1
|
Deng Z, Wang Q, Ding R, Nie W, Chen X, Chen Y, Wang Y, Duan J, Hu Z. Loss of SUR2 alters the composition of ceramides and shortens chronological lifespan of Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159591. [PMID: 39719180 DOI: 10.1016/j.bbalip.2024.159591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
Sphingolipids are crucial components of cell membranes and serve as important signaling molecules. Ceramide, as the central hub of sphingolipid metabolism, plays a significant role in various biological processes, including the cell cycle, apoptosis, and cellular aging. Alterations in sphingolipid metabolism are implicated in cellular aging, however, the specific sphingolipid components and intrinsic mechanisms that mediate this process remain largely uncharacterized. In this study, we established a targeted sphingolipidomics approach and employed LC-MS/MS to quantitatively analyze changes in ceramide levels during chronological aging and in sur2Δ strains, aiming to elucidate the role of ceramides in regulating chronological lifespan. Our study revealed that in Saccharomyces cerevisiae, the C4 hydroxylase Sur2 and its product, phytoceramide, increase during chronological aging. While the loss of SUR2 function leads to a near-complete loss of phytoceramides and an accumulation of dihydroceramides, resulting in a significant reduction of total ceramide content to about half of that in wild-type cells. This ceramide profile alteration impairs both mitochondrial morphology and function, ultimately shortening the chronological lifespan. The knockout of SIT4 restores mitochondrial morphology and function, and rescues the chronological lifespan of SUR2-deficient yeast. Our findings highlight the critical role of dihydroceramide and phytoceramide in chronological aging in yeast and suggest that an imbalance between these two metabolites may trigger downstream ceramide signaling pathways. These insights could help elucidate potential mechanisms through which ceramide imbalance contributes to disease development in higher organisms.
Collapse
Affiliation(s)
- Zhitao Deng
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Qianqian Wang
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Rongbin Ding
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Weiwei Nie
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Xiaoyan Chen
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Yu Chen
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Yanlu Wang
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Jingjing Duan
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China.
| | - Zhenying Hu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Ohtsuka H, Kawai S, Ito Y, Kato Y, Shimasaki T, Imada K, Otsubo Y, Yamashita A, Mishiro-Sato E, Kuwata K, Aiba H. Novel TORC1 inhibitor Ecl1 is regulated by phosphorylation in fission yeast. Aging Cell 2025:e14450. [PMID: 39910760 DOI: 10.1111/acel.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 02/07/2025] Open
Abstract
Extender of chronological lifespan 1 (Ecl1) inhibits target of rapamycin complex 1 (TORC1) and is necessary for appropriate cellular responses to various stressors, such as starvation, in fission yeast. However, little is known about the effect of posttranslational modifications on Ecl1 regulation. Thus, we investigated the phosphorylation levels of Ecl1 extracted from yeast under conditions of sulfur or metal starvation. Mass spectrometry analysis revealed that Ecl1 was phosphorylated at Thr7, and the level was decreased by starvation. The phosphorylation-mimetic mutation of Thr7 significantly reduced the effects of Ecl1-induced cellular responses to starvation, suggesting that Ecl1 function was suppressed by Thr7 phosphorylation. By contrast, regardless of starvation exposure, TORC1 was significantly suppressed, even when Thr7 phosphorylation-mimetic Ecl1 was overexpressed. This indicated that Ecl1 suppressed TORC1 regardless of Thr7 phosphorylation. We newly identified that Ecl1 physically interacted with TORC1 subunit RAPTOR (Mip1). Based on these evidences, we propose that, Ecl1 has dual functional modes: quantity-dependent TORC1 inhibition and Thr7 phosphorylation-dependent control of cellular function.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Microbiology, Tokai National Higher Education and Research System, Nagoya University, Nagoya, Japan
| | - Sawa Kawai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Microbiology, Tokai National Higher Education and Research System, Nagoya University, Nagoya, Japan
| | - Yurika Ito
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Microbiology, Tokai National Higher Education and Research System, Nagoya University, Nagoya, Japan
| | - Yuka Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Microbiology, Tokai National Higher Education and Research System, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Microbiology, Tokai National Higher Education and Research System, Nagoya University, Nagoya, Japan
| | - Kazuki Imada
- Department of Chemistry and Biochemistry, Suzuka College, National Institute of Technology (KOSEN), Suzuka, Japan
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Yoko Otsubo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Life Science Network, The University of Tokyo, Tokyo, Japan
| | - Akira Yamashita
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Emi Mishiro-Sato
- Institute of Transformative bio-Molecules, Tokai National Higher Education and Research System, Nagoya University, Nagoya, Japan
| | - Keiko Kuwata
- Institute of Transformative bio-Molecules, Tokai National Higher Education and Research System, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Microbiology, Tokai National Higher Education and Research System, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Mołoń M, Małek G, Bzducha-Wróbel A, Kula-Maximenko M, Mołoń A, Galiniak S, Skrzypiec K, Zebrowski J. Disturbances in cell wall biogenesis as a key factor in the replicative aging of budding yeast. Biogerontology 2025; 26:54. [PMID: 39907841 DOI: 10.1007/s10522-025-10196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Aging is a multifactorial process that significantly impairs organismal function. Yeast is one of the model organisms used in aging research. Our understanding of the impact of the cell wall on aging remains elusive. Yeast cell wall is a complex and dynamic structure that plays a crucial role in the growth, survival, and aging of Saccharomyces cerevisiae. In this study, we demonstrated for the first time that the deletion of genes involved in cell wall biogenesis leads to significant impact on aging. In this study, we analysed five deletion mutants: crh2Δ, cwp1Δ, flo11Δ, gas1Δ and hsp12Δ. We showed a correlation between Raman spectroscopy signatures assigned to proteins, nucleic acids and RNA and replicative aging. Using Raman spectroscopy, we also revealed that a lack GAS1 gene results in significant changes in the biochemical composition of the cells that may increase sensitivity to environmental stressors. Our data unequivocally indicate that employing yeast as a model in aging research is appropriate, as long as the factors under analysis are not implicated in cell wall biogenesis.
Collapse
Affiliation(s)
- Mateusz Mołoń
- Faculty of Biology and Nature Protection, Rzeszów University, 35-601, Rzeszów, Poland.
| | - Gabriela Małek
- Faculty of Biology and Nature Protection, Rzeszów University, 35-601, Rzeszów, Poland
| | - Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Ul. Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239, Krakow, Poland
| | - Agnieszka Mołoń
- Faculty of Medical Sciences, Rzeszów University, 35-959, Rzeszów, Poland
| | - Sabina Galiniak
- Faculty of Medical Sciences, Rzeszów University, 35-959, Rzeszów, Poland
| | - Krzysztof Skrzypiec
- Analytical Laboratory, Faculty of Chemistry, Maria Curie-Skłodowska University, M.C. Skłodowska Square 5, 20-031, Lublin, Poland
| | - Jacek Zebrowski
- Faculty of Biology and Nature Protection, Rzeszów University, 35-601, Rzeszów, Poland
| |
Collapse
|
4
|
Wang R, Lv X, Xu W, Li X, Tang X, Huang H, Yang M, Ma S, Wang N, Niu Y. Effects of the periodic fasting-mimicking diet on health, lifespan, and multiple diseases: a narrative review and clinical implications. Nutr Rev 2025; 83:e412-e426. [PMID: 38287649 DOI: 10.1093/nutrit/nuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024] Open
Abstract
Dietary restriction and fasting have been recognized for their beneficial effects on health and lifespan and their potential application in managing chronic metabolic diseases. However, long-term adherence to strict dietary restrictions and prolonged fasting poses challenges for most individuals and may lead to unhealthy rebound eating habits, negatively affecting overall health. As a result, a periodic fasting-mimicking diet (PFMD), involving cycles of fasting for 2 or more days while ensuring basic nutritional needs are met within a restricted caloric intake, has gained widespread acceptance. Current research indicates that a PFMD can promote stem cell regeneration, suppress inflammation, extend the health span of rodents, and improve metabolic health, among other effects. In various disease populations such as patients with diabetes, cancer, multiple sclerosis, and Alzheimer's disease, a PFMD has shown efficacy in alleviating disease symptoms and improving relevant markers. After conducting an extensive analysis of available research on the PFMD, it is evident that its advantages and potential applications are comparable to other fasting methods. Consequently, it is proposed in this review that a PFMD has the potential to fully replace water-only or very-low-energy fasting regimens and holds promise for application across multiple diseases.
Collapse
Affiliation(s)
- Ruohua Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Xinyi Lv
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Wenyu Xu
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Xiaoqing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Xuanfeng Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - He Huang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Mengxia Yang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Shuran Ma
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Nan Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Yucun Niu
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| |
Collapse
|
5
|
Sarygina E, Kliuchnikova A, Tarbeeva S, Ilgisonis E, Ponomarenko E. Model Organisms in Aging Research: Evolution of Database Annotation and Ortholog Discovery. Genes (Basel) 2024; 16:8. [PMID: 39858555 PMCID: PMC11765380 DOI: 10.3390/genes16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND This study aims to analyze the exploration degree of popular model organisms by utilizing annotations from the UniProtKB (Swiss-Prot) knowledge base. The research focuses on understanding the genomic and post-genomic data of various organisms, particularly in relation to aging as an integral model for studying the molecular mechanisms underlying pathological processes and physiological states. METHODS Having characterized the organisms by selected parameters (numbers of gene splice variants, post-translational modifications, etc.) using previously developed information models, we calculated proteome sizes: the number of possible proteoforms for each species. Our analysis also involved searching for orthologs of human aging genes within these model species. RESULTS Our findings indicate that genomic and post-genomic data for more primitive species, such as bacteria and fungi, are more comprehensively characterized compared to other organisms. This is attributed to their experimental accessibility and simplicity. Additionally, we discovered that the genomes of the most studied model organisms allow for a detailed analysis of the aging process, revealing a greater number of orthologous genes related to aging. CONCLUSIONS The results highlight the importance of annotating the genomes of less-studied species to identify orthologs of marker genes associated with complex physiological processes, including aging. Species that potentially possess unique traits associated with longevity and resilience to age-related changes require comprehensive genomic studies.
Collapse
Affiliation(s)
| | | | | | - Ekaterina Ilgisonis
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.S.); (A.K.); (S.T.)
| | | |
Collapse
|
6
|
Alugoju P, Palanisamy CP, Anthikapalli NVA, Jayaraman S, Prasanskulab A, Chuchawankul S, Dyavaiah M, Tencomnao T. Exploring the anti-aging potential of natural products and plant extracts in budding yeast Saccharomyces cerevisiae: A review. F1000Res 2024; 12:1265. [PMID: 39822944 PMCID: PMC11736113 DOI: 10.12688/f1000research.141669.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/19/2025] Open
Abstract
Historically, plant derived natural products and their crude extracts have been used to treat a wide range of ailments across the world. Biogerontology research aims to explore the molecular basis of aging and discover new anti-aging therapeutic compounds or formulations to combat the detrimental effects of aging and promote a healthy life span. The budding yeast Saccharomyces cerevisiae has been, and continues to be, an indispensable model organism in the field of biomedical research for discovering the molecular basis of aging S. cerevisiae has preserved nutritional signaling pathways (such as the target of rapamycin (TOR)-Sch9 and the Ras-AC-PKA (cAMP-dependent protein kinase) pathways, and shows two distinct aging paradigms chronological life span (CLS) and replicative life span (RLS). This review explores the anti-aging properties of natural products, predominantly derived from plants, and phytoextracts using S. cerevisiae as a model organism.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, Tamilnadu, 600077, India
| | - Anchalee Prasanskulab
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, Pondicherry University (A Central University), Puducherry, 605 014, India
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
7
|
Górski P, Białas AJ, Piotrowski WJ. Aging Lung: Molecular Drivers and Impact on Respiratory Diseases-A Narrative Clinical Review. Antioxidants (Basel) 2024; 13:1480. [PMID: 39765809 PMCID: PMC11673154 DOI: 10.3390/antiox13121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
The aging process significantly impacts lung physiology and is a major risk factor for chronic respiratory diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, and non-IPF interstitial lung fibrosis. This narrative clinical review explores the molecular and biochemical hallmarks of aging, such as oxidative stress, telomere attrition, genomic instability, epigenetic modifications, proteostasis loss, and impaired macroautophagy, and their roles in lung senescence. Central to this process are senescent cells, which, through the senescence-associated secretory phenotype (SASP), contribute to chronic inflammation and tissue dysfunction. The review highlights parallels between lung aging and pathophysiological changes in respiratory diseases, emphasizing the role of cellular senescence in disease onset and progression. Despite promising research into modulating aging pathways with interventions like caloric restriction, mTOR inhibitors, and SIRT1 activators, clinical evidence for efficacy in reversing or preventing age-related lung diseases remains limited. Understanding the interplay between aging-related mechanisms and environmental factors, such as smoking and pollution, is critical for developing targeted therapies. This review underscores the need for future studies focusing on therapeutic strategies to mitigate aging's detrimental effects on lung health and improve outcomes for patients with chronic respiratory conditions.
Collapse
Affiliation(s)
- Paweł Górski
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland; (A.J.B.); (W.J.P.)
| | - Adam J. Białas
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland; (A.J.B.); (W.J.P.)
- Department of Pulmonary Rehabilitation, Regional Medical Center for Lung Diseases and Rehabilitation, Blessed Rafal Chylinski Memorial Hospital for Lung Diseases, 91-520 Lodz, Poland
| | - Wojciech J. Piotrowski
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland; (A.J.B.); (W.J.P.)
| |
Collapse
|
8
|
Salzman V, Torres MRB, Tedesco FGC, Tarkovski N, Willems MJG, Bravo JN, Mercuri M, Mercado DG, Berlin G, Bellino MG, Aguilar PS, Estrada LC. Reliable replicative lifespan determination of yeast with a single-channel microfluidic chip. Biol Open 2024; 13:bio060596. [PMID: 39479938 DOI: 10.1242/bio.060596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Saccharomyces cerevisiae is a powerful model for aging research due to its short lifespan and genetic malleability. Microfluidic devices offer an attractive approach enabling rapid monitoring of hundreds of cells during their entire replicative lifespan (RLS). Yet, key operational issues such as contaminations, cell loss, and cell-aggregates-dependent flow obstruction can hinder RLS experiments. We report the development of a microfluidic device configuration that effectively prevents flow blockage. We conducted comprehensive performance characterization, evaluating trapping efficiency, cell retention, budding orientation, and cell aggregate formation. The optimized device successfully supported long-term culturing and reliable RLS measurements of budding yeast strains. For accurate lifespan determination, a detailed workflow is provided that includes device fabrication, live microscopy setup, and characterization of cell age distribution. This work describes an accessible and reliable microfluidic device for yeast RLS studies, promoting further exploration in aging research.
Collapse
Affiliation(s)
- Valentina Salzman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET. Universidad de Buenos Aires, Buenos Aires C1428EGA,Argentina
| | - Moises R Bustamante Torres
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET. Universidad de Buenos Aires, Buenos Aires C1428EGA,Argentina
| | - Francisco G Correa Tedesco
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET. Universidad de Buenos Aires, Buenos Aires C1428EGA,Argentina
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín 1650, Argentina
| | - Nahuel Tarkovski
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET. Universidad de Buenos Aires, Buenos Aires C1428EGA,Argentina
| | - María J Godás Willems
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Buenos Aires C1428EGA, Argentina
| | - Joaquín N Bravo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Buenos Aires C1428EGA, Argentina
| | - Magalí Mercuri
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica (CNEA), Av. Gral. Paz 1499, San Martín, Buenos Aires B1650LWP, Argentina
- Instituto de Nanociencia y Nanotecnología (INN, CNEA-CONICET), Av. Gral. Paz 1499, San Martín, Buenos Aires B1650LWP, Argentina
| | - Dante G Mercado
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica (CNEA), Av. Gral. Paz 1499, San Martín, Buenos Aires B1650LWP, Argentina
- Instituto de Nanociencia y Nanotecnología (INN, CNEA-CONICET), Av. Gral. Paz 1499, San Martín, Buenos Aires B1650LWP, Argentina
| | - Guido Berlin
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica (CNEA), Av. Gral. Paz 1499, San Martín, Buenos Aires B1650LWP, Argentina
- Instituto de Nanociencia y Nanotecnología (INN, CNEA-CONICET), Av. Gral. Paz 1499, San Martín, Buenos Aires B1650LWP, Argentina
| | - Martín G Bellino
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica (CNEA), Av. Gral. Paz 1499, San Martín, Buenos Aires B1650LWP, Argentina
- Instituto de Nanociencia y Nanotecnología (INN, CNEA-CONICET), Av. Gral. Paz 1499, San Martín, Buenos Aires B1650LWP, Argentina
| | - Pablo S Aguilar
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET. Universidad de Buenos Aires, Buenos Aires C1428EGA,Argentina
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín 1650, Argentina
| | - Laura C Estrada
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Buenos Aires C1428EGA, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA). Buenos Aires C1428EGA, Argentina
| |
Collapse
|
9
|
Tripodi F, Lambiase A, Moukham H, Spandri G, Brioschi M, Falletta E, D'Urzo A, Vai M, Abbiati F, Pagliari S, Salvo A, Spano M, Campone L, Labra M, Coccetti P. Targeting protein aggregation using a cocoa-bean shell extract to reduce α-synuclein toxicity in models of Parkinson's disease. Curr Res Food Sci 2024; 9:100888. [PMID: 39525389 PMCID: PMC11550773 DOI: 10.1016/j.crfs.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative diseases are among the major challenges in modern medicine, due to the progressive aging of the world population. Among these, Parkinson's disease (PD) affects 10 million people worldwide and is associated with the aggregation of the presynaptic protein α-synuclein (α-syn). Here we use two different PD models, yeast cells and neuroblastoma cells overexpressing α-syn, to investigate the protective effect of an extract from the cocoa shell, which is a by-product of the roasting process of cocoa beans. The LC-ESI-qTOF-MS and NMR analyses allow the identification of amino acids (including the essential ones), organic acids, lactate and glycerol, confirming also the presence of the two methylxanthines, namely caffeine and theobromine. The present study demonstrates that the supplementation with the cocoa bean shell extract (CBSE) strongly improves the longevity of yeast cells expressing α-syn, reducing the level of reactive oxygen species, activating autophagy and reducing the intracellular protein aggresomes. These anti-aggregation properties are confirmed also in neuroblastoma cells, where CBSE treatment leads to activation of AMPK kinase and to a significant reduction of toxic α-syn oligomers. Results obtained by surface plasmon resonance (SPR) assay highlights that CBSE binds α-syn protein in a concentration-dependent manner, supporting its inhibitory role on the amyloid aggregation of α-syn. These findings suggest that the supplementation with CBSE in the form of nutraceuticals may represent a promising way to prevent neurodegenerative diseases associated with α-syn aggregation.
Collapse
Affiliation(s)
- Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Alessia Lambiase
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Hind Moukham
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Giorgia Spandri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Maura Brioschi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Annalisa D'Urzo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Marina Vai
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Francesco Abbiati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Stefania Pagliari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Andrea Salvo
- Department of Chemistry and Drug Technology, University of Roma La Sapienza, Roma, Italy
| | - Mattia Spano
- Department of Chemistry and Drug Technology, University of Roma La Sapienza, Roma, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
10
|
Yu Y, Wang X, Fox J, Yu R, Thakre P, McCauley B, Nikoloutsos N, Yu Y, Li Q, Hastings PJ, Dang W, Chen K, Ira G. Yeast EndoG prevents genome instability by degrading extranuclear DNA species. Nat Commun 2024; 15:7653. [PMID: 39227600 PMCID: PMC11372161 DOI: 10.1038/s41467-024-52147-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
In metazoans mitochondrial DNA (mtDNA) or retrotransposon cDNA released to cytoplasm are degraded by nucleases to prevent sterile inflammation. It remains unknown whether degradation of these DNA also prevents nuclear genome instability. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. In non-dividing stationary phase cells, Pol4-mediated non-homologous end-joining increases, resulting in frequent insertions of 1-3 nucleotides, and insertions of mtDNA (NUMTs) or retrotransposon cDNA. Yeast EndoG (Nuc1) nuclease limits insertion of cDNA and transfer of very long mtDNA ( >10 kb) to the nucleus, where it forms unstable circles, while promoting the formation of short NUMTs (~45-200 bp). Nuc1 also regulates transfer of extranuclear DNA to nucleus in aging or meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating extranuclear DNA preserve genome stability.
Collapse
Affiliation(s)
- Yang Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Xin Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Jordan Fox
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Ruofan Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Pilendra Thakre
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Brenna McCauley
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Nicolas Nikoloutsos
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX, USA
| | - Yang Yu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Qian Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Weiwei Dang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
11
|
Naaz A, Zhang Y, Faidzinn NA, Yogasundaram S, Dorajoo R, Alfatah M. Curcumin Inhibits TORC1 and Prolongs the Lifespan of Cells with Mitochondrial Dysfunction. Cells 2024; 13:1470. [PMID: 39273040 PMCID: PMC11394456 DOI: 10.3390/cells13171470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Aging is an inevitable biological process that contributes to the onset of age-related diseases, often as a result of mitochondrial dysfunction. Understanding the mechanisms behind aging is crucial for developing therapeutic interventions. This study investigates the effects of curcumin on postmitotic cellular lifespan (PoMiCL) during chronological aging in yeast, a widely used model for human postmitotic cellular aging. Our findings reveal that curcumin significantly prolongs the PoMiCL of wildtype yeast cells, with the most pronounced effects observed at lower concentrations, indicating a hormetic response. Importantly, curcumin also extends the lifespan of postmitotic cells with mitochondrial deficiencies, although the hormetic effect is absent in these defective cells. Mechanistically, curcumin inhibits TORC1 activity, enhances ATP levels, and induces oxidative stress. These results suggest that curcumin has the potential to modulate aging and offer therapeutic insights into age-related diseases, highlighting the importance of context in its effects.
Collapse
Affiliation(s)
- Arshia Naaz
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Yizhong Zhang
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Nashrul Afiq Faidzinn
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Sonia Yogasundaram
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117544, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore 117456, Singapore
| |
Collapse
|
12
|
Tsai K, Zhou Z, Yang J, Xu Z, Xu S, Zandi R, Hao N, Chen W, Alber M. Study of impacts of two types of cellular aging on the yeast bud morphogenesis. PLoS Comput Biol 2024; 20:e1012491. [PMID: 39348424 PMCID: PMC11476777 DOI: 10.1371/journal.pcbi.1012491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/10/2024] [Accepted: 09/14/2024] [Indexed: 10/02/2024] Open
Abstract
Understanding the mechanisms of the cellular aging processes is crucial for attempting to extend organismal lifespan and for studying age-related degenerative diseases. Yeast cells divide through budding, providing a classical biological model for studying cellular aging. With their powerful genetics, relatively short cell cycle, and well-established signaling pathways also found in animals, yeast cells offer valuable insights into the aging process. Recent experiments suggested the existence of two aging modes in yeast characterized by nucleolar and mitochondrial declines, respectively. By analyzing experimental data, this study shows that cells evolving into those two aging modes behave differently when they are young. While buds grow linearly in both modes, cells that consistently generate spherical buds throughout their lifespan demonstrate greater efficacy in controlling bud size and growth rate at young ages. A three-dimensional multiscale chemical-mechanical model was developed and used to suggest and test hypothesized impacts of aging on bud morphogenesis. Experimentally calibrated model simulations showed that during the early stage of budding, tubular bud shape in one aging mode could be generated by locally inserting new materials at the bud tip, a process guided by the polarized Cdc42 signal. Furthermore, the aspect ratio of the tubular bud could be stabilized during the late stage as observed in experiments in this work. The model simulation results suggest that the localization of new cell surface material insertion, regulated by chemical signal polarization, could be weakened due to cellular aging in yeast and other cell types, leading to the change and stabilization of the bud aspect ratio.
Collapse
Affiliation(s)
- Kevin Tsai
- Department of Mathematics, University of California, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, California, United States of America
| | - Jiadong Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States of America
| | - Zhiliang Xu
- Applied and Computational Mathematics and Statistics Department, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Shixin Xu
- Zu Chongzhi Center for Mathematics and Computational Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Roya Zandi
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Physics and Astronomy, University of California, Riverside, California, United States of America
- Biophysics Graduate Program, University of California, Riverside, California, United States of America
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, California, United States of America
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States of America
- Biophysics Graduate Program, University of California, Riverside, California, United States of America
| | - Mark Alber
- Department of Mathematics, University of California, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Biophysics Graduate Program, University of California, Riverside, California, United States of America
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| |
Collapse
|
13
|
Ren K, Wang Q, Chen J, Zhang H, Guo Z, Xu M, Rao Z, Zhang X. Design-build-test of recombinant Bacillus subtilis chassis cell by lifespan engineering for robust bioprocesses. Synth Syst Biotechnol 2024; 9:470-480. [PMID: 38634000 PMCID: PMC11021899 DOI: 10.1016/j.synbio.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/03/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
Microbial cell factories utilize renewable raw materials for industrial chemical production, providing a promising path for sustainable development. Bacillus subtilis is widely used in industry for its food safety properties, but challenges remain in the limitations of microbial fermentation. This study proposes a novel strategy based on lifespan engineering to design robust B. subtilis chassis cells to supplement traditional metabolic modification strategies that can alleviate cell autolysis, tolerate toxic substrates, and get a higher mass transfer efficiency. The modified chassis cells could produce high levels of l-glutaminase, and tolerate hydroquinone to produce α-arbutin efficiently. In a 5 L bioreactor, the l-glutaminase enzyme activity of the final strain CRE15TG was increased to 2817.4 ± 21.7 U mL-1, about 1.98-fold compared with that of the wild type. The α-arbutin yield of strain CRE15A was increased to 134.7 g L-1, about 1.34-fold compared with that of the WT. To our knowledge, both of the products in this study performed the highest yields reported so far. The chassis modification strategy described in this study can Improve the utilization efficiency of chassis cells, mitigate the possible adverse effects caused by excessive metabolic modification of engineered strains, and provide a new idea for the future design of microbial cell factories.
Collapse
Affiliation(s)
- Kexin Ren
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Qiang Wang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jianghua Chen
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hengwei Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Zhoule Guo
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| |
Collapse
|
14
|
Hofer SJ, Daskalaki I, Bergmann M, Friščić J, Zimmermann A, Mueller MI, Abdellatif M, Nicastro R, Masser S, Durand S, Nartey A, Waltenstorfer M, Enzenhofer S, Faimann I, Gschiel V, Bajaj T, Niemeyer C, Gkikas I, Pein L, Cerrato G, Pan H, Liang Y, Tadic J, Jerkovic A, Aprahamian F, Robbins CE, Nirmalathasan N, Habisch H, Annerer E, Dethloff F, Stumpe M, Grundler F, Wilhelmi de Toledo F, Heinz DE, Koppold DA, Rajput Khokhar A, Michalsen A, Tripolt NJ, Sourij H, Pieber TR, de Cabo R, McCormick MA, Magnes C, Kepp O, Dengjel J, Sigrist SJ, Gassen NC, Sedej S, Madl T, De Virgilio C, Stelzl U, Hoffmann MH, Eisenberg T, Tavernarakis N, Kroemer G, Madeo F. Spermidine is essential for fasting-mediated autophagy and longevity. Nat Cell Biol 2024; 26:1571-1584. [PMID: 39117797 PMCID: PMC11392816 DOI: 10.1038/s41556-024-01468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Caloric restriction and intermittent fasting prolong the lifespan and healthspan of model organisms and improve human health. The natural polyamine spermidine has been similarly linked to autophagy enhancement, geroprotection and reduced incidence of cardiovascular and neurodegenerative diseases across species borders. Here, we asked whether the cellular and physiological consequences of caloric restriction and fasting depend on polyamine metabolism. We report that spermidine levels increased upon distinct regimens of fasting or caloric restriction in yeast, flies, mice and human volunteers. Genetic or pharmacological blockade of endogenous spermidine synthesis reduced fasting-induced autophagy in yeast, nematodes and human cells. Furthermore, perturbing the polyamine pathway in vivo abrogated the lifespan- and healthspan-extending effects, as well as the cardioprotective and anti-arthritic consequences of fasting. Mechanistically, spermidine mediated these effects via autophagy induction and hypusination of the translation regulator eIF5A. In summary, the polyamine-hypusination axis emerges as a phylogenetically conserved metabolic control hub for fasting-mediated autophagy enhancement and longevity.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Ioanna Daskalaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Greece
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Jasna Friščić
- Department of Dermatology, Allergy and Venerology, University of Lübeck, Lübeck, Germany
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Melanie I Mueller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Mahmoud Abdellatif
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sarah Masser
- BioTechMed Graz, Graz, Austria
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Sylvère Durand
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Alexander Nartey
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Mara Waltenstorfer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Sarah Enzenhofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Isabella Faimann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Verena Gschiel
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Thomas Bajaj
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Christine Niemeyer
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Greece
| | - Lukas Pein
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Giulia Cerrato
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Hui Pan
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - YongTian Liang
- Institute for Biology and Genetics, Freie Universität Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Andrea Jerkovic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Fanny Aprahamian
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Christine E Robbins
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Nitharsshini Nirmalathasan
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Hansjörg Habisch
- Research Unit Integrative Structural Biology, Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Elisabeth Annerer
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | | | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | - Daniel E Heinz
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Daniela A Koppold
- Institute of Social Medicine, Epidemiology and Health Economics, corporate member of Freie Universität Berlin and Humboldt-Universität, Charité-Universitätsmedizin, Berlin, Germany
- Department of Pediatrics, Division of Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Internal Medicine and Nature-based Therapies, Immanuel Hospital Berlin, Berlin, Germany
| | - Anika Rajput Khokhar
- Institute of Social Medicine, Epidemiology and Health Economics, corporate member of Freie Universität Berlin and Humboldt-Universität, Charité-Universitätsmedizin, Berlin, Germany
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Michalsen
- Institute of Social Medicine, Epidemiology and Health Economics, corporate member of Freie Universität Berlin and Humboldt-Universität, Charité-Universitätsmedizin, Berlin, Germany
- Department of Internal Medicine and Nature-based Therapies, Immanuel Hospital Berlin, Berlin, Germany
| | - Norbert J Tripolt
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Thomas R Pieber
- BioTechMed Graz, Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft, Graz, Austria
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Christoph Magnes
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft, Graz, Austria
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stephan J Sigrist
- Institute for Biology and Genetics, Freie Universität Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Nils C Gassen
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Simon Sedej
- BioTechMed Graz, Graz, Austria
- Division of Cardiology, Medical University of Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Tobias Madl
- BioTechMed Graz, Graz, Austria
- Research Unit Integrative Structural Biology, Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | | | - Ulrich Stelzl
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Markus H Hoffmann
- Department of Dermatology, Allergy and Venerology, University of Lübeck, Lübeck, Germany
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece.
- Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
15
|
Hemagirri M, Chen Y, Gopinath SCB, Adnan M, Patel M, Sasidharan S. RNA-sequencing exploration on SIR2 and SOD genes in Polyalthia longifolia leaf methanolic extracts (PLME) mediated anti-aging effects in Saccharomyces cerevisiae BY611 yeast cells. Biogerontology 2024; 25:705-737. [PMID: 38619670 DOI: 10.1007/s10522-024-10104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Polyalthia longifolia is well-known for its abundance of polyphenol content and traditional medicinal uses. Previous research has demonstrated that the methanolic extract of P. longifolia leaves (PLME, 1 mg/mL) possesses anti-aging properties in Saccharomyces cerevisiae BY611 yeast cells. Building on these findings, this study delves deeper into the potential antiaging mechanism of PLME, by analyzing the transcriptional responses of BY611 cells treated with PLME using RNA-sequencing (RNA-seq) technology. The RNA-seq analysis results identified 1691 significantly (padj < 0.05) differentially expressed genes, with 947 upregulated and 744 downregulated genes. Notably, the expression of three important aging-related genes, SIR2, SOD1, and SOD2, showed a significant difference following PLME treatment. The subsequent integration of these targeted genes with GO and KEGG pathway analysis revealed the multifaceted nature of PLME's anti-aging effects in BY611 yeast cells. Enriched GO and KEGG analysis showed that PLME treatment promotes the upregulation of SIR2, SOD1, and SOD2 genes, leading to a boosted cellular antioxidant defense system, reduced oxidative stress, regulated cell metabolism, and maintain genome stability. These collectively increased longevities in PLME-treated BY611 yeast cells and indicate the potential anti-aging action of PLME through the modulation of SIR2 and SOD genes. The present study provided novel insights into the roles of SIR2, SOD1, and SOD2 genes in the anti-aging effects of PLME treatment, offering promising interventions for promoting healthy aging.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600, Arau, Perlis, Malaysia
- Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
16
|
Liu Y, Park J, Lim S, Duan R, Lee DY, Choi D, Choi DK, Rhie B, Cho SY, Ryu H, Ahn SH. Tho2-mediated escort of Nrd1 regulates the expression of aging-related genes. Aging Cell 2024; 23:e14203. [PMID: 38769776 PMCID: PMC11320360 DOI: 10.1111/acel.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
The relationship between aging and RNA biogenesis and trafficking is attracting growing interest, yet the precise mechanisms are unknown. The THO complex is crucial for mRNA cotranscriptional maturation and export. Herein, we report that the THO complex is closely linked to the regulation of lifespan. Deficiencies in Hpr1 and Tho2, components of the THO complex, reduced replicative lifespan (RLS) and are linked to a novel Sir2-independent RLS control pathway. Although transcript sequestration in hpr1Δ or tho2Δ mutants was countered by exosome component Rrp6, loss of this failed to mitigate RLS defects in hpr1Δ. However, RLS impairment in hpr1Δ or tho2Δ was counteracted by the additional expression of Nrd1-specific mutants that interacted with Rrp6. This effect relied on the interaction of Nrd1, a transcriptional regulator of aging-related genes, including ribosome biogenesis or RNA metabolism genes, with RNA polymerase II. Nrd1 overexpression reduced RLS in a Tho2-dependent pathway. Intriguingly, Tho2 deletion mirrored Nrd1 overexpression effects by inducing arbitrary Nrd1 chromatin binding. Furthermore, our genome-wide ChIP-seq analysis revealed an increase in the recruitment of Nrd1 to translation-associated genes, known to be related to aging, upon Tho2 loss. Taken together, these findings underscore the importance of Tho2-mediated Nrd1 escorting in the regulation of lifespan pathway through transcriptional regulation of aging-related genes.
Collapse
Affiliation(s)
- Yan Liu
- Department of Molecular and Life Science, College of Science and Convergence TechnologyHanyang UniversityAnsanRepublic of Korea
| | - Jeong‐Min Park
- KNU LAMP Research Center, KNU Institute of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural SciencesKyungpook National UniversityDaeguRepublic of Korea
| | - Suji Lim
- Department of Molecular and Life Science, College of Science and Convergence TechnologyHanyang UniversityAnsanRepublic of Korea
| | - Ruxin Duan
- Department of Molecular and Life Science, College of Science and Convergence TechnologyHanyang UniversityAnsanRepublic of Korea
| | - Do Yoon Lee
- KNU LAMP Research Center, KNU Institute of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural SciencesKyungpook National UniversityDaeguRepublic of Korea
| | - Dahee Choi
- KNU LAMP Research Center, KNU Institute of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural SciencesKyungpook National UniversityDaeguRepublic of Korea
| | - Dong Kyu Choi
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural SciencesKyungpook National UniversityDaeguRepublic of Korea
| | - Byung‐Ho Rhie
- Department of Molecular and Life Science, College of Science and Convergence TechnologyHanyang UniversityAnsanRepublic of Korea
| | - Soo Young Cho
- Department of Molecular and Life Science, College of Science and Convergence TechnologyHanyang UniversityAnsanRepublic of Korea
| | - Hong‐Yeoul Ryu
- KNU LAMP Research Center, KNU Institute of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural SciencesKyungpook National UniversityDaeguRepublic of Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence TechnologyHanyang UniversityAnsanRepublic of Korea
| |
Collapse
|
17
|
Lucca C, Ferrari E, Shubassi G, Ajazi A, Choudhary R, Bruhn C, Matafora V, Bachi A, Foiani M. Sch9 S6K controls DNA repair and DNA damage response efficiency in aging cells. Cell Rep 2024; 43:114281. [PMID: 38805395 DOI: 10.1016/j.celrep.2024.114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Survival from UV-induced DNA lesions relies on nucleotide excision repair (NER) and the Mec1ATR DNA damage response (DDR). We study DDR and NER in aging cells and find that old cells struggle to repair DNA and activate Mec1ATR. We employ pharmacological and genetic approaches to rescue DDR and NER during aging. Conditions activating Snf1AMPK rescue DDR functionality, but not NER, while inhibition of the TORC1-Sch9S6K axis restores NER and enhances DDR by tuning PP2A activity, specifically in aging cells. Age-related repair deficiency depends on Snf1AMPK-mediated phosphorylation of Sch9S6K on Ser160 and Ser163. PP2A activity in old cells is detrimental for DDR and influences NER by modulating Snf1AMPK and Sch9S6K. Hence, the DDR and repair pathways in aging cells are influenced by the metabolic tuning of opposing AMPK and TORC1 networks and by PP2A activity. Specific Sch9S6K phospho-isoforms control DDR and NER efficiency, specifically during aging.
Collapse
Affiliation(s)
- Chiara Lucca
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Elisa Ferrari
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| | - Ghadeer Shubassi
- AtomVie Global Radiopharma Inc., 1280 Main Street W NRB-A316, Hamilton, ON L8S-4K1, Canada
| | - Arta Ajazi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Ramveer Choudhary
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Christopher Bruhn
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Vittoria Matafora
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Angela Bachi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Marco Foiani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Istituto di Genetica Molecolare, CNR, Pavia, Italy.
| |
Collapse
|
18
|
Chen S, Li Y, Wu E, Li Q, Xiang L, Qi J. Arctigenin from Fructus arctii Exhibits Antiaging Effects via Autophagy Induction, Antioxidative Stress, and Increase in Telomerase Activity in Yeast. Antioxidants (Basel) 2024; 13:684. [PMID: 38929123 PMCID: PMC11200627 DOI: 10.3390/antiox13060684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is often accompanied by irreversible decline in body function, which causes a large number of age-related diseases and brings a huge economic burden to society and families. Many traditional Chinese medicines have been known to extend lifespan, but it has still been a challenge to isolate a single active molecule from them and verify the mechanism of anti-aging action. Drugs that inhibit senescence-associated secretory phenotypes (SASPs) are called "senomorphics". In this study, arctigenin (ATG), a senomorphic, was screened from the Chinese medicine Fructus arctii using K6001 yeast replicative lifespan. Autophagy, oxidative stress, and telomerase activity are key mechanisms related to aging. We found that ATG may act through multiple mechanisms to become an effective anti-aging molecule. In exploring the effect of ATG on autophagy, it was clearly observed that ATG significantly enhanced autophagy in yeast. We further verified that ATG can enhance autophagy by targeting protein phosphatase 2A (PP2A), leading to an increased lifespan. Meanwhile, we evaluated the antioxidant capacity of ATG and found that ATG increased the activities of the antioxidant enzymes, thereby reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels to improve the survival of yeast under oxidative stress. In addition, ATG was able to increase telomerase activity by enhancing the expression of EST1, EST2, and EST3 genes in yeast. In conclusion, ATG exerts anti-aging effects through induction of autophagy, antioxidative stress, and enhancement of telomerase activity in yeast, which is recognized as a potential molecule with promising anti-aging effects, deserving in-depth research in the future.
Collapse
Affiliation(s)
- Siqi Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China;
| | - Yajing Li
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (E.W.)
| | - Enchan Wu
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (E.W.)
| | - Qing Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China;
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (E.W.)
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (E.W.)
| |
Collapse
|
19
|
Alfatah M, Lim JJJ, Zhang Y, Naaz A, Cheng TYN, Yogasundaram S, Faidzinn NA, Lin JJ, Eisenhaber B, Eisenhaber F. Uncharacterized yeast gene YBR238C, an effector of TORC1 signaling in a mitochondrial feedback loop, accelerates cellular aging via HAP4- and RMD9-dependent mechanisms. eLife 2024; 12:RP92178. [PMID: 38713053 PMCID: PMC11076046 DOI: 10.7554/elife.92178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of Saccharomyces cerevisiae (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, YBR238C stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion. We show that YBR238C and its paralog RMD9 oppositely affect mitochondria and aging. YBR238C deletion increases the cellular lifespan by enhancing mitochondrial function. Its overexpression accelerates cellular aging via mitochondrial dysfunction. We find that the phenotypic effect of YBR238C is largely explained by HAP4- and RMD9-dependent mechanisms. Furthermore, we find that genetic- or chemical-based induction of mitochondrial dysfunction increases TORC1 (Target of Rapamycin Complex 1) activity that, subsequently, accelerates cellular aging. Notably, TORC1 inhibition by rapamycin (or deletion of YBR238C) improves the shortened lifespan under these mitochondrial dysfunction conditions in yeast and human cells. The growth of mutant cells (a proxy of TORC1 activity) with enhanced mitochondrial function is sensitive to rapamycin whereas the growth of defective mitochondrial mutants is largely resistant to rapamycin compared to wild type. Our findings demonstrate a feedback loop between TORC1 and mitochondria (the TORC1-MItochondria-TORC1 (TOMITO) signaling process) that regulates cellular aging processes. Hereby, YBR238C is an effector of TORC1 modulating mitochondrial function.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jolyn Jia Jia Lim
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Yizhong Zhang
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Arshia Naaz
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Trishia Yi Ning Cheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Sonia Yogasundaram
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Nashrul Afiq Faidzinn
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jovian Jing Lin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- LASA – Lausitz Advanced Scientific Applications gGmbHWeißwasserGermany
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- LASA – Lausitz Advanced Scientific Applications gGmbHWeißwasserGermany
- School of Biological Sciences (SBS), Nanyang Technological University (NTU)SingaporeSingapore
| |
Collapse
|
20
|
Jonak K, Suppanz I, Bender J, Chacinska A, Warscheid B, Topf U. Ageing-dependent thiol oxidation reveals early oxidation of proteins with core proteostasis functions. Life Sci Alliance 2024; 7:e202302300. [PMID: 38383455 PMCID: PMC10881836 DOI: 10.26508/lsa.202302300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Oxidative post-translational modifications of protein thiols are well recognized as a readily occurring alteration of proteins, which can modify their function and thus control cellular processes. The development of techniques enabling the site-specific assessment of protein thiol oxidation on a proteome-wide scale significantly expanded the number of known oxidation-sensitive protein thiols. However, lacking behind are large-scale data on the redox state of proteins during ageing, a physiological process accompanied by increased levels of endogenous oxidants. Here, we present the landscape of protein thiol oxidation in chronologically aged wild-type Saccharomyces cerevisiae in a time-dependent manner. Our data determine early-oxidation targets in key biological processes governing the de novo production of proteins, protein folding, and degradation, and indicate a hierarchy of cellular responses affected by a reversible redox modification. Comparison with existing datasets in yeast, nematode, fruit fly, and mouse reveals the evolutionary conservation of these oxidation targets. To facilitate accessibility, we integrated the cross-species comparison into the newly developed OxiAge Database.
Collapse
Affiliation(s)
- Katarzyna Jonak
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ida Suppanz
- CIBSS Centre for Integrative Biological Signalling Research, University of Freiburg, Freiburg, Germany
| | - Julian Bender
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Research, University of Freiburg, Freiburg, Germany
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ulrike Topf
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
21
|
Alugoju P, Tencomnao T. Effect of levan polysaccharide on chronological aging in the yeast Saccharomyces cerevisiae. Int J Biol Macromol 2024; 266:131307. [PMID: 38574907 DOI: 10.1016/j.ijbiomac.2024.131307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Levan is a fructose-based biopolymer with diverse applications in the medicinal, pharmaceutical, and food industries. However, despite its extensive biological and pharmacological actions, including antioxidant, anti-inflammatory, and antidiabetic properties, research on its anti-aging potential is limited. This study explored levan's impact on the chronological lifespan (CLS) of yeast Saccharomyces cerevisiae for the first time. The results show that levan treatment significantly extended the CLS of wild-type (WT) yeast by preventing the accumulation of oxidative stress markers (reactive oxygen species, malondialdehyde, and protein carbonyl content) and ameliorating apoptotic features such as reduced mitochondrial membrane potential, loss of plasma membrane integrity, and externalization of phosphatidylserine. By day 40 of the CLS, a significant increase in yeast viability of 6.8 % (p < 0.01), 11.9 % (p < 0.01), and 20.8 % (p < 0.01) was observed at 0.25, 0.5, and 1 mg/mL of levan concentrations, respectively, compared to control (0 %). This study's results indicate that levan treatment substantially modulates the expression of genes involved in the TORC1/Sch9 pathway. Moreover, levan treatment significantly extended the CLS of yeast antioxidant-deficient mutant sod2Δ and antiapoptotic gene-deficient mutant pep4Δ. Levan also extended the CLS of signaling pathway gene-deficient mutants such as pkh2Δ, rim15Δ, atg1, and ras2Δ, while not affecting the CLS of tor1Δ and sch9Δ.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
22
|
Ohtsuka H, Shimasaki T, Aiba H. Low-Molecular Weight Compounds that Extend the Chronological Lifespan of Yeasts, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Adv Biol (Weinh) 2024; 8:e2400138. [PMID: 38616173 DOI: 10.1002/adbi.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Yeast is an excellent model organism for research for regulating aging and lifespan, and the studies have made many contributions to date, including identifying various factors and signaling pathways related to aging and lifespan. More than 20 years have passed since molecular biological perspectives are adopted in this research field, and intracellular factors and signal pathways that control aging and lifespan have evolutionarily conserved from yeast to mammals. Furthermore, these findings have been applied to control the aging and lifespan of various model organisms by adjustment of the nutritional environment, genetic manipulation, and drug treatment using low-molecular weight compounds. Among these, drug treatment is easier than the other methods, and research into drugs that regulate aging and lifespan is consequently expected to become more active. Chronological lifespan, a definition of yeast lifespan, refers to the survival period of a cell population under nondividing conditions. Herein, low-molecular weight compounds are summarized that extend the chronological lifespan of Saccharomyces cerevisiae and Schizosaccharomyces pombe, along with their intracellular functions. The low-molecular weight compounds are also discussed that extend the lifespan of other model organisms. Compounds that have so far only been studied in yeast may soon extend lifespan in other organisms.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
23
|
Ryu HY, Jeong DW, Kim SY, Jeoung SW, Zhao D, Knight J, Lam T, Jin JH, Lee HS, Hochstrasser M. Auto-sumoylation of the Ubc9 E2 SUMO-conjugating Enzyme Extends Cellular Lifespan. RESEARCH SQUARE 2024:rs.3.rs-4016606. [PMID: 38562857 PMCID: PMC10984013 DOI: 10.21203/rs.3.rs-4016606/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Calorie restriction (CR) provides anti-aging benefits through diverse processes, such as reduced metabolism and growth and increased mitochondrial activity. Although controversy still exists regarding CR-mediated lifespan effects, many researchers are seeking interventions that mimic the effects of CR. Yeast has proven to be a useful model system for aging studies, including CR effects. We report here that yeast adapted through in vitro evolution to the severe cellular stress caused by loss of the Ulp2 SUMO-specific protease exhibit both enhanced growth rates and replicative lifespan, and they have altered gene expression profiles similar to those observed in CR. Notably, in certain evolved ulp2Δ lines, a dramatic increase in the auto-sumoylation of Ubc9 E2 SUMO-conjugating enzyme results in altered regulation of multiple targets involved in energy metabolism and translation at both transcriptional and post-translational levels. This increase is essential for the survival of aged cells and CR-mediated lifespan extension. Thus, we suggest that high Ubc9 auto-sumoylation exerts potent anti-aging effects by promoting efficient energy metabolism-driven improvements in cell replication abilities. This potential could be therapeutically explored for the development of novel CR-mimetic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - TuKiet Lam
- Keck MS & Proteomics Resource, Yale School of Medicine
| | | | | | | |
Collapse
|
24
|
Liu Q, Sheng N, Zhang Z, He C, Zhao Y, Sun H, Chen J, Yang X, Tang C. Initial nutrient condition determines the recovery speed of quiescent cells in fission yeast. Heliyon 2024; 10:e26558. [PMID: 38455543 PMCID: PMC10918017 DOI: 10.1016/j.heliyon.2024.e26558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
Most of microbe cells spend the majority of their times in quiescence due to unfavorable environmental conditions. The study of this dominant state is crucial for understanding the basic cell physiology. Retained recovery ability is a critical property of quiescent cells, which consists of two features: how long the cells can survive (the survivability) and how fast they can recover (the recovery activity). While the survivability has been extensively studied under the background of chronological aging, how the recovery activity depends on the quiescent time and what factors influence its dynamics have not been addressed quantitatively. In this work, we systematically quantified both the survivability and the recovery activity of long-lived quiescent fission yeast cells at the single cell level under various nutrient conditions. It provides the most profound evolutionary dynamics of quiescent cell regeneration ability described to date. We found that the single cell recovery time linearly increased with the starvation time before the survivability significantly declined. This linearity was robust under various nutrient conditions and the recovery speed was predetermined by the initial nutrient condition. Transcriptome profiling further revealed that quiescence states under different nutrient conditions evolve in a common trajectory but with different speed. Our results demonstrated that cellular quiescence has a continuous spectrum of depths and its physiology is greatly influenced by environmental conditions.
Collapse
Affiliation(s)
- Qi Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Nan Sheng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhiwen Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Chenjun He
- College of Life Science and Technology, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yao Zhao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Haoyuan Sun
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jianguo Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaojing Yang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Chao Tang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- School of Physics, Peking University, Beijing, 100871, China
| |
Collapse
|
25
|
Pérez-Ortín JE, García-Marcelo MJ, Delgado-Román I, Muñoz-Centeno MC, Chávez S. Influence of cell volume on the gene transcription rate. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195008. [PMID: 38246270 DOI: 10.1016/j.bbagrm.2024.195008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Cells vary in volume throughout their life cycle and in many other circumstances, while their genome remains identical. Hence, the RNA production factory must adapt to changing needs, while maintaining the same production lines. This paradox is resolved by different mechanisms in distinct cells and circumstances. RNA polymerases have evolved to cope with the particular circumstances of each case and the different characteristics of the several RNA molecule types, especially their stabilities. Here we review current knowledge on these issues. We focus on the yeast Saccharomyces cerevisiae, where many of the studies have been performed, although we compare and discuss the results obtained in other eukaryotes and propose several ideas and questions to be tested and solved in the future. TAKE AWAY.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.
| | - María J García-Marcelo
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain; Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Irene Delgado-Román
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - María C Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
26
|
Tsai K, Zhou Z, Yang J, Xu Z, Xu S, Zandi R, Hao N, Chen W, Alber M. Study of Impacts of Two Types of Cellular Aging on the Yeast Bud Morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582376. [PMID: 38464259 PMCID: PMC10925247 DOI: 10.1101/2024.02.29.582376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Understanding the mechanisms of cellular aging processes is crucial for attempting to extend organismal lifespan and for studying age-related degenerative diseases. Yeast cells divide through budding, providing a classical biological model for studying cellular aging. With their powerful genetics, relatively short lifespan and well-established signaling pathways also found in animals, yeast cells offer valuable insights into the aging process. Recent experiments suggested the existence of two aging modes in yeast characterized by nucleolar and mitochondrial declines, respectively. In this study, by analyzing experimental data it was shown that cells evolving into those two aging modes behave differently when they are young. While buds grow linearly in both modes, cells that consistently generate spherical buds throughout their lifespan demonstrate greater efficacy in controlling bud size and growth rate at young ages. A three-dimensional chemical-mechanical model was developed and used to suggest and test hypothesized mechanisms of bud morphogenesis during aging. Experimentally calibrated simulations showed that tubular bud shape in one aging mode could be generated by locally inserting new materials at the bud tip guided by the polarized Cdc42 signal during the early stage of budding. Furthermore, the aspect ratio of the tubular bud could be stabilized during the late stage, as observed in experiments, through a reduction on the new cell surface material insertion or an expansion of the polarization site. Thus model simulations suggest the maintenance of new cell surface material insertion or chemical signal polarization could be weakened due to cellular aging in yeast and other cell types.
Collapse
Affiliation(s)
- Kevin Tsai
- Department of Mathematics, University of California, Riverside, CA, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA, United States of America
| | - Jiadong Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, United States of America
| | - Zhiliang Xu
- Applied and Computational Mathematics and Statistics Department, University of Notre Dame, Notre Dame, IN, United States of America
| | - Shixin Xu
- Duke Kunshan University, Kunshan, Jiangsu, China
| | - Roya Zandi
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
- Department of Physics and Astronomy, University of California, Riverside, CA, United States of America
- Biophysics Graduate Program, University of California, Riverside, CA, United States of America
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA, United States of America
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, CA, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, United States of America
- Biophysics Graduate Program, University of California, Riverside, CA, United States of America
| | - Mark Alber
- Department of Mathematics, University of California, Riverside, CA, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
- Department of Bioengineering, University of California, Riverside, CA, United States of America
- Biophysics Graduate Program, University of California, Riverside, CA, United States of America
| |
Collapse
|
27
|
Dubey SK, Dubey R, Kleinman ME. Unraveling Histone Loss in Aging and Senescence. Cells 2024; 13:320. [PMID: 38391933 PMCID: PMC10886805 DOI: 10.3390/cells13040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
As the global population experiences a notable surge in aging demographics, the need to understand the intricate molecular pathways exacerbated by age-related stresses, including epigenetic dysregulation, becomes a priority. Epigenetic mechanisms play a critical role in driving age-related diseases through altered gene expression, genomic instability, and irregular chromatin remodeling. In this review, we focus on histones, a central component of the epigenome, and consolidate the key findings of histone loss and genome-wide redistribution as fundamental processes contributing to aging and senescence. The review provides insights into novel histone expression profiles, nucleosome occupancy, disruptions in higher-order chromatin architecture, and the emergence of noncanonical histone variants in the aging cellular landscape. Furthermore, we explore the current state of our understanding of the molecular mechanisms of histone deficiency in aging cells. Specific emphasis is placed on highlighting histone degradation pathways in the cell and studies that have explored potential strategies to mitigate histone loss or restore histone levels in aging cells. Finally, in addressing future perspectives, the insights gained from this review hold profound implications for advancing strategies that actively intervene in modulating histone expression profiles in the context of cellular aging and identifying potential therapeutic targets for alleviating a multitude of age-related diseases.
Collapse
Affiliation(s)
| | | | - Mark Ellsworth Kleinman
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, USA; (S.K.D.); (R.D.)
| |
Collapse
|
28
|
Alfatah M, Zhang Y, Naaz A, Cheng TYN, Eisenhaber F. PICLS with human cells is the first high throughput screening method for identifying novel compounds that extend lifespan. Biol Direct 2024; 19:8. [PMID: 38254217 PMCID: PMC10804585 DOI: 10.1186/s13062-024-00455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024] Open
Abstract
Gerontology research on anti-aging interventions with drugs could be an answer to age-related diseases, aiming at closing the gap between lifespan and healthspan. Here, we present two methods for assaying chronological lifespan in human cells: (1) a version of the classical outgrowth assay with quantitative assessment of surviving cells and (2) a version of the PICLS method (propidium iodide fluorescent-based measurement of cell death). Both methods are fast, simple to conduct, cost-effective, produce quantitative data for further analysis and can be used with diverse human cell lines. Whereas the first method is ideal for validation and testing the post-intervention reproductive potential of surviving cells, the second method has true high-throughput screening potential. The new technologies were validated with known anti-aging compounds (2,5-anhydro-D-mannitol and rapamycin). Using the high-throughput screening method, we screened a library of 162 chemical entities and identified three compounds that extend the longevity of human cells.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore, 138671, Republic of Singapore.
| | - Yizhong Zhang
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore, 138671, Republic of Singapore
| | - Arshia Naaz
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138672, Republic of Singapore
| | - Trishia Yi Ning Cheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore, 138671, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore, 138671, Republic of Singapore
- LASA - Lausitz Advanced Scientific Applications gGmbH, Straße der Einheit 2-24, 02943, Weißwasser, Federal Republic of Germany
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore, 637551, Republic of Singapore
| |
Collapse
|
29
|
Yu Y, Wang X, Fox J, Yu R, Thakre P, McCauley B, Nikoloutsos N, Li Q, Hastings PJ, Dang W, Chen K, Ira G. Yeast EndoG prevents genome instability by degrading cytoplasmic DNA. RESEARCH SQUARE 2024:rs.3.rs-3641411. [PMID: 38260641 PMCID: PMC10802722 DOI: 10.21203/rs.3.rs-3641411/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In metazoans release of mitochondrial DNA or retrotransposon cDNA to cytoplasm can cause sterile inflammation and disease 1. Cytoplasmic nucleases degrade these DNA species to limit inflammation 2,3. It remains unknown whether degradation these DNA also prevents nuclear genome instability. To address this question, we decided to identify the nuclease regulating transfer of these cytoplasmic DNA species to the nucleus. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. Nuclear mtDNA (NUMTs) and retrotransposon cDNA insertions increase dramatically in nondividing stationary phase cells. Yeast EndoG (Nuc1) nuclease limits insertions of cDNA and transfer of very long mtDNA (>10 kb) that forms unstable circles or rarely insert in the genome, but it promotes formation of short NUMTs (~45-200 bp). Nuc1 also regulates transfer of cytoplasmic DNA to nucleus in aging or during meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs can originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating cytoplasmic DNA play a role in preserving genome stability.
Collapse
Affiliation(s)
- Yang Yu
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA
| | - Xin Wang
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Jordan Fox
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA
| | - Ruofan Yu
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Pilendra Thakre
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA
| | - Brenna McCauley
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Nicolas Nikoloutsos
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Qian Li
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA
| | - P. J. Hastings
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA
| | - Weiwei Dang
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Grzegorz Ira
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
30
|
Stępień K, Skoneczna A, Kula-Maximenko M, Jurczyk Ł, Mołoń M. Disorders in the CMG helicase complex increase the proliferative capacity and delay chronological aging of budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119621. [PMID: 37907194 DOI: 10.1016/j.bbamcr.2023.119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/08/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
The replication of DNA requires specialized and intricate machinery. This machinery is known as a replisome and is highly evolutionarily conserved, from simple unicellular organisms such as yeast to human cells. The replisome comprises multiple protein complexes responsible for various steps in the replication process. One crucial component of the replisome is the Cdc45-MCM-GINS (CMG) helicase complex, which unwinds double-stranded DNA and coordinates the assembly and function of other replisome components, including DNA polymerases. The genes encoding the CMG helicase components are essential for initiating DNA replication. In this study, we aimed to investigate how the absence of one copy of the CMG complex genes in heterozygous Saccharomyces cerevisiae cells impacts the cells' physiology and aging. Our data revealed that these cells exhibited a significant reduction in transcript levels for the respective CMG helicase complex proteins, as well as disruptions in the cell cycle, extended doubling times, and alterations in their biochemical profile. Notably, this study provided the first demonstration that cells heterozygous for genes encoding subunits of the CMG helicase exhibited a significantly increased reproductive potential and delayed chronological aging. Additionally, we observed a noteworthy correlation between RNA and polysaccharide levels in yeast and their reproductive potential, as well as a correlation between fatty acid levels and cell doubling times. Our findings also shed new light on the potential utility of yeast in investigating potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Karolina Stępień
- Institute of Medical Sciences, Rzeszów University, 35-959 Rzeszów, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Krakow, Poland
| | - Łukasz Jurczyk
- Institute of Agricultural Sciences, Rzeszów University, 35-601 Rzeszów, Poland
| | - Mateusz Mołoń
- Institute of Biology, Rzeszów University, 35-601 Rzeszów, Poland.
| |
Collapse
|
31
|
Motta G, Thangaraj SV, Padmanabhan V. Developmental Programming: Impact of Prenatal Exposure to Bisphenol A on Senescence and Circadian Mediators in the Liver of Sheep. TOXICS 2023; 12:15. [PMID: 38250971 PMCID: PMC10818936 DOI: 10.3390/toxics12010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Prenatal exposure to endocrine disruptors such as bisphenol A (BPA) plays a critical role in the developmental programming of liver dysfunction that is characteristic of nonalcoholic fatty liver disease (NAFLD). Circadian and aging processes have been implicated in the pathogenesis of NAFLD. We hypothesized that the prenatal BPA-induced fatty-liver phenotype of female sheep is associated with premature hepatic senescence and disruption in circadian clock genes. The expression of circadian rhythm and aging-associated genes, along with other markers of senescence such as telomere length, mitochondrial DNA copy number, and lipofuscin accumulation, were evaluated in the liver tissue of control and prenatal BPA groups. Prenatal BPA exposure significantly elevated the expression of aging-associated genes GLB1 and CISD2 and induced large magnitude differences in the expression of other aging genes-APOE, HGF, KLOTHO, and the clock genes PER2 and CLOCK-in the liver; the other senescence markers remained unaffected. Prenatal BPA-programmed aging-related transcriptional changes in the liver may contribute to pathological changes in liver function, elucidating the involvement of aging genes in the pathogenesis of liver steatosis.
Collapse
Affiliation(s)
| | | | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48105, USA; (G.M.); (S.V.T.)
| |
Collapse
|
32
|
Yu Y, Wang X, Fox J, Yu R, Thakre P, McCauley B, Nikoloutsos N, Li Q, Hastings PJ, Dang W, Chen K, Ira G. Yeast EndoG prevents genome instability by degrading cytoplasmic DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571550. [PMID: 38168242 PMCID: PMC10760121 DOI: 10.1101/2023.12.13.571550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In metazoans release of mitochondrial DNA or retrotransposon cDNA to cytoplasm can cause sterile inflammation and disease. Cytoplasmic nucleases degrade these DNA species to limit inflammation. It remains unknown whether degradation these DNA also prevents nuclear genome instability. To address this question, we decided to identify the nuclease regulating transfer of these cytoplasmic DNA species to the nucleus. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. Nu clear mt DNA (NUMTs) and retrotransposon cDNA insertions increase dramatically in nondividing stationary phase cells. Yeast EndoG (Nuc1) nuclease limits insertions of cDNA and transfer of very long mtDNA (>10 kb) that forms unstable circles or rarely insert in the genome, but it promotes formation of short NUMTs (∼45-200 bp). Nuc1 also regulates transfer of cytoplasmic DNA to nucleus in aging or during meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs can originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating cytoplasmic DNA play a role in preserving genome stability.
Collapse
|
33
|
Mouton SN, Boersma AJ, Veenhoff LM. A physicochemical perspective on cellular ageing. Trends Biochem Sci 2023; 48:949-962. [PMID: 37716870 DOI: 10.1016/j.tibs.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023]
Abstract
Cellular ageing described at the molecular level is a multifactorial process that leads to a spectrum of ageing trajectories. There has been recent discussion about whether a decline in physicochemical homeostasis causes aberrant phase transitions, which are a driver of ageing. Indeed, the function of all biological macromolecules, regardless of their participation in biomolecular condensates, depends on parameters such as pH, crowding, and redox state. We expand on the physicochemical homeostasis hypothesis and summarise recent evidence that the intracellular milieu influences molecular processes involved in ageing.
Collapse
Affiliation(s)
- Sara N Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Arnold J Boersma
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
34
|
Hall D. MIL-CELL: a tool for multi-scale simulation of yeast replication and prion transmission. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:673-704. [PMID: 37670150 PMCID: PMC10682183 DOI: 10.1007/s00249-023-01679-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
The single-celled baker's yeast, Saccharomyces cerevisiae, can sustain a number of amyloid-based prions, the three most prominent examples being [URE3], [PSI+], and [PIN+]. In the laboratory, haploid S. cerevisiae cells of a single mating type can acquire an amyloid prion in one of two ways (i) spontaneous nucleation of the prion within the yeast cell, and (ii) receipt via mother-to-daughter transmission during the cell division cycle. Similarly, prions can be lost due to (i) dissolution of the prion amyloid by its breakage into non-amyloid monomeric units, or (ii) preferential donation/retention of prions between the mother and daughter during cell division. Here we present a computational tool (Monitoring Induction and Loss of prions in Cells; MIL-CELL) for modelling these four general processes using a multiscale approach describing both spatial and kinetic aspects of the yeast life cycle and the amyloid-prion behavior. We describe the workings of the model, assumptions upon which it is based and some interesting simulation results pertaining to the wave-like spread of the epigenetic prion elements through the yeast population. MIL-CELL is provided as a stand-alone GUI executable program for free download with the paper. MIL-CELL is equipped with a relational database allowing all simulated properties to be searched, collated and graphed. Its ability to incorporate variation in heritable properties means MIL-CELL is also capable of simulating loss of the isogenic nature of a cell population over time. The capability to monitor both chronological and reproductive age also makes MIL-CELL potentially useful in studies of cell aging.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1164, Japan.
| |
Collapse
|
35
|
Liu Y, Shen L, Matsuura A, Xiang L, Qi J. Isoquercitrin from Apocynum venetum L. Exerts Antiaging Effects on Yeasts via Stress Resistance Improvement and Mitophagy Induction through the Sch9/Rim15/Msn Signaling Pathway. Antioxidants (Basel) 2023; 12:1939. [PMID: 38001792 PMCID: PMC10669743 DOI: 10.3390/antiox12111939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND With the development of an aging sociality, aging-related diseases, such as Alzheimer's disease, cardiovascular disease, and diabetes, are dramatically increasing. To find small molecules from natural products that can prevent the aging of human beings and the occurrence of these diseases, we used the lifespan assay of yeast as a bioassay system to screen an antiaging substance. Isoquercitrin (IQ), an antiaging substance, was isolated from Apocynum venetum L., an herbal tea commonly consumed in Xinjiang, China. AIM OF THE STUDY In the present study, we utilized molecular-biology technology to clarify the mechanism of action of IQ. METHODS The replicative lifespans of K6001 yeasts and the chronological lifespans of YOM36 yeasts were used to screen and confirm the antiaging effect of IQ. Furthermore, the reactive oxygen species (ROS) and malondialdehyde (MDA) assay, the survival assay of yeast under stresses, real-time polymerase chain reaction (RT-PCR) and Western blotting analyses, the replicative-lifespan assay of mutants, such as Δsod1, Δsod2, Δgpx, Δcat, Δskn7, Δuth1, Δatg32, Δatg2, and Δrim15 of K6001, autophagy flux analysis, and a lifespan assay of K6001 yeast after giving a mitophagy inhibitor and activator were performed. RESULTS IQ extended the replicative lifespans of the K6001 yeasts and the chronological lifespans of the YOM36 yeasts. Furthermore, the reactive nitrogen species (RNS) showed no change during the growth phase but significantly decreased in the stationary phase after treatment with IQ. The survival rates of the yeasts under oxidative- and thermal-stress conditions improved upon IQ treatment, and thermal stress was alleviated by the increasing superoxide dismutase (Sod) activity. Additionally, IQ decreased the ROS and MDA of the yeast while increasing the activity of antioxidant enzymes. However, it could not prolong the replicative lifespans of Δsod1, Δsod2, Δgpx, Δcat, Δskn7, and Δuth1 of K6001. IQ significantly increased autophagy and mitophagy induction, the presence of free green fluorescent protein (GFP) in the cytoplasm, and ubiquitination in the mitochondria of the YOM38 yeasts at the protein level. IQ did not prolong the replicative lifespans of Δatg2 and Δatg32 of K6001. Moreover, IQ treatment led to a decrease in Sch9 at the protein level and an increase in the nuclear translocation of Rim15 and Msn2. CONCLUSIONS These results indicated that the Sch9/Rim15/Msn signaling pathway, as well as antioxidative stress, anti-thermal stress, and autophagy, were involved in the antiaging effects of IQ in the yeasts.
Collapse
Affiliation(s)
- Yanan Liu
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (L.S.)
| | - Le Shen
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (L.S.)
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan;
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (L.S.)
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (L.S.)
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
36
|
Li YM, Mei YC, Liu AH, Wang RX, Chen R, Du HN. Gcn5- and Bre1-mediated Set2 degradation promotes chronological aging of Saccharomyces cerevisiae. Cell Rep 2023; 42:113186. [PMID: 37796660 DOI: 10.1016/j.celrep.2023.113186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/19/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Loss of transcription-coupled histone H3 lysine 36 trimethylation (H3K36me3) contributes to shorter lifespans in eukaryotes. However, the molecular mechanism of the decline of H3K36me3 during aging remains poorly understood. Here, we report that the degradation of the methyltransferase Set2 is the cause of decreased H3K36me3 levels during chronological aging in budding yeast. We show that Set2 protein degradation during cellular senescence and chronological aging is mainly mediated by the ubiquitin-conjugating E2 enzyme Ubc3 and the E3 ligase Bre1. Lack of Bre1 or abolishment of the ubiquitination stabilizes Set2 protein, sustains H3K36me3 levels at the aging-related gene loci, and upregulates their gene expression, thus leading to extended chronological lifespan. We further illustrate that Gcn5-mediated Set2 acetylation is a prerequisite for Bre1-catalyzed Set2 polyubiquitination and proteolysis during aging. We propose that two sequential post-translational modifications regulate Set2 homeostasis, suggesting a potential strategy to target the Gcn5-Bre1-Set2 axis for intervention of longevity.
Collapse
Affiliation(s)
- Yu-Min Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, RNA Institute, Wuhan University, Wuhan 430072, China
| | - Yu-Chao Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, RNA Institute, Wuhan University, Wuhan 430072, China
| | - Ao-Hui Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, RNA Institute, Wuhan University, Wuhan 430072, China
| | - Ru-Xin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, RNA Institute, Wuhan University, Wuhan 430072, China
| | - Runfa Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, RNA Institute, Wuhan University, Wuhan 430072, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, RNA Institute, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
37
|
Gulias JF, Niesi F, Arán M, Correa-García S, Bermúdez-Moretti M. Gcn4 impacts metabolic fluxes to promote yeast chronological lifespan. PLoS One 2023; 18:e0292949. [PMID: 37831681 PMCID: PMC10575530 DOI: 10.1371/journal.pone.0292949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Aging is characterized by a gradual decline in physiological integrity, which impairs functionality and increases susceptibility to mortality. Dietary restriction, mimicking nutrient scarcity without causing malnutrition, is an intervention known to decelerate the aging process. While various hypotheses have been proposed to elucidate how dietary restriction influences aging, the underlying mechanisms remain incompletely understood. This project aimed to investigate the role of the primary regulator of the general amino acid control (GAAC) pathway, the transcription factor Gcn4, in the aging process of S. cerevisiae cells. Under conditions of amino acid deprivation, which activate Gcn4, the deletion of GCN4 led to a diverse array of physiological changes in the cells. Notably, the absence of Gcn4 resulted in heightened mitochondrial activity, likely contributing to the observed increase in reactive oxygen species (ROS) accumulation. Furthermore, these mutant gcn4Δ cells exhibited reduced ethanol production despite maintaining similar glucose consumption rates, suggesting a pivotal role for Gcn4 in regulating the Crabtree effect. Additionally, there was a marked reduction in trehalose, the storage carbohydrate, within the mutant cells compared to the wild-type strain. The intracellular content of free amino acids also exhibited disparities between the wild-type and GCN4-deficient strains. Taken together, our findings indicate that the absence of GCN4 disrupts cellular homeostasis, triggering significant alterations in interconnected intracellular metabolic pathways. These disruptions have far-reaching metabolic consequences that ultimately culminate in a shortened lifespan.
Collapse
Affiliation(s)
- Juan Facundo Gulias
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Florencia Niesi
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Martín Arán
- Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)—CONICET, Patricias Argentinas, Buenos Aires, Argentina
| | - Susana Correa-García
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Mariana Bermúdez-Moretti
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
38
|
Choi W, Shin WR, Kim YH, Min J. Inducing a Proinflammatory Response with Bioengineered Yeast Vacuoles with TLR2-Binding Peptides (Vac T2BP) as a Drug Carrier for Daunorubicin Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41258-41270. [PMID: 37615983 DOI: 10.1021/acsami.3c06669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Immune adjuvants have roles in immune activation for cancer therapy, and adjuvants derived from microbes have been applied. In this study, we propose the use of bioengineered vacuoles, derived from recombinant yeast with acute myeloid leukemia (AML) specificity and having a TLR-2-binding peptide (VacT2BP) on their surface, to induce a proinflammatory response as a dual-function nanomaterial for daunorubicin (DNR) delivery. Our results demonstrate that nanosized, isolated VacT2BP induced HL-60 cell-specific DNR delivery and apoptosis. Furthermore, we observed the selective release of high-mobility group box 1 from apoptotic HL-60 cells by DNR@VacT2BP. We concluded that DNR@VacT2BP exhibited target selectivity, and the indiscriminate occurrence of damage-associated molecular patterns (DAMPs) was inhibited by the VacT2BP carrier. The therapeutic efficacy of DNR@VacT2BP was confirmed in AML xenograft mice, with about 82% tumor growth inhibition. Following drug delivery, apoptotic cells and DAMPs with residual VacT2BP (apopDNR@VacT2BP) upregulated the proinflammatory immune response of macrophages. In addition, apopDNR@VacT2BP enhanced phagocytosis activity. Macrophages stimulated by apopDNR@VacT2BP suppressed cancer proliferation by about 40%. In summary, our results suggest that dual-functional vacuoles with a target-specific peptide can be a potential strategy for selective drug delivery and construction of an immune environment to fight cancer, thereby improving prognosis.
Collapse
Affiliation(s)
- Wooil Choi
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu Jeonju, Jeonbuk 54896, South Korea
| | - Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1, Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1, Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu Jeonju, Jeonbuk 54896, South Korea
| |
Collapse
|
39
|
Phua CZJ, Zhao X, Turcios-Hernandez L, McKernan M, Abyadeh M, Ma S, Promislow D, Kaeberlein M, Kaya A. Genetic perturbation of mitochondrial function reveals functional role for specific mitonuclear genes, metabolites, and pathways that regulate lifespan. GeroScience 2023; 45:2161-2178. [PMID: 37086368 PMCID: PMC10651825 DOI: 10.1007/s11357-023-00796-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023] Open
Abstract
Altered mitochondrial function is tightly linked to lifespan regulation, but underlying mechanisms remain unclear. Here, we report the chronological and replicative lifespan variation across 167 yeast knock-out strains, each lacking a single nuclear-coded mitochondrial gene, including 144 genes with human homologs, many associated with diseases. We dissected the signatures of observed lifespan differences by analyzing profiles of each strain's proteome, lipidome, and metabolome under fermentative and respiratory culture conditions, which correspond to the metabolic states of replicative and chronologically aging cells, respectively. Examination of the relationships among extended longevity phenotypes, protein, and metabolite levels revealed that although many of these nuclear-encoded mitochondrial genes carry out different functions, their inhibition attenuates a common mechanism that controls cytosolic ribosomal protein abundance, actin dynamics, and proteasome function to regulate lifespan. The principles of lifespan control learned through this work may be applicable to the regulation of lifespan in more complex organisms, since many aspects of mitochondrial function are highly conserved among eukaryotes.
Collapse
Affiliation(s)
- Cheryl Zi Jin Phua
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A* STAR), Singapore, Singapore
| | - Xiaqing Zhao
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Lesly Turcios-Hernandez
- Department of Biology, Virginia Commonwealth University, Room 126, 1000 West Cary St. , Richmond, VA, 23284, USA
| | - Morrigan McKernan
- Department of Biology, Virginia Commonwealth University, Room 126, 1000 West Cary St. , Richmond, VA, 23284, USA
| | - Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Room 126, 1000 West Cary St. , Richmond, VA, 23284, USA
| | - Siming Ma
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A* STAR), Singapore, Singapore
| | - Daniel Promislow
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Room 126, 1000 West Cary St. , Richmond, VA, 23284, USA.
| |
Collapse
|
40
|
Abbiati F, Garagnani SA, Orlandi I, Vai M. Sir2 and Glycerol Underlie the Pro-Longevity Effect of Quercetin during Yeast Chronological Aging. Int J Mol Sci 2023; 24:12223. [PMID: 37569599 PMCID: PMC10419316 DOI: 10.3390/ijms241512223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Quercetin (QUER) is a natural polyphenolic compound endowed with beneficial properties for human health, with anti-aging effects. However, although this flavonoid is commercially available as a nutraceutical, target molecules/pathways underlying its pro-longevity potential have yet to be fully clarified. Here, we investigated QUER activity in yeast chronological aging, the established model for simulating the aging of postmitotic quiescent mammalian cells. We found that QUER supplementation at the onset of chronological aging, namely at the diauxic shift, significantly increases chronological lifespan (CLS). Consistent with the antioxidant properties of QUER, this extension takes place in concert with a decrease in oxidative stress. In addition, QUER triggers substantial changes in carbon metabolism. Specifically, it promotes an enhancement of a pro-longevity anabolic metabolism toward gluconeogenesis due to improved catabolism of C2 by-products of yeast fermentation and glycerol. The former is attributable to the Sir2-dependent activity of phosphoenolpyruvate carboxykinase and the latter to the L-glycerol 3-phosphate pathway. Such a combined increased supply of gluconeogenesis leads to an increase in the reserve carbohydrate trehalose, ensuring CLS extension. Moreover, QUER supplementation to chronologically aging cells in water alone amplifies their long-lived phenotype. This is associated with intracellular glycerol catabolism and trehalose increase, further indicating a QUER-specific influence on carbon metabolism that results in CLS extension.
Collapse
Affiliation(s)
- Francesco Abbiati
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (S.A.G.); (I.O.)
| | - Stefano Angelo Garagnani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (S.A.G.); (I.O.)
| | - Ivan Orlandi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (S.A.G.); (I.O.)
- SYSBIO Centre for Systems Biology, 20126 Milano, Italy
| | - Marina Vai
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (S.A.G.); (I.O.)
- SYSBIO Centre for Systems Biology, 20126 Milano, Italy
| |
Collapse
|
41
|
Schulze A, Zimmermann A, Kainz K, Egger NB, Bauer MA, Madeo F, Carmona-Gutierrez D. Assessing chronological aging in Saccharomyces cerevisiae. Methods Cell Biol 2023; 181:87-108. [PMID: 38302246 DOI: 10.1016/bs.mcb.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Chronological age represents the time that passes between birth and a given date. To understand the complex network of factors contributing to chronological lifespan, a variety of model organisms have been implemented. One of the best studied organisms is the yeast Saccharomyces cerevisiae, which has greatly contributed toward identifying conserved biological mechanisms that act on longevity. Here, we discuss high- und low-throughput protocols to monitor and characterize chronological lifespan and chronological aging-associated cell death in S. cerevisiae. Included are propidium iodide staining with the possibility to quantitatively assess aging-associated cell death via flow cytometry or qualitative assessments via microscopy, cell viability assessment through plating and cell counting and cell death characterization via propidium iodide/AnnexinV staining and subsequent flow cytometric analysis or microscopy. Importantly, all of these methods combined give a clear picture of the chronological lifespan under different conditions or genetic backgrounds and represent a starting point for pharmacological or genetic interventions.
Collapse
Affiliation(s)
- Adina Schulze
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Nadine B Egger
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria A Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria.
| | | |
Collapse
|
42
|
Zhao W, Kong L, Guan W, Liu J, Cui H, Cai M, Fang B, Liu X. Yeast UPS1 deficiency leads to UVC radiation sensitivity and shortened lifespan. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01847-8. [PMID: 37222845 DOI: 10.1007/s10482-023-01847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
UPS1/YLR193C of Saccharomyces cerevisiae (S. cerevisiae) encodes a mitochondrial intermembrane space protein. A previous study found that Ups1p is needed for normal mitochondrial morphology and that UPS1 deficiency disrupts the intramitochondrial transport of phosphatidic acid in yeast cells and leads to an altered unfolded protein response and mTORC1 signaling activation. In this paper, we first provide evidence showing that the UPS1 gene is involved in the UVC-induced DNA damage response and aging. We show that UPS1 deficiency leads to sensitivity to ultraviolet C (UVC) radiation and that this effect is accompanied by elevated DNA damage, increased intracellular ROS levels, abnormal mitochondrial respiratory function, an increased early apoptosis rate, and shortened replicative lifespan and chronological lifespan. Moreover, we show that overexpression of the DNA damage-induced checkpoint gene RAD9 effectively eliminates the senescence-related defects observed in the UPS1-deficient strain. Collectively, these results suggest a novel role for UPS1 in the UVC-induced DNA damage response and aging.
Collapse
Affiliation(s)
- Wei Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Lingyue Kong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wenbin Guan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiaxin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hongjing Cui
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Mianshan Cai
- Precision Medicine Centre, Department of Pediatrics, Puning People's Hospital, Puning, 515300, Guangdong, China
| | - Bingxiong Fang
- Precision Medicine Centre, Department of Pediatrics, Puning People's Hospital, Puning, 515300, Guangdong, China.
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China.
- School of Medical Technology, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
43
|
Xu P, Chen Q, Chen X, Qi H, Yang Y, Li W, Yang X, Gunawan A, Chen S, Zhang H, Shen HM, Huang D, Kennedy B, Xu L, Wu Z. Morusin and mulberrin extend the lifespans of yeast and C. elegans via suppressing nutrient-sensing pathways. GeroScience 2023; 45:949-964. [PMID: 36462128 PMCID: PMC9886792 DOI: 10.1007/s11357-022-00693-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Compounds with lifespan extension activity are rare, although increasing research efforts have been invested in this field to find ways to extend healthy lifespan. By applying a yeast-based high-throughput assay to identify the chronological lifespan extension activity of mulberry extracts rapidly, we demonstrated that a group of prenylated flavones, particularly morusin and mulberrin, could extend the chronological lifespan of budding yeast via a nutrient-dependent regime by at least partially targeting SCH9. Their antiaging activity could be extended to C. elegans by promoting its longevity, dependent on the full functions of genes akt-1 or akt-2. Moreover, additional benefits were observed from morusin- and mulberrin-treated worms, including increased reproduction without the influence of worm health (pumping rate, pumping decline, and reproduction span). In the human HeLa cell model, morusin and mulberrin inhibited the phosphorylation of p70S6K1, promoted autophagy, and slowed cell senescence. The molecular docking study showed that mulberrin and morusin bind to the same pocket of p70S6K1. Collectively, our findings open up a potential class of prenylated flavones performing their antiaging activity via nutrient-sensing pathways.
Collapse
Affiliation(s)
- Pingkang Xu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Linquan St, Suzhou, Jiangsu, China
| | - Qimin Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Xiaoman Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Linquan St, Suzhou, Jiangsu, China
| | - Hao Qi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuyan Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Weiqi Li
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Linquan St, Suzhou, Jiangsu, China
| | - Xin Yang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Amelia Gunawan
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Shuoyu Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore.
- National University of Singapore (Suzhou) Research Institute, 377 Linquan St, Suzhou, Jiangsu, China.
| | - Brian Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Li Xu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400716, China.
| | - Ziyun Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
44
|
Yang L, Yang HY, You L, Ni H, Jiang ZD, Du XP, Zhu YB, Zheng MJ, Li LJ, Lin R, Li ZP, Li QB. Transcriptomics analysis and fed-batch regulation of high astaxanthin-producing Phaffia rhodozyma/Xanthophyllomyces dendrorhous obtained through adaptive laboratory evolution. J Ind Microbiol Biotechnol 2023; 50:kuad015. [PMID: 37580133 PMCID: PMC10448994 DOI: 10.1093/jimb/kuad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/12/2023] [Indexed: 08/16/2023]
Abstract
Astaxanthin has high utilization value in functional food because of its strong antioxidant capacity. However, the astaxanthin content of Phaffia rhodozyma is relatively low. Adaptive laboratory evolution is an excellent method to obtain high-yield strains. TiO2 is a good inducer of oxidative stress. In this study, different concentrations of TiO2 were used to domesticate P. rhodozyma, and at a concentration of 1000 mg/L of TiO2 for 105 days, the optimal strain JMU-ALE105 for astaxanthin production was obtained. After fermentation, the astaxanthin content reached 6.50 mg/g, which was 41.61% higher than that of the original strain. The ALE105 strain was fermented by batch and fed-batch, and the astaxanthin content reached 6.81 mg/g. Transcriptomics analysis showed that the astaxanthin synthesis pathway, and fatty acid, pyruvate, and nitrogen metabolism pathway of the ALE105 strain were significantly upregulated. Based on the nitrogen metabolism pathway, the nitrogen source was adjusted by ammonium sulphate fed-batch fermentation, which increased the astaxanthin content, reaching 8.36 mg/g. This study provides a technical basis and theoretical research for promoting industrialization of astaxanthin production of P. rhodozyma. ONE-SENTENCE SUMMARY A high-yield astaxanthin strain (ALE105) was obtained through TiO2 domestication, and its metabolic mechanism was analysed by transcriptomics, which combined with nitrogen source regulation to further improve astaxanthin yield.
Collapse
Affiliation(s)
- Liang Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
| | - Hao-Yi Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
| | - Li You
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Ze-Dong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Xi-Ping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yan-Bing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Ming-Jing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Li-Jun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Rui Lin
- College of Ocean and Earth Sciences, and Research and Development Center for Ocean Observation Technologies, Xiamen University, Xiamen 361008, China
| | - Zhi-Peng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Qing-Biao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| |
Collapse
|
45
|
Deprez MA, Caligaris M, Rosseels J, Hatakeyama R, Ghillebert R, Sampaio-Marques B, Mudholkar K, Eskes E, Meert E, Ungermann C, Ludovico P, Rospert S, De Virgilio C, Winderickx J. The nutrient-responsive CDK Pho85 primes the Sch9 kinase for its activation by TORC1. PLoS Genet 2023; 19:e1010641. [PMID: 36791155 PMCID: PMC9974134 DOI: 10.1371/journal.pgen.1010641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/28/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Yeast cells maintain an intricate network of nutrient signaling pathways enabling them to integrate information on the availability of different nutrients and adjust their metabolism and growth accordingly. Cells that are no longer capable of integrating this information, or that are unable to make the necessary adaptations, will cease growth and eventually die. Here, we studied the molecular basis underlying the synthetic lethality caused by loss of the protein kinase Sch9, a key player in amino acid signaling and proximal effector of the conserved growth-regulatory TORC1 complex, when combined with either loss of the cyclin-dependent kinase (CDK) Pho85 or loss of its inhibitor Pho81, which both have pivotal roles in phosphate sensing and cell cycle regulation. We demonstrate that it is specifically the CDK-cyclin pair Pho85-Pho80 or the partially redundant CDK-cyclin pairs Pho85-Pcl6/Pcl7 that become essential for growth when Sch9 is absent. Interestingly, the respective three CDK-cyclin pairs regulate the activity and distribution of the phosphatidylinositol-3 phosphate 5-kinase Fab1 on endosomes and vacuoles, where it generates phosphatidylinositol-3,5 bisphosphate that serves to recruit both TORC1 and its substrate Sch9. In addition, Pho85-Pho80 directly phosphorylates Sch9 at Ser726, and to a lesser extent at Thr723, thereby priming Sch9 for its subsequent phosphorylation and activation by TORC1. The TORC1-Sch9 signaling branch therefore integrates Pho85-mediated information at different levels. In this context, we also discovered that loss of the transcription factor Pho4 rescued the synthetic lethality caused by loss of Pho85 and Sch9, indicating that both signaling pathways also converge on Pho4, which appears to be wired to a feedback loop involving the high-affinity phosphate transporter Pho84 that fine-tunes Sch9-mediated responses.
Collapse
Affiliation(s)
- Marie-Anne Deprez
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Marco Caligaris
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Joëlle Rosseels
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Riko Hatakeyama
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Ruben Ghillebert
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal
| | - Kaivalya Mudholkar
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elja Eskes
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Els Meert
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Christian Ungermann
- Department of Biology/Chemistry & Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail: (CDV); (JW)
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
- * E-mail: (CDV); (JW)
| |
Collapse
|
46
|
Khattar A, Alghafli JA, Muheef MA, Alsalem AM, Al-Dubays MA, AlHussain HM, AlShoalah HM, Khan SQ, AlEraky DM, Gad MM. Antibiofilm Activity of 3D-Printed Nanocomposite Resin: Impact of ZrO 2 Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:591. [PMID: 36770550 PMCID: PMC9921268 DOI: 10.3390/nano13030591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Poly(methyl methacrylate) (PMMA) is a commonly used material, as it is biocompatible and relatively cheap. However, its mechanical properties and weak antibiofilm activity are major concerns. With the development of new technology, 3D-printed resins are emerging as replacements for PMMA. Few studies have investigated the antibiofilm activity of 3D-printed resins. Therefore, this study aimed to investigate the antibiofilm activity and surface roughness of a 3D-printed denture base resin modified with different concentrations of zirconium dioxide nanoparticles (ZrO2 NPs). A total of 60 resin disc specimens (15 × 2 mm) were fabricated and divided into six groups (n = 10). The groups comprised a heat-polymerized resin (PMMA) group, an unmodified 3D-printed resin (NextDent) group, and four 3D-printed resin groups that were modified with ZrO2 NPs at various concentrations (0.5 wt%, 1 wt%, 3 wt%, and 5 wt%). All specimens were polished using a conventional method and then placed in a thermocycler machine for 5000 cycles. Surface roughness (Ra, µm) was measured using a non-contact profilometer. The adhesion of Candida albicans (C. albicans) was measured using a fungal adhesion assay that consisted of a colony forming unit assay and a cell proliferation assay. The data were analyzed using Shapiro-Wilk and Kruskal-Wallis tests. A Mann-Whitney U test was used for pairwise comparison, and p-values of less than 0.05 were considered statistically significant. The lowest Ra value (0.88 ± 0.087 µm) was recorded for the PMMA group. In comparison to the PMMA group, the 3% ZrO2 NPs 3D-printed group showed a significant increase in Ra (p < 0.025). For the 3D-printed resins, significant differences were found between the groups with 0% vs. 3% ZrO2 NPs and 3% vs. 5% ZrO2 NPs (p < 0.025). The highest Ra value (0.96 ± 0.06 µm) was recorded for the 3% ZrO2 NPs group, and the lowest Ra values (0.91 ± 0.03 µm) were recorded for the 0.5% and 5% ZrO2 NPs groups. In terms of antifungal activity, the cell proliferation assay showed a significant decrease in the C. albicans count for the 0.5% ZrO2 NPs group when compared with PMMA and all other groups of 3D-printed resins. The group with the lowest concentration of ZrO2 NPs (0.5%) showed the lowest level of C. albicans adhesion of all the tested groups and showed the lowest Candida count (0.29 ± 0.03). The addition of ZrO2 NPs in low concentrations did not affect the surface roughness of the 3D-printed resins. These 3D-printed resins with low concentrations of nanocomposites could be used as possible materials for the prevention and treatment of denture stomatitis, due to their antibiofilm activities.
Collapse
Affiliation(s)
- Abdulrahman Khattar
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Jawad A. Alghafli
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed A. Muheef
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ali M. Alsalem
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed A. Al-Dubays
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hussain M. AlHussain
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hussain M. AlShoalah
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Soban Q. Khan
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Doaa M. AlEraky
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed M. Gad
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
47
|
Deb R, Nagotu S. The nexus between peroxisome abundance and chronological ageing in Saccharomyces cerevisiae. Biogerontology 2023; 24:81-97. [PMID: 36209442 DOI: 10.1007/s10522-022-09992-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/23/2022] [Indexed: 01/20/2023]
Abstract
Ageing is characterized by changes in several cellular processes, with dysregulation of peroxisome function being one of them. Interestingly, the most conserved function of peroxisomes, ROS homeostasis, is strongly associated with ageing and age-associated pathologies. Previous studies have identified a role for peroxisomes in the regulation of chronological lifespan in yeast. In this study, we report the effect of altered peroxisome number on the chronological lifespan of yeast in two different growth media conditions. Three mutants, pex11, pex25 and pex27, defective in peroxisome fission, have been thoroughly investigated for the chronological lifespan. Reduced chronological lifespan of all the mutants was observed in peroxisome-inducing growth conditions. Furthermore, the combined deletion pex11pex25 exhibited the most prominent reduction in lifespan. Interestingly altered peroxisomal phenotype upon ageing was observed in all the cells. Increased ROS accumulation and reduced catalase activity was exhibited by chronologically aged mutant cells. Interestingly, mutants with reduced number of peroxisomes concomitantly also exhibited an accumulation of free fatty acids and increased number of lipid droplets. Taken together, our results reveal a previously unrealized effect of fission proteins in the chronological lifespan of yeast.
Collapse
Affiliation(s)
- Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
48
|
Yokoyama M, Sasaki M, Kobayashi T. Spt4 promotes cellular senescence by activating non-coding RNA transcription in ribosomal RNA gene clusters. Cell Rep 2023; 42:111944. [PMID: 36640349 DOI: 10.1016/j.celrep.2022.111944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Genome instability can drive aging in many organisms. The ribosomal RNA gene (rDNA) cluster is one of the most unstable regions in the genome and the stability of this region impacts replicative lifespan in budding yeast. To understand the underlying mechanism, we search for yeast mutants with stabler rDNA and longer lifespans than wild-type cells. We show that absence of a transcription elongation factor, Spt4, results in increased rDNA stability, reduced levels of non-coding RNA transcripts from the regulatory E-pro promoter in the rDNA, and extended replicative lifespan in a SIR2-dependent manner. Spt4-dependent lifespan restriction is abolished in the absence of non-coding RNA transcription at the E-pro locus. The amount of Spt4 increases and its function becomes more important as cells age. These findings suggest that Spt4 is a promising aging factor that accelerates cellular senescence through rDNA instability driven by non-coding RNA transcription.
Collapse
Affiliation(s)
- Masaaki Yokoyama
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mariko Sasaki
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
49
|
Correia-Melo C, Kamrad S, Tengölics R, Messner CB, Trebulle P, Townsend S, Jayasree Varma S, Freiwald A, Heineike BM, Campbell K, Herrera-Dominguez L, Kaur Aulakh S, Szyrwiel L, Yu JSL, Zelezniak A, Demichev V, Mülleder M, Papp B, Alam MT, Ralser M. Cell-cell metabolite exchange creates a pro-survival metabolic environment that extends lifespan. Cell 2023; 186:63-79.e21. [PMID: 36608659 DOI: 10.1016/j.cell.2022.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Metabolism is deeply intertwined with aging. Effects of metabolic interventions on aging have been explained with intracellular metabolism, growth control, and signaling. Studying chronological aging in yeast, we reveal a so far overlooked metabolic property that influences aging via the exchange of metabolites. We observed that metabolites exported by young cells are re-imported by chronologically aging cells, resulting in cross-generational metabolic interactions. Then, we used self-establishing metabolically cooperating communities (SeMeCo) as a tool to increase metabolite exchange and observed significant lifespan extensions. The longevity of the SeMeCo was attributable to metabolic reconfigurations in methionine consumer cells. These obtained a more glycolytic metabolism and increased the export of protective metabolites that in turn extended the lifespan of cells that supplied them with methionine. Our results establish metabolite exchange interactions as a determinant of cellular aging and show that metabolically cooperating cells can shape the metabolic environment to extend their lifespan.
Collapse
Affiliation(s)
- Clara Correia-Melo
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Stephan Kamrad
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roland Tengölics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged 6726, Hungary; HCEMM-BRC Metabolic Systems Biology Lab, Szeged 6726, Hungary
| | - Christoph B Messner
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland
| | - Pauline Trebulle
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - StJohn Townsend
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Anja Freiwald
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; Core Facility - High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Benjamin M Heineike
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Quantitative Gene Expression Research Group, MRC London Institute of Medical Sciences (LMS), London W12 0HS, UK; Quantitative Gene Expression Research Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London SW2 2AZ, UK
| | - Kate Campbell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Lucía Herrera-Dominguez
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Simran Kaur Aulakh
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Lukasz Szyrwiel
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jason S L Yu
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Aleksej Zelezniak
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Randall Centre for Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK; Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Vadim Demichev
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Michael Mülleder
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Core Facility - High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged 6726, Hungary; HCEMM-BRC Metabolic Systems Biology Lab, Szeged 6726, Hungary
| | - Mohammad Tauqeer Alam
- Department of Biology, College of Science, United Arab Emirates University, P.O.Box 15551, Al-Ain, United Arab Emirates
| | - Markus Ralser
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
50
|
Life and death of Pseudokirchneriella subcapitata: physiological changes during chronological aging. Appl Microbiol Biotechnol 2022; 106:8245-8258. [PMID: 36385567 DOI: 10.1007/s00253-022-12267-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
The green alga Pseudokirchneriella subcapitata is widely used in ecotoxicity assays and has great biotechnological potential as feedstock. This work aims to characterize the physiology of this alga associated with the aging resulting from the incubation of cells for 21 days, in the OECD medium, with continuous agitation and light exposure, in a batch mode. After inoculation, cells grow exponentially during 3 days, and the culture presents a typical green color. In this phase, "young" algal cells present, predominantly, a lunate morphology with the chloroplast occupying a large part of the cell, maximum photosynthetic activity and pigments concentration, and produce starch as a reserve material. Between the 5th and the 12th days of incubation, cells are in the stationary phase. The culture becomes less green, and the cells stop dividing (≥ 99% have one nucleus) and start to age. "Old" algal cells present chloroplast shrinkage, an abrupt decline of chlorophylls content, and photosynthetic capacity (Fv/Fm and ɸPSII), accompanied by a degradation of starch and an increase of neutral lipids content. The onset of the death phase occurs after the 12th day and is characterized by the loss of cell membrane integrity of some algae (cell death). The culture stays, progressively, yellow, and the majority of the population (~93%) is composed of live cells, chronologically "old," with a significant drop in photosynthetic activity (decay > 75% of Fv/Fm and ɸPSII) and starch content. The information here achieved can be helpful when exploring the potential of this alga in toxicity studies or in biotechnological applications. KEY POINTS: • Physiological changes of P. subcapitata with chronological aging are shown • "Young" algae exhibit a semilunar shape, high photosynthetic activity, and accumulated starch • "Old"-live algae show reduced photosynthetic capacity and accumulated lipids.
Collapse
|