1
|
Buglino JA, Ozakman Y, Hatch C, Benjamin A, Tan D, Glickman MS. Chalkophore mediated respiratory oxidase flexibility controls M. tuberculosis virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589290. [PMID: 38645185 PMCID: PMC11030325 DOI: 10.1101/2024.04.12.589290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Oxidative phosphorylation has emerged as a critical therapeutic vulnerability of M. tuberculosis (Mtb). However, it is unknown how intracellular bacterial pathogens such as Mtb maintain respiration during infection despite the chemical effectors of host immunity. Mtb synthesizes diisonitrile lipopeptides that tightly chelate copper, but the role of these chalkophores in host-pathogen interactions is also unknown. We demonstrate that M. tuberculosis chalkophores maintain the function of the heme-copper bcc:aa 3 respiratory oxidase under copper limitation. Chalkophore deficiency impairs Mtb survival, respiration to oxygen, and ATP production under copper deprivation in culture, effects that are exacerbated by loss of the heme dependent Cytochrome BD respiratory oxidase. Our genetic analyses indicate that maintenance of respiration is the only cellular target of chalkophore mediated copper acquisition. M. tuberculosis lacking chalkophore biosynthesis is attenuated in mice, a phenotype that is also severely exacerbated by loss of the CytBD respiratory oxidase. We find that the host immune pressure that attenuates chalkophore deficient Mtb is independent of adaptive immunity and neutrophils. These data demonstrate that chalkophores counter host inflicted copper deprivation and highlight a multilayered system by which M. tuberculosis maintains respiration during infection.
Collapse
Affiliation(s)
| | | | - Chad Hatch
- Chemical Biology Program, Sloan Kettering Institute
| | | | - Derek Tan
- Chemical Biology Program, Sloan Kettering Institute
- Tri-Institutional Research Program Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| | | |
Collapse
|
2
|
Bhowmik S, Pathak A, Pandey S, Devnath K, Sett A, Jyoti N, Bhando T, Akhter J, Chugh S, Singh R, Sharma TK, Pathania R. Acinetobacter baumannii represses type VI secretion system through a manganese-dependent small RNA-mediated regulation. mBio 2024:e0302524. [PMID: 39704509 DOI: 10.1128/mbio.03025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Type VI secretion system (T6SS) is utilized by many Gram-negative bacteria to eliminate competing bacterial species and manipulate host cells. Acinetobacter baumannii ATCC 17978 utilizes T6SS at the expense of losing pAB3 plasmid to induce contact-dependent killing of competitor microbes, resulting in the loss of antibiotic resistance carried by pAB3. However, the regulatory network associated with T6SS in A. baumannii remains poorly understood. Here, we identified an Mn2+-dependent post-transcriptional regulation of T6SS mediated by a bonafide small RNA, AbsR28. A. baumannii utilizes MumT, an Mn2+-uptake inner membrane transporter, for the uptake of extracellular Mn2+ during oxidative stress. We demonstrate that the abundance of intracellular Mn2+ enables complementary base pairing of AbsR28-tssM mRNA (that translates to TssM, one of the vital inner membrane components of T6SS), inducing RNase E-mediated degradation of tssM mRNA and resulting in T6SS repression. Thus, AbsR28 mediates a crosstalk between MumT and T6SS in A. baumannii.IMPORTANCESmall RNAs (sRNAs) are identified as critical components within the bacterial regulatory networks involved in fine regulation of virulence-associated factors. The sRNA-mediated regulation of type VI secretion system (T6SS) in Acinetobacter baumannii was unchartered. Previously, it was demonstrated that A. baumannii ATCC 17978 cells switch from T6- to T6+ phenotype, resulting in the loss of antibiotic resistance conferred by plasmid pAB3. Furthermore, the derivatives of pAB3 found in recent clinical isolates of A. baumannii harbor expanded antibiotic resistance genes and multiple determinants for virulence factors. Hence, the loss of this plasmid for T6SS activity renders A. baumannii T6+ cells susceptible to antibiotics and compromises their virulence. Our findings show how A. baumannii tends to inactivate T6SS through an sRNA-mediated regulation that relies on Mn2+ and retains pAB3 during infection to retain antibiotic resistance genes carried on the plasmid.
Collapse
Affiliation(s)
- Somok Bhowmik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Avik Pathak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shivam Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Kuldip Devnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Abhiroop Sett
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Nishant Jyoti
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Timsy Bhando
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Jawed Akhter
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
- Center of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
3
|
Egan MS, de Macedo R, Zackular JP. Metals in the gut: microbial strategies to overcome nutritional immunity in the intestinal tract. Metallomics 2024; 16:mfae052. [PMID: 39577845 DOI: 10.1093/mtomcs/mfae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
Trace metals are indispensable nutritional factors for all living organisms. During host-pathogen interactions, they serve as crucial resources that dictate infection outcomes. Accordingly, the host uses a defense strategy known as nutritional immunity, which relies on coordinated metal chelation to mitigate bacterial advances. In response, pathogens employ complex strategies to secure these resources at sites of infection. In the gastrointestinal (GI) tract, the microbiota must also acquire metals for survival, making metals a central line of competition in this complex ecosystem. In this minireview, we outline how bacteria secure iron, zinc, and manganese from the host with a focus on the GI tract. We also reflect on how host dietary changes impact disease outcomes and discuss therapeutic opportunities to target bacterial metal uptake systems. Ultimately, we find that recent discoveries on the dynamics of transition metals at the host-pathogen-microbiota interface have reshaped our understanding of enteric infections and provided insights into virulence strategies, microbial cooperation, and antibacterial strategies.
Collapse
Affiliation(s)
- Marisa S Egan
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Raquel de Macedo
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP 01224-001, Brazil
| | - Joseph P Zackular
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Center for Microbial Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Ma B, Yang R, Chen X, Wang Q, Zhang T, Wen R, Yang M, Lei C, Wang H. Synergistic antimicrobial activity of alpha-linolenic acid in combination with tetracycline or florfenicol against multidrug-resistant Salmonella typhimurium. Microb Pathog 2024; 196:106982. [PMID: 39332543 DOI: 10.1016/j.micpath.2024.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Salmonella is a major foodborne pathogen that can be transmitted from livestock and poultry to humans through the food chain. Due to the widespread use of antibiotics, antibiotic resistance Salmonella has become an important factor threatening food safety. Combining antibiotic and non-antibiotic agents is a promising approach to address the widespread emergence of antibiotic-resistant pathogens. In this study, we investigated the antibiotic resistance profile and molecular characterization of different serotypes of Salmonella isolated from large-scale egg farms using drug susceptibility testing and whole genome sequencing. The synergistic effect of alpha-linolenic acid (ALA) with antibiotics was evaluated using the checkerboard test and time-kill curve. The molecular mechanism of α-linolenic acid synergism was explored using biochemical assays, pull-down assays, and molecular docking. In vivo efficacy of ALA in combination with florfenicol (FFC) or tetracycline (TET) against multidrug-resistant (MDR) Salmonella enterica subsp. enterica serovar typhimurium was also investigated using a mouse model. We found that ALA reduced the minimum inhibitory concentration (MIC) of tetracycline and florfenicol in all strains tested. When ALA (512 mg/L) was combined with florfenicol (32 mg/L) or tetracycline (16 mg/L), we observed disruption of cell membrane integrity, increased outer membrane permeability, lowered cell membrane potential, and inhibition of proton-drive-dependent efflux pumps. The synergistic treatment also inhibited biofilm production and promoted oxidative damage. These changes together led to an increase in bacterial antibiotic susceptibility. The improved efficacy of ALA combination treatment with antibiotics was validated in the mouse model. Molecular docking results indicate that ALA can bind to membrane proteins via hydrogen bonding. Our findings demonstrated that combined treatment using ALA and antibiotics is effective in preventing infections involving MDR bacteria. Our results are of great significance for the scientific and effective prevention and control of antibiotic resistance Salmonella, as well as ensuring food safety.
Collapse
Affiliation(s)
- Boheng Ma
- College of Life Sciences, Sichuan University, Chengdu, PR China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Chengdu, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, PR China
| | - Rujie Yang
- Luzhou Pinchuang Technology Co. Ltd., Luzhou, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co. Ltd., Luzhou, PR China
| | - Xuan Chen
- College of Life Sciences, Sichuan University, Chengdu, PR China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Chengdu, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, PR China
| | - Qin Wang
- College of Life Sciences, Sichuan University, Chengdu, PR China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Chengdu, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, PR China
| | - Tiejun Zhang
- College of Life Sciences, Sichuan University, Chengdu, PR China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Chengdu, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, PR China
| | - Renqiao Wen
- College of Life Sciences, Sichuan University, Chengdu, PR China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Chengdu, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, PR China
| | - Ming Yang
- College of Life Sciences, Sichuan University, Chengdu, PR China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Chengdu, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, PR China
| | - Changwei Lei
- College of Life Sciences, Sichuan University, Chengdu, PR China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Chengdu, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, PR China.
| | - Hongning Wang
- College of Life Sciences, Sichuan University, Chengdu, PR China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Chengdu, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, PR China.
| |
Collapse
|
5
|
Hu Y, Wang S, Wang R, Zhang Y, Yuan Q, Yuan C. Total saponins from Panax japonicus regulated the intestinal microbiota to alleviate lipid metabolism disorders in aging mice. Arch Gerontol Geriatr 2024; 125:105500. [PMID: 38851092 DOI: 10.1016/j.archger.2024.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Total saponins from Panax japonicus (TSPJ) have many beneficial physiological activities, particularly in alleviating the damages of aging and abnormal lipid metabolism. This work used mice models to investigate if TSPJ reduced obesity and regulated metabolic functions via the intestinal microbiota, the disturbance of which has been shown to cause aging-related diseases. The results showed that TSPJ significantly reduced the weight and blood lipid level of aging mice. Further analyses showed that TSPJ significantly inhibited adipogenesis, changed the composition of the intestinal flora, and protected the integrity of the intestinal barrier. It was inferred from the accumulated experimental data that TSPJ helped to combat obesity in aging mice by regulating the intestinal microbiota and promoting microbial metabolism.
Collapse
Affiliation(s)
- Yaqi Hu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Shuwen Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Rui Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yifan Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Qi Yuan
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
6
|
Makthal N, Saha S, Huang E, John J, Meena H, Aggarwal S, Högbom M, Kumaraswami M. Manganese uptake by MtsABC contributes to the pathogenesis of human pathogen group A streptococcus by resisting host nutritional immune defenses. Infect Immun 2024; 92:e0007724. [PMID: 38869295 PMCID: PMC11238556 DOI: 10.1128/iai.00077-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
The interplay between host nutritional immune mechanisms and bacterial nutrient uptake systems has a major impact on the disease outcome. The host immune factor calprotectin (CP) limits the availability of essential transition metals, such as manganese (Mn) and zinc (Zn), to control the growth of invading pathogens. We previously demonstrated that the competition between CP and the human pathogen group A streptococcus (GAS) for Zn impacts GAS pathogenesis. However, the contribution of Mn sequestration by CP in GAS infection control and the role of GAS Mn acquisition systems in overcoming host-imposed Mn limitation remain unknown. Using a combination of in vitro and in vivo studies, we show that GAS-encoded mtsABC is a Mn uptake system that aids bacterial evasion of CP-imposed Mn scarcity and promotes GAS virulence. Mn deficiency caused by either the inactivation of mtsC or CP also impaired the protective function of GAS-encoded Mn-dependent superoxide dismutase. Our ex vivo studies using human saliva show that saliva is a Mn-scant body fluid, and Mn acquisition by MtsABC is critical for GAS survival in human saliva. Finally, animal infection studies using wild-type (WT) and CP-/- mice showed that MtsABC is critical for GAS virulence in WT mice but dispensable in mice lacking CP, indicating the direct interplay between MtsABC and CP in vivo. Together, our studies elucidate the role of the Mn import system in GAS evasion of host-imposed metal sequestration and underscore the translational potential of MtsABC as a therapeutic or prophylactic target.
Collapse
Affiliation(s)
- Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Subhasree Saha
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Elaine Huang
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Juliane John
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Science, Stockholm, Sweden
| | - Himani Meena
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Shifu Aggarwal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Science, Stockholm, Sweden
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
7
|
Wang C, Zhao H, Liu Y, Qu M, Lv S, He G, Liang H, Chen K, Yang L, He Y, Ou C. Neurotoxicity of manganese via ferroptosis induced by redox imbalance and iron overload. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116404. [PMID: 38705038 DOI: 10.1016/j.ecoenv.2024.116404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Manganese (Mn) is an essential trace element for maintaining bodily functions. Excessive exposure to Mn can pose serious health risks to humans and animals, particularly to the nervous system. While Mn has been implicated as a neurotoxin, the exact mechanism of its toxicity remains unclear. Ferroptosis is a form of programmed cell death that results from iron-dependent lipid peroxidation. It plays a role in various physiological and pathological cellular processes and may be closely related to Mn-induced neurotoxicity. However, the mechanism of ferroptosis in Mn-induced neurotoxicity has not been thoroughly investigated. Therefore, this study aims to investigate the role and mechanism of ferroptosis in Mn-induced neurotoxicity. Using bioinformatics, we identified significant changes in genes associated with ferroptosis in Mn-exposed animal and cellular models. We then evaluated the role of ferroptosis in Mn-induced neurotoxicity at both the animal and cellular levels. Our findings suggest that Mn exposure causes weight loss and nervous system damage in mice. In vitro and in vivo experiments have shown that exposure to Mn increases malondialdehyde, reactive oxygen species, and ferrous iron, while decreasing glutathione and adenosine triphosphate. These findings suggest that Mn exposure leads to a significant increase in lipid peroxidation and disrupts iron metabolism, resulting in oxidative stress injury and ferroptosis. Furthermore, we assessed the expression levels of proteins and mRNAs related to ferroptosis, confirming its significant involvement in Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Changyong Wang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Hongyan Zhao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Yaoyang Liu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Minghai Qu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Shanyu Lv
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Guoguo He
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Hongshuo Liang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Kemiao Chen
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Lin Yang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Yonghua He
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Chaoyan Ou
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
8
|
Sun Y, Gao R, Liao X, Shen M, Chen X, Feng J, Ding T. Stress response of Salmonella Newport with various sequence types toward plasma-activated water: Viable but nonculturable state formation and outer membrane vesicle production. Curr Res Food Sci 2024; 8:100764. [PMID: 38779345 PMCID: PMC11109322 DOI: 10.1016/j.crfs.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
This study aims to investigate the response of Salmonella Newport to plasma-activated water (PAW), a novel disinfectant that attracts attention due to its broad-spectrum antimicrobial efficacy and eco-friendliness. In this work, we demonstrated that S. Newport of different sequence types (STs) could be induced into the viable but nonculturable (VBNC) state by PAW treatment. Notably, a remarkable 99.96% of S. Newport ST45 strain entered the VBNC state after a 12-min PAW treatment, which was the fastest observed among the five S. Newport STs (ST31, ST45, ST46, ST166, ST2364). Secretion of outer membrane vesicles was observed in ST45, suggesting a potential strategy against PAW treatment. Genes related to oxidative stress (sodA, katE, trxA), outer membrane proteins (ompA, ompC, ompD, ompF) and virulence (pagC, sipC, sopE2) were upregulated in the PAW-treated S. Newport, especially in ST45. A reduction of 38-65% in intracellular ATP level after PAW treatment was observed, indicating a contributor to the formation of the VBNC state. In addition, a rapid method for detecting the proportion of VBNC cells in food products based on pagC was established. This study contributes to understanding the formation mechanism of the VBNC state in S. Newport under PAW stress and offers insights for controlling microbial risks in the food industry.
Collapse
Affiliation(s)
- Yuhao Sun
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Rui Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Liao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Mofei Shen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiuqin Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Feng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tian Ding
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| |
Collapse
|
9
|
Melchior K, Gerner RR, Hossain S, Nuccio SP, Moreira CG, Raffatellu M. IL-22-dependent responses and their role during Citrobacter rodentium infection. Infect Immun 2024; 92:e0009924. [PMID: 38557196 PMCID: PMC11075456 DOI: 10.1128/iai.00099-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
The mouse pathogen Citrobacter rodentium is utilized as a model organism for studying infections caused by the human pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) and to elucidate mechanisms of mucosal immunity. In response to C. rodentium infection, innate lymphoid cells and T cells secrete interleukin (IL)-22, a cytokine that promotes mucosal barrier function. IL-22 plays a pivotal role in enabling mice to survive and recover from C. rodentium infection, although the exact mechanisms involved remain incompletely understood. Here, we investigated whether particular components of the host response downstream of IL-22 contribute to the cytokine's protective effects during C. rodentium infection. In line with previous research, mice lacking the IL-22 gene (Il22-/- mice) were highly susceptible to C. rodentium infection. To elucidate the role of specific antimicrobial proteins modulated by IL-22, we infected the following knockout mice: S100A9-/- (calprotectin), Lcn2-/- (lipocalin-2), Reg3b-/- (Reg3β), Reg3g-/- (Reg3γ), and C3-/- (C3). All knockout mice tested displayed a considerable level of resistance to C. rodentium infection, and none phenocopied the lethality observed in Il22-/- mice. By investigating another arm of the IL-22 response, we observed that C. rodentium-infected Il22-/- mice exhibited an overall decrease in gene expression related to intestinal barrier integrity as well as significantly elevated colonic inflammation, gut permeability, and pathogen levels in the spleen. Taken together, these results indicate that host resistance to lethal C. rodentium infection may depend on multiple antimicrobial responses acting in concert, or that other IL-22-regulated processes, such as tissue repair and maintenance of epithelial integrity, play crucial roles in host defense to attaching and effacing pathogens.
Collapse
Affiliation(s)
- Karine Melchior
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Romana R. Gerner
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- School of Life Sciences, ZIEL – Institute for Food and Health, Freising-Weihenstephan, Technical University of Munich, Munich, Germany
- Department of Internal Medicine III, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Suzana Hossain
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Cristiano Gallina Moreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, California, USA
| |
Collapse
|
10
|
Conley HE, Brown CF, Westerman TL, Elfenbein JR, Sheats MK. MARCKS Inhibition Alters Bovine Neutrophil Responses to Salmonella Typhimurium. Biomedicines 2024; 12:442. [PMID: 38398044 PMCID: PMC10886653 DOI: 10.3390/biomedicines12020442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Neutrophils are innate immune cells that respond quickly to sites of bacterial infection and play an essential role in host defense. Interestingly, some bacterial pathogens benefit from exuberant neutrophil inflammation. Salmonella is one such pathogen that can utilize the toxic mediators released by neutrophils to colonize the intestine and cause enterocolitis. Because neutrophils can aid gut colonization during Salmonella infection, neutrophils represent a potential host-directed therapeutic target. Myristoylated alanine-rich C-kinase substrate (MARCKS) is an actin-binding protein that plays an essential role in many neutrophil effector responses. We hypothesized that inhibition of MARCKS protein would alter bovine neutrophil responses to Salmonella Typhimurium (STm) ex vivo. We used a MARCKS inhibitor peptide to investigate the role of MARCKS in neutrophil responses to STm. This study demonstrates that MARCKS inhibition attenuated STm-induced neutrophil adhesion and chemotaxis. Interestingly, MARCKS inhibition also enhanced neutrophil phagocytosis and respiratory burst in response to STm. This is the first report describing the role of MARCKS protein in neutrophil antibacterial responses.
Collapse
Affiliation(s)
- Haleigh E Conley
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Chalise F Brown
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Trina L Westerman
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Johanna R Elfenbein
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
11
|
Deng L, Wang S. Colonization resistance: the role of gut microbiota in preventing Salmonella invasion and infection. Gut Microbes 2024; 16:2424914. [PMID: 39514544 PMCID: PMC11552263 DOI: 10.1080/19490976.2024.2424914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The human gastrointestinal tract is colonized by a complex microbial ecosystem, the gut microbiota, which is pivotal in maintaining host health and mediating resistance to diseases. This review delineates colonization resistance (CR), a critical defensive mechanism employed by the gut microbiota to safeguard against pathogenic bacterial invasions, notably by Salmonella. We detail the mechanisms through which the gut microbiota impedes Salmonella colonization, including nutrient competition, production of antimicrobial peptides, synthesis of microbial-derived metabolites, and modulation of the host immune response. Additionally, we examine how dietary interventions can influence these mechanisms, thereby augmenting the protective role of the gut microbiota. The review also discusses the sophisticated strategies utilized by Salmonella to overcome these microbial defenses. A thorough understanding of these complex interactions between microbial symbionts and pathogens is crucial for the development of innovative therapeutic strategies that enhance CR, aiming to prevent or treat microbial infections effectively.
Collapse
Affiliation(s)
- Lei Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
12
|
Hu S, Zhao R, Xu Y, Gu Z, Zhu B, Hu J. Orally-administered nanomedicine systems targeting colon inflammation for the treatment of inflammatory bowel disease: latest advances. J Mater Chem B 2023; 12:13-38. [PMID: 38018424 DOI: 10.1039/d3tb02302h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic and idiopathic condition that results in inflammation of the gastrointestinal tract, leading to conditions such as ulcerative colitis and Crohn's disease. Commonly used treatments for IBD include anti-inflammatory drugs, immunosuppressants, and antibiotics. Fecal microbiota transplantation is also being explored as a potential treatment method; however, these drugs may lead to systemic side effects. Oral administration is preferred for IBD treatment, but accurately locating the inflamed area in the colon is challenging due to multiple physiological barriers. Nanoparticle drug delivery systems possess unique physicochemical properties that enable precise delivery to the target site for IBD treatment, exploiting the increased permeability and retention effect of inflamed intestines. The first part of this review comprehensively introduces the pathophysiological environment of IBD, covering the gastrointestinal pH, various enzymes in the pathway, transport time, intestinal mucus, intestinal epithelium, intestinal immune cells, and intestinal microbiota. The second part focuses on the latest advances in the mechanism and strategies of targeted delivery using oral nanoparticle drug delivery systems for colitis-related fields. Finally, we present challenges and potential directions for future IBD treatment with the assistance of nanotechnology.
Collapse
Affiliation(s)
- Shumeng Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
| | - Runan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Zelin Gu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
| | - Beiwei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Jiangning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
13
|
Conesa MPB, Blixt FW, Peesh P, Khan R, Korf J, Lee J, Jagadeesan G, Andersohn A, Das TK, Tan C, Di Gesu C, Colpo GD, Moruno-Manchón JF, McCullough LD, Bryan R, Ganesh BP. Stabilizing histamine release in gut mast cells mitigates peripheral and central inflammation after stroke. J Neuroinflammation 2023; 20:230. [PMID: 37805585 PMCID: PMC10560441 DOI: 10.1186/s12974-023-02887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/31/2023] [Indexed: 10/09/2023] Open
Abstract
Stroke is the most common cause of long-term disability and places a high economic burden on the global healthcare system. Functional outcomes from stroke are largely determined by the extent of ischemic injury, however, there is growing recognition that systemic inflammatory responses also contribute to outcomes. Mast cells (MCs) rapidly respond to injury and release histamine (HA), a pro-inflammatory neurotransmitter that enhances inflammation. The gut serves as a major reservoir of HA. We hypothesized that cromolyn, a mast cell stabilizer that prevents the release of inflammatory mediators, would decrease peripheral and central inflammation, reduce MC trafficking to the brain, and improve stroke outcomes. We used the transient middle cerebral artery occlusion (MCAO) model of ischemic stroke in aged (18 mo) male mice to investigate the role of MC in neuroinflammation post-stroke. After MCAO we treated mice with 25 mg/kg body weight of cromolyn (MC stabilizer) by oral gavage. Cromolyn was administered at 3 h, 10 h, 24 h and every 24 h for 3 days post-stroke. Three control groups were used. One group underwent a sham surgery and was treated with cromolyn, one received sham surgery with PBS vehicle and the third underwent MCAO with PBS vehicle. Mice were euthanized at 24 h and 3 days post-stroke. Cromolyn administration significantly reduced MC numbers in the brain at both 24 h and 3 days post-stroke. Infarct volume was not significantly different between groups, however improved functional outcomes were seen at 3 days post-stroke in mice that received cromolyn. Treatment with cromolyn reduced plasma histamine and IL-6 levels in both the 24-h and 3-day cohorts. Gut MCs numbers were significantly reduced after cromolyn treatment at 24 h and 3 days after stroke. To determine if MC trafficking from the gut to the brain occurred after injury, GFP+MCs were adoptively transferred to c-kit-/- MC knock-out animals prior to MCAO. 24 h after stroke, elevated MC recruitment was seen in the ischemic brain. Preventing MC histamine release by cromolyn improved gut barrier integrity and an improvement in stroke-induced dysbiosis was seen with treatment. Our results show that preventing MC histamine release possesses prevents post-stroke neuroinflammation and improves neurological and functional outcomes.
Collapse
Affiliation(s)
- Maria P Blasco Conesa
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Frank W Blixt
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Pedram Peesh
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Romeesa Khan
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Janelle Korf
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Juneyoung Lee
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Gayathri Jagadeesan
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Alexander Andersohn
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Tushar K Das
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Chunfeng Tan
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Claudia Di Gesu
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Gabriela Delevati Colpo
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | | | - Louise D McCullough
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Robert Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| | - Bhanu P Ganesh
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Ma Y, Fei Y, Ding S, Jiang H, Fang J, Liu G. Trace metal elements: a bridge between host and intestinal microorganisms. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1976-1993. [PMID: 37528296 DOI: 10.1007/s11427-022-2359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/23/2023] [Indexed: 08/03/2023]
Abstract
Trace metal elements, such as iron, copper, manganese, and zinc, are essential nutrients for biological processes. Although their intake demand is low, they play a crucial role in cell homeostasis as the cofactors of various enzymes. Symbiotic intestinal microorganisms compete with their host for the use of trace metal elements. Moreover, the metabolic processes of trace metal elements in the host and microorganisms affect the organism's health. Supplementation or the lack of trace metal elements in the host can change the intestinal microbial community structure and function. Functional changes in symbiotic microorganisms can affect the host's metabolism of trace metal elements. In this review, we discuss the absorption and transport processes of trace metal elements in the host and symbiotic microorganisms and the effects of dynamic changes in the levels of trace metal elements on the intestinal microbial community structure. We also highlight the participation of trace metal elements as enzyme cofactors in the host immune process. Our findings indicate that the host uses metal nutrition immunity or metal poisoning to resist pathogens and improve immunity.
Collapse
Affiliation(s)
- Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Yanquan Fei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
15
|
Brown HA, DeVeaux AL, Juliano BR, Photenhauer AL, Boulinguiez M, Bornschein RE, Wawrzak Z, Ruotolo BT, Terrapon N, Koropatkin NM. BoGH13A Sus from Bacteroides ovatus represents a novel α-amylase used for Bacteroides starch breakdown in the human gut. Cell Mol Life Sci 2023; 80:232. [PMID: 37500984 PMCID: PMC10540511 DOI: 10.1007/s00018-023-04812-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/29/2023]
Abstract
Members of the Bacteroidetes phylum in the human colon deploy an extensive number of proteins to capture and degrade polysaccharides. Operons devoted to glycan breakdown and uptake are termed polysaccharide utilization loci or PUL. The starch utilization system (Sus) is one such PUL and was initially described in Bacteroides thetaiotaomicron (Bt). BtSus is highly conserved across many species, except for its extracellular α-amylase, SusG. In this work, we show that the Bacteroides ovatus (Bo) extracellular α-amylase, BoGH13ASus, is distinguished from SusG in its evolutionary origin and its domain architecture and by being the most prevalent form in Bacteroidetes Sus. BoGH13ASus is the founding member of both a novel subfamily in the glycoside hydrolase family 13, GH13_47, and a novel carbohydrate-binding module, CBM98. The BoGH13ASus CBM98-CBM48-GH13_47 architecture differs from the CBM58 embedded within the GH13_36 of SusG. These domains adopt a distinct spatial orientation and invoke a different association with the outer membrane. The BoCBM98 binding site is required for Bo growth on polysaccharides and optimal enzymatic degradation thereof. Finally, the BoGH13ASus structure features bound Ca2+ and Mn2+ ions, the latter of which is novel for an α-amylase. Little is known about the impact of Mn2+ on gut bacterial function, much less on polysaccharide consumption, but Mn2+ addition to Bt expressing BoGH13ASus specifically enhances growth on starch. Further understanding of bacterial starch degradation signatures will enable more tailored prebiotic and pharmaceutical approaches that increase starch flux to the gut.
Collapse
Affiliation(s)
- Haley A Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Anna L DeVeaux
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amanda L Photenhauer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Matthieu Boulinguiez
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS AMU; USC1408 INRAE, 13288, Marseille, France
| | | | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Lemont, IL, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS AMU; USC1408 INRAE, 13288, Marseille, France
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
16
|
Peng M, Xu Y, Dou B, Yang F, He Q, Liu Z, Gao T, Liu W, Yang K, Guo R, Li C, Tian Y, Zhou D, Bei W, Yuan F. The adcA and lmb Genes Play an Important Role in Drug Resistance and Full Virulence of Streptococcus suis. Microbiol Spectr 2023; 11:e0433722. [PMID: 37212676 PMCID: PMC10269787 DOI: 10.1128/spectrum.04337-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/25/2023] [Indexed: 05/23/2023] Open
Abstract
Streptococcus suis is an recognized zoonotic pathogen of swine and severely threatens human health. Zinc is the second most abundant transition metal in biological systems. Here, we investigated the contribution of zinc to the drug resistance and pathogenesis of S. suis. We knocked out the genes of AdcACB and Lmb, two Zn-binding lipoproteins. Compared to the wild-type strain, we found that the survival rate of this double-mutant strain (ΔadcAΔlmb) was reduced in Zinc-limited medium, but not in Zinc-supplemented medium. Additionally, phenotypic experiments showed that the ΔadcAΔlmb strain displayed impaired adhesion to and invasion of cells, biofilm formation, and tolerance of cell envelope-targeting antibiotics. In a murine infection model, deletion of the adcA and lmb genes in S. suis resulted in a significant decrease in strain virulence, including survival rate, tissue bacterial load, inflammatory cytokine levels, and histopathological damage. These findings show that AdcA and Lmb are important for biofilm formation, drug resistance, and virulence in S. suis. IMPORTANCE Transition metals are important micronutrients for bacterial growth. Zn is necessary for the catalytic activity and structural integrity of various metalloproteins involved in bacterial pathogenic processes. However, how these invaders adapt to host-imposed metal starvation and overcome nutritional immunity remains unknown. Thus, pathogenic bacteria must acquire Zn during infection in order to successfully survive and multiply. The host uses nutritional immunity to limit the uptake of Zn by the invading bacteria. The bacterium uses a set of high-affinity Zn uptake systems to overcome this host metal restriction. Here, we identified two Zn uptake transporters in S. suis, AdcA and Lmb, by bioinformatics analysis and found that an adcA and lmb double-mutant strain could not grow in Zn-deficient medium and was more sensitive to cell envelope-targeting antibiotics. It is worth noting that the Zn uptake system is essential for biofilm formation, drug resistance, and virulence in S. suis. The Zn uptake system is expected to be a target for the development of novel antimicrobial therapies.
Collapse
Affiliation(s)
- Mingzheng Peng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Beibei Dou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Fengming Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Qiyun He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Weicheng Bei
- Hubei Hongshan Laboratory, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- Guangxi Yangxiang Co. Ltd., Guangxi, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
17
|
Caballero-Flores G, Pickard JM, Núñez G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat Rev Microbiol 2023; 21:347-360. [PMID: 36539611 PMCID: PMC10249723 DOI: 10.1038/s41579-022-00833-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
A dense and diverse microbial community inhabits the gut and many epithelial surfaces. Referred to as the microbiota, it co-evolved with the host and is beneficial for many host physiological processes. A major function of these symbiotic microorganisms is protection against pathogen colonization and overgrowth of indigenous pathobionts. Dysbiosis of the normal microbial community increases the risk of pathogen infection and overgrowth of harmful pathobionts. The protective mechanisms conferred by the microbiota are complex and include competitive microbial-microbial interactions and induction of host immune responses. Pathogens, in turn, have evolved multiple strategies to subvert colonization resistance conferred by the microbiota. Understanding the mechanisms by which microbial symbionts limit pathogen colonization should guide the development of new therapeutic approaches to prevent or treat disease.
Collapse
Affiliation(s)
- Gustavo Caballero-Flores
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Joseph M Pickard
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Yi SW, Lee HG, Kim E, Jung YH, Bok EY, Cho A, Do YJ, Hur TY, Oh SI. Raw potato starch diet supplement in weaned pigs could reduce Salmonella Typhimurium infection by altering microbiome composition and improving immune status. Front Vet Sci 2023; 10:1183400. [PMID: 37288274 PMCID: PMC10242040 DOI: 10.3389/fvets.2023.1183400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
Backgorund Salmonella enterica serovar Typhimurium (ST) is one of the causative agents of gastroenteritis in pigs. Pigs fed a diet supplemented with raw potato starch (RPS) have improved gut health by the alteration of the microbiota composition and production of short-chain fatty acids (SCFAs). This study aimed to evaluate the effects of RPS supplementation in reducing infection severity and fecal shedding in ST-infected pigs. Methods The weaned experimental pigs were divided into two groups: CON (n = 6) fed a corn/soybean-based diet and TRT (n = 6) supplemented with 5% RPS. After 21 d, the pigs were inoculated with ST, and their body weight, clinical signs, and fecal shedding of ST were monitored for 14 d. At 14 d post-inoculation (dpi), the jejunum, cecum, ileum, and colon tissues were collected from euthanized pigs, and histopathological lesions and cytokine gene expression were compared. Additionally, blood samples at 2 dpi were analyzed for gene ontology enrichment. Moreover, the gutmicrobiome was analyzed using 16S rRNA metagenomic sequencing, and the SCFA concentration was measured using gas chromatography. Results The average daily weight gain was significantly higher in TRT than in CON during the ST infection period; however, histopathological lesion scores were significantly lower in TRT than in CON. The relative abundance of nine genera of butyrate- and acetate-producing bacteria significantly increased in TRT compared with that of only two acetate-producing bacteria in CON. Among the genes involved in the immune response, IL-18 expression level was significantly lower in the jejunum and colon in TRT than in CON. Furthermore, Reg3γ expression was significantly different in the cecum and colon of both groups. Conclusion The diet supplemented with RPS in weaned pigs could result in predominance of butyrate- and acetate-producing bacteria, reducing the severity of ST infection by improving the immune status.
Collapse
Affiliation(s)
- Seung-Won Yi
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Han Gyu Lee
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Eunju Kim
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Young-Hun Jung
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Eun-Yeong Bok
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Ara Cho
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Yoon Jung Do
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Tai-Young Hur
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sang-Ik Oh
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, Republic of Korea
| |
Collapse
|
19
|
Wu J, McAuliffe O, O'Byrne CP. Manganese uptake mediated by the NRAMP-type transporter MntH is required for acid tolerance in Listeria monocytogenes. Int J Food Microbiol 2023; 399:110238. [PMID: 37148667 DOI: 10.1016/j.ijfoodmicro.2023.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen that is characterized by its ability to withstand mild stresses (i.e. cold, acid, salt) often encountered in food products or food processing environments. In the previous phenotypic and genotypic characterization of a collection of L. monocytogenes strains, we have identified one strain 1381, originally obtained from EURL-lm, as acid sensitive (reduced survival at pH 2.3) and extremely acid intolerant (no growth at pH 4.9, which supports the growth of most strains). In this study, we investigated the cause of acid intolerance in strain 1381 by isolating and sequencing reversion mutants that were capable of growth at low pH (pH 4.8) to a similar extent as another strain (1380) from the same MLST clonal complex (CC2). Whole genome sequencing showed that a truncation in mntH, which encodes a homologue of an NRAMP (Natural Resistance-Associated Macrophage Protein) type Mn2+ transporter, is responsible for the acid intolerance phenotype observed in strain 1381. However, the mntH truncation alone was not sufficient to explain the acid sensitivity of strain 1381 at lethal pH values as strain 1381R1 (a mntH+ revertant) exhibited similar acid survival to its parental strain at pH 2.3. Further growth experiments demonstrated that Mn2+ (but not Fe2+, Zn2+, Cu2+, Ca2+, or Mg2+) supplementation fully rescues the growth of strain 1381 under low pH conditions, suggesting that a Mn2+ limitation is the likely cause of growth arrest in the mntH- background. Consistent with the important role of Mn2+ in the acid stress response was the finding that mntH and mntB (both encoding Mn2+ transporters) had higher transcription levels following exposure to mild acid stress (pH 5). Taken together, these results provide evidence that MntH-mediated Mn2+ uptake is essential for the growth of L. monocytogenes under low pH conditions. Moreover, since strain 1381 was recommended for conducting food challenge studies by the European Union Reference Laboratory, the use of this strain in evaluating the growth of L. monocytogenes in low pH environments where Mn2+ is scarce should be reconsidered. Furthermore, since it is unknown when strain 1381 acquired the mntH frameshift mutation, the ability of the strains used for challenge studies to grow under food-related stresses needs to be routinely validated.
Collapse
Affiliation(s)
- Jialun Wu
- Bacterial Stress Response Group, Microbiology, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | | | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, Galway H91 TK33, Ireland..
| |
Collapse
|
20
|
Ha N, Lee EJ. Manganese Transporter Proteins in Salmonella enterica serovar Typhimurium. J Microbiol 2023; 61:289-296. [PMID: 36862278 DOI: 10.1007/s12275-023-00027-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023]
Abstract
The metal cofactors are essential for the function of many enzymes. The host restricts the metal acquisition of pathogens for their immunity and the pathogens have evolved many ways to obtain metal ions for their survival and growth. Salmonella enterica serovar Typhimurium also needs several metal cofactors for its survival, and manganese has been found to contribute to Salmonella pathogenesis. Manganese helps Salmonella withstand oxidative and nitrosative stresses. In addition, manganese affects glycolysis and the reductive TCA, which leads to the inhibition of energetic and biosynthetic metabolism. Therefore, manganese homeostasis is crucial for full virulence of Salmonella. Here, we summarize the current information about three importers and two exporters of manganese that have been identified in Salmonella. MntH, SitABCD, and ZupT have been shown to participate in manganese uptake. mntH and sitABCD are upregulated by low manganese concentration, oxidative stress, and host NRAMP1 level. mntH also contains a Mn2+-dependent riboswitch in its 5' UTR. Regulation of zupT expression requires further investigation. MntP and YiiP have been identified as manganese efflux proteins. mntP is transcriptionally activated by MntR at high manganese levels and repressed its activity by MntS at low manganese levels. Regulation of yiiP requires further analysis, but it has been shown that yiiP expression is not dependent on MntS. Besides these five transporters, there might be additional transporters that need to be identified.
Collapse
Affiliation(s)
- Nakyeong Ha
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Eun-Jin Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
21
|
Čapek J, Večerek B. Why is manganese so valuable to bacterial pathogens? Front Cell Infect Microbiol 2023; 13:943390. [PMID: 36816586 PMCID: PMC9936198 DOI: 10.3389/fcimb.2023.943390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Apart from oxygenic photosynthesis, the extent of manganese utilization in bacteria varies from species to species and also appears to depend on external conditions. This observation is in striking contrast to iron, which is similar to manganese but essential for the vast majority of bacteria. To adequately explain the role of manganese in pathogens, we first present in this review that the accumulation of molecular oxygen in the Earth's atmosphere was a key event that linked manganese utilization to iron utilization and put pressure on the use of manganese in general. We devote a large part of our contribution to explanation of how molecular oxygen interferes with iron so that it enhances oxidative stress in cells, and how bacteria have learned to control the concentration of free iron in the cytosol. The functioning of iron in the presence of molecular oxygen serves as a springboard for a fundamental understanding of why manganese is so valued by bacterial pathogens. The bulk of this review addresses how manganese can replace iron in enzymes. Redox-active enzymes must cope with the higher redox potential of manganese compared to iron. Therefore, specific manganese-dependent isoenzymes have evolved that either lower the redox potential of the bound metal or use a stronger oxidant. In contrast, redox-inactive enzymes can exchange the metal directly within the individual active site, so no isoenzymes are required. It appears that in the physiological context, only redox-inactive mononuclear or dinuclear enzymes are capable of replacing iron with manganese within the same active site. In both cases, cytosolic conditions play an important role in the selection of the metal used. In conclusion, we summarize both well-characterized and less-studied mechanisms of the tug-of-war for manganese between host and pathogen.
Collapse
Affiliation(s)
- Jan Čapek
- *Correspondence: Jan Čapek, ; Branislav Večerek,
| | | |
Collapse
|
22
|
Zuo Y, Li C, Yu D, Wang K, Liu Y, Wei Z, Yang Y, Wang Y, Shen X, Zhu L. A Fur-regulated type VI secretion system contributes to oxidative stress resistance and virulence in Yersinia pseudotuberculosis. STRESS BIOLOGY 2023; 3:2. [PMID: 37676351 PMCID: PMC10441874 DOI: 10.1007/s44154-022-00081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/26/2022] [Indexed: 09/08/2023]
Abstract
The type VI secretion system (T6SS) is a widespread protein secretion apparatus deployed by many Gram-negative bacterial species to interact with competitor bacteria, host organisms, and the environment. Yersinia pseudotuberculosis T6SS4 was recently reported to be involved in manganese acquisition; however, the underlying regulatory mechanism still remains unclear. In this study, we discovered that T6SS4 is regulated by ferric uptake regulator (Fur) in response to manganese ions (Mn2+), and this negative regulation of Fur was proceeded by specifically recognizing the promoter region of T6SS4 in Y. pseudotuberculosis. Furthermore, T6SS4 is induced by low Mn2+ and oxidative stress conditions via Fur, acting as a Mn2+-responsive transcriptional regulator to maintain intracellular manganese homeostasis, which plays important role in the transport of Mn2+ for survival under oxidative stress. Our results provide evidence that T6SS4 can enhance the oxidative stress resistance and virulence for Y. pseudotuberculosis. This study provides new insights into the regulation of T6SS4 via the Mn2+-dependent transcriptional regulator Fur, and expands our knowledge of the regulatory mechanisms and functions of T6SS from Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Yuxin Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Danyang Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kenan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
23
|
Yang X, Stein KR, Hang HC. Anti-infective bile acids bind and inactivate a Salmonella virulence regulator. Nat Chem Biol 2023; 19:91-100. [PMID: 36175659 PMCID: PMC9805502 DOI: 10.1038/s41589-022-01122-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 07/26/2022] [Indexed: 01/03/2023]
Abstract
Bile acids are prominent host and microbiota metabolites that modulate host immunity and microbial pathogenesis. However, the mechanisms by which bile acids suppress microbial virulence are not clear. To identify the direct protein targets of bile acids in bacterial pathogens, we performed activity-guided chemical proteomic studies. In Salmonella enterica serovar Typhimurium, chenodeoxycholic acid (CDCA) most effectively inhibited the expression of virulence genes and invasion of epithelial cells and interacted with many proteins. Notably, we discovered that CDCA can directly bind and inhibit the function of HilD, an important transcriptional regulator of S. Typhimurium virulence and pathogenesis. Our characterization of bile acid-resistant HilD mutants in vitro and in S. Typhimurium infection models suggests that HilD is one of the key protein targets of anti-infective bile acids. This study highlights the utility of chemical proteomics to identify the direct protein targets of microbiota metabolites for mechanistic studies in bacterial pathogens.
Collapse
Affiliation(s)
- Xinglin Yang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Kathryn R Stein
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
24
|
Chowdhury AR, Mukherjee D, Singh AK, Chakravortty D. Loss of outer membrane protein A (OmpA) impairs the survival of Salmonella Typhimurium by inducing membrane damage in the presence of ceftazidime and meropenem. J Antimicrob Chemother 2022; 77:3376-3389. [PMID: 36177811 DOI: 10.1093/jac/dkac327] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Salmonella enterica serovar Typhimurium is one of the significant non-typhoidal Salmonella serovars that causes gastroenteritis. The rapid development of antimicrobial resistance necessitates studying new antimicrobials and their therapeutic targets in this pathogen. Our study aimed to investigate the role of four prominent outer membrane porins of S. Typhimurium, namely OmpA, OmpC, OmpD and OmpF, in developing resistance against ceftazidime and meropenem. METHODS The antibiotic-mediated inhibition of bacterial growth was determined by measuring the absorbance and the resazurin assay. DiBAC4 (Bis-(1,3-Dibutylbarbituric Acid)Trimethine Oxonol), 2,7-dichlorodihydrofluoroscein diacetate (DCFDA) and propidium iodide were used to determine the outer membrane depolarization, reactive oxygen species (ROS) generation and subsequent killing of Salmonella. The expression of oxidative stress-response and efflux pump genes was quantified by quantitative RT-qPCR. HPLC was done to determine the amount of antibiotics that entered the bacteria. The damage to the bacterial outer membrane was studied by confocal and atomic force microscopy. The in vivo efficacy of ceftazidime and meropenem were tested in the C57BL/6 mouse model. RESULTS Deleting ompA reduced the survival of Salmonella in the presence of ceftazidime and meropenem. Massive outer membrane depolarization and reduced expression of oxidative stress-response genes in S. Typhimurium ΔompA hampered its growth in the presence of antibiotics. The enhanced uptake of antibiotics and decreased expression of efflux pump genes in S. Typhimurium ΔompA resulted in damage to the bacterial outer membrane. The clearance of the S. Typhimurium ΔompA from C57BL/6 mice with ceftazidime treatment proved the role of OmpA in rendering protection against β-lactam antibiotics. CONCLUSIONS OmpA protects S. Typhimurium from two broad-spectrum β-lactam antibiotics, ceftazidime and meropenem, by maintaining the stability of the outer membrane.
Collapse
Affiliation(s)
- Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Ashish Kumar Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India.,School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
25
|
Peters SL, Morowitz MJ, Hettich RL. Antibiotic resistance and host immune system-induced metal bactericidal control are key factors for microbial persistence in the developing human preterm infant gut microbiome. Front Microbiol 2022; 13:958638. [PMID: 36478853 PMCID: PMC9720133 DOI: 10.3389/fmicb.2022.958638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2024] Open
Abstract
The human gut microbiome, which develops and stabilizes during the early stages of infant life, plays an essential role in host health through the production of metabolic resources and the stimulation and training of the immune system. To study colonization and community functional dynamics of the microbiota based on responses to host immune processes during the normal and dysbiotic establishment of the gut, metaproteomics was conducted on 91 fecal samples collected over the first 90 days of life from 17 hospitalized premature infants. Microbial responses to antibiotic administration and host-imposed metal bactericidal control correlated with community assembly and resiliency of microbes in the developing preterm gut. Specifically, proteins related to antibiotic resistance and metal homeostasis mechanisms were predominant in persisting members in the infant gut environment over the first several weeks of life. Overall, this metaproteomics study provides a unique approach to examine the temporal expansion and resilience of microbial colonization, as it allows simultaneous examination of both host and microbial metabolic activities. Understanding the interplay between host and microbes may elucidate the microbiome's potential immunomodulatory roles relevant to necrotizing enterocolitis and other dysbiotic conditions in preterm infants.
Collapse
Affiliation(s)
- Samantha L. Peters
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN, United States
| | - Michael J. Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Robert L. Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
26
|
Pillai N, Ayoola MB, Nanduri B, Rothrock MJ, Ramkumar M. An ensemble learning approach to identify pastured poultry farm practice variables and soil constituents that promote Salmonella prevalence. Heliyon 2022; 8:e11331. [DOI: 10.1016/j.heliyon.2022.e11331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
|
27
|
Lawrence ALE, Berger RP, Hill DR, Huang S, Yadagiri VK, Bons B, Fields C, Sule GJ, Knight JS, Wobus CE, Spence JR, Young VB, O’Riordan MX, Abuaita BH. Human neutrophil IL1β directs intestinal epithelial cell extrusion during Salmonella infection. PLoS Pathog 2022; 18:e1010855. [PMID: 36191054 PMCID: PMC9578578 DOI: 10.1371/journal.ppat.1010855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/18/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Infection of the human gut by Salmonella enterica Typhimurium (STM) results in a localized inflammatory disease that is not mimicked in murine infections. To determine mechanisms by which neutrophils, as early responders to bacterial challenge, direct inflammatory programming of human intestinal epithelium, we established a multi-component human intestinal organoid (HIO) model of STM infection. HIOs were micro-injected with STM and seeded with primary human polymorphonuclear leukocytes (PMN-HIOs). PMNs did not significantly alter luminal colonization of Salmonella, but their presence reduced intraepithelial bacterial burden. Adding PMNs to infected HIOs resulted in substantial accumulation of shed TUNEL+ epithelial cells that was driven by PMN Caspase-1 activity. Inhibition of Caspases-1, -3 or -4 abrogated epithelial cell death and extrusion in the infected PMN-HIOs but only Caspase-1 inhibition significantly increased bacterial burden in the PMN-HIO epithelium. Thus, PMNs promote cell death in human intestinal epithelial cells through multiple caspases as a protective response to infection. IL-1β was necessary and sufficient to induce cell shedding in the infected HIOs. These data support a critical innate immune function for human neutrophils in amplifying cell death and extrusion of human epithelial cells from the Salmonella-infected intestinal monolayer. Neutrophils are early responders to Salmonella intestinal infection, but how they influence infection progression and outcome is unknown. Here we use a co-culture model of human intestinal organoids and human primary neutrophils to study the contribution of human neutrophils to Salmonella infection of the intestinal epithelium. We found that neutrophils markedly enhanced epithelial defenses, including enhancing cell extrusion to reduce intraepithelial burden of Salmonella and close association with the epithelium. These findings reveal an early role for neutrophils in the gut in shaping the gut environment to control epithelial infection.
Collapse
Affiliation(s)
- Anna-Lisa E. Lawrence
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ryan P. Berger
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - David R. Hill
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sha Huang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Veda K. Yadagiri
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Brooke Bons
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Courtney Fields
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gautam J. Sule
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jason S. Knight
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jason R. Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Vincent B. Young
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Mary X. O’Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (MXO); (BHA)
| | - Basel H. Abuaita
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (MXO); (BHA)
| |
Collapse
|
28
|
Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. FRONTIERS IN ORAL HEALTH 2022; 3:958480. [PMID: 35979535 PMCID: PMC9376388 DOI: 10.3389/froh.2022.958480] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates the importance and vulnerability of the mucosal epithelial barrier against infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial barrier, providing immunity against microbes. In primitive life forms, AMPs protect the integument and the gut against pathogenic microbes. AMPs have also evolved in humans and other mammals to enhance newer, complex innate and adaptive immunity to favor the persistence of commensals over pathogenic microbes. The canonical AMPs are helictical peptides that form lethal pores in microbial membranes. In higher life forms, this type of AMP is exemplified by the defensin family of AMPs. In epithelial tissues, defensins, and calprotectin (complex of S100A8 and S100A9) have evolved to work cooperatively. The mechanisms of action differ. Unlike defensins, calprotectin sequesters essential trace metals from microbes, which inhibits growth. This review focuses on defensins and calprotectin as AMPs that appear to work cooperatively to fortify the epithelial barrier against infection. The antimicrobial spectrum is broad with overlap between the two AMPs. In mice, experimental models highlight the contribution of both AMPs to candidiasis as a fungal infection and periodontitis resulting from bacterial dysbiosis. These AMPs appear to contribute to innate immunity in humans, protecting the commensal microflora and restricting the emergence of pathobionts and pathogens. A striking example in human innate immunity is that elevated serum calprotectin protects against neonatal sepsis. Calprotectin is also remarkable because of functional differences when localized in epithelial and neutrophil cytoplasm or released into the extracellular environment. In the cytoplasm, calprotectin appears to protect against invasive pathogens. Extracellularly, calprotectin can engage pathogen-recognition receptors to activate innate immune and proinflammatory mechanisms. In inflamed epithelial and other tissue spaces, calprotectin, DNA, and histones are released from degranulated neutrophils to form insoluble antimicrobial barriers termed neutrophil extracellular traps. Hence, calprotectin and other AMPs use several strategies to provide microbial control and stimulate innate immunity.
Collapse
Affiliation(s)
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
29
|
Seo GY, Takahashi D, Wang Q, Mikulski Z, Chen A, Chou TF, Marcovecchio P, McArdle S, Sethi A, Shui JW, Takahashi M, Surh CD, Cheroutre H, Kronenberg M. Epithelial HVEM maintains intraepithelial T cell survival and contributes to host protection. Sci Immunol 2022; 7:eabm6931. [PMID: 35905286 PMCID: PMC9422995 DOI: 10.1126/sciimmunol.abm6931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intraepithelial T cells (IETs) are in close contact with intestinal epithelial cells and the underlying basement membrane, and they detect invasive pathogens. How intestinal epithelial cells and basement membrane influence IET survival and function, at steady state or after infection, is unclear. The herpes virus entry mediator (HVEM), a member of the TNF receptor superfamily, is constitutively expressed by intestinal epithelial cells and is important for protection from pathogenic bacteria. Here, we showed that at steady-state LIGHT, an HVEM ligand, binding to epithelial HVEM promoted the survival of small intestine IETs. RNA-seq and addition of HVEM ligands to epithelial organoids indicated that HVEM increased epithelial synthesis of basement membrane proteins, including collagen IV, which bound to β1 integrins expressed by IETs. Therefore, we proposed that IET survival depended on β1 integrin binding to collagen IV and showed that β1 integrin-collagen IV interactions supported IET survival in vitro. Moreover, the absence of β1 integrin expression by T lymphocytes decreased TCR αβ+ IETs in vivo. Intravital microscopy showed that the patrolling movement of IETs was reduced without epithelial HVEM. As likely consequences of decreased number and movement, protective responses to Salmonella enterica were reduced in mice lacking either epithelial HVEM, HVEM ligands, or β1 integrins. Therefore, IETs, at steady state and after infection, depended on HVEM expressed by epithelial cells for the synthesis of collagen IV by epithelial cells. Collagen IV engaged β1 integrins on IETs that were important for their maintenance and for their protective function in mucosal immunity.
Collapse
Affiliation(s)
- Goo-Young Seo
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Qingyang Wang
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Angeline Chen
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | - Sara McArdle
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ashu Sethi
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jr-Wen Shui
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Charles D Surh
- La Jolla Institute for Immunology, La Jolla, CA, USA.,Institute for Basic Science (IBS), Academy of Immunology and Microbiology, Pohang, South Korea
| | | | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA, USA.,Division of Biology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Ammendola S, Secli V, Pacello F, Mastropasqua MC, Romão MA, Gomes CM, Battistoni A. Zinc-binding metallophores protect Pseudomonas aeruginosa from calprotectin-mediated metal starvation. FEMS Microbiol Lett 2022; 369:6650350. [PMID: 35883222 DOI: 10.1093/femsle/fnac071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 07/22/2022] [Indexed: 11/12/2022] Open
Abstract
Pseudomonas aeruginosa is known to exhibit considerable resistance to the antimicrobial activity of the metal-sequestering protein Calprotectin (CP). In this study we demonstrate that, although CP induces zinc deficiency in P. aeruginosa, a strain unable to import zinc through the two most important metal acquisition systems, namely ZnuABC and ZrmABCD, maintains significant growth capacity in the presence of high concentrations of CP. Furthermore, we have shown that nicotianamine, a molecule structurally similar to the metallophore pseudopaline, can favor the acquisition of the metal even in the presence of CP. To gain insights into the mechanisms through which metallophores can promote zinc acquisition, we analyzed the effect of nicotianamine on the activity of the metallo-β-lactamase VIM-1. Our data suggest that metallophores released by bacteria in response to zinc deficiency can extract the protein-bound metal. The ability to interfere with the binding of metals to proteins, as well as favoring the acquisition of zinc, may contribute to increasing the resistance of P. aeruginosa to the antimicrobial action of CP.
Collapse
Affiliation(s)
- Serena Ammendola
- Department of Biology, Università of Rome ''Tor Vergata'', Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Valerio Secli
- Department of Biology, Università of Rome ''Tor Vergata'', Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Francesca Pacello
- Department of Biology, Università of Rome ''Tor Vergata'', Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Maria Chiara Mastropasqua
- Department of Biology, Università of Rome ''Tor Vergata'', Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Mariana A Romão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andrea Battistoni
- Department of Biology, Università of Rome ''Tor Vergata'', Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
31
|
Uppalapati SR, Vazquez-Torres A. Manganese Utilization in Salmonella Pathogenesis: Beyond the Canonical Antioxidant Response. Front Cell Dev Biol 2022; 10:924925. [PMID: 35903545 PMCID: PMC9315381 DOI: 10.3389/fcell.2022.924925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
The metal ion manganese (Mn2+) is equally coveted by hosts and bacterial pathogens. The host restricts Mn2+ in the gastrointestinal tract and Salmonella-containing vacuoles, as part of a process generally known as nutritional immunity. Salmonella enterica serovar Typhimurium counteract Mn2+ limitation using a plethora of metal importers, whose expression is under elaborate transcriptional and posttranscriptional control. Mn2+ serves as cofactor for a variety of enzymes involved in antioxidant defense or central metabolism. Because of its thermodynamic stability and low reactivity, bacterial pathogens may favor Mn2+-cofactored metalloenzymes during periods of oxidative stress. This divalent metal catalyzes metabolic flow through lower glycolysis, reductive tricarboxylic acid and the pentose phosphate pathway, thereby providing energetic, redox and biosynthetic outputs associated with the resistance of Salmonella to reactive oxygen species generated in the respiratory burst of professional phagocytic cells. Combined, the oxyradical-detoxifying properties of Mn2+ together with the ability of this divalent metal cation to support central metabolism help Salmonella colonize the mammalian gut and establish systemic infections.
Collapse
Affiliation(s)
- Siva R. Uppalapati
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,*Correspondence: Siva R. Uppalapati, ; Andres Vazquez-Torres,
| | - Andres Vazquez-Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,Veterans Affairs Eastern Colorado Health Care System, Denver, CO, United States,*Correspondence: Siva R. Uppalapati, ; Andres Vazquez-Torres,
| |
Collapse
|
32
|
Branch AH, Stoudenmire JL, Seib KL, Cornelissen CN. Acclimation to Nutritional Immunity and Metal Intoxication Requires Zinc, Manganese, and Copper Homeostasis in the Pathogenic Neisseriae. Front Cell Infect Microbiol 2022; 12:909888. [PMID: 35846739 PMCID: PMC9280163 DOI: 10.3389/fcimb.2022.909888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are human-specific pathogens in the Neisseriaceae family that can cause devastating diseases. Although both species inhabit mucosal surfaces, they cause dramatically different diseases. Despite this, they have evolved similar mechanisms to survive and thrive in a metal-restricted host. The human host restricts, or overloads, the bacterial metal nutrient supply within host cell niches to limit pathogenesis and disease progression. Thus, the pathogenic Neisseria require appropriate metal homeostasis mechanisms to acclimate to such a hostile and ever-changing host environment. This review discusses the mechanisms by which the host allocates and alters zinc, manganese, and copper levels and the ability of the pathogenic Neisseria to sense and respond to such alterations. This review will also discuss integrated metal homeostasis in N. gonorrhoeae and the significance of investigating metal interplay.
Collapse
Affiliation(s)
- Alexis Hope Branch
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Julie L. Stoudenmire
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Cynthia Nau Cornelissen
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
33
|
Trachsel JM, Bearson BL, Kerr BJ, Shippy DC, Byrne KA, Loving CL, Bearson SMD. Short Chain Fatty Acids and Bacterial Taxa Associated with Reduced Salmonella enterica serovar I 4,[5],12:i:- Shedding in Swine Fed a Diet Supplemented with Resistant Potato Starch. Microbiol Spectr 2022; 10:e0220221. [PMID: 35532355 PMCID: PMC9241843 DOI: 10.1128/spectrum.02202-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/17/2022] [Indexed: 12/03/2022] Open
Abstract
Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen of concern because many isolates are multidrug-resistant (resistant to ≥3 antimicrobial classes) and metal tolerant. In this study, three in-feed additives were individually tested for their ability to reduce Salmonella I 4,[5],12:i:- shedding in swine: resistant potato starch (RPS), high amylose corn starch, and a fatty acid blend, compared with a standard control diet over 21 days. Only RPS-fed pigs exhibited a reduction in Salmonella fecal shedding, different bacterial community compositions, and different cecal short chain fatty acid (SCFA) profiles relative to control animals. Within the RPS treatment group, pigs shedding the least Salmonella tended to have greater cecal concentrations of butyrate, valerate, caproate, and succinate. Additionally, among RPS-fed pigs, several bacterial taxa (Prevotella_7, Olsenella, and Bifidobacterium, and others) exhibited negative relationships between their abundances of and the amount of Salmonella in the feces of their hosts. Many of these same taxa also had significant positive associations with cecal concentrations of butyrate, valerate, caproate, even though they are not known to produce these SCFAs. Together, these data suggest the RPS-associated reduction in Salmonella shedding may be dependent on the establishment of bacterial cross feeding interactions that result in the production of certain SCFAs. However, directly feeding a fatty acid mix did not replicate the effect. RPS supplementation could be an effective means to reduce multidrug-resistant (MDR) S. enterica serovar I 4,[5],12:i:- in swine, provided appropriate bacterial communities are present in the gut. IMPORTANCE Prebiotics, such as resistant potato starch (RPS), are types of food that help to support beneficial bacteria and their activities in the intestines. Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen that commonly resides in the intestines of pigs without disease, but can make humans sick if unintentionally consumed. Here we show that in Salmonella inoculated pigs, feeding them a diet containing RPS altered the colonization and activity of certain beneficial bacteria in a way that reduced the amount of Salmonella in their feces. Additionally, within those fed RPS, swine with higher abundance of these types of beneficial bacteria had less Salmonella I 4,[5],12:i:- in their feces. This work illustrates likely synergy between the prebiotic RPS and the presence of certain gut microorganisms to reduce the amount of Salmonella in the feces of pigs and therefore reduce the risk that humans will become ill with MDR Salmonella serovar I 4,[5],12:i:-.
Collapse
Affiliation(s)
- Julian M. Trachsel
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Bradley L. Bearson
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, USDA, ARS, Ames, Iowa, USA
| | - Brian J. Kerr
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, USDA, ARS, Ames, Iowa, USA
| | - Daniel C. Shippy
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Kristen A. Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Shawn M. D. Bearson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| |
Collapse
|
34
|
Genomic Analyses Identify Manganese Homeostasis as a Driver of Group B Streptococcal Vaginal Colonization. mBio 2022; 13:e0098522. [PMID: 35658538 PMCID: PMC9239048 DOI: 10.1128/mbio.00985-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Group B Streptococcus (GBS) is associated with severe infections in utero and in newborn populations, including pneumonia, sepsis, and meningitis. GBS vaginal colonization of the pregnant mother is an important prerequisite for transmission to the newborn and the development of neonatal invasive disease; however, our understanding of the factors required for GBS persistence and ascension in the female reproductive tract (FRT) remains limited. Here, we utilized a GBS mariner transposon (Krmit) mutant library previously developed by our group and identified underrepresented mutations in 535 genes that contribute to survival within the vaginal lumen and colonization of vaginal, cervical, and uterine tissues. From these mutants, we identified 47 genes that were underrepresented in all samples collected, including mtsA, a component of the mtsABC locus, encoding a putative manganese (Mn2+)-dependent ATP-binding cassette transporter. RNA sequencing analysis of GBS recovered from the vaginal tract also revealed a robust increase of mtsA expression during vaginal colonization. We engineered an ΔmtsA mutant strain and found by using inductively coupled plasma mass spectrometry that it exhibited decreased concentrations of intracellular Mn2+, confirming its involvement in Mn2+ acquisition. The ΔmtsA mutant was significantly more susceptible to the metal chelator calprotectin and to oxidative stressors, including both H2O2 and paraquat, than wild-type (WT) GBS. We further observed that the ΔmtsA mutant strain exhibited a significant fitness defect in comparison to WT GBS in vivo by using a murine model of vaginal colonization. Taken together, these data suggest that Mn2+ homeostasis is an important process contributing to GBS survival in the FRT.
Collapse
|
35
|
Aggarwal S, Kumaraswami M. Managing Manganese: The Role of Manganese Homeostasis in Streptococcal Pathogenesis. Front Cell Dev Biol 2022; 10:921920. [PMID: 35800897 PMCID: PMC9253540 DOI: 10.3389/fcell.2022.921920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogenic streptococci require manganese for survival in the host. In response to invading pathogens, the host recruits nutritional immune effectors at infection sites to withhold manganese from the pathogens and control bacterial growth. The manganese scarcity impairs several streptococcal processes including oxidative stress defenses, de novo DNA synthesis, bacterial survival, and virulence. Emerging evidence suggests that pathogens also encounter manganese toxicity during infection and manganese excess impacts streptococcal virulence by manganese mismetallation of non-cognate molecular targets involved in bacterial antioxidant defenses and cell division. To counter host-imposed manganese stress, the streptococcal species employ a sophisticated sensory system that tightly coordinates manganese stress-specific molecular strategies to negate host induced manganese stress and proliferate in the host. Here we review the molecular details of host-streptococcal interactions in the battle for manganese during infection and the significance of streptococcal effectors involved to bacterial pathophysiology.
Collapse
Affiliation(s)
- Shifu Aggarwal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, United States
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, United States
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
36
|
Ray JC, Smirnov A, Maurakis SA, Harrison SA, Ke E, Chazin WJ, Cornelissen CN, Criss AK. Adherence Enables Neisseria gonorrhoeae to Overcome Zinc Limitation Imposed by Nutritional Immunity Proteins. Infect Immun 2022; 90:e0000922. [PMID: 35156850 PMCID: PMC8929345 DOI: 10.1128/iai.00009-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae (Gc) must overcome the limitation of metals such as zinc to colonize mucosal surfaces in its obligate human host. While the zinc-binding nutritional immunity proteins calprotectin (S100A8/A9) and psoriasin (S100A7) are abundant in human cervicovaginal lavage fluid, Gc possesses TonB-dependent transporters TdfH and TdfJ that bind and extract zinc from the human version of these proteins, respectively. Here we investigated the contribution of zinc acquisition to Gc infection of epithelial cells of the female genital tract. We found that TdfH and TdfJ were dispensable for survival of strain FA1090 Gc that was associated with Ect1 human immortalized epithelial cells, when zinc was limited by calprotectin and psoriasin. In contrast, suspension-grown bacteria declined in viability under the same conditions. Exposure to murine calprotectin, which Gc cannot use as a zinc source, similarly reduced survival of suspension-grown Gc, but not Ect1-associated Gc. We ruled out epithelial cells as a contributor to the enhanced growth of cell-associated Gc under zinc limitation. Instead, we found that attachment to glass was sufficient to enhance bacterial growth when zinc was sequestered. We compared the transcriptional profiles of WT Gc adherent to glass coverslips or in suspension, when zinc was sequestered with murine calprotectin or provided in excess, from which we identified open reading frames that were increased by zinc sequestration in adherent Gc. One of these, ZnuA, was necessary but not sufficient for survival of Gc under zinc-limiting conditions. These results show that adherence protects Gc from zinc-dependent growth restriction by host nutritional immunity proteins.
Collapse
Affiliation(s)
| | - Asya Smirnov
- University of Virginia, Charlottesville, Virginia, USA
| | - Stavros A. Maurakis
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | | | - Eugene Ke
- University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
37
|
Lian S, Liu J, Wu Y, Xia P, Zhu G. Bacterial and Viral Co-Infection in the Intestine: Competition Scenario and Their Effect on Host Immunity. Int J Mol Sci 2022; 23:ijms23042311. [PMID: 35216425 PMCID: PMC8877981 DOI: 10.3390/ijms23042311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Bacteria and viruses are both important pathogens causing intestinal infections, and studies on their pathogenic mechanisms tend to focus on one pathogen alone. However, bacterial and viral co-infections occur frequently in clinical settings, and infection by one pathogen can affect the severity of infection by another pathogen, either directly or indirectly. The presence of synergistic or antagonistic effects of two pathogens in co-infection can affect disease progression to varying degrees. The triad of bacterial–viral–gut interactions involves multiple aspects of inflammatory and immune signaling, neuroimmunity, nutritional immunity, and the gut microbiome. In this review, we discussed the different scenarios triggered by different orders of bacterial and viral infections in the gut and summarized the possible mechanisms of synergy or antagonism involved in their co-infection. We also explored the regulatory mechanisms of bacterial–viral co-infection at the host intestinal immune interface from multiple perspectives.
Collapse
Affiliation(s)
- Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiaqi Liu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
38
|
Neutrophil-associated responses to
Vibrio cholerae
infection in a natural host model. Infect Immun 2022; 90:e0046621. [DOI: 10.1128/iai.00466-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae
, the cause of human cholera, is an aquatic bacterium found in association with a variety of animals in the environment, including many teleost fish species.
V. cholerae
infection induces a pro-inflammatory response followed by a non-inflammatory convalescent phase. Neutrophils are integral to this early immune response. However, the relationship between the neutrophil-associated protein calprotectin and
V. cholerae
has not been investigated, nor have the effects of limiting transition metals on
V. cholerae
growth. Zebrafish are useful as a natural
V. cholerae
model as the entire infectious cycle can be recapitulated in the presence of an intact intestinal microbiome and mature immune responses. Here, we demonstrate that zebrafish produce a significant neutrophil, IL-8, and calprotectin response following
V. cholerae
infection. Bacterial growth was completely inhibited by purified calprotectin protein or the chemical chelator TPEN, but growth was recovered by addition of transition metals zinc and manganese. Expression of downstream calprotectin targets also significantly increased in the zebrafish. These findings illuminate the role of host calprotectin in combating
V. cholerae
infection. Inhibition of
V. cholerae
growth through metal limitation may provide new approaches in the development of anti-
V. cholerae
therapeutics. This study also establishes a major role for calprotectin in combating infectious diseases in zebrafish.
Collapse
|
39
|
MntP and YiiP Contribute to Manganese Efflux in Salmonella enterica Serovar Typhimurium under Conditions of Manganese Overload and Nitrosative Stress. Microbiol Spectr 2022; 10:e0131621. [PMID: 35019706 PMCID: PMC8754126 DOI: 10.1128/spectrum.01316-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The divalent transition metal cation manganese is important for protein function, particularly under conditions of iron limitation, nitrosative stress, and oxidative stress, but can mediate substantial toxicity in excess. Salmonella enterica serovar Typhimurium possesses multiple manganese importers, but the pathways for manganese efflux remain poorly defined. The S. Typhimurium ATCC 14028s genome was analyzed for putative manganese export pathways, which identified a previously uncharacterized homologue of the Escherichia coli manganese exporter mntP, stm1834, and two cation diffusion facilitator family transporters, zitB (stm0758) and yiiP (stm4061). Manganese acquisition by S. Typhimurium has been shown to occur in response to nitric oxide, an important chemical mediator of the mammalian innate immune response. However, cellular manganese can rapidly return to prechallenge levels, strongly suggesting that one or more S. Typhimurium exporters may contribute to this process. Here, we report that mntP and yiiP contribute to manganese resistance and export in S. Typhimurium. YiiP, also known as FieF, has previously been associated with zinc and iron transport, although its physiological role remains ambiguous due to a lack of zinc-sensitive phenotypes in yiiP mutant strains of S. Typhimurium and E. coli. We report that S. Typhimurium ΔmntP ΔyiiP mutants are exquisitely sensitive to manganese and show that both YiiP and MntP contribute to manganese efflux following nitric oxide exposure. IMPORTANCE Transition metal cations are required for the function of many proteins but can mediate toxicity when present in excess. Identifying transporters that facilitate metal ion export, the conditions under which they are expressed, and the role they play in bacterial physiology is an evolving area of interest for environmental and pathogenic organisms. Determining the native targets of metal transporters has proved challenging since bioinformatic predictions, in vitro transport data, and mutant phenotypes do not always agree. This work identifies two transporters that mediate manganese efflux from the Gram-negative pathogen Salmonella enterica serovar Typhimurium in response to manganese overload and nitric oxide stress. While homologues of MntP have been characterized previously, this is the first observation of YiiP contributing to manganese export.
Collapse
|
40
|
Metal sequestration by S100 proteins in chemically diverse environments. Trends Microbiol 2022; 30:654-664. [DOI: 10.1016/j.tim.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
|
41
|
Fakhoury JN, Zhang Y, Edmonds KA, Bringas M, Luebke JL, Gonzalez-Gutierrez G, Capdevila DA, Giedroc DP. Functional asymmetry and chemical reactivity of CsoR family persulfide sensors. Nucleic Acids Res 2021; 49:12556-12576. [PMID: 34755876 PMCID: PMC8643695 DOI: 10.1093/nar/gkab1040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
CstR is a persulfide-sensing member of the functionally diverse copper-sensitive operon repressor (CsoR) superfamily. While CstR regulates the bacterial response to hydrogen sulfide (H2S) and more oxidized reactive sulfur species (RSS) in Gram-positive pathogens, other dithiol-containing CsoR proteins respond to host derived Cu(I) toxicity, sometimes in the same bacterial cytoplasm, but without regulatory crosstalk in cells. It is not clear what prevents this crosstalk, nor the extent to which RSS sensors exhibit specificity over other oxidants. Here, we report a sequence similarity network (SSN) analysis of the entire CsoR superfamily, which together with the first crystallographic structure of a CstR and comprehensive mass spectrometry-based kinetic profiling experiments, reveal new insights into the molecular basis of RSS specificity in CstRs. We find that the more N-terminal cysteine is the attacking Cys in CstR and is far more nucleophilic than in a CsoR. Moreover, our CstR crystal structure is markedly asymmetric and chemical reactivity experiments reveal the functional impact of this asymmetry. Substitution of the Asn wedge between the resolving and the attacking thiol with Ala significantly decreases asymmetry in the crystal structure and markedly impacts the distribution of species, despite adopting the same global structure as the parent repressor. Companion NMR, SAXS and molecular dynamics simulations reveal that the structural and functional asymmetry can be traced to fast internal dynamics of the tetramer. Furthermore, this asymmetry is preserved in all CstRs and with all oxidants tested, giving rise to markedly distinct distributions of crosslinked products. Our exploration of the sequence, structural, and kinetic features that determine oxidant-specificity suggest that the product distribution upon RSS exposure is determined by internal flexibility.
Collapse
Affiliation(s)
- Joseph N Fakhoury
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| | - Yifan Zhang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405 USA
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| | - Mauro Bringas
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Justin L Luebke
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| | - Giovanni Gonzalez-Gutierrez
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405 USA
| | - Daiana A Capdevila
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA.,Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405 USA
| |
Collapse
|
42
|
Behnsen J, Zhi H, Aron AT, Subramanian V, Santus W, Lee MH, Gerner RR, Petras D, Liu JZ, Green KD, Price SL, Camacho J, Hillman H, Tjokrosurjo J, Montaldo NP, Hoover EM, Treacy-Abarca S, Gilston BA, Skaar EP, Chazin WJ, Garneau-Tsodikova S, Lawrenz MB, Perry RD, Nuccio SP, Dorrestein PC, Raffatellu M. Siderophore-mediated zinc acquisition enhances enterobacterial colonization of the inflamed gut. Nat Commun 2021; 12:7016. [PMID: 34853318 PMCID: PMC8636617 DOI: 10.1038/s41467-021-27297-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/09/2021] [Indexed: 11/09/2022] Open
Abstract
Zinc is an essential cofactor for bacterial metabolism, and many Enterobacteriaceae express the zinc transporters ZnuABC and ZupT to acquire this metal in the host. However, the probiotic bacterium Escherichia coli Nissle 1917 (or "Nissle") exhibits appreciable growth in zinc-limited media even when these transporters are deleted. Here, we show that Nissle utilizes the siderophore yersiniabactin as a zincophore, enabling Nissle to grow in zinc-limited media, to tolerate calprotectin-mediated zinc sequestration, and to thrive in the inflamed gut. We also show that yersiniabactin's affinity for iron or zinc changes in a pH-dependent manner, with increased relative zinc binding as the pH increases. Thus, our results indicate that siderophore metal affinity can be influenced by the local environment and reveal a mechanism of zinc acquisition available to commensal and pathogenic Enterobacteriaceae.
Collapse
Affiliation(s)
- Judith Behnsen
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, USA
- Department of Microbiology & Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Hui Zhi
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Vivekanandan Subramanian
- University of Kentucky PharmNMR Center, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - William Santus
- Department of Microbiology & Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Michael H Lee
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Romana R Gerner
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniel Petras
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Janet Z Liu
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Sarah L Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Jose Camacho
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hannah Hillman
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joshua Tjokrosurjo
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | - Nicola P Montaldo
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | - Evelyn M Hoover
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | - Sean Treacy-Abarca
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | - Benjamin A Gilston
- Department of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Walter J Chazin
- Department of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Matthew B Lawrenz
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Robert D Perry
- Department of Microbiology and Immunology, University of Kentucky, Lexington, KY, 40536, USA
| | - Sean-Paul Nuccio
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, USA
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA
| | - Manuela Raffatellu
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA, USA.
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA.
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, CA, 92093, USA.
| |
Collapse
|
43
|
Zhang Z, Liu S, Huang J, Cui Y, Liu Y, Zhou Y, Zhu Z. Phloretin is protective in a murine salmonella enterica serovar typhimurium infection model. Microb Pathog 2021; 161:105298. [PMID: 34801645 DOI: 10.1016/j.micpath.2021.105298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 11/28/2022]
Abstract
Salmonella, an important zoonotic pathogen, causes significant morbidity and mortality in both humans and animals. Phloretin mainly isolated from strawberries and apples has the effects of treating inflammation and pathogenic bacteria, but its protective efficacy and mechanism of action against Salmonella spp. are less clear. In this study, we found that phloretin alleviated body weight loss, colon length shortening, and colonic pathological damage caused by S. Typhimurium. Phloretin also decreased S. Typhimurium translocation to the mesenteric lymph nodes (MLN) and spleen. Further mechanism studies showed that phloretin significantly inhibited inflammation and oxidative stress levels in the colonic tissue. Phloretin also prevented S. Typhimurium-mediated impairment in the colon epithelium barrier by the regulation ZO-1 and occludin levels. Interestingly, phloretin did not inhibit S. typhimurium growth in vitro, but reduced the internalization of S. Typhimurium into Caco-2 cells. Taken together, these findings indicated that phloretin may be a new dietary strategy to combat the disease.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, China; Heilongjiang Province Cultivating Collaborative Innovation Center for the Beidahuang Modern Agricultural Industry Technology, Daqing, 163319, China
| | - Siyu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, 163319, China
| | - Jiang Huang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, 163319, China
| | - Yueqi Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, 163319, China
| | - Yu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, China; Heilongjiang Province Cultivating Collaborative Innovation Center for the Beidahuang Modern Agricultural Industry Technology, Daqing, 163319, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, China; Heilongjiang Province Cultivating Collaborative Innovation Center for the Beidahuang Modern Agricultural Industry Technology, Daqing, 163319, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, China; Heilongjiang Province Cultivating Collaborative Innovation Center for the Beidahuang Modern Agricultural Industry Technology, Daqing, 163319, China.
| |
Collapse
|
44
|
Abstract
Iron (Fe) plays important roles in both essential cellular processes and virulence pathways for many bacteria. Consequently, Fe withholding by the human innate immune system is an effective form of defense against bacterial infection. In this Perspective, we review recent studies that have established a foundation for our understanding of the impact of the metal-sequestering host defense protein calprotectin (CP) on bacterial Fe homeostasis. We also discuss two recently uncovered strategies for bacterial adaptation to Fe withholding by CP. Together, these studies provide insight into how Fe sequestration by CP affects bacterial pathogens that include Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. Overall, recent studies suggest that Fe withholding by CP may have implications for bacterial survival and virulence in the host, and further explorations that directly address this possibility present an important area for discovery.
Collapse
Affiliation(s)
- Adunoluwa O. Obisesan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emily M. Zygiel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
45
|
T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese. Proc Natl Acad Sci U S A 2021; 118:2103526118. [PMID: 34625471 DOI: 10.1073/pnas.2103526118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular ionic concentrations are a central factor orchestrating host innate immunity, but no pathogenic mechanism that perturbs host innate immunity by directly targeting metal ions has yet been described. Here, we report a unique virulence strategy of Yersinia pseudotuberculosis (Yptb) involving modulation of the availability of Mn2+, an immunostimulatory metal ion in host cells. We showed that the Yptb type VI secretion system (T6SS) delivered a micropeptide, TssS, into host cells to enhance its virulence. The mutant strain lacking TssS (ΔtssS) showed substantially reduced virulence but induced a significantly stronger host innate immune response, indicating an antagonistic role of this effector in host antimicrobial immunity. Subsequent studies revealed that TssS is a Mn2+-chelating protein and that its Mn2+-chelating ability is essential for the disruption of host innate immunity. Moreover, we showed that Mn2+ enhances the host innate immune response to Yptb infection by activating the stimulator of interferon genes (STING)-mediated immune response. Furthermore, we demonstrated that TssS counteracted the cytoplasmic Mn2+ increase to inhibit the STING-mediated innate immune response by sequestering Mn2+ Finally, TssS-mediated STING inhibition sabotaged bacterial clearance in vivo. These results reveal a previously unrecognized bacterial immune evasion strategy involving modulation of the bioavailability of intracellular metal ions and provide a perspective on the role of the T6SS in pathogenesis.
Collapse
|
46
|
Jukic A, Bakiri L, Wagner EF, Tilg H, Adolph TE. Calprotectin: from biomarker to biological function. Gut 2021; 70:1978-1988. [PMID: 34145045 PMCID: PMC8458070 DOI: 10.1136/gutjnl-2021-324855] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) emerged with Westernisation of dietary habits worldwide. Crohn's disease and ulcerative colitis are chronic debilitating conditions that afflict individuals with substantial morbidity and challenge healthcare systems across the globe. Since identification and characterisation of calprotectin (CP) in the 1980s, faecal CP emerged as significantly validated, non-invasive biomarker that allows evaluation of gut inflammation. Faecal CP discriminates between inflammatory and non-inflammatory diseases of the gut and portraits the disease course of human IBD. Recent studies revealed insights into biological functions of the CP subunits S100A8 and S100A9 during orchestration of an inflammatory response at mucosal surfaces across organ systems. In this review, we summarise longitudinal evidence for the evolution of CP from biomarker to rheostat of mucosal inflammation and suggest an algorithm for the interpretation of faecal CP in daily clinical practice. We propose that mechanistic insights into the biological function of CP in the gut and beyond may facilitate interpretation of current assays and guide patient-tailored medical therapy in IBD, a concept warranting controlled clinical trials.
Collapse
Affiliation(s)
- Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Latifa Bakiri
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
47
|
Bacillus amyloliquefaciens SC06 Induced AKT-FOXO Signaling Pathway-Mediated Autophagy to Alleviate Oxidative Stress in IPEC-J2 Cells. Antioxidants (Basel) 2021; 10:antiox10101545. [PMID: 34679680 PMCID: PMC8533163 DOI: 10.3390/antiox10101545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
Autophagy is a conserved proteolytic mechanism, which degrades and recycles damaged organs and proteins in cells to resist external stress. Probiotics could induce autophagy; however, its underlying molecular mechanisms remain elusive. Our previous study has found that BaSC06 could alleviate oxidative stress by inducing autophagy in rats. This research aimed to verify whether Bacillus amyloliquefaciens SC06 can induce autophagy to alleviate oxidative stress in IPEC-J2 cells, as well as explore its mechanisms. IPEC-J2 cells were first pretreated with 108 CFU/mL BaSC06, and then were induced to oxidative stress by the optimal dose of diquat. The results showed that BaSC06 significantly triggered autophagy, indicated by the up-regulation of LC3 and Beclin1 along with downregulation of p62 in IPEC-J2 cells. Further analysis revealed that BaSC06 inhibited the AKT-FOXO signaling pathway by inhibiting the expression of p-AKT and p-FOXO and inducing the expression of SIRT1, resulting in increasing the transcriptional activity of FOXO3 and gene expression of the ATG5-ATG12 complex to induce autophagy, which alleviated oxidative stress and apoptosis. Taken together, BaSC06 can induce AKT-FOXO-mediated autophagy to alleviate oxidative stress-induced apoptosis and cell damage, thus providing novel theoretical support for probiotics in the prevention and treatment of oxidative damage.
Collapse
|
48
|
Johnstone KF, Wei Y, Bittner-Eddy PD, Vreeman GW, Stone IA, Clayton JB, Reilly CS, Walbon TB, Wright EN, Hoops SL, Boyle WS, Costalonga M, Herzberg MC. Calprotectin (S100A8/A9) Is an Innate Immune Effector in Experimental Periodontitis. Infect Immun 2021; 89:e0012221. [PMID: 34097505 PMCID: PMC8445179 DOI: 10.1128/iai.00122-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 01/26/2023] Open
Abstract
Upregulated in inflammation, calprotectin (complexed S100A8 and S100A9; S100A8/A9) functions as an innate immune effector molecule, promoting inflammation, and also as an antimicrobial protein. We hypothesized that antimicrobial S100A8/A9 would mitigate change to the local microbial community and promote resistance to experimental periodontitis in vivo. To test this hypothesis, S100A9-/- and wild-type (WT; S100A9+/+) C57BL/6 mice were compared using a model of ligature-induced periodontitis. On day 2, WT mice showed fewer infiltrating innate immune cells than S100A9-/- mice; by day 5, the immune cell numbers were similar. At 5 days post ligature placement, oral microbial communities sampled with swabs differed significantly in beta diversity between the mouse genotypes. Ligatures recovered from molar teeth of S100A9-/- and WT mice contained significantly dissimilar microbial genera from each other and the overall oral communities from swabs. Concomitantly, the S100A9-/- mice had significantly greater alveolar bone loss than WT mice around molar teeth in ligated sites. When the oral microflora was ablated by antibiotic pretreatment, differences disappeared between WT and S100A9-/- mice in their immune cell infiltrates and alveolar bone loss. Calprotectin, therefore, suppresses emergence of a dysbiotic, proinflammatory oral microbial community, which reduces innate immune effector activity, including early recruitment of innate immune cells, mitigating subsequent alveolar bone loss and protecting against experimental periodontitis.
Collapse
Affiliation(s)
- Karen F. Johnstone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuping Wei
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter D. Bittner-Eddy
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gerrit W. Vreeman
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ian A. Stone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan B. Clayton
- BioTechnology Institute, Computer Science and Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - Cavan S. Reilly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Travis B. Walbon
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elisa N. Wright
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan L. Hoops
- BioTechnology Institute, Computer Science and Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - William S. Boyle
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Massimo Costalonga
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
49
|
Pajarillo EAB, Lee E, Kang DK. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:750-761. [PMID: 34466679 PMCID: PMC8379138 DOI: 10.1016/j.aninu.2021.03.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022]
Abstract
Metals such as iron, manganese, copper, and zinc are recognized as essential trace elements. These trace metals play critical roles in development, growth, and metabolism, participating in various metabolic processes by acting as cofactors of enzymes or providing structural support to proteins. Deficiency or toxicity of these metals can impact human and animal health, giving rise to a number of metabolic and neurological disorders. Proper breakdown, absorption, and elimination of these trace metals is a tightly regulated process that requires crosstalk between the host and these micronutrients. The gut is a complex system that serves as the interface between these components, but other factors that contribute to this delicate interaction are not well understood. The gut is home to trillions of microorganisms and microbial genes (the gut microbiome) that can regulate the metabolism and transport of micronutrients and contribute to the bioavailability of trace metals through their assimilation from food sources or by competing with the host. Furthermore, deficiency or toxicity of these metals can modulate the gut microenvironment, including microbiota, nutrient availability, stress, and immunity. Thus, understanding the role of the gut microbiota in the metabolism of manganese, iron, copper, and zinc, as well as in heavy metal deficiencies and toxicities, and vice versa, may provide insight into developing improved or alternative therapeutic strategies to address emerging health concerns. This review describes the current understanding of how the gut microbiome and trace metals interact and affect host health, particularly in pigs.
Collapse
Affiliation(s)
- Edward Alain B. Pajarillo
- Department of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee 32307, FL, USA
| | - Eunsook Lee
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
50
|
Tinkov AA, Martins AC, Avila DS, Gritsenko VA, Skalny AV, Santamaria A, Lee E, Bowman AB, Aschner M. Gut Microbiota as a Potential Player in Mn-Induced Neurotoxicity. Biomolecules 2021; 11:1292. [PMID: 34572505 PMCID: PMC8469589 DOI: 10.3390/biom11091292] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Manganese (Mn) is an essential metal, which at high exposures causes neurotoxic effects and neurodegeneration. The neurotoxic effects of Mn are mediated by neuroinflammation, oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, and other mechanisms. Recent findings have demonstrated the potential impact of Mn overexposure on gut microbiota dysbiosis, which is known to contribute to neurodegeneration via secretion of neuroactive and proinflammatory metabolites. Therefore, in this review, we discuss the existing data on the impact of Mn exposure on gut microbiota biodiversity, bacterial metabolite production, and gut wall permeability regulating systemic levels. Recent data have demonstrated that Mn exposure may affect gut microbiota biodiversity by altering the abundance of Shiegella, Ruminococcus, Dorea, Fusicatenibacter, Roseburia, Parabacteroides, Bacteroidetes, Firmicutes, Ruminococcaceae, Streptococcaceae, and other bacterial phyla. A Mn-induced increase in Bacteroidetes abundance and a reduced Firmicutes/Bacteroidetes ratio may increase lipopolysaccharide levels. Moreover, in addition to increased systemic lipopolysaccharide (LPS) levels, Mn is capable of potentiating LPS neurotoxicity. Due to the high metabolic activity of intestinal microflora, Mn-induced perturbations in gut microbiota result in a significant alteration in the gut metabolome that has the potential to at least partially mediate the biological effects of Mn overexposure. At the same time, a recent study demonstrated that healthy microbiome transplantation alleviates Mn-induced neurotoxicity, which is indicative of the significant role of gut microflora in the cascade of Mn-mediated neurotoxicity. High doses of Mn may cause enterocyte toxicity and affect gut wall integrity through disruption of tight junctions. The resulting increase in gut wall permeability further promotes increased translocation of LPS and neuroactive bacterial metabolites to the systemic blood flow, ultimately gaining access to the brain and leading to neuroinflammation and neurotransmitter imbalance. Therefore, the existing data lead us to hypothesize that gut microbiota should be considered as a potential target of Mn toxicity, although more detailed studies are required to characterize the interplay between Mn exposure and the gut, as well as its role in the pathogenesis of neurodegeneration and other diseases.
Collapse
Affiliation(s)
- Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia;
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Daiana Silva Avila
- Laboratory of Biochemistry and Toxicoology in Caenorhabditis elegans, Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, Uruguaiana 97500-970, RS, Brazil;
| | - Victor A. Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Pionerskaya st 11, 460000 Orenburg, Russia;
| | - Anatoly V. Skalny
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
- Laboratory of Medical Elementology, KG Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico;
| | - Eunsook Lee
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Michael Aschner
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|