1
|
Gao J, Huang X, Zhu Q, He H, Zhang J, Chen J, Wei C, Luo S, Yang S, Xie Z. Mtb/HIV co-infection immune microenvironment subpopulations heterogeneity. Int Immunopharmacol 2024; 143:113341. [PMID: 39405943 DOI: 10.1016/j.intimp.2024.113341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND The co-infection of human immunodeficiency virus type 1 (HIV-1) and tuberculosis poses a lethal threat. Currently, our understanding of the altered immune responses and diverse immune cell subpopulations triggered by dual pathogen infections remains inadequate. METHODS We utilized single-cell RNA sequencing data from the Gene Expression Omnibus database and the China National GeneBank Nucleotide Sequence Archive to study peripheral blood mononuclear cells from individuals infected with HIV-1 and those co-infected with Mycobacterium tuberculosis (Mtb)/HIV. We investigated cellular components, signaling pathways, biological functions, developmental trajectories, and gene regulatory networks among different cells to determine cellular heterogeneity in the progression of Mtb/HIV co-infection. RESULTS We constructed a single-cell global transcriptional landscape of Mtb/HIV co-infection, revealing heterogeneity among various cell subpopulations. CD4+ T_RACK1_STAT1 subpopulation may participate in the JAK-STAT signaling pathway through RACK1-mediated transcriptional regulation of STAT1, potentially mediating the immune response in patients. Targeting CD8+ T_RACK1_TIGIT subpopulation via RACK1 may help restore the effector capacity of CD8+ T cells. Additionally, Mono_HSP90AA1 and Mono_APOBEC3A subpopulations were positioned at the endpoints of monocyte differentiation trajectories in different patients, suggesting their significant roles in distinct types of immune responses. CTL_GNLY and NK_HSPA1A subpopulations were specifically enriched in three distinct HIV-infected patient groups, indicating their crucial roles in the immune cytotoxicity associated with Mtb/HIV co-infection. CONCLUSION The immune system disruptions caused by HIV-1 infection are further exacerbated by co-infection with Mtb. This compounded effect leads to significant heterogeneity in immune cell subpopulations among co-infected individuals, promoting immune system dysfunction.
Collapse
Affiliation(s)
- Jiamin Gao
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning 530023, China; Department of Tuberculosis, The Fourth People's Hospital of Nanning, Nanning 530023, China.
| | - Xianzhen Huang
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning 530023, China; Department of Tuberculosis, The Fourth People's Hospital of Nanning, Nanning 530023, China
| | - Qingdong Zhu
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning 530023, China; Department of Tuberculosis, The Fourth People's Hospital of Nanning, Nanning 530023, China
| | - Huawei He
- Department of Tuberculosis, The Fourth People's Hospital of Nanning, Nanning 530023, China
| | - Jie Zhang
- Department of Tuberculosis, The Fourth People's Hospital of Nanning, Nanning 530023, China
| | - Jieling Chen
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning 530023, China
| | - Cailing Wei
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning 530023, China
| | - Shunda Luo
- Department of Clinical Laboratory, The Fourth People's Hospital of Nanning, Nanning 530023, China
| | - Shixiong Yang
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning 530023, China; Administrative Office, The Fourth People's Hospital of Nanning, Nanning 530023, China.
| | - Zhouhua Xie
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning 530023, China; Department of Tuberculosis, The Fourth People's Hospital of Nanning, Nanning 530023, China; Administrative Office, The Fourth People's Hospital of Nanning, Nanning 530023, China.
| |
Collapse
|
2
|
Spampinato S, Conti GN, Marino A, Raimondo V, Celesia BM, Pellicanò GF, Puci MV, Sotgiu G, Bruno R, Villari N, Mirabile A, Coco VAM, Paternò Raddusa MS, Pistarà E, Boscia V, Fisicaro V, Fiorenza G, Cacopardo B, Rullo EV, Nunnari G. Enhanced metabolic health and immune response with bictegravir/emtricitabine/TAF: Insights from a 96‑week retrospective study. Biomed Rep 2024; 21:179. [PMID: 39387001 PMCID: PMC11462501 DOI: 10.3892/br.2024.1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Bictegravir/emtricitabine/tenofovir alafenamide (B/F/TAF), as a fixed dosed combination, is effective in people living with human immunodeficiency virus (PLWH) previously treated with other therapeutic regimens. The aim of the present retrospective observational real-life study was to analyze virological suppression and immunological, metabolic and safety profile of B/F/TAF. Data were collected from 127 PLHW who switched from any regimen to B/F/TAF. Viral load and virological suppression (viral load <50 copies/ml) were assessed by using real-time PCR methodologies; CD4 and CD8 T cell count as well as CD4/CD8 ratio were determined by cytofluorimetric analyses; other metabolic parameters such as total cholesterol, triglycerides, High- and Low-Density Lipoproteins were assessed by using immunoenzymatic assay. All of the aforementioned parameters were assessed at different timepoints (Baseline, 48 and 96 weeks) for the patients switching to B/F/TAF. Of 127 PLHW [96 (75.6%) male and 31 (24.4%) female, with a mean age of 46.8±10.7 years], 107 PLHW were included in the analysis. The percentage of virologically suppressed PLWH increased from 66.4 to 74.8% at 96 weeks. A statistically significant increase in absolute CD4 (P<0.0001) and CD8 T cell count (P=0.002) was observed. Of importance, there was a significant increase in CD4/CD8 ratio from 0.95 (0.52-1.31) to 1.16 (0.75-1.39) (P=0.003) after 96 weeks. There was a significant decrease in the median values of triglycerides (P<0.0001) and total cholesterol (P<0.0001). Serum creatinine showed a significant increase (P=0.0001). In real life, switching to B/F/T was safe and highly effective both virologically and immunologically. Decrease in cholesterol and triglyceride levels suggested a favorable metabolic profile, which may decrease inflammation, leading to a healthier state and less organ damage.
Collapse
Affiliation(s)
- Serena Spampinato
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Giuseppe Nicolò Conti
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Andrea Marino
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Vincenzo Raimondo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Benedetto Maurizio Celesia
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Giovanni Francesco Pellicanò
- Unit of Infectious Diseases, G. Martino University Hospital, University of Messina, Department of Clinical and Experimental Medicine, Messina I-98124, Italy
| | - Mariangela Valentina Puci
- Clinical Epidemiology and Medical Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari I-07100, Italy
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari I-07100, Italy
| | - Roberto Bruno
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Nunziatina Villari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Alessia Mirabile
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Viviana Agata Maria Coco
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Michele Salvatore Paternò Raddusa
- Unit of Infectious Diseases, G. Martino University Hospital, University of Messina, Department of Clinical and Experimental Medicine, Messina I-98124, Italy
| | - Eugenia Pistarà
- Unit of Infectious Diseases, G. Martino University Hospital, University of Messina, Department of Clinical and Experimental Medicine, Messina I-98124, Italy
| | - Vincenzo Boscia
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Viviana Fisicaro
- Unit of Infectious Diseases, G. Martino University Hospital, University of Messina, Department of Clinical and Experimental Medicine, Messina I-98124, Italy
| | - Giorgia Fiorenza
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania I-95124, Italy
| | - Bruno Cacopardo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Emmanuele Venanzi Rullo
- Unit of Infectious Diseases, G. Martino University Hospital, University of Messina, Department of Clinical and Experimental Medicine, Messina I-98124, Italy
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| |
Collapse
|
3
|
Georgia AN, Claudine NE, Carole SN, Loveline NN, Abel L, Flaurent TT, Martin S, Waffo AB, Okeke M, Esimone C, Park CG, Vittorio C, François-Xavier E, Godwin NW. Regulatory T cells modulate monocyte functions in immunocompetent antiretroviral therapy naive HIV-1 infected people. BMC Immunol 2024; 25:68. [PMID: 39402453 PMCID: PMC11472541 DOI: 10.1186/s12865-024-00654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
We previously demonstrated that the overall number of regulatory T (Treg) cells decrease proportionately with helper CD4+ T cells and their frequencies increase in antiretroviral therapy (ART)-naive human immunodeficiency virus type-1 (HIV-1) infected individuals. The question now is whether the discrepancies in Treg cell numbers and frequencies are synonymous to an impairment of their functions. To address this, we purified Treg cells and assessed their ability to modulate autologous monocytes functions. We observed that Treg cells were able to down modulate autologous monocytes activation as well as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) production during stimulation with polyinosinic-polycytidylic acid stabilized with poly-L-lysine and carboxymethylcellulose (poly-ICLC). This activity of Treg cells has been shown to be influenced by immunocompetence including but not limited to helper CD4+ T cell counts, in individuals with HIV-1 infection. Compared to immunosuppressed participants (CD4 < 500 cells/µL), immunocompetent participants (CD4 ≥ 500 cells/µL) showed significantly higher levels of transforming growth factor beta (TGF-β) and IL-10 (p < 0.001 and p < 0.05, respectively), key cytokines used by Treg cells to exert their immunosuppressive functions. Our findings suggest the contribution of both TGF-β and IL-10 in the suppressive activity of Treg cells.
Collapse
Affiliation(s)
- Ambada N Georgia
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon.
- Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon.
| | - Ntsama E Claudine
- Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Sake N Carole
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
- Department of Microbiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Ngu N Loveline
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
- Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Lissom Abel
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
- Faculty of Science, Department of Biological Science, University of Bamenda, Bamenda, Cameroon
| | - Tchouangeu T Flaurent
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
- Department of Biochemistry, University of Dschang, Dschang, Cameroon
| | - Sosso Martin
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
| | - Alain Bopda Waffo
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
| | - Malachy Okeke
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, School of Arts and Sciences, American University of Nigeria, 98 Lamido Zubairu Way, Yola, PMB, 2250, Nigeria
| | - Charles Esimone
- Department of Pharmaceutical Microbiology & Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Chae Gyu Park
- Laboratory of Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Nchinda W Godwin
- Laboratory of Vaccinology/Biobanking, The Chantal Biya International Reference Center (CIRCB) for Research on the Prevention and Management of HIV/AIDS, P.O. Box: 3077, Messa Yaoundé, Cameroon
- Department of Pharmaceutical Microbiology & Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
4
|
Okafor EC, Nielsen K. State of the Field: Cytotoxic Immune Cell Responses in C. neoformans and C. deneoformans Infection. J Fungi (Basel) 2024; 10:712. [PMID: 39452664 PMCID: PMC11508571 DOI: 10.3390/jof10100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Cryptococcus neoformans is an environmental pathogen that causes life-threatening disease in immunocompromised persons. The majority of immunological studies have centered on CD4+ T-cell dysfunction and associated cytokine signaling pathways, optimization of phagocytic cell function against fungal cells, and identification of robust antigens for vaccine development. However, a growing body of literature exists regarding cytotoxic cells, specifically CD8+ T-cells, Natural Killer cells, gamma/delta T-cells, NK T-cells, and Cytotoxic CD4+ T-cells, and their role in the innate and adaptive immune response during C. neoformans and C. deneoformans infection. In this review, we (1) provide a comprehensive report of data gathered from mouse and human studies on cytotoxic cell function and phenotype, (2) discuss harmonious and conflicting results on cellular responses in mice models and human infection, (3) identify gaps of knowledge in the field ripe for exploration, and (4) highlight how innovative immunological tools could enhance the study of cytotoxic cells and their potential immunomodulation during cryptococcosis.
Collapse
Affiliation(s)
- Elizabeth C. Okafor
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech University, Blacksburg, VA 24060, USA
| |
Collapse
|
5
|
Dale SK, Wright IA, Madhu A, Reid R, Shahid NN, Wright M, Sanders J, Phillips A, Rodriguez A, Safren SA. A Pilot Randomized Control Trial of the Striving Towards EmPowerment and Medication Adherence (STEP-AD) Intervention for Black Women Living with HIV. AIDS Behav 2024; 28:3483-3497. [PMID: 39012452 PMCID: PMC11427489 DOI: 10.1007/s10461-024-04408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/17/2024]
Abstract
Black women living with HIV (BWLWH) face adversities associated with lower HIV medication adherence, viral non-suppression, and mental health symptoms (e.g., post-traumatic stress disorder) such as trauma/violence, racism, HIV-related discrimination/stigma, and gender-related stressors. We developed the first intervention based in cognitive behavioral therapy and culturally congruent coping for BWLWH to increase medication adherence and decrease PTSD symptoms by enhancing resilience, self-care, engagement in care, and coping for trauma, racism, HIV-related discrimination/stigma, and gender-related stressors. A pilot randomized control trial was conducted with BWLWH and histories of trauma who were at risk for their HIV viral load remaining or becoming detectable (i.e., below 80% medication adherence, detectable viral load in the past year, and/or missed HIV-related appointments). 119 BWLWH were assessed at baseline and 70 met inclusion criteria, completed one session of Life-Steps adherence counseling, and were randomized to either nine sessions of STEP-AD (Striving Towards EmPowerment and Medication Adherence) or ETAU (enhanced treatment as usual consisting of biweekly check-ins). Women completed a post intervention follow up assessment (3 months post baseline) and 3-month post intervention follow-up (6 months post baseline). Via STATA the difference-in-difference methodology with mixed models compared STEP-AD to ETAU on changes in outcomes over time. BWLWH in STEP-AD compared to E-TAU had significantly higher ART adherence (estimate = 9.36 p = 0.045) and lower likelihood of being clinically diagnosed with PTSD (OR = .07, estimate = - 2.66, p = 0.03) as well as borderline significance on higher CD4 count (estimate = 161.26, p = 0.05). Our findings suggest preliminary efficacy of STEP-AD in improving ART adherence, mental health, and immune function.
Collapse
Affiliation(s)
- Sannisha K Dale
- Department of Psychology, University of Miami, 5665 Ponce de Leon Blvd, Miami, FL, 33146, USA.
| | - Ian A Wright
- Department of Economics, Miami Herbert Business School, University of Miami, Miami, FL, USA
| | - Aarti Madhu
- Department of Psychology, University of Miami, 5665 Ponce de Leon Blvd, Miami, FL, 33146, USA
| | - Rachelle Reid
- Department of Psychology, University of Miami, 5665 Ponce de Leon Blvd, Miami, FL, 33146, USA
| | - Naysha N Shahid
- Department of Psychology, University of Miami, 5665 Ponce de Leon Blvd, Miami, FL, 33146, USA
| | - Mya Wright
- Department of Psychology, University of Miami, 5665 Ponce de Leon Blvd, Miami, FL, 33146, USA
| | - Jasmyn Sanders
- Department of Psychology, University of Miami, 5665 Ponce de Leon Blvd, Miami, FL, 33146, USA
| | - Arnetta Phillips
- Department of Psychology, University of Miami, 5665 Ponce de Leon Blvd, Miami, FL, 33146, USA
| | - Allan Rodriguez
- Clinical Immunology, Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven A Safren
- Department of Psychology, University of Miami, 5665 Ponce de Leon Blvd, Miami, FL, 33146, USA
| |
Collapse
|
6
|
Zhang Y, Chen A, Li D, Yuan Q, Zhu A, Deng J, Wang Y, Liu J, Liang C, Li W, Fang Q, Xie J, Zhang X, Zhang X, Zhang Y, Chen R, Pan T, Zhang H, He X. Development of T follicular helper cell-independent nanoparticle vaccines for SARS-CoV-2 or HIV-1 by targeting ICOSL. NPJ Vaccines 2024; 9:176. [PMID: 39341822 PMCID: PMC11438966 DOI: 10.1038/s41541-024-00971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
T helper cells, particularly T follicular helper (TFH) cells, are essential for the neutralizing antibody production elicited by pathogens or vaccines. However, in immunocompromised individuals, the inefficient support from TFH cells could lead to limited protection after vaccine inoculation. Here we showed that the conjugation of inducible T cell costimulatory (ICOS) onto the nanoparticle, together with immunogen, significantly enhanced the immune response of the vaccines specific for SARS-CoV-2 or human immunodeficiency virus type-1 (HIV-1) in TFH-deficient mice. Further studies indicated that ICOSL on B cells was triggered by ICOS binding, subsequently activated the PKCβ signaling pathway, and enhanced the survival and proliferation of B cells. Our findings revealed that the stimulation of ICOS-ICOSL interaction by adding ICOS on the nanoparticle vaccine significantly substitutes the function of TFH cells to support B cell response, which is significant for the immunocompromised people, such as the elderly or HIV-1-infected individuals.
Collapse
Affiliation(s)
- Yongli Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Achun Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Daiying Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Quyu Yuan
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Airu Zhu
- Guangzhou Laboratory, Bio-island, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieyi Deng
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yalin Wang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jie Liu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chaofeng Liang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiannan Fang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiatong Xie
- Shenzhen College of International Education, No. 3 Antuoshan 6th Road, Futian District, Shenzhen, China
| | - Xiantao Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xu Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ran Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Hui Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangzhou Laboratory, Bio-island, Guangzhou, China
| | - Xin He
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Zhao L, Wang H, Zhang Y, Shi Y, Zhou C, Yu M, Wang Y, Zhang L, Xu Z, Zhang Z, Gao L, Zhang J, Yang B, Huang H, Wang FS. Characteristics and functions of an atypical inflammation-associated GZMK +GZMB +CD8 + T subset in people living with HIV-1. Mol Immunol 2024; 173:40-52. [PMID: 39053388 DOI: 10.1016/j.molimm.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
HIV-1 chronically infects host CD4+ T lymphocytes and further affects a variety of immune cells, including CD8+ T cells. In our previous study, by analyzing unbiased high-dimensional single-cell RNA-seq data (scRNA-seq), we found that the frequency of GZMK+CD8+ T cells expressing granzyme K (GZMK) was increased in people living with HIV-1 (PLWHs). However, the phenotypic and functional characteristics of these cells in chronic HIV-1 infection and their correlation with disease are not well understood. In this study, we conducted a comprehensive analysis of scRNA-seq and matched T-cell receptor repertoire (TCR) sequencing data to delve into the characterizations of GZMK+CD8+ T cells, which was further validated by flow cytometry. We observed heterogeneity within the GZMK+CD8+ T cells, which could be further subdivided into a GZMK+GZMB- subset and a GZMK+GZMB+ subset, with the latter being significantly enriched in PLWHs. The GZMK+GZMB+ cells are a unique subset within CD8+ T cells, characterized by high proliferation, activation, inflammatory response, clone transition, etc., and are one of the differentiation endpoints by pseudotemporal analysis of CD8+αβ T cells. Despite being predominantly composed of effector memory T cells (Tem), similar to the GZMK+GZMB- subset, the GZMK+GZMB+ subset exhibits differentiation at a later stage than the GZMK+GZMB- subset. We also observed that the frequency/count of GZMK+GZMB+CD8+ T cells was negatively correlated with CD4/CD8 ratio, and positively correlated with HIV DNA, IP-10, and MIG levels in PLWHs. In vitro experiments demonstrate that GZMK can potentiate the stimulatory effects of lipopolysaccharide (LPS) on THP-1 macrophages via the TLR-4 pathway, significantly enhancing the secretion of IP-10, MIG, and MCP-1, as well as increasing the proportion of TNF-α+ cells. In conclusion, in PLWHs, GZMK+GZMB+CD8+ T cells are a highly reactive and inflammatory-inducing subset that may be associated with systemic inflammation.
Collapse
Affiliation(s)
- Liang Zhao
- Medical School of Chinese PLA, Beijing, China; Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huifang Wang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Senior Department of Infectious Diseases and Hepatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanze Shi
- Medical School of Chinese PLA, Beijing, China; Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunbao Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Minrui Yu
- Medical School of Chinese PLA, Beijing, China; Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanhu Wang
- Medical School of Chinese PLA, Beijing, China; Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liping Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zheng Xu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Xinjiang, China
| | - Ziying Zhang
- Medical School of Chinese PLA, Beijing, China; Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lingyu Gao
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiyuan Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Baopeng Yang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Huihuang Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Fu-Sheng Wang
- Medical School of Chinese PLA, Beijing, China; Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
8
|
Zhang Y, Otte F, Stoeckle M, Thielen A, Däumer M, Kaiser R, Kusejko K, Metzner KJ, Klimkait T. HIV-1 diversity in viral reservoirs obtained from circulating T-cell subsets during early ART and beyond. PLoS Pathog 2024; 20:e1012526. [PMID: 39292732 PMCID: PMC11410260 DOI: 10.1371/journal.ppat.1012526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Even during extended periods of effective immunological control, a substantial dynamic of the viral genome can be observed in different cellular compartments in HIV-1 positive individuals, indicating the persistence of active viral reservoirs. To obtain further insights, we studied changes in the proviral as well as in the viral HIV-1 envelope (Env) sequence along with transcriptional, translational and viral outgrowth activity as indicators for viral dynamics and genomic intactness. Our study identified distinct reservoir patterns that either represented highly sequence-diverse HIV-1 populations or only a single / few persisting virus variants. The single dominating variants were more often found in individuals starting ART during early infection phases, indicating that early treatment might limit reservoir diversification. At the same time, more sequence-diverse HIV reservoirs correlated with a poorer immune status, indicated by lower CD4 count, a higher number of regimen changes and more co-morbidities. Furthermore, we noted that in T-cell populations in the peripheral blood, replication-competent HIV-1 is predominantly present in Lymph node homing TN (naïve) and TCM (central memory) T cells. Provirus genomes archived in TTM (transitional memory) and TEM (effector memory) T cells more frequently tended to carry inactivating mutations and, population-wise, possess changes in the genetic diversity. These discriminating properties of the viral reservoir in T-cell subsets may have important implications for new early therapy strategies, underscoring the critical role of early therapy in preserving robust immune surveillance and constraining the viral reservoir.
Collapse
Affiliation(s)
- Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Ghone DA, Evans EL, Bandini M, Stephenson KG, Sherer NM, Suzuki A. HIV-1 Vif disrupts phosphatase feedback regulation at the kinetochore, leading to a pronounced pseudo-metaphase arrest. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605839. [PMID: 39131328 PMCID: PMC11312601 DOI: 10.1101/2024.07.30.605839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Virion Infectivity Factor (Vif) targets and degrades cellular APOBEC3 proteins, key regulators of intrinsic and innate antiretroviral immune responses, thereby facilitating HIV-1 infection. While Vif's role in degrading APOBEC3G is well-studied, Vif is also known to cause cell cycle arrest but the detailed nature of Vif's effects on the cell cycle has yet to be delineated. In this study, we employed high-temporal single-cell live imaging and super-resolution microscopy to monitor individual cells during Vif-induced cell cycle arrest. Our findings reveal that Vif does not affect the G2/M boundary as previously thought. Instead, Vif triggers a unique and robust pseudo-metaphase arrest, which is markedly distinct from the mild prometaphase arrest induced by the HIV-1 accessory protein, Vpr, known for modulating the cell cycle. During Vif-mediated arrest, chromosomes align properly to form a metaphase plate but later disassemble, resulting in polar chromosomes. Notably, unlike Vpr, Vif significantly reduces the levels of both Phosphatase 1 (PP1) and 2 (PP2) at kinetochores, which are key regulators of chromosome-microtubule interactions. These results reveal a novel function of Vif in kinetochore regulation that governs the spatial organization of chromosomes during mitosis.
Collapse
Affiliation(s)
- Dhaval A. Ghone
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- These authors contributed equally
| | - Edward L. Evans
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cancer Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- These authors contributed equally
- Present address: Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Madison Bandini
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cancer Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kaelyn G. Stephenson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Guedes MCS, Carvalho-Silva WHV, Andrade-Santos JL, Brelaz-de-Castro MCA, Souto FO, Montenegro LML, Guimarães RL. HIV-Induced Thymic Insufficiency and Aging-Related Immunosenescence on Immune Reconstitution in ART-Treated Patients. Vaccines (Basel) 2024; 12:612. [PMID: 38932341 PMCID: PMC11209262 DOI: 10.3390/vaccines12060612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 06/28/2024] Open
Abstract
The mechanisms underlying unsatisfactory immune reconstitution in HIV-1 positive patients under ART have not been fully elucidated, even after years of investigation. Thus, this study aimed to assess the correlation between age and thymic production profile, and its influence on inadequate immunological recovery. Here, 44 ART-treated patients with undetectable plasma HIV-1 load (<40 copies/mL) were classified as 31 immunological responders (IR) and 13 immunological non-responders (INR), according to their CD4+ T-cell count after 18 months of ART. The thymic function was assessed by identifying recent thymic emigrants (RTEs) CD4+ T cells (CD4+/CD45RA+CD31+) in PBMCs using flow cytometry. Clinical data were also analyzed from medical records. The INR group showed a higher age at ART initiation (41 ± 3.0) compared to the IR (33.7 ± 2.1) group (p = 0.041). Evaluating RTE CD4+ T-cells, we observed a lower percentage in the INR group (19.5 ± 6.3) compared to the IR group (29.9 ± 11.5) (p = 0.012). There was a strong negative correlation between age at ART initiation and RTE CD4+ T-cells in INRs (r = -0.784, p = 0.004). Our study has highlighted the thymic insufficiency and aging-related immunosenescence with unsatisfactory immunological recovery during ART in HIV-1 positive patients.
Collapse
Affiliation(s)
- Maria Carolina Santos Guedes
- Department of Genetics, Federal University of Pernambuco—UFPE, Recife 50670-901, PE, Brazil; (M.C.S.G.); (R.L.G.)
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco—UFPE, Recife 50670-901, PE, Brazil; (W.H.V.C.-S.); (J.L.A.-S.); (F.O.S.)
| | - Wlisses Henrique Veloso Carvalho-Silva
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco—UFPE, Recife 50670-901, PE, Brazil; (W.H.V.C.-S.); (J.L.A.-S.); (F.O.S.)
- Aggeu Magalhães Institute—Oswaldo Cruz Fundation (IAM/FIOCRUZ), Recife 50740-465, PE, Brazil;
| | - José Leandro Andrade-Santos
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco—UFPE, Recife 50670-901, PE, Brazil; (W.H.V.C.-S.); (J.L.A.-S.); (F.O.S.)
| | - Maria Carolina Accioly Brelaz-de-Castro
- Aggeu Magalhães Institute—Oswaldo Cruz Fundation (IAM/FIOCRUZ), Recife 50740-465, PE, Brazil;
- Vitória Academic Center (CAV), Federal University of Pernambuco—UFPE, Recife 55608-680, PE, Brazil
| | - Fabrício Oliveira Souto
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco—UFPE, Recife 50670-901, PE, Brazil; (W.H.V.C.-S.); (J.L.A.-S.); (F.O.S.)
- Agreste Academic Center (CAA), Federal University of Pernambuco—UFPE, Recife 55014-900, PE, Brazil
| | | | - Rafael Lima Guimarães
- Department of Genetics, Federal University of Pernambuco—UFPE, Recife 50670-901, PE, Brazil; (M.C.S.G.); (R.L.G.)
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco—UFPE, Recife 50670-901, PE, Brazil; (W.H.V.C.-S.); (J.L.A.-S.); (F.O.S.)
| |
Collapse
|
11
|
Choi MW, Isidoro CA, Gillgrass A. Mechanisms of mucosal immunity at the female reproductive tract involved in defense against HIV infection. Curr Opin Virol 2024; 66:101398. [PMID: 38484474 DOI: 10.1016/j.coviro.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 06/07/2024]
Abstract
Human immunodeficiency virus-1 remains a major global health threat. Since the virus is often transmitted through sexual intercourse and women account for the majority of new infections within the most endemic regions, research on mucosal immunity at the female reproductive tract (FRT) is of paramount importance. At the FRT, there are intrinsic barriers to HIV-1 infection, such as epithelial cells and the microbiome, and immune cells of both the innate and adaptive arms are prepared to respond in case the virus overcomes the first line of defense. In this review, we discuss recent findings on FRT mucosal mechanisms of HIV-1 defense and highlight research gaps. While defense from HIV-1 infection at the FRT has been understudied, current and future research is essential to develop new therapeutics and vaccines that can protect this unique mucosal site from HIV-1.
Collapse
Affiliation(s)
- Margaret Wy Choi
- McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Carmina A Isidoro
- McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Amy Gillgrass
- McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
12
|
Silva RVS, Uliana SRB, Yasunaka JKUY, Veloso CS, Sousa E, Ferreira MML, Carvalho VS, Ferreira GR, Costa DL, Costa CHN. Low Plasma Lipids Are Associated with Relapsing and Lethal Visceral Leishmaniasis in HIV-Infected Patients. Pathogens 2024; 13:450. [PMID: 38921748 PMCID: PMC11206293 DOI: 10.3390/pathogens13060450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Visceral leishmaniasis (VL) results from protozoa Leishmania infantum and L. donovani infection. This study investigated whether host factors would explain the relapses. First, susceptibility to amphotericin B of L. infantum isolates was evaluated in vitro. Then, clinical data and the lipid profile of patients with relapsing and non-relapsing VL were assessed. Susceptibility to amphotericin B was similar between the isolates. CD4+ lymphocytes were reduced in both groups of patients in the first episode and with relapsing VL. Still, the strongest blood cell indicator associated with relapses was low total lymphocyte counts. Total plasma cholesterol, high-density lipoprotein, low-density lipoprotein, and, uniquely, triglycerides of the six individuals in the first episode and twenty-three with relapsing VL were lower in relapsing patients than those in the first episode. Deceased patients had extremely low low-density lipoprotein. After CD4+ decreases, lymphocyte CD8+ reduction is the final stage of immunological failure. The lower lipid concentrations appear to be secondary to the depletion of fat stores by inflammation-induced cachexia and fat exhaustion provoked by the co-occurrence of both diseases, which can finally lead to death.
Collapse
Affiliation(s)
- Renata V. S. Silva
- Laboratório de Leishmanioses, Departamento de Medicina Comunitária, Universidade Federal do Piauí, Teresina 64002-510, PI, Brazil;
| | - Silvia R. B. Uliana
- Laboratório de Leishmanioses, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-090, SP, Brazil; (S.R.B.U.); (J.K.U.Y.Y.)
| | - Jenicer K. U. Y. Yasunaka
- Laboratório de Leishmanioses, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-090, SP, Brazil; (S.R.B.U.); (J.K.U.Y.Y.)
| | - Cláudio S. Veloso
- Instituto de Doenças Tropicais “Natan Portella”, Teresina 64002-510, PI, Brazil; (C.S.V.); (D.L.C.)
| | - Emille Sousa
- Laboratório de Leishmanioses, Centro de Inteligência em Agravos Emergentes e Negligenciados, Teresina 64002-510, PI, Brazil; (E.S.); (M.M.L.F.)
| | - Maria M. L. Ferreira
- Laboratório de Leishmanioses, Centro de Inteligência em Agravos Emergentes e Negligenciados, Teresina 64002-510, PI, Brazil; (E.S.); (M.M.L.F.)
| | - Vivianne S. Carvalho
- Centro de Diagnóstico, “Dr. Raul Bacellar”, Fundação Municipal de Saúde, Teresina 64600-000, PI, Brazil;
| | - Gabriel R. Ferreira
- Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 0A6, Canada;
| | - Dorcas L. Costa
- Instituto de Doenças Tropicais “Natan Portella”, Teresina 64002-510, PI, Brazil; (C.S.V.); (D.L.C.)
- Laboratório de Leishmanioses, Centro de Inteligência em Agravos Emergentes e Negligenciados, Teresina 64002-510, PI, Brazil; (E.S.); (M.M.L.F.)
- Departamento de Mãe e Filho, Universidade Federal do Piauí, Teresina 64002-510, PI, Brazil
| | - Carlos H. N. Costa
- Instituto de Doenças Tropicais “Natan Portella”, Teresina 64002-510, PI, Brazil; (C.S.V.); (D.L.C.)
- Laboratório de Leishmanioses, Centro de Inteligência em Agravos Emergentes e Negligenciados, Teresina 64002-510, PI, Brazil; (E.S.); (M.M.L.F.)
- Departamento de Medicina Comunitária, Universidade Federal do Piauí, Teresina 64002-510, PI, Brazil
- Laboratório de Pesquisas em Leishmanioses, Centro de Investigações em Agravos Tropicais Emergentes e Negligenciados, Instituto de Doenças Tropicais “Natan Portella”, Universidade Federal do Piauí, Rua Artur de Vasconcelos 151, Teresina 64002-510, PI, Brazil
| |
Collapse
|
13
|
Jones R, Robinson AT, Beach LB, Lindsey ML, Kirabo A, Hinton A, Erlandson KM, Jenkins ND. Exercise to Prevent Accelerated Vascular Aging in People Living With HIV. Circ Res 2024; 134:1607-1635. [PMID: 38781293 PMCID: PMC11126195 DOI: 10.1161/circresaha.124.323975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Given advances in antiretroviral therapy, the mortality rate for HIV infection has dropped considerably over recent decades. However, people living with HIV (PLWH) experience longer life spans coupled with persistent immune activation despite viral suppression and potential toxicity from long-term antiretroviral therapy use. Consequently, PLWH face a cardiovascular disease (CVD) risk more than twice that of the general population, making it the leading cause of death among this group. Here, we briefly review the epidemiology of CVD in PLWH highlighting disparities at the intersections of sex and gender, age, race/ethnicity, and the contributions of social determinants of health and psychosocial stress to increased CVD risk among individuals with marginalized identities. We then overview the pathophysiology of HIV and discuss the primary factors implicated as contributors to CVD risk among PLWH on antiretroviral therapy. Subsequently, we highlight the functional evidence of premature vascular dysfunction as an early pathophysiological determinant of CVD risk among PLWH, discuss several mechanisms underlying premature vascular dysfunction in PLWH, and synthesize current research on the pathophysiological mechanisms underlying accelerated vascular aging in PLWH, focusing on immune activation, chronic inflammation, and oxidative stress. We consider understudied aspects such as HIV-related changes to the gut microbiome and psychosocial stress, which may serve as mechanisms through which exercise can abrogate accelerated vascular aging. Emphasizing the significance of exercise, we review various modalities and their impacts on vascular health, proposing a holistic approach to managing CVD risks in PLWH. The discussion extends to critical future study areas related to vascular aging, CVD, and the efficacy of exercise interventions, with a call for more inclusive research that considers the diversity of the PLWH population.
Collapse
Affiliation(s)
- Raymond Jones
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Lauren B. Beach
- Department of Medical Social Sciences, Northwestern, Chicago, IL
- Department of Preventive Medicine, Northwestern, Chicago, IL
| | - Merry L. Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, TN
- Research Service, Nashville VA Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
- Vanderbilt Institute for Global Health, Nashville, TN
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | | | - Nathaniel D.M. Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| |
Collapse
|
14
|
Calado M, Ferreira R, Pires D, Santos-Costa Q, Anes E, Brites D, Azevedo-Pereira JM. Unravelling the triad of neuroinvasion, neurodissemination, and neuroinflammation of human immunodeficiency virus type 1 in the central nervous system. Rev Med Virol 2024; 34:e2534. [PMID: 38588024 DOI: 10.1002/rmv.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Since the identification of human immunodeficiency virus type 1 (HIV-1) in 1983, many improvements have been made to control viral replication in the peripheral blood and to treat opportunistic infections. This has increased life expectancy but also the incidence of age-related central nervous system (CNS) disorders and HIV-associated neurodegeneration/neurocognitive impairment and depression collectively referred to as HIV-associated neurocognitive disorders (HAND). HAND encompasses a spectrum of different clinical presentations ranging from milder forms such as asymptomatic neurocognitive impairment or mild neurocognitive disorder to a severe HIV-associated dementia (HAD). Although control of viral replication and suppression of plasma viral load with combination antiretroviral therapy has reduced the incidence of HAD, it has not reversed milder forms of HAND. The objective of this review, is to describe the mechanisms by which HIV-1 invades and disseminates in the CNS, a crucial event leading to HAND. The review will present the evidence that underlies the relationship between HIV infection and HAND. Additionally, recent findings explaining the role of neuroinflammation in the pathogenesis of HAND will be discussed, along with prospects for treatment and control.
Collapse
Affiliation(s)
- Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Ferreira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, Rio de Mouro, Portugal
| | - Quirina Santos-Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
15
|
Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther 2024; 9:87. [PMID: 38584157 PMCID: PMC10999458 DOI: 10.1038/s41392-024-01801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.
Collapse
Affiliation(s)
- Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Ruoyu Jiang
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
16
|
Shi X, Wei M, Feng Y, Yang Y, Zhang X, Chen H, Xing Y, Wang K, Wang W, Wang L, Wang A, Zhang G. IFI16 Positively Regulates RIG-I-Mediated Type I Interferon Production in a STING-Independent Manner. DNA Cell Biol 2024; 43:197-205. [PMID: 38466944 DOI: 10.1089/dna.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Previous studies have shown that interferon gene-stimulating protein (STING) is essential for IFN-γ-inducible protein 16 (IFI16) as the DNA sensor and RNA sensor to induce transcription of type I interferon (IFN-I) and is essential for IFI16 to synergize with DNA sensor GMP-AMP (cGAMP) synthase (cGAS) in induction of IFN-I transcription. While other and our previous studies have shown that IFI16 enhanced retinoic acid-inducible gene I (RIG-I)-, which was an RNA sensor, and mitochondrial antiviral signaling (MAVS)-, which was the adaptor protein of RIG-I, induced production of IFN-I, so we wonder whether IFI16 regulates the signal pathway of RNA-RIG-I-MAVS-IFN-I in a STING-dependent manner. We used HEK 293T cells, which did not express endogenous STING and were unable to mount an innate immune response upon DNA transfection and found that IFI16 could enhance RIG-I- and MAVS-mediated induction of IFN-I in a STING-independent way. Furthermore, we found that upregulation of the expression of NF-kappa-B essential modulator (NEMO) by IFI16 was not the mechanism that IFI16 regulated the induction of IFN-I. In conclusion, we found that IFI16 regulated the signal pathway of RNA-RIG-I-MAVS-IFN-I in a STING-independent manner.
Collapse
Affiliation(s)
- Xibao Shi
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Menglu Wei
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuwen Feng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuanhao Yang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiaozhuan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hao Chen
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuqi Xing
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Keqi Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wensheng Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, China
| |
Collapse
|
17
|
Reinaldo LGC, Araújo Júnior RJC, Diniz TM, Moura RDD, Meneses Filho AJ, Furtado CVVDM, Dos Santos WLC, Costa DL, Eulálio KD, Ferreira GR, Costa CHN. The spleen is the graveyard of CD4+ cells in patients with immunological failure of visceral leishmaniasis and AIDS. Parasit Vectors 2024; 17:132. [PMID: 38491526 PMCID: PMC10941596 DOI: 10.1186/s13071-024-06151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/22/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL), or kala-azar, is a common comorbidity in patients with AIDS in endemic areas. Many patients continue to experiences relapses of VL despite virological control, but with immunological failure. These patients remain chronically symptomatic with hypersplenism, for example with anemia, leukopenia, and thrombocytopenia, and are at risk of severe co-infection due to low CD4+ count. Therefore, in this study, splenectomized patients with VL and HIV infection were investigated to understand why the CD4+ count fails to recover in these patients, evaluating the importance of spleen mass for hypersplenism and immunological failure. METHODS From a retrospective open cohort of 13 patients who had previously undergone splenectomy as salvage therapy for relapsing VL, 11 patients with HIV infection were investigated. This study compared the patients' complete blood cell count (CBC) and CD4+ and CD8+ cell counts before and after splenectomy with respect to spleen weight. RESULTS CBC was substantially improved after splenectomy, indicating hypersplenism. However, to the best of our knowledge, this is the first study to show that spleen mass is strongly and negatively correlated with CD4+ cell count (ρ = -0.71, P = 0.015). CONCLUSIONS This finding was unexpected, as the spleen is the most extensive lymphoid tissue and T-lymphocyte source. After reviewing the literature and reasoning, we hypothesized that the immunological failure was secondary to CD4+ loss initially by apoptosis in the spleen induced by productive HIV infection and, subsequently, by pyroptosis sustained by parasitic infection in spleen macrophages.
Collapse
Affiliation(s)
| | | | - Thiago Melo Diniz
- University Hospital of the Federal University of Piauí, Teresina, Brazil
| | - Rafael de Deus Moura
- University Hospital of the Federal University of Piauí, Teresina, Brazil
- Department of Community Medicine, Federal University of Piauí, Teresina, Brazil
| | | | | | | | - Dorcas Lamounier Costa
- Maternal and Child Department, Federal University of Piauí, Teresina, Brazil
- Intelligence Center for Emerging and Neglected Tropical Diseases, Teresina, Brazil
| | | | - Gabriel R Ferreira
- Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, University Laval, Laval, QC, Canada
| | - Carlos Henrique Nery Costa
- Department of Community Medicine, Federal University of Piauí, Teresina, Brazil.
- Instituto de Doenças Tropicais Natan Portella, Teresina, Brazil.
- Intelligence Center for Emerging and Neglected Tropical Diseases, Teresina, Brazil.
| |
Collapse
|
18
|
Li K, Chen H, Li J, Feng Y, Liang S, Rashid A, Liu M, Li S, Chu Q, Ruan Y, Xing H, Lan G, Qiao W, Shao Y. Distinct genetic clusters in HIV-1 CRF01_AE-infected patients induced variable degrees of CD4 + T-cell loss. mBio 2024; 15:e0334923. [PMID: 38385695 PMCID: PMC10936439 DOI: 10.1128/mbio.03349-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/23/2024] Open
Abstract
CRF01_AE strains have been shown to form multiple transmission clusters in China, and some clusters have disparate pathogenicity in Chinese men who have sex with men. This study focused on other CRF01_AE clusters prevalent in heterosexual populations. The CD4+ T-cell counts from both cross-section data in National HIV Molecular Epidemiology Survey and seropositive cohort data were used to evaluate the pathogenicity of the CRF01_AE clusters and other HIV-1 sub-types. Their mechanisms of pathogenicity were evaluated by co-receptor tropisms, predicted by genotyping and confirmed with virus isolate phenotyping, as well as inflammation parameters. Our research elucidated that individuals infected with CRF01_AE clusters 1 and 2 exhibited significantly lower baseline CD4+ T-cell counts and greater CD4+ T-cell loss in cohort follow-up, compared with other HIV-1 sub-types and CRF01_AE clusters. The increased pathogenesis of cluster 1 or 2 was associated with higher CXCR4 tropisms, higher inflammation/immune activation, and increased pyroptosis. The protein structure modeling analysis revealed that the envelope V3 loop of clusters 1 and 2 viruses is favorable for CXCR4 co-receptor usage. Imbedded with the most mutating reverse transcriptase, HIV-1 is one of the most variable viruses. CRF01_AE clusters 1 and 2 have been found to have evolved into more virulent strains in regions with predominant heterosexual infections. The virulent strains increased the pressure for early diagnosis and treatment in HIV patients. To save more lives, HIV-1 surveillance systems should be upgraded from serology and genotyping to phenotyping, which could support precision interventions for those infected by virulent viruses. IMPORTANCE Retroviruses swiftly adapt, employing error-prone enzymes for genetic and phenotypic evolution, optimizing survival strategies, and enhancing virulence levels. HIV-1 CRF01_AE has persistently undergone adaptive selection, and cluster 1 and 2 infections display lower counts and fast loss of CD4+ T cells than other HIV-1 sub-types and CRF01_AE clusters. Its mechanisms are associated with increased CXCR4 tropism due to an envelope structure change favoring a tropism shift from CCR5 to CXCR4, thereby shaping viral phenotype features and impacting pathogenicity. This underscores the significance of consistently monitoring HIV-1 genetic evolution and phenotypic transfer to see whether selection bias across risk groups alters the delicate balance of transmissible versus toxic trade-offs, since virulent strains such as CRF01_AE clusters 1 and 2 could seriously compromise the efficacy of antiviral treatment. Only through such early warning and diagnostic services can precise antiviral treatments be administered to those infected with more virulent HIV-1 strains.
Collapse
Affiliation(s)
- Kang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huanhuan Chen
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Jianjun Li
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Yi Feng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shujia Liang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Abdur Rashid
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Meiliang Liu
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Sisi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Qingfei Chu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuhua Ruan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Xing
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guanghua Lan
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yiming Shao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Medicine, Zhejiang University, Hangzhou, China
- Changping Laboratory, Beijing, China
| |
Collapse
|
19
|
Zhao Z, Zhang Y, Luo B. The role of pyroptosis in viral infection. Arch Virol 2024; 169:69. [PMID: 38456965 DOI: 10.1007/s00705-024-05978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/17/2023] [Indexed: 03/09/2024]
Abstract
Pyroptosis, also known as inflammatory necrosis, is a form of programmed cell death, which is an important natural immune response. Pyroptosis plays a major role in combating pathogenic infections. The mechanism of pyroptosis is distinct from other forms of cell death and is characterized by its dependence on inflammatory caspases (mainly caspases 1, 4, 5, and 11). Activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammatory vesicles is involved in caspase-1 activation and cleavage, which in turn triggers cleavage and multimerization of multiple gasdermin family members, including gasdermin-D (GSDMD). This further leads to cell perforation and cellular distension, causing cell membrane rupture, resulting in a massive efflux of cell contents, which triggers inflammatory reactions. In recent years, detailed study of viral diseases, has demonstrated that pyroptosis is closely associated with the development of viral diseases. This article focuses on the mechanism of pyroptosis and the connection between pyroptosis and viral infection.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, 255036, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
20
|
Cassidy T, Stephenson KE, Barouch DH, Perelson AS. Modeling resistance to the broadly neutralizing antibody PGT121 in people living with HIV-1. PLoS Comput Biol 2024; 20:e1011518. [PMID: 38551976 PMCID: PMC11006161 DOI: 10.1371/journal.pcbi.1011518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/10/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
PGT121 is a broadly neutralizing antibody in clinical development for the treatment and prevention of HIV-1 infection via passive administration. PGT121 targets the HIV-1 V3-glycan and demonstrated potent antiviral activity in a phase I clinical trial. Resistance to PGT121 monotherapy rapidly occurred in the majority of participants in this trial with the sampled rebound viruses being entirely resistant to PGT121 mediated neutralization. However, two individuals experienced long-term ART-free viral suppression following antibody infusion and retained sensitivity to PGT121 upon viral rebound. Here, we develop mathematical models of the HIV-1 dynamics during this phase I clinical trial. We utilize these models to understand the dynamics leading to PGT121 resistance and to identify the mechanisms driving the observed long-term viral control. Our modeling highlights the importance of the relative fitness difference between PGT121 sensitive and resistant subpopulations prior to treatment. Specifically, by fitting our models to data, we identify the treatment-induced competitive advantage of previously existing or newly generated resistant population as a primary driver of resistance. Finally, our modeling emphasizes the high neutralization ability of PGT121 in both participants who exhibited long-term viral control.
Collapse
Affiliation(s)
- Tyler Cassidy
- School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Kathryn E. Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| |
Collapse
|
21
|
Heil M. Self-DNA driven inflammation in COVID-19 and after mRNA-based vaccination: lessons for non-COVID-19 pathologies. Front Immunol 2024; 14:1259879. [PMID: 38439942 PMCID: PMC10910434 DOI: 10.3389/fimmu.2023.1259879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 03/06/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic triggered an unprecedented concentration of economic and research efforts to generate knowledge at unequalled speed on deregulated interferon type I signalling and nuclear factor kappa light chain enhancer in B-cells (NF-κB)-driven interleukin (IL)-1β, IL-6, IL-18 secretion causing cytokine storms. The translation of the knowledge on how the resulting systemic inflammation can lead to life-threatening complications into novel treatments and vaccine technologies is underway. Nevertheless, previously existing knowledge on the role of cytoplasmatic or circulating self-DNA as a pro-inflammatory damage-associated molecular pattern (DAMP) was largely ignored. Pathologies reported 'de novo' for patients infected with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 to be outcomes of self-DNA-driven inflammation in fact had been linked earlier to self-DNA in different contexts, e.g., the infection with Human Immunodeficiency Virus (HIV)-1, sterile inflammation, and autoimmune diseases. I highlight particularly how synergies with other DAMPs can render immunogenic properties to normally non-immunogenic extracellular self-DNA, and I discuss the shared features of the gp41 unit of the HIV-1 envelope protein and the SARS-CoV 2 Spike protein that enable HIV-1 and SARS-CoV-2 to interact with cell or nuclear membranes, trigger syncytia formation, inflict damage to their host's DNA, and trigger inflammation - likely for their own benefit. These similarities motivate speculations that similar mechanisms to those driven by gp41 can explain how inflammatory self-DNA contributes to some of most frequent adverse events after vaccination with the BNT162b2 mRNA (Pfizer/BioNTech) or the mRNA-1273 (Moderna) vaccine, i.e., myocarditis, herpes zoster, rheumatoid arthritis, autoimmune nephritis or hepatitis, new-onset systemic lupus erythematosus, and flare-ups of psoriasis or lupus. The hope is to motivate a wider application of the lessons learned from the experiences with COVID-19 and the new mRNA vaccines to combat future non-COVID-19 diseases.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
22
|
Li C, Sun JP, Wang N, Yan P, Wang R, Su B, Zhang T, Wu H, Chen H, Li Z, Huang XJ. Plasma Cytokine Expression and Immune Reconstitution in Early and Delayed Anti-HIV 96-Weeks Treatment: A Retrospective Study. AIDS Res Hum Retroviruses 2024; 40:101-109. [PMID: 37051683 DOI: 10.1089/aid.2022.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
HIV is an immunodeficiency disease with emergence of inadequate corresponding reconstruction therapies. Pyroptosis of CD4+T cell is mainly caused by immune activation and inflammation that cannot be reduced by successful antiretroviral therapy (ART) alone. Coinfections because of CD4+T cell reconstitution failure can occur. Anti-inflammatory treatment determines the success of immune reconstitution. In our experiment, only a few cytokines could recover to normal level following a 2-year antiretroviral treatment in early ART initiation, which is consistent with current findings about adjuvant HIV anti-inflammatory therapy. Early infection is often accompanied by a more severe inflammatory response. Innate immunity cytokines like granulocyte macrophage-colony stimulating factor, IFN-γ induced protein 10 kDa, and tumor necrosis factor-α exhibited the most elevated levels among all kinds of inflammatory cytokines. The correlation analysis showed at least eight cytokines contributing to the changes of CD4/CD8 ratio.
Collapse
Affiliation(s)
- Chao Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Jian-Ping Sun
- Biomedical Information Center, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Ni Wang
- Biomedical Informatics Laboratory, Capital Medical University, Beijing, China
| | - Ping Yan
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Rui Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Hui Chen
- Biomedical Informatics Laboratory, Capital Medical University, Beijing, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Xiao-Jie Huang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Yu F, Ma C, Jin X, Zhao H, Xiao J, Li L, Song S, Xie X, Yang S, Tang Y, Wang L, Zhang F. Mitochondrial disturbance related to increased caspase-1 of CD4 +T cells in HIV-1 infection. BMC Infect Dis 2024; 24:129. [PMID: 38267841 PMCID: PMC10809604 DOI: 10.1186/s12879-023-08485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND In HIV-1 infection, more than 95% of CD4+T cells die of caspase-1 mediated pyroptosis. What governs the increased susceptibility of CD4+T cells to pyroptosis is poorly understood. METHODS Blood samples were obtained from 31 untreated HIV-infected patients (UNT), 29 antiretroviral therapy treated HIV-infected patients (ART), and 21 healthy control donors (HD). Plasma levels of IL-18 and IL-1β, caspase-1 expression, mitochondrial mass (MM) and mitochondrial fusion/fisson genes of CD4+T subsets were measured. RESULTS A significantly higher IL-18 level in plasma and MM level of CD4+T cells were found in HIV-infected patients (UNT and ART) compared to HD, and the MMhigh phenotype was manifested, related to increased caspase-1 expression. Moreover, the increased MM was more pronounced in the early differentiated and inactivated CD4+T cells. However, higher MM was not intrinsically linked to T cell differentiation disorder or excessive activation of the CD4+T cells. Mechanistically, the increased MM was significantly correlated with an elevated level of expression of the mitochondrial fusion gene mitofusin1. CONCLUSION An increase in MM was associated with heightened sensitivity of CD4+T cells to pyroptosis, even in early differentiated and inactivated CD4+T cells, in patients with HIV-1 infection, regardless of whether patients were on antiretroviral therapy or not. These new revelations have uncovered a previously unappreciated challenge to immune reconstitution with antiretroviral therapy.
Collapse
Affiliation(s)
- Fengting Yu
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Chengjie Ma
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xia Jin
- Human Viral Diseases and Vaccine Translation Research Unit, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hongxin Zhao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Jiang Xiao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Li Li
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Shujing Song
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Xie
- Department of Infectious Diseases, Peking University Ditan Teaching, Hospital, Beijing, China
| | - Siyuan Yang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Yunxia Tang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Linghang Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China.
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China.
| | - Fujie Zhang
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China.
- Beijing Ditan Hospital, Capital Medical University, Beijing, China.
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China.
| |
Collapse
|
24
|
Guo XY, Qu MM, Wang X, Wang ZR, Song JW, Yang BP, Guo YT, Zhang Y, Zhang C, Fan X, Xu W, Xu R, Zhang JY, Chen SY, Jiao YM, Sun LJ, Wang FS. Characteristics of blood immune cell profile and their correlation with disease progression in patients infected with HIV-1. BMC Infect Dis 2023; 23:893. [PMID: 38124099 PMCID: PMC10731693 DOI: 10.1186/s12879-023-08847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Antiretroviral therapy (ART) can reduce viral load in individuals infected with human immunodeficiency virus (HIV); however, some HIV-infected individuals still cannot achieve optimal immune recovery even after ART. Hence, we described the profile of peripheral immune cells and explored the association with disease progression in patients infected with HIV-1. METHODS Mass cytometry analysis was used to characterize the circulating immune cells of 20 treatment-naïve (TNs), 20 immunological non-responders (INRs), 20 immunological responders (IRs), and 10 healthy controls (HCs). Correlation analysis was conducted between cell subpopulation percentages and indicators including HIV-1 cell-associated (CA)-RNA, DNA, CD4+ T cell count, and CD4/CD8 ratio. RESULTS Global activation, immunosenescence, and exhaustion phenotypes were observed in myeloid cells and T cells from individuals with HIV-1 infection. We also found that specific subsets or clusters of myeloid, CD4+ T, and CD8+ T cells were significantly lost or increased in TN individuals, which could be partially restored after receiving ART. The percentages of several subpopulations correlated with HIV-1 CA-RNA, DNA, CD4+ T cell count, and CD4/CD8 ratio, suggesting that changes in immune cell composition were associated with therapeutic efficacy. CONCLUSION These data provide a complete profile of immune cell subpopulations or clusters that are associated with disease progression during chronic HIV-1 infection, which will improve understanding regarding the mechanism of incomplete immune recovery in INRs.
Collapse
Affiliation(s)
- Xiao-Yan Guo
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Meng-Meng Qu
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Xi Wang
- Clinic of Center for Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Ze-Rui Wang
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Bao-Peng Yang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Yun-Tian Guo
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Yang Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Wen Xu
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Ruonan Xu
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Si-Yuan Chen
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China.
| | - Li-Jun Sun
- Clinic of Center for Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China.
| |
Collapse
|
25
|
Kinloch NN, Shahid A, Dong W, Kirkby D, Jones BR, Beelen CJ, MacMillan D, Lee GQ, Mota TM, Sudderuddin H, Barad E, Harris M, Brumme CJ, Jones RB, Brockman MA, Joy JB, Brumme ZL. HIV reservoirs are dominated by genetically younger and clonally enriched proviruses. mBio 2023; 14:e0241723. [PMID: 37971267 PMCID: PMC10746175 DOI: 10.1128/mbio.02417-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Characterizing the human immunodeficiency virus (HIV) reservoir that endures despite antiretroviral therapy (ART) is critical to cure efforts. We observed that the oldest proviruses persisting during ART were exclusively defective, while intact proviruses (and rebound HIV) dated to nearer ART initiation. This helps explain why studies that sampled sub-genomic proviruses on-ART (which are largely defective) routinely found sequences dating to early infection, whereas those that sampled replication-competent HIV found almost none. Together with our findings that intact proviruses were more likely to be clonal, and that on-ART low-level/isolated viremia originated from proviruses of varying ages (including possibly defective ones), our observations indicate that (i) on-ART and rebound viremia can have distinct within-host origins, (ii) intact proviruses have shorter lifespans than grossly defective ones and thus depend more heavily on clonal expansion for persistence, and (iii) an HIV reservoir predominantly "dating" to near ART initiation will be substantially adapted to within-host pressures, complicating immune-based cure strategies.
Collapse
Affiliation(s)
- Natalie N. Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Winnie Dong
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Don Kirkby
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Bradley R. Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte J. Beelen
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Daniel MacMillan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Guinevere Q. Lee
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Talia M. Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan Barad
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - R. Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jeffrey B. Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Boby N, Williams KM, Das A, Pahar B. Toll-like Receptor 2 Mediated Immune Regulation in Simian Immunodeficiency Virus-Infected Rhesus Macaques. Vaccines (Basel) 2023; 11:1861. [PMID: 38140264 PMCID: PMC10747659 DOI: 10.3390/vaccines11121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Toll-like receptors (TLRs) are crucial to the innate immune response. They regulate inflammatory reactions by initiating the production of pro-inflammatory cytokines and chemokines. TLRs also play a role in shaping the adaptive immune responses. While this protective response is important for eliminating infectious pathogens, persistent activation of TLRs may result in chronic immune activation, leading to detrimental effects. The role of TLR2 in regulating HIV-1 infection in vivo has yet to be well described. In this study, we used an SIV-infected rhesus macaque model to simulate HIV infection in humans. We evaluated the plasma of the macaques longitudinally and found a significant increase in the soluble TLR2 (sTLR2) level after SIV infection. We also observed an increase in membrane-bound TLR2 (mb-TLR2) in cytotoxic T cells, B cells, and NK cells in PBMC and NK cells in the gut after infection. Our results suggest that sTLR2 regulates the production of various cytokines and chemokines, including IL-18, IL-1RA, IL-15, IL-13, IL-9, TPO, FLT3L, and IL-17F, as well as chemokines, including IP-10, MCP-1, MCP-2, ENA-78, GRO-α, I-TAC, Fractalkine, SDF-1α, and MIP-3α. Interestingly, these cytokines and chemokines were also upregulated after the infection. The positive correlation between SIV copy number and sTLR2 in the plasma indicated the involvement of TLR2 in the regulation of viral replication. These cytokines and chemokines could directly or indirectly regulate viral replication through the TLR2 signaling pathways. When we stimulated PBMC with the TLR2 agonist in vitro, we observed a direct induction of various cytokines and chemokines. Some of these cytokines and chemokines, such as IL-1RA, IL-9, IL-15, GRO-α, and ENA-78, were positively correlated with sTLR2 in vivo, highlighting the direct involvement of TLR2 in the regulation of the production of these factors. Our findings suggest that TLR2 expression may be a target for developing new therapeutic strategies to combat HIV infection.
Collapse
Affiliation(s)
- Nongthombam Boby
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA; (N.B.); (K.M.W.)
| | - Kelsey M. Williams
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA; (N.B.); (K.M.W.)
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA; (N.B.); (K.M.W.)
- School of Medicine, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
27
|
Zheng H, Jiao A, Liu H, Lei L, Ding R, Feng Z, Zhang D, Zhang L, Zhang B. Effect of Med1 on T cell development and CD4 + T cell differentiation in immune response. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1296-1303. [PMID: 38044640 PMCID: PMC10929871 DOI: 10.11817/j.issn.1672-7347.2023.220633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 12/05/2023]
Abstract
OBJECTIVES The differentiation of CD4+ T cells is regulated by a complex and fine signaling pathway composed of many molecules during immune response, and the molecular mechanism for regulating T-bet expression is unclear. Mediator complex subunit 1 (Med1) can combine with a variety of co-factors to regulate gene transcription, promote cell proliferation and survival, and affect invariant natural killer T cell (iNKT) development. This study aims to investigate the effect of Med1 on T cell development and CD4+ T cell differentiation in immune response. METHODS Mice with T cell-specific knockout of Med1 gene (Med1F/FCD4cre+, KO) were constructed and verified. The percentage and number of CD4+ and CD8+ T cells in thymus, spleen, and lymph nodes of KO mice and control (Con) mice (Med1F/FCD4cre-) were detected by flow cytometry. After 8 days of infection with lymphocytic choriomeningitis virus (LCMV), the percentage and number of CD4+ T cells or antigen-specific (GP66+) CD4+ T cells, the percentage and number of Th1 cells (Ly6c+PSGL1+) in CD4+ T cells or antigen-specific CD4+ T cells were examined in the spleen of mice. Moreover, the fluorescence intensity of T-bet in CD4+ T cells or antigen-specific CD4+ T cells was analyzed. RESULTS Compared with the Con group, the percentage and number of CD4+ T cells and CD8+ T cells in the thymus, CD4+ T cells in the spleen and lymph nodes of the KO group showed no significant differences (all P>0.05), but the percentage and number of CD8+ T cells in the spleen and lymph nodes of the KO group were diminished significantly (all P<0.05). After 8 days of infection with LCMV, there was no significant difference in the percentage and number of CD4+ T cells or antigen-specific CD4+ T cells in the spleen between the KO group and the Con group (all P>0.05), while in comparison with the Con group, the percentage and number of Th1 cells in CD4+ T cells or antigen-specific CD4+ T cells, and the expression of T-bet in CD4+ T cells or antigen-specific CD4+ T cells were significantly reduced in the spleen of the KO group (all P<0.05). CONCLUSIONS Specific knockout of Med1 in T cells does not affect the development of CD4+ and CD8+ T cells in the thymus, but does affect the maintenance of peripheral CD8+ T cells. In the immune response, Med1 gene deletion affects the expression of transcription factor T-bet, which in turn to reduce Th1 cell differentiation.
Collapse
Affiliation(s)
- Huiqiang Zheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061.
- Department of Laboratory Medicine, Xi'an Chest Hospital, Xi'an 710100.
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Renyi Ding
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Zhao Feng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Lianjun Zhang
- Suzhou Institute of Systems Medicine, Suzhou Jiangshu 215123
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China.
| |
Collapse
|
28
|
Wang X, Wei Y, He Z, Wang D, Zhang L, Du J, Zhang M, Jiang M, Chen N, Deng M, Li B, Song C, Chen D, Liu H, Xiao J, Liang H, Zhao H, Kong Y. CD70-induced differentiation of proinflammatory Th1/17/22/GM lymphocytes associated with disease progression and immune reconstitution during HIV infection. Emerg Microbes Infect 2023; 12:2271068. [PMID: 37824079 PMCID: PMC10606822 DOI: 10.1080/22221751.2023.2271068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Immune overactivation is a hallmark of chronic HIV infection, which is critical to HIV pathogenesis and disease progression. The imbalance of helper T cell (Th) differentiation and subsequent cytokine dysregulation are generally considered to be the major drivers of excessive activation and inflammatory disorders in HIV infection. However, the accurate factors driving HIV-associated Th changes remained to be established. CD70, which was a costimulatory molecule, was found to increase on CD4+ T cells during HIV infection. Overexpression of CD70 on CD4+ T cells was recently reported to associate with highly pathogenic proinflammatory Th1/Th17 polarization in multiple sclerosis. Thus, the role of CD70 in the imbalance of Th polarization and immune overactivation during HIV infection needs to be investigated. Here, we found that the elevated frequency of CD70 + CD4+ T cells was negatively correlated with CD4 count and positively associated with immune activation in treatment-naïve people living with HIV (PLWH). More importantly, CD70 expression defined a population of proinflammatory Th1/17/22/GM subsets in PLWH. Blocking CD70 decreased the mRNA expression of subset-specific markers during Th1/17/22/GM polarization. Furthermore, we demonstrated that CD70 influenced the differentiation of these Th cells through STAT pathway. Finally, it was revealed that patients with a high baseline level of CD70 on CD4+ T cells exhibited a greater risk of poor immune reconstitution after antiretroviral therapy (ART) than those with low CD70. In general, our data highlighted the role of CD70 in Th1/17/22/GM differentiation during HIV infection and provided evidence for CD70 as a potential biomarker for predicting immune recovery.
Collapse
Affiliation(s)
- Xinyue Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Yuqing Wei
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Zhijiao He
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Di Wang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Leidan Zhang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Mengyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Meiqing Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Na Chen
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Meiju Deng
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Bei Li
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Huan Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Jiang Xiao
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hongyuan Liang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hongxin Zhao
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yaxian Kong
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| |
Collapse
|
29
|
Nabatanzi R, Ssekamatte P, Castelnuovo B, Kambugu A, Nakanjako D. Increased Levels of Caspase-1 and IL-1β Among Adults With Persistent Immune Activation After 12 Years of Suppressive Antiretroviral Therapy in the Infectious Diseases Institute HIV Treatment Cohort. Open Forum Infect Dis 2023; 10:ofad539. [PMID: 37953818 PMCID: PMC10638490 DOI: 10.1093/ofid/ofad539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 11/14/2023] Open
Abstract
Background We sought evidence of activated pyroptosis and the inflammasome pathways among human immunodeficiency virus (HIV)-infected adults after 12 years of suppressive antiretroviral therapy (ART) and persistent immune activation in the Infectious Diseases Institute HIV treatment cohort in Uganda. Methods In a cross-sectional study, using peripheral blood mononuclear cells of HIV-infected individuals with high and low immune activation (CD4/CD8+CD38+HLA-DR+ cells) relative to HIV-negative reference group, caspase-1 expression was measured using flow cytometry and plasma interleukin 18 and interleukin 1β (IL-1β) levels using enzyme-linked immunosorbent assay. Results There was higher expression of caspase-1 by CD4 T cells of ART-treated individuals with high immune activation relative to those with lower immune activation (P = .04). Similarly, plasma levels of IL-1β were higher among ART-treated individuals with high immune activation levels relative to those with low immune activation levels (P = .009). We observed a low positive correlation between caspase-1 expression by CD4/CD8 T cells and immune activation levels (r= 0.497 and r= 0.329, respectively). Conclusions Caspase-1 and IL-1β were high among individuals with high immune activation despite 12 years of suppressive ART. There is a need to further understand the role of persistent abortive infection and the latent HIV reservoir characteristics as drivers of persistent activation and inflammation and to subsequently intervene to prevent the complications of chronic immune activation during long-term ART.
Collapse
Affiliation(s)
- Rose Nabatanzi
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Phillip Ssekamatte
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Barbara Castelnuovo
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Andrew Kambugu
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Damalie Nakanjako
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
30
|
Xia C, Zhang X, Harypursat V, Ouyang J, Chen Y. The role of pyroptosis in incomplete immune reconstitution among people living with HIV:Potential therapeutic targets. Pharmacol Res 2023; 197:106969. [PMID: 37866704 DOI: 10.1016/j.phrs.2023.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/07/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Globally, HIV infection causes significant morbidity and mortality, and is a major public health problem. Despite the fact that widespread use of antiretroviral therapy (ART) has substantially altered the natural history of HIV infection from originally being a universally lethal disease to now being a chronic medical condition for those taking appropriate treatment, approximately 10-40% of people living with HIV (PLWH) who take effective ART and maintain long-term viral suppression fail to achieve normalization of CD4 + T-cell counts. This phenomenon is referred to as incomplete immune reconstitution or immunological non-response. Although the precise mechanisms underlying this outcome have not been elucidated, recent evidence indicates that excessive pyroptosis may play a crucial role in the development of incomplete immune reconstitution. Pyroptosis is characterized by the formation of pores in the cell membrane, cell rupture, and secretion of intracellular contents and pro-inflammatory cytokines, including IL-1β and IL-18. This excessive inflammation-induced programmed cell death leads to a massive loss of CD4 + T-cells, and inflammatory consequences that may promote and sustain incomplete immune reconstitution. Herein, we review the possible pathways activated in HIV infection by inflammasomes that act as switches of pyroptosis, and the role of pyroptosis in HIV, as well as the relevance of CD4 + T-cells in incomplete immune reconstitution. We also highlight the possible mechanisms of pyroptosis involved in incomplete immune reconstitution, thus paving the way for the development of potential targets for the treatment of incomplete immune reconstitution.
Collapse
Affiliation(s)
- Chao Xia
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Xue Zhang
- Department of Pharmacy, The People's Hospital of Yubei District of Chongqing City, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China; Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China; Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
31
|
Kulkarni S, Endsley JJ, Lai Z, Bradley T, Sharan R. Single-Cell Transcriptomics of Mtb/HIV Co-Infection. Cells 2023; 12:2295. [PMID: 37759517 PMCID: PMC10529032 DOI: 10.3390/cells12182295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Tuberculosis (TB) and Human Immunodeficiency Virus (HIV) co-infection continues to pose a significant healthcare burden. HIV co-infection during TB predisposes the host to the reactivation of latent TB infection (LTBI), worsening disease conditions and mortality. There is a lack of biomarkers of LTBI reactivation and/or immune-related transcriptional signatures to distinguish active TB from LTBI and predict TB reactivation upon HIV co-infection. Characterizing individual cells using next-generation sequencing-based technologies has facilitated novel biological discoveries about infectious diseases, including TB and HIV pathogenesis. Compared to the more conventional sequencing techniques that provide a bulk assessment, single-cell RNA sequencing (scRNA-seq) can reveal complex and new cell types and identify more high-resolution cellular heterogeneity. This review will summarize the progress made in defining the immune atlas of TB and HIV infections using scRNA-seq, including host-pathogen interactions, heterogeneity in HIV pathogenesis, and the animal models employed to model disease. This review will also address the tools needed to bridge the gap between disease outcomes in single infection vs. co-infection. Finally, it will elaborate on the translational benefits of single-cell sequencing in TB/HIV diagnosis in humans.
Collapse
Affiliation(s)
- Smita Kulkarni
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Janice J. Endsley
- Departments of Microbiology & Immunology and Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, The University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| | - Todd Bradley
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA;
- Departments of Pediatrics and Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO 66160, USA
- Department of Pediatrics, UMKC School of Medicine, Kansas City, MO 64108, USA
| | - Riti Sharan
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
32
|
Hong J, Choi Y, Lee G, Kim J, Jang Y, Yoon CH, Seo HW, Park IK, Kang SH, Choi J. Nanosome-Mediated Delivery Of Hdac Inhibitors and Oxygen Molecules for the Transcriptional Reactivation of Latent Hiv-Infected Cd4 + T Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301730. [PMID: 37118849 DOI: 10.1002/smll.202301730] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/11/2023] [Indexed: 06/19/2023]
Abstract
The treatment of human immunodeficiency virus (HIV) infection is notoriously difficult due to the ability of this virus to remain latent in the host's CD4+ T cells. Histone deacetylases (HDACs) interfere with DNA transcription in HIV-infected hosts, resulting in viral latency. Therefore, HDAC inhibitors can be used to activate viral transcription in latently infected cells, after which the virus can be eliminated through a shock-and-kill strategy. Here, a drug delivery system is developed to effectively deliver HDAC inhibitors to latent HIV-infected cells. Given that the efficacy of HDAC inhibitors is reduced under hypoxic conditions, oxygen-containing nanosomes are used as drug carriers. Oxygen-containing nanosomes can improve the efficiency of chemotherapy by delivering essential oxygen to cells. Additionally, their phospholipid bilayer structure makes them uniquely well-suited for drug delivery. In this study, a novel drug delivery system is developed by taking advantage of the oxygen carriers in these oxygen nanosomes, incorporating a multi-drug strategy consisting of HDAC inhibitors and PKA activators, and introducing CXCR4 binding peptides to specifically target CD4+ T cells. Oxygen nanosomes with enhanced targeting capability through the introduction of the CXCR4 binding peptide mitigate drug toxicity and slow down drug release. The observed changes in the expression of p24, a capsid protein of HIV, indirectly confirm that the proposed drug delivery system can effectively induce transcriptional reactivation of HIV in latent HIV-infected cells.
Collapse
Affiliation(s)
- Joohye Hong
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul, 06974, Republic of Korea
| | - Gahyun Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jiwon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yeonwoo Jang
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Cheol-Hee Yoon
- Division of Chronic Viral Disease, Center for Emerging Virus Research, National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Hyun Wook Seo
- Division of Chronic Viral Disease, Center for Emerging Virus Research, National Institute of Health, Cheongju, 28159, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju, 58128, Republic of Korea
| | - Shin Hyuk Kang
- Departments of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, 06973, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul, 06974, Republic of Korea
| |
Collapse
|
33
|
Yao X, Xu Z, Duan C, Zhang Y, Wu X, Wu H, Liu K, Mao X, Li B, Gao Y, Xu H, Wang X. Role of human papillomavirus and associated viruses in bladder cancer: An updated review. J Med Virol 2023; 95:e29088. [PMID: 37706751 DOI: 10.1002/jmv.29088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Bladder cancer (BC) is a complex disease affecting the urinary system and is regulated by several carcinogenic factors. Viral infection is one such factor that has attracted extensive attention in BC. Human papillomavirus (HPV) is the most common sexually transmitted infection, and although multiple researchers have explored the role of HPV in BC, a consensus has not yet been reached. In addition, HPV-associated viruses (e.g., human immunodeficiency virus, herpes simplex virus, BK virus, and JC virus) appear to be responsible for the occurrence and progression of BC. This study systematically reviews the relationship between HPV-associated viruses and BC to elucidate the role of these viruses in the onset and progression of BC. In addition, the study aims to provide a greater insight into the biology of HPV-associated viruses, and assess potential strategies for treating virus-induced BC. The study additionally focuses on the rapid development of oncolytic viruses that provide a potentially novel option for the treatment of BC.
Collapse
Affiliation(s)
- Xiangyang Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenzhen Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Duan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangjun Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huahui Wu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kai Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiongmin Mao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Gao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hua Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Vaidyanathan A, Taylor HE, Hope TJ, D'Aquila RT, Bartom ET, Hultquist JF, Peter ME. Analysis of the Contribution of 6-mer Seed Toxicity to HIV-1-Induced Cytopathicity. J Virol 2023; 97:e0065223. [PMID: 37310263 PMCID: PMC10373551 DOI: 10.1128/jvi.00652-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
HIV-1 (HIV) infects CD4+ T cells, the gradual depletion of which can lead to AIDS in the absence of antiretroviral therapy (ART). Some cells, however, survive HIV infection and persist as part of the latently infected reservoir that causes recurrent viremia after ART cessation. Improved understanding of the mechanisms of HIV-mediated cell death could lead to a way to clear the latent reservoir. Death induced by survival gene elimination (DISE), an RNA interference (RNAi)-based mechanism, kills cells through short RNAs (sRNAs) with toxic 6-mer seeds (positions 2 to 7 of sRNA). These toxic seeds target the 3' untranslated region (UTR) of mRNAs, decreasing the expression of hundreds of genes critical for cell survival. In most cells under normal conditions, highly expressed cell-encoded nontoxic microRNAs (miRNAs) block access of toxic sRNAs to the RNA-induced silencing complex (RISC) that mediates RNAi, promoting cell survival. HIV has been shown to inhibit the biogenesis of host miRNAs in multiple ways. We now report that HIV infection of cells deficient in miRNA expression or function results in enhanced RISC loading of an HIV-encoded miRNA HIV-miR-TAR-3p, which can kill cells by DISE through a noncanonical (positions 3 to 8) 6-mer seed. In addition, cellular RISC-bound sRNAs shift to lower seed viability. This also occurs after latent HIV provirus reactivation in J-Lat cells, suggesting independence of permissiveness of cells to viral infection. More precise targeting of the balance between protective and cytotoxic sRNAs could provide new avenues to explore novel cell death mechanisms that could be used to kill latent HIV. IMPORTANCE Several mechanisms by which initial HIV infection is cytotoxic to infected cells have been reported and involve various forms of cell death. Characterizing the mechanisms underlying the long-term survival of certain T cells that become persistent provirus reservoirs is critical to developing a cure. We recently discovered death induced by survival gene elimination (DISE), an RNAi-based mechanism of cell death whereby toxic short RNAs (sRNAs) containing 6-mer seed sequences (exerting 6-mer seed toxicity) targeting essential survival genes are loaded into RNA-induced silencing complex (RISC) complexes, resulting in inescapable cell death. We now report that HIV infection in cells with low miRNA expression causes a shift of mostly cellular RISC-bound sRNAs to more toxic seeds. This could prime cells to DISE and is further enhanced by the viral microRNA (miRNA) HIV-miR-TAR-3p, which carries a toxic noncanonical 6-mer seed. Our data provide multiple new avenues to explore novel cell death mechanisms that could be used to kill latent HIV.
Collapse
Affiliation(s)
- Aparajitha Vaidyanathan
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Harry E. Taylor
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University, Chicago, Illinois, USA
| | - Thomas J. Hope
- Department of Cell & Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard T. D'Aquila
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University, Chicago, Illinois, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Marcus E. Peter
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
35
|
Li T, Zeng H, Xian W, Cai H, Zhang J, Zhou S, Yang Y, Luo M, Zhu P. Maresin1 alleviates liver ischemia/reperfusion injury by reducing liver macrophage pyroptosis. J Transl Med 2023; 21:472. [PMID: 37455316 DOI: 10.1186/s12967-023-04327-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Cell pyroptosis has a strong proinflammatory effect, but it is unclear whether pyroptosis of liver macrophages exacerbates liver tissue damage during liver ischemia‒reperfusion (I/R) injury. Maresin1 (MaR1) has a strong anti-inflammatory effect, and whether it can suppress liver macrophage pyroptosis needs further study. METHODS This study aimed to investigate whether MaR1 can alleviate liver I/R injury by inhibiting macrophage pyroptosis. The effects of MaR1 on cell pyroptosis and mitochondrial damage were studied by dividing cells into control, hypoxia/reoxygenation, and hypoxia/reoxygenation + MaR1 groups. Knocking out RORa was used to study the mechanism by which MaR1 exert its protective effects. Transcriptome analysis, qRT‒PCR and Western blotting were used to analyze gene expression. Untargeted metabolomics techniques were used to analyze metabolite profiles in mice. Flow cytometry was used to assess cell death and mitochondrial damage. RESULTS We first found that MaR1 significantly reduced liver I/R injury. We observed that MaR1 decreased liver I/R injury by inhibiting liver macrophage pyroptosis. Then, we discovered that MaR1 promotes mitochondrial oxidative phosphorylation, increases the synthesis of ATP, reduces the generation of ROS, decreases the impairment of mitochondrial membrane potential and inhibits the opening of mitochondrial membrane permeability transition pores. MaR1 inhibits liver macrophage pyroptosis by protecting mitochondria. Finally, we found that MaR1 exerts mitochondrial protective effects through activation of its nuclear receptor RORa and the PI3K/AKT signaling pathway. CONCLUSIONS During liver I/R injury, MaR1 can reduce liver macrophage pyroptosis by reducing mitochondrial damage, thereby reducing liver damage.
Collapse
Affiliation(s)
- Tong Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Houshuai Zeng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Wenjing Xian
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongxing Cai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Jianbo Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Shiji Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yingxue Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Luo
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
36
|
Carmona-Pérez L, Dagenais-Lussier X, Mai LT, Stögerer T, Swaminathan S, Isnard S, Rice MR, Barnes BJ, Routy JP, van Grevenynghe J, Stäger S. The TLR7/IRF-5 axis sensitizes memory CD4+ T cells to Fas-mediated apoptosis during HIV-1 infection. JCI Insight 2023; 8:e167329. [PMID: 37227774 PMCID: PMC10371351 DOI: 10.1172/jci.insight.167329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
HIV-1 infection is characterized by inflammation and a progressive decline in CD4+ T cell count. Despite treatment with antiretroviral therapy (ART), the majority of people living with HIV (PLWH) maintain residual levels of inflammation, a low degree of immune activation, and higher sensitivity to cell death in their memory CD4+ T cell compartment. To date, the mechanisms responsible for this high sensitivity remain elusive. We have identified the transcription factor IRF-5 to be involved in impairing the maintenance of murine CD4+ T cells during chronic infection. Here, we investigate whether IRF-5 also contributes to memory CD4+ T cell loss during HIV-1 infection. We show that TLR7 and IRF-5 were upregulated in memory CD4+ T cells from PLWH, when compared with naturally protected elite controllers and HIVfree participants. TLR7 was upstream of IRF-5, promoting Caspase 8 expression in CD4+ T cells from ART HIV-1+ but not from HIVfree donors. Interestingly, the TLR7/IRF-5 axis acted synergistically with the Fas/FasL pathway, suggesting that TLR7 and IRF-5 expression in ART HIV-1+ memory CD4+ T cells represents an imprint that predisposes cells to Fas-mediated apoptosis. This predisposition could be blocked using IRF-5 inhibitory peptides, suggesting IRF-5 blockade as a possible therapy to prevent memory CD4+ T cell loss in PLWH.
Collapse
Affiliation(s)
- Liseth Carmona-Pérez
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Xavier Dagenais-Lussier
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Linh T. Mai
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Tanja Stögerer
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Sharada Swaminathan
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Stéphane Isnard
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Matthew R. Rice
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Julien van Grevenynghe
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Simona Stäger
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| |
Collapse
|
37
|
Kroll KW, Woolley G, Terry K, Premeaux TA, Shikuma CM, Corley MJ, Bowler S, Ndhlovu LC, Reeves RK. Multiplex Analysis of Cytokines and Chemokines in Persons Aging With or Without HIV. AIDS Res Hum Retroviruses 2023; 39:367-380. [PMID: 37097212 PMCID: PMC11074629 DOI: 10.1089/aid.2022.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
People with HIV (PWH) on combination antiretroviral therapy (cART) are living longer lives due to modern cART advances and increased routine medical care. The full landscape of aging with HIV is unclear; given that HIV emerged relatively recently in human history and initially had a high mortality rate, there has not been a substantially aged population to evaluate. In this study, we set out to perform high-throughput plasma analyte profiling by multiplex analysis, focusing on various T helper (Th)-related cytokines, chemokines, and proinflammatory and anti-inflammatory cytokines. The primary goals being to provide reference ranges of these analytes for aging PWH cohorts, as well as testing the utility of high-throughput multiplex plasma assays. The cohort used in this study comprised age-matched healthy donors (32.6-73.5 years of age), PWH on cART (26.7-60.2 years of age), and viremic PWH (27.5-59.4 years of age). The patients in each group were then stratified across the age span to examine age-related impacts of these plasma biomarkers. Our results largely indicate feasibility of plasma analyte monitoring by multiplex and demonstrate a high degree of person-to-person variability regardless of age and HIV status. Nonetheless, we find multiple associations with age, duration of known infection, and viral load, all of which appear to be driven by either prolonged HIV disease progression or long-term use of cART.
Collapse
Affiliation(s)
- Kyle W. Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, School of Medicine, Durham, North Carolina, USA
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, School of Medicine, Durham, North Carolina, USA
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, School of Medicine, Durham, North Carolina, USA
| | - Thomas A. Premeaux
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Michael J. Corley
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Scott Bowler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
38
|
Enichen E, Adams RB, Demmig-Adams B. Physical Activity as an Adjunct Treatment for People Living with HIV? Am J Lifestyle Med 2023; 17:502-517. [PMID: 37426740 PMCID: PMC10328202 DOI: 10.1177/15598276221078222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
This review evaluates physical activity as a candidate for an adjunct treatment, in conjunction with antiretroviral therapy (ART), for people living with HIV (PLWH). Evidence is summarized that chronic, non-resolving inflammation (a principal feature of immune system dysfunction) and a dysfunctional state of the gut environment are key factors in HIV infection that persist despite treatment with ART. In addition, evidence is summarized that regular physical activity may restore normal function of both the immune system and the gut environment and may thereby ameliorate symptoms and non-resolving inflammation-associated comorbidities that burden PLWH. Physicians who care for PLWH could thus consider incorporating physical activity into treatment plans to complement ART. It is also discussed that different types of physical activity can have different effects on the gut environment and immune function, and that future research should establish more specific criteria for the design of exercise regimens tailored to PLWH.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Robert B. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| |
Collapse
|
39
|
Otte F, Zhang Y, Spagnuolo J, Thielen A, Däumer M, Wiethe C, Stoeckle M, Kusejko K, Klein F, Metzner KJ, Klimkait T. Revealing viral and cellular dynamics of HIV-1 at the single-cell level during early treatment periods. CELL REPORTS METHODS 2023; 3:100485. [PMID: 37426753 PMCID: PMC10326345 DOI: 10.1016/j.crmeth.2023.100485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/30/2023] [Accepted: 04/28/2023] [Indexed: 07/11/2023]
Abstract
While combination therapy completely suppresses HIV-1 replication in blood, functional virus persists in CD4+ T cell subsets in non-peripheral compartments that are not easily accessible. To fill this gap, we investigated tissue-homing properties of cells that transiently appear in the circulating blood. Through cell separation and in vitro stimulation, the HIV-1 "Gag and Envelope reactivation co-detection assay" (GERDA) enables sensitive detection of Gag+/Env+ protein-expressing cells down to about one cell per million using flow cytometry. By associating GERDA with proviral DNA and polyA-RNA transcripts, we corroborate the presence and functionality of HIV-1 in critical body compartments utilizing t-distributed stochastic neighbor embedding (tSNE) and density-based spatial clustering of applications with noise (DBSCAN) clustering with low viral activity in circulating cells early after diagnosis. We demonstrate transcriptional HIV-1 reactivation at any time, potentially giving rise to intact, infectious particles. With single-cell level resolution, GERDA attributes virus production to lymph-node-homing cells with central memory T cells (TCMs) as main players, critical for HIV-1 reservoir eradication.
Collapse
Affiliation(s)
- Fabian Otte
- Molecular Virology, Department Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Yuepeng Zhang
- Molecular Virology, Department Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Julian Spagnuolo
- Experimental Immunology, Department Biomedicine, University of Basel, 4056 Basel, Switzerland
| | | | | | | | - Marcel Stoeckle
- Infectiology, University Hospital Basel, 4031 Basel, Switzerland
| | - Katharina Kusejko
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and Institute of Medical Virology, University of Zurich, 8091 Zurich, Switzerland
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Karin J. Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and Institute of Medical Virology, University of Zurich, 8091 Zurich, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department Biomedicine, University of Basel, 4009 Basel, Switzerland
| | | |
Collapse
|
40
|
Freeman TL, Zhao C, Schrode N, Fortune T, Shroff S, Tweel B, Beaumont KG, Swartz TH. HIV-1 activates oxidative phosphorylation in infected CD4 T cells in a human tonsil explant model. Front Immunol 2023; 14:1172938. [PMID: 37325659 PMCID: PMC10266353 DOI: 10.3389/fimmu.2023.1172938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Human immunodeficiency virus type 1 (HIV-1) causes a chronic, incurable infection leading to immune activation and chronic inflammation in people with HIV-1 (PWH), even with virologic suppression on antiretroviral therapy (ART). The role of lymphoid structures as reservoirs for viral latency and immune activation has been implicated in chronic inflammation mechanisms. Still, the specific transcriptomic changes induced by HIV-1 infection in different cell types within lymphoid tissue remain unexplored. Methods In this study, we utilized human tonsil explants from healthy human donors and infected them with HIV-1 ex vivo. We performed single-cell RNA sequencing (scRNA-seq) to analyze the cell types represented in the tissue and to investigate the impact of infection on gene expression profiles and inflammatory signaling pathways. Results Our analysis revealed that infected CD4+ T cells exhibited upregulation of genes associated with oxidative phosphorylation. Furthermore, macrophages exposed to the virus but uninfected showed increased expression of genes associated with the NLRP3 inflammasome pathway. Discussion These findings provide valuable insights into the specific transcriptomic changes induced by HIV-1 infection in different cell types within lymphoid tissue. The activation of oxidative phosphorylation in infected CD4+ T cells and the proinflammatory response in macrophages may contribute to the chronic inflammation observed in PWH despite ART. Understanding these mechanisms is crucial for developing targeted therapeutic strategies to eradicate HIV-1 infection in PWH.
Collapse
Affiliation(s)
- Tracey L. Freeman
- Medical Scientist Training Program, University of Pittsburgh-Carnegie Mellon University, Pittsburgh, PA, United States
| | - Connie Zhao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nadine Schrode
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Trinisia Fortune
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sanjana Shroff
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benjamin Tweel
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristin G. Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
41
|
Kinloch NN, Shahid A, Dong W, Kirkby D, Jones BR, Beelen CJ, MacMillan D, Lee GQ, Mota TM, Sudderuddin H, Barad E, Harris M, Brumme CJ, Jones RB, Brockman MA, Joy JB, Brumme ZL. HIV reservoirs are dominated by genetically younger and clonally enriched proviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536611. [PMID: 37090500 PMCID: PMC10120704 DOI: 10.1101/2023.04.12.536611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In order to cure HIV, we need to better understand the within-host evolutionary origins of the small reservoir of genome-intact proviruses that persists within infected cells during antiretroviral therapy (ART). Most prior studies on reservoir evolutionary dynamics however did not discriminate genome-intact proviruses from the vast background of defective ones. We reconstructed within-host pre-ART HIV evolutionary histories in six individuals and leveraged this information to infer the ages of intact and defective proviruses sampled after an average >9 years on ART, along with the ages of rebound and low-level/isolated viremia occurring during this time. We observed that the longest-lived proviruses persisting on ART were exclusively defective, usually due to large deletions. In contrast, intact proviruses and rebound HIV exclusively dated to the years immediately preceding ART. These observations are consistent with genome-intact proviruses having shorter lifespans, likely due to the cumulative risk of elimination following viral reactivation and protein production. Consistent with this, intact proviruses (and those with packaging signal defects) were three times more likely to be genetically identical compared to other proviral types, highlighting clonal expansion as particularly important in ensuring their survival. By contrast, low-level/isolated viremia sequences were genetically heterogeneous and sometimes ancestral, where viremia may have originated from defective proviruses. Results reveal that the HIV reservoir is dominated by clonally-enriched and genetically younger sequences that date to the untreated infection period when viral populations had been under within-host selection pressures for the longest duration. Knowledge of these qualities may help focus strategies for reservoir elimination.
Collapse
Affiliation(s)
- Natalie N. Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Winnie Dong
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Don Kirkby
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Bradley R. Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Bioinformatics Program, University of British Columbia, Vancouver, BC
| | | | - Daniel MacMillan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Guinevere Q. Lee
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Talia M. Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Experimental Medicine Program, University of British Columbia, Vancouver, BC
| | - Evan Barad
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, BC
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Department of Medicine, University of British Columbia, Vancouver, BC
| | - R. Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby BC
| | - Jeffrey B. Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Bioinformatics Program, University of British Columbia, Vancouver, BC
- Department of Medicine, University of British Columbia, Vancouver, BC
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| |
Collapse
|
42
|
Rodriguez NR, Fortune T, Vuong T, Swartz TH. The role of extracellular ATP and P2X receptors in the pathogenesis of HIV-1. Curr Opin Pharmacol 2023; 69:102358. [PMID: 36848824 PMCID: PMC10023410 DOI: 10.1016/j.coph.2023.102358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Human Immunodeficiency Virus Type 1 (HIV-1) causes a chronic, incurable infection associated with chronic inflammation despite virologic suppression on antiretroviral therapy (ART). This chronic inflammation underlies significant comorbidities, including cardiovascular disease, neurocognition decline, and malignancies. The mechanisms of chronic inflammation have been attributed, in part, to the role of extracellular ATP and P2X-type purinergic receptors that sense damaged or dying cells and undergo signaling responses to activate inflammation and immunomodulation. This review describes the current literature on the role of extracellular ATP and P2X receptors in HIV-1 pathogenesis, describing the known intersection with the HIV-1 life cycle in mediating immunopathogenesis and neuronal disease. The literature supports key roles for this signaling mechanism in cell-to-cell communication and in activating transcriptional changes that impact the inflammatory state leading to disease progression. Future studies must characterize the numerous functions of ATP and P2X receptors in HIV-1 pathogenesis to inform future therapeutic targeting.
Collapse
Affiliation(s)
- Natalia R Rodriguez
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Trinisia Fortune
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thien Vuong
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
43
|
Azevedo-Pereira JM, Pires D, Calado M, Mandal M, Santos-Costa Q, Anes E. HIV/Mtb Co-Infection: From the Amplification of Disease Pathogenesis to an “Emerging Syndemic”. Microorganisms 2023; 11:microorganisms11040853. [PMID: 37110276 PMCID: PMC10142195 DOI: 10.3390/microorganisms11040853] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Human immunodeficiency virus (HIV) and Mycobacterium tuberculosis (Mtb) are pathogens responsible for millions of new infections each year; together, they cause high morbidity and mortality worldwide. In addition, late-stage HIV infection increases the risk of developing tuberculosis (TB) by a factor of 20 in latently infected people, and even patients with controlled HIV infection on antiretroviral therapy (ART) have a fourfold increased risk of developing TB. Conversely, Mtb infection exacerbates HIV pathogenesis and increases the rate of AIDS progression. In this review, we discuss this reciprocal amplification of HIV/Mtb coinfection and how they influence each other’s pathogenesis. Elucidating the infectious cofactors that impact on pathogenesis may open doors for the design of new potential therapeutic strategies to control disease progression, especially in contexts where vaccines or the sterile clearance of pathogens are not effectively available.
Collapse
Affiliation(s)
- José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (J.M.A.-P.); (E.A.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| | - Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Manoj Mandal
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Quirina Santos-Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (J.M.A.-P.); (E.A.)
| |
Collapse
|
44
|
Min AK, Keane AM, Weinstein MP, Swartz TH. The impact of cannabinoids on inflammasome signaling in HIV-1 infection. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:79-88. [PMID: 37027347 PMCID: PMC10070009 DOI: 10.1515/nipt-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is a chronic disease that afflicts over 38 million people worldwide without a known cure. The advent of effective antiretroviral therapies (ART) has significantly decreased the morbidity and mortality associated with HIV-1 infection in people living with HIV-1 (PWH), thanks to durable virologic suppression. Despite this, people with HIV-1 experience chronic inflammation associated with co-morbidities. While no single known mechanism accounts for chronic inflammation, there is significant evidence to support the role of the NLRP3 inflammasome as a key driver. Numerous studies have demonstrated therapeutic impact of cannabinoids, including exerting modulatory effects on the NLRP3 inflammasome. Given the high rates of cannabinoid use in PWH, it is of great interest to understand the intersecting biology of the role of cannabinoids in HIV-1-associated inflammasome signaling. Here we describe the literature of chronic inflammation in people with HIV, the therapeutic impact of cannabinoids in PWH, endocannabinoids in inflammation, and HIV-1-associated inflammation. We describe a key interaction between cannabinoids, the NLRP3 inflammasome, and HIV-1 viral infection, which supports further investigation of the critical role of cannabinoids in HIV-1 infection and inflammasome signaling.
Collapse
Affiliation(s)
- Alice K. Min
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aislinn M. Keane
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Paltiel Weinstein
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
45
|
Enichen E, Harvey C, Demmig-Adams B. COVID-19 Spotlights Connections between Disease and Multiple Lifestyle Factors. Am J Lifestyle Med 2023; 17:231-257. [PMID: 36883129 PMCID: PMC9445631 DOI: 10.1177/15598276221123005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2), and the disease it causes (COVID-19), have had a profound impact on global human society and threaten to continue to have such an impact with newly emerging variants. Because of the widespread effects of SARS-CoV-2, understanding how lifestyle choices impact the severity of disease is imperative. This review summarizes evidence for an involvement of chronic, non-resolving inflammation, gut microbiome disruption (dysbiosis with loss of beneficial microorganisms), and impaired viral defenses, all of which are associated with an imbalanced lifestyle, in severe disease manifestations and post-acute sequelae of SARS-CoV-2 (PASC). Humans' physiological propensity for uncontrolled inflammation and severe COVID-19 are briefly contrasted with bats' low propensity for inflammation and their resistance to viral disease. This insight is used to identify positive lifestyle factors with the potential to act in synergy for restoring balance to the immune response and gut microbiome, and thereby protect individuals against severe COVID-19 and PASC. It is proposed that clinicians should consider recommending lifestyle factors, such as stress management, balanced nutrition and physical activity, as preventative measures against severe viral disease and PASC.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Caitlyn Harvey
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| |
Collapse
|
46
|
Segura J, Ireland J, Zou Z, Roth G, Buchwald J, Shen TJ, Fischer E, Moir S, Chun TW, Sun PD. HIV-1 release requires Nef-induced caspase activation. PLoS One 2023; 18:e0281087. [PMID: 36780482 PMCID: PMC9925082 DOI: 10.1371/journal.pone.0281087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
HIV infection remains incurable to date and there are no compounds targeted at the viral release. We show here HIV viral release is not spontaneous, rather requires caspases activation and shedding of its adhesion receptor, CD62L. Blocking the caspases activation caused virion tethering by CD62L and the release of deficient viruses. Not only productive experimental HIV infections require caspases activation for viral release, HIV release from both viremic and aviremic patient-derived CD4 T cells also require caspase activation, suggesting HIV release from cellular viral reservoirs depends on apoptotic shedding of the adhesion receptor. Further transcriptomic analysis of HIV infected CD4 T cells showed a direct contribution of HIV accessory gene Nef to apoptotic caspases activation. Current HIV cure focuses on the elimination of latent cellular HIV reservoirs that are resistant to infection-induced cell death. This has led to therapeutic strategies to stimulate T cell apoptosis in a "kick and kill" approach. Our current work has shifted the paradigm on HIV-induced apoptosis and suggests such approach would risk to induce HIV release and thus be counter-productive. Instead, our study supports targeting of viral reservoir release by inhibiting of caspases activation.
Collapse
Affiliation(s)
- Jason Segura
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joanna Ireland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Zhongcheng Zou
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gwynne Roth
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Julianna Buchwald
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Thomas J. Shen
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Elizabeth Fischer
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
47
|
Thymic Exhaustion and Increased Immune Activation Are the Main Mechanisms Involved in Impaired Immunological Recovery of HIV-Positive Patients under ART. Viruses 2023; 15:v15020440. [PMID: 36851655 PMCID: PMC9961132 DOI: 10.3390/v15020440] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Decades of studies in antiretroviral therapy (ART) have passed, and the mechanisms that determine impaired immunological recovery in HIV-positive patients receiving ART have not been completely elucidated yet. Thus, T-lymphocytes immunophenotyping and cytokines levels were analyzed in 44 ART-treated HIV-positive patients who had a prolonged undetectable plasma viral load. The patients were classified as immunological non-responders (INR = 13) and immunological responders (IR = 31), according to their CD4+ T cell levels. Evaluating pre-CD4+ levels, we observed a statistically significant trend between lower CD4+ T cell levels and INR status (Z = 3.486, p < 0.001), and during 18 months of ART, the CD4+ T cell levels maintained statistical differences between the INR and IR groups (WTS = 37.252, p < 0.001). Furthermore, the INRs were associated with an elevated age at ART start; a lower pre-treatment CD4+ T cell count and a percentage that remained low even after 18 months of ART; lower levels of recent thymic emigrant (RTE) CD4+ T cell (CD45RA + CD31+) and a naïve CD4+ T cell (CD45RA + CD62L+); higher levels of central memory CD4+ T cells (CD45RA-CD62L+); and higher immune activation by CD4+ expressing HLA-DR+ or both (HLA-DR+ and CD38+) when compared with IRs. Our study demonstrates that thymic exhaustion and increased immune activation are two mechanisms substantially implicated in the impaired immune recovery of ART-treated HIV patients.
Collapse
|
48
|
Kroll KW, Woolley G, Terry K, Premeaux TA, Shikuma CM, Corley MJ, Bowler S, Ndhlovu LC, Reeves RK. Multiplex analysis of cytokines and chemokines in persons aging with or without HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526135. [PMID: 36778301 PMCID: PMC9915515 DOI: 10.1101/2023.01.30.526135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
People with HIV (PWH) on combined antiretroviral therapy (cART) are living longer lives due to modern cART advances and increased routine medical care. The full landscape of aging with HIV is unclear; given that HIV emerged relatively recently in human history and initially had a high mortality rate, there has not been a substantially aged population to evaluate. In the present study, we set out to perform high throughput plasma analyte profiling by multiplex analysis, focusing on various T helper (Th)-related cytokines, chemokines, and pro- and anti-inflammatory cytokines. The primary goals being to provide reference ranges of these analytes for aging PWH cohorts, as well as testing the utility of high throughput multiplex plasma assays. The cohort used in this study was comprised of age-matched healthy donors (aged 32.6-73.5), PWH on cART (aged 26.7-60.2), and viremic PWH (aged 27.5-59.4). The patients in each group were then stratified across the age span to examine age-related impacts of these plasma biomarkers. Our results largely indicate feasibility of plasma analyte monitoring by multiplex and demonstrate a high degree of person-to-person variability regardless of age and HIV status. Nonetheless, we find multiple associations with age, duration of known infection, and viral load, all of which appear to be driven by either prolonged HIV disease progression or long-term use of cART.
Collapse
|
49
|
Min AK, Fortune T, Rodriguez N, Hedge E, Swartz TH. Inflammasomes as mediators of inflammation in HIV-1 infection. Transl Res 2023; 252:1-8. [PMID: 35917903 PMCID: PMC10160852 DOI: 10.1016/j.trsl.2022.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 01/14/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is a chronic disease without a known cure. The advent of effective antiretroviral therapy (ART) has enabled people with HIV (PWH) to have significantly prolonged life expectancies. As a result, morbidity and mortality associated with HIV-1 infection have declined considerably. However, these individuals experience chronic systemic inflammation whose multifaceted etiology is associated with other numerous comorbidities. Inflammasomes are vital mediators that contribute to inflammatory signaling in HIV-1 infection. Here, we provide an overview of the inflammatory pathway that underlies HIV-1 infection, explicitly highlighting the role of the NLRP3 inflammasome. We also delineate the current literature on inflammasomes and the therapeutic targeting strategies aimed at the NLRP3 inflammasome to moderate HIV-1 infection-associated inflammation. Here we describe the NLRP3 inflammasome as a key pathway in developing novel therapeutic targets to block HIV-1 replication and HIV-1-associated inflammatory signaling. Controlling the inflammatory pathways is critical in alleviating the morbidities and mortality associated with chronic HIV-1 infection in PWH.
Collapse
Affiliation(s)
- Alice K Min
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Trinisia Fortune
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Natalia Rodriguez
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Esha Hedge
- University of South Carolina, Columbia, South Carolina
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
50
|
Mahalingam SS, Jayaraman S, Bhaskaran N, Schneider E, Faddoul F, Paes da Silva A, Lederman MM, Asaad R, Adkins-Travis K, Shriver LP, Pandiyan P. Polyamine metabolism impacts T cell dysfunction in the oral mucosa of people living with HIV. Nat Commun 2023; 14:399. [PMID: 36693889 PMCID: PMC9873639 DOI: 10.1038/s41467-023-36163-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Metabolic changes in immune cells contribute to both physiological and pathophysiological outcomes of immune reactions. Here, by comparing protein expression, transcriptome, and salivary metabolome profiles of uninfected and HIV+ individuals, we found perturbations of polyamine metabolism in the oral mucosa of HIV+ patients. Mechanistic studies using an in vitro human tonsil organoid infection model revealed that HIV infection of T cells also resulted in increased polyamine synthesis, which was dependent on the activities of caspase-1, IL-1β, and ornithine decarboxylase-1. HIV-1 also led to a heightened expression of polyamine synthesis intermediates including ornithine decarboxylase-1 as well as an elevated dysfunctional regulatory T cell (TregDys)/T helper 17 (Th17) cell ratios. Blockade of caspase-1 and polyamine synthesis intermediates reversed the TregDys phenotype showing the direct role of polyamine pathway in altering T cell functions during HIV-1 infection. Lastly, oral mucosal TregDys/Th17 ratios and CD4 hyperactivation positively correlated with salivary putrescine levels, which were found to be elevated in the saliva of HIV+ patients. Thus, by revealing the role of aberrantly increased polyamine synthesis during HIV infection, our study unveils a mechanism by which chronic viral infections could drive distinct T cell effector programs and Treg dysfunction.
Collapse
Affiliation(s)
- S S Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - S Jayaraman
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - N Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - E Schneider
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - F Faddoul
- Advanced Education in General Dentistry, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - A Paes da Silva
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - M M Lederman
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,University Hospitals Cleveland Medical Center AIDS Clinical Trials Unit, Cleveland, OH, 44106, USA
| | - R Asaad
- University Hospitals Cleveland Medical Center AIDS Clinical Trials Unit, Cleveland, OH, 44106, USA
| | - K Adkins-Travis
- Department of Chemistry, Center for Metabolomics and Isotope Tracing, Washington University, Saint Louis, MO, 63110, USA
| | - L P Shriver
- Department of Chemistry, Center for Metabolomics and Isotope Tracing, Washington University, Saint Louis, MO, 63110, USA
| | - P Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Center for AIDS Research, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|