogen bonding, π-π interactions, and others. Factors such as the presence of heavy metals, ions, and dissolved organic matter can influence the adsorption and desorption of tetracyclines onto microplastics. The stability of microplastic-tetracycline complexes is highly dependent on pH conditions. The combined pollution tetracyclines and microplastics leads to negative impacts on marine species. Future research should focus on understanding the adsorption behavior of tetracyclines on microplastics and developing effective treatment techniques for these contaminants in aquatic environments.
Collapse
Affiliation(s)
- Loan Thi Kim Duong
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Nong Lam University Ho Chi Minh City, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Nong Lam University Ho Chi Minh City, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
8
|
Kanak K, Ahmed MK, Islam MS, Hasan M, Chowdhury KMA, Hossain KB. Microplastic pollution along the coastal island shorelines of Bangladesh: Distribution, patterns, and abundance. Heliyon 2024; 10:e40723. [PMID: 39687134 PMCID: PMC11648902 DOI: 10.1016/j.heliyon.2024.e40723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Microplastics (MPs), less than 5 mm in length, have become a major environmental issue due to their hazardous physical and chemical properties. The research investigated 54 sediment samples collected from three different zones of the beaches, namely the wrack line, beach face, and swash zone. This study aims to enumerate the number and polymeric variety of microplastics found in beach sediments from coastal islands of Bangladesh, including Sandwip, Kutubdia, and Saint Martin's Island in the northeastern Bay of Bengal. NaCl solution with the density of 1.2 g/cm3 was used as a density-separating solvent. Microplastics were extracted using conventional protocols, yielding an average of 193 ± 68.9, 175.5 ± 63.1, and 266.3 ± 232 particles per kg from the collected samples of Sandwip, Kutubdia, and Saint Martin's Island respectively, with five morphotypes: fiber, film, fragment, foam, and pellet, where fiber dominated each island. White microplastics were most spread in both Sandwip and Saint Martin's Island, whereas translucent and blue were most abundant in Kutubdia. Moreover, polypropylene (PP) was shown to be the greatest number of polymer groups among those analyzed microplastic particles using ATR-FTIR (Attenuated total reflectance-Fourier transform infrared) spectrometer. Using scanning electron microscopy (SEM), it was also possible to detect surface degradation, rupture, or fracture that was probably caused by the environment. The study emphasizes the critical need for continued research and monitoring to better understand the dynamics of microplastic pollution and its long-term impacts. By tackling the underlying causes and implementing effective management practices, we can achieve a cleaner and more sustainable future for coastal communities and marine ecosystems.
Collapse
Affiliation(s)
- Kamrunnahar Kanak
- Department of Oceanography, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Kawser Ahmed
- Department of Oceanography, University of Dhaka, Dhaka 1000, Bangladesh
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Mahmudul Hasan
- Department of Oceanography, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | |
Collapse
|
9
|
Chen G, Pan T, Gao D, Liao H, Wang J. Enhanced competitiveness of Spirodela polyrhiza in co-culture with Salvinia natans under combined exposure to polystyrene nanoplastics and polychlorinated biphenyls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176870. [PMID: 39414046 DOI: 10.1016/j.scitotenv.2024.176870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Micro- and nanoplastics (MNPs) and polychlorinated biphenyls (PCBs) are prevalent in the environment and pose potential threats to ecosystems. However, studies on the phytotoxicity of MNPs and PCBs on primary producers are limited. This study investigated the effects of polystyrene nanoplastics (PS-NPs, 10 mg/L) and 2,2',5,5'-tetrachlorobiphenyl (PCB-52, 0.1 mg/L), on the growth of Spirodela polyrhiza and Salvinia natans, and their impact on plant competitive ability under co-culture conditions. Laser confocal microscopy images revealed that PS-NPs accumulated on the leaf and root surfaces of both species. Combined exposure to PS-NPs and PCB-52 significantly inhibited the average specific and relative growth rates (RGR) of both species, reduced chlorophyll a and b levels, and slightly increased carotenoid content, disrupting the photosynthetic system. PCB-52 exacerbated PS-NPs accumulation on plants, leading to increased hydrogen peroxide (H2O2) and superoxide anion (O2-) production in both roots and leaves. This affects the activity of superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), and the soluble protein content. The combined treatment with PS-NPs and PCB-52 induced greater ecological stress in both species than the treatment with PS-NPs alone. In addition, the combined treatment with PS-NPs and PCB-52 significantly improved the relative yield and competition balance index of S. polyrhiza, indicating that PS-NPs + PCB-52 enhanced the competitive ability of S. polyrhiza when co-cultured with S. natans. This study confirmed the effects of co-exposure to PS-NPs and PCB-52 on aquatic plant growth and species competition, contributing to better insight into the ecological impacts of MNPs and organic pollutants.
Collapse
Affiliation(s)
- Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Flores-Díaz A, Alatriste-Mondragón F, Rittmann B, Rangel-Mendez R, Ontiveros-Valencia A. Biotransformation of microplastics from three-layer face masks by nitrifying-denitrifying consortia. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136161. [PMID: 39423648 DOI: 10.1016/j.jhazmat.2024.136161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
COVID-19 increased microplastics (MP) contamination due to the extensive use of single-use personal protective equipment, particularly three-layer face masks. MP from face masks enter wastewater treatment plants (WWTPs), which were not designed to remove them. We utilized nitrifying-denitrifying microbial consortia and synthetic urban wastewater to evaluate the biotransformation of MP from each layer of three-layer face masks made of polypropylene (PP). The biotransformation carried out by the nitrifying-denitrifying consortia altered the surface of the outer, middle, and inner layers, as a consequence of the chemical modification of the PP-MP structure. Abiotic controls did not show changes on the physicochemical and thermal properties of PP-MP. Biotic tests showed increments in both the carbonyl and hydroxyl indices of the three layers in 42 days. The outer layer showed the greatest degree of biotransformation, which was consistent with morphological changes detected by scanning electron microscopy and in physicochemical properties such as crystallinity, evaporation, and fusion temperature. The nitrifying-denitrifying consortia, which removed 99 % of the total nitrogen from the synthetic urban wastewater, had several genera with proven capacity to biotransform MP such as Cephaloticoccus and Pseudomonas.
Collapse
Affiliation(s)
- Amairani Flores-Díaz
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, Mexico
| | - Felipe Alatriste-Mondragón
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, Mexico
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Rene Rangel-Mendez
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, Mexico.
| | - Aura Ontiveros-Valencia
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, Mexico.
| |
Collapse
|
11
|
Leal Filho W, Voronova V, Barbir J, Moora H, Kloga M, Kliučininkas L, Klavins M, Tirca DM. An assessment of the scope and effectiveness of soft measures to handle plastic pollution in the Baltic Sea Region. MARINE POLLUTION BULLETIN 2024; 209:117090. [PMID: 39454395 DOI: 10.1016/j.marpolbul.2024.117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
As a semi-closed sea, the Baltic Sea is especially vulnerable to human activities and pressures, such as tourism, industry, and increasing population size, which is also associated with increasing levels of plastic pollution. Apart from legal frameworks and technical solutions (e.g., waste management infrastructure), one of the means to address the problem is the use of soft measures, understood as non-compulsory, non-infrastructure, low-investment and low-effort measures that can be implemented in a way that is less complicated and costly than technical solutions. Based on the perceived need to further understand this matter, this paper discusses the role of soft measures in tackling plastic pollution. This paper combines a multi-methods approach consisting of a literature review on the topic, complemented by concrete examples of soft measures from different countries across the Baltic region. Drawing from the experiences gathered, it provides some suggestions aiming to maximise the impacts of soft measures and encourage their use as one of the tools that can be deployed to handle plastic pollution in the Baltic Sea Region and beyond.
Collapse
Affiliation(s)
- Walter Leal Filho
- Research and Transfer Centre "Sustainable Development and Climate Change Management" Hamburg University of Applied Sciences, Germany, and Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Viktoria Voronova
- Department of Civil Engineering and Architecture, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.
| | - Jelena Barbir
- Research and Transfer Centre "Sustainable Development and Climate Change Management", Hamburg University of Applied Sciences, 21033, Ulmlient 20, Hamburg, Germany.
| | - Harri Moora
- Stockholm Environment Institute Tallinn Centre, Erika 14, 10416 Tallinn, Estonia.
| | - Marija Kloga
- Department of Civil Engineering and Architecture, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.
| | - Linas Kliučininkas
- Department of Environmental Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania.
| | - Maris Klavins
- Department of Environmental Science, University of Latvia, Raina blvd. 19, LV1548 Riga, Latvia.
| | - Diana-Mihaela Tirca
- Faculty of Economics, Constantin Brancusi University of Targu Jiu, Tineretului Street, No. 4, Targu Jiu, Romania.
| |
Collapse
|
12
|
Chakraborty S, Banerjee M, Jayaraman G, Rajeswari V D. Evaluation of the health impacts and deregulation of signaling pathways in humans induced by microplastics. CHEMOSPHERE 2024; 369:143881. [PMID: 39631686 DOI: 10.1016/j.chemosphere.2024.143881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
This review assesses the diverse health risk factors associated with microplastic (MP) exposure and their impact on cellular signaling pathways. MPs induce chronic inflammation, oxidative stress, endocrine disruption, apoptosis, and immune dysregulation. They activate signaling pathways such as NF-κB, MAPK, and Nrf2, exacerbating inflammatory responses, oxidative damage, and hormonal imbalances. Understanding the interplay between MPs and signaling pathways is crucial for elucidating the mechanisms underlying MP-induced health effects. Effective risk assessment and management strategies are essential to mitigate the adverse health impacts of MPs on human populations. This research underscores the urgent need for interdisciplinary collaboration to safeguard human health and environmental sustainability in the face of rising MP pollution. In this paper, we also assess the risk factors caused by the microplastics in the pregnant women and the development of the fetus. This review explores the potential risks and challenges associated with MP exposure in newborn babies. It is quite concerning that microplastic particles were recently found in the placental tissue of newborn children for the first time. Although it is unclear how these tiny particles affect different organs, researchers believe that these tiny particles could potentially carry harmful chemicals or disrupt the developing immune system of the fetus. This review overall focuses on the impact of microplastic disrupting different signaling including reproductive health in humans.
Collapse
Affiliation(s)
- Shreya Chakraborty
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Manosi Banerjee
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gurunathan Jayaraman
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Devi Rajeswari V
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
13
|
Mishra S, Ren Y, Sun X, Lian Y, Singh AK, Sharma N, Shikhar KC. Microplastics-biofilm in aquatic ecosystem: Formation, pollutants complexation, greenhouse gas emission and ecotoxicology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122930. [PMID: 39423625 DOI: 10.1016/j.jenvman.2024.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The omnipresent microplastics (MPs) have gradually become a significant environmental problem due to its adverse consequences for ecological systems. MPs serve as substrates for biofilms colonization, which enhances adsorption of harmful contaminants on MPs surface in the aquatic ecosystem. The present study provides a critical discussion on the mechanism involved in MPs-biofilm formation, microbial colonization and the robust factors influencing the process in the aquatic ecosystem. Subsequently, the impact of MPs-biofilm on adsorption of inorganic and organic contaminants is explored. The ecological significance of MPs-biofilm associated pollutant complex for promoting greenhouse gases (GHGs) emissions from aquatic ecosystem is extensively discussed for understanding the climatic risk. Furthermore, the discussion is extended over ecotoxicological impact of MPs-biofilm on aquatic biodiversity and humans. The protective extracellular polymeric substances secreted by colonised bacteria over MPs during biofilm formation creates sticky MPs surface for heteroaggregates formation with swift adsorption of chemical compounds and microorganisms. MPs with functional aromatic groups facilitate the bacterial adhesion on the surface, but affect formation of biofilm. Alternatively, MPs-biofilm promotes the Mn and Fe hydrous oxides formation that can co-precipitate with heavy metal ions and facilitate in remediation measures. However, MPs biodegradation generates GHGs emission per unit mass, comparably more from freshwater than marine ecosystem. Considering the toxicity, MPs-biofilm induces the oxidative response in fishes, causing painful death and thus, destroys aquatic biodiversity. This study will be useful to address MPs-biofilm associated pollution scenario via trace, test and treat strategy involving future engineering research framework for ecological restoration.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yuling Ren
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Xiaonan Sun
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Anurag Kumar Singh
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - Niraj Sharma
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - K C Shikhar
- Institute of Water Resources and Hydropower, Hohai University, Nanjing, 210098, China
| |
Collapse
|
14
|
Bi S, Liu S, Liu E, Xiong J, Xu Y, Wu R, Liu X, Xu J. Adsorption behavior and mechanism of heavy metals onto microplastics: A meta-analysis assisted by machine learning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124634. [PMID: 39084591 DOI: 10.1016/j.envpol.2024.124634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microplastics (MPs) have the potential to adsorb heavy metals (HMs), resulting in a combined pollution threat in aquatic and terrestrial environments. However, due to the complexity of MP/HM properties and experimental conditions, research on the adsorption of HMs onto MPs often yields inconsistent findings. To address this issue, we conducted a comprehensive meta-analysis assisted with machine learning by analyzing a dataset comprising 3340 records from 134 references. The results indicated that polyamide (PA) (ES = -1.26) exhibited the highest adsorption capacity for commonly studied HMs (such as Pb, Cd, Cu, and Cr), which can be primarily attributed to the presence of C=O and N-H groups. In contrast, polyvinyl chloride (PVC) demonstrated a lower adsorption capacity, but the strongest adsorption strength resulting from the halogen atom on its surface. In terms of HMs, metal cations were more readily adsorbed by MPs compared with metalloids and metal oxyanions, with Pb (ES = -0.78) exhibiting the most significant adsorption. As the pH and temperature increased, the adsorption of HMs initially increased and subsequently decreased. Using a random forest model, we accurately predicted the adsorption capacity of MPs based on MP/HM properties and experimental conditions. The main factors affecting HM adsorption onto MPs were HM and MP concentrations, specific surface area of MP, and pH. Additionally, surface complexation and electrostatic interaction were the predominant mechanisms in the adsorption of Pb and Cd, with surface functional groups being the primary factors affecting the mechanism of MPs. These findings provide a quantitative summary of the interactions between MPs and HMs, contributing to our understanding of the environmental behavior and ecological risks associated with their correlation.
Collapse
Affiliation(s)
- Shuangshuang Bi
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Shuangfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yun Xu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ruoying Wu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Xiang Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Jinling Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China.
| |
Collapse
|
15
|
Chelomin VP, Istomina AA, Mazur AA, Slobodskova VV, Zhukovskaya AF, Dovzhenko NV. New Insights into the Mechanisms of Toxicity of Aging Microplastics. TOXICS 2024; 12:726. [PMID: 39453146 PMCID: PMC11510949 DOI: 10.3390/toxics12100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Nowadays, synthetic polymer (plastic) particles are ubiquitous in the environment. It is known that for several decades microplastics (MPs) have been accumulating in the World Ocean, becoming available to a large variety of marine organisms. Particularly alarming is the accumulation of aging plastic particles, as the degradation processes of such particles increase their toxicity. The diverse display of negative properties of aging MPs and its effect on biota are still poorly understood. In this study, in vitro experiments modeling the interaction of pristine and UV-irradiated aging polypropylene (PP) fragments with hemocytes and mitochondria of bivalve mollusks Mytilus sp. were performed. The appearance of free radicals in the environment was recorded by spectral characteristics of indicator dyes-methylene blue (MB) and nitroblue tetrazolium (NBT). It was found that due to photooxidation, aging PP fragments sorbed more than threefold MB on their modified surface compared to pristine samples of this polymer. Using NBT, the formation of reactive oxygen species in seawater in the presence of pristine and photoactivated PP was recorded. It was also found that photodegraded PP fragments largely stimulated the development of lipid peroxidation processes in mitochondrial membranes and reduced the stability of hemocyte lysosome membranes compared to pristine PP fragments. In general, the results obtained concretize and supplement with experimental data the previously stated hypothesis of toxicity of aging MPs.
Collapse
|
16
|
Awasthi MK, Dregulo AM, Yadav A, Kumar V, Solanki MK, Garg VK, Sindhu R. Hormesis of black soldier fly larva: Influence and interactions in livestock manure recycling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122352. [PMID: 39232324 DOI: 10.1016/j.jenvman.2024.122352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Black soldier fly larvae (BSFL) are considered important organisms, utilized as tools to transform waste including manure into valuable products. The growth and cultivation of BSFL are influenced by various factors, such as the presence of toxic substances in the feed and parasites. These factors play a crucial role in hormesis, and contributing to regulate these contaminants hermetic doses to get sustainable byproducts. This review aims to understand the effects on BSFL growth and activities in the presence of compounds like organic and inorganic pollutants. It also assesses the impact of microbes on BSFL growth and explores the bioaccumulation of pharmaceutical compounds, specifically focusing on heavy metals, pesticides, pharmaceuticals, indigenous bacteria, insects, and nematodes. The review concludes by addressing knowledge gaps, proposing future biorefineries, and offering recommendations for further research.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| | - Andrei Mikhailovich Dregulo
- National Research University Higher School of Economics, 17 Promyshlennaya str, 198095, Saint-Petersburg, Russia
| | - Anoop Yadav
- Department of Environmental Studies, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam-602105, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India; Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Vinod Kumar Garg
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, 151001, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, 691505, Kerala, India
| |
Collapse
|
17
|
Aydin S, Ulvi A, Aydin ME. Occurrence, characteristics, and risk assessment of microplastics and polycyclic aromatic hydrocarbons associated with microplastics in surface water and sediments of the Konya Closed Basin, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57989-58009. [PMID: 39305415 DOI: 10.1007/s11356-024-35029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/15/2024] [Indexed: 10/11/2024]
Abstract
The presence of polycyclic hydrocarbons (PAHs) and microplastics (MPs) in aquatic environments affects the ecosystems and threatens human health. In this study, the abundance, composition, and morphological characteristics of MPs were determined for the first time in the inland freshwater resources of the Konya Closed Basin, Turkey. The abundance of MPs ranged from 1139 to 23,444 particles/m3 and 150 to 3510 particles/kg in the surface water and sediment, respectively. Fragments and fibers were the most abundant MP shapes in the surface waters (51%, 34%) and sediments (29%, 40%), followed by films, pellets, and foams. Transparent and white MPs were present at the highest percentage in surface waters (72%) and sediments (69%), followed by blue, grey, black, brown, and green. In addition, polyethylene, polypropylene, and cellophane were identified as the main polymers in surface waters (34%, 25%, 24%) and sediments (37%, 17%, 31%). In the Konya Closed Basin, 35% of the surface water samples and 54% of the sediment samples were exposed to very high contamination (CF ≥ 6). Surface waters (PLI: 2.51) and sediments (PLI: 1.67) in the basin were contaminated (PLI > 1) with MPs. The 16 PAHs sorbed on MPs in the surface water and sediment ranged from 394 to 24,754 ng/g and from 37 to 18,323 ng/g, respectively. Phenanthrene and fluoranthene were the most abundant PAHs sorbed on MPs in all surface waters and sediments. Two to three-ring PAH compounds sorbed on MPs were also dominantly detected in surface waters and sediments, accounting for 68% and 78% of the total 16 PAHs, respectively. The source of PAHs carried by MPs in the Konya Closed Basin was mainly of petrogenic origin. Incremental lifetime cancer risk (ILCR) results indicated that the maximum ILCR values were higher than the EPA acceptable level (10-6) for child (2.95 × 10-5) and adult (1.46 × 10-4), indicating a potential cancer risk.
Collapse
Affiliation(s)
- Senar Aydin
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey.
| | - Arzu Ulvi
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Emin Aydin
- Department of Civil Engineering, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
18
|
Gong K, Hu S, Zhang W, Peng C, Tan J. Topic modeling discovers trending topics in global research on the ecosystem impacts of microplastics. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:425. [PMID: 39316202 DOI: 10.1007/s10653-024-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
The ecological threats of microplastics (MPs) have sparked research worldwide. However, changes in the topics of MP research over time and space have not been evaluated quantitatively, making it difficult to identify the next frontiers. Here, we apply topic modeling to assess global spatiotemporal dynamics of MP research. We identified nine leading topics in current MP research. Over time, MP research topics have switched from aquatic to terrestrial ecosystems, from distribution to fate, from ingestion to toxicology, and from physiological toxicity to cytotoxicity and genotoxicity. In most of the nine leading topics, a disproportionate amount of independent and collaborative research activity was conducted in and between a few developed countries which is detrimental to understanding the environmental fates of MPs in a global context. This review recognizes the urgent need for more attention to emerging topics in MP research, particularly in regions that are heavily impacted but currently overlooked.
Collapse
Affiliation(s)
- Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Peng
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
19
|
Yin J, Zhu T, Li X, Yin X, Xu J, Xu G. Polystyrene nanoplastics induce cell type-dependent secondary wall reinforcement in rice (Oryza sativa) roots and reduce root hydraulic conductivity. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135309. [PMID: 39053057 DOI: 10.1016/j.jhazmat.2024.135309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Nanoplastics (NPs) have been demonstrated the ability to penetrate plant roots and cause stress. However, the extent of NPs penetration into various root tissues and the corresponding plant defense mechanisms remain unclear. This study examined the penetration and accumulation patterns of polystyrene nanoplastics (PS-NPs) in different cell types within rice roots, and explored how the roots quickly modify their cell wall structure in response. The findings showed that fully developed sclerenchyma cells in rice roots effectively prevented the invasion of PS-NPs. Meanwhile, PS-NPs triggered the accumulation of lignin and suberin in specific cells such as the exodermis, sclerenchyma, and xylem vessels. PS-NPs at a concentration of 50 mg L-1 increased cell wall thickness by 18.6 %, 21.1 %, and 22.4 % in epidermis, exodermis, and sclerenchyma cells, respectively, and decreased root hydraulic conductivity by 14.8 %. qPCR analysis revealed that PS-NPs influenced the cell wall synthesis pathway, promoting the deposition of lignin and suberin monomers on the secondary wall through the up-regulation of genes such as OsLAC and OsABCG. These results demonstrate that PS-NPs can induce cell type-specific strengthening of secondary walls and barrier formation in rice roots, suggesting the potential role of plant secondary wall development in mitigating NPs contamination risks in crops.
Collapse
Affiliation(s)
- Jingjing Yin
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Tongshan Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan 250100, PR China
| | - Xiaozun Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Xiao Yin
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Jiandi Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Guoxin Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China.
| |
Collapse
|
20
|
Zhuo T, Yu K, Chai B, Tang Q, Gao X, Wang J, He L, Lei X, Li Y, Meng Y, Wu L, Chen B. Microplastics increase the microbial functional potential of greenhouse gas emissions and water pollution in a freshwater lake: A metagenomic study. ENVIRONMENTAL RESEARCH 2024; 257:119250. [PMID: 38844031 DOI: 10.1016/j.envres.2024.119250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Aquatic ecosystems are being increasingly polluted by microplastics (MPs), which calls for an understanding of how MPs affect microbially driven biogenic element cycling in water environments. A 28-day incubation experiment was conducted using freshwater lake water added with three polymer types of MPs (i.e., polyethylene, polypropylene, polystyrene) separately or in combination at a concentration of 1 items/L. The effects of various MPs on microbial communities and functional genes related to carbon, nitrogen, phosphorus, and sulfur cycling were analyzed using metagenomics. Results showed that Sphingomonas and Novosphingobium, which were indicator taxa (genus level) in the polyethylene treatment group, made the largest functional contribution to biogenic element cycling. Following the addition of MPs, the relative abundances of genes related to methane oxidation (e.g., hdrD, frhB, accAB) and denitrification (napABC, nirK, norB) increased. These changes were accompanied by increased relative abundances of genes involved in organic phosphorus mineralization (e.g., phoAD) and sulfate reduction (cysHIJ), as well as decreased relative abundances of genes involved in phosphate transport (phnCDE) and the SOX system. Findings of this study underscore that MPs, especially polyethylene, increase the potential of greenhouse gas emissions (CO2, N2O) and water pollution (PO43-, H2S) in freshwater lakes at the functional gene level.
Collapse
Affiliation(s)
- Tianyu Zhuo
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China; Collaborative Innovation Center for Intelligent Regulation and Comprehensive Management of Water Resources, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan, 056038, China
| | - Kehong Yu
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Beibei Chai
- Collaborative Innovation Center for Intelligent Regulation and Comprehensive Management of Water Resources, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan, 056038, China; Hebei Key Laboratory of Intelligent Water Conservancy, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan, 056038, China.
| | - Qingfeng Tang
- Beijing Center for Physical & Chemical Analysis, Beijing, 100089, China
| | - Xia Gao
- Beijing Center for Physical & Chemical Analysis, Beijing, 100089, China
| | - Jiamin Wang
- Beijing Center for Physical & Chemical Analysis, Beijing, 100089, China
| | - Lixin He
- Collaborative Innovation Center for Intelligent Regulation and Comprehensive Management of Water Resources, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan, 056038, China
| | - Xiaohui Lei
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Yang Li
- School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Yuan Meng
- School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan, 056038, China; School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Lifeng Wu
- Hebei Key Laboratory of Intelligent Water Conservancy, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan, 056038, China
| | - Bin Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan, 056038, China.
| |
Collapse
|
21
|
Deo L, Benjamin LK, Osborne JW. Critical review on unveiling the toxic and recalcitrant effects of microplastics in aquatic ecosystems and their degradation by microbes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:896. [PMID: 39230754 DOI: 10.1007/s10661-024-13023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Production of synthetic plastic obtained from fossil fuels are considered as a constantly growing problem and lack in the management of plastic waste has led to severe microplastic pollution in the aquatic ecosystem. Plastic particles less than 5mm are termed as microplastics (MPs), these are pervasive in water and soil, it can also withstand longer period of time with high durability. It can be broken down into smaller particles and can be adsorbed by various life-forms. Most marine organisms tend to consume plastic debris that can be accumulated easily into the vertebrates, invertebrates and planktonic entities. Often these plastic particles surpass the food chain, resulting in the damage of various organs and inhibiting the uptake of food due to the accumulation of microplastics. In this review, the physical and chemical properties of microplastics, as well as their effects on the environment and toxicity of their chemical constituents are discussed. In addition, the paper also sheds light on the potential of microorganisms such as bacteria, fungi, and algae which play a pivotal role in the process of microplastics degradation. The mechanism of microbial degradation, the factors that affect degradation, and the current advancements in genetic and metabolic engineering of microbes to promote degradation are also summarized. The paper also provides information on the bacterial, algal and fungal degradation mechanism including the possible enzymes involved in microplastic degradation. It also investigates the difficulties, limitations, and potential developments that may occur in the field of microbial microplastic degradation.
Collapse
Affiliation(s)
- Loknath Deo
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Jabez William Osborne
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
22
|
Naeem A, Farooq MA, Shafiq M, Arshad M, Din AA, Alazba AA. Quantification and polymeric characterization of microplastics in composts and their accumulation in lettuce. CHEMOSPHERE 2024; 361:142520. [PMID: 38834092 DOI: 10.1016/j.chemosphere.2024.142520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Organic fertilizers have become a vector for the transport of microplastics (MPs), which pose human health concerns through the food chain. This study aimed to quantify and characterize MPs in eight different compost samples of various raw materials and their subsequent translocation to lettuce (Lacuta sativa) grown on contaminated composts. The results revealed that the MP abundance ranged from 3810 to 16530 MP/kg. Municipal solid waste compost (MSWC) had highest abundance (16082 ± 632 MP/kg), followed by leaf compost (LC) and organic compost (OC) (6299 ± 1011 and 3680 ± 419 MP/kg, respectively). MPs of <100 μm in size were most dominant in MSWC and LC. Fragments and fibers were the prevalent shape types, with white/transparent colored MPs being more abundant. Polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were the dominant polymers. MPs accumulation in the lettuce leaves was greatest in the lettuce plants grown on MSWC, followed by those grown on LC and OC, indicating that MSWC grown lettuce is not suitable for human consumption. The decrease in the growth (leaf length, number of leaves, leaf fresh and weights) and physiological (membrane stability index, relative water contents) parameters of lettuce was in line with the trend of MP accumulations. Hence, it is highly important to regulate the plastic contents in compost because it is a threat to ecosystems and human health.
Collapse
Affiliation(s)
- Aamna Naeem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.
| | - Muhammad Shafiq
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh, 11451, Saudi Arabia
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Aamir Alaud Din
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Abdulrahman Ali Alazba
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
23
|
Sarker MAB, Imtiaz MH, Holsen TM, Baki ABM. Real-Time Detection of Microplastics Using an AI Camera. SENSORS (BASEL, SWITZERLAND) 2024; 24:4394. [PMID: 39001173 PMCID: PMC11244247 DOI: 10.3390/s24134394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Microplastics (MPs, size ≤ 5 mm) have emerged as a significant worldwide concern, threatening marine and freshwater ecosystems, and the lack of MP detection technologies is notable. The main goal of this research is the development of a camera sensor for the detection of MPs and measuring their size and velocity while in motion. This study introduces a novel methodology involving computer vision and artificial intelligence (AI) for the detection of MPs. Three different camera systems, including fixed-focus 2D and autofocus (2D and 3D), were implemented and compared. A YOLOv5-based object detection model was used to detect MPs in the captured image. DeepSORT was then implemented for tracking MPs through consecutive images. In real-time testing in a laboratory flume setting, the precision in MP counting was found to be 97%, and during field testing in a local river, the precision was 96%. This study provides foundational insights into utilizing AI for detecting MPs in different environmental settings, contributing to more effective efforts and strategies for managing and mitigating MP pollution.
Collapse
Affiliation(s)
| | - Masudul H Imtiaz
- Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699, USA
| | - Thomas M Holsen
- Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, USA
| | - Abul B M Baki
- Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
24
|
Chen H, Shin T, Park B, Ro K, Jeong C, Jeon HJ, Tan PL. Coupling hyperspectral imaging with machine learning algorithms for detecting polyethylene (PE) and polyamide (PA) in soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134346. [PMID: 38653139 DOI: 10.1016/j.jhazmat.2024.134346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Soil, particularly in agricultural regions, has been recognized as one of the significant reservoirs for the emerging contaminant of MPs. Therefore, developing a rapid and efficient method is critical for their identification in soil. Here, we coupled HSI systems [i.e., VNIR (400-1000 nm), InGaAs (800-1600 nm), and MCT (1000-2500 nm)] with machine learning algorithms to distinguish soils spiked with white PE and PA (average size of 50 and 300 µm, respectively). The soil-normalized SWIR spectra unveiled significant spectral differences not only between control soil and pure MPs (i.e., PE 100% and PA 100%) but also among five soil-MPs mixtures (i.e., PE 1.6%, PE 6.9%, PA 5.0%, and PA 11.3%). This was primarily attributable to the 1st-3rd overtones and combination bands of C-H groups in MPs. Feature reductions visually demonstrated the separability of seven sample types by SWIR and the inseparability of five soil-MPs mixtures by VNIR. The detection models achieved higher accuracies using InGaAs (92-100%) and MCT (97-100%) compared to VNIR (44-87%), classifying 7 sample types. Our study indicated the feasibility of InGaAs and MCT HSI systems in detecting PE (as low as 1.6%) and PA (as low as 5.0%) in soil. SYNOPSIS: One of two SWIR HSI systems (i.e., InGaAs and MCT) with a sample imaging surface area of 3.6 mm² per grid cell was sufficient for detecting PE (as low as 1.6%) and PA (as low as 5.0%) in soils without the digestion and separation procedures.
Collapse
Affiliation(s)
- Huan Chen
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA; Biogeochemistry & Environmental Quality Research Group, Clemson University, Georgetown, SC 29442, USA
| | - Taesung Shin
- USDA Agricultural Research Service, US National Poultry Research Center, Athens, GA 30605, USA
| | - Bosoon Park
- USDA Agricultural Research Service, US National Poultry Research Center, Athens, GA 30605, USA.
| | - Kyoung Ro
- USDA Agricultural Research Service, Coastal Plains Soil, Water & Plant Research Center, Florence, SC 29501, USA
| | - Changyoon Jeong
- Red River Research Station, Louisiana State University Agricultural Center, Bossier City, LA 71112, USA
| | - Hwang-Ju Jeon
- Red River Research Station, Louisiana State University Agricultural Center, Bossier City, LA 71112, USA
| | - Pei-Lin Tan
- Biogeochemistry & Environmental Quality Research Group, Clemson University, Georgetown, SC 29442, USA
| |
Collapse
|
25
|
Sacco VA, Zuanazzi NR, Selinger A, Alliprandini da Costa JH, Spanhol Lemunie É, Comelli CL, Abilhoa V, Sousa FCD, Fávaro LF, Rios Mendoza LM, de Castilhos Ghisi N, Delariva RL. What are the global patterns of microplastic ingestion by fish? A scientometric review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123972. [PMID: 38642794 DOI: 10.1016/j.envpol.2024.123972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024]
Abstract
The billions of tons of plastic released into the environment mostly fragment into smaller particles that reach rivers and oceans, posing toxicity risks to aquatic organisms. As fish serve as excellent environmental indicator organisms, this study aims to comprehensively review and quantify published data regarding the abundance of microplastics (MPs) ingested by fish through scientometric analysis. Systematic analysis reveals that global aquatic ecosystems are contaminated by MPs, with the characteristics of these contaminants stemming from inadequate disposal management practices. The abundance of MPs was recorded in several fish species, notably Cyprinus carpio in natural environments and Danio rerio in controlled environments. According to the surveyed studies, laboratory experiments do not accurately represent the conditions found in natural environments. The results suggest that, in natural environments, the predominant colors of MPs are blue, black, and red. Fibers emerged as the most prevalent type, with polyethylene (PE) and polypropylene (PP) being the most frequently identified chemical compositions. On the other hand, laboratory studies showed that the spheres and fragments ingested were predominantly polystyrene (PS) green, followed by the colors blue and red. This discrepancy complicates drawing accurate conclusions regarding the actual effects of plastic particles on aquatic biota. Given the enduring presence of plastic in the environment, it is imperative to consider and implement environmental monitoring for effective, long-term management.
Collapse
Affiliation(s)
- Vania Aparecida Sacco
- Graduate Program in Comparative Biology, State University of Maringá (UEM), Maringá, Brazil.
| | - Natana Raquel Zuanazzi
- Graduate Program in Comparative Biology, State University of Maringá (UEM), Maringá, Brazil.
| | - Amanda Selinger
- Laboratory of Biology of Marine and Coastal Organisms, Santa Cecília University (UNISANTA), Santos, São Paulo State, Brazil.
| | - João Henrique Alliprandini da Costa
- Laboratory of Ecophysiology and Aquatic Toxicology, São Paulo State University "Júlio de Mesquita Filho" - (UNESP), Campus do Litoral Paulista, 11330-900, São Vicente, SP, Brazil.
| | - Érika Spanhol Lemunie
- Graduate Program in Conservation and Management of Natural Resources, State University of West Paraná (Unioeste), Cascavel, Brazil.
| | - Camila Luiza Comelli
- Graduate Program in Biotechnology - PPGBIOTEC - Universidade Tecnológica Federal do Paraná (UTFPR) Dois Vizinhos, Brazil.
| | - Vinícius Abilhoa
- Laboratório de Ictiologia, Museu de História Natural Capão da Imbuia. Prefeitura Municipal de Curitiba, Secretaria Municipal do Meio Ambiente, Rua Prof. Benedito Conceição, 407 - Capão da Imbuia, CEP 82810080, Curitiba, PR, Brazil.
| | - Fernando Carlos de Sousa
- Laboratório de Anatomia Humana, Universidade Tecnológica Federal do Paraná (UTFPR) Dois Vizinhos, Brazil.
| | - Luis Fernando Fávaro
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| | - Lorena M Rios Mendoza
- Program of Chemistry and Physics, Department of Natural Sciences, University of Wisconsin-Superior, Belknap and Catlin, P.O. Box 2000, Superior, WI, 54880, USA.
| | - Nédia de Castilhos Ghisi
- Graduate Program in Biotechnology - PPGBIOTEC - Universidade Tecnológica Federal do Paraná (UTFPR) Dois Vizinhos, Brazil.
| | - Rosilene Luciana Delariva
- Graduate Program in Comparative Biology, State University of Maringá (UEM), Maringá, Brazil; Laboratory of Ichthyology, Ecology and Biomonitoring, State University of West Paraná (Unioeste), Rua Universitária, University Garden, 1619, Cascavel, PR, Brazil.
| |
Collapse
|
26
|
Chelomin VP, Slobodskova VV, Dovzhenko NV, Mazur AA, Kukla SP. Photoaging Elevated the Genotoxicity of Polystyrene Microplastics to Marine Mussel Mytilus trossulus (Gould, 1850). Int J Mol Sci 2024; 25:5740. [PMID: 38891928 PMCID: PMC11171553 DOI: 10.3390/ijms25115740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Micro-sized particles of synthetic polymers (microplastics) are found in all parts of marine ecosystems. This fact requires intensive study of the degree of danger of such particles to the life activity of hydrobionts and needs additional research. It is evident that hydrobionts in the marine environment are exposed to microplastics modified by biotic and abiotic degradation. To assess the toxic potential of aging microplastic, comparative studies were conducted on the response of cytochemical and genotoxic markers in hemocytes of the mussel Mytilus trossulus (Gould, 1850) after exposure to pristine and photodegraded (UV irradiation) polystyrene microparticles (µPS). The results of cytochemical tests showed that UV-irradiated µPS strongly reduced metabolism and destabilized lysosome membranes compared to pristine µPS. Using a Comet assay, it was shown that the nuclear DNA of mussel hemocytes showed high sensitivity to exposure to both types of plastics. However, the level of DNA damage was significantly higher in mussels exposed to aging µPS. It is suggested that the mechanism of increased toxicity of photo-oxidized µPS is based on free-radical reactions induced by the UV irradiation of polymers. The risks of toxic effects will be determined by the level of physicochemical degradation of the polymer, which can significantly affect the mechanisms of toxicity.
Collapse
Affiliation(s)
| | | | | | - Andrey Alexandrovich Mazur
- Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | |
Collapse
|
27
|
Martín-Pozo L, Mejías C, Santos JL, Martín J, Aparicio I, Alonso E. Influence of microplastic contamination on the dissipation of endocrine disrupting chemicals in soil environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123919. [PMID: 38582188 DOI: 10.1016/j.envpol.2024.123919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Microplastic (MP) contamination is in the spotlight today, yet knowledge of their interaction with other organic contaminants in the soil environment is limited. Concerns extend to endocrine disrupting chemicals (EDCs), known for their potential to interfere with the hormonal systems of organisms and for their persistence and widespread presence in the environment. In this study, the most frequently occurring EDCs were monitored both in alluvial soil and in soil contaminated with different MPs commonly found in soil media, polyethylene, polyamide, and polystyrene. Bisphenol A and parabens were the most rapidly dissipating compounds, followed by triclosan and triclocarban, with the latter showing poor degradation. Per- and polyfluoroalkyl substances (PFAS) showed high persistence as concentrations remained nearly constant throughout the experiment. Although they fitted well with first-order dissipation kinetics, most showed biphasic behavior. The co-occurrence of MPs in the soil influenced the kinetic behavior in most cases although the differences were not very marked. MPs could impact sorption-desorption processes, affecting contaminant mobility and bioavailability to organisms in soil. These findings strengthen evidence for the influence of MPs on the behavior of soil contaminants such as EDCs, not only as vectors or sources of contaminants but by affecting dissipation kinetics.
Collapse
Affiliation(s)
- Laura Martín-Pozo
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011, Seville, Spain.
| | - Carmen Mejías
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011, Seville, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011, Seville, Spain
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011, Seville, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011, Seville, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011, Seville, Spain
| |
Collapse
|
28
|
Ilijin L, Nikolić MV, Vasiljević ZZ, Todorović D, Mrdaković M, Vlahović M, Matić D, Tadić NB, Perić-Mataruga V. Sourcing chitin from exoskeleton of Tenebrio molitor fed with polystyrene or plastic kitchen wrap. Int J Biol Macromol 2024; 268:131731. [PMID: 38649081 DOI: 10.1016/j.ijbiomac.2024.131731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/15/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
In this work we have characterized and compared chitin sourced from exoskeleton of Tenebrio molitor larvae fed with polystyrene or plastic kitchen wrap combined with bran in the ratio 1: 1 with chitin sourced from larvae exoskeleton fed only with bran. Analysis of the frass by ATR-FTIR showed very similar spectra and confirmed degradation of the plastic feed components, while ATR-FTIR analysis of the exoskeleton verified the absence of any plastic residue. Deproteinization followed by demineralization produced 6.78-5.29 % chitin, showing that plastic (polystyrene or plastic kitchen wrap) in the larvae diet resulted in heavier insect exoskeleton, but yielded slightly less chitin, with the lowest value obtained for plastic kitchen wrap in the insect diet. The deacetylation degree of 98.17-98.61 % was determined from measured ATR-FTIR spectra. XRD analysis confirmed the presence of α-chitin with a crystallinity index of 66.5-62 % and crystallite size 4-5 nm. Thermogravimetric analysis showed similar degradation curves for all chitin samples, with two degradation steps. These results show that chitin sourced from exoskeleton of T. molitor larvae fed with plastic (polystyrene or plastic kitchen wrap) and contributing to significant biodegradation of major polluting materials can be a feasible and alternative source of chitin, further promoting a bio-circular economy.
Collapse
Affiliation(s)
- Larisa Ilijin
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia.
| | - Maria Vesna Nikolić
- University of Belgrade - Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Zorka Z Vasiljević
- University of Belgrade - Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Dajana Todorović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia
| | - Marija Mrdaković
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia
| | - Dragana Matić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia
| | - Nenad B Tadić
- University of Belgrade, Faculty of Physics, Studentski trg 12, 11000 Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia
| |
Collapse
|
29
|
Li X, Liu L, Zhang X, Yang X, Niu S, Zheng Z, Dong B, Hur J, Dai X. Aging and mitigation of microplastics during sewage sludge treatments: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171338. [PMID: 38428608 DOI: 10.1016/j.scitotenv.2024.171338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Wastewater treatment plants (WWTPs) receive large quantities of microplastics (MPs) from raw wastewater, but many MPs are trapped in the sludge. Land application of sludge is a significant source of MP pollution. Existing reviews have summarized the analysis methods of MPs in sludge and the effect of MPs on sludge treatments. However, MP aging and mitigation during sludge treatment processes are not fully reviewed. Treatment processes used to remove water, pathogenic microorganisms, and other pollutants in sewage sludge also cause surface changes and degradation in the sludge MPs, affecting the potential risk of MPs. This study integrates MP abundance and distribution in sludge and their aging and mitigation characteristics during sludge treatment processes. The abundance, composition, and distribution of sludge MPs vary significantly with WWTPs. Furthermore, MPs exhibit variable degrees of aging, including rough surfaces, enhanced adsorption potentials for pollutants, and increased leaching behavior. Various sludge treatment processes further intensify these aging characteristics. Some sludge treatments, such as hydrothermal treatment, have efficiently removed MPs from sewage sludge. It is crucial to understand the potential risk of MP aging in sludge and the degradation properties of the MP-derived products from MP degradation in-depth and develop novel MP mitigation strategies in sludge, such as combining hydrothermal treatment and biological processes.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Lulu Liu
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Xiaolei Zhang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - XingFeng Yang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Shiyu Niu
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Zhiyong Zheng
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
30
|
Garcia MM, Romero AS, Merkley SD, Meyer-Hagen JL, Forbes C, Hayek EE, Sciezka DP, Templeton R, Gonzalez-Estrella J, Jin Y, Gu H, Benavidez A, Hunter RP, Lucas S, Herbert G, Kim KJ, Cui JY, Gullapalli RR, In JG, Campen MJ, Castillo EF. In Vivo Tissue Distribution of Polystyrene or Mixed Polymer Microspheres and Metabolomic Analysis after Oral Exposure in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47005. [PMID: 38598326 PMCID: PMC11005960 DOI: 10.1289/ehp13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. OBJECTIVES This study aims to investigate the impacts of polymer microspheres on tissue metabolism in mice by assessing the microspheres ability to translocate across the gut barrier and enter into systemic circulation. Specifically, we wanted to examine microsphere accumulation in different organ systems, identify concentration-dependent metabolic changes, and evaluate the effects of mixed microsphere exposures on health outcomes. METHODS To investigate the impact of ingested microspheres on target metabolic pathways, mice were exposed to either polystyrene (5 μ m ) microspheres or a mixture of polymer microspheres consisting of polystyrene (5 μ m ), polyethylene (1 - 4 μ m ), and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid) (5 μ m ). Exposures were performed twice a week for 4 weeks at a concentration of either 0, 2, or 4 mg / week via oral gastric gavage. Tissues were collected to examine microsphere ingress and changes in metabolites. RESULTS In mice that ingested microspheres, we detected polystyrene microspheres in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolic differences that occurred in the colon, liver, and brain, which showed differential responses that were dependent on concentration and type of microsphere exposure. DISCUSSION This study uses a mouse model to provide critical insight into the potential health implications of the pervasive issue of plastic pollution. These findings demonstrate that orally consumed polystyrene or mixed polymer microspheres can accumulate in tissues such as the brain, liver, and kidney. Furthermore, this study highlights concentration-dependent and polymer type-specific metabolic changes in the colon, liver, and brain after plastic microsphere exposure. These results underline the mobility within and between biological tissues of MPs after exposure and emphasize the importance of understanding their metabolic impact. https://doi.org/10.1289/EHP13435.
Collapse
Affiliation(s)
- Marcus M. Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jewel L. Meyer-Hagen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Charles Forbes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - David P. Sciezka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Rachel Templeton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jorge Gonzalez-Estrella
- School of Civil & Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico, USA
| | - Russell P. Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Rama R. Gullapalli
- Department of Pathology, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
31
|
Bala J, Newson JJ, Thiagarajan TC. Hierarchy of demographic and social determinants of mental health: analysis of cross-sectional survey data from the Global Mind Project. BMJ Open 2024; 14:e075095. [PMID: 38490653 PMCID: PMC10946366 DOI: 10.1136/bmjopen-2023-075095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
OBJECTIVES To understand the extent to which various demographic and social determinants predict mental health status and their relative hierarchy of predictive power in order to prioritise and develop population-based preventative approaches. DESIGN Cross-sectional analysis of survey data. SETTING Internet-based survey from 32 countries across North America, Europe, Latin America, Middle East and North Africa, Sub-Saharan Africa, South Asia and Australia, collected between April 2020 and December 2021. PARTICIPANTS 270 000 adults aged 18-85+ years who participated in the Global Mind Project. OUTCOME MEASURES We used 120+ demographic and social determinants to predict aggregate mental health status and scores of individuals (mental health quotient (MHQ)) and determine their relative predictive influence using various machine learning models including gradient boosting and random forest classification for various demographic stratifications by age, gender, geographical region and language. Outcomes reported include model performance metrics of accuracy, precision, recall, F1 scores and importance of individual factors determined by reduction in the squared error attributable to that factor. RESULTS Across all demographic classification models, 80% of those with negative MHQs were correctly identified, while regression models predicted specific MHQ scores within ±15% of the position on the scale. Predictions were higher for older ages (0.9+ accuracy, 0.9+ F1 Score; 65+ years) and poorer for younger ages (0.68 accuracy, 0.68 F1 Score; 18-24 years). Across all age groups, genders, regions and language groups, lack of social interaction and sufficient sleep were several times more important than all other factors. For younger ages (18-24 years), other highly predictive factors included cyberbullying and sexual abuse while not being able to work was high for ages 45-54 years. CONCLUSION Social determinants of traumas, adversities and lifestyle can account for 60%-90% of mental health challenges. However, additional factors are at play, particularly for younger ages, that are not included in these data and need further investigation.
Collapse
|
32
|
Verma A, Sharma G, Kumar A, Dhiman P, Mola GT, Shan A, Si C. Microplastic pollutants in water: A comprehensive review on their remediation by adsorption using various adsorbents. CHEMOSPHERE 2024; 352:141365. [PMID: 38331267 DOI: 10.1016/j.chemosphere.2024.141365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Microplastics (MPs), as emerging pollutants, have attracted the attention of environmentalists, statespersons, and the scientific community over the last few decades. To address the spread of MPs in the environment, it is imperative to develop various removal techniques and materials that are effective, scalable, and ecologically benign. However, to the best of our knowledge, no review has systematically examined the removal of MPs using adsorption or provided an in-depth discussion on various adsorbents. Adsorption is an inexpensive and effective technology for wastewater treatment. Recently, many researchers have conducted studies on MP remediation using diverse adsorbent materials, such as biochar, activated carbon, sponges, carbon nanotubes, metal-layered oxides, metal-organic frameworks (MOFs), and zeolites. Each adsorbent has advantages and disadvantages. To overcome their disadvantages, researchers have been designing and developing hybrid adsorbents for MP remediation. This review provides insights into these individual adsorbents and also discusses hybrid adsorbents for MP removal. Finally, the review elaborates on future possibilities and ways to enable more efficient, scalable, and environmentally friendly MP cleanup. Overall, this review bridges the gap between contemporary MP remediation using adsorption techniques and adsorbent development.
Collapse
Affiliation(s)
- Akshay Verma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, India
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, India.
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, India
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, India
| | - Genene Tessema Mola
- School of Chemistry & Physics, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, 3209, South Africa
| | - Ali Shan
- College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
33
|
Ferreira LC, Souza Azevedo J. What do we know about plastic pollution in Brazilian aquatic ecosystems? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22119-22130. [PMID: 38403825 DOI: 10.1007/s11356-024-32525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
Due to the increasing use and inadequate disposal of plastic by humans, aquatic environments have become receptacles for pollutants such as plastic. This study aimed to perform an analysis of plastic particles pollution in Brazilian aquatic ecosystems with special attention to inland aquatic environments and fish in order to identify information gaps in this field. Manuscripts published in the last 21 years and indexed in the Web of Science database were consulted. A total of 185 met the proposed inclusion criteria, such as having empirical data, being conducted in Brazil, and dealing with plastic pollution. In general, the number of studies increases over the years, and this increasing number of publications is accompanied by declared financial support; the Southeast and Northeast regions are the regions that publish the most on the topic, with São Paulo, Rio de Janeiro, and Pernambuco being the main states; the main focus of the studies is the detection of plastic particles mainly in biota (51%) and sediment (34%), and the most frequent ecosystem is the marine (89%); regarding the taxa, the majority is about plastic detection in fish (75%). Only 18% of the papers studying fishes consider their bio-ecological data, and only 17% of the manuscripts carried out the chemical characterization of the particles. However, 99% of the papers considered the shape of the plastic particle. We emphasize the need for more research and grants for studies with Brazilian inland aquatic ecosystems on the effects of plastic particle pollution on freshwater fish. Regional and national research funding agencies are very important to encourage an increase in the number of grants and specific calls for studies on plastic pollution and its impact on freshwater biota, considering the different macro-regions in Brazil, especially in the northern region.
Collapse
Affiliation(s)
- Leticia Carneiro Ferreira
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Nicolau Street, 210, Centro, Diadema, Brazil
| | - Juliana Souza Azevedo
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Nicolau Street, 210, Centro, Diadema, Brazil.
| |
Collapse
|
34
|
Nik Mut NN, Na J, Jung J. A review on fate and ecotoxicity of biodegradable microplastics in aquatic system: Are biodegradable plastics truly safe for the environment? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123399. [PMID: 38242301 DOI: 10.1016/j.envpol.2024.123399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Plastic products are extensively used worldwide, but inadequate management of plastic waste results in significant plastic pollution. Biodegradable plastic (BPs) offers an alternative to traditional plastics, however, not all BPs can fully degrade under natural conditions. Instead, they may deteriorate into biodegradable microplastic (BMPs) at a faster rate than conventional plastic, thereby posing an additional hazard to aquatic environments. This study provides a comprehensive overview of the fate of BPs in aquatic systems and their eco-toxicological effects on aquatic organisms such as algae, invertebrates, and fish. The findings highlight that BMPs have comparable or heightened effects compared to conventional microplastics (MPs) which physiochemical characteristic of the polymer itself or by the chemical leached from the polymeric matrix can affect aquatic organisms. While BPs is not a flawless solution to address plastic pollution, future research should prioritize investigating their production, environmental behavior, ecological impact, and whether BMPs inflict greater harm than conventional MPs.
Collapse
Affiliation(s)
- Nik Nurhidayu Nik Mut
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joorim Na
- OJEong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea.
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
35
|
Kumar M, Naik DK, Maharana D, Das M, Jaiswal E, Naik AS, Kumari N. Sediment-associated microplastics in Chilika lake, India: Highlighting their prevalence, polymer types, possible sources, and ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169707. [PMID: 38184253 DOI: 10.1016/j.scitotenv.2023.169707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024]
Abstract
The primary objective of this research was to assess microplastics (MPs) in the sediments of Chilika lake. MPs were extracted from 22 sediment samples using the density separation method combined with vacuum pump filtration. A stereo-zoom microscope and Raman spectroscopy were employed to identify the sediment-associated MPs. The total MPs collected from all 22 sites was 440 ± 3.53 particles kg-1 wet sediments, with sizes ranging between 50 and 500 μm. In terms of morphology, fibers and fragments emerged as the dominant MP types, with counts of 210 ± 1.66 and 175 ± 1.76 particles kg-1 wet sediments, respectively. Raman spectroscopy verified the presence of various MP polymers in the sediments, predominantly HDPE (37 %), followed by PS (20 %), PET (18 %), PA (11 %), PP (7 %), and PC (7 %). A notable color variation was observed in MPs; black being the most prevalent (38.8 %), succeeded by blue (19.5 %), green (11.8 %), white (11.5 %), red (10.6 %), and transparent (7.5 %). ANOVA results indicated significant (p > 0.05) variations in MP abundance across the 22 sampling locations. However, principal component analysis (PCA) and multiple regression analysis indicated that water quality parameters did not significantly influence MP abundance, yet it was found that MP retention was higher in fine-grained sediments like clay and silt. The leading sources of MPs in Chilika lake were found to be aquafarming, trailed by river and sewage discharges, fishing activities, antifouling coatings and tourism. Additionally, the pollution load index (PLI) was employed to gauge the ecological risks, categorizing the lake under risk category 1, which implies a minimal level of MPs pollution. This research aims to serve as an early warning system for MPs pollution in productive brackish water habitats globally, including Chilika lake, guiding policymakers towards appropriate management strategies and preventive measures.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Geology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Dinesh Kumar Naik
- Department of Geology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Dusmant Maharana
- School of Sciences, P. P. Savani University, Kosamba, Surat 394125, Gujarat, India; Department of Marine Sciences, Berhampur University, Berhampur 760007, Odisha, India.
| | - Moumita Das
- Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ekta Jaiswal
- Department of Geology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Amiya Shankar Naik
- Department of Geology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Neha Kumari
- Department of Geology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
36
|
Li Y, Zhang C, Tian Z, Cai X, Guan B. Identification and quantification of nanoplastics (20-1000 nm) in a drinking water treatment plant using AFM-IR and Pyr-GC/MS. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132933. [PMID: 37951177 DOI: 10.1016/j.jhazmat.2023.132933] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Nanoplastics, owing to their small particle size, pose a significant threat to creatures, deserving heightened attention. Numerous studies have investigated microplastics pollution and their removal efficiency in drinking water treatment plants, none of which have involved nanoplastics due to lacking a suitable analytical method. This study introduced a feasible method of combing AFM-IR and Pyr-GC/MS to identify and quantify nanoplastics (20-1000 nm) for a preliminary understanding of their fate during drinking water treatment processes. Resolving of chemical functional groups and pyrolysis products from AFM-IR and Pyr-GC/MS data demonstrated the presence of PE and PVC nanoplastics in this drinking water treatment plant. The initial influent abundances of PE and PVC nanoplastics were 0.86 μg/L and 137.31 μg/L, with subsequent increase to 4.49 μg/L and 208.64 μg/L in ozonation contact tank unit. Then a gradual decreasing was observed along water process, achieving 98.4% removal of PE nanoplastics and 44.0% removal of PVC nanoplastics, respectively. Although this drinking water treatment plant has exhibited a certain level of nanoplastics removal efficiency, particular attention should be directed to the oxidation unit, which appears to be a significant source of nanoplastics. This study will lay a foundation for revealing nanoplastics pollution in the environment.
Collapse
Affiliation(s)
- Yu Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA.
| | - Chuanming Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhenyu Tian
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Xueyi Cai
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Baohong Guan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
37
|
Zambrano-Pinto MV, Tinizaray-Castillo R, Riera MA, Maddela NR, Luque R, Díaz JMR. Microplastics as vectors of other contaminants: Analytical determination techniques and remediation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168244. [PMID: 37923271 DOI: 10.1016/j.scitotenv.2023.168244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The ubiquitous and persistent presence of microplastics (MPs) in aquatic and terrestrial ecosystems has raised global concerns due to their detrimental effects on human health and the natural environment. These minuscule plastic fragments not only threaten biodiversity but also serve as vectors for contaminants, absorbing organic and inorganic pollutants, thereby causing a range of health and environmental issues. This review provides an overview of microplastics and their effects. This work highlights available analytical techniques for detecting and characterizing microplastics in different environmental matrices, assessing their advantages and limitations. Additionally, this review explores innovative remediation approaches, such as microbial degradation and other advanced methods, offering promising prospects for combatting microplastic accumulation in contaminated environments. The focus on environmentally-friendly technologies, such as the use of microorganisms and enzymes for microplastic degradation, underscores the importance of sustainable solutions in plastic pollution management. In conclusion, this article not only deepens our understanding of the microplastic issue and its impact but also advocates for the urgent need to develop and implement effective strategies to mitigate this critical environmental challenge. In this context, the crucial role of advanced technologies, like quantitative Nuclear Magnetic Resonance spectroscopy (qNMR), as promising tools for rapid and efficient microplastic detection, is emphasized. Furthermore, the potential of the enzyme PETase (polyethylene terephthalate esterase) in microplastic degradation is examined, aiming to address the growing plastic pollution, particularly in saline environments like oceanic ecosystems. These innovations offer hope for effectively addressing microplastic accumulation in contaminated environments and minimizing its adverse impacts.
Collapse
Affiliation(s)
- Maria Veronica Zambrano-Pinto
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Rolando Tinizaray-Castillo
- Departamento de Construcciones Civiles, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - María A Riera
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador.
| | - Joan Manuel Rodríguez Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| |
Collapse
|
38
|
Yan Z, Qian H, Yao J, Guo M, Zhao X, Gao N, Zhang Z. Mechanistic insight into the role of typical microplastics in chlorination disinfection: Precursors and adsorbents of both MP-DOM and DBPs. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132716. [PMID: 37820530 DOI: 10.1016/j.jhazmat.2023.132716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Microplastics (MPs) in drinking water are predominantly < 10 µm. The leaching of MPs derived dissolved organic matters (MP-DOM) from 5 µm polypropylene MPs (PP-MPs) and polystyrene MPs (PS-MPs) and the formation of MP-DOM derived disinfection byproducts during chlorination disinfection were first investigated. Comparably, PS-MPs are more vulnerable to chlorination and the primary attacks are on para C in aromatic side-chains via electrophilic Cl-substitution and oxidation by two-electron transfer. The O/C and Cl/C ratio of polystyrene MPs was linear and exponential versus initial available Cl2 concentrations, respectively. The significant PS-DOM leaching was observed with initial available Cl2 of 4.0 mg/L (USEPA recommended upper dose). As the initial available Cl2 concentration increased to 8.0 mg/L, the adsorption of chloro-phenolic-components of 200 Daltons in PS-DOM by 5 µm PS-MPs was observed for the first time. Trichloromethane (TCM) was identified as the dominant disinfection byproduct with a formation potential of 60.3 ± 7.8 and 73.7 ± 9.8 μg/mg for PS-DOM and PP-DOM, respectively. The derived TCM could adsorb onto PS-MPs followed the pseudo-second-order kinetic and Langmuir isotherm models. Extreme chlorination could reduce the maximal adsorption capacity of TCM on 5 µm PS-MPs from 196.68 ± 48.66 to 146.02 ± 32.98 μg/g. Thus, PS-MPs act as precursors and carriers of TCM in chlorination.
Collapse
Affiliation(s)
- Zhihao Yan
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hanyang Qian
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Juanjuan Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Meng Guo
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xiong Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
39
|
Xiao H, Zhang Z, Feng S, Wang X, Wu L. Application and prospects of metal–organic frameworks in photocatalytic self-cleaning membranes for wastewater treatment. JOURNAL OF MATERIALS CHEMISTRY A 2024; 12:31059-31073. [DOI: 10.1039/d4ta06433j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
By loading photocatalytic MOF onto the separation membrane, the self-cleaning function of the membrane can be realized. This paper discusses the structure, synthesis, and properties of photocatalytic MOFs.
Collapse
Affiliation(s)
- Haolan Xiao
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zezhen Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Shuman Feng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 462000, China
| | - Xinyi Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
40
|
Pizzurro F, Nerone E, Ancora M, Di Domenico M, Mincarelli LF, Cammà C, Salini R, Di Renzo L, Di Giacinto F, Corbau C, Bokan I, Ferri N, Recchi S. Exposure of Mytilus galloprovincialis to Microplastics: Accumulation, Depuration and Evaluation of the Expression Levels of a Selection of Molecular Biomarkers. Animals (Basel) 2023; 14:4. [PMID: 38200735 PMCID: PMC10778302 DOI: 10.3390/ani14010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Microplastic contamination is a growing marine environmental issue with possible consequences for seafood safety. Filter feeders are the target species for microplastic (MPs) pollution because they filter large quantities of seawater to feed. In the present study, an experimental contamination of Mytilus galloprovincialis was conducted using a mixture of the main types of MPs usually present in the seawater column (53% filaments, 30% fragments, 3% granules) in order to test the purification process as a potential method for removing these contaminants from bivalves intended for human consumption. A set of molecular biomarkers was also evaluated in order to detect any variations in the expression levels of some genes associated with biotransformation and detoxification, DNA repair, cellular response, and the immune system. Our results demonstrate that: (a) the purification process can significantly reduce MP contamination in M. galloprovincialis; (b) a differential expression level has been observed between mussels tested and in particular most of the differences were found in the gills, thus defining it as the target organ for the use of these biomarkers. Therefore, this study further suggests the potential use of molecular biomarkers as an innovative method, encouraging their use in next-generation marine monitoring programs.
Collapse
Affiliation(s)
- Federica Pizzurro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Eliana Nerone
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Luana Fiorella Mincarelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Romolo Salini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Ludovica Di Renzo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Federica Di Giacinto
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Corinne Corbau
- Dipartimento di Scienze dell’Ambiente e della Prevenzione, Università di Ferrara, 44122 Ferrara, Italy;
| | - Itana Bokan
- Teaching Institute of Public Health (TIPH), 51000 Rijeka, Croatia;
| | - Nicola Ferri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Sara Recchi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| |
Collapse
|
41
|
Vattanasit U, Kongpran J, Ikeda A. Airborne microplastics: A narrative review of potential effects on the human respiratory system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166745. [PMID: 37673257 DOI: 10.1016/j.scitotenv.2023.166745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
There has been growing evidence showing the widespread of airborne microplastics (AMPs) in many regions of the world, raising concerns about their impact on human health. This review aimed to consolidate recent literature on AMPs regarding their physical and chemical characteristics, deposition in the human respiratory tract, translocation, occurrence from human studies, and toxic effects determined in vitro and in vivo. The physical characteristics influence interactions with cell membranes, cellular internalization, accumulation, and cytotoxicity resulting from cell membrane damage and oxidative stress. In addition, prolonged exposure to AMP-associated toxic chemicals might lead to significant health effects. Most toxicological assessments of AMPs in vitro and in vivo have demonstrated that oxidative stress and inflammation are major mechanisms of action for their toxic effects. Elevated reactive oxygen species production could lead to mitochondrial dysfunction, inflammatory responses, and subsequent apoptosis in experimental models. To date, there has been some evidence suggesting exposure in humans. However, the data are still insufficient, and adverse human health effects need to be investigated. Future research on the existence, exposure, and health effects of AMPs is required for developing preventive and mitigation measures to protect human health.
Collapse
Affiliation(s)
- Udomratana Vattanasit
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| | - Jira Kongpran
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Atsuko Ikeda
- Faculty of Health Sciences, Hokkaido University, Sapporo 0600812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| |
Collapse
|
42
|
Wang D, Jiang SY, Fan C, Fu L, Ruan HD. Occurrence and correlation of microplastics and dibutyl phthalate in rivers from Pearl River Delta, China. MARINE POLLUTION BULLETIN 2023; 197:115759. [PMID: 37988965 DOI: 10.1016/j.marpolbul.2023.115759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Microplastics have been identified as the novel contaminants in various environments. Phthalates would be released from plasticized microplastics into a riverine environment while transporting to a marine region, but data on their relationship in rivers have been scarce. In this study, the occurrence, distribution and correlation of microplastics and dibutyl phthalate (DBP) in two rivers from the Pearl River Estuary were investigated. The elevated level of DBP in the Qianshan River (2.70 ± 0.20 μg/L) was in alignment with the presence of highest microplastic concentration at the same sampling site (15.8 ± 9.8 items/L). A positive correlation was observed between microplastics and DBP in all sampling sites (p < 0.05). The results showed that UV irradiation from sunlight was a majorly inducing factor of DBP leaching from polyethylene microplastics. The concentrations of chemical additives in some degrees reflect the microplastic pollution, but environmental factors and multidimensionality of microplastics such as residence times and types may cause spatial differences of chemical additives in aquatic systems.
Collapse
Affiliation(s)
- Duojia Wang
- Environmental Science Program, Department of Life Science, Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong Province 519087, PR China
| | - Sabrina Yanan Jiang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa 999078, Macao.
| | - Changchang Fan
- Environmental Science Program, Department of Life Science, Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong Province 519087, PR China
| | - Longshan Fu
- Environmental Science Program, Department of Life Science, Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong Province 519087, PR China; National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa 999078, Macao
| | - Huada Daniel Ruan
- Environmental Science Program, Department of Life Science, Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong Province 519087, PR China.
| |
Collapse
|
43
|
Liu S, Su C, Lu Y, Xian Y, Chen Z, Wang Y, Deng X, Li X. Effects of microplastics on the properties of different types of sewage sludge and strategies to overcome the inhibition: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166033. [PMID: 37543332 DOI: 10.1016/j.scitotenv.2023.166033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Microplastics have been identified as an emerging pollutant. When microplastics enter wastewater treatment plants, the plant traps most of the microplastics in the sludge during sewage treatment. Therefore, the effects of microplastics on sludge removal performance, and on the physical and chemical properties and microbial communities in sludge, have attracted extensive attention. This review mainly describes the presence of microplastics in wastewater treatment plants, and the effects of microplastics on the decontamination efficiency and physicochemical properties of activated sludge, aerobic granular sludge, anaerobic granular sludge and anaerobic ammonium oxidation sludge. Further, the review summarizes the effects of microplastics on microbial activity and microbial community dynamics in various sludges in terms of type, concentration, and contact time. The mechanisms used to strengthen the reduction of microplastics, such as biochar and hydrochar, are also discussed. This review summarizes the mechanism by which microplastics influence the performance of different types of sludge, and proposes effective strategies to mitigate the inhibitive effect of microplastics on sludge and discusses removal technologies of microplastics in sewage. Biochar and hydrochar are one of the effective measures to overcome the inhibition of microplastics on sludge. Meanwhile, constructed wetland may be one of the important choice for the future removal of microplastics from sewage. The goal is to provide theoretical support and insights for ensuring the stable operation of wastewater treatment plants and reducing the impact of microplastics on the environment.
Collapse
Affiliation(s)
- Shengtao Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Yiying Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yunchuan Xian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yuchen Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xue Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
44
|
Athulya PA, Chandrasekaran N. Exposure of true to life microplastics to Donax faba under two different pH conditions: A microcosm approach. REGIONAL STUDIES IN MARINE SCIENCE 2023; 67:103197. [DOI: 10.1016/j.rsma.2023.103197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
45
|
Zhuang H, Qin M, Liu B, Li R, Li Z. Combination of transcriptomics, metabolomics and physiological traits reveals the effects of polystyrene microplastics on photosynthesis, carbon and nitrogen metabolism in cucumber (Cucumis sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108201. [PMID: 37995577 DOI: 10.1016/j.plaphy.2023.108201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Although microplastic pollution has been widely studied, the mechanism by which they influence plant photosynthesis and carbon and nitrogen metabolism remains unclear. We aimed to explore the effects of polystyrene microplastics (PS) on photosynthesis and carbon and nitrogen metabolism in cucumber using 5 μm and 0.1 μm PS particles. The PS treatments significantly reduced the stability of cucumber mesophyll cells and photosynthetic parameters and increased the soluble sugar content in cucumber leaves. The 5 μm PS affected the photosynthetic pathway by changing the expression of enzyme genes required for the synthesis of NADPH and ATP, which decreased the photosynthetic capacity in cucumber leaves. However, 0.1 μm PS altered the genes expression of phosphoenolpyruvate carboxykinase (PEPCK) and phosphoenolpyruvate carboxylase (PEPC), which affected the intercellular CO2 concentration and attenuated the negative effects on photosynthetic efficiency. Additionally, PS reduced the expression levels of nitrate/nitrite transporter (NRT) and nitrate reductase (NR), reducing the nitrogen use efficiency in cucumber leaves and mesophyll cells damage through increased accumulation of reduced glutathione (GSH), γ-glutamylcysteine (γ-GC), and citrulline. This study provides a new scientific basis for exploring the effects of microplastics on plant photosynthesis and carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Haoran Zhuang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Mengru Qin
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Bo Liu
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Ruijing Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Zhenxia Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, 453003, China.
| |
Collapse
|
46
|
Zheng Y, Addotey TNA, Chen J, Xu G. Effect of Polystyrene Microplastics on the Antioxidant System and Immune Response in GIFT ( Oreochromis niloticus). BIOLOGY 2023; 12:1430. [PMID: 37998029 PMCID: PMC10669825 DOI: 10.3390/biology12111430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Recent studies have revealed a significant presence of microplastics (MPs) in freshwater ecosystems, raising concerns about their potential negative impacts on the growth and development of freshwater organisms. The present study was conducted to examine the effects of chronic sub-lethal doses of polystyrene microsphere MPs on the oxidative status (ROS, SOD) and the immune response (IL-1ß, TNF-α) of genetically improved farmed tilapia (a kind of tilapia hereafter referred to as GIFT). GIFT juveniles (5.1 ± 0.2 g) were exposed to different concentrations of substances. The experimental groups were as follows: group A (control, no exposure), group B (exposed to a concentration of 75 nm), group C (exposed to a concentration of 7.5 μm), group D (exposed to a concentration of 750 μm), group E (exposed to a combination of 75 nm, 7.5 μm, and 750 μm), and group F (exposed to a combination of 75 nm and Chlorella). The ROS contents in the brain and gills were significantly decreased in group F, while a significant increase was observed in group D following a 14-day exposure. SOD activities in the intestine showed an elevation in group F, as did those in the brain and gills in group D, while the SOD levels in the gills generally decreased over time in groups B and F. Notably, the highest ROS and SOD were observed in the brain of group D, whereas the lowest were in the intestines at the same concentration. The activity of IL-1β in the liver was significantly up-regulated in all of the exposure groups. IL-1β was significantly up-regulated in the brain of group B and in the gills of group D. Similarly, TNF-α was significantly up-regulated in the brain of groups B/D/E, in the liver of groups B/C/D, in the intestine of group B, and in the gills of group D. Notably, the highest levels of IL-1β and TNF-α activities were recorded in the brain, while the lowest were recorded in the intestine of group D. Overall, this study revealed that GIFT's immune response and antioxidant system can be affected by MPs.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), No. 9 Shanshui East Rd., Wuxi 214081, China; (Y.Z.); (J.C.)
- Wuxi Fishery College, Nanjing Agricultural University, No. 9 Shanshui East Rd., Wuxi 214081, China;
| | - Tracy Naa Adoley Addotey
- Wuxi Fishery College, Nanjing Agricultural University, No. 9 Shanshui East Rd., Wuxi 214081, China;
| | - Jiazhang Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), No. 9 Shanshui East Rd., Wuxi 214081, China; (Y.Z.); (J.C.)
- Wuxi Fishery College, Nanjing Agricultural University, No. 9 Shanshui East Rd., Wuxi 214081, China;
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), No. 9 Shanshui East Rd., Wuxi 214081, China; (Y.Z.); (J.C.)
- Wuxi Fishery College, Nanjing Agricultural University, No. 9 Shanshui East Rd., Wuxi 214081, China;
| |
Collapse
|
47
|
Priya AK, Muruganandam M, Imran M, Gill R, Vasudeva Reddy MR, Shkir M, Sayed MA, AlAbdulaal TH, Algarni H, Arif M, Jha NK, Sehgal SS. A study on managing plastic waste to tackle the worldwide plastic contamination and environmental remediation. CHEMOSPHERE 2023; 341:139979. [PMID: 37659517 DOI: 10.1016/j.chemosphere.2023.139979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Over the past 50 years, the emergence of plastic waste as one of the most urgent environmental problems in the world has given rise to several proposals to address the rising levels of contaminants associated with plastic debris. Worldwide plastic production has increased significantly over the last 70 years, reaching a record high of 359 million tonnes in 2020. China is currently the world's largest plastic producer, with a share of 17.5%. Of the total marine waste, microplastics account for 75%, while land-based pollution accounts for responsible for 80-90%, and ocean-based pollution 10-20% only in overall pollution problems. Even at small dosages (10 μg/mL), microplastics have been found to cause toxic effects on human and animal health. This review examines the sources of microplastic contamination, the prevalent reaches of microplastics, their impacts, and the remediation methods for microplastic contamination. This review explains the relationship between the community composition and the presence of microplastic particulate matter in aquatic ecosystems. The interaction between microplastics and emerging pollutants, including heavy metals, has been linked to enhanced toxicity. The review article provided a comprehensive overview of microplastic, including its fate, environmental toxicity, and possible remediation strategies. The results of our study are of great value as they illustrate a current perspective and provide an in-depth analysis of the current status of microplastics in development, their test requirements, and remediation technologies suitable for various environments.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamilnadu, India; Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India.
| | - M Muruganandam
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India
| | - Muhammad Imran
- Saudi Basic Industries Corporation (SABIC) Technology and Innovation Center, Riyadh 11551, Saudi Arabia
| | - Rana Gill
- University Centre for Research & Development, Electronics & Communication Department Chandigarh University Gharuan, Mohali, Punjab, India
| | | | - Mohd Shkir
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - M A Sayed
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - T H AlAbdulaal
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - H Algarni
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohd Arif
- Applied Science and Humanities Section, University Polytechnic, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi-110025, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India.
| | - Satbir S Sehgal
- Division of Research Innovation, Uttaranchal University, Dehradun, India
| |
Collapse
|
48
|
Narwal N, Katyal D, Kataria N, Rose PK, Warkar SG, Pugazhendhi A, Ghotekar S, Khoo KS. Emerging micropollutants in aquatic ecosystems and nanotechnology-based removal alternatives: A review. CHEMOSPHERE 2023; 341:139945. [PMID: 37648158 DOI: 10.1016/j.chemosphere.2023.139945] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
There is a significant concern about the accessibility of uncontaminated and safe drinking water, a fundamental necessity for human beings. This concern is attributed to the toxic micropollutants from several emission sources, including industrial toxins, agricultural runoff, wastewater discharges, sewer overflows, landfills, algal blooms and microbiota. Emerging micropollutants (EMs) encompass a broad spectrum of compounds, including pharmaceutically active chemicals, personal care products, pesticides, industrial chemicals, steroid hormones, toxic nanomaterials, microplastics, heavy metals, and microorganisms. The pervasive and enduring nature of EMs has resulted in a detrimental impact on global urban water systems. Of late, these contaminants are receiving more attention due to their inherent potential to generate environmental toxicity and adverse health effects on humans and aquatic life. Although little progress has been made in discovering removal methodologies for EMs, a basic categorization procedure is required to identify and restrict the EMs to tackle the problem of these emerging contaminants. The present review paper provides a crude classification of EMs and their associated negative impact on aquatic life. Furthermore, it delves into various nanotechnology-based approaches as effective solutions to address the challenge of removing EMs from water, thereby ensuring potable drinking water. To conclude, this review paper addresses the challenges associated with the commercialization of nanomaterial, such as toxicity, high cost, inadequate government policies, and incompatibility with the present water purification system and recommends crucial directions for further research that should be pursued.
Collapse
Affiliation(s)
- Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India.
| | - Navish Kataria
- Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India.
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Sudhir Gopalrao Warkar
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur Village, Rohini, 110042, New Delhi, India
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Suresh Ghotekar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
49
|
Pastorino P, Barceló D. Microplastics and their environmental effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104324. [PMID: 38000685 DOI: 10.1016/j.etap.2023.104324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Microplastics (MPs) are acknowledged as emerging contaminants that pose a substantial threat to the environment. The adverse impacts of MP pollution extend across marine, freshwater, and terrestrial ecosystems, covering regions from the Tropics to the Poles. Although our comprehension of MP behavior has progressed in recent years, it is still difficult to predict exposure hotspots or exposure scenarios. Despite a noteworthy increase in data concerning MP occurrence in different environmental compartments and species, there is a noticeable scarcity of experimental data on MP uptake, accumulation, and effects. This Virtual Special Issue (VSI) received a total of 19 contributions from 11 countries, with a significant majority originating from Italy, India, Spain, and China. These contributions were categorized into three main themes: the occurrence and effects of MPs on aquatic and terrestrial organisms, the presence of chemical additives in plastics, and review articles summarizing previously published research on MPs.
Collapse
Affiliation(s)
- Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain.
| |
Collapse
|
50
|
Tran TV, Jalil AA, Nguyen TM, Nguyen TTT, Nabgan W, Nguyen DTC. A review on the occurrence, analytical methods, and impact of microplastics in the environment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104248. [PMID: 37598982 DOI: 10.1016/j.etap.2023.104248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Nowadays, microplastic pollution is one of the globally urgent concerns as a result of discharging plastic products into the atmosphere, aquatic and soil environments. Microplastics have average size of less than 5 mm, are non-biodegradable, accumulative, and highly persistent substances. Thousands of tons of microplastics are still accumulated in various environments, posing an enormous threat to human health and living creatures. Here, we review the occurrence and analytical methods, and impact of microplastics in the environments including soil, aquatic media, and atmosphere. Analytical methods including visual observation, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and pyrolysis-gas chromatography-mass spectrometry were evaluated. We elucidated the environmental and human health impacts of microplastics with emphasis on life malfunction, immune disruption, neurotoxicity, diseases and other tangible health risks. This review also found some shortages of analytical equivalence and/or standardization, inconsistence in sampling collection and limited knowledge of microplastic toxicity. It is hopeful that the present work not only affords a more insight into the potential dangers of microplastics on human health but also urges future researches to establish new standardizations in analytical methods.
Collapse
Affiliation(s)
- Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| | - A A Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Tung M Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain.
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|