1
|
Cherubini A, Della Torre S, Pelusi S, Valenti L. Sexual dimorphism of metabolic dysfunction-associated steatotic liver disease. Trends Mol Med 2024:S1471-4914(24)00135-7. [PMID: 38890029 DOI: 10.1016/j.molmed.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver condition. MASLD is a sexually dimorphic condition, with its development and progression influenced by sex chromosomes and hormones. Estrogens typically protect against, whereas androgens promote, MASLD. Therapeutic approaches for a sex-specific personalized medicine include estrogen replacement, androgen blockers, and novel drugs targeting hormonal pathways. However, the interactions between hormonal factors and inherited genetic variation impacts MASLD risk, necessitating more tailored therapies. Understanding sex disparities and the role of estrogens could improve MASLD interventions and management, whereas clinical trials addressing sex differences are crucial for advancing personalized treatment. This review explores the underappreciated impact of sexual dimorphism in MASLD and discusses the potential therapeutic application of sex-related hormones.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Serena Pelusi
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
2
|
Song L, Li Y, Xu M. Exogenous Nucleotides Ameliorate Insulin Resistance Induced by Palmitic Acid in HepG2 Cells through the IRS-1/AKT/FOXO1 Pathways. Nutrients 2024; 16:1801. [PMID: 38931156 PMCID: PMC11206901 DOI: 10.3390/nu16121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Nucleotides (NTs) act as pivotal regulatory factors in numerous biological processes, playing indispensable roles in growth, development, and metabolism across organisms. This study delves into the effects of exogenous NTs on hepatic insulin resistance using palmitic-acid-induced HepG2 cells, administering interventions at three distinct dosage levels of exogenous NTs. The findings underscore that exogenous NT intervention augments glucose consumption in HepG2 cells, modulates the expression of glycogen-synthesis-related enzymes (glycogen synthase kinase 3β and glycogen synthase), and influences glycogen content. Additionally, it governs the expression levels of hepatic enzymes (hexokinase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase). Moreover, exogenous NT intervention orchestrates insulin signaling pathway (insulin receptor substrate-1, protein kinase B, and forkhead box protein O1) and AMP-activated protein kinase (AMPK) activity in HepG2 cells. Furthermore, exogenous NT intervention fine-tunes the expression levels of oxidative stress-related markers (malondialdehyde, glutathione peroxidase, and NADPH oxidase 4) and the expression of inflammation-related nuclear transcription factor (NF-κB). Lastly, exogenous NT intervention regulates the expression levels of glucose transporter proteins (GLUTs). Consequently, exogenous NTs ameliorate insulin resistance in HepG2 cells by modulating the IRS-1/AKT/FOXO1 pathways and regulate glucose consumption, glycogen content, insulin signaling pathways, AMPK activity, oxidative stress, and inflammatory status.
Collapse
Affiliation(s)
- Lixia Song
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (L.S.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (L.S.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (L.S.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100019, China
| |
Collapse
|
3
|
Neshatbini Tehrani A, Hatami B, Daftari G, Hekmatdoost A, Yari Z, Salehpour A, Hosseini SA, Helli B. The effect of soy isoflavones supplementation on metabolic status in patients with non-alcoholic fatty liver disease: a randomized placebo controlled clinical trial. BMC Public Health 2024; 24:1362. [PMID: 38773414 PMCID: PMC11107053 DOI: 10.1186/s12889-024-18812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) accounts as a crucial health concern with a huge burden on health and economic systems. The aim of this study is to evaluate the effect of soy isoflavones supplementation on metabolic status in patients with NAFLD. METHODS In this randomized clinical trial, 50 patients with NAFLD were randomly allocated to either soy isoflavone or placebo groups for 12 weeks. The soy isoflavone group took 100 mg/d soy isoflavone and the placebo group took the similar tablets containing starch. Anthropometric indices, blood lipids, glycemic parameters and blood pressure were measured at the beginning and at the end of the study. RESULTS At the end of week 12 the level of serum triglyceride (TG), low density lipoprotein (LDL) and total cholesterol (TC) was significantly decreased only in soy isoflavone group compared to baseline (P < 0.05). Although waist circumference (WC) decreased significantly in both groups after 12 weeks of intervention (P < 0.05), hip circumference (HC) decreased significantly only in soy isoflavone group (P = 0.001). No significant changes observed regarding high density lipoprotein (HDL) and blood pressure in both groups. At the end of the study, serum glucose level was significantly decreased in the placebo group compared to baseline (P = 0.047). No significant changes demonstrated in the soy isoflavone group in regard to glycemic parameters (P > 0.05). CONCLUSIONS This study revealed that soy isoflavones could significantly reduce TG, LDL TC, WC and HC in NAFLD patients. TRIAL REGISTRATION The Ethics committee of Ahvaz Jundishapur University of Medical Sciences approved the protocol of the present clinical research (IR.AJUMS.REC.1401.155). The study was in accordance with the Declaration of Helsinki. This study's registered number and date are IRCT20220801055597N1 and 20.09.2022, respectively at https://fa.irct.ir .
Collapse
Affiliation(s)
- Asal Neshatbini Tehrani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Golestan Boulevard, Ahvaz, 78531-67465, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Daftari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Salehpour
- School of Public Health, Occupational Health Research Center, Iran Universityof Medical Sciences, Tehran, Iran
| | - Seyed Ahmad Hosseini
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Golestan Boulevard, Ahvaz, 78531-67465, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bizhan Helli
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Golestan Boulevard, Ahvaz, 78531-67465, Iran.
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Lei L, Hui S, Chen Y, Yan H, Yang J, Tong S. Effect of soy isoflavone supplementation on blood pressure: a meta-analysis of randomized controlled trials. Nutr J 2024; 23:32. [PMID: 38454401 PMCID: PMC10918941 DOI: 10.1186/s12937-024-00932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Previous experimental studies have suggested that the consumption of soy isoflavones may have a potential impact on lowering blood pressure. Nevertheless, epidemiological studies have presented conflicting outcomes concerning the correlation between soy isoflavone consumption and blood pressure levels. Consequently, a comprehensive meta-analysis of all eligible randomized controlled trials (RCTs) was conducted to explore the influence of soy isoflavones on systolic blood pressure (SBP) and diastolic blood pressure (DBP) in adults. METHODS A thorough search of PubMed, Embase, and the Cochrane Library for relevant literature up to April 30, 2023 was conducted. RCTs involving adults that compared soy isoflavone supplementation with a placebo (the same matrix devoid of soy isoflavone) were included. The combined effect size was presented as the weighted mean difference (WMD) along with 95% confidence interval (CI), employing a fixed-effects model. RESULTS Our meta-analysis included a total of 24 studies involving 1945 participants. The results revealed a significant reduction in both SBP and DBP with soy isoflavone supplementation. Subgroup analyses suggested more pronounced reductions in SBP and DBP for interventions lasting ≥6 months, in individuals receiving mixed-type soy isoflavone, and among patients with metabolic syndrome or prehypertension. However, we did not detect significant nonlinear associations between supplementation dosage and intervention duration concerning both SBP and DBP. The overall quality of evidence was deemed moderate. CONCLUSIONS The current meta-analysis revealed that supplementation with soy isoflavones alone effectively reduces blood pressure. Additional high-quality studies are required to investigate the efficacy of blood pressure reduction through supplementation with an optimal quantity and proportion of soy isoflavone.
Collapse
Affiliation(s)
- Lifu Lei
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Suocheng Hui
- Department of Clinical Nutrition, The People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401135, China
| | - Yushi Chen
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hongjia Yan
- Department of Clinical Nutrition, The People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401135, China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 410020, China.
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 410020, China.
| | - Shiwen Tong
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Neshatbini Tehrani A, Hatami B, Helli B, Yari Z, Daftari G, Salehpour A, Hedayati M, Khalili E, Hosseini SA, Hekmatdoost A. The effect of soy isoflavones on non-alcoholic fatty liver disease and the level of fibroblast growth factor-21 and fetuin A. Sci Rep 2024; 14:5134. [PMID: 38429385 PMCID: PMC10907727 DOI: 10.1038/s41598-024-55747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
A two-arm randomized open labeled controlled clinical trial was conducted on 50 patients with non-alcoholic fatty liver disease (NAFLD). Subjects were randomized to either receive two tablets of soy isoflavone (100 mg/day) or placebo. At week 12, the serum levels of alanine amino transferase (ALT), aspartate amino transferase (AST) and controlled attenuation parameter (CAP) score were significantly decreased only in the soy isoflavone group (P < 0.05). A significant decline in the gamma glutamyl transferase (GGT) level was observed only in the placebo group (P = 0.017). A significant increase in the serum level of fetuin A was shown in both groups at the end of the trial with a significantly greater increment in the soy isoflavone group compared to the placebo group (P < 0.05). The changes in the serum level of FGF-21 were not significant in any of the two groups. Steatosis grade significantly improved only in the soy isoflavone group (P = 0.045). There was no significant change in the fibrosis grade in the groups. Soy isoflavone intake led to a decrease in ALT, AST, CAP score, steatosis grade and an increase in the level of fetuin A. However, no significant changes were observed in the fibrosis grade and serum levels of GGT and FGF-21.
Collapse
Affiliation(s)
- Asal Neshatbini Tehrani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bizhan Helli
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Daftari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Salehpour
- School of Public Health, Occupational Health Research Center, Iran Universityof Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elmira Khalili
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ahmad Hosseini
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azita Hekmatdoost
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, No 7, West Arghavan St., Farahzadi Blvd., P. O. Box: 19395-4741, Tehran, 1981619573, Iran.
| |
Collapse
|
6
|
Laudani S, Godos J, Romano GL, Gozzo L, Di Domenico FM, Dominguez Azpíroz I, Martínez Diaz R, Giampieri F, Quiles JL, Battino M, Drago F, Galvano F, Grosso G. Isoflavones Effects on Vascular and Endothelial Outcomes: How Is the Gut Microbiota Involved? Pharmaceuticals (Basel) 2024; 17:236. [PMID: 38399451 PMCID: PMC10891971 DOI: 10.3390/ph17020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Isoflavones are a group of (poly)phenols, also defined as phytoestrogens, with chemical structures comparable with estrogen, that exert weak estrogenic effects. These phytochemical compounds have been targeted for their proven antioxidant and protective effects. Recognizing the increasing prevalence of cardiovascular diseases (CVD), there is a growing interest in understanding the potential cardiovascular benefits associated with these phytochemical compounds. Gut microbiota may play a key role in mediating the effects of isoflavones on vascular and endothelial functions, as it is directly implicated in isoflavones metabolism. The findings from randomized clinical trials indicate that isoflavone supplementation may exert putative effects on vascular biomarkers among healthy individuals, but not among patients affected by cardiometabolic disorders. These results might be explained by the enzymatic transformation to which isoflavones are subjected by the gut microbiota, suggesting that a diverse composition of the microbiota may determine the diverse bioavailability of these compounds. Specifically, the conversion of isoflavones in equol-a microbiota-derived metabolite-seems to differ between individuals. Further studies are needed to clarify the intricate molecular mechanisms behind these contrasting results.
Collapse
Affiliation(s)
- Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (F.D.); (F.G.); (G.G.)
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (F.D.); (F.G.); (G.G.)
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy;
| | - Lucia Gozzo
- Clinical Pharmacology Unit/Regional Pharmacovigilance Centre, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy;
| | - Federica Martina Di Domenico
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (F.D.); (F.G.); (G.G.)
| | - Irma Dominguez Azpíroz
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (I.D.A.); (R.M.D.); (F.G.); (J.L.Q.); (M.B.)
- Universidade Internacional do Cuanza, Cuito EN250, Angola
- Universidad de La Romana, La Romana 22000, Dominican Republic
| | - Raquel Martínez Diaz
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (I.D.A.); (R.M.D.); (F.G.); (J.L.Q.); (M.B.)
- Universidad Internacional Iberoamericana, Campeche 24560, Mexico
- Universidad Internacional Iberoamericana, Arecibo 00613, Puerto Rico
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (I.D.A.); (R.M.D.); (F.G.); (J.L.Q.); (M.B.)
- Department of Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - José L. Quiles
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (I.D.A.); (R.M.D.); (F.G.); (J.L.Q.); (M.B.)
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (I.D.A.); (R.M.D.); (F.G.); (J.L.Q.); (M.B.)
- Department of Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (F.D.); (F.G.); (G.G.)
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (F.D.); (F.G.); (G.G.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (F.D.); (F.G.); (G.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| |
Collapse
|
7
|
Liu G, Yang L, Tang Y, Lin J, Wang F, Shen J, Chang B, Kong X. Study on the action mechanism of the Polygonum perfoliatum L. on non-alcoholic fatty liver disease, based on network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117330. [PMID: 37863399 DOI: 10.1016/j.jep.2023.117330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) holds that non-alcoholic fatty liver disease (NAFLD) belong to the category of "thoracic fullness". Polygonum perfoliatum L. (PPL), a Chinese medicinal herb with the effect of treating thoracic fullness, was recorded in the ancient Chinese medicine book "Supplements to Compendium of Materia Medica". It has been used since ancient times to treat NAFLD. However, the underlying mechanism and active components of PPL against NAFLD remains unclear. AIM OF STUDY To identify the main active components and the anti-NAFLD mechanism of PPL. MATERIALS AND METHODS Network pharmacology, UPLC/QE-HFX analysis, and molecular docking were employed to determine the main bioactive compounds and key targets of PPL for the NAFLD treatment. This effect was further validated with administration of PPL (200 mg/kg and 400 mg/kg) to NAFLD model mice for 5 weeks. Systemic signs of obesity, biochemical parameters, and histological changes were characterized. Immunohistochemistry, western blot, and PCR analysis were conducted to elucidate the mechanistic pathways through which PPL exerts its effects. RESULTS Network pharmacology revealed 77 crossover genes between the PPL and NAFLD. The kyoto encyclopedia of genes and genomes (KEGG) analysis show that PPL treat NAFLD mainly regulating glucose-lipid metabolism mediated by PI3K/AKT signal pathway. The Gene Ontology (GO) enrichment analysis show that PPL treat NAFLD mainly regulating inflammation mediated by cytokine-mediated signaling pathway. In accordance with the anticipated outcomes, administration of PPL in a dose-dependent manner effectively mitigated insulin resistance induced by a high-fat diet (HFD) by activating the PI3K/AKT signaling pathway. Histopathological evaluation corroborated the hepatoprotective effects of PPL against HFD-induced hepatic steatosis, as evidenced by the inhibition of de novo fatty acid synthesis and promotion of fatty acid β-oxidation (FAO). Further research showed that PPL blocked cytokine production by inhibiting the NF-κB pathway, thereby reducing immune cell infiltration. Furthermore, five flavonoids from PPL, including quercetin, baicalein, galangin, apigenin, and genistein were identified as key compounds based on ingredient-target-pathway network analysis. Molecular docking show that these active compounds have favorable binding interactions with AKT1, PIK3R1, and MAPK1, further confirming the impact of PPL on the PI3K/AKT pathway. CONCLUSIONS Through the combination of network pharmacology prediction and experimental validation, this work determined that therapeutic effect of PPL on NAFLD, and such protective effect is mediated by activating PI3K/AKT-mediated glucolipid metabolism pathway and hepatic NF-κB-mediated cytokine signaling pathway.
Collapse
Affiliation(s)
- Guanjie Liu
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Liu Yang
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yifei Tang
- Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Fang Wang
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Jie Shen
- Department of pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Bin Chang
- Department of Pathology, Shuguang Hospital, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China.
| |
Collapse
|
8
|
Wei Y, Liu Y, Li G, Guo Y, Zhang B. Effects of quercetin and genistein on egg quality, lipid profiles, and immunity in laying hens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:207-214. [PMID: 37552763 DOI: 10.1002/jsfa.12910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND After the peak laying stage, laying hens become susceptible to lipid accumulation and inflammatory reactions. The objective of this experiment was to examine the impact of quercetin and genistein on egg quality and lipid profiles in laying hens. A total of 240 Hy-Line Brown hens were randomly assigned to three dietary treatments. Each treatment had eight replicates, with ten hens in each replicate, and the hens were aged between 46 and 56 weeks. The test diets consisted of a corn-soybean meal-based basal diet, a basal diet supplemented with 300 mg kg-1 quercetin, and a basal diet supplemented with 300 mg kg-1 quercetin and 40 mg kg-1 genistein. RESULTS Results showed that, separately, supplemental quercetin significantly improved egg quality (eggshell strength, albumen height, and Haugh unit, P < 0.05) and reduced the deposition of abdominal fat (P < 0.05). Our findings also showed that, separately or as a combination, supplemental quercetin and genistein significantly increased eggshell thickness (P < 0.05), decreased the levels of lipids in serum (low-density lipoprotein cholesterol, total cholesterol, total triglycerides, and non-esterified fatty acids, P < 0.05) and significantly increased serum immunoglobulins A and G (P < 0.05), and promoted the expression of splenic immune-related genes (IgA and IL-4, P < 0.05). CONCLUSION This study confirmed that supplemental quercetin and genistein, either separately or in combination, can enhance eggshell thickness, lipid profiles, and immune function in aging hens. Moreover, both quercetin alone and quercetin + genistein exhibited similar abilities to lower lipid levels and improve immune function. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Wei
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yongfa Liu
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Guang Li
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yuming Guo
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Li L, Ji K, Du F, Jin N, Boesch C, Farag MA, Li H, Liu X, Xiao J. Does Flavonoid Supplementation Alleviate Non-Alcoholic Fatty Liver Disease? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Mol Nutr Food Res 2023; 67:e2300480. [PMID: 37877662 DOI: 10.1002/mnfr.202300480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Indexed: 10/26/2023]
Abstract
SCOPE Higher flavonoid intake is associated with reduced risk of non-alcoholic fatty liver disease (NAFLD). However, there is a large discrepancy in the effects of flavonoid supplementation on NAFLD. To fill such knowledge gap, we systematically reviewed randomized clinical trials (RCTs) to critically assess flavonoid supplementation effect on liver function, lipid profile, inflammation, and insulin resistance in adults with NAFLD. METHODS AND RESULTS A systematic search was conducted from 4 databases from inception until May 2023. Twelve RCTs were included in the final analysis demonstrating beneficial effects of flavonoids on ALT (SMD = -3.59, p = 0.034), AST (SMD = -4.47, p = 0.001), GGT (SMD = -8.70, p = 0.000), CK-18M30 (SMD = -0.35, p = 0.042), TG (SMD = -0.37, p = 0.001), LDL-C (SMD = -0.38, p = 0.039), TC (MD = -0.25 mmol/l, p = 0.017), steatosis score (MD = -18.97, p = 0.30), TNF-α (MD = -0.88, p = 0.000), and NF-κB (MD = -1.62, p = 0.001). CONCLUSION This meta-analysis suggests that flavonoid alleviates NAFLD through exerting favourable effects on liver function, lipid profile, and inflammation, indicating flavonoid supplementation presents a promising drug regimen for the management of NAFLD and its associated complications.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Kexin Ji
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Fengqi Du
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Nini Jin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, 36310, Spain
| |
Collapse
|
10
|
Luo Y, Zeng Y, Peng J, Zhang K, Wang L, Feng T, Nhamdriel T, Fan G. Phytochemicals for the treatment of metabolic diseases: Evidence from clinical studies. Biomed Pharmacother 2023; 165:115274. [PMID: 37542856 DOI: 10.1016/j.biopha.2023.115274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
With the continuous improvement of people's living standard, the incidence of metabolic diseases is gradually increasing in recent years. There is growing interest in finding drugs to treat metabolic diseases from natural compounds due to their good efficacy and limited side effects. Over the past few decades, many phytochemicals derived from natural plants, such as berberine, curcumin, quercetin, resveratrol, rutin, and hesperidin, have been shown to have good pharmacological activity against metabolic diseases in preclinical studies. More importantly, clinical trials using these phytochemicals to treat metabolic diseases have been increasing. This review comprehensively summarizes the clinical progress of phytochemicals derived from natural plants in the treatment of several metabolic diseases, including type 2 diabetes mellitus (T2DM), obesity and non-alcoholic fatty liver disease (NAFLD). Accumulating clinical evidence shows that a total of 18 phytochemicals have good therapeutic effects on the three metabolic diseases by lowering blood glucose and lipid levels, reducing insulin resistance, enhancing insulin sensitivity, increasing energy expenditure, improving liver function, and relieving inflammation and oxidative stress. The information will help us better understand the medicinal value of these phytochemicals and promote their clinical application in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yuting Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yujiao Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayan Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tu Feng
- School of Ecological Engineering, Guizhou University of Engineering Science, Bijie 551700, China.
| | - Tsedien Nhamdriel
- Department of Tibetan medicine, University of Tibetan Medicine, Lhasa 850000, China.
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, China.
| |
Collapse
|
11
|
Zhao C, Shi J, Shang D, Guo M, Zhou C, Zhao W. Protective effect of phytoestrogens on nonalcoholic fatty liver disease in postmenopausal women. Front Pharmacol 2023; 14:1237845. [PMID: 37719855 PMCID: PMC10502324 DOI: 10.3389/fphar.2023.1237845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive metabolic disease characterized by hepatic steatosis, inflammation, and fibrosis that seriously endangers global public health. Epidemiological studies have shown that the incidence of non-alcoholic fatty liver disease in postmenopausal women has significantly increased. Studies have shown that estrogen deficiency is the main reason for this situation, and supplementing estrogen has become a new direction for preventing the occurrence of postmenopausal fatty liver. However, although classical estrogen replacement therapy can reduce the incidence of postmenopausal NAFLD, it has the risk of increasing stroke and cardiovascular diseases, so it is not suitable for the treatment of postmenopausal NAFLD. More and more recent studies have provided evidence that phytoestrogens are a promising method for the treatment of postmenopausal NAFLD. However, the mechanism of phytoestrogens in preventing and treating postmenopausal NAFLD is still unclear. This paper summarizes the clinical and basic research evidence of phytoestrogens and reviews the potential therapeutic effects of phytoestrogens in postmenopausal NAFLD from six angles: enhancing lipid metabolism in liver and adipose tissue, enhancing glucose metabolism, reducing oxidative stress, reducing the inflammatory response, regulating intestinal flora, and blocking liver fibrosis (Graphical Abstract).
Collapse
Affiliation(s)
- ChenLu Zhao
- First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - JunHao Shi
- First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - DongFang Shang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Min Guo
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Cheng Zhou
- First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - WenXia Zhao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
12
|
Jung SM, Kaur A, Amen RI, Oda K, Rajaram S, Sabatè J, Haddad EH. Effect of the Fermented Soy Q-CAN ® Product on Biomarkers of Inflammation and Oxidation in Adults with Cardiovascular Risk, and Canonical Correlations between the Inflammation Biomarkers and Blood Lipids. Nutrients 2023; 15:3195. [PMID: 37513613 PMCID: PMC10383246 DOI: 10.3390/nu15143195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Systemic low-grade inflammation plays a key role in the development of cardiovascular disease (CVD) but the process may be modulated by consuming fermented soy foods. Here, we aim to evaluate the effect of a fermented soy powder Q-CAN® on inflammatory and oxidation biomarkers in subjects with cardiovascular risk. In a randomized crossover trial, 27 adults (mean age ± SD, 51.6 ± 13.5 y) with a mean BMI ± SD of 32.3 ± 7.3 kg/m2 consumed 25 g daily of the fermented soy powder or an isoenergic control powder of sprouted brown rice for 12 weeks each. Between-treatment results showed a 12% increase in interleukin-1 receptor agonist (IL-1Ra) in the treatment group, whereas within-treatment results showed 23% and 7% increases in interleukin-6 (IL-6) and total antioxidant status (TAS), respectively. The first canonical correlation coefficient (r = 0.72) between inflammation markers and blood lipids indicated a positive association between high-sensitivity C-reactive protein (hsCRP) and IL-1Ra with LDL-C and a negative association with HDL-C that explained 62% of the variability in the biomarkers. These outcomes suggest that blood lipids and inflammatory markers are highly correlated and that ingestion of the fermented soy powder Q-CAN® may increase IL-1Ra, IL-6, and TAS in individuals with CVD risk factors.
Collapse
Affiliation(s)
- Sarah M Jung
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
- Rongxiang Xu College of Health and Human Services, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Amandeep Kaur
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Rita I Amen
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Keiji Oda
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Joan Sabatè
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ella H Haddad
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
13
|
Kosmalski M, Frankowski R, Deska K, Różycka-Kosmalska M, Pietras T. Exploring the Impact of Nutrition on Non-Alcoholic Fatty Liver Disease Management: Unveiling the Roles of Various Foods, Food Components, and Compounds. Nutrients 2023; 15:2838. [PMID: 37447164 DOI: 10.3390/nu15132838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
There is a need to introduce standardized treatment options for non-alcoholic fatty liver disease (NAFLD) due to its global prevalence and the complications of this disease. Many studies have revealed that food-derived substances may be beneficial in dealing with this disease. Therefore, this review aims to evaluate the recently published studies on the food-derived treatment options for NAFLD. A comprehensive search of the PubMed database using keywords such as "NAFLD", "nutrition", "food", "derived", "therapy", and "guidelines" yielded 219 relevant papers for our analysis, published from 2004 to 2023. The results show the significant benefits of food-derived treatment in NAFLD therapy, including improvements in liver histology, hepatic fat amounts, anthropometric measures, lipid profile, and other metabolic measures. The availability of the substances discussed makes them a significant adjuvant in the treatment of this disease. The usefulness of Viusid as additional therapy to diet and physical activity should be emphasized due to improvements in liver histology; however, many other substances lead to a decrease in liver fat amounts including, e.g., berberine or omega-3 fatty acids. In addition, the synbiotic Protexin seems to be useful in terms of NAFLD treatment, especially because it is effective in both obese and lean subjects. Based on the latest research results, we suggest revising the therapeutic recommendations for patients suffering from NAFLD.
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Rafał Frankowski
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Kacper Deska
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
14
|
Li L, Qin Y, Xin X, Wang S, Liu Z, Feng X. The great potential of flavonoids as candidate drugs for NAFLD. Biomed Pharmacother 2023; 164:114991. [PMID: 37302319 DOI: 10.1016/j.biopha.2023.114991] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a global prevalence of approximately 25 % and is associated with high morbidity and high mortality. NAFLD is a leading cause of cirrhosis and hepatocellular carcinoma. Its pathophysiology is complex and still poorly understood, and there are no drugs used in the clinic to specifically treat NAFLD. Its pathogenesis involves the accumulation of excess lipids in the liver, leading to lipid metabolism disorders and inflammation. Phytochemicals with the potential to prevent or treat excess lipid accumulation have recently received increasing attention, as they are potentially more suitable for long-term use than are traditional therapeutic compounds. In this review, we summarize the classification, biochemical properties, and biological functions of flavonoids and how they are used in the treatment of NAFLD. Highlighting the roles and pharmacological uses of these compounds will be of importance for enhancing the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Liangge Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xijian Xin
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Shendong Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
15
|
Zhang Y, Balasooriya H, Sirisena S, Ng K. The effectiveness of dietary polyphenols in obesity management: A systematic review and meta-analysis of human clinical trials. Food Chem 2023; 404:134668. [DOI: 10.1016/j.foodchem.2022.134668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
|
16
|
Braxas H, Musazadeh V, Zarezadeh M, Ostadrahimi A. Genistein effectiveness in improvement of glucose and lipid metabolism and homocysteine levels: A systematic review and meta-analysis. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
17
|
Zhang CY, Liu S, Yang M. Antioxidant and anti-inflammatory agents in chronic liver diseases: Molecular mechanisms and therapy. World J Hepatol 2023; 15:180-200. [PMID: 36926234 PMCID: PMC10011909 DOI: 10.4254/wjh.v15.i2.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Chronic liver disease (CLD) is a continuous process that causes a reduction of liver function lasting more than six months. CLD includes alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), chronic viral infection, and autoimmune hepatitis, which can lead to liver fibrosis, cirrhosis, and cancer. Liver inflammation and oxidative stress are commonly associated with the development and progression of CLD. Molecular signaling pathways such as AMP-activated protein kinase (AMPK), C-Jun N-terminal kinase, and peroxisome proliferator-activated receptors (PPARs) are implicated in the pathogenesis of CLD. Therefore, antioxidant and anti-inflammatory agents from natural products are new potent therapies for ALD, NAFLD, and hepatocellular carcinoma (HCC). In this review, we summarize some powerful products that can be potential applied in all the stages of CLD, from ALD/NAFLD to HCC. The selected agents such as β-sitosterol, curcumin, genistein, and silymarin can regulate the activation of several important molecules, including AMPK, Farnesoid X receptor, nuclear factor erythroid 2-related factor-2, PPARs, phosphatidylinositol-3-kinase, and lysyl oxidase-like proteins. In addition, clinical trials are undergoing to evaluate their efficacy and safety.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
18
|
Matsumoto Y, Fujii H, Harima M, Okamura H, Yukawa-Muto Y, Odagiri N, Motoyama H, Kotani K, Kozuka R, Kawamura E, Hagihara A, Uchida-Kobayashi S, Enomoto M, Yasui Y, Habu D, Kawada N. Severity of Liver Fibrosis Is Associated with the Japanese Diet Pattern and Skeletal Muscle Mass in Patients with Nonalcoholic Fatty Liver Disease. Nutrients 2023; 15:nu15051175. [PMID: 36904174 PMCID: PMC10005291 DOI: 10.3390/nu15051175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
It is not fully clear as to which dietary patterns are associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD) in Asia. We conducted a cross-sectional study of 136 consecutively recruited patients with NAFLD (49% female, median age 60 years). Severity of liver fibrosis was assessed using the Agile 3+ score, a recently proposed system based on vibration-controlled transient elastography. Dietary status was assessed using the 12-component modified Japanese diet pattern index (mJDI12). Skeletal muscle mass was assessed by bioelectrical impedance. Factors associated with intermediate-high-risk Agile 3+ scores and skeletal muscle mass (75th percentile or higher) were analyzed by multivariable logistic regression. After adjustment for confounders, such as age and sex, the mJDI12 (OR: 0.77; 95% CI: 0.61, 0.99) and skeletal muscle mass (75th percentile or higher) (OR: 0.23; 95% CI: 0.07, 0.77) were significantly associated with intermediate-high-risk Agile 3+ scores. Soybeans and soybean foods were significantly associated with skeletal muscle mass (75th percentile or higher) (OR: 1.02; 95% CI: 1.00, 1.04). In conclusion, the Japanese diet pattern was associated with the severity of liver fibrosis in Japanese patients with NAFLD. Skeletal muscle mass was also associated with the severity of liver fibrosis, and intake of soybeans and soybean foods.
Collapse
Affiliation(s)
- Yoshinari Matsumoto
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-shi, Osaka 583-8555, Japan
| | - Hideki Fujii
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
- Correspondence: ; Tel.: +81-6-6645-3905
| | - Mika Harima
- Nutrition Department, Osaka Metropolitan University Hospital, 1-5-7 Asahimachi, Abeno-ku, Osaka 545-8586, Japan
| | - Haruna Okamura
- Nutrition Department, Osaka Metropolitan University Hospital, 1-5-7 Asahimachi, Abeno-ku, Osaka 545-8586, Japan
| | - Yoshimi Yukawa-Muto
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Naoshi Odagiri
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Hiroyuki Motoyama
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Kohei Kotani
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Ritsuzo Kozuka
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Etsushi Kawamura
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Atsushi Hagihara
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Sawako Uchida-Kobayashi
- Department of Premier Preventive Medicine, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Masaru Enomoto
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Yoko Yasui
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-shi, Osaka 583-8555, Japan
| | - Daiki Habu
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-shi, Osaka 583-8555, Japan
| | - Norifumi Kawada
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
19
|
Jayusman PA, Nasruddin NS, Baharin B, Ibrahim N‘I, Ahmad Hairi H, Shuid AN. Overview on postmenopausal osteoporosis and periodontitis: The therapeutic potential of phytoestrogens against alveolar bone loss. Front Pharmacol 2023; 14:1120457. [PMID: 36909165 PMCID: PMC9995413 DOI: 10.3389/fphar.2023.1120457] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Osteoporosis and periodontitis are two major chronic diseases of postmenopausal women. The association between these two diseases are evident through systemic bone loss and alveolar bone loss. Both postmenopausal osteoporosis and periodontitis impose a considerable personal and socioeconomic burden. Biphosphonate and hormone replacement therapy are effective in preventing bone loss in postmenopausal osteoporosis and periodontitis, but they are coupled with severe adverse effects. Phytoestrogens are plant-based estrogen-like compounds, which have been used for the treatment of menopause-related symptoms. In the last decades, numerous preclinical and clinical studies have been carried out to evaluate the therapeutic effects of phytoestrogens including bone health. The aim of this article is to give an overview of the bidirectional interrelationship between postmenopausal osteoporosis and periodontitis, summarize the skeletal effects of phytoestrogens and report the most studied phytoestrogens with promising alveolar bone protective effect in postmenopausal osteoporosis model, with and without experimental periodontitis. To date, there are limited studies on the effects of phytoestrogens on alveolar bone in postmenopausal osteoporosis. Phytoestrogens may have exerted their bone protective effect by inhibiting bone resorption and enhancing bone formation. With the reported findings on the protective effects of phytoestrogens on bone, well-designed trials are needed to better investigate their therapeutic effects. The compilation of outcomes presented in this review may provide an overview of the recent research findings in this field and direct further in vivo and clinical studies in the future.
Collapse
Affiliation(s)
- Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Badiah Baharin
- Unit of Periodontology, Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul ‘Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Haryati Ahmad Hairi
- Department of Biochemistry, Faculty of Medicine, Manipal University College, Melaka, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
20
|
Hall RL, George ES, Tierney AC, Reddy AJ. Effect of Dietary Intervention, with or without Cointerventions, on Inflammatory Markers in Patients with Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Adv Nutr 2023; 14:475-499. [PMID: 36796436 DOI: 10.1016/j.advnut.2023.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease from simple steatosis to nonalcoholic steatohepatitis, with inflammatory cytokines and adipokines identified as drivers of disease progression. Poor dietary patterns are known to promote an inflammatory milieu, although the effects of specific diets remain largely unknown. This review aimed to gather and summarize new and existing evidence on the effect of dietary intervention on inflammatory markers in patients with NAFLD. The electronic databases MEDLINE, EMBASE, CINAHL, and Cochrane were searched for clinical trials which investigated outcomes of inflammatory cytokines and adipokines. Eligible studies included adults >18 y with NAFLD, which compared a dietary intervention with an alternative diet or control (no intervention) group or were accompanied by supplementation or other lifestyle interventions. Outcomes for inflammatory markers were grouped and pooled for meta-analysis where heterogeneity was allowed. Methodological quality and risk of bias were assessed using the Academy of Nutrition and Dietetics Criteria. Overall, 44 studies with a total of 2579 participants were included. Meta-analyses indicated intervention with an isocaloric diet plus supplement was more effective in reducing C-reactive protein (CRP) [standard mean difference (SMD): 0.44; 95% CI: 0.20, 0.68; P = 0.0003] and tumor necrosis factor-alpha (TNF-α) (SMD: 0.74; 95% CI: 0.02, 1.46; P = 0.03) than an isocaloric diet alone. No significant weighting was shown between a hypocaloric diet with or without supplementation for CRP (SMD: 0.30; 95% CI: -0.84, 1.44; P = 0.60) and TNF-α (SMD: 0.01; 95% CI: -0.43, 0.45; P = 0.97). In conclusion, hypocaloric and energy-restricted diets alone or with supplementation, and isocaloric diets with supplementation were shown to be most effective in improving the inflammatory profile of patients with NAFLD. To better determine the effectiveness of dietary intervention alone on a NAFLD population, further investigations of longer durations, with larger sample sizes are required.
Collapse
Affiliation(s)
- Renate L Hall
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia
| | - Elena S George
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Audrey C Tierney
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia; School of Allied Health, Health Implementation Science and Technology Research Cluster, Health Research Institute, University of Limerick, Limerick, Ireland
| | - Anjana J Reddy
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia; Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, Australia.
| |
Collapse
|
21
|
Wang G, Wang Y, Bai J, Li G, Liu Y, Deng S, Zhou R, Tao K, Xia Z. Increased plasma genistein after bariatric surgery could promote remission of NAFLD in patients with obesity. Front Endocrinol (Lausanne) 2023; 13:1024769. [PMID: 36686492 PMCID: PMC9846086 DOI: 10.3389/fendo.2022.1024769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Background Bariatric surgery is associated with a positive effect on the progress of non-alcoholic associated fatty liver disease (NAFLD). Although weight loss is the obvious mechanism, there are also weight-independent mechanisms. Methods We collected blood samples from 5 patients with obesity before and 3 months after surgery and performed an LC-MS-based untargeted metabolomics test to detect potential systemic changes. We also constructed sleeve gastrectomy (SG) mice models. The plasma, liver and intestine samples were collected and analyzed by qPCR, ELISA and HPLC. Cohousing experiments and feces transplantation experiments were performed on mice to study the effect of gut microbiota. Genistein administration experiments were used to study the in vivo function of the metabolites. Results Plasma genistein (GE) was identified to be elevated after surgery. Both clinical data and rodent models suggested that plasma GE is negatively related to the degree of NAFLD. We fed diet-induced obese (DIO) mice with GE, and we found that there was significant remission of NAFLD. Both in vivo and in vitro experiments showed that GE could restrict the inflammation state in the liver and thus relieve NAFLD. Finally, we used co-housing experiments to alter the gut microbiota in mice, and it was identified that sleeve gastrectomy (SG) mice had a special gut microbiota phenotype, which could result in higher plasma GE levels. By feces transplantation experiment (FMT), we found that only feces from the SG mice (and not from other lean mice) could induce higher plasma GE levels. Conclusion Our studies showed that SG but not calorie restriction could induce higher plasma GE levels by altering the gut microbiota. This change could promote NAFLD remission. Our study provides new insights into the systemic effects of bariatric surgery. Bariatric surgery could affect remote organs via altered metabolites from the gut microbiota. Our study also identified that additional supplement of GE after surgery could be a therapy for NAFLD.
Collapse
Affiliation(s)
- Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastrointestinal Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Bai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shichang Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zefeng Xia
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Li L, Wang Y, Wang H, Yang Y, Ma H. Protective effects of genistein on the production performance and lipid metabolism disorders in laying hens with fatty liver hemorrhagic syndrome by activation of the GPER-AMPK signaling pathways. J Anim Sci 2023; 101:skad197. [PMID: 37314978 PMCID: PMC10290500 DOI: 10.1093/jas/skad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023] Open
Abstract
The aim of this study was to evaluate the beneficial effects and potential mechanisms of genistein (GEN) on production performance impairments and lipid metabolism disorders in laying hens fed a high-energy and low-protein (HELP) diet. A total of 120 Hy-line Brown laying hens were fed with the standard diet and HELP diet supplemented with 0, 50, 100, and 200 mg/kg GEN for 80 d. The results showed that the declines in laying rate (P < 0.01), average egg weight (P < 0.01), and egg yield (P < 0.01), and the increase of the ratio of feed to egg (P < 0.01) induced by HELP diet were markedly improved by 100 and 200 mg/kg of GEN treatment in laying hens (P < 0.05). Moreover, the hepatic steatosis and increases of lipid contents (P < 0.01) in serum and liver caused by HELP diet were significantly alleviated by treatment with 100 and 200 mg/kg of GEN in laying hens (P < 0.05). The liver index and abdominal fat index of laying hens in the HELP group were higher than subjects in the control group (P < 0.01), which were evidently attenuated by dietary 50 to 200 mg/kg of GEN supplementation (P < 0.05). Dietary 100 and 200 mg/kg of GEN supplementation significantly reduced the upregulations of genes related to fatty acid transport and synthesis (P < 0.01) but enhanced the downregulations of genes associated with fatty acid oxidation (P < 0.01) caused by HELP in the liver of laying hens (P < 0.05). Importantly, 100 and 200 mg/kg of GEN supplementation markedly increased G protein-coupled estrogen receptor (GPER) mRNA and protein expression levels and activated the AMP-activated protein kinase (AMPK) signaling pathway in the liver of laying hens fed a HELP diet (P < 0.05). These data indicated that the protective effects of GEN against the decline of production performance and lipid metabolism disorders caused by HELP diet in laying hens may be related to the activation of the GPER-AMPK signaling pathways. These data not only provide compelling evidence for the protective effect of GEN against fatty liver hemorrhagic syndrome in laying hens but also provide the theoretical basis for GEN as an additive to alleviate metabolic disorders in poultry.
Collapse
Affiliation(s)
- Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulei Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
23
|
Cheng Y, Tang Y, Tan Y, Li J, Zhang X. KCNK9 mediates the inhibitory effects of genistein on hepatic metastasis from colon cancer. Clinics (Sao Paulo) 2023; 78:100141. [PMID: 36905879 PMCID: PMC10019991 DOI: 10.1016/j.clinsp.2022.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/08/2022] [Accepted: 11/01/2022] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVE The tyrosine-protein kinase inhibitor, genistein, can inhibit cell malignant transformation and has an antitumor effect on various types of cancer. It has been shown that both genistein and KNCK9 can inhibit colon cancer. This research aimed to investigate the suppressive effects of genistein on colon cancer cells and the association between the application of genistein and KCNK9 expression level. METHODS The Cancer Genome Atlas (TCGA) database was used to study the correlation between the KCNK9 expression level and the prognosis of colon cancer patients. HT29 and SW480 colon cancer cell lines were cultured to examine the inhibitory effects of KCNK9 and genistein on colon cancer in vitro, and a mouse model of colon cancer with liver metastasis was established to verify the inhibitory effect of genistein in vivo. RESULTS KCNK9 was overexpressed in colon cancer cells and was associated with a shorter Overall Survival (OS), a shorter Disease-Specific Survival (DFS), and a shorter Progression-Free Interval (PFI) of colon cancer patients. In vitro experiments showed that downregulation of KCNK9 or genistein application could suppress cell proliferation, migration, and invasion abilities, induce cell cycle quiescence, promote cell apoptosis, and reduce epithelial-mesenchymal transition of the colon cancer cell line. In vivo experiments revealed that silencing of KCNK9 or application of genistein could inhibit hepatic metastasis from colon cancer. Additionally, genistein could inhibit KCNK9 expression, thereby attenuating Wnt/β-catenin signaling pathway. CONCLUSION Genistein inhibited the occurrence and progression of colon cancer through Wnt/β-catenin signaling pathway that could be mediated by KCNK9.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Pharmacology Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Tang
- Department of Pharmacology Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiming Tan
- Department of Pharmacology Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Li
- Department of Pharmacology Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuping Zhang
- Department of Pharmacy, Chengdu Second People's Hospital, Chengdu, China.
| |
Collapse
|
24
|
Tong J, Zeng Y, Xie J, Xiao K, Li M, Cong L. Association between flavonoid and subclasses intake and metabolic associated fatty liver disease in U.S. adults: Results from National Health and Nutrition Examination Survey 2017-2018. Front Nutr 2022; 9:1074494. [PMID: 36532560 PMCID: PMC9751205 DOI: 10.3389/fnut.2022.1074494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Metabolic associated fatty liver disease (MAFLD) formerly known as non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Flavonoid is considered a promising candidate for metabolic disease prevention although few studies have explored the relationship between flavonoid intake and MAFLD. PURPOSE To assess the relationship between flavonoid intake and MAFLD prevalence in the U.S. adult population. MATERIALS AND METHODS The data of this cross-sectional study was obtained from National Health and Nutrition Examination Survey (NHANES) and Food and Nutrient Database for Dietary Studies (FNDDS) 2017-2018. Flavonoid and subclasses intake was assessed by two 24h recalls. MAFLD was diagnosed according to the consensus definitions. Multivariate logistic regression model was performed to examine the association between flavonoid intake and MAFLD with adjustments for confounders. RESULTS A total of 4,431 participants were included in this cross-sectional analysis. MAFLD had a weighted prevalence of 41.93% and was not associated with total flavonoid intake. A higher anthocyanin and isoflavone intake, on the other hand, was associated with a lower prevalence of MAFLD. The protective effect of higher anthocyanin intake was significant among male, Non-Hispanic White, and Non-Hispanic Asia participants. Higher isoflavone intake was associated with a lower risk of MAFLD in participants of younger (age < 50), Non-Hispanic Black, Non-Hispanic Asia, and higher HEI-2015 scores compared with the lowest quartile of isoflavone intake. Stratified analysis showed that compared with the lowest quartile of anthocyanin intake, the effect of anthocyanin intake on MAFLD varied by racial groups (P interaction = 0.02). A positive correlation existed between HDL and anthocyanidin intake (P = 0.03), whereas a negative correlation existed between FPG and isoflavone intake (P = 0.02). CONCLUSION MAFLD was adversely linked with flavonoid subclasses, anthocyanin and isoflavone. This modifiable lifestyle provides a potential opportunity to prevent MAFLD. These findings promote future research into the links and mechanisms between anthocyanin and isoflavone intake and MAFLD.
Collapse
Affiliation(s)
- Junlu Tong
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yingjuan Zeng
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jianhui Xie
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Kecen Xiao
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Man Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Li Cong
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| |
Collapse
|
25
|
Yang K, Chen J, Zhang T, Yuan X, Ge A, Wang S, Xu H, Zeng L, Ge J. Efficacy and safety of dietary polyphenol supplementation in the treatment of non-alcoholic fatty liver disease: A systematic review and meta-analysis. Front Immunol 2022; 13:949746. [PMID: 36159792 PMCID: PMC9500378 DOI: 10.3389/fimmu.2022.949746] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Dietary polyphenol treatment of non-alcoholic fatty liver disease (NAFLD) is a novel direction, and the existing clinical studies have little effective evidence for its therapeutic effect, and some studies have inconsistent results. The effectiveness of dietary polyphenols in the treatment of NAFLD is still controversial. The aim of this study was to evaluate the therapeutic efficacy of oral dietary polyphenols in patients with NAFLD. Methods The literature (both Chinese and English) published before 30 April 2022 in PubMed, Cochrane, Medline, CNKI, and other databases on the treatment of NAFLD with dietary polyphenols was searched. Manual screening, quality assessment, and data extraction of search results were conducted strictly according to the inclusion and exclusion criteria. RevMan 5.3 software was used to perform the meta-analysis. Results The RCTs included in this study involved dietary supplementation with eight polyphenols (curcumin, resveratrol, naringenin, anthocyanin, hesperidin, catechin, silymarin, and genistein) and 2,173 participants. This systematic review and meta-analysis found that 1) curcumin may decrease body mass index (BMI), Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Triglycerides (TG) total cholesterol (TC), and Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) compared to placebo; and curcumin does not increase the occurrence of adverse events. 2) Although the meta-analysis results of all randomized controlled trials (RCTs) did not reveal significant positive changes, individual RCTs showed meaningful results. 3) Naringenin significantly decreased the percentage of NAFLD grade, TG, TC, and low-density lipoprotein cholesterol (LDL-C) and increased high-density lipoprotein cholesterol (HDL-C) but had no significant effect on AST and ALT, and it is a safe supplementation. 4) Only one team presents a protocol about anthocyanin (from Cornus mas L. fruit extract) in the treatment of NAFLD. 5) Hesperidin may decrease BMI, AST, ALT, TG, TC, HOMA-IR, and so on. 6) Catechin may decrease BMI, HOMA-IR, and TG level, and it was well tolerated by the patients. 7) Silymarin was effective in improving ALT and AST and reducing hepatic fat accumulation and liver stiffness in NAFLD patients. Conclusion Based on current evidence, curcumin can reduce BMI, TG, TC, liver enzymes, and insulin resistance; catechin can reduce BMI, insulin resistance, and TG effectively; silymarin can reduce liver enzymes. For resveratrol, naringenin, anthocyanin, hesperidin, and catechin, more RCTs are needed to further evaluate their efficacy and safety.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Junpeng Chen
- School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Tianqing Zhang
- The First Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiao Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Jinwen Ge,
| |
Collapse
|
26
|
Xiao CW, Hendry A. Hypolipidemic Effects of Soy Protein and Isoflavones in the Prevention of Non-Alcoholic Fatty Liver Disease- A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:319-328. [PMID: 35678936 PMCID: PMC9463339 DOI: 10.1007/s11130-022-00984-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and affects about 25% of the population globally. Obesity and diabetes are the main causes of the disease characterized by excessive accumulation of lipids in the liver. There is currently no direct pharmacological treatments for NAFLD. Dietary intervention and lifestyle modification are the key strategies in the prevention and treatment of the disease. Soy consumption is associated with many health benefits such as decreased incidence of coronary heart disease, type-2 diabetes, atherosclerosis and obesity. The hypolipidemic functions of soy components have been shown in both animal studies and human clinical trials. Dietary soy proteins and associated isoflavones suppressed the formation and accumulation of lipid droplets in the liver and improved NAFLD-associated metabolic syndrome. The molecular mechanism(s) underlying the effects of soy components are mainly through modulation of transcription factors, sterol regulatory element-binding protein-1 and peroxisome proliferator-activated receptor-γ2, and expressions of their target genes involved in lipogenesis and lipolysis as well as lipid droplet-promoting protein, fat-specific protein-27. Inclusion of appropriate amounts of soy protein and isoflavones in the diets might be a useful approach to decrease the prevalence of NAFLD and mitigate disease burden.
Collapse
Affiliation(s)
- Chao-Wu Xiao
- Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada, 2203C Banting Research Centre, Ottawa, ON, K1A 0L2, Canada.
- Food and Nutrition Science Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Amy Hendry
- Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada, 2203C Banting Research Centre, Ottawa, ON, K1A 0L2, Canada
| |
Collapse
|
27
|
Liu H, Wang Y, Zhu D, Xu J, Xu X, Liu J. Bioaccessibility and Application of Soybean Isoflavones: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- He Liu
- College of Food Science and Technology, Bohai University, Jinszhou, Liaoning, China
| | - Yue Wang
- College of Food Science and Technology, Bohai University, Jinszhou, Liaoning, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinszhou, Liaoning, China
| | - Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinszhou, Liaoning, China
| | - Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinszhou, Liaoning, China
| | - Jun Liu
- Shandong Yuwang Ecological Food Industry Co. Ltd, Yucheng, Shandong, China
| |
Collapse
|
28
|
Jain R, Bolch C, Al-Nakkash L, Sweazea KL. Systematic Review of the Impact of Genistein on Diabetes Related Outcomes. Am J Physiol Regul Integr Comp Physiol 2022; 323:R279-R288. [PMID: 35816719 DOI: 10.1152/ajpregu.00236.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes is the 8th leading cause of death in the world and the prevalence is rising in low-income countries. Cardiovascular diseases are the leading cause of death worldwide, especially for individuals with diabetes. While medications exist to treat symptoms of diabetes, lack of availability and high costs may deter their use by individuals with low incomes as well as those in low-income nations. Therefore, this systematic review was performed to determine whether genistein, a phytoestrogen found in soy products, could provide therapeutic benefits for individuals with diabetes. We searched PubMed and SCOPUS using the terms 'genistein', 'diabetes', and 'glucose' and identified 33 peer-reviewed articles that met our inclusion criteria. In general, preclinical studies demonstrated that genistein decreases body weight and circulating glucose and triglycerides concentrations while increasing insulin levels and insulin sensitivity. Genistein also delayed the onset of type 1 and type 2 diabetes. In contrast, clinical studies utilizing genistein generally reported no significant relationship between genistein and body mass, circulating glucose, A1C concentrations, or onset of type 1 diabetes. However, genistein was found to improve insulin sensitivity and serum triglyceride concentrations and delayed the onset of type 2 diabetes. In summary, preclinical and clinical studies suggest that genistein may help delay the onset of type 2 diabetes and improve several symptoms associated with the disease. Although additional research is required to confirm these findings, the results highlighted in this review provide some evidence that genistein may offer a natural approach to mitigating some of the complications associated with diabetes.
Collapse
Affiliation(s)
- Rijul Jain
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Charlotte Bolch
- Office of Research and Sponsored Programs and College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
29
|
Felix FB, Vago JP, Beltrami VA, Araújo JMD, Grespan R, Teixeira MM, Pinho V. Biochanin A as a modulator of the inflammatory response: an updated overview and therapeutic potential. Pharmacol Res 2022; 180:106246. [PMID: 35562014 DOI: 10.1016/j.phrs.2022.106246] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
Uncontrolled inflammation and failure to resolve the inflammatory response are crucial factors involved in the progress of inflammatory diseases. Current therapeutic strategies aimed at controlling excessive inflammation are effective in some cases, though they may be accompanied by severe side effects, such as immunosuppression. Phytochemicals as a therapeutic alternative can have a fundamental impact on the different stages of inflammation and its resolution. Biochanin A (BCA) is an isoflavone known for its wide range of pharmacological properties, especially its marked anti-inflammatory effects. Recent studies have provided evidence of BCA's abilities to activate events essential for resolving inflammation. In this review, we summarize the most recent findings from pre-clinical studies of the pharmacological effects of BCA on the complex signaling network associated with the onset and resolution of inflammation and BCA's potential protective functionality in several models of inflammatory diseases, such as arthritis, pulmonary disease, neuroinflammation, and metabolic disease.
Collapse
Affiliation(s)
- Franciel Batista Felix
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Priscila Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vinícius Amorim Beltrami
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Renata Grespan
- Cell Migration Laboratory, Department of Physiology, Universidade Federal de Sergipe, São Cristovão, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
30
|
Associations of Urinary Phytoestrogen Concentrations with Nonalcoholic Fatty Liver Disease among Adults. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4912961. [PMID: 35399831 PMCID: PMC8989597 DOI: 10.1155/2022/4912961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022]
Abstract
Phytoestrogens can alleviate some pathological processes related to nonalcoholic fatty liver disease (NAFLD). However, there are limited and contradictory studies on the relationships between phytoestrogens (especially single phytoestrogen) and NAFLD. The purpose of this study was to explore the relationships between urinary phytoestrogen concentrations and NAFLD in American adults. This cross-sectional study used the data of the National Health and Nutrition Examination Survey from 1999 to 2010, and 2294 adults were finally enrolled in this study. The concentrations of phytoestrogens were measured in urine samples, and urinary phytoestrogens were divided into tertiles according to the concentration distributions. The diagnosis of NAFLD was determined by the United States fatty liver index. The main analysis used a multivariate logistic regression model. The fully adjusted models included gender, age, race, education, marriage, poverty, body mass index, waist circumference, smoking, diabetes, hypertension, total cholesterol, high-density lipoprotein cholesterol, triglycerides, and other five phytoestrogens. In the fully adjusted model, the urinary enterolactone (ENL) concentration was negatively correlated with NAFLD (OR of Tertile 3 : 0.48, 95% CI 0.25–0.94). When stratified by age and gender, the urinary ENL concentration was negatively correlated with NAFLD in males aged 40–59 years (OR of Tertile 3 : 0.08, 95% CI 0.01–0.82), while the urinary equol concentration was positively correlated with NAFLD in such population (OR of Tertile 3 : 4.27, 95% CI 1.02–17.85). In addition, a negative correlation between enterodiol (END) concentration and NAFLD was observed in males aged 60 years or over (OR of Tertile 2 : 0.18, 95% CI 0.05–0.69). Collectively, in middle-aged males, urinary ENL may be associated with a lower risk of NAFLD, while urinary equol may be related to a higher risk. In addition, urinary END has a possible relationship with a reduced risk of NAFLD in elder males. Definitely, clinical randomized controlled trials are needed to further verify the conclusions.
Collapse
|
31
|
Jahan A, Akhtar J, Badruddeen, Jaiswal N, Ali A, Ahmad U. Recapitulate genistein for topical applications including nanotechnology delivery. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2048021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Afroz Jahan
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Neha Jaiswal
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | - Usama Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
32
|
Vásquez-Reyes S, Vargas-Castillo A, Noriega LG, Velázquez-Villegas LA, Pérez B, Sánchez-Tapia M, Ordaz G, Suárez-Monroy R, Ulloa-Aguirre A, Offner H, Torres N, Tovar AR. Genistein Stimulation of White Adipose Tissue Thermogenesis is Partially Dependent on GPR30 in Mice. Mol Nutr Food Res 2022; 66:e2100838. [PMID: 35142428 DOI: 10.1002/mnfr.202100838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/31/2022] [Indexed: 11/09/2022]
Abstract
SCOPE Genistein increases whole body energy expenditure by stimulating white adipose tissue (WAT) browning and thermogenesis. G-Coupled receptor GPR30 can mediate some actions of genistein, however, it is not known whether it is involved in the activation of WAT-thermogenesis. Thus, the aim of the study was to determine whether genistein activates thermogenesis coupled to an increase in WAT browning and mitochondrial activity, in GPR30+/+ and GPR30-/- mice. METHODS AND RESULTS GPR30+/+ and GPR30-/- mice were fed control or high fat sucrose diets containing or not genistein for 8 weeks. Body weight and composition, energy expenditure, glucose tolerance and browning markers in WAT, and oxygen consumption rate, 3', 5'-cyclic adenosine monophosphate (cAMP) concentration and browning markers in adipocytes were evaluated. Genistein consumption reduced body weight and fat mass gain in a different extent in both genotypes, however, energy expenditure was lower in GPR30-/- compared to GPR30+/+ mice, accompanied by a reduction in browning markers, maximal mitochondrial respiration, cAMP concentration and browning markers in cultured adipocytes from GPR30-/- mice. Genistein improved glucose tolerance in GPR30+/+ , but this was partially observed in GPR30-/- mice. CONCLUSION Our results showed that GPR30 partially mediates genistein stimulation of WAT thermogenesis and the improvement of glucose tolerance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Saraí Vásquez-Reyes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Ariana Vargas-Castillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Berenice Pérez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Guillermo Ordaz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Renato Suárez-Monroy
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, CDMX, México
| | - Halina Offner
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA.,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.,Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| |
Collapse
|
33
|
Mazloomi SM, Shafiee M, Babajafari S. Findings from meta-analysis of soy supplementation and inflammatory biomarkers should be interpreted with caution. Cytokine 2022; 151:155505. [PMID: 34998159 DOI: 10.1016/j.cyto.2021.155505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/12/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Seyed Mohammad Mazloomi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Shafiee
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Babajafari
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
34
|
Papuc C, Goran GV, Predescu CN, Tudoreanu L, Ștefan G. Plant polyphenols mechanisms of action on insulin resistance and against the loss of pancreatic beta cells. Crit Rev Food Sci Nutr 2022; 62:325-352. [PMID: 32901517 DOI: 10.1080/10408398.2020.1815644] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus describes a group of metabolic disorders characterized by a prolonged period hyperglycemia with long-lasting detrimental effects on the cardiovascular and nervous systems, kidney, vision, and immunity. Many plant polyphenols are shown to have beneficial activity for the prevention and treatment of diabetes, by different mechanisms. This review article is focused on synthesizing the mechanisms by which polyphenols decrease insulin resistance and inhibit loss of pancreatic islet β-cell mass and function. To achieve the objectives, this review summarizes the results of the researches realized in recent years in clinical trials and in various experimental models, on the effects of foods rich in polyphenols, polyphenolic extracts, and commercially polyphenols on insulin resistance and β-cells death. Dietary polyphenols are able to reduce insulin resistance alleviating the IRS-1/PI3-k/Akt signaling pathway, and to reduce the loss of pancreatic islet β-cell mass and function by several molecular mechanisms, such as protection of the surviving machinery of cells against the oxidative insult; increasing insulin secretion in pancreatic β-cells through activation of the FFAR1; cytoprotective effect on β-cells by activation of autophagy; protection of β-cells to act as activators for anti-apoptotic pathways and inhibitors for apoptotic pathway; stimulating of insulin release, presumably by transient ATP-sensitive K+ channel inhibition and whole-cell Ca2+ stimulation; involvement in insulin release that act on ionic currents and membrane potential as inhibitor of delayed-rectifier K+ current (IK(DR)) and activator of current. dietary polyphenols could be used as potential anti-diabetic agents to prevent and alleviate diabetes and its complications, but further studies are needed.
Collapse
Affiliation(s)
- Camelia Papuc
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Gheorghe V Goran
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Corina N Predescu
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Liliana Tudoreanu
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Georgeta Ștefan
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| |
Collapse
|
35
|
Zamani-Garmsiri F, Emamgholipour S, Rahmani Fard S, Ghasempour G, Jahangard Ahvazi R, Meshkani R. Polyphenols: Potential anti-inflammatory agents for treatment of metabolic disorders. Phytother Res 2021; 36:415-432. [PMID: 34825416 DOI: 10.1002/ptr.7329] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022]
Abstract
Ample evidence highlights the potential benefits of polyphenols in health status especially in obesity-related metabolic disorders such as insulin resistance, type 2 diabetes, and cardiovascular diseases. Mechanistically, due to the key role of "Metainflammation" in the pathomechanism of metabolic disorders, recently much focus has been placed on the properties of polyphenols in obesity-related morbidities. This narrative review summarizes the current knowledge on the role of polyphenols, including genistein, chlorogenic acid, ellagic acid, caffeic acid, and silymarin in inflammatory responses pertinent to metabolic disorders and discusses the implications of this evidence for future directions. This review provides evidence that the aforementioned polyphenols benefit health status in metabolic disorders via direct and indirect regulation of a variety of target proteins involved in inflammatory signaling pathways. However, due to limitations of the in vitro and in vivo studies and also the lack of long-term human clinical trials studies, further high-quality investigations are required to firmly establish the clinical efficacy of the polyphenols for the prevention and management of metabolic disorders.
Collapse
Affiliation(s)
- Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Antimicrobial Resistance Research Center, Institute of immunology and infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghasempour
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Jahangard Ahvazi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Gao X, Liu S, Ding C, Miao Y, Gao Z, Li M, Fan W, Tang Z, Mhlambi NH, Yan L, Song S. Comparative effects of genistein and bisphenol A on non-alcoholic fatty liver disease in laying hens. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117795. [PMID: 34274649 DOI: 10.1016/j.envpol.2021.117795] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) and genistein (GEN) are selective estrogen receptor modulators, which are involved in the occurrence and development of metabolic syndrome. However, their roles in non-alcoholic fatty liver disease (NAFLD) of laying hens have not been reported. Here, we investigated the effects of different concentrations of GEN and BPA on the NAFLD of laying hens. Results showed that GEN ameliorated the high-energy and low-protein diet (HELP)-induced NAFLD by improving pathological damage, hepatic steatosis, and insulin resistance and blocking the expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-related factors. By contrast, high dose of BPA could aggravate these changes with serious symptom of NAFLD and suppress the level of ERα in the liver considerably, while GEN could reverse this phenomenon in a dose-dependent manner. In general, our research shows that the protective effect of GEN on NAFLD aims to improve the metabolic disorders and inflammation closely connected to ERα, while BPA can inhibit the expression of ERα and exacerbate the symptom of NAFLD. In conclusion, we elucidate the opposing effects of GEN and BPA in NAFLD of laying hens, thus providing a potential mechanism related to ERα and inflammation.
Collapse
Affiliation(s)
- Xiaona Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yufan Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Mengcong Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Nobuhle Hyacinth Mhlambi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
37
|
Nazari-Khanamiri F, Ghasemnejad-Berenji M. Cellular and molecular mechanisms of genistein in prevention and treatment of diseases: An overview. J Food Biochem 2021; 45:e13972. [PMID: 34664285 DOI: 10.1111/jfbc.13972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Genistein is the simplest secondary metabolite in soybeans and belongs to a group of compounds called isoflavones. It is a phytoestrogen and it makes up more than 60% of soy isoflavones. Studies have shown the anti-inflammatory, anti-apoptotic, and anti-angiogenic effects of genistein in addition to its modulatory effects on steroidal hormone receptors. In this review, we discuss the pharmacologic and therapeutic effects of genistein on various diseases. PRACTICAL APPLICATIONS: In this review, we have discussed the therapeutic effects of genistein as the main constituent of soybeans on health conditions. Its antioxidant, anti-inflammatory, anti-apoptotic and, anti-angiogenic effects need more attention. The pharmacological properties of genistein make this natural isoflavone a potential treatment for various diseases such as postmenopausal symptoms, cancer, bone, brain, and heart diseases. Special emphasis should be given to it, resulting in using it in clinical as a safe, potent, and bioactive molecule.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
38
|
Yamagata K, Yamori Y. Potential Effects of Soy Isoflavones on the Prevention of Metabolic Syndrome. Molecules 2021; 26:5863. [PMID: 34641407 PMCID: PMC8512040 DOI: 10.3390/molecules26195863] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
Isoflavones are polyphenols primarily contained in soybean. As phytoestrogens, isoflavones exert beneficial effects on various chronic diseases. Metabolic syndrome increases the risk of death due to arteriosclerosis in individuals with various pathological conditions, including obesity, hypertension, hyperglycemia, and dyslipidemia. Although the health benefits of soybean-derived isoflavones are widely known, their beneficial effects on the pathogenesis of metabolic syndrome are incompletely understood. This review aims to describe the association between soybean-derived isoflavone intake and the risk of metabolic syndrome development. We reviewed studies on soy isoflavones, particularly daidzein and genistein, and metabolic syndrome, using PubMed, ScienceDirect, and Web of Science. We describe the pathological characteristics of metabolic syndrome, including those contributing to multiple pathological conditions. Furthermore, we summarize the effects of soybean-derived daidzein and genistein on metabolic syndrome reported in human epidemiological studies and experiments using in vitro and in vivo models. In particular, we emphasize the role of soy isoflavones in metabolic syndrome-induced cardiovascular diseases. In conclusion, this review focuses on the potential of soy isoflavones to prevent metabolic syndrome by influencing the onset of hypertension, hyperglycemia, dyslipidemia, and arteriosclerosis and discusses the anti-inflammatory effects of isoflavones.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Department of Food Bioscience & Biotechnology, College of Bioresource Science, Nihon University (UNBS), Fujisawa 282-8510, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women’s University, Nishinomiya 663-8143, Japan;
| |
Collapse
|
39
|
Morán-Costoya A, Proenza AM, Gianotti M, Lladó I, Valle A. Sex Differences in Nonalcoholic Fatty Liver Disease: Estrogen Influence on the Liver-Adipose Tissue Crosstalk. Antioxid Redox Signal 2021; 35:753-774. [PMID: 33736456 DOI: 10.1089/ars.2021.0044] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Nonalcoholic fatty liver disease (NAFLD) is a hepatic and systemic disorder with a complex multifactorial pathogenesis. Owing to the rising incidence of obesity and diabetes mellitus, the prevalence of NAFLD and its impact on global health care are expected to increase in the future. Differences in NAFLD exist between males and females, and among females depending on their reproductive status. Clinical and preclinical data show that females in the fertile age are more protected against NAFLD, and studies in postmenopausal women and ovariectomized animal models support a protective role for estrogens. Recent Advances: An efficient crosstalk between the liver and adipose tissue is necessary to regulate lipid and glucose metabolism, protecting the liver from steatosis and insulin resistance contributing to NALFD. New advances in the knowledge of sexual dimorphism in liver and adipose tissue are providing interesting clues about the sex differences in NAFLD pathogenesis that could inspire new therapeutic strategies. Critical Issues: Sex hormones influence key master regulators of lipid metabolism and oxidative stress in liver and adipose tissue. All these sex-biased metabolic adjustments shape the crosstalk between liver and adipose tissue, contributing to the higher protection of females to NAFLD. Future Directions: The development of novel drugs based on the protective action of estrogens, but without its feminizing or undesired side effects, might provide new therapeutic strategies for the management of NAFLD. Antioxid. Redox Signal. 35, 753-774.
Collapse
Affiliation(s)
- Andrea Morán-Costoya
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana M Proenza
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| | - Magdalena Gianotti
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| | - Isabel Lladó
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| | - Adamo Valle
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
40
|
Di Ciaula A, Calamita G, Shanmugam H, Khalil M, Bonfrate L, Wang DQH, Baffy G, Portincasa P. Mitochondria Matter: Systemic Aspects of Nonalcoholic Fatty Liver Disease (NAFLD) and Diagnostic Assessment of Liver Function by Stable Isotope Dynamic Breath Tests. Int J Mol Sci 2021; 22:7702. [PMID: 34299321 PMCID: PMC8305940 DOI: 10.3390/ijms22147702] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of β-oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. "Dynamic" liver function tests include the breath test (BT) based on the use of substrates marked with the non-radioactive, naturally occurring stable isotope 13C. Hepatocellular metabolization of the substrate will generate 13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria. 13C-BTs explore distinct chronic liver diseases including simple liver steatosis, non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD, 13C-BT use substrates such as α-ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease. 13C-BTs represent an indirect, cost-effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of 13C-BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70100 Bari, Italy;
| | - Harshitha Shanmugam
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - David Q.-H. Wang
- Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| |
Collapse
|
41
|
Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, Ahmad B, Atif M, Mubarak MS, Sytar O, Zhilina OM, Garsiya ER, Smeriglio A, Trombetta D, Pons DG, Martorell M, Cardoso SM, Razis AFA, Sunusi U, Kamal RM, Rotariu LS, Butnariu M, Docea AO, Calina D. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3268136. [PMID: 34336089 PMCID: PMC8315847 DOI: 10.1155/2021/3268136] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Genistein is an isoflavone first isolated from the brooming plant Dyer's Genista tinctoria L. and is widely distributed in the Fabaceae family. As an isoflavone, mammalian genistein exerts estrogen-like functions. Several biological effects of genistein have been reported in preclinical studies, such as the antioxidant, anti-inflammatory, antibacterial, and antiviral activities, the effects of angiogenesis and estrogen, and the pharmacological activities on diabetes and lipid metabolism. The purpose of this review is to provide up-to-date evidence of preclinical pharmacological activities with mechanisms of action, bioavailability, and clinical evidence of genistein. The literature was researched using the most important keyword "genistein" from the PubMed, Science, and Google Scholar databases, and the taxonomy was validated using The Plant List. Data were also collected from specialized books and other online resources. The main positive effects of genistein refer to the protection against cardiovascular diseases and to the decrease of the incidence of some types of cancer, especially breast cancer. Although the mechanism of protection against cancer involves several aspects of genistein metabolism, the researchers attribute this effect to the similarity between the structure of soy genistein and that of estrogen. This structural similarity allows genistein to displace estrogen from cellular receptors, thus blocking their hormonal activity. The pharmacological activities resulting from the experimental studies of this review support the traditional uses of genistein, but in the future, further investigations are needed on the efficacy, safety, and use of nanotechnologies to increase bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-, 23561 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-, Pakistan
| | | | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar-, 25120 KPK, Pakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Oxana Mihailovna Zhilina
- Department of Organic Chemistry, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Ekaterina Robertovna Garsiya
- Department of Pharmacognosy, Botany and Technology of Phytopreparations, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional (GMOT), Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma 07122, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepción 4070386, Chile
| | - Susana M Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, PMB 3011 Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, PMB 7156 Dutse Jigawa State, Nigeria
| | - Lia Sanda Rotariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
42
|
Komolafe O, Buzzetti E, Linden A, Best LM, Madden AM, Roberts D, Chase TJ, Fritche D, Freeman SC, Cooper NJ, Sutton AJ, Milne EJ, Wright K, Pavlov CS, Davidson BR, Tsochatzis E, Gurusamy KS. Nutritional supplementation for nonalcohol-related fatty liver disease: a network meta-analysis. Cochrane Database Syst Rev 2021; 7:CD013157. [PMID: 34280304 PMCID: PMC8406904 DOI: 10.1002/14651858.cd013157.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The prevalence of non-alcohol-related fatty liver disease (NAFLD) varies between 19% and 33% in different populations. NAFLD decreases life expectancy and increases risks of liver cirrhosis, hepatocellular carcinoma, and the requirement for liver transplantation. Uncertainty surrounds relative benefits and harms of various nutritional supplements in NAFLD. Currently no nutritional supplement is recommended for people with NAFLD. OBJECTIVES • To assess the benefits and harms of different nutritional supplements for treatment of NAFLD through a network meta-analysis • To generate rankings of different nutritional supplements according to their safety and efficacy SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, Science Citation Index Expanded, Conference Proceedings Citation Index-Science, the World Health Organization International Clinical Trials Registry Platform, and trials registers until February 2021 to identify randomised clinical trials in people with NAFLD. SELECTION CRITERIA We included only randomised clinical trials (irrespective of language, blinding, or status) for people with NAFLD, irrespective of method of diagnosis, age and diabetic status of participants, or presence of non-alcoholic steatohepatitis (NASH). We excluded randomised clinical trials in which participants had previously undergone liver transplantation. DATA COLLECTION AND ANALYSIS We performed a network meta-analysis with OpenBUGS using Bayesian methods whenever possible and calculated differences in treatments using hazard ratios (HRs), odds ratios (ORs), and rate ratios with 95% credible intervals (CrIs) based on an available-case analysis, according to National Institute of Health and Care Excellence Decision Support Unit guidance. MAIN RESULTS We included in the review a total of 202 randomised clinical trials (14,200 participants). Nineteen trials were at low risk of bias. A total of 32 different interventions were compared in these trials. A total of 115 trials (7732 participants) were included in one or more comparisons. The remaining trials did not report any of the outcomes of interest for this review. Follow-up ranged from 1 month to 28 months. The follow-up period in trials that reported clinical outcomes was 2 months to 28 months. During this follow-up period, clinical events related to NAFLD such as mortality, liver cirrhosis, liver decompensation, liver transplantation, hepatocellular carcinoma, and liver-related mortality were sparse. We did not calculate effect estimates for mortality because of sparse data (zero events for at least one of the groups in the trial). None of the trials reported that they measured overall health-related quality of life using a validated scale. The evidence is very uncertain about effects of interventions on serious adverse events (number of people or number of events). We are very uncertain about effects on adverse events of most of the supplements that we investigated, as the evidence is of very low certainty. However, people taking PUFA (polyunsaturated fatty acid) may be more likely to experience an adverse event than those not receiving an active intervention (network meta-analysis results: OR 4.44, 95% CrI 2.40 to 8.48; low-certainty evidence; 4 trials, 203 participants; direct evidence: OR 4.43, 95% CrI 2.43 to 8.42). People who take other supplements (a category that includes nutritional supplements other than vitamins, fatty acids, phospholipids, and antioxidants) had higher numbers of adverse events than those not receiving an active intervention (network meta-analysis: rate ratio 1.73, 95% CrI 1.26 to 2.41; 6 trials, 291 participants; direct evidence: rate ratio 1.72, 95% CrI 1.25 to 2.40; low-certainty evidence). Data were sparse (zero events in all groups in the trial) for liver transplantation, liver decompensation, and hepatocellular carcinoma. So, we did not perform formal analysis for these outcomes. The evidence is very uncertain about effects of other antioxidants (antioxidants other than vitamins) compared to no active intervention on liver cirrhosis (HR 1.68, 95% CrI 0.23 to 15.10; 1 trial, 99 participants; very low-certainty evidence). The evidence is very uncertain about effects of interventions in any of the remaining comparisons, or data were sparse (with zero events in at least one of the groups), precluding formal calculations of effect estimates. Data were probably because of the very short follow-up period (2 months to 28 months). It takes follow-up of 8 to 28 years to detect differences in mortality between people with NAFLD and the general population. Therefore, it is unlikely that differences in clinical outcomes are noted in trials providing less than 5 to 10 years of follow-up. AUTHORS' CONCLUSIONS The evidence indicates considerable uncertainty about effects of nutritional supplementation compared to no additional intervention on all clinical outcomes for people with non-alcohol-related fatty liver disease. Accordingly, high-quality randomised comparative clinical trials with adequate follow-up are needed. We propose registry-based randomised clinical trials or cohort multiple randomised clinical trials (study design in which multiple interventions are trialed within large longitudinal cohorts of patients to gain efficiencies and align trials more closely to standard clinical practice) comparing interventions such as vitamin E, prebiotics/probiotics/synbiotics, PUFAs, and no nutritional supplementation. The reason for the choice of interventions is the impact of these interventions on indirect outcomes, which may translate to clinical benefit. Outcomes in such trials should be mortality, health-related quality of life, decompensated liver cirrhosis, liver transplantation, and resource utilisation measures including costs of intervention and decreased healthcare utilisation after minimum follow-up of 8 years (to find meaningful differences in clinically important outcomes).
Collapse
Affiliation(s)
| | - Elena Buzzetti
- Sheila Sherlock Liver Centre, Royal Free Hospital and the UCL Institute of Liver and Digestive Health, London, UK
| | - Audrey Linden
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Lawrence Mj Best
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Angela M Madden
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Danielle Roberts
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Thomas Jg Chase
- Department of General Surgery, Homerton University Hospital NHS Foundation Trust, London, UK
| | | | - Suzanne C Freeman
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nicola J Cooper
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Alex J Sutton
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Kathy Wright
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Chavdar S Pavlov
- Department of Therapy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Brian R Davidson
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Emmanuel Tsochatzis
- Sheila Sherlock Liver Centre, Royal Free Hospital and the UCL Institute of Liver and Digestive Health, London, UK
| | - Kurinchi Selvan Gurusamy
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Therapy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
43
|
Wang X, Cao Y, Chen S, Lin J, Bian J, Huang D. Anti-Inflammation Activity of Flavones and Their Structure-Activity Relationship. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7285-7302. [PMID: 34160206 DOI: 10.1021/acs.jafc.1c02015] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flavones are an important class of bioactive constituents in foods, and their structural diversity enables them to interact with different targets. In particular, flavones are known for their anti-inflammatory activity. Herein, we summarized commonly applied in vitro, in vivo, and clinical models in testing anti-inflammatory activity of flavones. The anti-inflammatory structure-activity relationship of flavones was systematically mapped and supported with cross comparisons of that with flavanones, flavanols, and isoflavones. Hydroxyl groups (-OH) are indispensable for the anti-inflammatory function of flavones, and -OH at the C-5 and C-4' positions enhance while -OH at the C-6, C-7, C-8, and C-3' positions attenuate their activity. Moreover, the C2-C3 single bond, -OH at the C-3 and B-ring positions undermine flavone aglycones' activity. Most of the flavone aglycones function through NF-κB, MAPK, and JNK-STAT pathways, and their possible cell binding targets are kinase, aryl hydrocarbon receptor (AhR), G-protein coupled receptors, and estrogen receptors. However, the structure and anti-inflammatory activity relationship of flavones were unclear, and further research shall be conducted to close the gap in order to guide development of evidence-based functional foods.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Yujia Cao
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Siyu Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Jiachen Lin
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Jinsong Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, PR China
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, PR China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, PR China
| |
Collapse
|
44
|
Zhang S, Xu M, Zhang W, Liu C, Chen S. Natural Polyphenols in Metabolic Syndrome: Protective Mechanisms and Clinical Applications. Int J Mol Sci 2021; 22:ijms22116110. [PMID: 34204038 PMCID: PMC8201163 DOI: 10.3390/ijms22116110] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) is a chronic disease, including abdominal obesity, dyslipidemia, hyperglycemia, and hypertension. It should be noted that the occurrence of MetS is closely related to oxidative stress-induced mitochondrial dysfunction, ectopic fat accumulation, and the impairment of the antioxidant system, which in turn further aggravates the intracellular oxidative imbalance and inflammatory response. As enriched anti-inflammatory and antioxidant components in plants, natural polyphenols exhibit beneficial effects, including improving liver fat accumulation and dyslipidemia, reducing blood pressure. Hence, they are expected to be useful in the prevention and management of MetS. At present, epidemiological studies indicate a negative correlation between polyphenol intake and MetS incidence. In this review, we summarized and discussed the most promising natural polyphenols (including flavonoid and non-flavonoid drugs) in the precaution and treatment of MetS, including their anti-inflammatory and antioxidant properties, as well as their regulatory functions involved in glycolipid homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Siyu Chen
- Correspondence: ; Tel./Fax: +86-25-86185645
| |
Collapse
|
45
|
Xiong P, Zhu YF. Soy diet for nonalcoholic fatty liver disease: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2021; 100:e25817. [PMID: 34087824 PMCID: PMC8183754 DOI: 10.1097/md.0000000000025817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/13/2021] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION The efficacy of soy diet for nonalcoholic fatty liver disease remains controversial. We conduct a systematic review and meta-analysis to explore the influence of soy diet vs placebo on the treatment of non-alcoholic fatty liver disease. METHODS We search PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through October 2020 for randomized controlled trials assessing the efficacy of soy diet vs placebo for nonalcoholic fatty liver disease. This meta-analysis is performed using the random-effect model. RESULTS Five randomized controlled trials are included in the meta-analysis. Overall, compared with control group for nonalcoholic fatty liver disease, soy diet is associated with significantly reduced HOMA-IR (standard mean difference [SMD] = -0.42; 95% confidence interval [CI] = -0.76 to -0.08; P = .01), increased insulin (SMD = -0.64; 95% CI = -0.98 to -0.30; P = .0002) and decreased malondialdehyde (SMD = -0.43; 95% CI = -0.74 to -0.13; P = .005), but demonstrated no substantial impact on body mass index (SMD = 0.17; 95% CI = -0.20 to 0.53; P = .37), alanine aminotransferase (SMD = -0.01; 95% CI = -0.61 to 0.60; P = .98), aspartate-aminotransferase (SMD = 0.01; 95% CI = -0.47 to 0.49; P = .97), total cholesterol (SMD = 0.05; 95% CI = -0.25 to 0.35; P = .73) or low density lipoprotein (SMD = 0; 95% CI = -0.30 to 0.30; P = .99). CONCLUSIONS Soy diet may benefit to alleviate insulin resistance for nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Pian Xiong
- Department of Infectious Disease, The Fourth Affiliated Hospital Zhejiang University, School of Medicine, Yiwu
| | - Yong-Fen Zhu
- Department of Hepatology and infection, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Amerizadeh A, Asgary S, Vaseghi G, Farajzadegan Z. Effect of Genistein Intake on Some Cardiovascular Risk Factors: An Updated Systematic Review and Meta-analysis. Curr Probl Cardiol 2021; 47:100902. [PMID: 34266697 DOI: 10.1016/j.cpcardiol.2021.100902] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Genistein, an isoflavone in soybean products has potential cardio-protective effects and is used also as an alternative for estrogen therapy in postmenopausal women. However, results in this regard are inconsistent and also, not all risk factors related to cardiovascular supportive effects have been meta-analyzed. We searched PubMed, Scopus, ISI Web of Science, and Google Scholar from inception up to October 2020. Random-effects meta-analysis was used for data synthesis. The search included studies with information on genistein supplementation and lipid profile [triglycerides (TG), total cholesterol (TC),low-density lipoprotein (LDL-C), and high-density lipoprotein HDL-C)], systolic and diastolic blood pressure (SBP & DBP), body mass index [BMI] and body weight. Pooled results of studies showed that genistein intake significantly reduced TC [95%CI: -0.49(-0.80, -0.18); P=0.002)], LDL-C [95%CI: -0.60(-1.10, -0.10); P=0.018)] and SBP [95%CI: -0.52(-0.90, -0.14); P=0.007)]. DBP, HLD-C, TG, BMI, and body weight showed no meaningful improvement. Subgroup analysis showed that LDL-C and SBP were reduced more effectively in postmenopausal women with metabolic syndrome. Genistein intake more than 6 months showed a greater effect on lowering cholesterol -0.76(-1.27, -0.24), SBP [-0.39(-0.70, -0.08)] and DBP -0.40(-0.81, -0.00) and increasing TG and LDL-C. This meta-analysis provides consistent evidence that genistein intake reduces the CVD risk factors of TC, LDL-C, and SBP significantly.
Collapse
Affiliation(s)
- Atefeh Amerizadeh
- Department of Pharmaceutical Sciences, Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sedigheh Asgary
- Department of Pharmaceutical Sciences, Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Farajzadegan
- Community Medicine Department, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
47
|
Di Ciaula A, Passarella S, Shanmugam H, Noviello M, Bonfrate L, Wang DQH, Portincasa P. Nonalcoholic Fatty Liver Disease (NAFLD). Mitochondria as Players and Targets of Therapies? Int J Mol Sci 2021; 22:ijms22105375. [PMID: 34065331 PMCID: PMC8160908 DOI: 10.3390/ijms22105375] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and represents the hepatic expression of several metabolic abnormalities of high epidemiologic relevance. Fat accumulation in the hepatocytes results in cellular fragility and risk of progression toward necroinflammation, i.e., nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Several pathways contribute to fat accumulation and damage in the liver and can also involve the mitochondria, whose functional integrity is essential to maintain liver bioenergetics. In NAFLD/NASH, both structural and functional mitochondrial abnormalities occur and can involve mitochondrial electron transport chain, decreased mitochondrial β-oxidation of free fatty acids, excessive generation of reactive oxygen species, and lipid peroxidation. NASH is a major target of therapy, but there is no established single or combined treatment so far. Notably, translational and clinical studies point to mitochondria as future therapeutic targets in NAFLD since the prevention of mitochondrial damage could improve liver bioenergetics.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Salvatore Passarella
- School of Medicine, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (S.P.); (P.P.); Tel.: +39-328-468-7215 (P.P.)
| | - Harshitha Shanmugam
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Marica Noviello
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Leonilde Bonfrate
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
- Correspondence: (S.P.); (P.P.); Tel.: +39-328-468-7215 (P.P.)
| |
Collapse
|
48
|
Seidemann L, Krüger A, Kegel-Hübner V, Seehofer D, Damm G. Influence of Genistein on Hepatic Lipid Metabolism in an In Vitro Model of Hepatic Steatosis. Molecules 2021; 26:molecules26041156. [PMID: 33671486 PMCID: PMC7926972 DOI: 10.3390/molecules26041156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is among the leading causes of end-stage liver disease. The impaired hepatic lipid metabolism in NAFLD is exhibited by dysregulated PPARα and SREBP-1c signaling pathways, which are central transcription factors associated with lipid degradation and de novo lipogenesis. Despite the growing prevalence of this disease, current pharmacological treatment options are unsatisfactory. Genistein, a soy isoflavone, has beneficial effects on lipid metabolism and may be a candidate for NAFLD treatment. In an in vitro model of hepatic steatosis, primary human hepatocytes (PHHs) were incubated with free fatty acids (FFAs) and different doses of genistein. Lipid accumulation and the cytotoxic effects of FFAs and genistein treatment were evaluated by colorimetric and enzymatic assays. Changes in lipid homeostasis were examined by RT-qPCR and Western blot analyses. PPARα protein expression was induced in steatotic PHHs, accompanied by an increase in CPT1L and ACSL1 mRNA. Genistein treatment increased PPARα protein expression only in control PHHs, while CPTL1 and ACSL1 were unchanged and PPARα mRNA was reduced. In steatotic PHHs, genistein reversed the increase in activated SREBP-1c protein. The model realistically reflected the molecular changes in hepatic steatosis. Genistein suppressed the activation of SREBP-1c in steatotic hepatocytes, but the genistein-mediated effects on PPARα were abolished by high hepatic lipid levels.
Collapse
Affiliation(s)
- Lena Seidemann
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (L.S.); (V.K.-H.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Anne Krüger
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany;
| | - Victoria Kegel-Hübner
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (L.S.); (V.K.-H.); (D.S.)
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (L.S.); (V.K.-H.); (D.S.)
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany;
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (L.S.); (V.K.-H.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany;
- Correspondence: ; Tel.: +49-341-9739656
| |
Collapse
|
49
|
Hariri M, Baradaran HR, Gholami A. The effect of soy isoflavones and soy isoflavones plus soy protein on serum concentration of tumor necrosis factor-α? A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2021; 35:3575-3589. [PMID: 33586244 DOI: 10.1002/ptr.7047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/27/2021] [Indexed: 11/08/2022]
Abstract
In this study, we summarized the effect of soy isoflavones and soy isoflavones plus soy protein on serum concentration of tumor necrosis factor-alpha (TNF-α) among adult participants. We systematically searched Scopus, ISI Web of Science, Cochrane Library, PubMed, and clinicaltrials.gov for articles published up to May 2020. Effect size was calculated by mean change from baseline of TNF-α concentrations and its standard deviation (SD) for intervention and comparison groups. If the heterogeneity test was statistically significant, DerSimonian and Laird random effects model was used to estimate the summary of the overall effects and its heterogeneity. Nineteen and fourteen randomized clinical trials were included in our systematic review and meta-analysis, respectively. The result of overall effect size indicated a non-significant effect in serum concentration of TNF-α following soy isoflavones intake (WMD = 0.2 pg/ml, 95% CI: -0.13, 0.53; p = .226) and the combination of soy isoflavones and soy protein intake (WMD = 0.02 pg/ml, 95% CI: -0.02, 0.06; p = .286). Subgroup analyses revealed no significant change in circulatory levels of TNF-α following soy isoflavones plus soy protein intake. In conclusion, the present systematic review and meta-analysis found insufficient evidence that soy isoflavones or the combination of soy isoflavones and soy protein significantly reduce serum concentration of TNF-α.
Collapse
Affiliation(s)
- Mitra Hariri
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hamid Reza Baradaran
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Ageing Clinical and Experimental Research Team, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Ali Gholami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Department of Epidemiology and Biostatistics, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
50
|
Zywno H, Bzdega W, Kolakowski A, Kurzyna P, Harasim-Symbor E, Sztolsztener K, Chabowski A, Konstantynowicz-Nowicka K. The Influence of Coumestrol on Sphingolipid Signaling Pathway and Insulin Resistance Development in Primary Rat Hepatocytes. Biomolecules 2021; 11:biom11020268. [PMID: 33673122 PMCID: PMC7918648 DOI: 10.3390/biom11020268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Coumestrol is a phytoestrogen widely known for its anti-diabetic, anti-oxidant, and anti-inflammatory properties. Thus, it gets a lot of attention as a potential agent in the nutritional therapy of diseases such as obesity and type 2 diabetes. In our study, we evaluated whether coumestrol affects insulin resistance development via the sphingolipid signaling pathway in primary rat hepatocytes. The cells were isolated from the male Wistar rat's liver with the use of collagenase perfusion. Next, we incubated the cells with the presence or absence of palmitic acid and/or coumestrol. Additionally, some groups were incubated with insulin. The sphingolipid concentrations were assessed by HPLC whereas the expression of all the proteins was evaluated by Western blot. Coumestrol markedly reduced the accumulation of sphingolipids, namely, ceramide and sphinganine through noticeable inhibition of the ceramide de novo synthesis pathway in insulin-resistant hepatocytes. Moreover, coumestrol augmented the expression of fatty acid transport proteins, especially FATP5 and FAT/CD36, which also were responsible for excessive sphingolipid accumulation. Furthermore, coumestrol altered the sphingolipid salvage pathway, which was observed as the excessive deposition of the sphingosine-1-phosphate and sphingosine. Our study clearly showed that coumestrol ameliorated hepatic insulin resistance in primary rat hepatocytes. Thus, we believe that our study may contribute to the discovery of novel preventive and therapeutic methods for metabolic disorders.
Collapse
|