1
|
Liu P, Zhou J, Zhang L, Ji H, Xu J, Xu Q, Yao M, Chi X, Qian J, Hong Q. A longitudinal study on the development trajectory of auditory processing and its relationship with language development in Chinese preschool children with autism spectrum disorder: study protocol. BMC Psychiatry 2024; 24:723. [PMID: 39443889 PMCID: PMC11498963 DOI: 10.1186/s12888-024-06099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND It was reported that more than 96% of autism spectrum disorder (ASD) children are accompanied with different degrees of sensory processing abnormalities, and up to 50% of ASD children exhibit abnormal auditory response. Studies have confirmed that some ASD children's abnormal auditory response may be related to their abnormal auditory processing. Prior research demonstrated that ASD children's auditory processing has high heterogeneity, thus, ASD children's auditory processing may have different developmental trajectories. However, no study has concentrated on the developmental trajectories of ASD children's auditory processing. In addition, auditory processing plays a crucial role in ASD children's language development, thus, ASD children's different language development outcomes may be related to different auditory processing development tracks. Therefore, this study aims to explore the developmental trajectory of auditory processing in ASD children and analyze the relationship between different developmental trajectories of auditory processing and language impairment. METHODS/DESIGN In this study, 220 ASD children aging 3 years and 0 months to 4 years and 11 months are recruited as the research objects, and their demographic characteristics are collected. The subjects are tested for peripheral hearing, intelligence, and autism symptoms. Furthermore, ASD children's auditory processing and language development are evaluated at baseline, 1 year, and 2 years later. In addition, ASD children's auditory processing is evaluated by electrophysiological test and the Preschool Auditory Processing Assessment Scale. Moreover, ASD children's language skills are assessed using the Language Development Assessment Scale for Children Aged 1-6. The various categories of the developmental trajectory of ASD children's auditory processing are examined through the latent category growth model. Additionally, a hierarchical regression model is developed to analyze the predictive impact of different auditory processing development trajectories on language impairment in ASD children. DISCUSSION This longitudinal study will explore the categories of auditory processing developmental trajectories in ASD children, and analyze the relationship between different categories of auditory processing developmental trajectories and language development, providing new ideas and targeted targets for the rehabilitation training of language impairment in ASD children, as well as promoting early and accurate interventions for ASD children.
Collapse
Affiliation(s)
- Panting Liu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University(Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China.
| | - Jia Zhou
- Department of Child Health Care, Women's Hospital of Nanjing Medical University(Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China
| | - Lei Zhang
- Department of Child Health Care, Women's Hospital of Nanjing Medical University(Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China
| | - Hui Ji
- Department of Child Health Care, Women's Hospital of Nanjing Medical University(Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China
| | - Jing Xu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University(Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China
| | - Qu Xu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University(Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China
| | - Mengmeng Yao
- Department of Child Health Care, Women's Hospital of Nanjing Medical University(Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China
| | - Xia Chi
- Department of Child Health Care, Women's Hospital of Nanjing Medical University(Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China
- Nanjing Medical Key Laboratory of Developmental Behavioral Pediatrics, Nanjing, China
| | - Jun Qian
- Department of Child Health Care, Women's Hospital of Nanjing Medical University(Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China.
| | - Qin Hong
- Department of Child Health Care, Women's Hospital of Nanjing Medical University(Nanjing Women and Children's Healthcare Hospital), Nanjing, Jiangsu, China.
- Nanjing Medical Key Laboratory of Developmental Behavioral Pediatrics, Nanjing, China.
| |
Collapse
|
2
|
Saini F, Masina F, Wells J, Rosch R, Hamburg S, Startin C, Strydom A. The mismatch negativity as an index of cognitive abilities in adults with Down syndrome. Cereb Cortex 2023; 33:9639-9651. [PMID: 37401006 PMCID: PMC10431748 DOI: 10.1093/cercor/bhad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 07/05/2023] Open
Abstract
Down syndrome (DS) is associated with an ultra-high risk of developing Alzheimer's disease (AD). Understanding variability in pre-AD cognitive abilities may help understand cognitive decline in this population. The mismatch negativity (MMN) is an event-related potential component reflecting the detection of deviant stimuli that is thought to represent underlying memory processes, with reduced MMN amplitudes being associated with cognitive decline. To further understand the MMN in adults with DS without AD, we explored the relationships between MMN, age, and cognitive abilities (memory, language, and attention) in 27 individuals (aged 17-51) using a passive auditory oddball task. Statistically significant MMN was present only in 18 individuals up to 41 years of age and the latency were longer than canonical parameters reported in the literature. Reduced MMN amplitude was associated with lower memory scores, while longer MMN latencies were associated with poorer memory, verbal abilities, and attention. Therefore, the MMN may represent a valuable index of cognitive abilities in DS. In combination with previous findings, we hypothesize that while MMN response and amplitude may be associated with AD-related memory loss, MMN latency may be associated with speech signal processing. Future studies may explore the potential impact of AD on MMN in people with DS.
Collapse
Affiliation(s)
- Fedal Saini
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AB, UK
| | - Fabio Masina
- IRCCS San Camillo Hospital, Via Alberoni, 70, 30126 Lido VE, Italy
| | - Jasmine Wells
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AB, UK
| | - Richard Rosch
- Department of Clinical Neurophysiology, King’s College Hospital NHS Foundation Trust, Golden Jubilee, Denmark Hill, London SE5 9RS, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3AR, UK
| | - Sarah Hamburg
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AB, UK
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Ct Rd, London W1T 7BN, UK
| | - Carla Startin
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AB, UK
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Ct Rd, London W1T 7BN, UK
- School of Psychology, University of Roehampton, Grove House, Roehampton Lane, London, SW15 5PJ, UK
| | - André Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AB, UK
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Ct Rd, London W1T 7BN, UK
| |
Collapse
|
3
|
Demopoulos C, Kopald BE, Bangera N, Paulson K, David Lewine J. Rapid auditory processing of puretones is associated with basic components of language in individuals with autism spectrum disorders. BRAIN AND LANGUAGE 2023; 238:105229. [PMID: 36753824 PMCID: PMC10029928 DOI: 10.1016/j.bandl.2023.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/08/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The goal of this study was to identify the specific domains of language that may be affected by deficits in rapid auditory processing in individuals with ASD. Auditory evoked fields were collected from 63 children diagnosed with ASD in order to evaluate processing of puretone sounds presented in rapid succession. Measures of language and its components were assessed via standardized clinical tools to quantify expressive and receptive language, vocabulary, articulation, and phonological processing abilities. Rapid processing was significantly and bilaterally associated with phonological awareness, vocabulary, and articulation. Phonological processing was found to mediate the relationship between rapid processing and language. M100 response latency was not significantly associated with any language measures. Results suggest that rapid processing deficits may impact the basic components of language such as phonological processing, and the downstream effect of this impact may in turn impact overall language development.
Collapse
Affiliation(s)
- Carly Demopoulos
- University of California-San Francisco, Department of Psychiatry & Behavioral Sciences, 675 18th Street, San Francisco, CA 94107, United States; University of California-San Francisco, Department of Radiology & Biomedical Imaging, 513 Parnassus Avenue, S362, San Francisco, CA 94143, United States.
| | - Brandon E Kopald
- University of California-San Francisco, Department of Neurology, 675 Nelson Rising, Lane, San Francisco, CA 94143, United States
| | - Nitin Bangera
- Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States; Center for Advanced Diagnostics, Evaluation and Therapeutics, CADET-NM, 1501 Indian School, NE, Albuquerque, NM 87102, United States
| | - Kim Paulson
- Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Jeffrey David Lewine
- Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States; Center for Advanced Diagnostics, Evaluation and Therapeutics, CADET-NM, 1501 Indian School, NE, Albuquerque, NM 87102, United States; University of New Mexico, Departments of Psychology and Neurology, 1 University Blvd. NE, Albuquerque, NM 87031, United States.
| |
Collapse
|
4
|
Menn KH, Ward EK, Braukmann R, van den Boomen C, Buitelaar J, Hunnius S, Snijders TM. Neural Tracking in Infancy Predicts Language Development in Children With and Without Family History of Autism. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:495-514. [PMID: 37216063 PMCID: PMC10158647 DOI: 10.1162/nol_a_00074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 05/16/2022] [Indexed: 05/24/2023]
Abstract
During speech processing, neural activity in non-autistic adults and infants tracks the speech envelope. Recent research in adults indicates that this neural tracking relates to linguistic knowledge and may be reduced in autism. Such reduced tracking, if present already in infancy, could impede language development. In the current study, we focused on children with a family history of autism, who often show a delay in first language acquisition. We investigated whether differences in tracking of sung nursery rhymes during infancy relate to language development and autism symptoms in childhood. We assessed speech-brain coherence at either 10 or 14 months of age in a total of 22 infants with high likelihood of autism due to family history and 19 infants without family history of autism. We analyzed the relationship between speech-brain coherence in these infants and their vocabulary at 24 months as well as autism symptoms at 36 months. Our results showed significant speech-brain coherence in the 10- and 14-month-old infants. We found no evidence for a relationship between speech-brain coherence and later autism symptoms. Importantly, speech-brain coherence in the stressed syllable rate (1-3 Hz) predicted later vocabulary. Follow-up analyses showed evidence for a relationship between tracking and vocabulary only in 10-month-olds but not in 14-month-olds and indicated possible differences between the likelihood groups. Thus, early tracking of sung nursery rhymes is related to language development in childhood.
Collapse
Affiliation(s)
- Katharina H. Menn
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany
| | - Emma K. Ward
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Ricarda Braukmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Carlijn van den Boomen
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Jan Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sabine Hunnius
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Tineke M. Snijders
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Cognitive Neuropsychology Department, Tilburg University
| |
Collapse
|
5
|
Roshini R, Jason B M, Marta I G. Increased context adjustment is associated with auditory sensitivities but not with autistic traits. Autism Res 2022; 15:1457-1468. [PMID: 35607992 PMCID: PMC9544519 DOI: 10.1002/aur.2759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/26/2022] [Indexed: 12/21/2022]
Abstract
Bayesian models of autism suggest that alterations in context-sensitive prediction error weighting may underpin sensory perceptual alterations, such as hypersensitivities. We used an auditory oddball paradigm with pure tones arising from high or low uncertainty contexts to determine whether autistic individuals display differences in context adjustment relative to neurotypicals. We did not find group differences in early prediction error responses indexed by mismatch negativity. A dimensional approach revealed a positive correlation between context-dependent prediction errors and subjective reports of auditory sensitivities, but not with autistic traits. These findings suggest that autism studies may benefit from accounting for sensory sensitivities in group comparisons. LAY SUMMARY: We aimed to understand if autistic and non-autistic groups showed differences in their electrical brain activity measured by electroencephalography (EEG) when listening to surprising tones infrequently embedded in a statistical pattern. We found no differences between the autistic and the non-autistic group in their EEG response to the surprising sound even if the pattern switched, indicating their ability to learn a pattern. We did find that, as subjective sensory sensitivities (but not autistic traits) increased, there were increasingly large differences between the EEG responses to surprising tones that were embedded in the different statistical patterns of tones. These findings show that perceptual alterations may be a function of sensory sensitivities, but not necessarily autistic traits. We suggest that future EEG studies in autism may benefit from accounting for sensory sensitivities.
Collapse
Affiliation(s)
- Randeniya Roshini
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Mattingley Jason B
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,School of Psychology, The University of Queensland, Brisbane, Queensland, Australia.,Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.,Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Victoria, Australia
| | - Garrido Marta I
- Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Victoria, Australia.,Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Key AP, D'Ambrose Slaboch K. Speech Processing in Autism Spectrum Disorder: An Integrative Review of Auditory Neurophysiology Findings. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:4192-4212. [PMID: 34570613 PMCID: PMC9132155 DOI: 10.1044/2021_jslhr-20-00738] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/19/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Purpose Investigations into the nature of communication disorders in autistic individuals increasingly evaluate neural responses to speech stimuli. This integrative review aimed to consolidate the available data related to speech and language processing across levels of stimulus complexity (from single speech sounds to sentences) and to relate it to the current theories of autism. Method An electronic database search identified peer-reviewed articles using event-related potentials or magnetoencephalography to investigate auditory processing from single speech sounds to sentences in autistic children and adults varying in language and cognitive abilities. Results Atypical neural responses in autistic persons became more prominent with increasing stimulus and task complexity. Compared with their typically developing peers, autistic individuals demonstrated mostly intact sensory responses to single speech sounds, diminished spontaneous attentional orienting to spoken stimuli, specific difficulties with categorical speech sound discrimination, and reduced processing of semantic content. Atypical neural responses were more often observed in younger autistic participants and in those with concomitant language disorders. Conclusions The observed differences in neural responses to speech stimuli suggest that communication difficulties in autistic individuals are more consistent with the reduced social interest than the auditory dysfunction explanation. Current limitations and future directions for research are also discussed.
Collapse
Affiliation(s)
- Alexandra P. Key
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
| | | |
Collapse
|
7
|
Chen F, Peng G. Categorical Perception of Pitch Contours and Voice Onset Time in Mandarin-Speaking Adolescents With Autism Spectrum Disorders. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:4468-4484. [PMID: 34570628 DOI: 10.1044/2021_jslhr-20-00725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Purpose Previous studies have shown enhanced pitch and impaired time perception in individuals with autism spectrum disorders (ASD). However, it remains unclear whether such deviated patterns of auditory processing depending on acoustic dimensions would transfer to the higher level linguistic pitch and time processing. In this study, we compared the categorical perception (CP) of lexical tones and voice onset time (VOT) in Mandarin Chinese, which utilize pitch and time changes, respectively, to convey phonemic contrasts. Method The data were collected from 22 Mandarin-speaking adolescents with ASD and 20 age-matched neurotypical controls. In addition to the identification and discrimination tasks to test CP performance, all the participants were evaluated with their language ability and phonological working memory. Linear mixed-effects models were constructed to evaluate the identification and discrimination scores across different groups and conditions. Results The basic CP pattern of cross-boundary benefit when perceiving both native lexical tones and VOT was largely preserved in high-functioning adolescents with ASD. The degree of CP of lexical tones in ASD was similar to that in typical controls, whereas the degree of CP of VOT in ASD was greatly reduced. Furthermore, the degree of CP of lexical tones correlated with language ability and digit span in ASD participants. Conclusions These findings suggest that the unbalanced acoustic processing capacities for pitch and time can be generalized to the higher level linguistic processing in ASD. Furthermore, the higher degree of CP of lexical tones correlated with better language ability in Mandarin-speaking individuals with ASD.
Collapse
Affiliation(s)
- Fei Chen
- School of Foreign Languages, Hunan University, Changsha, China
| | - Gang Peng
- Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, China
| |
Collapse
|
8
|
Ochiai H, Shiga T, Hoshino H, Horikoshi S, Kanno K, Wada T, Osakabe Y, Miura I, Yabe H. Effect of oxytocin nasal spray on auditory automatic discrimination measured by mismatch negativity. Psychopharmacology (Berl) 2021; 238:1781-1789. [PMID: 33829308 DOI: 10.1007/s00213-021-05807-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/22/2021] [Indexed: 12/01/2022]
Abstract
RATIONALE As a treatment for cognitive dysfunction in schizophrenia, oxytocin nasal sprays potentially improve social cognition, facial expression recognition, and sense of smell. Mismatch negativity (MMN) is an event-related potential (ERP) reflecting auditory discrimination while MMN deficits reflect cognitive function decline in schizophrenia. OBJECTIVES To determine whether oxytocin nasal spray affects auditory MMN METHODS: We measured ERPs in healthy subjects during an auditory oddball task, both before and after oxytocin nasal spray administration. Forty healthy subjects were randomly assigned to either the oxytocin or placebo group. ERPs were recorded during the oddball task for all subjects before and after a 24 international unit (IU) intranasal administration, and MMN was compared between the two groups. RESULTS Participants who received oxytocin had significantly shorter MMN latencies than those who received a placebo. Oxytocin had no significant effect on the Change in MMN amplitude. CONCLUSIONS The shortened MMN latencies that were observed after oxytocin nasal spray administration suggest that oxytocin may promote the comparison-decision stage.
Collapse
Affiliation(s)
- Haruka Ochiai
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan.
| | - Tetsuya Shiga
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Hoshino
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Sho Horikoshi
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Kazuko Kanno
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Tomohiro Wada
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Yusuke Osakabe
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Itaru Miura
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
9
|
Rotschafer SE. Auditory Discrimination in Autism Spectrum Disorder. Front Neurosci 2021; 15:651209. [PMID: 34211363 PMCID: PMC8239241 DOI: 10.3389/fnins.2021.651209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is increasingly common with 1 in 59 children in the United States currently meeting the diagnostic criteria. Altered sensory processing is typical in ASD, with auditory sensitivities being especially common; in particular, people with ASD frequently show heightened sensitivity to environmental sounds and a poor ability to tolerate loud sounds. These sensitivities may contribute to impairments in language comprehension and to a worsened ability to distinguish relevant sounds from background noise. Event-related potential tests have found that individuals with ASD show altered cortical activity to both simple and speech-like sounds, which likely contribute to the observed processing impairments. Our goal in this review is to provide a description of ASD-related changes to the auditory system and how those changes contribute to the impairments seen in sound discrimination, sound-in-noise performance, and language processing. In particular, we emphasize how differences in the degree of cortical activation and in temporal processing may contribute to errors in sound discrimination.
Collapse
|
10
|
Aberrant auditory system and its developmental implications for autism. SCIENCE CHINA-LIFE SCIENCES 2021; 64:861-878. [DOI: 10.1007/s11427-020-1863-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/06/2020] [Indexed: 12/26/2022]
|
11
|
Charpentier J, Latinus M, Andersson F, Saby A, Cottier JP, Bonnet-Brilhault F, Houy-Durand E, Gomot M. Brain correlates of emotional prosodic change detection in autism spectrum disorder. NEUROIMAGE-CLINICAL 2020; 28:102512. [PMID: 33395999 PMCID: PMC8481911 DOI: 10.1016/j.nicl.2020.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022]
Abstract
We used an oddball paradigm with vocal stimuli to record hemodynamic responses. Brain processing of vocal change relies on STG, insula and lingual area. Activity of the change processing network can be modulated by saliency and emotion. Brain processing of vocal deviancy/novelty appears typical in adults with autism.
Autism Spectrum Disorder (ASD) is currently diagnosed by the joint presence of social impairments and restrictive, repetitive patterns of behaviors. While the co-occurrence of these two categories of symptoms is at the core of the pathology, most studies investigated only one dimension to understand underlying physiopathology. In this study, we analyzed brain hemodynamic responses in neurotypical adults (CTRL) and adults with autism spectrum disorder during an oddball paradigm allowing to explore brain responses to vocal changes with different levels of saliency (deviancy or novelty) and different emotional content (neutral, angry). Change detection relies on activation of the supratemporal gyrus and insula and on deactivation of the lingual area. The activity of these brain areas involved in the processing of deviancy with vocal stimuli was modulated by saliency and emotion. No group difference between CTRL and ASD was reported for vocal stimuli processing or for deviancy/novelty processing, regardless of emotional content. Findings highlight that brain processing of voices and of neutral/ emotional vocal changes is typical in adults with ASD. Yet, at the behavioral level, persons with ASD still experience difficulties with those cues. This might indicate impairments at latter processing stages or simply show that alterations present in childhood might have repercussions at adult age.
Collapse
Affiliation(s)
| | | | | | - Agathe Saby
- Centre universitaire de pédopsychiatrie, CHRU de Tours, Tours, France
| | | | | | - Emmanuelle Houy-Durand
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France; Centre universitaire de pédopsychiatrie, CHRU de Tours, Tours, France
| | - Marie Gomot
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France.
| |
Collapse
|
12
|
Pearson A, Hodgetts S. Can cerebral lateralisation explain heterogeneity in language and increased non-right handedness in autism? A literature review. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 105:103738. [PMID: 32721786 DOI: 10.1016/j.ridd.2020.103738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Autism is characterised by phenotypic variability, particularly in the domains of language and handedness. However, the source of this heterogeneity is currently unclear. AIMS To synthesise findings regarding the relationship between language, handedness, and cerebral lateralisation in autistic people and consider how future research should be conducted in order to progress our understanding of phenotypic variability. METHODS AND PROCEDURES Following a literature search and selection process, 19 papers were included in this literature review. Studies using behavioural, structural, and functional measures of lateralisation are reviewed. OUTCOMES AND RESULTS The studies reviewed provided consistent evidence of differential cerebral lateralisation in autistic people, and this appears to be related to between-group differences in language. Evidence relating this to handedness was less consistent. Many of the studies did not include heterogeneous samples, and/or did not specify the language process they investigated. CONCLUSIONS AND IMPLICATIONS This review suggests that further research is needed to fully understand the relationship between cerebral lateralisation and phenotypic variability within autism. It is crucial that future studies in this area include heterogeneous samples, specify the language process they are investigating, and consider taking developmental trajectories into account.
Collapse
Affiliation(s)
- Amy Pearson
- School of Psychology, University of Sunderland, Sunderland, UK.
| | - Sophie Hodgetts
- School of Psychology, University of Sunderland, Sunderland, UK
| |
Collapse
|
13
|
Kondo HM, Lin IF. Excitation-inhibition balance and auditory multistable perception are correlated with autistic traits and schizotypy in a non-clinical population. Sci Rep 2020; 10:8171. [PMID: 32424307 PMCID: PMC7234986 DOI: 10.1038/s41598-020-65126-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Individuals with autism spectrum disorder and individuals with schizophrenia have impaired social and communication skills. They also have altered auditory perception. This study investigated autistic traits and schizotypy in a non-clinical population as well as the excitation-inhibition (EI) balance in different brain regions and their auditory multistable perception. Thirty-four healthy participants were assessed by the Autism-Spectrum Quotient (AQ) and Schizotypal Personality Questionnaire (SPQ). The EI balance was evaluated by measuring the resting-state concentrations of glutamate-glutamine (Glx) and ϒ-aminobutyric acid (GABA) in vivo by using magnetic resonance spectroscopy. To observe the correlation between their traits and perception, we conducted an auditory streaming task and a verbal transformation task, in which participants reported spontaneous perceptual switching while listening to a sound sequence. Their AQ and SPQ scores were positively correlated with the Glx/GABA ratio in the auditory cortex but not in the frontal areas. These scores were negatively correlated with the number of perceptual switches in the verbal transformation task but not in the auditory streaming task. Our results suggest that the EI balance in the auditory cortex and the perceptual formation of speech are involved in autistic traits and schizotypy.
Collapse
Affiliation(s)
- Hirohito M Kondo
- School of Psychology, Chukyo University, Nagoya, Aichi, 466-8666, Japan. .,Human Information Science Laboratory, NTT Communication Science Laboratories, NTT Corporation, Atsugi, Kanagawa, 243-0198, Japan.
| | - I-Fan Lin
- Department of Occupational Medicine, Shuang Ho Hospital, New Taipei City, 235, Taiwan.,Department of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| |
Collapse
|
14
|
Chen TC, Hsieh MH, Lin YT, Chan PYS, Cheng CH. Mismatch negativity to different deviant changes in autism spectrum disorders: A meta-analysis. Clin Neurophysiol 2020; 131:766-777. [DOI: 10.1016/j.clinph.2019.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 11/29/2022]
|
15
|
Al-Dewik N, Al-Jurf R, Styles M, Tahtamouni S, Alsharshani D, Alsharshani M, Ahmad AI, Khattab A, Al Rifai H, Walid Qoronfleh M. Overview and Introduction to Autism Spectrum Disorder (ASD). ADVANCES IN NEUROBIOLOGY 2020; 24:3-42. [PMID: 32006355 DOI: 10.1007/978-3-030-30402-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder generally manifesting in the first few years of life and tending to persist into adolescence and adulthood. It is characterized by deficits in communication and social interaction and restricted, repetitive patterns of behavior, interests, and activities. It is a disorder with multifactorial etiology. In this chapter, we will focus on the most important and common epidemiological studies, pathogenesis, screening, and diagnostic tools along with an explication of genetic testing in ASD.
Collapse
Affiliation(s)
- Nader Al-Dewik
- Clinical and Metabolic Genetics Section, Pediatrics Department, Hamad General Hospital (HGH), Women's Wellness and Research Center (WWRC) and Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar. .,Faculty of Health and Social Care Sciences, Kingston University, St. George's University of London, London, UK.
| | - Rana Al-Jurf
- Department of Biomedical Science, College of Health Science, Qatar University, Doha, Qatar
| | - Meghan Styles
- Health Profession Awareness Program, Health Facilities Development, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Sona Tahtamouni
- Child Development Center, Hamad Medical Corporation, Doha, Qatar
| | - Dalal Alsharshani
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Mohammed Alsharshani
- Diagnostic Genetics Division (DGD), Department of Laboratory Medicine and Pathology (DLMP), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Amal I Ahmad
- Qatar Rehabilitation Institute (QRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Azhar Khattab
- Qatar Rehabilitation Institute (QRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Hilal Al Rifai
- Department of Pediatrics and Neonatology, Newborn Screening Unit, Hamad Medical Corporation, Doha, Qatar
| | - M Walid Qoronfleh
- Research and Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar
| |
Collapse
|
16
|
Haigh SM, Laher RM, Murphy TK, Coffman BA, Ward KL, Leiter-McBeth JR, Holt LL, Salisbury DF. Normal categorical perception to syllable-like stimuli in long term and in first episode schizophrenia. Schizophr Res 2019; 208:124-132. [PMID: 30982643 PMCID: PMC6607915 DOI: 10.1016/j.schres.2019.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Schizophrenia is associated with deficits in language processing that are evident even at first-episode. However, there is debate as to how early in the processing stream the linguistic deficits appear. We measured categorical processing of artificial syllables that varied in voice-onset time (VOT), and how sensory biasing impacts categorical perception. VOT varied in 5 ms increments from 0 ms (strong /ba/) to 40 ms (strong /pa/). Participants chose whether a syllable sounded more like /ba/ or /pa/. Twenty-two individuals with long-term schizophrenia (Sz) were compared to 21 controls (HCSz), and 17 individuals at their first-episode of schizophrenia (FE) were compared to 19 controls (HCFE). There were three conditions: equiprobable - each syllable had an equal probability of being presented; /ba/-biased - 0 ms VOT (strong /ba/) presented 70% of the time; /pa/-biased - 40 ms VOT (strong /pa/) presented 70% of the time. All groups showed categorical perception and category shifts during biased conditions. Sz and FE were statistically indistinguishable from controls in the point of categorical shift, slope of their response function, and the VOT needed to reliably perceive /pa/. Together, this suggests intact ability to map acoustic stimuli to phonetic categories when based on timing differences in voiced information, both early and late in the disease.
Collapse
Affiliation(s)
- Sarah M Haigh
- Department of Psychiatry, University of Pittsburgh, Suite 420, 3501 Forbes Avenue, Pittsburgh, PA 15213, USA; Department of Psychology and Center for Integrative Neuroscience, University of Nevada, Reno, Mack Social Science, 1664 N Virginia Street, Reno, NA, 89557, USA
| | - Rebecca M Laher
- Department of Psychiatry, University of Pittsburgh, Suite 420, 3501 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Timothy K Murphy
- Department of Psychiatry, University of Pittsburgh, Suite 420, 3501 Forbes Avenue, Pittsburgh, PA 15213, USA; Department of Psychology, Carnegie Mellon University, Baker Hall, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Brian A Coffman
- Department of Psychiatry, University of Pittsburgh, Suite 420, 3501 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Kayla L Ward
- Department of Psychiatry, University of Pittsburgh, Suite 420, 3501 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Justin R Leiter-McBeth
- Department of Psychiatry, University of Pittsburgh, Suite 420, 3501 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Lori L Holt
- Department of Psychology, Carnegie Mellon University, Baker Hall, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh, Suite 420, 3501 Forbes Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
17
|
Horikoshi S, Shiga T, Hoshino H, Ochiai H, Kanno-Nozaki K, Kanno K, Kaneko H, Kunii Y, Miura I, Yabe H. The Relationship between Mismatch Negativity and the COMTVal108/158Met Genotype in Schizophrenia. Neuropsychobiology 2019; 77:192-196. [PMID: 30326466 DOI: 10.1159/000493738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/13/2018] [Indexed: 11/19/2022]
Abstract
Mismatch negativity (MMN) is a component of auditory event-related potentials that reflects automatic change detection in the brain, showing qualities of endophenotypes in schizophrenia. MMN deficiency is one of the robust findings in patients, and it reflects both cognitive and functional decline. Catechol-o-methyltransferase (COMT) is a key enzyme involved in regulating dopamine transmission within the prefrontal cortex. A preliminary study suggested that the COMTVal108/158Met genotype (rs4680) is related to cognitive function in schizophrenia. Both the COMTVal108/158Met genotype and MMN are related to cognitive function, but no studies have reported on the relationship between MMN and the COMTVal108/158Met genotype in schizophrenia. This study therefore examined the relationship between COMTVal108/158Met genotype and MMN. The duration of MMN was measured, and the COMTVal108/158Met polymorphism was detected by polymerase chain reaction-restriction fragment length polymorphism in 49 Japanese schizophrenia patients (Val/Val, n = 21; Met carriers, n = 28). Amplitude and latency of MMN were compared between Val/Val and Met carriers.
Collapse
Affiliation(s)
- Sho Horikoshi
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan,
| | - Tetsuya Shiga
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Hoshino
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Haruka Ochiai
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Keiko Kanno-Nozaki
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazuko Kanno
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Haruka Kaneko
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuto Kunii
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Itaru Miura
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Psychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
18
|
Charpentier J, Kovarski K, Houy-Durand E, Malvy J, Saby A, Bonnet-Brilhault F, Latinus M, Gomot M. Emotional prosodic change detection in autism Spectrum disorder: an electrophysiological investigation in children and adults. J Neurodev Disord 2018; 10:28. [PMID: 30227832 PMCID: PMC6145332 DOI: 10.1186/s11689-018-9246-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is characterized by atypical behaviors in social environments and in reaction to changing events. While this dyad of symptoms is at the core of the pathology along with atypical sensory behaviors, most studies have investigated only one dimension. A focus on the sameness dimension has shown that intolerance to change is related to an atypical pre-attentional detection of irregularity. In the present study, we addressed the same process in response to emotional change in order to evaluate the interplay between alterations of change detection and socio-emotional processing in children and adults with autism. Methods Brain responses to neutral and emotional prosodic deviancies (mismatch negativity (MMN) and P3a, reflecting change detection and orientation of attention toward change, respectively) were recorded in children and adults with autism and in controls. Comparison of neutral and emotional conditions allowed distinguishing between general deviancy and emotional deviancy effects. Moreover, brain responses to the same neutral and emotional stimuli were recorded when they were not deviants to evaluate the sensory processing of these vocal stimuli. Results In controls, change detection was modulated by prosody: in children, this was characterized by a lateralization of emotional MMN to the right hemisphere, and in adults, by an earlier MMN for emotional deviancy than for neutral deviancy. In ASD, an overall atypical change detection was observed with an earlier MMN and a larger P3a compared to controls suggesting an unusual pre-attentional orientation toward any changes in the auditory environment. Moreover, in children with autism, deviancy detection depicted reduced MMN amplitude. In addition in children with autism, contrary to adults with autism, no modulation of the MMN by prosody was present and sensory processing of both neutral and emotional vocal stimuli appeared atypical. Conclusions Overall, change detection remains altered in people with autism. However, differences between children and adults with ASD evidence a trend toward normalization of vocal processing and of the automatic detection of emotion deviancy with age.
Collapse
Affiliation(s)
| | - K Kovarski
- UMR1253, INSERM, Université de Tours, TOURS, France
| | - E Houy-Durand
- UMR1253, INSERM, Université de Tours, TOURS, France.,Centre Universitaire de Pédopsychiatrie, CHRU de Tours, TOURS, France
| | - J Malvy
- UMR1253, INSERM, Université de Tours, TOURS, France.,Centre Universitaire de Pédopsychiatrie, CHRU de Tours, TOURS, France
| | - A Saby
- Centre Universitaire de Pédopsychiatrie, CHRU de Tours, TOURS, France
| | - F Bonnet-Brilhault
- UMR1253, INSERM, Université de Tours, TOURS, France.,Centre Universitaire de Pédopsychiatrie, CHRU de Tours, TOURS, France
| | - M Latinus
- UMR1253, INSERM, Université de Tours, TOURS, France
| | - M Gomot
- UMR1253, INSERM, Université de Tours, TOURS, France.
| |
Collapse
|
19
|
Lack of correlation between phonetic magnetic mismatch field and plasma d-serine levels in humans. Clin Neurophysiol 2018; 129:1444-1448. [PMID: 29735418 DOI: 10.1016/j.clinph.2018.04.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Uncovering molecular bases for auditory language processing in the human brain is a fundamental scientific challenge. The power and latency of the magnetic mismatch field (MMF) elicited by phoneme change, which are magnetoencephalographic indices of language function in its early stage of information processing, are theoretically thought to be modulated by N-methyl-d-aspartate-type glutamate receptor (NMDAR) function, but no study has yet assessed this possibility. We have thus sought to demonstrate an association between phonetic MMF power/latency and levels of plasma d-serine, an intrinsic co-agonist of glycine binding sites on NMDAR, in adults. METHODS The MMF response to phoneme changes was recorded using 204-channel magnetoencephalography in 61 healthy, right-handed, Japanese adults. Plasma levels of d- and l-serine were measured for each participant. RESULTS We did not find a significant correlation between MMF power/latency and plasma serine levels. CONCLUSIONS Despite a sufficient sample size, we failed to find an association between the physiological markers of the early stage of information processing of language in the auditory cortex and biomarkers indexing glutamatergic function. SIGNIFICANCE Our study did not indicate that a molecular index of glutamatergic function could be a surrogate marker for the early stage of information processing of language in humans.
Collapse
|
20
|
Schwartz S, Shinn-Cunningham B, Tager-Flusberg H. Meta-analysis and systematic review of the literature characterizing auditory mismatch negativity in individuals with autism. Neurosci Biobehav Rev 2018; 87:106-117. [PMID: 29408312 DOI: 10.1016/j.neubiorev.2018.01.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 01/16/2023]
Abstract
A number of past studies have used mismatch negativity (MMN) to identify auditory processing deficits in individuals with autism spectrum disorder (ASD). Our meta-analysis compared MMN responses for individuals with ASD and typically developing controls (TD). We analyzed 67 experiments across 22 publications that employed passive, auditory-based MMN paradigms with ASD and TD participants. Most studies lacked design characteristics that would lead to an accurate description of the MMN. Variability between experiments measuring MMN amplitude was smaller when limited to studies that counterbalanced stimuli. Reduced MMN amplitude was found among young children with ASD compared to controls and in experiments that used nonspeech sounds. Still, few studies included adolescents or those with below-average verbal IQ. Most studies suffered from small sample sizes, and aggregating these data did not reveal significant group differences. This analysis points to a need for research focused specifically on understudied ASD samples using carefully designed MMN experiments. Study of individual differences in MMN may provide further insights into distinct subgroups within the heterogeneous ASD population.
Collapse
Affiliation(s)
- Sophie Schwartz
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States.
| | | | - Helen Tager-Flusberg
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
21
|
Huang D, Yu L, Wang X, Fan Y, Wang S, Zhang Y. Distinct patterns of discrimination and orienting for temporal processing of speech and nonspeech in Chinese children with autism: an event-related potential study. Eur J Neurosci 2017; 47:662-668. [DOI: 10.1111/ejn.13657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Dan Huang
- School of Psychology; South China Normal University; Guangzhou 510631 China
- Guangzhou Rehabilitation and Research Center for Children with Autism; Guangzhou Cana School; Guangzhou China
| | - Luodi Yu
- School of Psychology; South China Normal University; Guangzhou 510631 China
- Department of Speech-Language-Hearing Sciences; University of Minnesota; Minneapolis MN 55455 USA
| | - Xiaoyue Wang
- School of Psychology; South China Normal University; Guangzhou 510631 China
| | - Yuebo Fan
- Guangzhou Rehabilitation and Research Center for Children with Autism; Guangzhou Cana School; Guangzhou China
| | - Suiping Wang
- School of Psychology; South China Normal University; Guangzhou 510631 China
- Center for Studies of Psychological Application; South China Normal University; Guangzhou China
- Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science; South China Normal University; Guangzhou China
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences; University of Minnesota; Minneapolis MN 55455 USA
- Center for Neurobehavioral Development; University of Minnesota; Minneapolis MN USA
| |
Collapse
|
22
|
Sinclair D, Oranje B, Razak KA, Siegel SJ, Schmid S. Sensory processing in autism spectrum disorders and Fragile X syndrome-From the clinic to animal models. Neurosci Biobehav Rev 2017; 76:235-253. [PMID: 27235081 PMCID: PMC5465967 DOI: 10.1016/j.neubiorev.2016.05.029] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/08/2016] [Accepted: 05/23/2016] [Indexed: 01/08/2023]
Abstract
Brains are constantly flooded with sensory information that needs to be filtered at the pre-attentional level and integrated into endogenous activity in order to allow for detection of salient information and an appropriate behavioral response. People with Autism Spectrum Disorder (ASD) or Fragile X Syndrome (FXS) are often over- or under-reactive to stimulation, leading to a wide range of behavioral symptoms. This altered sensitivity may be caused by disrupted sensory processing, signal integration and/or gating, and is often being neglected. Here, we review translational experimental approaches that are used to investigate sensory processing in humans with ASD and FXS, and in relevant rodent models. This includes electroencephalographic measurement of event related potentials, neural oscillations and mismatch negativity, as well as habituation and pre-pulse inhibition of startle. We outline robust evidence of disrupted sensory processing in individuals with ASD and FXS, and in respective animal models, focusing on the auditory sensory domain. Animal models provide an excellent opportunity to examine common mechanisms of sensory pathophysiology in order to develop therapeutics.
Collapse
Affiliation(s)
- D Sinclair
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, 125 S 31st St., Philadelphia, PA 19104, USA
| | - B Oranje
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, HP A 01.126 Heidelberglaan 100, CX Utrecht, 3584, The Netherlands; Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Psychiatric Center Glostrup, Ndr. Ringvej 29-67, Glostrup, 2600, Denmark; Faculty of Health Sciences, Department of Neurology, Psychiatry, and Sensory Sciences, University of Copenhagen, Denmark
| | - K A Razak
- Psychology Department, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - S J Siegel
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, 125 S 31st St., Philadelphia, PA 19104, USA
| | - S Schmid
- Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, MSB 470, London, ON N6A 5C1, Canada.
| |
Collapse
|
23
|
Wang X, Wang S, Fan Y, Huang D, Zhang Y. Speech-specific categorical perception deficit in autism: An Event-Related Potential study of lexical tone processing in Mandarin-speaking children. Sci Rep 2017; 7:43254. [PMID: 28225070 PMCID: PMC5320551 DOI: 10.1038/srep43254] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/20/2017] [Indexed: 01/14/2023] Open
Abstract
Recent studies reveal that tonal language speakers with autism have enhanced neural sensitivity to pitch changes in nonspeech stimuli but not to lexical tone contrasts in their native language. The present ERP study investigated whether the distinct pitch processing pattern for speech and nonspeech stimuli in autism was due to a speech-specific deficit in categorical perception of lexical tones. A passive oddball paradigm was adopted to examine two groups (16 in the autism group and 15 in the control group) of Chinese children’s Mismatch Responses (MMRs) to equivalent pitch deviations representing within-category and between-category differences in speech and nonspeech contexts. To further examine group-level differences in the MMRs to categorical perception of speech/nonspeech stimuli or lack thereof, neural oscillatory activities at the single trial level were further calculated with the inter-trial phase coherence (ITPC) measure for the theta and beta frequency bands. The MMR and ITPC data from the children with autism showed evidence for lack of categorical perception in the lexical tone condition. In view of the important role of lexical tones in acquiring a tonal language, the results point to the necessity of early intervention for the individuals with autism who show such a speech-specific categorical perception deficit.
Collapse
Affiliation(s)
- Xiaoyue Wang
- School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Suiping Wang
- School of Psychology, South China Normal University, Guangzhou, 510631, China.,Center for Studies of Psychological Application, South China Normal University, 510631, China.,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yuebo Fan
- Guangzhou Rehabilitation and Research Center for Children with Autism, Guangzhou Cana School, Guangzhou, 510540, China
| | - Dan Huang
- Guangzhou Rehabilitation and Research Center for Children with Autism, Guangzhou Cana School, Guangzhou, 510540, China
| | - Yang Zhang
- Department of Speech-Language-Hearing Science, University of Minnesota, Minneapolis, MN, 55455, USA.,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
24
|
Ford TC, Woods W, Crewther DP. Mismatch field latency, but not power, may mark a shared autistic and schizotypal trait phenotype. Int J Psychophysiol 2017; 116:60-67. [PMID: 28235554 DOI: 10.1016/j.ijpsycho.2017.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 01/07/2023]
Abstract
The auditory mismatch negativity (MMN), a preattentive processing potential, and its magnetic counterpart (MMF) are consistently reported as reduced in schizophrenia and autism spectrum disorders. This study investigates whether MMF characteristics differ between subclinically high and low scorers on the recently discovered shared autism and schizophrenia phenotype, Social Disorganisation. A total of 18 low (10 females) and 19 high (9 females) Social Disorganisation scorers underwent magnetoencephalography (MEG) during a MMF paradigm of 50ms standard (1000Hz, 85%) and 100ms duration deviant tones. MMF was measured from the strongest active magnetometer over the right and left hemispheres (consistent across groups) after 100ms. No differences in MMF power were found, however there was a significant delay in the MMF peak (p=0.007). The P3am (following the MMF) was significantly reduced across both hemispheres for the high Social Disorganisation group (p=0.025), there were no specific hemispheric differences in P3am power or latency. Right MMF peak latency increased with higher scores on the schizotypal subscales Odd Speech, Odd Behaviour and Constricted Affect. Findings suggest that MMF peak latency delay marks a convergence of the autism and schizophrenia spectra at a subclinical. These findings have significant implications for future research methodology, as well as clinical practice.
Collapse
Affiliation(s)
- Talitha C Ford
- Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| | - Will Woods
- Brain and Psychological Science Research Centre, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| | - David P Crewther
- Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| |
Collapse
|
25
|
Mamashli F, Khan S, Bharadwaj H, Michmizos K, Ganesan S, Garel KLA, Ali Hashmi J, Herbert MR, Hämäläinen M, Kenet T. Auditory processing in noise is associated with complex patterns of disrupted functional connectivity in autism spectrum disorder. Autism Res 2016; 10:631-647. [PMID: 27910247 DOI: 10.1002/aur.1714] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/09/2016] [Accepted: 09/16/2016] [Indexed: 11/12/2022]
Abstract
Autism spectrum disorder (ASD) is associated with difficulty in processing speech in a noisy background, but the neural mechanisms that underlie this deficit have not been mapped. To address this question, we used magnetoencephalography to compare the cortical responses between ASD and typically developing (TD) individuals to a passive mismatch paradigm. We repeated the paradigm twice, once in a quiet background, and once in the presence of background noise. We focused on both the evoked mismatch field (MMF) response in temporal and frontal cortical locations, and functional connectivity with spectral specificity between those locations. In the quiet condition, we found common neural sources of the MMF response in both groups, in the right temporal gyrus and inferior frontal gyrus (IFG). In the noise condition, the MMF response in the right IFG was preserved in the TD group, but reduced relative to the quiet condition in ASD group. The MMF response in the right IFG also correlated with severity of ASD. Moreover, in noise, we found significantly reduced normalized coherence (deviant normalized by standard) in ASD relative to TD, in the beta band (14-25 Hz), between left temporal and left inferior frontal sub-regions. However, unnormalized coherence (coherence during deviant or standard) was significantly increased in ASD relative to TD, in multiple frequency bands. Our findings suggest increased recruitment of neural resources in ASD irrespective of the task difficulty, alongside a reduction in top-down modulations, usually mediated by the beta band, needed to mitigate the impact of noise on auditory processing. Autism Res 2016,. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 631-647. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fahimeh Mamashli
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sheraz Khan
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,McGovern Institute for Brain Research Massachusetts Institute of Technology, Boston, Massachusetts
| | - Hari Bharadwaj
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Konstantinos Michmizos
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,McGovern Institute for Brain Research Massachusetts Institute of Technology, Boston, Massachusetts
| | - Santosh Ganesan
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Keri-Lee A Garel
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Javeria Ali Hashmi
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Martha R Herbert
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science Espoo, Finland
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Tal Kenet
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Nishimura Y, Kawakubo Y, Suga M, Hashimoto K, Takei Y, Takei K, Inoue H, Yumoto M, Takizawa R, Kasai K. Familial Influences on Mismatch Negativity and Its Association with Plasma Glutamate Level: A Magnetoencephalographic Study in Twins. MOLECULAR NEUROPSYCHIATRY 2016; 2:161-172. [PMID: 27867941 DOI: 10.1159/000449426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 08/25/2016] [Indexed: 11/19/2022]
Abstract
Mismatch negativity (MMN) or its magnetic counterpart (magnetic mismatch negativity; MMNm) is regarded as a promising biomarker for schizophrenia. Previous electroencephalographic studies of MMN have demonstrated a moderate-to-high heritability for MMN amplitudes. N-methyl-D-aspartate receptor-dependent glutamatergic neurotransmission is implicated in MMN generation. We hypothesized that the differences between identical twins in MMNm variables might be associated with differences in plasma levels of amino acids involved in glutamatergic neurotransmission. Thirty-three pairs of monozygotic (MZ) and 10 pairs of dizygotic (DZ) twins underwent MMNm recording. The MMNm in response to tone duration changes, tone frequency changes, and phonemic changes was recorded using 204-channel magnetoencephalography. Of these, 26 MZ and 7 DZ twin pairs underwent blood sampling for determination of plasma amino acid levels. MMNm peak strength showed relatively high correlations in both MZ and DZ twin pairs. The differences in MMNm latencies tended to correlate with the differences in plasma amino acid levels within MZ pairs, while no significant correlation was observed after the Bonferroni correction. We observed a familial trait in MMNm strength. The differences in MMN latency in MZ twins might be influenced by changes in glutamate levels and glutamate-glutamine cycling; however, the results need to be replicated.
Collapse
Affiliation(s)
- Yukika Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Kawakubo
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motomu Suga
- Department of Rehabilitation, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Hashimoto
- Department of Division of Clinical Neuroscience, Chiba University Centre for Forensic Mental Health, Chiba, Japan
| | - Yuichi Takei
- Department of Psychiatry and Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kunio Takei
- Department of Office for Mental Health Support, Division for Counselling and Support, The University of Tokyo, Tokyo, Japan
| | - Hideyuki Inoue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masato Yumoto
- Department of Department of Clinical Laboratory, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryu Takizawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Suga M, Nishimura Y, Kawakubo Y, Yumoto M, Kasai K. Magnetoencephalographic recording of auditory mismatch negativity in response to duration and frequency deviants in a single session in patients with schizophrenia. Psychiatry Clin Neurosci 2016; 70:295-302. [PMID: 27162140 DOI: 10.1111/pcn.12397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 12/29/2022]
Abstract
AIM Auditory mismatch negativity (MMN) and its magnetoencephalographic (MEG) counterpart (MMNm) are an established biological index in schizophrenia research. MMN in response to duration and frequency deviants may have differential relevance to the pathophysiology and clinical stages of schizophrenia. MEG has advantage in that it almost purely detects MMNm arising from the auditory cortex. However, few previous MEG studies on schizophrenia have simultaneously assessed MMNm in response to duration and frequency deviants or examined the effect of chronicity on the group difference. METHODS Forty-two patients with chronic schizophrenia and 74 matched control subjects participated in the study. Using a whole-head MEG, MMNm in response to duration and frequency deviants of tones was recorded while participants passively listened to an auditory sequence. RESULTS Compared to healthy subjects, patients with schizophrenia exhibited significantly reduced powers of MMNm in response to duration deviant in both hemispheres, whereas MMNm in response to frequency deviant did not differ between the two groups. These results did not change according to the chronicity of the illness. CONCLUSION These results, obtained by using a sequence-enabling simultaneous assessment of both types of MMNm, suggest that MEG recording of MMN in response to duration deviant may be a more sensitive biological marker of schizophrenia than MMN in response to frequency deviant. Our findings represent an important first step towards establishment of MMN as a biomarker for schizophrenia in real-world clinical psychiatry settings.
Collapse
Affiliation(s)
- Motomu Suga
- Department of Rehabilitation, The University of Tokyo, Tokyo, Japan
| | - Yukika Nishimura
- Department of Neuropsychiatry, The University of Tokyo, Tokyo, Japan
| | - Yuki Kawakubo
- Department of Child Neuropsychiatry, The University of Tokyo, Tokyo, Japan
| | - Masato Yumoto
- Department of Clinical Laboratory, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Korhonen V, Werner S. Autistic traits and attention to speech: Evidence from typically developing individuals. LOGOP PHONIATR VOCO 2016; 42:44-50. [PMID: 27216974 DOI: 10.1080/14015439.2016.1186731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Individuals with autism spectrum disorder have a preference for attending to non-speech stimuli over speech stimuli. We are interested in whether non-speech preference is only a feature of diagnosed individuals, and whether we can we test implicit preference experimentally. In typically developed individuals, serial recall is disrupted more by speech stimuli than by non-speech stimuli. Since behaviour of individuals with autistic traits resembles that of individuals with autism, we have used serial recall to test whether autistic traits influence task performance during irrelevant speech sounds. The errors made on the serial recall task during speech or non-speech sounds were counted as a measure of speech or non-speech preference in relation to no sound condition. We replicated the serial order effect and found the speech to be more disruptive than the non-speech sounds, but were unable to find any associations between the autism quotient scores and the non-speech sounds. Our results may indicate a learnt behavioural response to speech sounds.
Collapse
Affiliation(s)
- Vesa Korhonen
- a School of Educational Science and Psychology , University of Eastern Finland , Joensuu , Finland
| | - Stefan Werner
- b Philosophical Faculty, School of Humanities , Linguistics, University of Eastern Finland , Joensuu , Finland
| |
Collapse
|
29
|
Boets B, Verhoeven J, Wouters J, Steyaert J. Fragile spectral and temporal auditory processing in adolescents with autism spectrum disorder and early language delay. J Autism Dev Disord 2015; 45:1845-57. [PMID: 25503681 DOI: 10.1007/s10803-014-2341-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated low-level auditory spectral and temporal processing in adolescents with autism spectrum disorder (ASD) and early language delay compared to matched typically developing controls. Auditory measures were designed to target right versus left auditory cortex processing (i.e. frequency discrimination and slow amplitude modulation (AM) detection versus gap-in-noise detection and faster AM detection), and to pinpoint the task and stimulus characteristics underlying putative superior spectral processing in ASD. We observed impaired frequency discrimination in the ASD group and suggestive evidence of poorer temporal resolution as indexed by gap-in-noise detection thresholds. These findings question the evidence of enhanced spectral sensitivity in ASD and do not support the hypothesis of superior right and inferior left hemispheric auditory processing in ASD.
Collapse
Affiliation(s)
- Bart Boets
- Child and Adolescent Psychiatry, Department of Neurosciences, University of Leuven (KU Leuven), Herestraat 49, Box 7003, 3000, Leuven, Belgium,
| | | | | | | |
Collapse
|
30
|
Siekmeier PJ. Computational modeling of psychiatric illnesses via well-defined neurophysiological and neurocognitive biomarkers. Neurosci Biobehav Rev 2015; 57:365-80. [DOI: 10.1016/j.neubiorev.2015.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/23/2015] [Accepted: 09/27/2015] [Indexed: 12/22/2022]
|
31
|
Kargas N, López B, Reddy V, Morris P. The relationship between auditory processing and restricted, repetitive behaviors in adults with autism spectrum disorders. J Autism Dev Disord 2015; 45:658-68. [PMID: 25178987 DOI: 10.1007/s10803-014-2219-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Current views suggest that autism spectrum disorders (ASDs) are characterised by enhanced low-level auditory discrimination abilities. Little is known, however, about whether enhanced abilities are universal in ASD and how they relate to symptomatology. We tested auditory discrimination for intensity, frequency and duration in 21 adults with ASD and 21 IQ and age-matched controls. Contrary to predictions, there were significant deficits in ASD on all acoustic parameters. The findings suggest that low-level auditory discrimination ability varies widely within ASD and this variability relates to IQ level, and influences the severity of restricted and repetitive behaviours (RRBs). We suggest that it is essential to further our understanding of the potential contributing role of sensory perception ability on the emergence of RRBs.
Collapse
Affiliation(s)
- Niko Kargas
- Autism Research Network, Department of Psychology, University of Portsmouth, King Henry Building, Portsmouth, Hampshire, PO1 2DY, UK,
| | | | | | | |
Collapse
|
32
|
Yau SH, McArthur G, Badcock NA, Brock J. Case study: auditory brain responses in a minimally verbal child with autism and cerebral palsy. Front Neurosci 2015; 9:208. [PMID: 26150768 PMCID: PMC4473003 DOI: 10.3389/fnins.2015.00208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/24/2015] [Indexed: 01/17/2023] Open
Abstract
An estimated 30% of individuals with autism spectrum disorders (ASD) remain minimally verbal into late childhood, but research on cognition and brain function in ASD focuses almost exclusively on those with good or only moderately impaired language. Here we present a case study investigating auditory processing of GM, a nonverbal child with ASD and cerebral palsy. At the age of 8 years, GM was tested using magnetoencephalography (MEG) whilst passively listening to speech sounds and complex tones. Where typically developing children and verbal autistic children all demonstrated similar brain responses to speech and nonspeech sounds, GM produced much stronger responses to nonspeech than speech, particularly in the 65-165 ms (M50/M100) time window post-stimulus onset. GM was retested aged 10 years using electroencephalography (EEG) whilst passively listening to pure tone stimuli. Consistent with her MEG response to complex tones, GM showed an unusually early and strong response to pure tones in her EEG responses. The consistency of the MEG and EEG data in this single case study demonstrate both the potential and the feasibility of these methods in the study of minimally verbal children with ASD. Further research is required to determine whether GM's atypical auditory responses are characteristic of other minimally verbal children with ASD or of other individuals with cerebral palsy.
Collapse
Affiliation(s)
- Shu H. Yau
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie UniversitySydney, Australia
- Department of Cognitive Science, Macquarie UniversitySydney, Australia
| | - Genevieve McArthur
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie UniversitySydney, Australia
- Department of Cognitive Science, Macquarie UniversitySydney, Australia
| | - Nicholas A. Badcock
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie UniversitySydney, Australia
- Department of Cognitive Science, Macquarie UniversitySydney, Australia
| | - Jon Brock
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie UniversitySydney, Australia
- Department of Cognitive Science, Macquarie UniversitySydney, Australia
- Department of Psychology, Macquarie UniversitySydney, Australia
| |
Collapse
|
33
|
Demopoulos C, Lewine JD. Audiometric Profiles in Autism Spectrum Disorders: Does Subclinical Hearing Loss Impact Communication? Autism Res 2015; 9:107-20. [PMID: 25962745 DOI: 10.1002/aur.1495] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 04/04/2015] [Indexed: 11/06/2022]
Abstract
Rates of hearing impairment in individuals with Autism Spectrum Disorders (ASD) are higher than those reported in the general population. Although ASD is not caused by hearing impairment, it may exacerbate symptomatology. Participants with ASD (N = 60) and typically developing peers (N = 16) aged 5-18 years underwent a comprehensive audiological screening (pure tone audiometry, uncomfortable loudness level, tympanometry, acoustic reflexes, distortion product otoacoustic emissions, and auditory brainstem response) and assessment of communication abilities (expressive/receptive language, articulation, phonological awareness, and vocal affect recognition). Incidence of abnormal findings on at least one measure of audiological functioning was higher for the ASD group (55%) than controls (14.9%) or the general population estimate (6%). The presence of sound sensitivity was also considerably higher for the ASD group (37%) compared with controls (0%) or general population estimates (8-15%). When participants with ASD were dichotomized into groups with and without evidence of clinical audiological abnormality, no significant differences were identified on measures of communication; however, results of correlational analyses indicated that variability in hearing thresholds at middle range frequencies (2000 Hz) was significantly related to performance on all measures of speech articulation and language after correction for multiple comparisons (r = -0.48 to r = -0.53, P < 0.0045). These findings suggest that dichotomized classification of clinical audiology may not be sufficient to understand the role of subclinical hearing loss in ASD symptomatology and that treatment studies for mild/subclinical hearing loss in this population may be worthwhile.
Collapse
Affiliation(s)
- Carly Demopoulos
- From the Department of Radiology, University of California-San Francisco, 513 Parnassus Avenue, S362, San Francisco, California.,Mind Research Network, Pete & Nancy Domenici Hall, Albuquerque, New Mexico
| | - Jeffrey David Lewine
- Mind Research Network, Pete & Nancy Domenici Hall, Albuquerque, New Mexico.,Lovelace Scientific Resources, Albuquerque, New Mexico.,Departments of Psychology and Neurology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
34
|
Lajiness-O’Neill R, Bowyer SM, Moran JE, Zillgitt A, Richard AE, Boutros NN. Neurophysiological findings from magnetoencephalography in autism spectrum disorder: a comprehensive review. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT: Autism spectrum disorder (ASD) is an etiologically and clinically heterogeneous group of neurodevelopmental disorders, diagnosed exclusively by the behavioral phenotype. The neural basis of altered social, communicative, somatosensory, and restricted and repetitive behaviors remains largely unknown. Magnetoencephalography (MEG) provides a vital method of inquiry to identify the neurophysiological mechanisms of ASD, better illuminate etiologically distinct subgroups, understand the developmental trajectories of aberrant connectivity and track outcome. MEG is a neuroimaging methodology that can localize sources of electrical activity within the brain with millisecond resolution by noninvasively measuring the magnetic fields arising from such activity. This review addresses the central MEG findings exploring auditory, visual and somatosensory processing, higher-order/executive functioning, and resting state in individuals with ASD over the past decade and a half. We offer a summary of emerging trends related to neurophysiological alterations, aberrant hemispheric specialization and connectivity, as well as limitations in the literature and recommendations for future MEG investigations.
Collapse
Affiliation(s)
| | - Susan M Bowyer
- Henry Ford Hospital, Department of Neurology, Neuromagnetism Laboratory, Detroit, MI, USA
- Wayne State University, Psychiatry & Behavioral Neurosciences, Detroit, MI, USA
- Oakland University, Department of Physics, Rochester, MI, USA
| | - John E Moran
- Cleveland Clinic, Epilepsy Center, Cleveland, OH, USA
| | - Andrew Zillgitt
- Henry Ford Hospital, Department of Neurology, Neuromagnetism Laboratory, Detroit, MI, USA
| | - Annette E Richard
- Eastern Michigan University, Department of Psychology, Ypsilanti, MI, USA
| | - Nash N Boutros
- University of Missouri, Department of Psychiatry & Neurosciences, Kansas City, MI, USA
| |
Collapse
|
35
|
de Lacy N, King BH. Revisiting the relationship between autism and schizophrenia: toward an integrated neurobiology. Annu Rev Clin Psychol 2013; 9:555-87. [PMID: 23537488 DOI: 10.1146/annurev-clinpsy-050212-185627] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schizophrenia and autism have been linked since their earliest descriptions. Both are disorders of cerebral specialization originating in the embryonic period. Genetic, molecular, and cytologic research highlights a variety of shared contributory mechanisms that may lead to patterns of abnormal connectivity arising from altered development and topology. Overt behavioral pathology likely emerges during or after neurosensitive periods in which resource demands overwhelm system resources and the individual's ability to compensate using interregional activation fails. We are at the threshold of being able to chart autism and schizophrenia from the inside out. In so doing, the door is opened to the consideration of new therapeutics that are developed based upon molecular, synaptic, and systems targets common to both disorders.
Collapse
Affiliation(s)
- Nina de Lacy
- University of Washington and Seattle Children's Hospital, Seattle, Washington 98195, USA
| | | |
Collapse
|
36
|
Prigge MD, Bigler ED, Fletcher PT, Zielinski BA, Ravichandran C, Anderson J, Froehlich A, Abildskov T, Papadopolous E, Maasberg K, Nielsen JA, Alexander AL, Lange N, Lainhart J. Longitudinal Heschl's gyrus growth during childhood and adolescence in typical development and autism. Autism Res 2013; 6:78-90. [PMID: 23436773 PMCID: PMC3669648 DOI: 10.1002/aur.1265] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/29/2012] [Indexed: 11/07/2022]
Abstract
Heightened auditory sensitivity and atypical auditory processing are common in autism. Functional studies suggest abnormal neural response and hemispheric activation to auditory stimuli, yet the neurodevelopment underlying atypical auditory function in autism is unknown. In this study, we model longitudinal volumetric growth of Heschl's gyrus gray matter and white matter during childhood and adolescence in 40 individuals with autism and 17 typically developing participants. Up to three time points of magnetic resonance imaging data, collected on average every 2.5 years, were examined from individuals 3-12 years of age at the time of their first scan. Consistent with previous cross-sectional studies, no group differences were found in Heschl's gyrus gray matter volume or asymmetry. However, reduced longitudinal gray matter volumetric growth was found in the right Heschl's gyrus in autism. Reduced longitudinal white matter growth in the left hemisphere was found in the right-handed autism participants. Atypical Heschl's gyrus white matter volumetric growth was found bilaterally in the autism individuals with a history of delayed onset of spoken language. Heightened auditory sensitivity, obtained from the Sensory Profile, was associated with reduced volumetric gray matter growth in the right hemisphere. Our longitudinal analyses revealed dynamic gray and white matter changes in Heschl's gyrus throughout childhood and adolescence in both typical development and autism.
Collapse
Affiliation(s)
- Molly D Prigge
- Department of Psychiatry, School of Medicine, University of Utah, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mody M, Manoach DS, Guenther FH, Kenet T, Bruno KA, McDougle CJ, Stigler KA. Speech and language in autism spectrum disorder: a view through the lens of behavior and brain imaging. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/npy.13.19] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Preslar J, Kushner HI, Marino L, Pearce B. Autism, lateralisation, and handedness: a review of the literature and meta-analysis. Laterality 2013; 19:64-95. [PMID: 23477561 DOI: 10.1080/1357650x.2013.772621] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A number of recent investigators have hypothesised a link between autism, left-handedness, and brain laterality. Their findings have varied widely, in part because these studies have relied on different methodologies and definitions. We conducted a systematic review and meta-analysis to assess the literature, with the hypothesis that there would be an association between autism and laterality that would be moderated by handedness, sex, age, brain region studied, and level of autism. From a broad search resulting in 259 papers, 54 were identified for inclusion in the literature review. This list was narrowed further to include only studies reporting results in the inferior frontal gyrus for meta-analysis, resulting in four papers. The meta-analysis found a moderate but non-significant effect size of group on lateralisation, suggesting a decrease in strength of lateralisation in the autistic group, a trend supported by the literature review. A subgroup analysis of sex and a meta-regression of handedness showed that these moderating variables did not have a significant effect on this relationship. Although the results are not conclusive, there appears to be a trend towards a relationship between autism and lateralisation. However, more rigorous studies with better controls and clearer reporting of definitions and results are needed.
Collapse
Affiliation(s)
- Jessica Preslar
- a Department of Neuroscience and Behavioral Biology , Emory University , Atlanta , GA , USA
| | | | | | | |
Collapse
|
39
|
Kujala T, Lepistö T, Näätänen R. The neural basis of aberrant speech and audition in autism spectrum disorders. Neurosci Biobehav Rev 2013; 37:697-704. [PMID: 23313648 DOI: 10.1016/j.neubiorev.2013.01.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/20/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
Autism spectrum disorders (ASD) are characterized by deficits in communication and social behavior and by narrow interests. Individuals belonging to this spectrum have abnormalities in various aspects of language, ranging from semantic-pragmatic deficits to the absence of speech. They also have aberrant perception, especially in the auditory domain, with both hypo- and hypersensitive features. Neurophysiological approaches with high temporal resolution have given novel insight into the processes underlying perception and language in ASD. Neurophysiological recordings, which are feasible for investigating infants and individuals with no speech, have shown that the representation of and attention to language has an abnormal developmental path in ASD. Even the basic mechanisms for fluent speech perception are degraded at a low level of neural speech analysis. Furthermore, neural correlates of perception and some traits typical of subgroups of individuals on this spectrum have helped in understanding the diversity on this spectrum.
Collapse
Affiliation(s)
- T Kujala
- Cicero Learning, P.O. Box 9, FI-00014 University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
40
|
Autism spectrum disorders. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
41
|
The mismatch negativity (MMN)--a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol 2011; 123:424-58. [PMID: 22169062 DOI: 10.1016/j.clinph.2011.09.020] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/14/2022]
Abstract
In this article, we review clinical research using the mismatch negativity (MMN), a change-detection response of the brain elicited even in the absence of attention or behavioural task. In these studies, the MMN was usually elicited by employing occasional frequency, duration or speech-sound changes in repetitive background stimulation while the patient was reading or watching videos. It was found that in a large number of different neuropsychiatric, neurological and neurodevelopmental disorders, as well as in normal ageing, the MMN amplitude was attenuated and peak latency prolonged. Besides indexing decreased discrimination accuracy, these effects may also reflect, depending on the specific stimulus paradigm used, decreased sensory-memory duration, abnormal perception or attention control or, most importantly, cognitive decline. In fact, MMN deficiency appears to index cognitive decline irrespective of the specific symptomatologies and aetiologies of the different disorders involved.
Collapse
|
42
|
O'Connor K. Auditory processing in autism spectrum disorder: a review. Neurosci Biobehav Rev 2011; 36:836-54. [PMID: 22155284 DOI: 10.1016/j.neubiorev.2011.11.008] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 10/16/2011] [Accepted: 11/25/2011] [Indexed: 12/26/2022]
Abstract
For individuals with autism spectrum disorder or 'ASD' the ability to accurately process and interpret auditory information is often difficult. Here we review behavioural, neurophysiological and imaging literature pertaining to this field with the aim of providing a comprehensive account of auditory processing in ASD, and thus an effective tool to aid further research. Literature was sourced from peer-reviewed journals published over the last two decades which best represent research conducted in these areas. Findings show substantial evidence for atypical processing of auditory information in ASD at behavioural and neural levels. Abnormalities are diverse, ranging from atypical perception of various low-level perceptual features (i.e. pitch, loudness) to processing of more complex auditory information such as prosody. Trends across studies suggest auditory processing impairments in ASD are most likely to present during processing of complex auditory information and are more severe for speech than for non-speech stimuli. The interpretation of these findings with respect to various cognitive accounts of ASD is discussed and suggestions offered for further research.
Collapse
Affiliation(s)
- K O'Connor
- Department of Communication Disorders, University of Canterbury, Christchurch 8140, New Zealand.
| |
Collapse
|
43
|
Abstract
Atypical sensory-based behaviors are a ubiquitous feature of autism spectrum disorders (ASDs). In this article, we review the neural underpinnings of sensory processing in autism by reviewing the literature on neurophysiological responses to auditory, tactile, and visual stimuli in autistic individuals. We review studies of unimodal sensory processing and multisensory integration that use a variety of neuroimaging techniques, including electroencephalography (EEG), magnetoencephalography (MEG), and functional MRI. We then explore the impact of covert and overt attention on sensory processing. With additional characterization, neurophysiologic profiles of sensory processing in ASD may serve as valuable biomarkers for diagnosis and monitoring of therapeutic interventions for autism and reveal potential strategies and target brain regions for therapeutic interventions.
Collapse
Affiliation(s)
- Elysa J Marco
- Department of Neurology, University of California, San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
44
|
Gandal MJ, Edgar JC, Ehrlichman RS, Mehta M, Roberts TP, Siegel SJ. Validating γ oscillations and delayed auditory responses as translational biomarkers of autism. Biol Psychiatry 2010; 68:1100-6. [PMID: 21130222 PMCID: PMC5070466 DOI: 10.1016/j.biopsych.2010.09.031] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 08/30/2010] [Accepted: 09/24/2010] [Indexed: 01/16/2023]
Abstract
BACKGROUND Difficulty modeling complex behavioral phenotypes in rodents (e.g., language) has hindered pathophysiological investigation and treatment development for autism spectrum disorders. Recent human neuroimaging studies, however, have identified functional biomarkers that can be more directly related to the abnormal neural dynamics of autism spectrum disorders. This study assessed the translational potential of auditory evoked-response endophenotypes of autism in parallel mouse and human studies of autism. METHODS Whole-cortex magnetoencephalography was recorded in 17 typically developing and 25 autistic children during auditory pure-tone presentation. Superior temporal gyrus activity was analyzed in time and frequency domains. Auditory evoked potentials were recorded in mice prenatally exposed to valproic acid (VPA) and analyzed with analogous methods. RESULTS The VPA-exposed mice demonstrated selective behavioral alterations related to autism, including reduced social interactions and ultrasonic vocalizations, increased repetitive self-grooming, and prepulse inhibition deficits. Autistic subjects and VPA-exposed mice showed a similar 10% latency delay in the N1/M100 evoked response and a reduction in γ frequency (30-50 Hz) phase-locking factor. Electrophysiological measures were associated with mouse behavioral deficits. In mice, γ phase-locking factor was correlated with expression of the autism risk gene neuroligin-3 and neural deficits were modulated by the mGluR5-receptor antagonist MPEP. CONCLUSIONS Results demonstrate a novel preclinical approach toward mechanistic understanding and treatment development for autism.
Collapse
Affiliation(s)
- Michael J. Gandal
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104
| | - J. Christopher Edgar
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia PA, 19104
| | - Richard S. Ehrlichman
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104
| | - Mili Mehta
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104
| | - Timothy P.L. Roberts
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia PA, 19104
| | - Steven J. Siegel
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104,corresponding author. Steven J. Siegel, M.D. Ph.D., Dept of Psychiatry, University of Pennsylvania, Translational Research Laboratories, 125 S 31 St, Philadelphia, PA 19104, Tel: 215-573-0278, Fax: 215-573-2041,
| |
Collapse
|
45
|
Russo N, Nicol T, Trommer B, Zecker S, Kraus N. Brainstem transcription of speech is disrupted in children with autism spectrum disorders. Dev Sci 2009; 12:557-67. [PMID: 19635083 DOI: 10.1111/j.1467-7687.2008.00790.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Language impairment is a hallmark of autism spectrum disorders (ASD). The origin of the deficit is poorly understood although deficiencies in auditory processing have been detected in both perception and cortical encoding of speech sounds. Little is known about the processing and transcription of speech sounds at earlier (brainstem) levels or about how background noise may impact this transcription process. Unlike cortical encoding of sounds, brainstem representation preserves stimulus features with a degree of fidelity that enables a direct link between acoustic components of the speech syllable (e.g. onsets) to specific aspects of neural encoding (e.g. waves V and A). We measured brainstem responses to the syllable /da/, in quiet and background noise, in children with and without ASD. Children with ASD exhibited deficits in both the neural synchrony (timing) and phase locking (frequency encoding) of speech sounds, despite normal click-evoked brainstem responses. They also exhibited reduced magnitude and fidelity of speech-evoked responses and inordinate degradation of responses by background noise in comparison to typically developing controls. Neural synchrony in noise was significantly related to measures of core and receptive language ability. These data support the idea that abnormalities in the brainstem processing of speech contribute to the language impairment in ASD. Because it is both passively elicited and malleable, the speech-evoked brainstem response may serve as a clinical tool to assess auditory processing as well as the effects of auditory training in the ASD population.
Collapse
Affiliation(s)
- Nicole Russo
- The Auditory Neuroscience Laboratory, Department of Communication Sciences, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
46
|
Matsubayashi J, Kawakubo Y, Suga M, Takei Y, Kumano S, Fukuda M, Itoh K, Yumoto M, Kasai K. The influence of gender and personality traits on individual difference in auditory mismatch: A magnetoencephalographic (MMNm) study. Brain Res 2008; 1236:159-65. [DOI: 10.1016/j.brainres.2008.07.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 07/15/2008] [Accepted: 07/26/2008] [Indexed: 11/30/2022]
|
47
|
Audio-vocal system regulation in children with autism spectrum disorders. Exp Brain Res 2008; 188:111-24. [PMID: 18347784 DOI: 10.1007/s00221-008-1348-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 03/04/2008] [Indexed: 01/17/2023]
Abstract
Do children with autism spectrum disorders (ASD) respond similarly to perturbations in auditory feedback as typically developing (TD) children? Presentation of pitch-shifted voice auditory feedback to vocalizing participants reveals a close coupling between the processing of auditory feedback and vocal motor control. This paradigm was used to test the hypothesis that abnormalities in the audio-vocal system would negatively impact ASD compensatory responses to perturbed auditory feedback. Voice fundamental frequency (F(0)) was measured while children produced an /a/ sound into a microphone. The voice signal was fed back to the subjects in real time through headphones. During production, the feedback was pitch shifted (-100 cents, 200 ms) at random intervals for 80 trials. Averaged voice F(0) responses to pitch-shifted stimuli were calculated and correlated with both mental and language abilities as tested via standardized tests. A subset of children with ASD produced larger responses to perturbed auditory feedback than TD children, while the other children with ASD produced significantly lower response magnitudes. Furthermore, robust relationships between language ability, response magnitude and time of peak magnitude were identified. Because auditory feedback helps to stabilize voice F(0) (a major acoustic cue of prosody) and individuals with ASD have problems with prosody, this study identified potential mechanisms of dysfunction in the audio-vocal system for voice pitch regulation in some children with ASD. Objectively quantifying this deficit may inform both the assessment of a subgroup of ASD children with prosody deficits, as well as remediation strategies that incorporate pitch training.
Collapse
|
48
|
Muñoz-Yunta J, Ortiz T, Palau-Baduell M, Martín-Muñoz L, Salvadó-Salvadó B, Valls-Santasusana A, Perich-Alsina J, Cristóbal I, Fernández A, Maestú F, Dürsteler C. Magnetoencephalographic pattern of epileptiform activity in children with early-onset autism spectrum disorders. Clin Neurophysiol 2008; 119:626-634. [DOI: 10.1016/j.clinph.2007.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 10/19/2007] [Accepted: 11/05/2007] [Indexed: 11/25/2022]
|
49
|
Lewis JD, Elman JL. Growth-related neural reorganization and the autism phenotype: a test of the hypothesis that altered brain growth leads to altered connectivity. Dev Sci 2008; 11:135-55. [PMID: 18171375 PMCID: PMC2706588 DOI: 10.1111/j.1467-7687.2007.00634.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Theoretical considerations, and findings from computational modeling, comparative neuroanatomy and developmental neuroscience, motivate the hypothesis that a deviant brain growth trajectory will lead to deviant patterns of change in cortico-cortical connectivity. Differences in brain size during development will alter the relative cost and effectiveness of short- and long-distance connections, and should thus impact the growth and retention of connections. Reduced brain size should favor long-distance connectivity; brain overgrowth should favor short-distance connectivity; and inconsistent deviations from the normal growth trajectory - as occurs in autism - should result in potentially disruptive changes to established patterns of functional and physical connectivity during development. To explore this hypothesis, neural networks which modeled inter-hemispheric interaction were grown at the rate of either typically developing children or children with autism. The influence of the length of the inter-hemispheric connections was analyzed at multiple developmental time-points. The networks that modeled autistic growth were less affected by removal of the inter-hemispheric connections than those that modeled normal growth - indicating a reduced reliance on long-distance connections - for short response times, and this difference increased substantially at approximately 24 simulated months of age. The performance of the networks showed a corresponding decline during development. And direct analysis of the connection weights showed a parallel reduction in connectivity. These modeling results support the hypothesis that the deviant growth trajectory in autism spectrum disorders may lead to a disruption of established patterns of functional connectivity during development, with potentially negative behavioral consequences, and a subsequent reduction in physical connectivity. The results are discussed in relation to the growing body of evidence of reduced functional and structural connectivity in autism, and in relation to the behavioral phenotype, particularly the developmental aspects.
Collapse
Affiliation(s)
- John D Lewis
- Department of Cognitive Science, University of California at San Diego, USA.
| | | |
Collapse
|
50
|
Constantino JN, Yang D, Gray TL, Gross MM, Abbacchi AM, Smith SC, Kohn CE, Kuhl PK. Clarifying the associations between language and social development in autism: a study of non-native phoneme recognition. J Autism Dev Disord 2007; 37:1256-63. [PMID: 17080273 DOI: 10.1007/s10803-006-0269-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Autism spectrum disorders (ASDs) are characterized by correlated deficiencies in social and language development. This study explored a fundamental aspect of auditory information processing (AIP) that is dependent on social experience and critical to early language development: the ability to compartmentalize close-sounding speech sounds into singular phonemes. We examined this ability by assessing whether close-sounding non-native language phonemes were more likely to be perceived as disparate sounds by school-aged children with high-functioning ASD (n = 27), than by unaffected control subjects (n = 35). No significant group differences were observed. Although earlier in autistic development there may exist qualitative deficits in this specific aspect of AIP, they are not an enduring characteristic of verbal school-aged children with ASD.
Collapse
Affiliation(s)
- John N Constantino
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|