1
|
Murphy RD, Troublefield CA, Miracle JS, Young LE, Tripathi A, Brizzee CO, Dhara A, Patwardhan A, Sun RC, Kooi CWV, Gentry MS, Sinai AP. TgLaforin, a glucan phosphatase, reveals the dynamic role of storage polysaccharides in Toxoplasma gondii tachyzoites and bradyzoites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.29.560185. [PMID: 37808860 PMCID: PMC10557770 DOI: 10.1101/2023.09.29.560185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The asexual stages of Toxoplasma gondii are defined by the rapidly growing tachyzoite during the acute infection and by the slow growing bradyzoite housed within tissue cysts during the chronic infection. These stages represent unique physiological states, each with distinct glucans reflecting differing metabolic needs. A defining feature of T. gondii bradyzoites is the presence of insoluble storage glucans known as amylopectin granules (AGs), the function of which remains largely unexplored during the chronic infection. The presence of storage glucans has more recently been established in tachyzoites, a finding corroborated by specific labeling with the anti-glycogen antibody IV58B6. The T. gondii genome encodes activities needed for glucan turnover inlcuding: a glucan phosphatase (TgLaforin; TGME49_205290) and a glucan kinase (TgGWD; TGME49_214260) that catalyze a cycle of reversible glucan phosphorylation required for glucan degradation by amylases. Disruption of TgLaforin in tachyzoites had no impact on growth under nutrient-replete conditions. Growth of TgLaforin-KO tachyzoites was however severely stunted when starved of glutamine despite being glucose replete. Loss of TgLaforin attenuated acute virulence in mice and was accompanied by a lower tissue cyst burden, without a direct impact on tissue cyst size. Quantification of relative AG levels using AmyloQuant, an imaging based application, revealed the starch-excess phenotype associated with the loss of TgLaforin is heterogeneous and linked to an emerging AG cycle in bradyzoites. Excessive AG accumulation TgLaforin-KO bradyzoites promoted intra-cyst bradyzoite death implicating reversible glucan phosphorylation as a legitimate target for the development of new drugs against chronic T. gondii infections.
Collapse
Affiliation(s)
- Robert D. Murphy
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Cortni A. Troublefield
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Joy S. Miracle
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Lyndsay E.A. Young
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Aashutosh Tripathi
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Corey O. Brizzee
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Animesh Dhara
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Abhijit Patwardhan
- F. Joseph Halcomb III, MD. Department of Biomedical Engineering, College of Engineering, University of Kentucky, Lexington KY 40506, USA
| | - Ramon C. Sun
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Craig W. Vander Kooi
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Anthony P. Sinai
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Springer AL, Agrawal S, Chang EP. Malate dehydrogenase in parasitic protozoans: roles in metabolism and potential therapeutic applications. Essays Biochem 2024; 68:235-251. [PMID: 38938216 PMCID: PMC11461325 DOI: 10.1042/ebc20230075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
The role of malate dehydrogenase (MDH) in the metabolism of various medically significant protozoan parasites is reviewed. MDH is an NADH-dependent oxidoreductase that catalyzes interconversion between oxaloacetate and malate, provides metabolic intermediates for both catabolic and anabolic pathways, and can contribute to NAD+/NADH balance in multiple cellular compartments. MDH is present in nearly all organisms; isoforms of MDH from apicomplexans (Plasmodium falciparum, Toxoplasma gondii, Cryptosporidium spp.), trypanosomatids (Trypanosoma brucei, T. cruzi) and anaerobic protozoans (Trichomonas vaginalis, Giardia duodenalis) are presented here. Many parasitic species have complex life cycles and depend on the environment of their hosts for carbon sources and other nutrients. Metabolic plasticity is crucial to parasite transition between host environments; thus, the regulation of metabolic processes is an important area to explore for therapeutic intervention. Common themes in protozoan parasite metabolism include emphasis on glycolytic catabolism, substrate-level phosphorylation, non-traditional uses of common pathways like tricarboxylic acid cycle and adapted or reduced mitochondria-like organelles. We describe the roles of MDH isoforms in these pathways, discuss unusual structural or functional features of these isoforms relevant to activity or drug targeting, and review current studies exploring the therapeutic potential of MDH and related genes. These studies show that MDH activity has important roles in many metabolic pathways, and thus in the metabolic transitions of protozoan parasites needed for success as pathogens.
Collapse
Affiliation(s)
- Amy L Springer
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, U.S.A
| | - Swati Agrawal
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, U.S.A
| | - Eric P Chang
- Department of Chemistry and Physical Sciences, Pace University, New York, NY, U.S.A
| |
Collapse
|
3
|
Gallego-López GM, Contreras Guzman E, Desa DE, Knoll LJ, Skala MC. Metabolic changes in Toxoplasma gondii-infected host cells measured by autofluorescence imaging. mBio 2024; 15:e0072724. [PMID: 38975793 PMCID: PMC11323734 DOI: 10.1128/mbio.00727-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 07/09/2024] Open
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular parasite that infects warm-blooded vertebrates across the world. In humans, seropositivity rates of T. gondii range from 10% to 90% across communities. Despite its prevalence, few studies address how T. gondii infection changes the metabolism of host cells. In this study, we investigate how T. gondii manipulates the host cell metabolic environment by monitoring the metabolic response over time using noninvasive autofluorescence lifetime imaging of single cells, metabolite analysis, extracellular flux analysis, and reactive oxygen species (ROS) production. Autofluorescence lifetime imaging indicates that infected host cells become more oxidized and have an increased proportion of bound NAD(P)H compared to uninfected controls. Over time, infected cells also show decreases in levels of intracellular glucose and lactate, increases in oxygen consumption, and variability in ROS production. We further examined changes associated with the pre-invasion "kiss and spit" process using autofluorescence lifetime imaging, which also showed a more oxidized host cell with an increased proportion of bound NAD(P)H over 48 hours compared to uninfected controls, suggesting that metabolic changes in host cells are induced by T. gondii kiss and spit even without invasion.IMPORTANCEThis study sheds light on previously unexplored changes in host cell metabolism induced by T. gondii infection using noninvasive, label-free autofluorescence imaging. In this study, we use optical metabolic imaging (OMI) to measure the optical redox ratio (ORR) in conjunction with fluorescence lifetime imaging microscopy (FLIM) to noninvasively monitor single host cell response to T. gondii infection over 48 hours. Collectively, our results affirm the value of using autofluorescence lifetime imaging to noninvasively monitor metabolic changes in host cells over the time course of a microbial infection. Understanding this metabolic relationship between the host cell and the parasite could uncover new treatment and prevention options for T. gondii infections worldwide.
Collapse
Affiliation(s)
- Gina M. Gallego-López
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | | | - Laura J. Knoll
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Angel SO, Vanagas L, Alonso AM. Mechanisms of adaptation and evolution in Toxoplasma gondii. Mol Biochem Parasitol 2024; 258:111615. [PMID: 38354788 DOI: 10.1016/j.molbiopara.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Toxoplasma has high host flexibility, infecting all nucleated cells of mammals and birds. This implies that during its infective process the parasite must constantly adapt to different environmental situations, which in turn leads to modifications in its metabolism, regulation of gene transcription, translation of mRNAs and stage specific factors. There are conserved pathways that support these adaptations, which we aim to elucidate in this review. We begin by exploring the widespread epigenetic mechanisms and transcription regulators, continue with the supportive role of Heat Shock Proteins (Hsp), the translation regulation, stress granules, and finish with the emergence of contingency genes in highly variable genomic domains, such as subtelomeres. Within epigenetics, the discovery of a new histone variant of the H2B family (H2B.Z), contributing to T. gondii virulence and differentiation, but also gene expression regulation and its association with the metabolic state of the parasite, is highlighted. Associated with the regulation of gene expression are transcription factors (TFs). An overview of the main findings on TF and development is presented. We also emphasize the role of Hsp90 and Tgj1 in T. gondii metabolic fitness and the regulation of protein translation. Translation regulation is also highlighted as a mechanism for adaptation to conditions encountered by the parasite as well as stress granules containing mRNA and proteins generated in the extracellular tachyzoite. Another important aspect in evolution and adaptability are the subtelomeres because of their high variability and gene duplication rate. Toxoplasma possess multigene families of membrane proteins and contingency genes that are associated with different metabolic stresses. Among them parasite differentiation and environmental stresses stand out, including those that lead tachyzoite to bradyzoite conversion. Finally, we are interested in positioning protozoa as valuable evolution models, focusing on research related to the Extended Evolutionary Synthesis, based on models recently generated, such as extracellular adaptation and ex vivo cyst recrudescence.
Collapse
Affiliation(s)
- Sergio O Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| | - Andres M Alonso
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Alberione MP, González-Ruiz V, von Rohr O, Rudaz S, Soldati-Favre D, Izquierdo L, Kloehn J. N-acetylglucosamine supplementation fails to bypass the critical acetylation of glucosamine-6-phosphate required for Toxoplasma gondii replication and invasion. PLoS Pathog 2024; 20:e1011979. [PMID: 38900808 PMCID: PMC11218972 DOI: 10.1371/journal.ppat.1011979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/02/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
The cell surface of Toxoplasma gondii is rich in glycoconjugates which hold diverse and vital functions in the lytic cycle of this obligate intracellular parasite. Additionally, the cyst wall of bradyzoites, that shields the persistent form responsible for chronic infection from the immune system, is heavily glycosylated. Formation of glycoconjugates relies on activated sugar nucleotides, such as uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). The glucosamine-phosphate-N-acetyltransferase (GNA1) generates N-acetylglucosamine-6-phosphate critical to produce UDP-GlcNAc. Here, we demonstrate that downregulation of T. gondii GNA1 results in a severe reduction of UDP-GlcNAc and a concomitant drop in glycosylphosphatidylinositols (GPIs), leading to impairment of the parasite's ability to invade and replicate in the host cell. Surprisingly, attempts to rescue this defect through exogenous GlcNAc supplementation fail to completely restore these vital functions. In depth metabolomic analyses elucidate diverse causes underlying the failed rescue: utilization of GlcNAc is inefficient under glucose-replete conditions and fails to restore UDP-GlcNAc levels in GNA1-depleted parasites. In contrast, GlcNAc-supplementation under glucose-deplete conditions fully restores UDP-GlcNAc levels but fails to rescue the defects associated with GNA1 depletion. Our results underscore the importance of glucosamine-6-phosphate acetylation in governing T. gondii replication and invasion and highlight the potential of the evolutionary divergent GNA1 in Apicomplexa as a target for the development of much-needed new therapeutic strategies.
Collapse
Affiliation(s)
- María Pía Alberione
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-University of Barcelona, Barcelona, Spain
| | | | - Olivier von Rohr
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Charital S, Shunmugam S, Dass S, Alazzi AM, Arnold CS, Katris NJ, Duley S, Quansah NA, Pierrel F, Govin J, Yamaryo-Botté Y, Botté CY. The acyl-CoA synthetase TgACS1 allows neutral lipid metabolism and extracellular motility in Toxoplasma gondii through relocation via its peroxisomal targeting sequence (PTS) under low nutrient conditions. mBio 2024; 15:e0042724. [PMID: 38501871 PMCID: PMC11005404 DOI: 10.1128/mbio.00427-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Apicomplexa parasites cause major diseases such as toxoplasmosis and malaria that have major health and economic burdens. These unicellular pathogens are obligate intracellular parasites that heavily depend on lipid metabolism for the survival within their hosts. Their lipid synthesis relies on an essential combination of fatty acids (FAs) obtained from both de novo synthesis and scavenging from the host. The constant flux of scavenged FA needs to be channeled toward parasite lipid storage, and these FA storages are timely mobilized during parasite division. In eukaryotes, the utilization of FA relies on their obligate metabolic activation mediated by acyl-co-enzyme A (CoA) synthases (ACSs), which catalyze the thioesterification of FA to a CoA. Besides the essential functions of FA for parasite survival, the presence and roles of ACS are yet to be determined in Apicomplexa. Here, we identified TgACS1 as a Toxoplasma gondii cytosolic ACS that is involved in FA mobilization in the parasite specifically during low host nutrient conditions, especially in extracellular stages where it adopts a different localization. Heterologous complementation of yeast ACS mutants confirmed TgACS1 as being an Acyl-CoA synthetase of the bubble gum family that is most likely involved in β-oxidation processes. We further demonstrate that TgACS1 is critical for gliding motility of extracellular parasite facing low nutrient conditions, by relocating to peroxisomal-like area.IMPORTANCEToxoplasma gondii, causing human toxoplasmosis, is an Apicomplexa parasite and model within this phylum that hosts major infectious agents, such as Plasmodium spp., responsible for malaria. The diseases caused by apicomplexans are responsible for major social and economic burdens affecting hundreds of millions of people, like toxoplasmosis chronically present in about one-third of the world's population. Lack of efficient vaccines, rapid emergence of resistance to existing treatments, and toxic side effects of current treatments all argue for the urgent need to develop new therapeutic tools to combat these diseases. Understanding the key metabolic pathways sustaining host-intracellular parasite interactions is pivotal to develop new efficient ways to kill these parasites. Current consensus supports parasite lipid synthesis and trafficking as pertinent target for novel treatments. Many processes of this essential lipid metabolism in the parasite are not fully understood. The capacity for the parasites to sense and metabolically adapt to the host physiological conditions has only recently been unraveled. Our results clearly indicate the role of acyl-co-enzyme A (CoA) synthetases for the essential metabolic activation of fatty acid (FA) used to maintain parasite propagation and survival. The significance of our research is (i) the identification of seven of these enzymes that localize at different cellular areas in T. gondii parasites; (ii) using lipidomic approaches, we show that TgACS1 mobilizes FA under low host nutrient content; (iii) yeast complementation showed that acyl-CoA synthase 1 (ACS1) is an ACS that is likely involved in peroxisomal β-oxidation; (iv) the importance of the peroxisomal targeting sequence for correct localization of TgACS1 to a peroxisomal-like compartment in extracellular parasites; and lastly, (v) that TgACS1 has a crucial role in energy production and extracellular parasite motility.
Collapse
Affiliation(s)
- Sarah Charital
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Serena Shunmugam
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Sheena Dass
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Anna Maria Alazzi
- Team Govin, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Christophe-Sébastien Arnold
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Nicholas J. Katris
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Samuel Duley
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Nyamekye A. Quansah
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Fabien Pierrel
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Jérôme Govin
- Team Govin, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
7
|
Guo X, Ji N, Guo Q, Wang M, Du H, Pan J, Xiao L, Gupta N, Feng Y, Xia N. Metabolic plasticity, essentiality and therapeutic potential of ribose-5-phosphate synthesis in Toxoplasma gondii. Nat Commun 2024; 15:2999. [PMID: 38589375 PMCID: PMC11001932 DOI: 10.1038/s41467-024-47097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Ribose-5-phosphate (R5P) is a precursor for nucleic acid biogenesis; however, the importance and homeostasis of R5P in the intracellular parasite Toxoplasma gondii remain enigmatic. Here, we show that the cytoplasmic sedoheptulose-1,7-bisphosphatase (SBPase) is dispensable. Still, its co-deletion with transaldolase (TAL) impairs the double mutant's growth and increases 13C-glucose-derived flux into pentose sugars via the transketolase (TKT) enzyme. Deletion of the latter protein affects the parasite's fitness but is not lethal and is correlated with an increased carbon flux via the oxidative pentose phosphate pathway. Further, loss of TKT leads to a decline in 13C incorporation into glycolysis and the TCA cycle, resulting in a decrease in ATP levels and the inability of phosphoribosyl-pyrophosphate synthetase (PRPS) to convert R5P into 5'-phosphoribosyl-pyrophosphate and thereby contribute to the production of AMP and IMP. Likewise, PRPS is essential for the lytic cycle. Not least, we show that RuPE-mediated metabolic compensation is imperative for the survival of the ΔsbpaseΔtal strain. In conclusion, we demonstrate that multiple routes can flexibly supply R5P to enable parasite growth and identify catalysis by TKT and PRPS as critical enzymatic steps. Our work provides novel biological and therapeutic insights into the network design principles of intracellular parasitism in a clinically-relevant pathogen.
Collapse
Affiliation(s)
- Xuefang Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Nuo Ji
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qinghong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengting Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huiyu Du
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiajia Pan
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Nishith Gupta
- Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-P), Hyderabad, India.
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany.
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Ningbo Xia
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
8
|
Yang X, Yang J, Lyu M, Li Y, Liu A, Shen B. The α subunit of AMP-activated protein kinase is critical for the metabolic success and tachyzoite proliferation of Toxoplasma gondii. Microb Biotechnol 2024; 17:e14455. [PMID: 38635138 PMCID: PMC11025617 DOI: 10.1111/1751-7915.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 04/19/2024] Open
Abstract
Toxoplasma gondii is a zoonotic parasite infecting humans and nearly all warm-blooded animals. Successful parasitism in diverse hosts at various developmental stages requires the parasites to fine tune their metabolism according to environmental cues and the parasite's needs. By manipulating the β and γ subunits, we have previously shown that AMP-activated protein kinase (AMPK) has critical roles in regulating the metabolic and developmental programmes. However, the biological functions of the α catalytic subunit have not been established. T. gondii encodes a canonical AMPKα, as well as a KIN kinase whose kinase domain has high sequence similarities to those of classic AMPKα proteins. Here, we found that TgKIN is dispensable for tachyzoite growth, whereas TgAMPKα is essential. Depletion of TgAMPKα expression resulted in decreased ATP levels and reduced metabolic flux in glycolysis and the tricarboxylic acid cycle, confirming that TgAMPK is involved in metabolic regulation and energy homeostasis in the parasite. Sequential truncations at the C-terminus found an α-helix that is key for the function of TgAMPKα. The amino acid sequences of this α-helix are not conserved among various AMPKα proteins, likely because it is involved in interactions with TgAMPKβ, which only have limited sequence similarities to AMPKβ in other eukaryotes. The essential role of the less conserved C-terminus of TgAMPKα provides opportunities for parasite specific drug designs targeting TgAMPKα.
Collapse
Affiliation(s)
- Xuke Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Research Center for Infectious Diseases, Department of Pathogen Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Jichao Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Mengyu Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Yaqiong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Anqi Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Hongshan LaboratoryWuhanHubei ProvinceChina
- Key Laboratory of Preventive Medicine in Hubei ProvinceHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenGuangdong ProvinceChina
| |
Collapse
|
9
|
Wang SS, Wang X, He JJ, Zheng WB, Zhu XQ, Elsheikha HM, Zhou CX. Expression profiles of host miRNAs and circRNAs and ceRNA network during Toxoplasma gondii lytic cycle. Parasitol Res 2024; 123:145. [PMID: 38418741 PMCID: PMC10902104 DOI: 10.1007/s00436-024-08152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Toxoplasma gondii is an opportunistic protozoan parasite that is highly prevalent in the human population and can lead to adverse health consequences in immunocompromised patients and pregnant women. Noncoding RNAs, such as microRNAs (miRNAs) and circular RNAs (circRNAs), play important regulatory roles in the pathogenesis of many infections. However, the differentially expressed (DE) miRNAs and circRNAs implicated in the host cell response during the lytic cycle of T. gondii are unknown. In this study, we profiled the expression of miRNAs and circRNAs in human foreskin fibroblasts (HFFs) at different time points after T. gondii infection using RNA sequencing (RNA-seq). We identified a total of 7, 7, 27, 45, 70, 148, 203, and 217 DEmiRNAs and 276, 355, 782, 1863, 1738, 6336, 1229, and 1680 DEcircRNAs at 1.5, 3, 6, 9, 12, 24, 36, and 48 h post infection (hpi), respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the DE transcripts were enriched in immune response, apoptosis, signal transduction, and metabolism-related pathways. These findings provide new insight into the involvement of miRNAs and circRNAs in the host response to T. gondii infection.
Collapse
Affiliation(s)
- Sha-Sha Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu Province, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu Province, China
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650500, Yunnan Province, China
| | - Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Xing-Quan Zhu
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650500, Yunnan Province, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China.
| |
Collapse
|
10
|
Yin D, Jiang N, Cheng C, Sang X, Feng Y, Chen R, Chen Q. Protein Lactylation and Metabolic Regulation of the Zoonotic Parasite Toxoplasma gondii. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1163-1181. [PMID: 36216028 PMCID: PMC11082259 DOI: 10.1016/j.gpb.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 09/06/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The biology of Toxoplasma gondii, the causative pathogen of one of the most widespread parasitic diseases (toxoplasmosis), remains poorly understood. Lactate, which is derived from glucose metabolism, is not only an energy source in a variety of organisms, including T. gondii, but also a regulatory molecule that participates in gene activation and protein function. Lysine lactylation (Kla) is a type of post-translational modifications (PTMs) that has been recently associated with chromatin remodeling; however, Kla of histone and non-histone proteins has not yet been studied in T. gondii. To examine the prevalence and function of lactylation in T. gondii parasites, we mapped the lactylome of proliferating tachyzoite cells and identified 1964 Kla sites on 955 proteins in the T. gondii RH strain. Lactylated proteins were distributed in multiple subcellular compartments and were closely related to a wide variety of biological processes, including mRNA splicing, glycolysis, aminoacyl-tRNA biosynthesis, RNA transport, and many signaling pathways. We also performed a chromatin immunoprecipitation sequencing (ChIP-seq) analysis using a lactylation-specific antibody and found that the histones H4K12la and H3K14la were enriched in the promoter and exon regions of T. gondii associated with microtubule-based movement and cell invasion. We further confirmed the delactylase activity of histone deacetylases TgHDAC2-4, and found that treatment with anti-histone acetyltransferase (TgMYST-A) antibodies profoundly reduced protein lactylation in T. gondii. This study offers the first dataset of the global lactylation proteome and provides a basis for further dissecting the functional biology of T. gondii.
Collapse
Affiliation(s)
- Deqi Yin
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110166, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110166, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Chang Cheng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110166, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110166, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110166, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110166, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110166, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China.
| |
Collapse
|
11
|
Chen XZ, Bai RX, Qin FY, Peng HJ, Ren JF, Hu L, Li YD, He C. Phosphoproteomic Analysis Reveals the Predominating Cellular Processes and the Involved Key Phosphoproteins Essential for the Proliferation of Toxoplasma gondii. Acta Parasitol 2023; 68:820-831. [PMID: 37821727 DOI: 10.1007/s11686-023-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE To explore the essential roles of phosphorylation in mediating the proliferation of T. gondii in its cell lytic life. METHODS We profiled the phosphoproteome data of T. gondii residing in HFF cells for 2 h and 6 h, representing the early- and late-stages of proliferation (ESP and LSP) within its first generation of division. RESULTS We identified 70 phosphoproteins, among which 8 phosphoproteins were quantified with the phosphorylation level significantly regulated. While only two of the eight phosphoproteins, GRA7 and TGGT1_242070, were significantly down-regulated at the transcriptional level in the group of LSP vs. ESP. Moreover, GO terms correlated with host membrane component were significantly enriched in the category of cellular component, suggesting phosphoprotein played important roles in acquiring essential substance from host cell via manipulating host membrane. Further GO analysis in the categories of molecular function and biological process and pathway analysis revealed that the cellular processes of glucose and lipid metabolism were regulated by T. gondii phosphoproteins such as PMCAA1, LIPIN, Pyk1 and ALD. Additionally, several phosphoproteins were enriched at the central nodes in the protein-protein interaction network, which may have essential roles in T. gondii proliferation including GAP45, MLC1, fructose-1,6-bisphosphate aldolase, GRAs and so on. CONCLUSION This study revealed the main cellular processes and key phosphoproteins crucial for the intracellular proliferation of T. gondii, which would provide clues to explore the roles of phosphorylation in regulating the development of tachyzoites and new insight into the mechanism of T. gondii development in vitro.
Collapse
Affiliation(s)
- Xin-Zhu Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Rui-Xue Bai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Fei-Yu Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jin-Feng Ren
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Lang Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Yu-di Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China.
| |
Collapse
|
12
|
Zhao M, Yang Y, Shi Y, Chen X, Yang Y, Pan L, Du Z, Sun H, Yao C, Ma G, Du A. PP2Acα-B'/PR61 Holoenzyme of Toxoplasma gondii Is Required for the Amylopectin Metabolism and Proliferation of Tachyzoites. Microbiol Spectr 2023; 11:e0010423. [PMID: 37199633 PMCID: PMC10269777 DOI: 10.1128/spectrum.00104-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Here, we report that the inhibition of the PP2A subfamily by okadaic acid results in an accumulation of polysaccharides in the acute infection stage (tachyzoites) of Toxoplasma gondii, which is a protozoan of global zoonotic importance and a model for the apicomplexan parasites. The loss of the catalytic subunit α of PP2A (ΔPP2Acα) in RHΔku80 leads to the polysaccharide accumulation phenotype in the base of tachyzoites as well as residual bodies and significantly compromises the intracellular growth in vitro and the virulence in vivo. A metabolomic analysis revealed that the accumulated polysaccharides in ΔPP2Acα are derived from interrupted glucose metabolism, which affects the production of ATP and energy homeostasis in the T. gondii knockout. The assembly of the PP2Acα holoenzyme complex involved in the amylopectin metabolism in tachyzoites is possibly not regulated by LCMT1 or PME1, and this finding contributes to the identification of the regulatory B subunit (B'/PR61). The loss of B'/PR61 results in the accumulation of polysaccharide granules in the tachyzoites as well as reduced plaque formation ability, exactly the same as ΔPP2Acα. Taken together, we have identified a PP2Acα-B'/PR61 holoenzyme complex that plays a crucial role in the carbohydrate metabolism and viability in T. gondii, and its deficiency in function remarkably suppresses the growth and virulence of this important zoonotic parasite both in vitro and in vivo. Hence, rendering the PP2Acα-B'/PR61 holoenzyme functionless should be a promising strategy for the intervention of Toxoplasma acute infection and toxoplasmosis. IMPORTANCE Toxoplasma gondii switches back and forth between acute and chronic infections, mainly in response to host immunologic status, which is characterized by flexible but specific energy metabolism. Polysaccharide granules are accumulated in the acute infection stage of T. gondii that have been exposed to a chemical inhibitor of the PP2A subfamily. The genetic depletion of the catalytic subunit α of PP2A leads to this phenotype and significantly affects the cell metabolism, energy production, and viability. Further, a regulatory B subunit PR61 is necessary for the PP2A holoenzyme to function in glucose metabolism and in the intracellular growth of T. gondii tachyzoites. A deficiency of this PP2A holoenzyme complex (PP2Acα-B'/PR61) in T. gondii knockouts results in the abnormal accumulation of polysaccharides and the disruption of energy metabolism, suppressing their growth and virulence. These findings provide novel insights into cell metabolism and identify a potential target for an intervention against a T. gondii acute infection.
Collapse
Affiliation(s)
- Mingxiu Zhao
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yue Shi
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yimin Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lingtao Pan
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhendong Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hongchao Sun
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang Province, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
13
|
Converting and hoarding driven by protein phosphorylation in Toxoplasma gondii. Trends Parasitol 2023; 39:232-234. [PMID: 36804381 DOI: 10.1016/j.pt.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023]
Abstract
Successful parasitism relies on the evasion of adversarial host responses. Wang et al. have recently shown that Toxoplasma gondii relies on the protein phosphatase 2A (PP2A) to cause persisting infections. The phosphatase controls the development of dormant parasite stages and the accumulation of sugar supplies.
Collapse
|
14
|
Niu Z, Ye S, Liu J, Lyu M, Xue L, Li M, Lyu C, Zhao J, Shen B. Two apicoplast dwelling glycolytic enzymes provide key substrates for metabolic pathways in the apicoplast and are critical for Toxoplasma growth. PLoS Pathog 2022; 18:e1011009. [PMID: 36449552 PMCID: PMC9744290 DOI: 10.1371/journal.ppat.1011009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/12/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Many apicomplexan parasites harbor a non-photosynthetic plastid called the apicoplast, which hosts important metabolic pathways like the methylerythritol 4-phosphate (MEP) pathway that synthesizes isoprenoid precursors. Yet many details in apicoplast metabolism are not well understood. In this study, we examined the physiological roles of four glycolytic enzymes in the apicoplast of Toxoplasma gondii. Many glycolytic enzymes in T. gondii have two or more isoforms. Endogenous tagging each of these enzymes found that four of them were localized to the apicoplast, including pyruvate kinase2 (PYK2), phosphoglycerate kinase 2 (PGK2), triosephosphate isomerase 2 (TPI2) and phosphoglyceraldehyde dehydrogenase 2 (GAPDH2). The ATP generating enzymes PYK2 and PGK2 were thought to be the main energy source of the apicoplast. Surprisingly, deleting PYK2 and PGK2 individually or simultaneously did not cause major defects on parasite growth or virulence. In contrast, TPI2 and GAPDH2 are critical for tachyzoite proliferation. Conditional depletion of TPI2 caused significant reduction in the levels of MEP pathway intermediates and led to parasite growth arrest. Reconstitution of another isoprenoid precursor synthesis pathway called the mevalonate pathway in the TPI2 depletion mutant partially rescued its growth defects. Similarly, knocking down the GAPDH2 enzyme that produces NADPH also reduced isoprenoid precursor synthesis through the MEP pathway and inhibited parasite proliferation. In addition, it reduced de novo fatty acid synthesis in the apicoplast. Together, these data suggest a model that the apicoplast dwelling TPI2 provides carbon source for the synthesis of isoprenoid precursor, whereas GAPDH2 supplies reducing power for pathways like MEP, fatty acid synthesis and ferredoxin redox system in T. gondii. As such, both enzymes are critical for parasite growth and serve as potential targets for anti-toxoplasmic intervention designs. On the other hand, the dispensability of PYK2 and PGK2 suggest additional sources for energy in the apicoplast, which deserves further investigation.
Collapse
Affiliation(s)
- Zhipeng Niu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Shu Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Jiaojiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Mengyu Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Lilan Xue
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Congcong Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province, PR China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province, PR China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, PR China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong Province, PR China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, PR China
- * E-mail:
| |
Collapse
|
15
|
Maccaro JJ, Moreira Salgado JF, Klinger E, Argueta Guzmán MP, Ngor L, Stajich JE, McFrederick QS. Comparative genomics reveals that metabolism underlies evolution of entomopathogenicity in bee-loving Ascosphaera spp. fungi. J Invertebr Pathol 2022; 194:107804. [PMID: 35933037 PMCID: PMC10793876 DOI: 10.1016/j.jip.2022.107804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Ascosphaera (Eurotiomycetes: Onygenales) is a diverse genus of fungi that is exclusively found in association with bee nests and comprises both saprophytic and entomopathogenic species. To date, most genomic analyses have been focused on the honeybee pathogen A. apis, and we lack a genomic understanding of how pathogenesis evolved more broadly in the genus. To address this gap we sequenced the genomes of the leaf-cutting bee pathogen A. aggregata as well as three commensal species: A. pollenicola, A. atra and A. acerosa. De novo annotation and comparison of the assembled genomes was carried out, including the previously published genome of A. apis. To identify candidate virulence genes in the pathogenic species, we performed secondary metabolite-oriented analyses and clustering of biosynthetic gene clusters (BGCs). Additionally, we captured single copy orthologs to infer their phylogeny and created codon-aware alignments to determine orthologs under selective pressure in our pathogenic species. Our results show several shared BGCs between A. apis, A. aggregata and A. pollenicola, with antifungal resistance related genes present in the bee pathogens and commensals. Genes involved in metabolism and protein processing exhibit signatures of enrichment and positive selection under a fitted branch-site model. Additional known virulence genes in A. pollenicola, A. acerosa and A. atra are identified, supporting previous hypotheses that these commensals may be opportunistic pathogens. Finally, we discuss the importance of such genes in other fungal pathogens, suggesting a common route to evolution of pathogenicity in Ascosphaera.
Collapse
Affiliation(s)
- J J Maccaro
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - J F Moreira Salgado
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ, Brazil; Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA
| | - E Klinger
- Department of Entomology, The Ohio State University, Columbus, OH, USA; USDA-ARS Pollinating Insect Biology Management Systematics Research Unit, Logan, UT, USA
| | - M P Argueta Guzmán
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - L Ngor
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - J E Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA.
| | - Q S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
16
|
Tandon R, Reyaz E, Roshanara, Jadhav M, Gandhi M, Dey R, Salotra P, Nakhasi HL, Selvapandiyan A. Identification of protein biomarkers of attenuation and immunogenicity of centrin or p27 gene deleted live vaccine candidates of Leishmania against visceral leishmaniasis. Parasitol Int 2022; 92:102661. [PMID: 36049661 DOI: 10.1016/j.parint.2022.102661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/08/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
Currently, no licensed vaccine is available for human visceral leishmaniasis (VL), a fatal disease caused by the protozoan parasite Leishmania donovani. Two of our live attenuated L. donovani vaccine candidates, either deleted for Centrin1 (LdCen1-/-) or p27 gene (Ldp27-/-), that display reduced growth in macrophages were studied to be safe, immunogenic and protective against VL in various animal models. This report involves the identification of differentially expressed proteins, their related pathways and its underlying mechanism in the intracellular stage of these parasites, using Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) methods. Out of 50-60 proteins, found to be differentially expressed in these mutant parasites, 36 were found to be common in both the parasites. Such proteins mainly belong to the functional categories viz. metabolic enzymes, chaperones and stress proteins, proteins involved in translation, processing and transport and proteins involved in nucleic acid processing. Proteins known to be host protective, like Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cytochrome c, calreticulin and those responsible for inducing immune response, namely tubulins, DEAD box RNA helicases, HSP70 and tryparedoxin, have been detected to be modulated in these parasites. Such proteins could be predicted as biomarkers, with further scope of study for their role in growth attenuation. SIGNIFICANCE: This study aims at predicting proteomic biomarkers of Leishmania parasite growth attenuation, that have immunomodulatory role in the disease leishmaniasis. Advanced studies could be helpful in establishing the role of these identified proteins in parasitic virulence and to predict the host interaction at molecular level. Also, these proteins could be exploited as attenuation markers during the development of genetically modified live attenuated parasites as vaccine candidates. These could be cross validated in varied species of Leishmania and other tyrpanosomatids for similar response towards identifying them as universal biomarkers of attenuation.
Collapse
Affiliation(s)
- Rati Tandon
- JH-Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Enam Reyaz
- JH-Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Roshanara
- JH-Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Manali Jadhav
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mayuri Gandhi
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Poonam Salotra
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi 110029, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Angamuthu Selvapandiyan
- JH-Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
17
|
Chen M, Zhou L, Li S, Wei H, Chen J, Yang P, Peng H. Toxoplasma gondii DNA methyltransferases regulate parasitic energy metabolism. Acta Trop 2022; 229:106329. [PMID: 35122712 DOI: 10.1016/j.actatropica.2022.106329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/10/2022] [Accepted: 01/23/2022] [Indexed: 11/29/2022]
Abstract
The intracellular protozoan Toxoplasma gondii results in serious diseases such as encephalitis, and retinochoroiditis in immunocompromised patients. The interconversion between tachyzoites and bradyzoites under the host's immune pressure results in the interchange of acute infection and chronic infection. We previously reported two functional DNA methyltransferases (DNMT) in Toxoplasma gondii named TgDNMTa and TgDNMTb. In this research, proteomics analysis for T. gondii tachyzoites of ME49 WT, dnmta knockout (ME49-∆Tgdnmta), and dnmtb knockout (ME49-∆Tgdnmtb) strains, revealed 362 significantly regulated proteins for ME49-∆Tgdnmta, and 219 for ME49-∆Tgdnmtb, compared with the proteins of ME49 WT. TgDNMTa down regulated three glycolytic enzymes, one gluconeogenic enzyme and four pyruvate metabolic enzymes. Furthermore, TgDNMTb up regulated two proteins in the tricarboxylic acid (TCA) cycle. Glucose metabolic flux detection showed that TgDNMTa inhibited the glycolysis pathway, while TgDNMTb promoted the tricarboxylic acid (TCA) cycle so as to promote parasite's proliferation. These findings demonstrated that the functions of Toxoplasma gondii DNA methyltransferases extended beyond DNA methylation to the regulation of parasitic energy metabolism.
Collapse
Affiliation(s)
- Min Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lijuan Zhou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shengmin Li
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hiaxia Wei
- Department of Pathogenic Biology, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiating Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Pei Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
18
|
The Retrospective on Atypical Brucella Species Leads to Novel Definitions. Microorganisms 2022; 10:microorganisms10040813. [PMID: 35456863 PMCID: PMC9025488 DOI: 10.3390/microorganisms10040813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The genus Brucella currently comprises twelve species of facultative intracellular bacteria with variable zoonotic potential. Six of them have been considered as classical, causing brucellosis in terrestrial mammalian hosts, with two species originated from marine mammals. In the past fifteen years, field research as well as improved pathogen detection and typing have allowed the identification of four new species, namely Brucella microti, Brucella inopinata, Brucella papionis, Brucella vulpis, and of numerous strains, isolated from a wide range of hosts, including for the first time cold-blooded animals. While their genome sequences are still highly similar to those of classical strains, some of them are characterized by atypical phenotypes such as higher growth rate, increased resistance to acid stress, motility, and lethality in the murine infection model. In our review, we provide an overview of state-of-the-art knowledge about these novel Brucella sp., with emphasis on their phylogenetic positions in the genus, their metabolic characteristics, acid stress resistance mechanisms, and their behavior in well-established in cellulo and in vivo infection models. Comparison of phylogenetic classification and phenotypical properties between classical and novel Brucella species and strains finally lead us to propose a more adapted terminology, distinguishing between core and non-core, and typical versus atypical brucellae, respectively.
Collapse
|
19
|
Structural characterization of an L-fuculose-1-phosphate aldolase from Klebsiella pneumoniae. Biochem Biophys Res Commun 2022; 607:15-19. [PMID: 35366538 DOI: 10.1016/j.bbrc.2022.03.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
Abstract
Fuculose phosphate aldolases play an important role in glycolysis and gluconeogenesis pathways. L-fuculose 1-phosphate aldolase catalyzes the reversible cleavage of L-fuculose 1-phosphate to DHAP and L-lactaldehyde. Class II aldolases found in bacteria are linked to pathogenesis of human pathogens, and have potential applications in the biosynthesis of carbohydrates and other chiral compounds. Here we report the structure of a putative L-fuculose 1-phosphate aldolase (KpFucA) from the nosocomial pathogen Klebsiella pneumoniae to 1.85 Å resolution. The enzyme crystallizes in space group P422 with one monomer per asymmetric unit. Analytical ultracentrifugation analysis confirms that KpFucA is a tetramer in solution. A magnesium ion cofactor and sulfate ion were identified in the active pocket. Enzyme activity assays confirmed that KpFcuA has a strong preference for L-fuculose 1-phosphate as a substrate, but can also catalyze the cleavage of fructose-1,6-bisphosphate and glucose-6-phosphate. This work should provide a starting point for further investigation of the role of KpFucA in K. pneumoniae pathogenesis or in industrial applications.
Collapse
|
20
|
Christiansen C, Maus D, Hoppenz E, Murillo-León M, Hoffmann T, Scholz J, Melerowicz F, Steinfeldt T, Seeber F, Blume M. In vitro maturation of Toxoplasma gondii bradyzoites in human myotubes and their metabolomic characterization. Nat Commun 2022; 13:1168. [PMID: 35246532 PMCID: PMC8897399 DOI: 10.1038/s41467-022-28730-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
The apicomplexan parasite Toxoplasma gondii forms bradyzoite-containing tissue cysts that cause chronic and drug-tolerant infections. However, current in vitro models do not allow long-term culture of these cysts to maturity. Here, we developed a human myotube-based in vitro culture model of functionally mature tissue cysts that are orally infectious to mice and tolerate exposure to a range of antibiotics and temperature stresses. Metabolomic characterization of purified cysts reveals global changes that comprise increased levels of amino acids and decreased abundance of nucleobase- and tricarboxylic acid cycle-associated metabolites. In contrast to fast replicating tachyzoite forms of T. gondii these tissue cysts tolerate exposure to the aconitase inhibitor sodium fluoroacetate. Direct access to persistent stages of T. gondii under defined cell culture conditions will be essential for the dissection of functionally important host-parasite interactions and drug evasion mechanisms. It will also facilitate the identification of new strategies for therapeutic intervention. Bradyzoites are a quiescent form of Toxoplasma gondii enclosed in cysts during chronic infections. Here, Christiansen et al. develop a human myotube-based in vitro culture model of cysts that are infectious to mice and characterize their metabolism in comparison to fast replicating tachyzoites.
Collapse
Affiliation(s)
- Céline Christiansen
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Deborah Maus
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Ellen Hoppenz
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Mateo Murillo-León
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Tobias Hoffmann
- ZBS 4: Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens 4, Robert Koch-Institute, 13353, Berlin, Germany
| | - Jana Scholz
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Florian Melerowicz
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Tobias Steinfeldt
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Frank Seeber
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, 13353, Berlin, Germany
| | - Martin Blume
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany.
| |
Collapse
|
21
|
Yang X, Yin X, Liu J, Niu Z, Yang J, Shen B. Essential role of pyrophosphate homeostasis mediated by the pyrophosphate-dependent phosphofructokinase in Toxoplasma gondii. PLoS Pathog 2022; 18:e1010293. [PMID: 35104280 PMCID: PMC8836295 DOI: 10.1371/journal.ppat.1010293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/11/2022] [Accepted: 01/24/2022] [Indexed: 12/27/2022] Open
Abstract
Many biosynthetic pathways produce pyrophosphate (PPi) as a by-product, which is cytotoxic if accumulated at high levels. Pyrophosphatases play pivotal roles in PPi detoxification by converting PPi to inorganic phosphate. A number of apicomplexan parasites, including Toxoplasma gondii and Cryptosporidium parvum, express a PPi-dependent phosphofructokinase (PPi-PFK) that consumes PPi to power the phosphorylation of fructose-6-phosphate. However, the physiological roles of PPi-PFKs in these organisms are not known. Here, we report that Toxoplasma expresses both ATP- and PPi-dependent phosphofructokinases in the cytoplasm. Nonetheless, only PPi-PFK was indispensable for parasite growth, whereas the deletion of ATP-PFK did not affect parasite proliferation or virulence. The conditional depletion of PPi-PFK completely arrested parasite growth, but it did not affect the ATP level and only modestly reduced the flux of central carbon metabolism. However, PPi-PFK depletion caused a significant increase in cellular PPi and decreased the rates of nascent protein synthesis. The expression of a cytosolic pyrophosphatase in the PPi-PFK depletion mutant reduced its PPi level and increased the protein synthesis rate, therefore partially rescuing its growth. These results suggest that PPi-PFK has a major role in maintaining pyrophosphate homeostasis in T. gondii. This role may allow PPi-PFK to fine-tune the balance of catabolism and anabolism and maximize the utilization efficiency for carbon nutrients derived from host cells, increasing the success of parasitism. Moreover, PPi-PFK is essential for parasite propagation and virulence in vivo but it is not present in human hosts, making it a potential drug target to combat toxoplasmosis. Different from classic ATP-dependent phosphofructokinases, PPi-PFKs use pyrophosphate consumption to power the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate, the committed step of glycolysis. PPi-PFK is found in diverse organisms including archaea, bacteria, protists and plants. However, half a century after its first discovery, the physiological functions of PPi-PFK are still not well defined. Using the Toxoplasma gondii parasite as a model, here we show that PPi-PFK has a coordinator function to assure matched activities of anabolism and catabolism. This is achieved by maintaining the homeostasis of PPi, which is a byproduct, as well as an inhibitor of many biosynthetic reactions. PPi-PFK hydrolyzes PPi to promote anabolism, meanwhile being a glycolytic enzyme involved in catabolism. As such, it gauges the anabolic and catabolic activities in parasites to maximize the utilization efficiency of acquired nutrients. This work provides important insights to understand the physiological significance of PPi-PFK in Toxoplasma and other organisms.
Collapse
Affiliation(s)
- Xuke Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyan Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiaojiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhipeng Niu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jichao Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- * E-mail:
| |
Collapse
|
22
|
Wang SS, Zhou CX, Elsheikha HM, He JJ, Zou FC, Zheng WB, Zhu XQ, Zhao GH. Temporal transcriptomic changes in long non-coding RNAs and messenger RNAs involved in the host immune and metabolic response during Toxoplasma gondii lytic cycle. Parasit Vectors 2022; 15:22. [PMID: 35012632 PMCID: PMC8750853 DOI: 10.1186/s13071-021-05140-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are important regulators of various biological and pathological processes, in particular the inflammatory response by modulating the transcriptional control of inflammatory genes. However, the role of lncRNAs in regulating the immune and inflammatory responses during infection with the protozoan parasite Toxoplasma gondii remains largely unknown. Methods We performed a longitudinal RNA sequencing analysis of human foreskin fibroblast (HFF) cells infected by T. gondii to identify differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs), and dysregulated pathways over the course of T. gondii lytic cycle. The transcriptome data were validated by qRT-PCR. Results RNA sequencing revealed significant transcriptional changes in the infected HFFs. A total of 697, 1234, 1499, 873, 1466, 561, 676 and 716 differentially expressed lncRNAs (DElncRNAs), and 636, 1266, 1843, 2303, 3022, 1757, 3088 and 2531 differentially expressed mRNAs (DEmRNAs) were identified at 1.5, 3, 6, 9, 12, 24, 36 and 48 h post-infection, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DElncRNAs and DEmRNAs revealed that T. gondii infection altered the expression of genes involved in the regulation of host immune response (e.g., cytokine–cytokine receptor interaction), receptor signaling (e.g., NOD-like receptor signaling pathway), disease (e.g., Alzheimer's disease), and metabolism (e.g., fatty acid degradation). Conclusions These results provide novel information for further research on the role of lncRNAs in immune regulation of T. gondii infection. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05140-3.
Collapse
Affiliation(s)
- Sha-Sha Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China.,Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Feng-Cai Zou
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xing-Quan Zhu
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China. .,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
23
|
Xu Q, Chen H, Sun W, Zhang Y, Zhu D, Rai KR, Chen JL, Chen Y. sRNA23, a novel small RNA, regulates to the pathogenesis of Streptococcus suis serotype 2. Virulence 2021; 12:3045-3061. [PMID: 34882070 PMCID: PMC8667912 DOI: 10.1080/21505594.2021.2008177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
ABBREVIATION sRNA: small noncoding RNA; FBA: fructose diphosphate aldolase; rplB: 50S ribosomal protein L2; RACE: rapid amplification of cDNA ends; EMSA: electrophoretic mobility shift assay; THB: Todd-Hewitt broth; FBS: fetal bovine serum; BIP: 2,2'-Bipyridine.
Collapse
Affiliation(s)
- Quanming Xu
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Chen
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen Sun
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongyi Zhang
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dewen Zhu
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kul Raj Rai
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ye Chen
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
24
|
Rahman MT, Swierzy IJ, Downie B, Salinas G, Blume M, McConville MJ, Lüder CGK. The Redox Homeostasis of Skeletal Muscle Cells Regulates Stage Differentiation of Toxoplasma gondii. Front Cell Infect Microbiol 2021; 11:798549. [PMID: 34881198 PMCID: PMC8646093 DOI: 10.3389/fcimb.2021.798549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii is an obligatory intracellular parasite that causes persistent infections in birds and mammals including ~30% of the world’s human population. Differentiation from proliferative and metabolically active tachyzoites to largely dormant bradyzoites initiates the chronic phase of infection and occurs predominantly in brain and muscle tissues. Here we used murine skeletal muscle cells (SkMCs) to decipher host cellular factors that favor T. gondii bradyzoite formation in terminally differentiated and syncytial myotubes, but not in proliferating myoblast precursors. Genome-wide transcriptome analyses of T. gondii-infected SkMCs and non-infected controls identified ~6,500 genes which were differentially expressed (DEGs) in myotubes compared to myoblasts, largely irrespective of infection. On the other hand, genes related to central carbohydrate metabolism, to redox homeostasis, and to the Nrf2-dependent stress response pathway were enriched in both infected myoblast precursors and myotubes. Stable isotope-resolved metabolite profiling indicated increased fluxes into the oxidative branch of the pentose phosphate pathway (OxPPP) in infected myoblasts and into the TCA cycle in infected myotubes. High OxPPP activity in infected myoblasts was associated with increased NADPH/NADP+ ratio while myotubes exhibited higher ROS levels and lower expression of anti-oxidants and detoxification enzymes. Pharmacological reduction of ROS levels in SkMCs inhibited bradyzoite differentiation, while increased ROS induced bradyzoite formation. Thus, we identified a novel host cell-dependent mechanism that triggers stage conversion of T. gondii into persistent tissue cysts in its natural host cell type.
Collapse
Affiliation(s)
- Md Taibur Rahman
- Institute for Medical Microbiology and Virology, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany.,Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Izabela J Swierzy
- Institute for Medical Microbiology and Virology, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Bryan Downie
- Transcriptome and Genome Analysis Laboratory, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Gabriela Salinas
- Transcriptome and Genome Analysis Laboratory, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Martin Blume
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia.,Junior Research Group 'Metabolism of Microbial Pathogens', Robert-Koch-Institute, Berlin, Germany
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia
| | - Carsten G K Lüder
- Institute for Medical Microbiology and Virology, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| |
Collapse
|
25
|
Fairweather SJ, Rajendran E, Blume M, Javed K, Steinhöfel B, McConville MJ, Kirk K, Bröer S, van Dooren GG. Coordinated action of multiple transporters in the acquisition of essential cationic amino acids by the intracellular parasite Toxoplasma gondii. PLoS Pathog 2021; 17:e1009835. [PMID: 34432856 PMCID: PMC8423306 DOI: 10.1371/journal.ppat.1009835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/07/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular parasites of the phylum Apicomplexa are dependent on the scavenging of essential amino acids from their hosts. We previously identified a large family of apicomplexan-specific plasma membrane-localized amino acid transporters, the ApiATs, and showed that the Toxoplasma gondii transporter TgApiAT1 functions in the selective uptake of arginine. TgApiAT1 is essential for parasite virulence, but dispensable for parasite growth in medium containing high concentrations of arginine, indicating the presence of at least one other arginine transporter. Here we identify TgApiAT6-1 as the second arginine transporter. Using a combination of parasite assays and heterologous characterisation of TgApiAT6-1 in Xenopus laevis oocytes, we demonstrate that TgApiAT6-1 is a general cationic amino acid transporter that mediates both the high-affinity uptake of lysine and the low-affinity uptake of arginine. TgApiAT6-1 is the primary lysine transporter in the disease-causing tachyzoite stage of T. gondii and is essential for parasite proliferation. We demonstrate that the uptake of cationic amino acids by TgApiAT6-1 is ‘trans-stimulated’ by cationic and neutral amino acids and is likely promoted by an inwardly negative membrane potential. These findings demonstrate that T. gondii has evolved overlapping transport mechanisms for the uptake of essential cationic amino acids, and we draw together our findings into a comprehensive model that highlights the finely-tuned, regulated processes that mediate cationic amino acid scavenging by these intracellular parasites. The causative agent of toxoplasmosis, Toxoplasma gondii, is a versatile intracellular parasite that can proliferate within nucleated cells of warm-blooded organisms. In order to survive, T. gondii parasites must scavenge the cationic amino acids lysine and arginine from their hosts. In a previous study, we demonstrated that a plasma membrane-localized protein called TgApiAT1 facilitates the uptake of arginine into the parasite. We found that parasites lacking TgApiAT1 could proliferate when cultured in medium containing high concentrations of arginine, suggesting the existence of an additional uptake pathway for arginine. In the present study, we demonstrate that this second uptake pathway is mediated by TgApiAT6-1, a protein belonging to the same solute transporter family as TgApiAT1. We show that TgApiAT6-1 is the major lysine transporter of the parasite, and that it is critical for parasite proliferation. Furthermore, we demonstrate that TgApiAT6-1 can transport arginine into parasites under conditions in which arginine concentrations are high and lysine concentrations are comparatively lower. These data support a model for the finely-tuned acquisition of essential cationic amino acids that involves multiple transporters, and which likely contributes to these parasites being able to survive and proliferate within a wide variety of host cell types.
Collapse
Affiliation(s)
- Stephen J. Fairweather
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (SJF); (GGvD)
| | - Esther Rajendran
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Martin Blume
- Department of Biochemistry and Molecular Biology and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
- Robert Koch Institute, Berlin, Germany
| | - Kiran Javed
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Birte Steinhöfel
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Humboldt University Berlin, Berlin, Germany
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Kiaran Kirk
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Giel G. van Dooren
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (SJF); (GGvD)
| |
Collapse
|
26
|
Velásquez ZD, López-Osorio S, Mazurek S, Hermosilla C, Taubert A. Eimeria bovis Macromeront Formation Induces Glycolytic Responses and Mitochondrial Changes in Primary Host Endothelial Cells. Front Cell Infect Microbiol 2021; 11:703413. [PMID: 34336724 PMCID: PMC8319763 DOI: 10.3389/fcimb.2021.703413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
Eimeria bovis is an intracellular apicomplexan parasite that causes considerable economic losses in the cattle industry worldwide. During the first merogony, E. bovis forms large macromeronts with >140,000 merozoites I in host endothelial cells. Because this is a high-energy demanding process, E. bovis exploits the host cellular metabolism to fulfill its metabolic requirements. We here analyzed the carbohydrate-related energetic metabolism of E. bovis–infected primary bovine umbilical vein endothelial cells during first merogony and showed that during the infection, E. bovis–infected culture presented considerable changes in metabolic signatures, glycolytic, and mitochondrial responses. Thus, an increase in both oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) were found in E. bovis–infected host cells indicating a shift from quiescent to energetic cell status. Enhanced levels of glucose and pyruvate consumption in addition to increased lactate production, suggesting an important role of glycolysis in E. bovis–infected culture from 12 days p.i. onward. This was also tested by glycolytic inhibitors (2-DG) treatment, which reduced the macromeront development and diminished merozoite I production. As an interesting finding, we observed that 2-DG treatment boosted sporozoite egress. Referring to mitochondrial activities, intracellular ROS production was increased toward the end of merogony, and mitochondrial potential was enhanced from 12 d p. i. onward in E. bovis–infected culture. Besides, morphological alterations of membrane potential signals also indicated mitochondrial dysfunction in macromeront-carrying host endothelial culture.
Collapse
Affiliation(s)
- Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| | - Sara López-Osorio
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany.,Research Group CIBAV, School of Veterinary Medicine, Faculty of Agrarian Sciences, University of Antioquia, Medellin, Colombia
| | - Sybille Mazurek
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
27
|
Ralton JE, Sernee MF, McConville MJ. Evolution and function of carbohydrate reserve biosynthesis in parasitic protists. Trends Parasitol 2021; 37:988-1001. [PMID: 34266735 DOI: 10.1016/j.pt.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/28/2022]
Abstract
Nearly all eukaryotic cells synthesize carbohydrate reserves, such as glycogen, starch, or low-molecular-weight oligosaccharides. However, a number of parasitic protists have lost this capacity while others have lost, and subsequently evolved, entirely new pathways. Recent studies suggest that retention, loss, or acquisition of these pathways in different protists is intimately linked to their lifestyle. In particular, parasites with carbohydrate reserves often establish long-lived chronic infections and/or produce environmental cysts, whereas loss of these pathways is associated with parasites that have highly proliferative and metabolically active life-cycle stages. The evolution of mannogen biosynthesis in Leishmania and related parasites indicates that these pathways have played a role in defining the host range and niches occupied by some protists.
Collapse
Affiliation(s)
- Julie E Ralton
- Department of Biochemistry and Pharmacology, University of Melbourne, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria 3010, Australia
| | - M Fleur Sernee
- Department of Biochemistry and Pharmacology, University of Melbourne, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria 3010, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Pharmacology, University of Melbourne, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria 3010, Australia.
| |
Collapse
|
28
|
Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia. Int J Mol Sci 2021; 22:ijms22126495. [PMID: 34204357 PMCID: PMC8233740 DOI: 10.3390/ijms22126495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/20/2022] Open
Abstract
Heme biosynthesis is essential for almost all living organisms. Despite its conserved function, the pathway’s enzymes can be located in a remarkable diversity of cellular compartments in different organisms. This location does not always reflect their evolutionary origins, as might be expected from the history of their acquisition through endosymbiosis. Instead, the final subcellular localization of the enzyme reflects multiple factors, including evolutionary origin, demand for the product, availability of the substrate, and mechanism of pathway regulation. The biosynthesis of heme in the apicomonad Chromera velia follows a chimeric pathway combining heme elements from the ancient algal symbiont and the host. Computational analyses using different algorithms predict complex targeting patterns, placing enzymes in the mitochondrion, plastid, endoplasmic reticulum, or the cytoplasm. We employed heterologous reporter gene expression in the apicomplexan parasite Toxoplasma gondii and the diatom Phaeodactylum tricornutum to experimentally test these predictions. 5-aminolevulinate synthase was located in the mitochondria in both transfection systems. In T. gondii, the two 5-aminolevulinate dehydratases were located in the cytosol, uroporphyrinogen synthase in the mitochondrion, and the two ferrochelatases in the plastid. In P. tricornutum, all remaining enzymes, from ALA-dehydratase to ferrochelatase, were placed either in the endoplasmic reticulum or in the periplastidial space.
Collapse
|
29
|
Mesquita I, Ferreira C, Moreira D, Kluck GEG, Barbosa AM, Torrado E, Dinis-Oliveira RJ, Gonçalves LG, Beauparlant CJ, Droit A, Berod L, Sparwasser T, Bodhale N, Saha B, Rodrigues F, Cunha C, Carvalho A, Castro AG, Estaquier J, Silvestre R. The Absence of HIF-1α Increases Susceptibility to Leishmania donovani Infection via Activation of BNIP3/mTOR/SREBP-1c Axis. Cell Rep 2021; 30:4052-4064.e7. [PMID: 32209468 DOI: 10.1016/j.celrep.2020.02.098] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/14/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is considered a global regulator of cellular metabolism and innate immune cell functions. Intracellular pathogens such as Leishmania have been reported to manipulate host cell metabolism. Herein, we demonstrate that myeloid cells from myeloid-restricted HIF-1α-deficient mice and individuals with loss-of-function HIF1A gene polymorphisms are more susceptible to L. donovani infection through increased lipogenesis. Absence of HIF-1α leads to a defect in BNIP3 expression, resulting in the activation of mTOR and nuclear translocation of SREBP-1c. We observed the induction of lipogenic gene transcripts, such as FASN, and lipid accumulation in infected HIF-1α-/- macrophages. L. donovani-infected HIF-1α-deficient mice develop hypertriglyceridemia and lipid accumulation in splenic and hepatic myeloid cells. Most importantly, our data demonstrate that manipulating FASN or SREBP-1c using pharmacological inhibitors significantly reduced parasite burden. As such, genetic deficiency of HIF-1α is associated with increased lipid accumulation, which results in impaired host-protective anti-leishmanial functions of myeloid cells.
Collapse
Affiliation(s)
- Inês Mesquita
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carolina Ferreira
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Moreira
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - George Eduardo Gabriel Kluck
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Laboratory of Lipid and Lipoprotein Biochemistry, Medical Biochemistry Institute, Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil
| | - Ana Margarida Barbosa
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Egídio Torrado
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Department of Sciences, IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luís Gafeira Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Charles-Joly Beauparlant
- Département de Médecine Moléculaire-Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Arnaud Droit
- Département de Médecine Moléculaire-Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Niedersachsen 30625, Germany
| | - Tim Sparwasser
- Department of Medical Microbiology and Hygiene, Medical Center of the Johannes Gutenberg-University of Mainz, Obere Zahlbacherstrasse, 6755131 Mainz, Germany
| | | | - Bhaskar Saha
- National Centre for Cell Science, 411007 Pune, India; Case Western Reserve University, Cleveland, OH 44106, USA; Trident Academy of Creative Technology, 751024 Bhubaneswar, Odisha, India
| | - Fernando Rodrigues
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Gil Castro
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jérôme Estaquier
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada; INSERM U1124, Université de Paris, 75006 Paris, France.
| | - Ricardo Silvestre
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
30
|
Hu Y, Fu Y, Jin S, Fu H, Qiao H, Zhang W, Jiang S, Gong Y, Xiong Y, Wu Y, Wang Y, Xu L. Comparative transcriptome analysis of lethality in response to RNA interference of the oriental river prawn (Macrobrachium nipponense). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100802. [PMID: 33578185 DOI: 10.1016/j.cbd.2021.100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/22/2022]
Abstract
A previous study identified slow-tonic S2 tropomyosin and slow tropomyosin isoform as sex-related genes in Macrobrachium nipponense. Their functions were analyzed using RNA interference. However, more than half of the specimens died approximately 8-12 h after injection of the respective double-stranded RNAs (dsRNAs), and HE staining indicated that the heart and gills were the most likely tissues responsible for the resultant deaths. In the current study, we conducted a comparative transcriptomic study of the gills and hearts of M. nipponense to identify potential target genes associated with acute death after dsRNA injection. A total of 68,772 annotated unigenes were generated. In the heart, differentially expressed genes (DEGs) were mainly enriched in glycolysis/gluconeogenesis and oxidative phosphorylation, while the most relevant pathways in the gills were lysosome, phagosome, and peroxisome. Ten DEGs were screened out and analyzed under lethal hypoxic stress. Among these, fructose 1, 6-biphosphate-aldolase (FBA), glyceraldehyde 3-phosphate dehydrogenase (GDPDH), alcohol dehydrogenase class-3 (ADC3), ATP-synthase subunit 9 (ATPS9), and acid ceramidase-like (ACL) were all differentially expressed under hypoxic conditions. This study shed light on the lethal mechanism caused by interference with tropomyosin genes in M. nipponense, and identifies the related pathways and key genes that could help to improve stress resistance and tolerance in M. nipponense.
Collapse
Affiliation(s)
- Yuning Hu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China.
| | - Yin Fu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yabing Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China.
| | - Lei Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China.
| |
Collapse
|
31
|
Krishnan A, Soldati-Favre D. Amino Acid Metabolism in Apicomplexan Parasites. Metabolites 2021; 11:61. [PMID: 33498308 PMCID: PMC7909243 DOI: 10.3390/metabo11020061] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Obligate intracellular pathogens have coevolved with their host, leading to clever strategies to access nutrients, to combat the host's immune response, and to establish a safe niche for intracellular replication. The host, on the other hand, has also developed ways to restrict the replication of invaders by limiting access to nutrients required for pathogen survival. In this review, we describe the recent advancements in both computational methods and high-throughput -omics techniques that have been used to study and interrogate metabolic functions in the context of intracellular parasitism. Specifically, we cover the current knowledge on the presence of amino acid biosynthesis and uptake within the Apicomplexa phylum, focusing on human-infecting pathogens: Toxoplasma gondii and Plasmodium falciparum. Given the complex multi-host lifecycle of these pathogens, we hypothesize that amino acids are made, rather than acquired, depending on the host niche. We summarize the stage specificities of enzymes revealed through transcriptomics data, the relevance of amino acids for parasite pathogenesis in vivo, and the role of their transporters. Targeting one or more of these pathways may lead to a deeper understanding of the specific contributions of biosynthesis versus acquisition of amino acids and to design better intervention strategies against the apicomplexan parasites.
Collapse
Affiliation(s)
- Aarti Krishnan
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland;
| | | |
Collapse
|
32
|
He C, Xu MZ, Pan S, Wang H, Peng HJ, Liu ZZ. iTRAQ-Based Phosphoproteomic Analysis of Toxoplasma gondii Tachyzoites Provides Insight Into the Role of Phosphorylation for its Invasion and Egress. Front Cell Infect Microbiol 2020; 10:586466. [PMID: 33363051 PMCID: PMC7756149 DOI: 10.3389/fcimb.2020.586466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022] Open
Abstract
The invasion and egress are two key steps in lytic cycle vital to the propagation of Toxoplasma gondii infection, and phosphorylation is believed to play important roles in these processes. However, the phosphoproteome of T. gondii at these two stages has not been characterized. In this study, we profiled the phosphoproteome of tachyzoites at the stages of “just invading” (JI) and “prior to egress” (PE) based on iTRAQ quantitative analysis, in which a total of 46 phosphopeptides, 42 phosphorylation sites, and 38 phosphoproteins were detected. In the comparison of PE vs. JI, 10 phosphoproteins were detected with their phosphorylation level significantly changed, and four of them were demonstrated to be significantly down-regulated at the transcriptional level. Bioinformatic analysis of these identified phosphoproteins suggested that phosphorylation-mediated modulation of protein function was employed to regulate the pathway of toxoplasmosis and metabolism and cellular processes correlated with tachyzoite’s binding, location, and metabolism, and thus play vital roles in the parasite lytic cycle. Moreover, cytoskeletal network (CN)-associated Inner Membrane Complex (IMC1, IMC4, IMC6 and IMC12), Intravascular Network (IVN)-related GRAs (GRA2, GRA3, GRA7 and GRA12), and Parasitophorous Vacuole Membrane (PVM)-localized ROP5 were shown to be enriched at the central nodes in the protein interaction network generated by bioinformatic analysis, in which the phosphorylation level of IMC4, GRA2, GRA3, and GRA12 were found to be significantly regulated. This study revealed the main cellular processes and key phosphoproteins crucial for the invasion and egress of T. gondii, which will provide new insights into the developmental biology of T. gondii in vitro and contribute to the understanding of pathogen-host interaction from the parasite perspective.
Collapse
Affiliation(s)
- Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Mei-Zhen Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Shuai Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhuan-Zhuan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
33
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Kemmerling U, Cáceres AJ, Michels PA, Concepción JL, Quiñones W. Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol 2020; 10:200302. [PMID: 33234025 PMCID: PMC7729029 DOI: 10.1098/rsob.200302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is a glycolytic enzyme that is well conserved among the three domains of life. PGK is usually a monomeric enzyme of about 45 kDa that catalyses one of the two ATP-producing reactions in the glycolytic pathway, through the conversion of 1,3-bisphosphoglycerate (1,3BPGA) to 3-phosphoglycerate (3PGA). It also participates in gluconeogenesis, catalysing the opposite reaction to produce 1,3BPGA and ADP. Like most other glycolytic enzymes, PGK has also been catalogued as a moonlighting protein, due to its involvement in different functions not associated with energy metabolism, which include pathogenesis, interaction with nucleic acids, tumorigenesis progression, cell death and viral replication. In this review, we have highlighted the overall aspects of this enzyme, such as its structure, reaction kinetics, activity regulation and possible moonlighting functions in different protistan organisms, especially both free-living and parasitic Kinetoplastea. Our analysis of the genomes of different kinetoplastids revealed the presence of open-reading frames (ORFs) for multiple PGK isoforms in several species. Some of these ORFs code for unusually large PGKs. The products appear to contain additional structural domains fused to the PGK domain. A striking aspect is that some of these PGK isoforms are predicted to be catalytically inactive enzymes or ‘dead’ enzymes. The roles of PGKs in kinetoplastid parasites are analysed, and the apparent significance of the PGK gene duplication that gave rise to the different isoforms and their expression in Trypanosoma cruzi is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile 8380453, Santigo de Chile
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution, The King's Buildings, Edinburgh EH9 3FL, UK.,Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| |
Collapse
|
34
|
Kloehn J, Oppenheim RD, Siddiqui G, De Bock PJ, Kumar Dogga S, Coute Y, Hakimi MA, Creek DJ, Soldati-Favre D. Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii. BMC Biol 2020; 18:67. [PMID: 32546260 PMCID: PMC7296777 DOI: 10.1186/s12915-020-00791-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/08/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Acetyl-CoA is a key molecule in all organisms, implicated in several metabolic pathways as well as in transcriptional regulation and post-translational modification. The human pathogen Toxoplasma gondii possesses at least four enzymes which generate acetyl-CoA in the nucleo-cytosol (acetyl-CoA synthetase (ACS); ATP citrate lyase (ACL)), mitochondrion (branched-chain α-keto acid dehydrogenase-complex (BCKDH)) and apicoplast (pyruvate dehydrogenase complex (PDH)). Given the diverse functions of acetyl-CoA, we know very little about the role of sub-cellular acetyl-CoA pools in parasite physiology. RESULTS To assess the importance and functions of sub-cellular acetyl-CoA-pools, we measured the acetylome, transcriptome, proteome and metabolome of parasites lacking ACL/ACS or BCKDH. We demonstrate that ACL/ACS constitute a synthetic lethal pair. Loss of both enzymes causes a halt in fatty acid elongation, hypo-acetylation of nucleo-cytosolic and secretory proteins and broad changes in gene expression. In contrast, loss of BCKDH results in an altered TCA cycle, hypo-acetylation of mitochondrial proteins and few specific changes in gene expression. We provide evidence that changes in the acetylome, transcriptome and proteome of cells lacking BCKDH enable the metabolic adaptations and thus the survival of these parasites. CONCLUSIONS Using multi-omics and molecular tools, we obtain a global and integrative picture of the role of distinct acetyl-CoA pools in T. gondii physiology. Cytosolic acetyl-CoA is essential and is required for the synthesis of parasite-specific fatty acids. In contrast, loss of mitochondrial acetyl-CoA can be compensated for through metabolic adaptations implemented at the transcriptional, translational and post-translational level.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Rebecca D Oppenheim
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville campus, Parkville, VIC, 3052, Australia
| | - Pieter-Jan De Bock
- University Grenoble Alpes, CEA, INSERM, IRIG, BGE, F-38000, Grenoble, France
| | - Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Yohann Coute
- University Grenoble Alpes, CEA, INSERM, IRIG, BGE, F-38000, Grenoble, France
| | - Mohamed-Ali Hakimi
- Epigenetic and Parasites Team, UMR5163/LAPM, Domaine de la Merci, Jean Roget Institute, 38700, La Tronche, France
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville campus, Parkville, VIC, 3052, Australia
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
35
|
Olson WJ, Martorelli Di Genova B, Gallego-Lopez G, Dawson AR, Stevenson D, Amador-Noguez D, Knoll LJ. Dual metabolomic profiling uncovers Toxoplasma manipulation of the host metabolome and the discovery of a novel parasite metabolic capability. PLoS Pathog 2020; 16:e1008432. [PMID: 32255806 PMCID: PMC7164669 DOI: 10.1371/journal.ppat.1008432] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/17/2020] [Accepted: 02/25/2020] [Indexed: 11/18/2022] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii is auxotrophic for several key metabolites and must scavenge these from the host. It is unclear how T. gondii manipulates host metabolism to support its overall growth rate and non-essential metabolites. To investigate this question, we measured changes in the joint host-parasite metabolome over a time course of infection. Host and parasite transcriptomes were simultaneously generated to determine potential changes in expression of metabolic enzymes. T. gondii infection changed metabolite abundance in multiple metabolic pathways, including the tricarboxylic acid cycle, the pentose phosphate pathway, glycolysis, amino acid synthesis, and nucleotide metabolism. Our analysis indicated that changes in some pathways, such as the tricarboxylic acid cycle, were mirrored by changes in parasite transcription, while changes in others, like the pentose phosphate pathway, were paired with changes in both the host and parasite transcriptomes. Further experiments led to the discovery of a T. gondii enzyme, sedoheptulose bisphosphatase, which funnels carbon from glycolysis into the pentose phosphate pathway through an energetically driven dephosphorylation reaction. This additional route for ribose synthesis appears to resolve the conflict between the T. gondii tricarboxylic acid cycle and pentose phosphate pathway, which are both NADP+ dependent. Sedoheptulose bisphosphatase represents a novel step in T. gondii central carbon metabolism that allows T. gondii to energetically-drive ribose synthesis without using NADP+. The obligate intracellular parasite T. gondii is commonly found among human populations worldwide and poses severe health risks to fetuses and individuals with AIDS. While some treatments are available they are limited in scope. A possible target for new therapies is T. gondii’s incomplete metabolism, which makes it heavily reliant on its host. In this study, we generated a joint host/parasite metabolome to better understand host manipulation by the parasite and to discover unique aspects of T. gondii metabolism that could serve as the next generation of drug targets. Metabolomic analysis of T. gondii infection over time found broad alterations to host metabolism by the parasite in both energetic and biosynthetic pathways. We discovered a new T. gondii enzyme, sedoheptulose bisphosphatase, which redirects carbon from glycolysis into the pentose phosphate pathway. The wholesale remodeling of host metabolism for optimal parasite growth is also of interest, although the mechanisms behind this host manipulation must be further studied before therapeutic targets can be identified.
Collapse
Affiliation(s)
- William J. Olson
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | | | - Gina Gallego-Lopez
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Anthony R. Dawson
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - David Stevenson
- Department of Bacteriology, University of Wisconsin—Madison, Madison, WI
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin—Madison, Madison, WI
- * E-mail: (DAN); (LJK)
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
- * E-mail: (DAN); (LJK)
| |
Collapse
|
36
|
Hydroxylamine and Carboxymethoxylamine Can Inhibit Toxoplasma gondii Growth through an Aspartate Aminotransferase-Independent Pathway. Antimicrob Agents Chemother 2020; 64:AAC.01889-19. [PMID: 31907178 DOI: 10.1128/aac.01889-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite and a successful parasitic pathogen in diverse organisms and host cell types. Hydroxylamine (HYD) and carboxymethoxylamine (CAR) have been reported as inhibitors of aspartate aminotransferases (AATs) and interfere with the proliferation in Plasmodium falciparum Therefore, AATs are suggested as drug targets against Plasmodium The T. gondii genome encodes only one predicted AAT in both T. gondii type I strain RH and type II strain PLK. However, the effects of HYD and CAR, as well as their relationship with AAT, on T. gondii remain unclear. In this study, we found that HYD and CAR impaired the lytic cycle of T. gondii in vitro, including the inhibition of invasion or reinvasion, intracellular replication, and egress. Importantly, HYD and CAR could control acute toxoplasmosis in vivo Further studies showed that HYD and CAR could inhibit the transamination activity of rTgAAT in vitro However, our results confirmed that deficiency of AAT in both RH and PLK did not reduce the virulence in mice, although the growth ability of the parasites was affected in vitro HYD and CAR could still inhibit the growth of AAT-deficient parasites. These findings indicated that HYD and CAR inhibition of T. gondii growth and control of toxoplasmosis can occur in an AAT-independent pathway. Overall, further studies focusing on the elucidation of the mechanism of inhibition are warranted. Our study hints at new substrates of HYD and CAR as potential drug targets to inhibit T. gondii growth.
Collapse
|
37
|
Krishnan A, Kloehn J, Lunghi M, Soldati-Favre D. Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. J Biol Chem 2020; 295:701-714. [PMID: 31767680 PMCID: PMC6970920 DOI: 10.1074/jbc.aw119.008150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Apicomplexa phylum comprises diverse parasitic organisms that have evolved from a free-living ancestor. These obligate intracellular parasites exhibit versatile metabolic capabilities reflecting their capacity to survive and grow in different hosts and varying niches. Determined by nutrient availability, they either use their biosynthesis machineries or largely depend on their host for metabolite acquisition. Because vitamins cannot be synthesized by the mammalian host, the enzymes required for their synthesis in apicomplexan parasites represent a large repertoire of potential therapeutic targets. Here, we review recent advances in metabolic reconstruction and functional studies coupled to metabolomics that unravel the interplay between biosynthesis and salvage of vitamins and cofactors in apicomplexans. A particular emphasis is placed on Toxoplasma gondii, during both its acute and latent stages of infection.
Collapse
Affiliation(s)
- Aarti Krishnan
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Matteo Lunghi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| |
Collapse
|
38
|
Krishnan A, Kloehn J, Lunghi M, Soldati-Favre D. Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49928-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Abstract
This protocol describes the use of 13C-stable isotope labeling, combined with metabolite profiling, to investigate the metabolism of the tachyzoite stage of the protozoan parasite Toxoplasma gondii. T. gondii tachyzoites can infect any nucleated cell in their vertebrate (including human) hosts, and utilize a range of carbon sources that freely permeate across the limiting membrane of the specialized vacuole within which they proliferate. Methods for cultivating tachyzoites in human foreskin fibroblasts and metabolically labeling intracellular and naturally egressed tachyzoites with a range of 13C-labeled carbon sources are described. Parasites are harvested and purified from host metabolites, with rapid metabolic quenching and 13C-enrichment in intracellular polar metabolites quantified by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). The mass isotopomer distribution of key metabolites is determined using DExSI software. This method can be used to measure perturbations in parasite metabolism induced by drug inhibition or genetic manipulation of enzyme levels and is broadly applicable to other cultured or intracellular parasite stages.
Collapse
|
40
|
Wang ZX, Zhou CX, Calderón-Mantilla G, Petsalaki E, He JJ, Song HY, Elsheikha HM, Zhu XQ. iTRAQ-Based Global Phosphoproteomics Reveals Novel Molecular Differences Between Toxoplasma gondii Strains of Different Genotypes. Front Cell Infect Microbiol 2019; 9:307. [PMID: 31508380 PMCID: PMC6716450 DOI: 10.3389/fcimb.2019.00307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/09/2019] [Indexed: 12/01/2022] Open
Abstract
To gain insights into differences in the virulence among T. gondii strains at the post-translational level, we conducted a quantitative analysis of the phosphoproteome profile of T. gondii strains belonging to three different genotypes. Phosphopeptides from three strains, type I (RH strain), type II (PRU strain) and ToxoDB#9 (PYS strain), were enriched by titanium dioxide (TiO2) affinity chromatography and quantified using iTRAQ technology. A total of 1,441 phosphopeptides, 1,250 phosphorylation sites and 759 phosphoproteins were detected. In addition, 392, 298, and 436 differentially expressed phosphoproteins (DEPs) were identified in RH strain when comparing RH/PRU strains, in PRU strain when comparing PRU/PYS strains, and in PYS strain when comparing PYS/RH strains, respectively. Functional characterization of the DEPs using GO, KEGG, and STRING analyses revealed marked differences between the three strains. In silico kinase substrate motif analysis of the DEPs revealed three (RxxS, SxxE, and SxxxE), three (RxxS, SxxE, and SP), and five (SxxE, SP, SxE, LxRxxS, and RxxS) motifs in RH strain when comparing RH/PRU strains, in PRU strain when comparing PRU/PYS, and in PYS strain when comparing PYS/RH strains, respectively. This suggests that multiple overrepresented protein kinases including PKA, PKG, CKII, IKK, and MAPK could be involved in such a difference between T. gondii strains. Kinase associated network analysis showed that ROP5, ROP16, and cell-cycle-associated protein kinase CDK were the most connected kinase peptides. Our data reveal significant changes in the abundance of phosphoproteins between T. gondii genotypes, which explain some of the mechanisms that contribute to the virulence heterogeneity of this parasite.
Collapse
Affiliation(s)
- Ze-Xiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Chun-Xue Zhou
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, China
| | - Guillermo Calderón-Mantilla
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hai-Yang Song
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
41
|
Chiok KLR, Shah DH. Identification of common highly expressed genes of Salmonella Enteritidis by in silico prediction of gene expression and in vitro transcriptomic analysis. Poult Sci 2019; 98:2948-2963. [PMID: 30953073 DOI: 10.3382/ps/pez119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/27/2019] [Indexed: 01/02/2023] Open
Abstract
Chickens are the reservoir host of Salmonella Enteritidis. Salmonella Enteritidis colonizes the gastro-intestinal tract of chickens and replicates within macrophages without causing clinically discernable illness. Persistence of S. Enteritidis in the hostile environments of intestinal tract and macrophages allows it to disseminate extra-intestinally to liver, spleen, and reproductive tract. Extra-intestinal dissemination into reproductive tract leads to contamination of internal contents of eggs, which is a major risk factor for human infection. Understanding the genes that contribute to S. Enteritidis persistence in the chicken host is central to elucidate the genetic basis of the unique pathobiology of this public health pathogen. The aim of this study was to identify a succinct set of genes associated with infection-relevant in vitro environments to provide a rational foundation for subsequent biologically-relevant research. We used in silico prediction of gene expression and RNA-seq technology to identify a core set of 73 S. Enteritidis genes that are consistently highly expressed in multiple S. Enteritidis strains cultured at avian physiologic temperature under conditions that represent intestinal and intracellular environments. These common highly expressed (CHX) genes encode proteins involved in bacterial metabolism, protein synthesis, cell-envelope biogenesis, stress response, and a few proteins with uncharacterized functions. Further studies are needed to dissect the contribution of these CHX genes to the pathobiology of S. Enteritidis in the avian host. Several of the CHX genes could serve as promising targets for studies towards the development of immunoprophylactic and novel therapeutic strategies to prevent colonization of chickens and their environment with S. Enteritidis.
Collapse
Affiliation(s)
- Kim Lam R Chiok
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040
| |
Collapse
|
42
|
Pyruvate Homeostasis as a Determinant of Parasite Growth and Metabolic Plasticity in Toxoplasma gondii. mBio 2019; 10:mBio.00898-19. [PMID: 31186321 PMCID: PMC6561023 DOI: 10.1128/mbio.00898-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is a widespread intracellular pathogen infecting humans and a variety of animals. Previous studies have shown that Toxoplasma uses glucose and glutamine as the main carbon sources to support asexual reproduction, but neither nutrient is essential. Such metabolic flexibility may allow it to survive within diverse host cell types. Here, by focusing on the glycolytic enzyme pyruvate kinase (PYK) that converts phosphoenolpyruvate (PEP) into pyruvate, we found that Toxoplasma can also utilize lactate and alanine. We show that catabolism of all indicated carbon sources converges at pyruvate, and maintaining a constant pyruvate supply is critical to parasite growth. Toxoplasma expresses two PYKs: PYK1 in the cytosol and PYK2 in the apicoplast (a chloroplast relict). Genetic deletion of PYK2 did not noticeably affect parasite growth and virulence, which contrasts with the current model of carbon metabolism in the apicoplast. On the other hand, PYK1 was refractory to disruption. Conditional depletion of PYK1 resulted in global alteration of carbon metabolism, amylopectin accumulation, and reduced cellular ATP, leading to severe growth impairment. Notably, the attenuated growth of the PYK1-depleted mutant was partially rescued by lactate or alanine supplementation, and rescue by lactate required lactate dehydrogenase activity to convert it to pyruvate. Moreover, depletion of PYK1 in conjunction with PYK2 ablation led to accentuated loss of apicoplasts and complete growth arrest. Together, our results underline a critical role of pyruvate homeostasis in determining the metabolic flexibility and apicoplast maintenance, and they significantly extend our current understanding of carbon metabolism in T. gondii IMPORTANCE Toxoplasma gondii infects almost all warm-blooded animals, and metabolic flexibility is deemed critical for its successful parasitism in diverse hosts. Glucose and glutamine are the major carbon sources to support parasite growth. In this study, we found that Toxoplasma is also competent in utilizing lactate and alanine and, thus, exhibits exceptional metabolic versatility. Notably, all these nutrients need to be converted to pyruvate to fuel the lytic cycle, and achieving a continued pyruvate supply is vital to parasite survival and metabolic flexibility. Although pyruvate can be generated by two distinct pyruvate kinases, located in cytosol and apicoplast, respectively, the cytosolic enzyme is the main source of subcellular pyruvate, and cooperative usage of pyruvate among multiple organelles is critical for parasite growth and virulence. These findings expand our current understanding of carbon metabolism in Toxoplasma gondii and related parasites while providing a basis for designing novel antiparasitic interventions.
Collapse
|
43
|
Abstract
It is generally regarded that the progression of an infection within host macrophages is the consequence of a failed immune response. However, recent appreciation of macrophage heterogeneity, with respect to both development and metabolism, indicates that the reality is more complex. Different lineages of tissue-resident macrophages respond divergently to microbial, environmental and immunological stimuli. The emerging picture that the developmental origin of macrophages determines their responses to immune stimulation and to infection stresses the importance of in vivo infection models. Recent investigations into the metabolism of infecting microorganisms and host macrophages indicate that their metabolic interface can be a major determinant of pathogen growth or containment. This Review focuses on the integration of data from existing studies, the identification of challenges in generating and interpreting data from ongoing studies and a discussion of the technologies and tools that are required to best address future questions in the field.
Collapse
Affiliation(s)
- David G Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Lu Huang
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Brian C VanderVen
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
44
|
Parker KER, Fairweather SJ, Rajendran E, Blume M, McConville MJ, Bröer S, Kirk K, van Dooren GG. The tyrosine transporter of Toxoplasma gondii is a member of the newly defined apicomplexan amino acid transporter (ApiAT) family. PLoS Pathog 2019; 15:e1007577. [PMID: 30742695 PMCID: PMC6386423 DOI: 10.1371/journal.ppat.1007577] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 02/22/2019] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
Apicomplexan parasites are auxotrophic for a range of amino acids which must be salvaged from their host cells, either through direct uptake or degradation of host proteins. Here, we describe a family of plasma membrane-localized amino acid transporters, termed the Apicomplexan Amino acid Transporters (ApiATs), that are ubiquitous in apicomplexan parasites. Functional characterization of the ApiATs of Toxoplasma gondii indicate that several of these transporters are important for intracellular growth of the tachyzoite stage of the parasite, which is responsible for acute infections. We demonstrate that the ApiAT protein TgApiAT5-3 is an exchanger for aromatic and large neutral amino acids, with particular importance for L-tyrosine scavenging and amino acid homeostasis, and that TgApiAT5-3 is critical for parasite virulence. Our data indicate that T. gondii expresses additional proteins involved in the uptake of aromatic amino acids, and we present a model for the uptake and homeostasis of these amino acids. Our findings identify a family of amino acid transporters in apicomplexans, and highlight the importance of amino acid scavenging for the biology of this important phylum of intracellular parasites. The Apicomplexa comprise a large number of parasitic protozoa that have obligate intracellular lifestyles and cause significant human and animal diseases, including malaria, cryptosporidiosis, toxoplasmosis, coccidiosis in poultry, and various cattle fevers. Apicomplexans must scavenge essential nutrients from their hosts in order to proliferate and cause disease, including a range of amino acids. The direct uptake of these nutrients is presumed to be mediated by transporter proteins located in the plasma membrane of intracellular stages, although the identities of these proteins are poorly defined. Using a combination of bioinformatic, genetic, cell biological, and physiological approaches, we have characterized an apicomplexan-specific family of plasma membrane-localized transporter proteins that we have called the Apicomplexan Amino acid Transporters (ApiATs). We show that TgApiAT5-3, a member of the family in the apicomplexan Toxoplasma gondii, is an exchanger for aromatic and large neutral amino acids. In particular, it is critical for uptake of tyrosine, and for parasite virulence in a mouse infection model. We conclude that ApiATs are a family of plasma membrane transporters that play crucial roles in amino acid scavenging by apicomplexan parasites.
Collapse
Affiliation(s)
- Kathryn E. R. Parker
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Esther Rajendran
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Martin Blume
- Department of Biochemistry and Molecular Biology and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC, Australia
- Robert Koch Institute, Berlin, Germany
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC, Australia
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- * E-mail: (GGVD); (KK); (SB)
| | - Kiaran Kirk
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- * E-mail: (GGVD); (KK); (SB)
| | - Giel G. van Dooren
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- * E-mail: (GGVD); (KK); (SB)
| |
Collapse
|
45
|
Abstract
Parasites undergo complex life cycles that comprise a wide variety of cellular differentiation events in different host compartments and transmission across multiple hosts. As parasites depend on host resources, it is not surprising they have developed efficient mechanisms to sense alterations and adapt to the available resources in a wide range of environments. Here we provide an overview of the nutritional needs of different parasites throughout their diverse life stages and highlight recent insights into strategies that both hosts and parasites have developed to meet these nutritional requirements needed for defense, survival, and replication. These studies will provide the foundation for a systems-level understanding of host-parasite interactions, which will require the integration of molecular, epidemiologic, and mechanistic data and the application of interdisciplinary approaches to model parasite regulatory networks that are triggered by alterations in host resources.
Collapse
|
46
|
He C, Kong L, Puthiyakunnon S, Wei HX, Zhou LJ, Peng HJ. iTRAQ-based phosphoproteomic analysis reveals host cell's specific responses to Toxoplasma gondii at the phases of invasion and prior to egress. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:202-212. [PMID: 30576742 DOI: 10.1016/j.bbapap.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
Protein phosphorylation plays a key role in host cell-T. gondii interaction. However, the phosphoproteome data of host cell at various phases of T. gondii infection has not been thoroughly described. In this study, we assessed the host phosphoproteome data with isobaric tags for relative and absolute quantification (iTRAQ) method during the phases of T. gondii invasion (30 min post infection, PI) and prior to egress (28 h PI). Our iTRAQ analysis revealed a total of 665 phosphoproteins, among which the significantly regulated phosphoproteins in different between-group comparisons were further analyzed. Functional analysis of these significantly regulated phosphoproteins suggested that T. gondii modulated host cell processes through phosphorylation including cell cycle regulation, inducing apoptosis, blocking the synthesis of some inflammatory factors, mediating metabolism to support its proliferation at the infection phase prior to egress, and utilizing membrane and energy from host cell, reorganizing cytoskeleton to favor its invasion and PV formation at the phase of invasion. The phosphorylation level of Smad2, CTNNA1, and HSPB1 identified with western blot revealed a consistent trend of change with iTRAQ result. These newly identified and significantly regulated phosphoproteins from our phosphoproteome data may provide new clues to unravel the host cell's complex reaction against T. gondii infection and the interaction between the host cell and T. gondii.
Collapse
Affiliation(s)
- Cheng He
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Ling Kong
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Santhosh Puthiyakunnon
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hai-Xia Wei
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Li-Juan Zhou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
47
|
Kovářová J, Nagar R, Faria J, Ferguson MAJ, Barrett MP, Horn D. Gluconeogenesis using glycerol as a substrate in bloodstream-form Trypanosoma brucei. PLoS Pathog 2018; 14:e1007475. [PMID: 30589893 PMCID: PMC6307712 DOI: 10.1371/journal.ppat.1007475] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022] Open
Abstract
Bloodstream form African trypanosomes are thought to rely exclusively upon glycolysis, using glucose as a substrate, for ATP production. Indeed, the pathway has long been considered a potential therapeutic target to tackle the devastating and neglected tropical diseases caused by these parasites. However, plasma membrane glucose and glycerol transporters are both expressed by trypanosomes and these parasites can infiltrate tissues that contain glycerol. Here, we show that bloodstream form trypanosomes can use glycerol for gluconeogenesis and for ATP production, particularly when deprived of glucose following hexose transporter depletion. We demonstrate that Trypanosoma brucei hexose transporters 1 and 2 (THT1 and THT2) are localized to the plasma membrane and that knockdown of THT1 expression leads to a growth defect that is more severe when THT2 is also knocked down. These data are consistent with THT1 and THT2 being the primary routes of glucose supply for the production of ATP by glycolysis. However, supplementation of the growth medium with glycerol substantially rescued the growth defect caused by THT1 and THT2 knockdown. Metabolomic analyses with heavy-isotope labelled glycerol demonstrated that trypanosomes take up glycerol and use it to synthesize intermediates of gluconeogenesis, including fructose 1,6-bisphosphate and hexose 6-phosphates, which feed the pentose phosphate pathway and variant surface glycoprotein biosynthesis. We used Cas9-mediated gene knockout to demonstrate a gluconeogenesis-specific, but fructose-1,6-bisphosphatase (Tb927.9.8720)-independent activity, converting fructose 1,6-bisphosphate into fructose 6-phosphate. In addition, we observed increased flux through the tricarboxylic acid cycle and the succinate shunt. Thus, contrary to prior thinking, gluconeogenesis can operate in bloodstream form T. brucei. This pathway, using glycerol as a physiological substrate, may be required in mammalian host tissues.
Collapse
Affiliation(s)
- Julie Kovářová
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Rupa Nagar
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Joana Faria
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michael A. J. Ferguson
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michael P. Barrett
- The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
48
|
Gas-Pascual E, Ichikawa HT, Sheikh MO, Serji MI, Deng B, Mandalasi M, Bandini G, Samuelson J, Wells L, West CM. CRISPR/Cas9 and glycomics tools for Toxoplasma glycobiology. J Biol Chem 2018; 294:1104-1125. [PMID: 30463938 DOI: 10.1074/jbc.ra118.006072] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/12/2018] [Indexed: 01/25/2023] Open
Abstract
Infection with the protozoan parasite Toxoplasma gondii is a major health risk owing to birth defects, its chronic nature, ability to reactivate to cause blindness and encephalitis, and high prevalence in human populations. Unlike most eukaryotes, Toxoplasma propagates in intracellular parasitophorous vacuoles, but like nearly all other eukaryotes, Toxoplasma glycosylates many cellular proteins and lipids and assembles polysaccharides. Toxoplasma glycans resemble those of other eukaryotes, but species-specific variations have prohibited deeper investigations into their roles in parasite biology and virulence. The Toxoplasma genome encodes a suite of likely glycogenes expected to assemble N-glycans, O-glycans, a C-glycan, GPI-anchors, and polysaccharides, along with their precursors and membrane transporters. To investigate the roles of specific glycans in Toxoplasma, here we coupled genetic and glycomics approaches to map the connections between 67 glycogenes, their enzyme products, the glycans to which they contribute, and cellular functions. We applied a double-CRISPR/Cas9 strategy, in which two guide RNAs promote replacement of a candidate gene with a resistance gene; adapted MS-based glycomics workflows to test for effects on glycan formation; and infected fibroblast monolayers to assess cellular effects. By editing 17 glycogenes, we discovered novel Glc0-2-Man6-GlcNAc2-type N-glycans, a novel HexNAc-GalNAc-mucin-type O-glycan, and Tn-antigen; identified the glycosyltransferases for assembling novel nuclear O-Fuc-type and cell surface Glc-Fuc-type O-glycans; and showed that they are important for in vitro growth. The guide sequences, editing constructs, and mutant strains are freely available to researchers to investigate the roles of glycans in their favorite biological processes.
Collapse
Affiliation(s)
- Elisabet Gas-Pascual
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602
| | | | | | | | - Bowen Deng
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602
| | - Msano Mandalasi
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602
| | - Giulia Bandini
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts 02118
| | - John Samuelson
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts 02118
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
49
|
Yu Y, Liu M, Hua L, Qiu M, Zhang W, Wei Y, Gan Y, Feng Z, Shao G, Xiong Q. Fructose-1,6-bisphosphate aldolase encoded by a core gene of Mycoplasma hyopneumoniae contributes to host cell adhesion. Vet Res 2018; 49:114. [PMID: 30454073 PMCID: PMC6245935 DOI: 10.1186/s13567-018-0610-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022] Open
Abstract
Mycoplasma hyopneumoniae is an important respiratory pathogen that causes great economic losses to the pig industry worldwide. Although some putative virulence factors have been reported, pathogenesis remains poorly understood. Herein, we evaluated the relative abundance of proteins in virulent 168 (F107) and attenuated 168L (F380) M. hyopneumoniae strains to identify virulence-associated factors by two-dimensional electrophoresis (2-DE). Seven proteins were found to be ≥ 1.5-fold more abundant in 168, and protein-protein interaction network analysis revealed that all seven interact with putative virulence factors. Unexpectedly, six of these virulence-associated proteins are encoded by core rather than accessory genomic elements. The most differentially abundant of the seven, fructose-1,6-bisphosphate aldolase (FBA), was successfully cloned, expressed and purified. Flow cytometry demonstrated the surface localisation of FBA, recombinant FBA (rFBA) mediated adhesion to swine tracheal epithelial cells (STEC), and anti-rFBA sera decreased adherence to STEC. Surface plasmon resonance showed that rFBA bound to fibronectin with a moderately strong KD of 469 nM. The results demonstrate that core gene expression contributes to adhesion and virulence in M. hyopneumoniae, and FBA moonlights as an important adhesin, mediating binding to host cells via fibronectin.
Collapse
Affiliation(s)
- Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maojun Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Lizhong Hua
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mingjun Qiu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Animal Science and Technology, Shanxi Agricultural University, Taigu, China
| | - Wei Zhang
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanna Wei
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuan Gan
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
50
|
Guggisberg AM, Frasse PM, Jezewski AJ, Kafai NM, Gandhi AY, Erlinger SJ, Odom John AR. Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites. mBio 2018; 9:e01193-18. [PMID: 30425143 PMCID: PMC6234871 DOI: 10.1128/mbio.01193-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022] Open
Abstract
In the malaria parasite Plasmodium falciparum, synthesis of isoprenoids from glycolytic intermediates is essential for survival. The antimalarial fosmidomycin (FSM) inhibits isoprenoid synthesis. In P. falciparum, we identified a loss-of-function mutation in HAD2 (P. falciparum 3D7_1226300 [PF3D7_1226300]) as necessary for FSM resistance. Enzymatic characterization revealed that HAD2, a member of the haloacid dehalogenase-like hydrolase (HAD) superfamily, is a phosphatase. Harnessing a growth defect in resistant parasites, we selected for suppression of HAD2-mediated FSM resistance and uncovered hypomorphic suppressor mutations in the locus encoding the glycolytic enzyme phosphofructokinase 9 (PFK9). Metabolic profiling demonstrated that FSM resistance is achieved via increased steady-state levels of methylerythritol phosphate (MEP) pathway and glycolytic intermediates and confirmed reduced PFK9 function in the suppressed strains. We identified HAD2 as a novel regulator of malaria parasite metabolism and drug sensitivity and uncovered PFK9 as a novel site of genetic metabolic plasticity in the parasite. Our report informs the biological functions of an evolutionarily conserved family of metabolic regulators and reveals a previously undescribed strategy by which malaria parasites adapt to cellular metabolic dysregulation.IMPORTANCE Unique and essential aspects of parasite metabolism are excellent targets for development of new antimalarials. An improved understanding of parasite metabolism and drug resistance mechanisms is urgently needed. The antibiotic fosmidomycin targets the synthesis of essential isoprenoid compounds from glucose and is a candidate for antimalarial development. Our report identifies a novel mechanism of drug resistance and further describes a family of metabolic regulators in the parasite. Using a novel forward genetic approach, we also uncovered mutations that suppress drug resistance in the glycolytic enzyme PFK9. Thus, we identify an unexpected genetic mechanism of adaptation to metabolic insult that influences parasite fitness and tolerance of antimalarials.
Collapse
Affiliation(s)
- Ann M Guggisberg
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Philip M Frasse
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew J Jezewski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Natasha M Kafai
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aakash Y Gandhi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Samuel J Erlinger
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|