1
|
Šťastný D, Balleková A, Tahotná D, Pokorná L, Holič R, Humpolíčková J, Griač P. Characterization of two Plasmodium falciparum lipid transfer proteins of the Sec14/CRAL-TRIO family. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159572. [PMID: 39426587 DOI: 10.1016/j.bbalip.2024.159572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Invasion of human red blood cells by the malaria parasite Plasmodium falciparum is followed by dramatic modifications of erythrocytes properties, including de novo formation of new membrane systems. Lipid transfer proteins from both the parasite and the host cell are most likely an important part of those membrane remodeling processes. Using bioinformatics and in silico structural analysis, we have identified five P. falciparum potential lipid transfer proteins containing cellular retinaldehyde binding - triple functional domain (CRAL-TRIO). Two of these proteins, C6KTD4, encoded by the PF3D7_0629900 gene and Q8II87, encoded by the PF3D7_1127600 gene, were studied in more detail. In vitro lipid transfer assays using recombinant C6KTD4 and Q8II87 confirmed that these proteins are indeed bona fide lipid transfer proteins. C6KTD4 transfers sterols, phosphatidylinositol 4,5 bisphosphate, and, to some degree, also phosphatidylcholine between two membrane compartments. Q8II87 possesses phosphatidylserine transfer activity in vitro. In the yeast model, the expression of P. falciparumQ8II87 protein partially complements the absence of Sec14p and its closest homologue, Sfh1p. C6KTD4 protein can substitute for the collective essential function of oxysterol-binding related proteins. According to published whole genome studies in P. falciparum, absence of C6KTD4 and Q8II87 proteins has severe consequences for parasite viability. Therefore, CRAL-TRIO lipid transfer proteins of P. falciparum are potential targets of novel antimalarials, in search for which the yeast model expressing these proteins could be a valuable tool.
Collapse
Affiliation(s)
- Dominik Šťastný
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Alena Balleková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Dana Tahotná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Lucia Pokorná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Roman Holič
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Jana Humpolíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Peter Griač
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia.
| |
Collapse
|
2
|
Patel A, Fréville A, Rey JA, Flynn HR, Koussis K, Skehel MJ, Blackman MJ, Baker DA. Plasmodium falciparum protein phosphatase PP7 is required for early ring-stage development. mBio 2024; 15:e0253924. [PMID: 39387582 PMCID: PMC11559042 DOI: 10.1128/mbio.02539-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
We previously reported that the Plasmodium falciparum putative serine/threonine protein phosphatase 7 (PP7) is a high-confidence substrate of the cAMP-dependent protein kinase (PKA). Here we explore the function of PP7 in asexual P. falciparum blood stage parasites. We show that conditional disruption of PP7 leads to a severe growth arrest. We show that PP7 is a calcium-dependent phosphatase that interacts with calmodulin and calcium-dependent protein kinase 1 (CDPK1), consistent with a role in calcium signaling. Notably, PP7 was found to be dispensable for erythrocyte invasion, but was crucial for ring-stage development, with PP7-null parasites arresting shortly following invasion and showing no transition to ameboid forms. Phosphoproteomic analysis revealed that PP7 may regulate certain PKAc substrates. Its interaction with calmodulin and CDPK1 further emphasizes a role in calcium signaling, while its impact on early ring development and PKAc substrate phosphorylation underscores its importance in parasite development. IMPORTANCE Plasmodium falciparum causes malaria and is responsible for more than 600,000 deaths each year. Although effective drugs are available to treat disease, the spread of drug-resistant parasites endangers their future efficacy. It is hoped that a better understanding of the biology of malaria parasites will help us to discover new drugs to tackle the resistance problem. Our work is focused on the cell signaling mechanisms that control the development of the parasite throughout its complex life cycle. All signal transduction pathways are ultimately regulated by reversible protein phosphorylation by protein kinase and protein phosphatase enzymes. In this study, we investigate the function of calcium-dependent protein phosphatase PP7 and show that it is essential for the development of ring-stage parasites following the invasion of human erythrocytes. Our results contribute to the understanding of the erythrocytic stages of the parasite life cycle that cause malaria pathology.
Collapse
Affiliation(s)
- Avnish Patel
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Aline Fréville
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Joshua A. Rey
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Helen R. Flynn
- Proteomics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Konstantinos Koussis
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mark J. Skehel
- Proteomics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael J. Blackman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David A. Baker
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
3
|
Singhal R, Prata IO, Bonnell VA, Llinás M. Unraveling the complexities of ApiAP2 regulation in Plasmodium falciparum. Trends Parasitol 2024; 40:987-999. [PMID: 39419713 DOI: 10.1016/j.pt.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
The regulation of gene expression in Plasmodium spp., the causative agents of malaria, relies on precise transcriptional control. Malaria parasites encode a limited repertoire of sequence-specific transcriptional regulators dominated by the apicomplexan APETALA 2 (ApiAP2) protein family. ApiAP2 DNA-binding proteins play critical roles at all stages of the parasite life cycle. Recent studies have provided mechanistic insight into the functional roles of many ApiAP2 proteins. Two major areas that have advanced significantly are the identification of ApiAP2-containing protein complexes and the role of ApiAP2 proteins in malaria parasite sexual development. In this review, we present recent advances on the functional biology of ApiAP2 proteins and their role in regulating gene expression across the blood stages of the parasite life cycle.
Collapse
Affiliation(s)
- Ritwik Singhal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Isadora O Prata
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Victoria A Bonnell
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Singh MK, Bonnell VA, Tojal Da Silva I, Santiago VF, Moraes MS, Adderley J, Doerig C, Palmisano G, Llinas M, Garcia CRS. A Plasmodium falciparum MORC protein complex modulates epigenetic control of gene expression through interaction with heterochromatin. eLife 2024; 12:RP92201. [PMID: 39412522 PMCID: PMC11483127 DOI: 10.7554/elife.92201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Dynamic control of gene expression is critical for blood stage development of malaria parasites. Here, we used multi-omic analyses to investigate transcriptional regulation by the chromatin-associated microrchidia protein, MORC, during asexual blood stage development of the human malaria parasite Plasmodium falciparum. We show that PfMORC (PF3D7_1468100) interacts with a suite of nuclear proteins, including APETALA2 (ApiAP2) transcription factors (PfAP2-G5, PfAP2-O5, PfAP2-I, PF3D7_0420300, PF3D7_0613800, PF3D7_1107800, and PF3D7_1239200), a DNA helicase DS60 (PF3D7_1227100), and other chromatin remodelers (PfCHD1 and PfEELM2). Transcriptomic analysis of PfMORCHA-glmS knockdown parasites revealed 163 differentially expressed genes belonging to hypervariable multigene families, along with upregulation of genes mostly involved in host cell invasion. In vivo genome-wide chromatin occupancy analysis during both trophozoite and schizont stages of development demonstrates that PfMORC is recruited to repressed, multigene families, including the var genes in subtelomeric chromosomal regions. Collectively, we find that PfMORC is found in chromatin complexes that play a role in the epigenetic control of asexual blood stage transcriptional regulation and chromatin organization.
Collapse
Affiliation(s)
- Maneesh Kumar Singh
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São PauloSão PauloBrazil
| | - Victoria Ann Bonnell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Eukaryotic Gene Regulation, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Malaria Research, Pennsylvania State University, University ParkHarrisburgUnited States
| | | | | | - Miriam Santos Moraes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São PauloSão PauloBrazil
| | - Jack Adderley
- School of Health and Biomedical Sciences, RMIT UniversityBundooraAustralia
| | - Christian Doerig
- School of Health and Biomedical Sciences, RMIT UniversityBundooraAustralia
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Science, University of São PauloSão PauloBrazil
| | - Manuel Llinas
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Eukaryotic Gene Regulation, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Malaria Research, Pennsylvania State University, University ParkHarrisburgUnited States
- Department of Chemistry, Pennsylvania State University, University ParkHarrisburgUnited States
| | - Celia RS Garcia
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São PauloSão PauloBrazil
| |
Collapse
|
5
|
Bonnell V, Zhang Y, Brown A, Horton J, Josling G, Chiu TP, Rohs R, Mahony S, Gordân R, Llinás M. DNA sequence and chromatin differentiate sequence-specific transcription factor binding in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res 2024; 52:10161-10179. [PMID: 38966997 PMCID: PMC11417369 DOI: 10.1093/nar/gkae585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Development of the malaria parasite, Plasmodium falciparum, is regulated by a limited number of sequence-specific transcription factors (TFs). However, the mechanisms by which these TFs recognize genome-wide binding sites is largely unknown. To address TF specificity, we investigated the binding of two TF subsets that either bind CACACA or GTGCAC DNA sequence motifs and further characterized two additional ApiAP2 TFs, PfAP2-G and PfAP2-EXP, which bind unique DNA motifs (GTAC and TGCATGCA). We also interrogated the impact of DNA sequence and chromatin context on P. falciparum TF binding by integrating high-throughput in vitro and in vivo binding assays, DNA shape predictions, epigenetic post-translational modifications, and chromatin accessibility. We found that DNA sequence context minimally impacts binding site selection for paralogous CACACA-binding TFs, while chromatin accessibility, epigenetic patterns, co-factor recruitment, and dimerization correlate with differential binding. In contrast, GTGCAC-binding TFs prefer different DNA sequence context in addition to chromatin dynamics. Finally, we determined that TFs that preferentially bind divergent DNA motifs may bind overlapping genomic regions due to low-affinity binding to other sequence motifs. Our results demonstrate that TF binding site selection relies on a combination of DNA sequence and chromatin features, thereby contributing to the complexity of P. falciparum gene regulatory mechanisms.
Collapse
Affiliation(s)
- Victoria A Bonnell
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuning Zhang
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Alan S Brown
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - John Horton
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Gabrielle A Josling
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tsu-Pei Chiu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Lou J, Rezvani Y, Arriojas A, Wu Y, Shankar N, Degras D, Keroack CD, Duraisingh MT, Zarringhalam K, Gubbels MJ. Single cell expression and chromatin accessibility of the Toxoplasma gondii lytic cycle identifies AP2XII-8 as an essential ribosome regulon driver. Nat Commun 2024; 15:7419. [PMID: 39198388 PMCID: PMC11358496 DOI: 10.1038/s41467-024-51011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Sequential lytic cycles driven by cascading transcriptional waves underlie pathogenesis in the apicomplexan parasite Toxoplasma gondii. This parasite's unique division by internal budding, short cell cycle, and jumbled up classically defined cell cycle stages have restrained in-depth transcriptional program analysis. Here, unbiased transcriptome and chromatin accessibility maps throughout the lytic cell cycle are established at the single-cell level. Correlated pseudo-timeline assemblies of expression and chromatin profiles maps transcriptional versus chromatin level transition points promoting the cell division cycle. Sequential clustering analysis identifies functionally related gene groups promoting cell cycle progression. Promoter DNA motif mapping reveals patterns of combinatorial regulation. Pseudo-time trajectory analysis reveals transcriptional bursts at different cell cycle points. The dominant burst in G1 is driven largely by transcription factor AP2XII-8, which engages a conserved DNA motif, and promotes the expression of 44 ribosomal proteins encoding regulon. Overall, the study provides integrated, multi-level insights into apicomplexan transcriptional regulation.
Collapse
Affiliation(s)
- Jingjing Lou
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Yasaman Rezvani
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Argenis Arriojas
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Yihan Wu
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Nachiket Shankar
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - David Degras
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Caroline D Keroack
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, USA.
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA.
| | | |
Collapse
|
7
|
Saito T, Wang S, Ohkawa K, Ohara H, Kondo S. Deep learning with a small dataset predicts chromatin remodelling contribution to winter dormancy of apple axillary buds. TREE PHYSIOLOGY 2024; 44:tpae072. [PMID: 38905284 DOI: 10.1093/treephys/tpae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
Epigenetic changes serve as a cellular memory for cumulative cold recognition in both herbaceous and tree species, including bud dormancy. However, most studies have discussed predicted chromatin structure with respect to histone marks. In the present study, we investigated the structural dynamics of bona fide chromatin to determine how plants recognize prolonged chilling during the initial stage of bud dormancy. The vegetative axillary buds of the 'Fuji' apple, which shows typical low temperature-dependent, but not photoperiod, dormancy induction, were used for the chromatin structure and transcriptional change analyses. The results were integrated using a deep-learning model and interpreted using statistical models, including Bayesian estimation. Although our model was constructed using a small dataset of two time points, chromatin remodelling due to random changes was excluded. The involvement of most nucleosome structural changes in transcriptional changes and the pivotal contribution of cold-driven circadian rhythm-dependent pathways regulated by the mobility of cis-regulatory elements were predicted. These findings may help to develop potential genetic targets for breeding species with less bud dormancy to overcome the effects of short winters during global warming. Our artificial intelligence concept can improve epigenetic analysis using a small dataset, especially in non-model plants with immature genome databases.
Collapse
Affiliation(s)
- Takanori Saito
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | - Shanshan Wang
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | - Katsuya Ohkawa
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | - Hitoshi Ohara
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwa-no-ha 277-0882, Japan
| | - Satoru Kondo
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| |
Collapse
|
8
|
Anderson DC, Peterson MS, Lapp SA, Galinski MR. Proteomes of plasmodium knowlesi early and late ring-stage parasites and infected host erythrocytes. J Proteomics 2024; 302:105197. [PMID: 38759952 PMCID: PMC11357705 DOI: 10.1016/j.jprot.2024.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The emerging malaria parasite Plasmodium knowlesi threatens the goal of worldwide malaria elimination due to its zoonotic spread in Southeast Asia. After brief ex-vivo culture we used 2D LC/MS/MS to examine the early and late ring stages of infected Macaca mulatta red blood cells harboring P. knowlesi. The M. mulatta clathrin heavy chain and T-cell and macrophage inhibitor ERMAP were overexpressed in the early ring stage; glutaredoxin 3 was overexpressed in the late ring stage; GO term differential enrichments included response to oxidative stress and the cortical cytoskeleton in the early ring stage. P. knowlesi clathrin heavy chain and 60S acidic ribosomal protein P2 were overexpressed in the late ring stage; GO term differential enrichments included vacuoles in the early ring stage, ribosomes and translation in the late ring stage, and Golgi- and COPI-coated vesicles, proteasomes, nucleosomes, vacuoles, ion-, peptide-, protein-, nucleocytoplasmic- and RNA-transport, antioxidant activity and glycolysis in both stages. SIGNIFICANCE: Due to its zoonotic spread, cases of the emerging human pathogen Plasmodium knowlesi in southeast Asia, and particularly in Malaysia, threaten regional and worldwide goals for malaria elimination. Infection by this parasite can be fatal to humans, and can be associated with significant morbidity. Due to zoonotic transmission from large macaque reservoirs that are untreatable by drugs, and outdoor biting mosquito vectors that negate use of preventive measures such as bed nets, its containment remains a challenge. Its biology remains incompletely understood. Thus we examine the expressed proteome of the early and late ex-vivo cultured ring stages, the first intraerythrocyte developmental stages after infection of host rhesus macaque erythrocytes. We used GO term enrichment strategies and differential protein expression to compare early and late ring stages. The early ring stage is characterized by the enrichment of P. knowlesi vacuoles, and overexpression of the M. mulatta clathrin heavy chain, important for clathrin-coated pits and vesicles, and clathrin-mediated endocytosis. The M. mulatta protein ERMAP was also overexpressed in the early ring stage, suggesting a potential role in early ring stage inhibition of T-cells and macrophages responding to P. knowlesi infection of reticulocytes. This could allow expansion of the host P. knowlesi cellular niche, allowing parasite adaptation to invasion of a wider age range of RBCs than the preferred young RBCs or reticulocytes, resulting in proliferation and increased pathogenesis in infected humans. Other GO terms differentially enriched in the early ring stage include the M. mulatta cortical cytoskeleton and response to oxidative stress. The late ring stage is characterized by overexpression of the P. knowlesi clathrin heavy chain. Combined with late ring stage GO term enrichment of Golgi-associated and coated vesicles, and enrichment of COPI-coated vesicles in both stages, this suggests the importance to P. knowlesi biology of clathrin-mediated endocytosis. P. knowlesi ribosomes and translation were also differentially enriched in the late ring stage. With expression of a variety of heat shock proteins, these results suggest production of folded parasite proteins is increasing by the late ring stage. M. mulatta endocytosis was differentially enriched in the late ring stage, as were clathrin-coated vesicles and endocytic vesicles. This suggests that M. mulatta clathrin-based endocytosis, perhaps in infected reticulocytes rather than mature RBC, may be an important process in the late ring stage. Additional ring stage biology from enriched GO terms includes M. mulatta proteasomes, protein folding and the chaperonin-containing T complex, actin and cortical actin cytoskeletons. P knowlesi biology also includes proteasomes, as well as nucleosomes, antioxidant activity, a variety of transport processes, glycolysis, vacuoles and protein folding. Mature RBCs have lost internal organelles, suggesting infection here may involve immature reticulocytes still retaining organelles. P. knowlesi parasite proteasomes and translational machinery may be ring stage drug targets for known selective inhibitors of these processes in other Plasmodium species. To our knowledge this is the first examination of more than one timepoint within the ring stage. Our results expand knowledge of both host and parasite proteins, pathways and organelles underlying P. knowlesi ring stage biology.
Collapse
Affiliation(s)
- D C Anderson
- Biosciences Division, SRI International, Harrisonburg, VA 22802, USA.
| | - Mariko S Peterson
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Stacey A Lapp
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Mary R Galinski
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Nirdosh, Shukla H, Mishra S. An ApiAp2 Transcription Factor with a Dispensable Role in Plasmodium berghei Life Cycle. ACS Infect Dis 2024; 10:1904-1913. [PMID: 38752809 DOI: 10.1021/acsinfecdis.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Malaria parasites have a complex life cycle and undergo replication and population expansion within vertebrate hosts and mosquito vectors. These developmental transitions rely on changes in gene expression and chromatin reorganization that result in the activation and silencing of stage-specific genes. The ApiAp2 family of DNA-binding proteins plays an important role in regulating gene expression in malaria parasites. Here, we characterized the ApiAp2 protein in Plasmodium berghei, which we termed Ap2-D. In silico analysis revealed that Ap2-D has three beta-sheets followed by a helix at the C-terminus for DNA binding. Using gene tagging with 3XHA-mCherry, we found that Ap2-D is expressed in Plasmodium blood stages and is present in the parasite cytoplasm and nucleus. Surprisingly, our gene deletion study revealed a completely dispensable role for Ap2-D in the entirety of the P. berghei life cycle. Ap2-D KO parasites were found to grow in the blood successfully and progress through the mosquito midgut and salivary glands. Sporozoites isolated from mosquito salivary glands were infective for hepatocytes and achieved similar patency as WT in mice. We emphasize the importance of genetic validation of antimalarial drug targets before progressing them to drug discovery.
Collapse
Affiliation(s)
- Nirdosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himadri Shukla
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Behrens HM, Schmidt S, Henshall IG, López-Barona P, Peigney D, Sabitzki R, May J, Maïga-Ascofaré O, Spielmann T. Impact of different mutations on Kelch13 protein levels, ART resistance, and fitness cost in Plasmodium falciparum parasites. mBio 2024; 15:e0198123. [PMID: 38700363 PMCID: PMC11237660 DOI: 10.1128/mbio.01981-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Reduced susceptibility to ART, the first-line treatment against malaria, is common in South East Asia (SEA). It is associated with point mutations, mostly in kelch13 (k13) but also in other genes, like ubp1. K13 and its compartment neighbors (KICs), including UBP1, are involved in endocytosis of host cell cytosol. We tested 135 mutations in KICs but none conferred ART resistance. Double mutations of k13C580Y with k13R539T or k13C580Y with ubp1R3138H, did also not increase resistance. In contrast, k13C580Y parasites subjected to consecutive RSAs did, but the k13 sequence was not altered. Using isogenic parasites with different k13 mutations, we found correlations between K13 protein amount, resistance, and fitness cost. Titration of K13 and KIC7 indicated that the cellular levels of these proteins determined resistance through the rate of endocytosis. While fitness cost of k13 mutations correlated with ART resistance, ubp1R3138H caused a disproportionately higher fitness cost. IMPORTANCE Parasites with lowered sensitivity to artemisinin-based drugs are becoming widespread. However, even in these "resistant" parasites not all parasites survive treatment. We found that the proportion of surviving parasites correlates with the fitness cost of resistance-inducing mutations which might indicate that the growth disadvantages prevents resistance levels where all parasites survive treatment. We also found that combining two common resistance mutations did not increase resistance levels. However, selection through repeated ART-exposure did, even-though the known resistance genes, including k13, were not further altered, suggesting other causes of increased resistance. We also observed a disproportionally high fitness cost of a resistance mutation in resistance gene ubp1. Such high fitness costs may explain why mutations in ubp1 and other genes functioning in the same pathway as k13 are rare. This highlights that k13 mutations are unique in their ability to cause resistance at a comparably low fitness cost.
Collapse
Affiliation(s)
- Hannah M. Behrens
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sabine Schmidt
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Isabelle G. Henshall
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Patricia López-Barona
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Domitille Peigney
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ricarda Sabitzki
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jürgen May
- Infectious Disease Epidemiology Department, Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
| | - Oumou Maïga-Ascofaré
- Infectious Disease Epidemiology Department, Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
| | - Tobias Spielmann
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
11
|
Kanyal A, Deshmukh B, Davies H, Mamatharani DV, Farheen D, Treeck M, Karmodiya K. PfHDAC1 is an essential regulator of P. falciparum asexual proliferation and host cell invasion genes with a dynamic genomic occupancy responsive to artemisinin stress. mBio 2024; 15:e0237723. [PMID: 38709067 PMCID: PMC11237754 DOI: 10.1128/mbio.02377-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Plasmodium falciparum, the deadly protozoan parasite responsible for malaria, has a tightly regulated gene expression profile closely linked to its intraerythrocytic development cycle. Epigenetic modifiers of the histone acetylation code have been identified as key regulators of the parasite's transcriptome but require further investigation. In this study, we map the genomic distribution of Plasmodium falciparum histone deacetylase 1 (PfHDAC1) across the erythrocytic asexual development cycle and find it has a dynamic occupancy over a wide array of developmentally relevant genes. Overexpression of PfHDAC1 results in a progressive increment in parasite load over consecutive rounds of the asexual infection cycle and is associated with enhanced gene expression of multiple families of host cell invasion factors (merozoite surface proteins, rhoptry proteins, etc.) and with increased merozoite invasion efficiency. With the use of class-specific inhibitors, we demonstrate that PfHDAC1 activity in parasites is crucial for timely intraerythrocytic development. Interestingly, overexpression of PfHDAC1 results in decreased sensitivity to frontline-drug dihydroartemisinin in parasites. Furthermore, we identify that artemisinin exposure can interfere with PfHDAC1 abundance and chromatin occupancy, resulting in enrichment over genes implicated in response/resistance to artemisinin. Finally, we identify that dihydroartemisinin exposure can interrupt the in vitro catalytic deacetylase activity and post-translational phosphorylation of PfHDAC1, aspects that are crucial for its genomic function. Collectively, our results demonstrate PfHDAC1 to be a regulator of critical functions in asexual parasite development and host invasion, which is responsive to artemisinin exposure stress and deterministic of resistance to it. IMPORTANCE Malaria is a major public health problem, with the parasite Plasmodium falciparum causing most of the malaria-associated mortality. It is spread by the bite of infected mosquitoes and results in symptoms such as cyclic fever, chills, and headache. However, if left untreated, it can quickly progress to a more severe and life-threatening form. The World Health Organization currently recommends the use of artemisinin combination therapy, and it has worked as a gold standard for many years. Unfortunately, certain countries in southeast Asia and Africa, burdened with a high prevalence of malaria, have reported cases of drug-resistant infections. One of the major problems in controlling malaria is the emergence of artemisinin resistance. Population genomic studies have identified mutations in the Kelch13 gene as a molecular marker for artemisinin resistance. However, several reports thereafter indicated that Kelch13 is not the main mediator but rather hinted at transcriptional deregulation as a major determinant of drug resistance. Earlier, we identified PfGCN5 as a global regulator of stress-responsive genes, which are known to play a central role in artemisinin resistance generation. In this study, we have identified PfHDAC1, a histone deacetylase as a cell cycle regulator, playing an important role in artemisinin resistance generation. Taken together, our study identified key transcriptional regulators that play an important role in artemisinin resistance generation.
Collapse
Affiliation(s)
- Abhishek Kanyal
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Bhagyashree Deshmukh
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - D. V. Mamatharani
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Dilsha Farheen
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| |
Collapse
|
12
|
Morano AA, Ali I, Dvorin JD. Elucidating the spatio-temporal dynamics of the Plasmodium falciparum basal complex. PLoS Pathog 2024; 20:e1012265. [PMID: 38829893 PMCID: PMC11175456 DOI: 10.1371/journal.ppat.1012265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/13/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Asexual replication of Plasmodium falciparum occurs via schizogony, wherein 16-36 daughter cells are produced within the parasite during one semi-synchronized cytokinetic event. Schizogony requires a divergent contractile ring structure known as the basal complex. Our lab has previously identified PfMyoJ (PF3D7_1229800) and PfSLACR (PF3D7_0214700) as basal complex proteins recruited midway through segmentation. Using ultrastructure expansion microscopy, we localized both proteins to a novel basal complex subcompartment. While both colocalize with the basal complex protein PfCINCH upon recruitment, they form a separate, more basal subcompartment termed the posterior cup during contraction. We also show that PfSLACR is recruited to the basal complex prior to PfMyoJ, and that both proteins are removed unevenly as segmentation concludes. Using live-cell microscopy, we show that actin dynamics are dispensable for basal complex formation, expansion, and contraction. We then show that EF-hand containing P. falciparum Centrin 2 partially localizes to this posterior cup of the basal complex and that it is essential for growth and replication, with variable defects in basal complex contraction and synchrony. Finally, we demonstrate that free intracellular calcium is necessary but not sufficient for basal complex contraction in P. falciparum. Thus, we demonstrate dynamic spatial compartmentalization of the Plasmodium falciparum basal complex, identify an additional basal complex protein, and begin to elucidate the unique mechanism of contraction utilized by P. falciparum, opening the door for further exploration of Apicomplexan cellular division.
Collapse
Affiliation(s)
- Alexander A. Morano
- Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Ilzat Ali
- Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Moyung K, Li Y, Hartemink AJ, MacAlpine DM. Genome-wide nucleosome and transcription factor responses to genetic perturbations reveal chromatin-mediated mechanisms of transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595391. [PMID: 38826400 PMCID: PMC11142231 DOI: 10.1101/2024.05.24.595391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Epigenetic mechanisms contribute to gene regulation by altering chromatin accessibility through changes in transcription factor (TF) and nucleosome occupancy throughout the genome. Despite numerous studies focusing on changes in gene expression, the intricate chromatin-mediated regulatory code remains largely unexplored on a comprehensive scale. We address this by employing a factor-agnostic, reverse-genetics approach that uses MNase-seq to capture genome-wide TF and nucleosome occupancies in response to the individual deletion of 201 transcriptional regulators in Saccharomyces cerevisiae, thereby assaying nearly one million mutant-gene interactions. We develop a principled approach to identify and quantify chromatin changes genome-wide, observing differences in TF and nucleosome occupancy that recapitulate well-established pathways identified by gene expression data. We also discover distinct chromatin signatures associated with the up- and downregulation of genes, and use these signatures to reveal regulatory mechanisms previously unexplored in expression-based studies. Finally, we demonstrate that chromatin features are predictive of transcriptional activity and leverage these features to reconstruct chromatin-based transcriptional regulatory networks. Overall, these results illustrate the power of an approach combining genetic perturbation with high-resolution epigenomic profiling; the latter enables a close examination of the interplay between TFs and nucleosomes genome-wide, providing a deeper, more mechanistic understanding of the complex relationship between chromatin organization and transcription.
Collapse
Affiliation(s)
- Kevin Moyung
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Yulong Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
- Department of Computer Science, Duke University, Durham, NC 27708
| | - Alexander J. Hartemink
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708
- Department of Computer Science, Duke University, Durham, NC 27708
| | - David M. MacAlpine
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
14
|
Hellingman A, Sifoniou K, Buser T, Thommen BT, Walz A, Passecker A, Collins J, Hupfeld M, Wittlin S, Witmer K, Brancucci NMB. Next Generation Chemiluminescent Probes for Antimalarial Drug Discovery. ACS Infect Dis 2024; 10:1286-1297. [PMID: 38556981 PMCID: PMC11019541 DOI: 10.1021/acsinfecdis.3c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Malaria is caused by parasites of the Plasmodium genus and remains one of the most pressing human health problems. The spread of parasites resistant to or partially resistant to single or multiple drugs, including frontline antimalarial artemisinin and its derivatives, poses a serious threat to current and future malaria control efforts. In vitro drug assays are important for identifying new antimalarial compounds and monitoring drug resistance. Due to its robustness and ease of use, the [3H]-hypoxanthine incorporation assay is still considered a gold standard and is widely applied, despite limited sensitivity and the dependence on radioactive material. Here, we present a first-of-its-kind chemiluminescence-based antimalarial drug screening assay. The effect of compounds on P. falciparum is monitored by using a dioxetane-based substrate (AquaSpark β-D-galactoside) that emits high-intensity luminescence upon removal of a protective group (β-D-galactoside) by a transgenic β-galactosidase reporter enzyme. This biosensor enables highly sensitive, robust, and cost-effective detection of asexual, intraerythrocytic P. falciparum parasites without the need for parasite enrichment, washing, or purification steps. We are convinced that the ultralow detection limit of less than 100 parasites of the presented biosensor system will become instrumental in malaria research, including but not limited to drug screening.
Collapse
Affiliation(s)
- Angela Hellingman
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Kleopatra Sifoniou
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Tamara Buser
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Basil T. Thommen
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Annabelle Walz
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Armin Passecker
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | | | | | - Sergio Wittlin
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Kathrin Witmer
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
- NEMIS
Technologies AG, 8804 Au, ZH, Switzerland
| | - Nicolas M. B. Brancucci
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| |
Collapse
|
15
|
Pasupureddy R, Verma S, Goyal B, Pant A, Sharma R, Bhatt S, Vashisht K, Singh S, Saxena AK, Dixit R, Chakraborti S, Pandey KC. Understanding the complex formation of falstatin; an endogenous macromolecular inhibitor of falcipains. Int J Biol Macromol 2024; 265:130420. [PMID: 38460641 DOI: 10.1016/j.ijbiomac.2024.130420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases.
Collapse
Affiliation(s)
- Rahul Pasupureddy
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India.
| | - Sonia Verma
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Department of Biotechnology, Noida Institute of Engineering & Technology, UP, India
| | - Bharti Goyal
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Akansha Pant
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India
| | - Ruby Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shruti Bhatt
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.
| | - Kapil Vashisht
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Ajay K Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Rajnikant Dixit
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India.
| | - Soumyananda Chakraborti
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India.
| | - Kailash C Pandey
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India.
| |
Collapse
|
16
|
Lin X, Xu Y, Wang D, Yang Y, Zhang X, Bie X, Gui L, Chen Z, Ding Y, Mao L, Zhang X, Lu F, Zhang X, Uauy C, Fu X, Xiao J. Systematic identification of wheat spike developmental regulators by integrated multi-omics, transcriptional network, GWAS, and genetic analyses. MOLECULAR PLANT 2024; 17:438-459. [PMID: 38310351 DOI: 10.1016/j.molp.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
The spike architecture of wheat plays a crucial role in determining grain number, making it a key trait for optimization in wheat breeding programs. In this study, we used a multi-omic approach to analyze the transcriptome and epigenome profiles of the young spike at eight developmental stages, revealing coordinated changes in chromatin accessibility and H3K27me3 abundance during the flowering transition. We constructed a core transcriptional regulatory network (TRN) that drives wheat spike formation and experimentally validated a multi-layer regulatory module involving TaSPL15, TaAGLG1, and TaFUL2. By integrating the TRN with genome-wide association studies, we identified 227 transcription factors, including 42 with known functions and 185 with unknown functions. Further investigation of 61 novel transcription factors using multiple homozygous mutant lines revealed 36 transcription factors that regulate spike architecture or flowering time, such as TaMYC2-A1, TaMYB30-A1, and TaWRKY37-A1. Of particular interest, TaMYB30-A1, downstream of and repressed by WFZP, was found to regulate fertile spikelet number. Notably, the excellent haplotype of TaMYB30-A1, which contains a C allele at the WFZP binding site, was enriched during wheat breeding improvement in China, leading to improved agronomic traits. Finally, we constructed a free and open access Wheat Spike Multi-Omic Database (http://39.98.48.156:8800/#/). Our study identifies novel and high-confidence regulators and offers an effective strategy for dissecting the genetic basis of wheat spike development, with practical value for wheat breeding.
Collapse
Affiliation(s)
- Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongxin Xu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoyu Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Bie
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lixuan Gui
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan 610000, China
| | - Zhongxu Chen
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan 610000, China
| | - Yiliang Ding
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Long Mao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Lu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Xiansheng Zhang
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiangdong Fu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China.
| |
Collapse
|
17
|
Govindaraju G, Rajavelu A. Reading the epitranscriptome of the human malaria parasite. Biomed J 2024:100703. [PMID: 38316392 DOI: 10.1016/j.bj.2024.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024] Open
Abstract
Epigenetic machinery has emerged as a central player in gene regulation and chromatin organization in Plasmodium spp. Epigenetic modifications on histones and their role in antigenic variation in P. falciparum are widely studied. Recent discoveries on nucleic acid methylome are exciting and provide a new dimension to the apicomplexan protozoan parasite's gene regulatory process. Reports have confirmed that N6-methyl adenosine (m6A) methylation plays a crucial role in the translational plasticity of the human malaria parasite during its development in RBC. The YTH domain (YT521-B Homology) protein in P. falciparum binds to m6A epitranscriptome modifications on the mRNA and regulates protein translation. The binding of the PfYTH domain protein to the m6A-modified mRNA is mediated through a binding pocket formed by aromatic amino acids. The P. falciparum genome encodes two members of YTH domain proteins, i.e., YTH1 and YTH2, and both have distinct roles in dictating the epitranscriptome in human malaria parasites. This review highlights recent advancements in the functions and mechanisms of YTH domain protein's role in translational plasticity in the various developmental stages of the parasite.
Collapse
Affiliation(s)
- Gayathri Govindaraju
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Chennai, India
| | - Arumugam Rajavelu
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Chennai, India.
| |
Collapse
|
18
|
Schwarz D, Lourido S. The multifaceted roles of Myb domain-containing proteins in apicomplexan parasites. Curr Opin Microbiol 2023; 76:102395. [PMID: 37866202 PMCID: PMC10872578 DOI: 10.1016/j.mib.2023.102395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Apicomplexan parasites are a large and diverse clade of protists responsible for significant diseases of humans and animals. Central to the ability of these parasites to colonize their host and evade immune responses is an expanded repertoire of gene-expression programs that requires the coordinated action of complex transcriptional networks. DNA-binding proteins and chromatin regulators are essential orchestrators of apicomplexan gene expression that often act in concert. Although apicomplexan genomes encode various families of putative DNA-binding proteins, most remain functionally and mechanistically unexplored. This review highlights the versatile role of myeloblastosis (Myb) domain-containing proteins in apicomplexan parasites as transcription factors and chromatin regulators. We explore the diversity of Myb domain structure and use phylogenetic analysis to identify common features across the phylum. This provides a framework to discuss functional heterogeneity and regulation of Myb domain-containing proteins particularly emphasizing their role in parasite differentiation.
Collapse
Affiliation(s)
- Dominic Schwarz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Siau A, Ang JW, Sheriff O, Hoo R, Loh HP, Tay D, Huang X, Yam XY, Lai SK, Meng W, Julca I, Kwan SS, Mutwil M, Preiser PR. Comparative spatial proteomics of Plasmodium-infected erythrocytes. Cell Rep 2023; 42:113419. [PMID: 37952150 DOI: 10.1016/j.celrep.2023.113419] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/14/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Plasmodium parasites contribute to one of the highest global infectious disease burdens. To achieve this success, the parasite has evolved a range of specialized subcellular compartments to extensively remodel the host cell for its survival. The information to fully understand these compartments is likely hidden in the so far poorly characterized Plasmodium species spatial proteome. To address this question, we determined the steady-state subcellular location of more than 12,000 parasite proteins across five different species by extensive subcellular fractionation of erythrocytes infected by Plasmodium falciparum, Plasmodium knowlesi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium chabaudi. This comparison of the pan-species spatial proteomes and their expression patterns indicates increasing species-specific proteins associated with the more external compartments, supporting host adaptations and post-transcriptional regulation. The spatial proteome offers comprehensive insight into the different human, simian, and rodent Plasmodium species, establishing a powerful resource for understanding species-specific host adaptation processes in the parasite.
Collapse
Affiliation(s)
- Anthony Siau
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Jing Wen Ang
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Omar Sheriff
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Regina Hoo
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Han Ping Loh
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Donald Tay
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Ximei Huang
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Xue Yan Yam
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Soak Kuan Lai
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Wei Meng
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Irene Julca
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Sze Siu Kwan
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Marek Mutwil
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Peter R Preiser
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore.
| |
Collapse
|
20
|
Jindal GA, Bantle AT, Solvason JJ, Grudzien JL, D'Antonio-Chronowska A, Lim F, Le SH, Song BP, Ragsac MF, Klie A, Larsen RO, Frazer KA, Farley EK. Single-nucleotide variants within heart enhancers increase binding affinity and disrupt heart development. Dev Cell 2023; 58:2206-2216.e5. [PMID: 37848026 PMCID: PMC10720985 DOI: 10.1016/j.devcel.2023.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Transcriptional enhancers direct precise gene expression patterns during development and harbor the majority of variants associated with phenotypic diversity, evolutionary adaptations, and disease. Pinpointing which enhancer variants contribute to changes in gene expression and phenotypes is a major challenge. Here, we find that suboptimal or low-affinity binding sites are necessary for precise gene expression during heart development. Single-nucleotide variants (SNVs) can optimize the affinity of ETS binding sites, causing gain-of-function (GOF) gene expression, cell migration defects, and phenotypes as severe as extra beating hearts in the marine chordate Ciona robusta. In human induced pluripotent stem cell (iPSC)-derived cardiomyocytes, a SNV within a human GATA4 enhancer increases ETS binding affinity and causes GOF enhancer activity. The prevalence of suboptimal-affinity sites within enhancers creates a vulnerability whereby affinity-optimizing SNVs can lead to GOF gene expression, changes in cellular identity, and organismal-level phenotypes that could contribute to the evolution of novel traits or diseases.
Collapse
Affiliation(s)
- Granton A Jindal
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexis T Bantle
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joe J Solvason
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica L Grudzien
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Fabian Lim
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophia H Le
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin P Song
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michelle F Ragsac
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam Klie
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reid O Larsen
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kelly A Frazer
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emma K Farley
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Subudhi AK, Green JL, Satyam R, Salunke RP, Lenz T, Shuaib M, Isaioglou I, Abel S, Gupta M, Esau L, Mourier T, Nugmanova R, Mfarrej S, Shivapurkar R, Stead Z, Rached FB, Ostwal Y, Sougrat R, Dada A, Kadamany AF, Fischle W, Merzaban J, Knuepfer E, Ferguson DJP, Gupta I, Le Roch KG, Holder AA, Pain A. DNA-binding protein PfAP2-P regulates parasite pathogenesis during malaria parasite blood stages. Nat Microbiol 2023; 8:2154-2169. [PMID: 37884813 PMCID: PMC10627835 DOI: 10.1038/s41564-023-01497-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023]
Abstract
Malaria-associated pathogenesis such as parasite invasion, egress, host cell remodelling and antigenic variation requires concerted action by many proteins, but the molecular regulation is poorly understood. Here we have characterized an essential Plasmodium-specific Apicomplexan AP2 transcription factor in Plasmodium falciparum (PfAP2-P; pathogenesis) during the blood-stage development with two peaks of expression. An inducible knockout of gene function showed that PfAP2-P is essential for trophozoite development, and critical for var gene regulation, merozoite development and parasite egress. Chromatin immunoprecipitation sequencing data collected at timepoints matching the two peaks of pfap2-p expression demonstrate PfAP2-P binding to promoters of genes controlling trophozoite development, host cell remodelling, antigenic variation and pathogenicity. Single-cell RNA sequencing and fluorescence-activated cell sorting revealed de-repression of most var genes in Δpfap2-p parasites. Δpfap2-p parasites also overexpress early gametocyte marker genes, indicating a regulatory role in sexual stage conversion. We conclude that PfAP2-P is an essential upstream transcriptional regulator at two distinct stages of the intra-erythrocytic development cycle.
Collapse
Affiliation(s)
- Amit Kumar Subudhi
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Judith L Green
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, UK
| | - Rohit Satyam
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Rahul P Salunke
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Todd Lenz
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Muhammad Shuaib
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ioannis Isaioglou
- Cell Migration and Signaling Laboratory, Bioscience Program, BESE Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Mohit Gupta
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Luke Esau
- KAUST Core Labs, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Tobias Mourier
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Raushan Nugmanova
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Sara Mfarrej
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Rupali Shivapurkar
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Zenaida Stead
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Fathia Ben Rached
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Yogesh Ostwal
- Laboratory of Chromatin Biochemistry, Bioscience Program, BESE Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Rachid Sougrat
- KAUST Core Labs, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ashraf Dada
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
- College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| | - Abdullah Fuaad Kadamany
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Bioscience Program, BESE Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Jasmeen Merzaban
- Cell Migration and Signaling Laboratory, Bioscience Program, BESE Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, UK
- Molecular and Cellular Parasitology Laboratory, Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, UK.
| | - Arnab Pain
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
22
|
Agrawal P, Kumari S, Mohmmed A, Malhotra P, Sharma U, Sahal D. Identification of Novel, Potent, and Selective Compounds against Malaria Using Glideosomal-Associated Protein 50 as a Drug Target. ACS OMEGA 2023; 8:38506-38523. [PMID: 37867646 PMCID: PMC10586260 DOI: 10.1021/acsomega.3c05323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023]
Abstract
Phylum apicomplexan consists of parasites, such as Plasmodium and Toxoplasma. These obligate intracellular parasites enter host cells via an energy-dependent process using specialized machinery, called the glideosome. In the present study, we used Plasmodium falciparum GAP50, a glideosome-associated protein, as a target to screen 951 different compounds from diverse chemical libraries. Using different screening methods, eight compounds (Hayatinine, Curine, MMV689758 (Bedaquiline), MMV1634402 (Brilacidin), and MMV688271, MMV782353, MMV642550, and USINB4-124-8) were identified, which showed promising binding affinity (KD < 75 μM), along with submicromolar range antiparasitic efficacy and selectivity index > 100 fold for malaria parasite. These eight compounds were effective against Chloroquine-resistant PfINDO and Artemisinin-resistant PfCam3.1R359T strains. Studies on the effect of these compounds at asexual blood stages showed that these eight compounds act differently at different developmental stages, indicating the binding of these compounds to other Plasmodium proteins, in addition to PfGAP50. We further studied the effects of compounds (Bedaquiline and USINB4-124-8) in an in vivoPlasmodium berghei mouse model of malaria. Importantly, the oral delivery of Bedaquiline (50 mg/kg b. wt.) showed substantial suppression of parasitemia, and three out of seven mice were cured of the infection. Thus, our study provides new scaffolds for the development of antimalarials that can act at multiple Plasmodium lifecycle stages.
Collapse
Affiliation(s)
- Prakhar Agrawal
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Surekha Kumari
- Chemical
Technology Division, CSIR-Institute of Himalayan
Bioresource Technology, Palampur 176061, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Asif Mohmmed
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Pawan Malhotra
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Upendra Sharma
- Chemical
Technology Division, CSIR-Institute of Himalayan
Bioresource Technology, Palampur 176061, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Dinkar Sahal
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
23
|
Wang C, Dong Y, Li C, Oberstaller J, Zhang M, Gibbons J, Pires CV, Xiao M, Zhu L, Jiang RHY, Kim K, Miao J, Otto TD, Cui L, Adams JH, Liu X. MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites. Genome Biol 2023; 24:231. [PMID: 37845769 PMCID: PMC10577899 DOI: 10.1186/s13059-023-03063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
Malaria remains one of the deadliest infectious diseases. Transcriptional regulation effects of noncoding variants in this unusual genome of malaria parasites remain elusive. We developed a sequence-based, ab initio deep learning framework, MalariaSED, for predicting chromatin profiles in malaria parasites. The MalariaSED performance was validated by published ChIP-qPCR and TF motifs results. Applying MalariaSED to ~ 1.3 million variants shows that geographically differentiated noncoding variants are associated with parasite invasion and drug resistance. Further analysis reveals chromatin accessibility changes at Plasmodium falciparum rings are partly associated with artemisinin resistance. MalariaSED illuminates the potential functional roles of noncoding variants in malaria parasites.
Collapse
Affiliation(s)
- Chengqi Wang
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Yibo Dong
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
- Present address: Florida Department of Health, Jacksonville, FL, USA
| | - Chang Li
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Min Zhang
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Justin Gibbons
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Camilla Valente Pires
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Mianli Xiao
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Kami Kim
- Department of Internal Medicine, Morsani College of Medicine, Tampa, FL, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, Tampa, FL, USA
| | - Thomas D Otto
- School of Infection & Immunity, MVLS, University of Glasgow, Glasgow, UK
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, Tampa, FL, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Xiaoming Liu
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|
24
|
Kioko M, Pance A, Mwangi S, Goulding D, Kemp A, Rono M, Ochola-Oyier LI, Bull PC, Bejon P, Rayner JC, Abdi AI. Extracellular vesicles could be a putative posttranscriptional regulatory mechanism that shapes intracellular RNA levels in Plasmodium falciparum. Nat Commun 2023; 14:6447. [PMID: 37833314 PMCID: PMC10575976 DOI: 10.1038/s41467-023-42103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Plasmodium falciparum secretes extracellular vesicles (PfEVs) that contain parasite-derived RNA. However, the significance of the secreted RNA remains unexplored. Here, we compare secreted and intracellular RNA from asexual cultures of six P. falciparum lines. We find that secretion of RNA via extracellular vesicles is not only periodic throughout the asexual intraerythrocytic developmental cycle but is also highly conserved across P. falciparum isolates. We further demonstrate that the phases of RNA secreted via extracellular vesicles are discernibly shifted compared to those of the intracellular RNA within the secreting whole parasite. Finally, transcripts of genes with no known function during the asexual intraerythrocytic developmental cycle are enriched in PfEVs compared to the whole parasite. We conclude that the secretion of extracellular vesicles could be a putative posttranscriptional RNA regulation mechanism that is part of or synergise the classic RNA decay processes to maintain intracellular RNA levels in P. falciparum.
Collapse
Affiliation(s)
- Mwikali Kioko
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Open University, Milton Keynes, UK
| | - Alena Pance
- Pathogens and Microbes Programme, Wellcome Sanger Institute, Cambridge, UK
- School of Life and Medical Science, University of Hertfordshire, Hatfield, UK
| | - Shaban Mwangi
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - David Goulding
- Pathogens and Microbes Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Alison Kemp
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, UK
| | - Martin Rono
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya
| | | | - Pete C Bull
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Philip Bejon
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Julian C Rayner
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, UK
| | - Abdirahman I Abdi
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Rosa C, Singh P, Chen P, Sinha A, Claës A, Preiser PR, Dedon PC, Baumgarten S, Scherf A, Bryant JM. Cohesin contributes to transcriptional repression of stage-specific genes in the human malaria parasite. EMBO Rep 2023; 24:e57090. [PMID: 37592911 PMCID: PMC10561359 DOI: 10.15252/embr.202357090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
The complex life cycle of the human malaria parasite, Plasmodium falciparum, is driven by specific transcriptional programs, but it is unclear how most genes are activated or silenced at specific times. There is an association between transcription and spatial organization; however, the molecular mechanisms behind genome organization are unclear. While P. falciparum lacks key genome-organizing proteins found in metazoans, it has all core components of the cohesin complex. To investigate the role of cohesin in P. falciparum, we functionally characterize the cohesin subunit Structural Maintenance of Chromosomes protein 3 (SMC3). SMC3 knockdown during early stages of the intraerythrocytic developmental cycle (IDC) upregulates a subset of genes involved in erythrocyte egress and invasion, which are normally expressed at later stages. ChIP-seq analyses reveal that during the IDC, SMC3 enrichment at the promoter regions of these genes inversely correlates with gene expression and chromatin accessibility. These data suggest that SMC3 binding contributes to the repression of specific genes until their appropriate time of expression, revealing a new mode of stage-specific gene repression in P. falciparum.
Collapse
Affiliation(s)
- Catarina Rosa
- Institut Pasteur, Université Paris Cité, INSERM U1201, CNRS EMR9195, Biology of Host‐Parasite Interactions UnitParisFrance
- Sorbonne Université, Collège Doctoral Complexité du Vivant ED515ParisFrance
| | - Parul Singh
- Institut Pasteur, Université Paris Cité, INSERM U1201, CNRS EMR9195, Biology of Host‐Parasite Interactions UnitParisFrance
| | - Patty Chen
- Institut Pasteur, Université Paris Cité, INSERM U1201, CNRS EMR9195, Biology of Host‐Parasite Interactions UnitParisFrance
| | - Ameya Sinha
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Aurélie Claës
- Institut Pasteur, Université Paris Cité, INSERM U1201, CNRS EMR9195, Biology of Host‐Parasite Interactions UnitParisFrance
| | - Peter R Preiser
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore‐MIT Alliance for Research and TechnologySingaporeSingapore
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | | | - Artur Scherf
- Institut Pasteur, Université Paris Cité, INSERM U1201, CNRS EMR9195, Biology of Host‐Parasite Interactions UnitParisFrance
| | - Jessica M Bryant
- Institut Pasteur, Université Paris Cité, INSERM U1201, CNRS EMR9195, Biology of Host‐Parasite Interactions UnitParisFrance
| |
Collapse
|
26
|
Abstract
Plasmodium falciparum, the human malaria parasite, infects two hosts and various cell types, inducing distinct morphological and physiological changes in the parasite in response to different environmental conditions. These variations required the parasite to adapt and develop elaborate molecular mechanisms to ensure its spread and transmission. Recent findings have significantly improved our understanding of the regulation of gene expression in P. falciparum. Here, we provide an up-to-date overview of technologies used to highlight the transcriptomic adjustments occurring in the parasite throughout its life cycle. We also emphasize the complementary and complex epigenetic mechanisms regulating gene expression in malaria parasites. This review concludes with an outlook on the chromatin architecture, the remodeling systems, and how this 3D genome organization is critical in various biological processes.
Collapse
Affiliation(s)
- Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| |
Collapse
|
27
|
Mansour H, Cabezas-Cruz A, Peucelle V, Farce A, Salomé-Desnoulez S, Metatla I, Guerrera IC, Hollin T, Khalife J. Characterization of GEXP15 as a Potential Regulator of Protein Phosphatase 1 in Plasmodium falciparum. Int J Mol Sci 2023; 24:12647. [PMID: 37628837 PMCID: PMC10454571 DOI: 10.3390/ijms241612647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The Protein Phosphatase type 1 catalytic subunit (PP1c) (PF3D7_1414400) operates in combination with various regulatory proteins to specifically direct and control its phosphatase activity. However, there is little information about this phosphatase and its regulators in the human malaria parasite, Plasmodium falciparum. To address this knowledge gap, we conducted a comprehensive investigation into the structural and functional characteristics of a conserved Plasmodium-specific regulator called Gametocyte EXported Protein 15, GEXP15 (PF3D7_1031600). Through in silico analysis, we identified three significant regions of interest in GEXP15: an N-terminal region housing a PP1-interacting RVxF motif, a conserved domain whose function is unknown, and a GYF-like domain that potentially facilitates specific protein-protein interactions. To further elucidate the role of GEXP15, we conducted in vitro interaction studies that demonstrated a direct interaction between GEXP15 and PP1 via the RVxF-binding motif. This interaction was found to enhance the phosphatase activity of PP1. Additionally, utilizing a transgenic GEXP15-tagged line and live microscopy, we observed high expression of GEXP15 in late asexual stages of the parasite, with localization predominantly in the nucleus. Immunoprecipitation assays followed by mass spectrometry analyses revealed the interaction of GEXP15 with ribosomal- and RNA-binding proteins. Furthermore, through pull-down analyses of recombinant functional domains of His-tagged GEXP15, we confirmed its binding to the ribosomal complex via the GYF domain. Collectively, our study sheds light on the PfGEXP15-PP1-ribosome interaction, which plays a crucial role in protein translation. These findings suggest that PfGEXP15 could serve as a potential target for the development of malaria drugs.
Collapse
Affiliation(s)
- Hala Mansour
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (H.M.); (V.P.)
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France;
| | - Véronique Peucelle
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (H.M.); (V.P.)
| | - Amaury Farce
- Univ. Lille, Inserm, CHU Lille, U1286–Infinite–Institute for Translational Research in Inflammation, 59000 Lille, France;
| | - Sophie Salomé-Desnoulez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41–UAR 2014–PLBS, 59000 Lille, France;
| | - Ines Metatla
- Proteomics Platform Necker, Université Paris Cité–Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015 Paris, France; (I.M.); (I.C.G.)
| | - Ida Chiara Guerrera
- Proteomics Platform Necker, Université Paris Cité–Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015 Paris, France; (I.M.); (I.C.G.)
| | - Thomas Hollin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (H.M.); (V.P.)
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (H.M.); (V.P.)
| |
Collapse
|
28
|
Barcons-Simon A, Carrington M, Siegel TN. Decoding the impact of nuclear organization on antigenic variation in parasites. Nat Microbiol 2023; 8:1408-1418. [PMID: 37524976 DOI: 10.1038/s41564-023-01424-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/13/2023] [Indexed: 08/02/2023]
Abstract
Antigenic variation as a strategy to evade the host adaptive immune response has evolved in divergent pathogens. Antigenic variation involves restricted, and often mutually exclusive, expression of dominant antigens and a periodic switch in antigen expression during infection. In eukaryotes, nuclear compartmentalization, including three-dimensional folding of the genome and physical separation of proteins in compartments or condensates, regulates mutually exclusive gene expression and chromosomal translocations. In this Review, we discuss the impact of nuclear organization on antigenic variation in the protozoan pathogens Trypanosoma brucei and Plasmodium falciparum. In particular, we highlight the relevance of nuclear organization in both mutually exclusive antigen expression and genome stability, which underlie antigenic variation.
Collapse
Affiliation(s)
- Anna Barcons-Simon
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
29
|
Ouologuem DT, Dara A, Kone A, Ouattara A, Djimde AA. Plasmodium falciparum Development from Gametocyte to Oocyst: Insight from Functional Studies. Microorganisms 2023; 11:1966. [PMID: 37630530 PMCID: PMC10460021 DOI: 10.3390/microorganisms11081966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria elimination may never succeed without the implementation of transmission-blocking strategies. The transmission of Plasmodium spp. parasites from the human host to the mosquito vector depends on circulating gametocytes in the peripheral blood of the vertebrate host. Once ingested by the mosquito during blood meals, these sexual forms undergo a series of radical morphological and metabolic changes to survive and progress from the gut to the salivary glands, where they will be waiting to be injected into the vertebrate host. The design of effective transmission-blocking strategies requires a thorough understanding of all the mechanisms that drive the development of gametocytes, gametes, sexual reproduction, and subsequent differentiation within the mosquito. The drastic changes in Plasmodium falciparum shape and function throughout its life cycle rely on the tight regulation of stage-specific gene expression. This review outlines the mechanisms involved in Plasmodium falciparum sexual stage development in both the human and mosquito vector, and zygote to oocyst differentiation. Functional studies unravel mechanisms employed by P. falciparum to orchestrate the expression of stage-specific functional products required to succeed in its complex life cycle, thus providing us with potential targets for developing new therapeutics. These mechanisms are based on studies conducted with various Plasmodium species, including predominantly P. falciparum and the rodent malaria parasites P. berghei. However, the great potential of epigenetics, genomics, transcriptomics, proteomics, and functional genetic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in studies using human malaria parasites and field isolates.
Collapse
Affiliation(s)
- Dinkorma T. Ouologuem
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Antoine Dara
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Aminatou Kone
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| |
Collapse
|
30
|
Morano AA, Rudlaff RM, Dvorin JD. A PPP-type pseudophosphatase is required for the maintenance of basal complex integrity in Plasmodium falciparum. Nat Commun 2023; 14:3916. [PMID: 37400439 DOI: 10.1038/s41467-023-39435-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
During its asexual blood stage, P. falciparum replicates via schizogony, wherein dozens of daughter cells are formed within a single parent. The basal complex, a contractile ring that separates daughter cells, is critical for schizogony. In this study, we identify a Plasmodium basal complex protein essential for basal complex maintenance. Using multiple microscopy techniques, we demonstrate that PfPPP8 is required for uniform basal complex expansion and maintenance of its integrity. We characterize PfPPP8 as the founding member of a novel family of pseudophosphatases with homologs in other Apicomplexan parasites. By co-immunoprecipitation, we identify two additional new basal complex proteins. We characterize the unique temporal localizations of these new basal complex proteins (late-arriving) and of PfPPP8 (early-departing). In this work, we identify a novel basal complex protein, determine its specific role in segmentation, identify a new pseudophosphatase family, and establish that the P. falciparum basal complex is a dynamic structure.
Collapse
Affiliation(s)
- Alexander A Morano
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Rachel M Rudlaff
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
31
|
Subudhi AK, Green JL, Satyam R, Lenz T, Salunke RP, Shuaib M, Isaioglou I, Abel S, Gupta M, Esau L, Mourier T, Nugmanova R, Mfarrej S, Sivapurkar R, Stead Z, Rached FB, Otswal Y, Sougrat R, Dada A, Kadamany AF, Fischle W, Merzaban J, Knuepfer E, Ferguson DJP, Gupta I, Le Roch KG, Holder AA, Pain A. PfAP2-MRP DNA-binding protein is a master regulator of parasite pathogenesis during malaria parasite blood stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541898. [PMID: 37293082 PMCID: PMC10245809 DOI: 10.1101/2023.05.23.541898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Malaria pathogenicity results from the parasite's ability to invade, multiply within and then egress from the host red blood cell (RBC). Infected RBCs are remodeled, expressing antigenic variant proteins (such as PfEMP1, coded by the var gene family) for immune evasion and survival. These processes require the concerted actions of many proteins, but the molecular regulation is poorly understood. We have characterized an essential Plasmodium specific Apicomplexan AP2 (ApiAP2) transcription factor in Plasmodium falciparum (PfAP2-MRP; Master Regulator of Pathogenesis) during the intraerythrocytic developmental cycle (IDC). An inducible gene knockout approach showed that PfAP2-MRP is essential for development during the trophozoite stage, and critical for var gene regulation, merozoite development and parasite egress. ChIP-seq experiments performed at 16 hour post invasion (h.p.i.) and 40 h.p.i. matching the two peaks of PfAP2-MRP expression, demonstrate binding of PfAP2-MRP to the promoters of genes controlling trophozoite development and host cell remodeling at 16 h.p.i. and antigenic variation and pathogenicity at 40 h.p.i. Using single-cell RNA-seq and fluorescence-activated cell sorting, we show de-repression of most var genes in Δpfap2-mrp parasites that express multiple PfEMP1 proteins on the surface of infected RBCs. In addition, the Δpfap2-mrp parasites overexpress several early gametocyte marker genes at both 16 and 40 h.p.i., indicating a regulatory role in the sexual stage conversion. Using the Chromosomes Conformation Capture experiment (Hi-C), we demonstrate that deletion of PfAP2-MRP results in significant reduction of both intra-chromosomal and inter-chromosomal interactions in heterochromatin clusters. We conclude that PfAP2-MRP is a vital upstream transcriptional regulator controlling essential processes in two distinct developmental stages during the IDC that include parasite growth, chromatin structure and var gene expression.
Collapse
Affiliation(s)
- Amit Kumar Subudhi
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Judith L Green
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Rohit Satyam
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi, Delhi 110025, India
| | - Todd Lenz
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Rahul P Salunke
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Muhammad Shuaib
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ioannis Isaioglou
- Cell Migration and Signaling Laboratory, Bioscience Program, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Mohit Gupta
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Luke Esau
- KAUST Core Labs, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tobias Mourier
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Raushan Nugmanova
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sara Mfarrej
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Rupali Sivapurkar
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Zenaida Stead
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Fathia Ben Rached
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yogesh Otswal
- Laboratory of Chromatin Biochemistry, Bioscience Program, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Rachid Sougrat
- KAUST Core Labs, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ashraf Dada
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Abdullah Fuaad Kadamany
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Bioscience Program, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jasmeen Merzaban
- Cell Migration and Signaling Laboratory, Bioscience Program, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford OX1 2JD, United Kingdom
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Arnab Pain
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- International Institute for Zoonosis Control; Hokkaido University, Sapporo, Japan
| |
Collapse
|
32
|
Patterns of Heterochromatin Transitions Linked to Changes in the Expression of Plasmodium falciparum Clonally Variant Genes. Microbiol Spectr 2023; 11:e0304922. [PMID: 36515553 PMCID: PMC9927496 DOI: 10.1128/spectrum.03049-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The survival of malaria parasites in the changing human blood environment largely depends on their ability to alter gene expression by epigenetic mechanisms. The active state of Plasmodium falciparum clonally variant genes (CVGs) is associated with euchromatin characterized by the histone mark H3K9ac, whereas the silenced state is characterized by H3K9me3-based heterochromatin. Expression switches are linked to euchromatin-heterochromatin transitions, but these transitions have not been characterized for the majority of CVGs. To define the heterochromatin distribution patterns associated with the alternative transcriptional states of CVGs, we compared H3K9me3 occupancy at a genome-wide level among several parasite subclones of the same genetic background that differed in the transcriptional state of many CVGs. We found that de novo heterochromatin formation or the complete disruption of a heterochromatin domain is a relatively rare event, and for the majority of CVGs, expression switches can be explained by the expansion or retraction of heterochromatin domains. We identified different modalities of heterochromatin changes linked to transcriptional differences, but despite this complexity, heterochromatin distribution patterns generally enable the prediction of the transcriptional state of specific CVGs. We also found that in some subclones, several var genes were simultaneously in an active state. Furthermore, the heterochromatin levels in the putative regulatory region of the gdv1 antisense noncoding RNA, a regulator of sexual commitment, varied between parasite lines with different sexual conversion rates. IMPORTANCE The malaria parasite P. falciparum is responsible for more than half a million deaths every year. P. falciparum clonally variant genes (CVGs) mediate fundamental host-parasite interactions and play a key role in parasite adaptation to fluctuations in the conditions of the human host. The expression of CVGs is regulated at the epigenetic level by changes in the distribution of a type of chromatin called heterochromatin. Here, we describe at a genome-wide level the changes in the heterochromatin distribution associated with the different transcriptional states of CVGs. Our results also reveal a likely role for heterochromatin at a particular locus in determining the parasite investment in transmission to mosquitoes. Additionally, this data set will enable the prediction of the transcriptional state of CVGs from epigenomic data, which is important for the study of parasite adaptation to the conditions of the host in natural malaria infections.
Collapse
|
33
|
Oladejo DO, duselu GO, Dokunmu TM, Isewon I, Oyelade J, Okafor E, Iweala EEJ, Adebiyi E. In silico Structure Prediction, Molecular Docking, and Dynamic Simulation of Plasmodium falciparum AP2-I Transcription Factor. Bioinform Biol Insights 2023; 17:11779322221149616. [PMID: 36704725 PMCID: PMC9871981 DOI: 10.1177/11779322221149616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/18/2022] [Indexed: 01/22/2023] Open
Abstract
Plasmodium falciparum Apicomplexan Apetala 2 Invasion (PfAP2-I) transcription factor (TF) is a protein that regulates the expression of a subset of gene families involved in P. falciparum red blood cell (RBC) invasion. Inhibiting PfAP2-I TF with small molecules represents a potential new antimalarial therapeutic target to combat drug resistance, which this study aims to achieve. The 3D model structure of PfAP2-I was predicted ab initio using ROBETTA prediction tool and was validated using Save server 6.0 and MolProbity. Computed Atlas of Surface Topography of proteins (CASTp) 3.0 was used to predict the active sites of the PfAP2-I modeled structure. Pharmacophore modeling of the control ligand and PfAP2-I modeled structure was carried out using the Pharmit server to obtain several compounds used for molecular docking analysis. Molecular docking and postdocking studies were conducted using AutoDock vina and Discovery studio. The designed ligands' toxicity predictions and in silico drug-likeness were performed using the SwissADME predictor and OSIRIS Property Explorer. The modeled protein structure from the ROBETTA showed a validation result of 96.827 for ERRAT, 90.2% of the amino acid residues in the most favored region for the Ramachandran plot, and MolProbity score of 1.30 in the 98th percentile. Five (5) best hit compounds from molecular docking analysis were selected based on their binding affinity (between -8.9 and -11.7 Kcal/mol) to the active site of PfAP2-I and were considered for postdocking studies. For the absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties, compound MCULE-7146940834 had the highest drug score (0.63) and drug-likeness (6.76). MCULE-7146940834 maintained a stable conformation within the flexible protein's active site during simulation. The good, estimated binding energies, drug-likeness, drug score, and molecular dynamics simulation interaction observed for MCULE-7146940834 against PfAP2-I show that MCULE-7146940834 can be considered a lead candidate for PfAP2-I inhibition. Experimental validations should be carried out to ascertain the efficacy of these predicted best hit compounds.
Collapse
Affiliation(s)
- David O Oladejo
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Biochemistry, College of
Science and Technology, Covenant University, Ota, Nigeria
| | - Gbolahan O duselu
- Department of Chemistry, College of
Science and Technology, Covenant University, Ota, Nigeria
| | - Titilope M Dokunmu
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Biochemistry, College of
Science and Technology, Covenant University, Ota, Nigeria
| | - Itunuoluwa Isewon
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Computer and Information
Science, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Jelili Oyelade
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Computer and Information
Science, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Esther Okafor
- Department of Biochemistry, College of
Science and Technology, Covenant University, Ota, Nigeria
| | - Emeka EJ Iweala
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Biochemistry, College of
Science and Technology, Covenant University, Ota, Nigeria
| | - Ezekiel Adebiyi
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Computer and Information
Science, College of Science and Technology, Covenant University, Ota, Nigeria
| |
Collapse
|
34
|
Niaré K, Chege T, Rosenkranz M, Mwai K, Saßmannshausen Z, Odera D, Nyamako L, Tuju J, Alfred T, Waitumbi JN, Ogutu B, Sirima SB, Awandare G, Kouriba B, Rayner JC, Osier FHA. Characterization of a novel Plasmodium falciparum merozoite surface antigen and potential vaccine target. Front Immunol 2023; 14:1156806. [PMID: 37122725 PMCID: PMC10140549 DOI: 10.3389/fimmu.2023.1156806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Detailed analyses of genetic diversity, antigenic variability, protein localization and immunological responses are vital for the prioritization of novel malaria vaccine candidates. Comprehensive approaches to determine the most appropriate antigen variants needed to provide broad protection are challenging and consequently rarely undertaken. Methods Here, we characterized PF3D7_1136200, which we named Asparagine-Rich Merozoite Antigen (ARMA) based on the analysis of its sequence, localization and immunogenicity. We analyzed IgG and IgM responses against the common variants of ARMA in independent prospective cohort studies in Burkina Faso (N = 228), Kenya (N = 252) and Mali (N = 195) using a custom microarray, Div-KILCHIP. Results We found a marked population structure between parasites from Africa and Asia. African isolates shared 34 common haplotypes, including a dominant pair although the overall selection pressure was directional (Tajima's D = -2.57; Fu and Li's F = -9.69; P < 0.02). ARMA was localized to the merozoite surface, IgG antibodies induced Fc-mediated degranulation of natural killer cells and strongly inhibited parasite growth in vitro. We found profound serological diversity, but IgG and IgM responses were highly correlated and a hierarchical clustering analysis identified only three major serogroups. Protective IgG and IgM antibodies appeared to target both cross-reactive and distinct epitopes across variants. However, combinations of IgG and IgM antibodies against selected variants were associated with complete protection against clinical episodes of malaria. Discussion Our systematic strategy exploits genomic data to deduce the handful of antigen variants with the strongest potential to induce broad protection and may be broadly applicable to other complex pathogens for which effective vaccines remain elusive.
Collapse
Affiliation(s)
- Karamoko Niaré
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
- Malaria Research and Training Centre (MRTC), Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
- *Correspondence: Karamoko Niaré, ; Faith H. A. Osier,
| | - Timothy Chege
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
| | - Micha Rosenkranz
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kennedy Mwai
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Zoe Saßmannshausen
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dennis Odera
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lydia Nyamako
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
| | - James Tuju
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
| | - Tiono Alfred
- Public Health Department, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - John N. Waitumbi
- Basic Science Laboratory, US Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya
| | - Bernhards Ogutu
- Kenya Medical Research Institute, Centre for Clinical Research, Nairobi, Kenya
| | | | - Gordon Awandare
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Bourema Kouriba
- Malaria Research and Training Centre (MRTC), Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- Centre d’Infectiologie Charles Mérieux-Mali, Bamako, Mali
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Faith H. A. Osier
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Karamoko Niaré, ; Faith H. A. Osier,
| |
Collapse
|
35
|
Singh AK, Phillips M, Alkrimi S, Tonelli M, Boyson SP, Malone KL, Nix JC, Glass KC. Structural insights into acetylated histone ligand recognition by the BDP1 bromodomain of Plasmodium falciparum. Int J Biol Macromol 2022; 223:316-326. [PMID: 36328269 PMCID: PMC10093686 DOI: 10.1016/j.ijbiomac.2022.10.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Plasmodium falciparum requires a two-host system, moving between Anopheles mosquito and humans, to complete its life cycle. To overcome such dynamic growth conditions its histones undergo various post-translational modifications to regulate gene expression. The P. falciparum Bromodomain Protein 1 (PfBDP1) has been shown to interact with acetylated lysine modifications on histone H3 to regulate the expression of invasion-related genes. Here, we investigated the ability of the PfBDP1 bromodomain to interact with acetyllsyine modifications on additional core and variant histones. A crystal structure of the PfBDP1 bromodomain (PfBDP1-BRD) reveals it contains the conserved bromodomain fold, but our comparative analysis between the PfBDP1-BRD and human bromodomain families indicates it has a unique binding mechanism. Solution NMR spectroscopy and ITC binding assays carried out with acetylated histone ligands demonstrate that it preferentially recognizes tetra-acetylated histone H4, and we detected weaker interactions with multi-acetylated H2A.Z in addition to the previously reported interactions with acetylated histone H3. Our findings indicate PfBDP1 may play additional roles in the P. falciparum life cycle, and the distinctive features of its bromodomain binding pocket could be leveraged for the development of new therapeutic agents to help overcome the continuously evolving resistance of P. falciparum against currently available drugs.
Collapse
Affiliation(s)
- Ajit Kumar Singh
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Margaret Phillips
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Saleh Alkrimi
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA
| | - Marco Tonelli
- NMRFAM and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel P Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA
| | - Kiera L Malone
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Berkeley, CA 94720, USA
| | - Karen C Glass
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA.
| |
Collapse
|
36
|
Babai R, Izrael R, Vértessy BG. Characterization of the dynamics of Plasmodium falciparum deoxynucleotide-triphosphate pool in a stage-specific manner. Sci Rep 2022; 12:19926. [PMID: 36402851 PMCID: PMC9675800 DOI: 10.1038/s41598-022-23807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022] Open
Abstract
Understanding and characterizing the molecular background of the maintenance of genomic integrity might be a major factor in comprehending the exceptional ability of the malaria parasite, Plasmodium falciparum to adapt at a fast pace to antimalarials. A balanced nucleotide pool is an essential factor for high-fidelity replication. The lack of detailed studies on deoxynucleotide-triphosphate (dNTP) pools in various intraerythrocytic stages of Plasmodium falciparum motivated our present study. Here, we focused on the building blocks of DNA and utilized an EvaGreen-based dNTP incorporation assay to successfully measure the temporal dynamics of dNTPs in every intraerythrocytic stage and in drug-treated trophozoites. Our findings show that the ratio of dNTPs in the ring-stage parasites significantly differs from the more mature trophozoite and schizont stages. We were also able to detect dGTP levels that have never been shown before and found it to be the least abundant dNTP in all stages. Treatment with WR99210, a TS-DHFR inhibitor drug, affected not only dTTP, but also dGTP levels, despite its presumed selective action on pyrimidine biosynthesis. Results from our studies might assist in a better understanding of genome integrity mechanisms and may potentially lead to novel drug related aspects involving purine and pyrimidine metabolic targets.
Collapse
Affiliation(s)
- Réka Babai
- grid.425578.90000 0004 0512 3755Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117 Hungary ,grid.6759.d0000 0001 2180 0451George A. Olah Doctoral School of Chemistry and Chemical Technology, BME Budapest University of Technology and Economics, Budapest, 1111 Hungary ,grid.6759.d0000 0001 2180 0451Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Budapest, 1111 Hungary
| | - Richard Izrael
- grid.425578.90000 0004 0512 3755Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117 Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, 6720 Hungary
| | - Beáta G. Vértessy
- grid.425578.90000 0004 0512 3755Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117 Hungary ,grid.6759.d0000 0001 2180 0451Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Budapest, 1111 Hungary
| |
Collapse
|
37
|
Russell TJ, De Silva EK, Crowley VM, Shaw-Saliba K, Dube N, Josling G, Pasaje CFA, Kouskoumvekaki I, Panagiotou G, Niles JC, Jacobs-Lorena M, Denise Okafor C, Gamo FJ, Llinás M. Inhibitors of ApiAP2 protein DNA binding exhibit multistage activity against Plasmodium parasites. PLoS Pathog 2022; 18:e1010887. [PMID: 36223427 PMCID: PMC9591056 DOI: 10.1371/journal.ppat.1010887] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/24/2022] [Accepted: 09/17/2022] [Indexed: 11/06/2022] Open
Abstract
Plasmodium parasites are reliant on the Apicomplexan AP2 (ApiAP2) transcription factor family to regulate gene expression programs. AP2 DNA binding domains have no homologs in the human or mosquito host genomes, making them potential antimalarial drug targets. Using an in-silico screen to dock thousands of small molecules into the crystal structure of the AP2-EXP (Pf3D7_1466400) AP2 domain (PDB:3IGM), we identified putative AP2-EXP interacting compounds. Four compounds were found to block DNA binding by AP2-EXP and at least one additional ApiAP2 protein. Our top ApiAP2 competitor compound perturbs the transcriptome of P. falciparum trophozoites and results in a decrease in abundance of log2 fold change > 2 for 50% (46/93) of AP2-EXP target genes. Additionally, two ApiAP2 competitor compounds have multi-stage anti-Plasmodium activity against blood and mosquito stage parasites. In summary, we describe a novel set of antimalarial compounds that interact with AP2 DNA binding domains. These compounds may be used for future chemical genetic interrogation of ApiAP2 proteins or serve as starting points for a new class of antimalarial therapeutics.
Collapse
Affiliation(s)
- Timothy James Russell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Pennsylvania, United States of America
- Huck Institutes Center for Eukaryotic Gene Regulation (CEGR), Pennsylvania State University, State College, Pennsylvania, United States of America
- Huck Institutes Center for Malaria Research (CMaR), Pennsylvania State University, State College, Pennsylvania, United States of America
- Huck Institutes Center for Infectious Disease Dynamics, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Erandi K. De Silva
- Lewis-Singler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Valerie M. Crowley
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Kathryn Shaw-Saliba
- Department of Molecular Biology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Namita Dube
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Gabrielle Josling
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Pennsylvania, United States of America
- Huck Institutes Center for Malaria Research (CMaR), Pennsylvania State University, State College, Pennsylvania, United States of America
- Huck Institutes Center for Infectious Disease Dynamics, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Charisse Flerida A. Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Irene Kouskoumvekaki
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Products Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Department of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Marcelo Jacobs-Lorena
- Department of Molecular Biology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - C. Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Pennsylvania, United States of America
- Department of Chemistry, Pennsylvania State University, State College, Pennsylvania, United States of America
| | | | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Pennsylvania, United States of America
- Huck Institutes Center for Eukaryotic Gene Regulation (CEGR), Pennsylvania State University, State College, Pennsylvania, United States of America
- Huck Institutes Center for Malaria Research (CMaR), Pennsylvania State University, State College, Pennsylvania, United States of America
- Huck Institutes Center for Infectious Disease Dynamics, Pennsylvania State University, State College, Pennsylvania, United States of America
- Department of Chemistry, Pennsylvania State University, State College, Pennsylvania, United States of America
| |
Collapse
|
38
|
Ulahannan N, Cutler R, Doña-Termine R, Simões-Pires CA, Wijetunga NA, Croken MM, Johnston AD, Kong Y, Maqbool SB, Suzuki M, Greally JM. Genomic insights into host and parasite interactions during intracellular infection by Toxoplasma gondii. PLoS One 2022; 17:e0275226. [PMID: 36178892 PMCID: PMC9524707 DOI: 10.1371/journal.pone.0275226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
To gain insights into the molecular interactions of an intracellular pathogen and its host cell, we studied the gene expression and chromatin states of human fibroblasts infected with the Apicomplexan parasite Toxoplasma gondii. We show a striking activation of host cell genes that regulate a number of cellular processes, some of which are protective of the host cell, others likely to be advantageous to the pathogen. The simultaneous capture of host and parasite genomic information allowed us to gain insights into the regulation of the T. gondii genome. We show how chromatin accessibility and transcriptional profiling together permit novel annotation of the parasite's genome, including more accurate mapping of known genes and the identification of new genes and cis-regulatory elements. Motif analysis reveals not only the known T. gondii AP2 transcription factor-binding site but also a previously-undiscovered candidate TATA box-containing motif at one-quarter of promoters. By inferring the transcription factor and upstream cell signaling responses involved in the host cell, we can use genomic information to gain insights into T. gondii's perturbation of host cell physiology. Our resulting model builds on previously-described human host cell signalling responses to T. gondii infection, linked to induction of specific transcription factors, some of which appear to be solely protective of the host cell, others of which appear to be co-opted by the pathogen to enhance its own survival.
Collapse
Affiliation(s)
- Netha Ulahannan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Ronald Cutler
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Reanna Doña-Termine
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Claudia A. Simões-Pires
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - N. Ari Wijetunga
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Matthew McKnight Croken
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Andrew D. Johnston
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Yu Kong
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Shahina B. Maqbool
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - John M. Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| |
Collapse
|
39
|
Rezvani Y, Keroack CD, Elsworth B, Arriojas A, Gubbels MJ, Duraisingh MT, Zarringhalam K. Comparative single-cell transcriptional atlases of Babesia species reveal conserved and species-specific expression profiles. PLoS Biol 2022; 20:e3001816. [PMID: 36137068 PMCID: PMC9531838 DOI: 10.1371/journal.pbio.3001816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/04/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Babesia is a genus of apicomplexan parasites that infect red blood cells in vertebrate hosts. Pathology occurs during rapid replication cycles in the asexual blood stage of infection. Current knowledge of Babesia replication cycle progression and regulation is limited and relies mostly on comparative studies with related parasites. Due to limitations in synchronizing Babesia parasites, fine-scale time-course transcriptomic resources are not readily available. Single-cell transcriptomics provides a powerful unbiased alternative for profiling asynchronous cell populations. Here, we applied single-cell RNA sequencing to 3 Babesia species (B. divergens, B. bovis, and B. bigemina). We used analytical approaches and algorithms to map the replication cycle and construct pseudo-synchronized time-course gene expression profiles. We identify clusters of co-expressed genes showing "just-in-time" expression profiles, with gradually cascading peaks throughout asexual development. Moreover, clustering analysis of reconstructed gene curves reveals coordinated timing of peak expression in epigenetic markers and transcription factors. Using a regularized Gaussian graphical model, we reconstructed co-expression networks and identified conserved and species-specific nodes. Motif analysis of a co-expression interactome of AP2 transcription factors identified specific motifs previously reported to play a role in DNA replication in Plasmodium species. Finally, we present an interactive web application to visualize and interactively explore the datasets.
Collapse
Affiliation(s)
- Yasaman Rezvani
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Caroline D. Keroack
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Argenis Arriojas
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
40
|
Activity-Based Protein Profiling of Human and Plasmodium Serine Hydrolases and Interrogation of Potential Antimalarial Targets. iScience 2022; 25:104996. [PMID: 36105595 PMCID: PMC9464883 DOI: 10.1016/j.isci.2022.104996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Malaria remains a global health issue requiring the identification of novel therapeutic targets to combat drug resistance. Metabolic serine hydrolases are druggable enzymes playing essential roles in lipid metabolism. However, very few have been investigated in malaria-causing parasites. Here, we used fluorophosphonate broad-spectrum activity-based probes and quantitative chemical proteomics to annotate and profile the activity of more than half of predicted serine hydrolases in P. falciparum across the erythrocytic cycle. Using conditional genetics, we demonstrate that the activities of four serine hydrolases, previously annotated as essential (or important) in genetic screens, are actually dispensable for parasite replication. Of importance, we also identified eight human serine hydrolases that are specifically activated at different developmental stages. Chemical inhibition of two of them blocks parasite replication. This strongly suggests that parasites co-opt the activity of host enzymes and that this opens a new drug development strategy against which the parasites are less likely to develop resistance. P. falciparum has 48 predicted metabolic SHs. Many react with the ABP, FP-N3 The activity of 25 PfSHs and 8 HsSHs was profiled throughout the asexual life cycle Catalytic mutants of 4 PfSHs (formerly held essential) had no parasite growth effect Selective inhibitors for 2 HsSHs (APEH and LPLA2) affected parasite growth
Collapse
|
41
|
CDC50 Orthologues in Plasmodium falciparum Have Distinct Roles in Merozoite Egress and Trophozoite Maturation. mBio 2022; 13:e0163522. [PMID: 35862778 PMCID: PMC9426505 DOI: 10.1128/mbio.01635-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In model organisms, type IV ATPases (P4-ATPases) require cell division control protein 50 (CDC50) chaperones for their phospholipid flipping activity. In the malaria parasite Plasmodium falciparum, guanylyl cyclase alpha (GCα) is an integral membrane protein that is essential for release (egress) of merozoites from their host erythrocytes. GCα is unusual in that it contains both a C-terminal cyclase domain and an N-terminal P4-ATPase domain of unknown function. We sought to investigate whether any of the three CDC50 orthologues (termed A, B, and C) encoded by P. falciparum are required for GCα function. Using gene tagging and conditional gene disruption, we demonstrate that CDC50B and CDC50C but not CDC50A are expressed in the clinically important asexual blood stages and that CDC50B is a binding partner of GCα whereas CDC50C is the binding partner of another putative P4-ATPase, phospholipid-transporting ATPase 2 (ATP2). Our findings indicate that CDC50B has no essential role for intraerythrocytic parasite maturation but modulates the rate of parasite egress by interacting with GCα for optimal cGMP synthesis. In contrast, CDC50C is essential for blood stage trophozoite maturation. Additionally, we find that the CDC50C-ATP2 complex may influence parasite endocytosis of host cell hemoglobin and consequently hemozoin formation.
Collapse
|
42
|
Lyons FMT, Gabriela M, Tham WH, Dietrich MH. Plasmodium 6-Cysteine Proteins: Functional Diversity, Transmission-Blocking Antibodies and Structural Scaffolds. Front Cell Infect Microbiol 2022; 12:945924. [PMID: 35899047 PMCID: PMC9309271 DOI: 10.3389/fcimb.2022.945924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
The 6-cysteine protein family is one of the most abundant surface antigens that are expressed throughout the Plasmodium falciparum life cycle. Many members of the 6-cysteine family have critical roles in parasite development across the life cycle in parasite transmission, evasion of the host immune response and host cell invasion. The common feature of the family is the 6-cysteine domain, also referred to as s48/45 domain, which is conserved across Aconoidasida. This review summarizes the current approaches for recombinant expression for 6-cysteine proteins, monoclonal antibodies against 6-cysteine proteins that block transmission and the growing collection of crystal structures that provide insights into the functional domains of this protein family.
Collapse
Affiliation(s)
- Frankie M. T. Lyons
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Mikha Gabriela
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Melanie H. Dietrich
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
43
|
Kubota R, Ishino T, Iwanaga S, Shinzawa N. Evaluation of the Effect of Gene Duplication by Genome Editing on Drug Resistance in Plasmodium falciparum. Front Cell Infect Microbiol 2022; 12:915656. [PMID: 35865822 PMCID: PMC9294729 DOI: 10.3389/fcimb.2022.915656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
The emergence and spread of drug-resistant Plasmodium falciparum have compromised antimalarial efficacy and threatened the global malaria elimination campaign using artemisinin combination therapies. The impacts of amino acid substitutions in antimalarial drug resistance-associated genes on drug susceptibility have been investigated; however, the effects of amplification of those genes remain unexplored due to the lack of robust genetic approaches. Here, we generated transgenic P. falciparum parasites with an additional copy of a drug resistance-associated gene using the highly efficient CRISPR/Cas9 system and investigated their drug response. Insertion of a drug resistance-associated gene expression cassette in the genome resulted in a roughly twofold increase of mRNA levels of the target gene mdr1, which encodes multidrug resistance protein 1. The gene duplication event contributed to resistance to mefloquine, lumefantrine, and dihydroartemisinin, while the duplication of a genomic region encoding plasmepsin 2 and plasmepsin 3 did not affect resistance to antimalarial drugs, including piperaquine. We further demonstrated that mdr1 mRNA expression levels are strongly associated with mefloquine resistance in several field-derived P. falciparum lines with various genetic backgrounds. This study provides compelling evidence that mdr1 could serve as a molecular marker for the surveillance of mefloquine-resistant parasites. Long DNA integration into parasite genomes using the CRISPR/Cas9 system provides a useful tool for the evaluation of the effect of copy number variation on drug response.
Collapse
Affiliation(s)
- Rie Kubota
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Naoaki Shinzawa
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- *Correspondence: Naoaki Shinzawa,
| |
Collapse
|
44
|
Liang X, Boonhok R, Siddiqui FA, Xiao B, Li X, Qin J, Min H, Jiang L, Cui L, Miao J. A Leak-Free Inducible CRISPRi/a System for Gene Functional Studies in Plasmodium falciparum. Microbiol Spectr 2022; 10:e0278221. [PMID: 35510853 PMCID: PMC9241666 DOI: 10.1128/spectrum.02782-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/18/2022] [Indexed: 12/16/2022] Open
Abstract
By fusing catalytically dead Cas9 (dCas9) to active domains of histone deacetylase (Sir2a) or acetyltransferase (GCN5), this CRISPR interference/activation (CRISPRi/a) system allows gene regulation at the transcriptional level without causing permanent changes in the parasite genome. However, the constitutive expression of dCas9 poses a challenge for studying essential genes, which may lead to adaptive changes in the parasite, masking the true phenotypes. Here, we developed a leak-free inducible CRISPRi/a system by integrating the DiCre/loxP regulon to allow the expression of dCas9-GCN5/-Sir2a upon transient induction with rapamycin, which allows convenient transcriptional regulation of a gene of interest by introducing a guide RNA targeting its transcription start region. Using eight genes that are either silent or expressed from low to high levels during asexual erythrocytic development, we evaluated the robustness and versatility of this system in the asexual parasites. For most genes analyzed, this inducible CRISPRi/a system led to 1.5- to 3-fold up-or downregulation of the target genes at the mRNA level. Alteration in the expression of PfK13 and PfMYST resulted in altered sensitivities to artemisinin. For autophagy-related protein 18, an essential gene related to artemisinin resistance, a >2-fold up- or downregulation was obtained by inducible CRISPRi/a, leading to growth retardation. For the master regulator of gametocytogenesis, PfAP2-G, a >10-fold increase of the PfAP2-G transcripts was obtained by CRISPRa, resulting in >4-fold higher gametocytemia in the induced parasites. Additionally, inducible CRISPRi/a could also regulate gene expression in gametocytes. This inducible epigenetic regulation system offers a fast way of studying gene functions in Plasmodium falciparum. IMPORTANCE Understanding the fundamental biology of malaria parasites through functional genetic/genomic studies is critical for identifying novel targets for antimalarial development. Conditional knockout/knockdown systems are required to study essential genes in the haploid blood stages of the parasite. In this study, we developed an inducible CRISPRi/a system via the integration of DiCre/loxP. We evaluated the robustness and versatility of this system by activating or repressing eight selected genes and achieved up- and downregulation of the targeted genes located in both the euchromatin and heterochromatin regions. This system offers the malaria research community another tool for functional genetic studies.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Rachasak Boonhok
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Faiza Amber Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Bo Xiao
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Pasteur Institute of Shanghai, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Junling Qin
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Lubin Jiang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Pasteur Institute of Shanghai, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
45
|
Salman AA, Goldring JPD. Expression and copper binding characteristics of Plasmodium falciparum cytochrome c oxidase assembly factor 11, Cox11. Malar J 2022; 21:173. [PMID: 35672733 PMCID: PMC9172173 DOI: 10.1186/s12936-022-04188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Background Copper is an essential metal for living organisms as a catalytic co-factor for important enzymes, like cytochrome c oxidase the final enzyme in the electron transport chain. Plasmodium falciparum parasites in infected red blood cells are killed by excess copper and development in erythrocytes is inhibited by copper chelators. Cytochrome c oxidase in yeast obtains copper for the CuB site in the Cox1 subunit from Cox11. Methods A 162 amino acid carboxy-terminal domain of the P. falciparum Cox11 ortholog (PfCox11Ct) was recombinantly expressed and the rMBPPfCox11Ct affinity purified. Copper binding was measured in vitro and in Escherichia coli host cells. Site directed mutagenesis was used to identify key copper binding cysteines. Antibodies confirmed the expression of the native protein. Results rMBPPfCox11Ct was expressed as a 62 kDa protein fused with the maltose binding protein and affinity purified. rMBPPfCox11Ct bound copper measured by: a bicinchoninic acid release assay; atomic absorption spectroscopy; a bacterial host growth inhibition assay; ascorbate oxidation inhibition and in a thermal shift assay. The cysteine 157 amino acid was shown to be important for in vitro copper binding by PfCox11whilst Cys 60 was not. The native protein was detected by antibodies against rMBPPfCox11Ct. Conclusions Plasmodium spp. express the PfCox11 protein which shares structural features and copper binding motifs with Cox11 from other species. PfCox11 binds copper and is, therefore, predicted to transfer copper to the CuB site of Plasmodium cytochrome c oxidase. Characterization of Plasmodium spp. proteins involved in copper metabolism will help sceintists understand the role of cytochrome c oxidase and this essential metal in Plasmodium homeostasis.
Collapse
|
46
|
Quinn JE, Jeninga MD, Limm K, Pareek K, Meißgeier T, Bachmann A, Duffy MF, Petter M. The Putative Bromodomain Protein PfBDP7 of the Human Malaria Parasite Plasmodium Falciparum Cooperates With PfBDP1 in the Silencing of Variant Surface Antigen Expression. Front Cell Dev Biol 2022; 10:816558. [PMID: 35493110 PMCID: PMC9039026 DOI: 10.3389/fcell.2022.816558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/18/2022] [Indexed: 01/08/2023] Open
Abstract
Epigenetic regulation is a critical mechanism in controlling virulence, differentiation, and survival of the human malaria parasite Plasmodium (P.) falciparum. Bromodomain proteins contribute to this process by binding to acetylated lysine residues of histones and thereby targeting the gene regulatory machinery to gene promoters. A protein complex containing the P. falciparum bromodomain proteins (PfBDP) 1 and PfBDP2 (BDP1/BDP2 core complex) was previously shown to play an essential role for the correct transcription of invasion related genes. Here, we performed a functional characterization of a third component of this complex, which we dubbed PfBDP7, because structural modelling predicted a typical bromodomain fold. We confirmed that PfBDP7 is a nuclear protein that interacts with PfBDP1 at invasion gene promoters in mature schizont stage parasites and contributes to their transcription. Although partial depletion of PfBDP7 showed no significant effect on parasite viability, conditional knock down of either PfBDP7 or PfBDP1 resulted in the de-repression of variant surface antigens (VSA), which are important pathogenicity factors. This de-repression was evident both on mRNA and protein level. To understand the underlying mechanism, we mapped the genome wide binding sites of PfBDP7 by ChIPseq and showed that in early schizonts, PfBDP7 and PfBDP1 are commonly enriched in heterochromatic regions across the gene body of all VSA families, including genes coding for PfEMP1, RIFIN, STEVOR, and PfMC-2TM. This suggests that PfBDP7 and PfBDP1 contribute to the silencing of VSAs by associating with heterochromatin. In conclusion, we identified PfBDP7 as a chromatin binding protein that is a constitutive part of the P. falciparum BDP1/BDP2 core complex and established PfBDP1 and PfBDP7 as novel players in the silencing of heterochromatin regulated virulence gene families of the malaria parasite P. falciparum.
Collapse
Affiliation(s)
- Jennifer E. Quinn
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Myriam D. Jeninga
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Limm
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Kapil Pareek
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tina Meißgeier
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Bachmann
- Department of Cellular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Michael F. Duffy
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute, Parkville, VIC, Australia
| | - Michaela Petter
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia
- *Correspondence: Michaela Petter,
| |
Collapse
|
47
|
Hollin T, Abel S, Falla A, Pasaje CFA, Bhatia A, Hur M, Kirkwood JS, Saraf A, Prudhomme J, De Souza A, Florens L, Niles JC, Le Roch KG. Functional genomics of RAP proteins and their role in mitoribosome regulation in Plasmodium falciparum. Nat Commun 2022; 13:1275. [PMID: 35277503 PMCID: PMC8917122 DOI: 10.1038/s41467-022-28981-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
The RAP (RNA-binding domain abundant in Apicomplexans) protein family has been identified in various organisms. Despite expansion of this protein family in apicomplexan parasites, their main biological functions remain unknown. In this study, we use inducible knockdown studies in the human malaria parasite, Plasmodium falciparum, to show that two RAP proteins, PF3D7_0105200 (PfRAP01) and PF3D7_1470600 (PfRAP21), are essential for parasite survival and localize to the mitochondrion. Using transcriptomics, metabolomics, and proteomics profiling experiments, we further demonstrate that these RAP proteins are involved in mitochondrial RNA metabolism. Using high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (eCLIP-seq), we validate that PfRAP01 and PfRAP21 are true RNA-binding proteins and interact specifically with mitochondrial rRNAs. Finally, mitochondrial enrichment experiments followed by deep sequencing of small RNAs demonstrate that PfRAP21 controls mitochondrial rRNA expression. Collectively, our results establish the role of these RAP proteins in mitoribosome activity and contribute to further understanding this protein family in malaria parasites.
Collapse
Affiliation(s)
- Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Alejandra Falla
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Anil Bhatia
- Metabolomics Core Facility, University of California, Riverside, CA, 92521, USA
| | - Manhoi Hur
- Metabolomics Core Facility, University of California, Riverside, CA, 92521, USA
| | - Jay S Kirkwood
- Metabolomics Core Facility, University of California, Riverside, CA, 92521, USA
| | - Anita Saraf
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Jacques Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Amancio De Souza
- Metabolomics Core Facility, University of California, Riverside, CA, 92521, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
48
|
Siddiqui G, De Paoli A, MacRaild CA, Sexton AE, Boulet C, Shah AD, Batty MB, Schittenhelm RB, Carvalho TG, Creek DJ. A new mass spectral library for high-coverage and reproducible analysis of the Plasmodium falciparum-infected red blood cell proteome. Gigascience 2022; 11:giac008. [PMID: 35254426 PMCID: PMC8900498 DOI: 10.1093/gigascience/giac008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/24/2021] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Plasmodium falciparum causes the majority of malaria mortality worldwide, and the disease occurs during the asexual red blood cell (RBC) stage of infection. In the absence of an effective and available vaccine, and with increasing drug resistance, asexual RBC stage parasites are an important research focus. In recent years, mass spectrometry-based proteomics using data-dependent acquisition has been extensively used to understand the biochemical processes within the parasite. However, data-dependent acquisition is problematic for the detection of low-abundance proteins and proteome coverage and has poor run-to-run reproducibility. RESULTS Here, we present a comprehensive P. falciparum-infected RBC (iRBC) spectral library to measure the abundance of 44,449 peptides from 3,113 P. falciparum and 1,617 RBC proteins using a data-independent acquisition mass spectrometric approach. The spectral library includes proteins expressed in the 3 morphologically distinct RBC stages (ring, trophozoite, schizont), the RBC compartment of trophozoite-iRBCs, and the cytosolic fraction from uninfected RBCs. This spectral library contains 87% of all P. falciparum proteins that have previously been reported with protein-level evidence in blood stages, as well as 692 previously unidentified proteins. The P. falciparum spectral library was successfully applied to generate semi-quantitative proteomics datasets that characterize the 3 distinct asexual parasite stages in RBCs, and compared artemisinin-resistant (Cam3.IIR539T) and artemisinin-sensitive (Cam3.IIrev) parasites. CONCLUSION A reproducible, high-coverage proteomics spectral library and analysis method has been generated for investigating sets of proteins expressed in the iRBC stage of P. falciparum malaria. This will provide a foundation for an improved understanding of parasite biology, pathogenesis, drug mechanisms, and vaccine candidate discovery for malaria.
Collapse
Affiliation(s)
- Ghizal Siddiqui
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Amanda De Paoli
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Christopher A MacRaild
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Anna E Sexton
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Coralie Boulet
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Anup D Shah
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Monash Bioinformatics Platform,
Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Mitchell B Batty
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Teresa G Carvalho
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Darren J Creek
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
49
|
Fang H, Luo Z, Lin C. Epigenetic reorganization during early embryonic lineage specification. Genes Genomics 2022; 44:379-387. [PMID: 35133623 DOI: 10.1007/s13258-021-01213-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dynamic chromatin reorganization occurs during two waves of cell lineage specification process, blastocyst formation and gastrulation, to generate distinct cell types. Epigenetic defects have been associated with severe developmental defects and diseases. How epigenetic remodeling coordinates the two lineage specification waves is becoming uncovered, benefiting from the development and application of new technologies including low-input or single-cell epigenome analysis approached in the past few years. OBJECTIVE In this review, we aim to highlight the most recent findings on epigenetic remodeling in cell lineage specification during blastocyst formation and gastrulation. METHODS First, we introduce how DNA methylation dynamically changes in blastocyst formation and gastrulation and its function in transcriptional regulation lineage-specific genes. Then, we discuss widespread remodeling of histone modification at promoters and enhancers in orchestrating the trajectory of cell lineage specification. Finally, we review dynamics of chromatin accessibility and 3D structure regulating developmental gene expression and associating with specific transcription factor binding events at stage specific manner. We also highlight the key questions that remain to be answered to fully understand chromatin regulation and reorganization in lineage specification. CONCLUSION Here, we summarize the recent advances and discoveries on epigenetic reorganization and its roles in blastocyst formation and gastrulation, and how it cooperates with the lineage specification, painting from global sequencing data from mouse in vivo tissues.
Collapse
Affiliation(s)
- Haitong Fang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
| | - Zhuojuan Luo
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Chengqi Lin
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
50
|
Frasse PM, Miller JJ, Polino AJ, Soleimani E, Zhu JS, Jakeman DL, Jez JM, Goldberg DE, Odom John AR. Enzymatic and structural characterization of HAD5, an essential phosphomannomutase of malaria-causing parasites. J Biol Chem 2022; 298:101550. [PMID: 34973333 PMCID: PMC8808168 DOI: 10.1016/j.jbc.2021.101550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/05/2022] Open
Abstract
The malaria-causing parasite Plasmodium falciparum is responsible for over 200 million infections and 400,000 deaths per year. At multiple stages during its complex life cycle, P. falciparum expresses several essential proteins tethered to its surface by glycosylphosphatidylinositol (GPI) anchors, which are critical for biological processes such as parasite egress and reinvasion of host red blood cells. Targeting this pathway therapeutically has the potential to broadly impact parasite development across several life stages. Here, we characterize an upstream component of parasite GPI anchor biosynthesis, the putative phosphomannomutase (PMM) (EC 5.4.2.8), HAD5 (PF3D7_1017400). We confirmed the PMM and phosphoglucomutase activities of purified recombinant HAD5 by developing novel linked enzyme biochemical assays. By regulating the expression of HAD5 in transgenic parasites with a TetR-DOZI-inducible knockdown system, we demonstrated that HAD5 is required for malaria parasite egress and erythrocyte reinvasion, and we assessed the role of HAD5 in GPI anchor synthesis by autoradiography of radiolabeled glucosamine and thin layer chromatography. Finally, we determined the three-dimensional X-ray crystal structure of HAD5 and identified a substrate analog that specifically inhibits HAD5 compared to orthologous human PMMs in a time-dependent manner. These findings demonstrate that the GPI anchor biosynthesis pathway is exceptionally sensitive to inhibition in parasites and that HAD5 has potential as a specific, multistage antimalarial target.
Collapse
Affiliation(s)
- Philip M Frasse
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Justin J Miller
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alexander J Polino
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ebrahim Soleimani
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Chemistry, Razi University, Kermanshah, Iran
| | - Jian-She Zhu
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David L Jakeman
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Audrey R Odom John
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|