1
|
Ye J, Duan C, Han J, Chen J, Sun N, Li Y, Yuan T, Peng D. Peripheral mitochondrial DNA as a neuroinflammatory biomarker for major depressive disorder. Neural Regen Res 2025; 20:1541-1554. [PMID: 38934398 PMCID: PMC11688552 DOI: 10.4103/nrr.nrr-d-23-01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/09/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
In the pathogenesis of major depressive disorder, chronic stress-related neuroinflammation hinders favorable prognosis and antidepressant response. Mitochondrial DNA may be an inflammatory trigger, after its release from stress-induced dysfunctional central nervous system mitochondria into peripheral circulation. This evidence supports the potential use of peripheral mitochondrial DNA as a neuroinflammatory biomarker for the diagnosis and treatment of major depressive disorder. Herein, we critically review the neuroinflammation theory in major depressive disorder, providing compelling evidence that mitochondrial DNA release acts as a critical biological substrate, and that it constitutes the neuroinflammatory disease pathway. After its release, mitochondrial DNA can be carried in the exosomes and transported to extracellular spaces in the central nervous system and peripheral circulation. Detectable exosomes render encaged mitochondrial DNA relatively stable. This mitochondrial DNA in peripheral circulation can thus be directly detected in clinical practice. These characteristics illustrate the potential for mitochondrial DNA to serve as an innovative clinical biomarker and molecular treatment target for major depressive disorder. This review also highlights the future potential value of clinical applications combining mitochondrial DNA with a panel of other biomarkers, to improve diagnostic precision in major depressive disorder.
Collapse
Affiliation(s)
- Jinmei Ye
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Duan
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxin Han
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jinrong Chen
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yuan Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Daihui Peng
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Ling W, Wang YC, Huang Y, Ou YF, Jiang YC. Islet β-cell function preservation by different anti-diabetic treatments in Chinese elderly patients with type 2 diabetes mellitus. World J Diabetes 2025; 16:94976. [DOI: 10.4239/wjd.v16.i2.94976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/07/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND The preservation of islet β-cell function in elderly patients with type 2 diabetes mellitus (T2DM) is a top priority for diabetic control.
AIM To assess the preservation of islet β-cell function among elderly Chinese patients with T2DM after different anti-diabetic treatments.
METHODS In this longitudinal observational study, elderly patients with T2DM treated with insulin, oral antidiabetic drugs or a combination of both were enrolled to disclose their islet β-cell function between baseline and follow-up. Islet β-cell function was determined by the plasma Homeostasis Model for β-cell function (HOMA-β), C-peptide and area under the curve (AUC) based on oral glucose tolerance test. Changes in β-cell function (decrement or increment from baseline) between different therapy groups were the outcomes.
RESULTS In total, 745 elderly patients (≥ 60 years) with T2DM [insulin monotherapy, n = 105; oral anti-diabetic drugs (OAD) monotherapy, n = 321; insulin plus OAD, n = 319] had their baseline and follow-up β-cell function assessed during a median observation period of 4.5 years (range, 3.0-7.2 years). Overall, islet β-cell function (HOMA-β, fasting C-peptide, fasting insulin, AUCc-pep, AUCins, AUCc-pep/AUCglu, AUCins/AUCglu) consistently deteriorated over time regardless of the three different antidiabetic treatments. No statistical differences in decrement were observed among the three groups regarding the islet β-cell function indices. All three groups showed an increased ratio of delayed insulin secretion response after 4.5 years of observation.
CONCLUSION In Chinese elderly patients with T2DM, islet β-cell function progressively declines regardless of insulin supplement or insulin plus OAD treatments.
Collapse
Affiliation(s)
- Wei Ling
- Department of Science Laboratory, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin 541002, Guangxi Zhuang Autonomous Region, China
| | - Yan-Chao Wang
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin 541100, Guangxi Zhuang Autonomous Region, China
| | - Yi Huang
- Faculty of Basic Medicine, Guilin Medical University, Guilin 541100, Guangxi Zhuang Autonomous Region, China
| | - Yang-Fu Ou
- Department of Geriatrics, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Yan-Chun Jiang
- Department of Neurology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin 541002, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
3
|
Myrka AM, Frost R, Di Stefano D, Plotnikov SV, Buck LT. Cultured primary turtle hepatocytes: a cellular model for the study of temperature and anoxia. Am J Physiol Cell Physiol 2025; 328:C179-C198. [PMID: 39555638 DOI: 10.1152/ajpcell.00510.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Turtle hepatocytes are a nonexcitable model for metabolic depression during low-temperature and/or anoxic overwintering conditions. Cytoskeletal structure and mitochondrial distribution are continuously modified in cells, and we hypothesized that metabolic depression would inhibit such processes as cell attachment and spreading and promote withdrawal of cell protrusions and peripheral mitochondria. After developing a methodology for culturing painted turtle hepatocytes, two-dimensional (2-D) area and maintenance of cell attachment after a media change were used as indicators of structural rearrangement and spreading/volume. These were measured after incubating cells at varying temperatures and with or without the inclusion of cyanide (chemical proxy for anoxia). Experiments were performed using cells from 22°C- or 5°C-acclimated turtles. Live-cell imaging was used to monitor the effect of cyanide exposure on the distribution of mitochondria. We also acclimated cultured cells from 22°C-acclimated turtles to 4°C in vitro and scored withdrawal of protrusions. Only cells isolated from 5°C-acclimated turtles and incubated at 4°C had reduced attachment to fibronectin substrate, but cyanide exposure had no effect. These cells also had a 30% smaller 2-D area than those from 22°C-acclimated turtles. There was no change in mitochondrial distribution during cyanide perfusion. Finally, 4°C acclimation in vitro resulted in the withdrawal of protrusions over 14 days. Taken together with the results from cells acclimated to low temperature in vivo, this suggests inhibition of structural rearrangement and protrusion stability by low temperature acclimation, but not cyanide exposure. Our cultured primary hepatocyte system will facilitate further study of the role of structural dynamics in reversible metabolic depression.NEW & NOTEWORTHY We have optimized a methodology for two-dimensional (2-D) culturing of primary western painted turtle hepatocytes and used this model to study the effects of cyanide and temperature on structural rearrangement, and the effect of cyanide on mitochondrial distribution. Our results suggest that low temperature acclimation, either in vivo or in vitro, inhibits cell protrusions and structural rearrangement. Acute cyanide exposure did not inhibit structural rearrangement or alter mitochondrial distribution.
Collapse
Affiliation(s)
- Alexander M Myrka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ryan Frost
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Domenic Di Stefano
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Sergey V Plotnikov
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Leslie T Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Mann JP, Tábara LC, Patel S, Pushpa P, Alvarez-Guaita A, Dong L, Haider A, Lim K, Tandon P, Scurria F, Minchin JEN, O'Rahilly S S, Fazakerley DJ, Prudent J, Semple RK, Savage DB. Loss of Mfn1 but not Mfn2 enhances adipogenesis. PLoS One 2024; 19:e0306243. [PMID: 39739772 DOI: 10.1371/journal.pone.0306243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/13/2024] [Indexed: 01/02/2025] Open
Abstract
OBJECTIVE A biallelic missense mutation in mitofusin 2 (MFN2) causes multiple symmetric lipomatosis and partial lipodystrophy, implicating disruption of mitochondrial fusion or interaction with other organelles in adipocyte differentiation, growth and/or survival. In this study, we aimed to document the impact of loss of mitofusin 1 (Mfn1) or 2 (Mfn2) on adipogenesis in cultured cells. METHODS We characterised adipocyte differentiation of wildtype (WT), Mfn1-/- and Mfn2-/- mouse embryonic fibroblasts (MEFs) and 3T3-L1 preadipocytes in which Mfn1 or 2 levels were reduced using siRNA. RESULTS Mfn1-/- MEFs displayed striking fragmentation of the mitochondrial network, with surprisingly enhanced propensity to differentiate into adipocytes, as assessed by lipid accumulation, expression of adipocyte markers (Plin1, Fabp4, Glut4, Adipoq), and insulin-stimulated glucose uptake. RNA sequencing revealed a corresponding pro-adipogenic transcriptional profile including Pparg upregulation. Mfn2-/- MEFs also had a disrupted mitochondrial morphology, but in contrast to Mfn1-/- MEFs they showed reduced expression of adipocyte markers. Mfn1 and Mfn2 siRNA mediated knockdown studies in 3T3-L1 adipocytes generally replicated these findings. CONCLUSIONS Loss of Mfn1 but not Mfn2 in cultured pre-adipocyte models is pro-adipogenic. This suggests distinct, non-redundant roles for the two mitofusin orthologues in adipocyte differentiation.
Collapse
Affiliation(s)
- Jake P Mann
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Luis Carlos Tábara
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Satish Patel
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Pushpa Pushpa
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Anna Alvarez-Guaita
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Liang Dong
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Afreen Haider
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Koini Lim
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Panna Tandon
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Fabio Scurria
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - James E N Minchin
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen O'Rahilly S
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - David B Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Pourabdi R, Shahidi F, Tabandeh MR, Salehpour M. Aerobic exercise timing affects mitochondrial dynamics and insulin resistance by regulating the circadian clock protein expression and NAD +-SIRT1-PPARα-MFN2 pathway in the skeletal muscle of high-fat-diet-induced diabetes mice. J Physiol Biochem 2024:10.1007/s13105-024-01066-3. [PMID: 39715985 DOI: 10.1007/s13105-024-01066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/04/2024] [Indexed: 12/25/2024]
Abstract
The circadian clock regulates mitochondrial function and affects time-dependent metabolic responses to exercise. The present study aimed to determine the effects of aerobic exercise timing at the light-dark phase on the proteins expression of the circadian clock, mitochondrial dynamics, and, NAD+-SIRT1-PPARα axis in skeletal muscle of high-fat diet-induced diabetic mice. In this experimental study, thirty male mice were randomly assigned into two groups based on time: the early light phase, ZT3, and the early dark phase, ZT15, and three groups at each time: (1) Healthy Control (HC), (2) Diabetic Control (DC), and (3) Diabetic + Exercise (DE). Diabetes was induced by 5 weeks of feeding with a high-fat diet and Streptozotocin injection. Following confirmation of diabetes, animals underwent treadmill running at ZT3 and ZT15 for eight-weeks (5 days, 60-80 min, 50-60%Vmax). The expression of proteins of muscle aryl-hydrocarbon receptor nuclear translocator-like-1 (BMAL1), period-2 (PER2), mitofusin-2 (MFN2), dynamin-related proteins-1 (DRP-1), glucose transporter (GLUT4), sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor-alpha (PPARα), and nicotinamide adenine dinucleotide (NAD+) level were analyzed in gastrocnemius muscle at both exercise times. The results showed that aerobic exercise at both times reversed the dysregulation of the diabetes-induced skeletal muscle clock by increasing the BMAL1 and PER2 protein levels. Aerobic exercise, especially at ZT15 compared to ZT3, increased GLUT4-mediated glucose uptake, and improved the diabetes-induced imbalance of mitochondrial fusion-fission by a significant increase in MFN2 protein level. Moreover, time-dependent aerobic exercise only at ZT15 increased the SIRT1 and PPARα protein levels and reduced diabetes-induced hyperglycemia. However, the aerobic exercise timing could not restore the attenuation of diabetes-induced NAD+ levels and DRP-1 protein. Our findings demonstrated that the synchronization of aerobic exercise with the circadian rhythm of NAD+-SIRT1 may boost MFN2-mediated mitochondrial fusion by activating the BMAL1-PER2-SIRT1-PPARα axis in the skeletal muscle of diabetic mice and be more effective in facilitating glycemic control and insulin resistance.
Collapse
Affiliation(s)
- Raha Pourabdi
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| | - Fereshteh Shahidi
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mojtaba Salehpour
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
6
|
Feng Y, Rao Z, Tian X, Hu Y, Yue L, Meng Y, Zhong Q, Chen W, Xu W, Li H, Hu Y, Shi R. Endurance training enhances skeletal muscle mitochondrial respiration by promoting MOTS-c secretion. Free Radic Biol Med 2024; 227:619-628. [PMID: 39706498 DOI: 10.1016/j.freeradbiomed.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
The mitochondrial open reading frame of 12S rRNA-c (MOTS-c) is a biologically active mitochondria-derived peptide. However, the relationship between MOTS-c, skeletal muscle mitochondrial function, and endurance exercise adaptations is unknown. Here, we tested indices such as maximal oxygen uptake and serum MOTS-c levels in marathon runners and sedentary subjects. In addition, we tested aerobic exercise capacity, skeletal muscle mitochondrial respiration rate, and serum MOTS-c levels in mice subjected to long-term endurance training groups and sedentary groups. Our results indicated a close association between serum MOTS-c levels and aerobic exercise capacity. Circulating MOTS-c levels are expected to be an important indicator for predicting aerobic exercise capacity and assessing body fat status, endurance training load, and physical function. More importantly, we found that endurance training may enhance the mitochondrial respiratory function of skeletal muscle by promoting the secretion of MOTS-c and activating the AMPK/PGC-1α pathway.
Collapse
Affiliation(s)
- Yiwei Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Zhijian Rao
- School of Physical Education, Shanghai Normal University, Shanghai, 200234, China
| | - Xu Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yi Hu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Liantian Yue
- School of Sport, Exercise and Health Sciences, Loughborough University, UK
| | - Yifan Meng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Qiuling Zhong
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Wei Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenlong Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Haoran Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yingjia Hu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Rengfei Shi
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
7
|
Yang Y, Chen Q, Fan S, Lu Y, Huang Q, Liu X, Peng X. Glutamine sustains energy metabolism and alleviates liver injury in burn sepsis by promoting the assembly of mitochondrial HSP60-HSP10 complex via SIRT4 dependent protein deacetylation. Redox Rep 2024; 29:2312320. [PMID: 38329114 PMCID: PMC10854458 DOI: 10.1080/13510002.2024.2312320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Burns and burn sepsis, characterized by persistent and profound hypercatabolism, cause energy metabolism dysfunction that worsens organ injury and systemic disorders. Glutamine (Gln) is a key nutrient that remarkably replenishes energy metabolism in burn and sepsis patients, but its exact roles beyond substrate supply is unclear. In this study, we demonstrated that Gln alleviated liver injury by sustaining energy supply and restoring redox balance. Meanwhile, Gln also rescued the dysfunctional mitochondrial electron transport chain (ETC) complexes, improved ATP production, reduced oxidative stress, and protected hepatocytes from burn sepsis injury. Mechanistically, we revealed that Gln could activate SIRT4 by upregulating its protein synthesis and increasing the level of Nicotinamide adenine dinucleotide (NAD+), a co-enzyme that sustains the activity of SIRT4. This, in turn, reduced the acetylation of shock protein (HSP) 60 to facilitate the assembly of the HSP60-HSP10 complex, which maintains the activity of ETC complex II and III and thus sustain ATP generation and reduce reactive oxygen species release. Overall, our study uncovers a previously unknown pharmacological mechanism involving the regulation of HSP60-HSP10 assembly by which Gln recovers mitochondrial complex activity, sustains cellular energy metabolism and exerts a hepato-protective role in burn sepsis.
Collapse
Affiliation(s)
- Yongjun Yang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Qian Chen
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Shijun Fan
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Yongling Lu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Qianyin Huang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Xin Liu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Xi Peng
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
- State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), ChongqingPeople’s Republic of China
| |
Collapse
|
8
|
Ye F, Wei C, Wu A. The potential mechanism of mitochondrial homeostasis in postoperative neurocognitive disorders: an in-depth review. Ann Med 2024; 56:2411012. [PMID: 39450938 PMCID: PMC11514427 DOI: 10.1080/07853890.2024.2411012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 10/26/2024] Open
Abstract
Postoperative neurocognitive disorders (PND) are the most common neurological disorders following surgery and anaesthesia before and within 12 months after surgery, with a high prevalence in the geriatric population. PND can severely deteriorate the quality of life of patients, especially among the elderly, mainly manifested as memory loss, attention, decline and language comprehension disorders, mostly in elderly patients, with an incidence as high as 31%. Previous studies have also raised the possibility of accelerated cognitive decline and underlying neuropathological processes associated with diseases that affect cognitive performance (e.g. Alzheimer's dementia) for reasons related to anaesthesia and surgery. Currently, most research on PND has focused on various molecular pathways, especially in the geriatric population. The various hypotheses that have been proposed regarding the mechanisms imply peripheral neuroinflammation, oxidative stress, mitochondrial homeostasis, synaptic function, autophagy disorder, blood-brain barrier dysfunction, the microbiota-gut-brain axis and lack of neurotrophic support. However, the underlying pathogenesis and molecular mechanisms of PND have not yet been uncovered. Recent research has focused on mitochondrial homeostasis. In this paper, we present a review of various studies to better understand and characterize the mechanisms of associated cognitive dysfunction. As the biochemical basis of PND becomes more clearly defined, future treatments based on mitochondrial homeostasis modulation can prove to be very promising.
Collapse
Affiliation(s)
- Fan Ye
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Xiong W, Xu K, Sun JKL, Liu S, Zhao B, Shi J, Herrup K, Chow HM, Lu L, Li J. The mitochondrial long non-coding RNA lncMtloop regulates mitochondrial transcription and suppresses Alzheimer's disease. EMBO J 2024; 43:6001-6031. [PMID: 39424953 PMCID: PMC11612450 DOI: 10.1038/s44318-024-00270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024] Open
Abstract
Maintaining mitochondrial homeostasis is crucial for cell survival and organismal health, as evidenced by the links between mitochondrial dysfunction and various diseases, including Alzheimer's disease (AD). Here, we report that lncMtDloop, a non-coding RNA of unknown function encoded within the D-loop region of the mitochondrial genome, maintains mitochondrial RNA levels and function with age. lncMtDloop expression is decreased in the brains of both human AD patients and 3xTg AD mouse models. Furthermore, lncMtDloop binds to mitochondrial transcription factor A (TFAM), facilitates TFAM recruitment to mtDNA promoters, and increases mitochondrial transcription. To allow lncMtDloop transport into mitochondria via the PNPASE-dependent trafficking pathway, we fused the 3'UTR localization sequence of mitochondrial ribosomal protein S12 (MRPS12) to its terminal end, generating a specified stem-loop structure. Introducing this allotropic lncMtDloop into AD model mice significantly improved mitochondrial function and morphology, and ameliorated AD-like pathology and behavioral deficits of AD model mice. Taken together, these data provide insights into lncMtDloop as a regulator of mitochondrial transcription and its contribution to Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Wandi Xiong
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- National Institute on Drug Dependence, Peking University, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Kaiyu Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | - Siling Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Baizhen Zhao
- JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ, USA
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Karl Herrup
- Department of Neurobiology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Lin Lu
- Peking-Tsinghua Center for Life Sciences, Beijing, China.
- National Institute on Drug Dependence, Peking University, Beijing, China.
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China.
| | - Jiali Li
- National Institute on Drug Dependence, Peking University, Beijing, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China.
- JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ, USA.
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| |
Collapse
|
10
|
van Tol Amaral Guerra SM, Cordeiro Koppe de França L, Neto da Silva K, Scolari Grotto F, Glaser V. Copper dyshomeostasis and its relationship to AMPK activation, mitochondrial dynamics, and biogenesis of mitochondria: A systematic review of in vivo studies. J Trace Elem Med Biol 2024; 86:127549. [PMID: 39427561 DOI: 10.1016/j.jtemb.2024.127549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Copper dyshomeostasis can be related to an increase in copper levels, resulting in toxicity, or to a decrease in tissues levels, impairing cuproenzyme activities. Inside cells, copper can be found in the cytoplasm and inside organelles, and the main organelle that compartmentalizes copper is the mitochondrion. This organelle can form networks and may fuse or fission from this, determining the mitochondrial fusion and fission processes, respectively. Together with mitophagy (autophagy of mitochondria) and mitochondrial biogenesis, mitochondrial fusion and fission (denominated mitochondrial dynamics) determine the number of mitochondria in a cell. A master regulator of mitochondrial dynamics and biogenesis of new mitochondria is AMPK. Considering that both a decrease and an increase in copper levels can influence mitochondrial turnover, especially in diseases related to copper dyshomeostasis, the objective of this systematic review was to verify the current knowledge on the influence of copper homeostasis on AMPK activation, mitochondrial dynamics, and biogenesis of new mitochondria in vivo. METHODS PubMed (MEDLINE), Embase, and Web of Science databases were used to search for articles in the literature. Data about the effects of a decrease or an increase in copper levels on the expression of proteins involved in mitochondrial dynamics or biogenesis, and data about AMPK and p-AMPK levels were extracted. RESULTS Meta-analysis has demonstrated that high copper levels increase mitochondrial fission and inhibit mitochondrial fusion. Additionally, an increase in copper levels results in AMPK activation. Few studies have analyzed the effects of high copper levels on proteins related to mitochondrial biogenesis, as well as the impact of a decrease in this metal on mitochondrial dynamics and biogenesis, and on AMPK activation. CONCLUSIONS Despite the results gathered in this review, other studies are necessary to completely understand the role of copper in regulating AMPK activation, mitochondrial dynamics, and the biogenesis of new mitochondria, since the cell response to a copper dyshomeostasis could be different depending on the species and tissues analyzed.
Collapse
Affiliation(s)
| | | | - Katriane Neto da Silva
- Cell Biology Lab, Biological and Agronomic Sciences Department, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Fabielly Scolari Grotto
- Cell Biology Lab, Biological and Agronomic Sciences Department, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Viviane Glaser
- Cell Biology Lab, Biological and Agronomic Sciences Department, Federal University of Santa Catarina, Curitibanos, SC, Brazil.
| |
Collapse
|
11
|
Liao ZQ, Lv YF, Kang MD, Ji YL, Liu Y, Wang LR, Tang JL, Deng ZQ, Yi Y, Tang Q. Inhibition of XPR1-dependent phosphate efflux induces mitochondrial dysfunction: A potential molecular target therapy for hepatocellular carcinoma? Mol Carcinog 2024; 63:2332-2345. [PMID: 39136583 DOI: 10.1002/mc.23812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 11/16/2024]
Abstract
Xenotropic and polytropic retrovirus receptor 1 (XPR1) is the only known transporter associated with Pi efflux in mammals, and its impact on tumor progression is gradually being revealed. However, the role of XPR1 in hepatocellular carcinoma (HCC) is unknown. A bioinformatics screen for the phosphate exporter XPR1 was performed in HCC patients. The expression of XPR1 in clinical specimens was analyzed using quantitative real-time PCR, Western blot analysis, and immunohistochemical assays. Knockdown of the phosphate exporter XPR1 was performed by shRNA transfection to investigate the cellular phenotype and phosphate-related cytotoxicity of the Huh7 and HLF cell lines. In vivo tests were conducted to investigate the tumorigenicity of HCC cells xenografted into immunocompromised mice after silencing XPR1. Compared with that in paracancerous tissue, XPR1 expression in HCC tissues was markedly upregulated. High XPR1 expression significantly correlated with poor patient survival. Silencing of XPR1 leads to decreased proliferation, migration, invasion, and colony formation in HCC cells. Mechanistically, knockdown of XPR1 causes an increase in intracellular phosphate levels; mitochondrial dysfunction characterized by reduced mitochondrial membrane potential and adenosine triphosphate levels; increased reactive oxygen species levels; abnormal mitochondrial morphology; and downregulation of key mitochondrial fusion, fission, and inner membrane genes. This ultimately results in mitochondria-dependent apoptosis. These findings reveal the prognostic value of XPR1 in HCC progression and, more importantly, suggest that XPR1 might be a potential therapeutic target.
Collapse
Affiliation(s)
- Zi-Qiang Liao
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute for Advanced Study, Nanchang University, Nanchang, China
| | - Yang-Feng Lv
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute for Advanced Study, Nanchang University, Nanchang, China
| | - Mei-Diao Kang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu-Long Ji
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yue Liu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Le-Ran Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | | | - Zhi-Qiang Deng
- Department of Oncology, The First People's Hospital of Fuzhou, Fuzhou, China
| | - Yun Yi
- Biobank Center, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qun Tang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute for Advanced Study, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Vidyadharan VA, Betancourt A, Smith C, Blesson CS, Yallampalli C. Maternal Low-Protein Diet Leads to Mitochondrial Dysfunction and Impaired Energy Metabolism in the Skeletal Muscle of Male Rats. Int J Mol Sci 2024; 25:12860. [PMID: 39684571 DOI: 10.3390/ijms252312860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
A prenatal low-protein (LP) diet disrupts glucose homeostasis in adult offspring. Skeletal muscles are one of the main sites of glucose clearance, and mitochondria residing in the muscle fibers are central to glucose homeostasis. Our previous studies indicated that impaired mitochondrial health is central to dysregulated glucose metabolism in the gastrocnemius muscle of the LP-programmed female rats. In addition, dysfunctional mitochondria are often an indicator of underlying irregularities in energy metabolism and metabolic inflexibility. Therefore, this study examined the mitochondrial function and metabolic flexibility in the skeletal muscles of prenatal LP-programmed adult male rats. Pregnant Wistar rats were randomly allotted to a control diet (20% protein) or an isocaloric LP diet (6% protein). Standard laboratory rat chow was given to the dams and the pups after delivery and weaning. Gene and protein expressions, mtDNA copy number, and electron microscopy were assessed in gastrocnemius (GS) muscle, and the mitochondrial oxygen consumption rate was determined using isolated flexor digitorum brevis muscle fibers. The genes associated with mitochondrial outer membrane fusion, mitofusin1 and 2 (Mfn1 and Mfn2), fission (Fis1), and biogenesis (Pgc1B, Nrf1, and Esrra) were lower in the LP group. Further, our functional studies showed that the ATP-linked oxygen consumption rate (OCR), maximal, spare respiratory, and non-mitochondrial respiration-associated OCRs were lower in the LP rats. Further, the mRNA and protein expressions of Ndufb8, a key factor involved in the complex-I catalytic activity, were downregulated in the LP group. In addition, the expression of genes linked to mitochondrial pyruvate transport (Mpc1) and metabolism (Pdha1) was lower in the LP group. In contrast, the expression of mitochondrial fatty acid transporters (Cpt1a and Cpt2) was higher in the LP when compared to the control group. However, electron microscopic analysis exhibited no difference in the mitochondrial ultrastructure in the LP muscle compared to the control. Altogether, our results indicate that the LP diet affects the mitochondrial complex-I integrity and dynamics and leads to altered expression of genes associated with substrate oxidation and mitochondrial dysfunction in the skeletal muscle of the male LP offspring.
Collapse
Affiliation(s)
- Vipin A Vidyadharan
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ancizar Betancourt
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Craig Smith
- Agilent Technologies Inc., Santa Clara, CA 95051, USA
| | - Chellakkan S Blesson
- Reproductive Endocrinology and Infertility Division, Baylor College of Medicine, Houston, TX 77030, USA
- Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Chandra Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Clemente-Suárez VJ, Rubio-Zarapuz A, Belinchón-deMiguel P, Beltrán-Velasco AI, Martín-Rodríguez A, Tornero-Aguilera JF. Impact of Physical Activity on Cellular Metabolism Across Both Neurodegenerative and General Neurological Conditions: A Narrative Review. Cells 2024; 13:1940. [PMID: 39682689 DOI: 10.3390/cells13231940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Regular physical activity plays a crucial role in modulating cellular metabolism and mitigating the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Multiple Sclerosis. OBJECTIVE The objective of this review is to evaluate the molecular mechanisms by which exercise influences cellular metabolism, with a focus on its potential as a therapeutic intervention for neurological disorders. METHODS A comprehensive literature review was conducted using peer-reviewed scientific articles, with a focus on the period between 2015 and 2024, to analyze the effects of exercise on mitochondrial function, oxidative stress, and metabolic health. RESULTS The findings indicate that exercise promotes mitochondrial biogenesis, enhances oxidative phosphorylation, and reduces reactive oxygen species, contributing to improved energy production and cellular resilience. These metabolic adaptations are associated with delayed disease progression and reduced symptoms in patients with neurodegenerative conditions. Additionally, integrating exercise with nutritional strategies may further enhance therapeutic outcomes by addressing metabolic disturbances comprehensively. CONCLUSIONS This review concludes that personalized exercise protocols should be developed to optimize metabolic benefits for patients with neurological diseases, while future research should focus on biomarker development for individualized treatment approaches. These findings highlight the importance of non-pharmacological interventions in managing neurodegenerative diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Faculty of Applied Social Sciences and Communications, Universidad Internacional de la Empresa (UNIE), 28015 Madrid, Spain
| | | |
Collapse
|
14
|
Abad-Jiménez Z, López-Domènech S, Pelechá M, Perea-Galera L, Rovira-Llopis S, Bañuls C, Blas-García A, Apostolova N, Morillas C, Víctor VM, Rocha M. Calorie restriction modulates mitochondrial dynamics and autophagy in leukocytes of patients with obesity. Free Radic Biol Med 2024; 225:677-686. [PMID: 39447993 DOI: 10.1016/j.freeradbiomed.2024.10.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Although it is established that caloric restriction offers metabolic and clinical benefits, the molecular mechanisms underlying these effects remain unclear. Thus, this study aimed to investigate whether caloric restriction can modulate mitochondrial function and remodeling and stimulate autophagic flux in the PBMCs of patients with obesity. METHODS This was an interventional study of 38 obese subjects (BMI >35 kg/m2) who underwent 6 months of dietary therapy, including a 6-week very-low-calorie diet (VLCD) followed by an 18-week low-calorie diet (LCD). We determined clinical variables, mitochondrial function parameters (by fluorescence imaging of mitochondrial ROS and membrane potential), and protein expression of markers of mitochondrial dynamics (MNF1, MFN2, OPA, DRP1 and FIS1) and autophagy (LC3, Beclin, BCL2 and NBR1) by Western blot. RESULTS Caloric restriction induced an improvement in metabolic outcomes that was accompanied by an increase in AMPK expression, a decrease of mitochondrial ROS and mitochondrial membrane potential, which was associated with increased markers of mitochondrial dynamics (MFN2, DRP1 and FIS1) and activation of autophagy as evidenced by augmented LC3 II/I, Beclin1 and NBR1, and a decrease in BCL2. CONCLUSION These findings shed light on the specific molecular mechanisms by which caloric restriction facilitates metabolic improvements, highlighting the relevance of pathways involving energy homeostasis and cell recovery, including mitochondrial function and dynamics and autophagy.
Collapse
Affiliation(s)
- Zaida Abad-Jiménez
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - Sandra López-Domènech
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - María Pelechá
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - Laura Perea-Galera
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - Susana Rovira-Llopis
- Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, 46010, Valencia, Spain
| | - Celia Bañuls
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - Ana Blas-García
- CIBEREHD (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), 28029, Madrid, Spain; Department of Pharmacology, Faculty of Medicine & Dentistry, University of Valencia, 46010, Valencia, Spain
| | - Nadezda Apostolova
- CIBEREHD (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), 28029, Madrid, Spain; Department of Pharmacology, Faculty of Medicine & Dentistry, University of Valencia, 46010, Valencia, Spain
| | - Carlos Morillas
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - Víctor Manuel Víctor
- Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, 46010, Valencia, Spain; CIBEREHD (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), 28029, Madrid, Spain.
| | - Milagros Rocha
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain; CIBEREHD (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), 28029, Madrid, Spain.
| |
Collapse
|
15
|
Mulet I, Grueso-Cortina C, Cortés-Cano M, Gerovska D, Wu G, Iakab SA, Jimenez-Blasco D, Curtabbi A, Hernansanz-Agustín P, Ketchum H, Manjarrés-Raza I, Wunderlich FT, Bolaños JP, Dawlaty MM, Hopf C, Enríquez JA, Araúzo-Bravo MJ, Tapia N. TET3 regulates terminal cell differentiation at the metabolic level. Nat Commun 2024; 15:9749. [PMID: 39557858 PMCID: PMC11573987 DOI: 10.1038/s41467-024-54044-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
TET-family members play a critical role in cell fate commitment. Indeed, TET3 is essential to postnatal development due to yet unknown reasons. To define TET3 function in cell differentiation, we have profiled the intestinal epithelium at single-cell level from wild-type and Tet3 knockout mice. We have found that Tet3 is mostly expressed in differentiated enterocytes. In the absence of TET3, enterocytes exhibit an aberrant differentiation trajectory and do not acquire a physiological cell identity due to an impairment in oxidative phosphorylation, specifically due to an ATP synthase assembly deficiency. Moreover, spatial metabolomics analysis has revealed that Tet3 knockout enterocytes exhibit an unphysiological metabolic profile when compared with their wild-type counterparts. In contrast, no metabolic differences have been observed between both genotypes in the stem cell compartment where Tet3 is mainly not expressed. Collectively, our findings suggest a mechanism by which TET3 regulates mitochondrial function and, thus, terminal cell differentiation at the metabolic level.
Collapse
Affiliation(s)
- Isabel Mulet
- Stem Cell Molecular Genetics Unit, Institute of Biomedicine of Valencia, Spanish National Research Council, Valencia, Spain
| | - Carmen Grueso-Cortina
- Stem Cell Molecular Genetics Unit, Institute of Biomedicine of Valencia, Spanish National Research Council, Valencia, Spain
| | - Mireia Cortés-Cano
- Stem Cell Molecular Genetics Unit, Institute of Biomedicine of Valencia, Spanish National Research Council, Valencia, Spain
| | - Daniela Gerovska
- Group of Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, San Sebastián, Spain
| | - Guangming Wu
- Guangzhou National Laboratory, Guangzhou, China
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Stefania Alexandra Iakab
- Center for Mass Spectrometry and Optical Spectroscopy, Manheim University of Applied Sciences, Mannheim, Germany
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics, University of Salamanca, Spanish National Research Council, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Center of Biomedical Networking Research for Frailty and Healthy Ageing, Madrid, Spain
| | - Andrea Curtabbi
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pablo Hernansanz-Agustín
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Harmony Ketchum
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Resarch, Albert Einstein College of Medicine, New York, USA
- Department of Genetics, Albert Einstein College of Medicine, New York, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, New York, USA
| | - Israel Manjarrés-Raza
- Institute of Functional Biology and Genomics, University of Salamanca, Spanish National Research Council, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Center of Biomedical Networking Research for Frailty and Healthy Ageing, Madrid, Spain
| | | | - Juan Pedro Bolaños
- Institute of Functional Biology and Genomics, University of Salamanca, Spanish National Research Council, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Center of Biomedical Networking Research for Frailty and Healthy Ageing, Madrid, Spain
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Resarch, Albert Einstein College of Medicine, New York, USA
- Department of Genetics, Albert Einstein College of Medicine, New York, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, New York, USA
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy, Manheim University of Applied Sciences, Mannheim, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - José Antonio Enríquez
- Center of Biomedical Networking Research for Frailty and Healthy Ageing, Madrid, Spain
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Leioa, Spain
| | - Natalia Tapia
- Stem Cell Molecular Genetics Unit, Institute of Biomedicine of Valencia, Spanish National Research Council, Valencia, Spain.
| |
Collapse
|
16
|
Yang Z, Wang J, Zhao T, Wang L, Liang T, Zheng Y. Mitochondrial structure and function: A new direction for the targeted treatment of chronic liver disease with Chinese herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118461. [PMID: 38908494 DOI: 10.1016/j.jep.2024.118461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Excessive fat accumulation, biological clock dysregulation, viral infections, and sustained inflammatory responses can lead to liver inflammation, fibrosis, and cancer, thus promoting the development of chronic liver disease. A comprehensive understanding of the etiological factors leading to chronic liver disease and the intrinsic mechanisms influencing its onset and progression can aid in identifying potential targets for targeted therapy. Mitochondria, as key organelles that maintain the metabolic homeostasis of the liver, provide an important foundation for exploring therapeutic targets for chronic liver disease. Recent studies have shown that active ingredients in herbal medicines and their natural products can modulate chronic liver disease by influencing the structure and function of mitochondria. Therefore, studying how Chinese herbs target mitochondrial structure and function to treat chronic liver diseases is of great significance. AIM OF THE STUDY Investigating the prospects of herbal medicine the Lens of chronic liver disease based on mitochondrial structure and function. MATERIALS AND METHODS A computerized search of PubMed was conducted using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "botanicals, mitochondria and chronic liver disease".Data from the Web of Science and Science Direct databases were also included. The research findings regarding herbal medicines targeting mitochondrial structure and function for the treatment of chronic liver disease are summarized. RESULTS A computerized search of PubMed using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "phytopharmaceuticals, mitochondria, and chronic liver disease", as well as the Web of Science and Science Direct databases was conducted to summarize information on studies of mitochondrial structure- and function-based Chinese herbal medicines for the treatment of chronic liver disease and to suggest that the effects of herbal medicines on mitochondrial division and fusion.The study suggested that there is much room for research on the influence of Chinese herbs on mitochondrial division and fusion. CONCLUSIONS Targeting mitochondrial structure and function is crucial for herbal medicine to combat chronic liver disease.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tiejian Zhao
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Lei Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| | - Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| |
Collapse
|
17
|
Kachler K, Andreev D, Thapa S, Royzman D, Gießl A, Karuppusamy S, Llerins Perez M, Liu M, Hofmann J, Gessner A, Meng X, Rauber S, Steinkasserer A, Fromm M, Schett G, Bozec A. Acod1-mediated inhibition of aerobic glycolysis suppresses osteoclast differentiation and attenuates bone erosion in arthritis. Ann Rheum Dis 2024; 83:1691-1706. [PMID: 38964754 PMCID: PMC11671873 DOI: 10.1136/ard-2023-224774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVES Metabolic changes are crucially involved in osteoclast development and may contribute to bone degradation in rheumatoid arthritis (RA). The enzyme aconitate decarboxylase 1 (Acod1) is known to link the cellular function of monocyte-derived macrophages to their metabolic status. As osteoclasts derive from the monocyte lineage, we hypothesised a role for Acod1 and its metabolite itaconate in osteoclast differentiation and arthritis-associated bone loss. METHODS Itaconate levels were measured in human peripheral blood mononuclear cells (PBMCs) of patients with RA and healthy controls by mass spectrometry. Human and murine osteoclasts were treated with the itaconate derivative 4-octyl-itaconate (4-OI) in vitro. We examined the impact of Acod1-deficiency and 4-OI treatment on bone erosion in mice using K/BxN serum-induced arthritis and human TNF transgenic (hTNFtg) mice. SCENITH and extracellular flux analyses were used to evaluate the metabolic activity of osteoclasts and osteoclast progenitors. Acod1-dependent and itaconate-dependent changes in the osteoclast transcriptome were identified by RNA sequencing. CRISPR/Cas9 gene editing was used to investigate the role of hypoxia-inducible factor (Hif)-1α in Acod1-mediated regulation of osteoclast development. RESULTS Itaconate levels in PBMCs from patients with RA were inversely correlated with disease activity. Acod1-deficient mice exhibited increased osteoclast numbers and bone erosion in experimental arthritis while 4-OI treatment alleviated inflammatory bone loss in vivo and inhibited human and murine osteoclast differentiation in vitro. Mechanistically, Acod1 suppressed osteoclast differentiation by inhibiting succinate dehydrogenase-dependent production of reactive oxygen species and Hif1α-mediated induction of aerobic glycolysis. CONCLUSION Acod1 and itaconate are crucial regulators of osteoclast differentiation and bone loss in inflammatory arthritis.
Collapse
Affiliation(s)
- Katerina Kachler
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Darja Andreev
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Shreeya Thapa
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Gießl
- Department of Ophthalmology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Shobika Karuppusamy
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mireia Llerins Perez
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mengdan Liu
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Rheumatology, Zhejiang University – School of Medicine, Hangzhou, People's Republic of China
| | - Jörg Hofmann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Xianyi Meng
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Rauber
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
18
|
González-Blanco C, Lockwood ÁC, Jiménez B, Iglesias-Fortes S, Marqués P, García G, García-Aguilar A, Benito M, Guillén C. Resveratrol protects pancreatic beta cell and hippocampal cells from the aggregate-prone capacity of hIAPP. Sci Rep 2024; 14:27523. [PMID: 39528771 PMCID: PMC11555266 DOI: 10.1038/s41598-024-78967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Type 2 diabetes mellitus and Alzheimer's disease, are two closely related pathological situations that are connected at the molecular level. In recent years, amylin, which is co-secreted with insulin, has been proposed for being a main actor in this context due to its capacity to form aggregates in a β-sheet-like structure. In a diabetic milieu, there is an increase in the production and secretion of insulin and amylin. We have analysed the role of resveratrol on aggregate formation and in the production of extracellular vesicles with amylin in its interior and in pancreatic β cells overexpressing human amylin (INS1E-hIAPP). Furthermore, we have explored the consequences of the exposition of the conditioned medium derived from INS1E-hIAPP in the hippocampal cell line HT-22 and the role of resveratrol in this cell line. Hippocampal cells were exposed to conditioned media obtained from rat insulinoma 1E overexpressing human amylin in the presence or in the absence of resveratrol. When we exposed HT-22 cells to the conditioned media of INS1E-hIAPP we observed amylin-aggregates inside HT-22 cells. Resveratrol was able to alleviate this effect not only in HT-22 but also in pancreatic β cells. Furthermore, resveratrol decreased the average exosome size produced by the INS1E-hIAPP stimulated with high glucose, diminishing the toxic effect of these exosomes in HT-22 cells. We have uncovered that resveratrol inhibits the aggregation capacity of amylin and it can diminish the deleterious spreading of the toxic protein, to other cell types such as the hippocampal neuron cells, HT-22.
Collapse
Affiliation(s)
- Carlos González-Blanco
- CIBER of Diabetes and Related Metabolic Disorders, Instituto de Salud Carlos III, 28040, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain
| | - Ángela Cristina Lockwood
- CIBER of Diabetes and Related Metabolic Disorders, Instituto de Salud Carlos III, 28040, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain
| | - Beatriz Jiménez
- CIBER of Diabetes and Related Metabolic Disorders, Instituto de Salud Carlos III, 28040, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain
| | - Sarai Iglesias-Fortes
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain
| | - Patricia Marqués
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain
| | - Gema García
- CIBER of Diabetes and Related Metabolic Disorders, Instituto de Salud Carlos III, 28040, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
| | - Ana García-Aguilar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Manuel Benito
- CIBER of Diabetes and Related Metabolic Disorders, Instituto de Salud Carlos III, 28040, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain
| | - Carlos Guillén
- CIBER of Diabetes and Related Metabolic Disorders, Instituto de Salud Carlos III, 28040, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain.
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain.
| |
Collapse
|
19
|
Minarrieta L, Annis MG, Audet-Delage Y, Kuasne H, Pacis A, St-Louis C, Nowakowski A, Biondini M, Khacho M, Park M, Siegel PM, St-Pierre J. Mitochondrial elongation impairs breast cancer metastasis. SCIENCE ADVANCES 2024; 10:eadm8212. [PMID: 39504368 PMCID: PMC11540020 DOI: 10.1126/sciadv.adm8212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
Mitochondrial dynamics orchestrate many essential cellular functions, including metabolism, which is instrumental in promoting cancer growth and metastatic progression. However, how mitochondrial dynamics influences metastatic progression remains poorly understood. Here, we show that breast cancer cells with low metastatic potential exhibit a more fused mitochondrial network compared to highly metastatic cells. To study the impact of mitochondrial dynamics on metastasis, we promoted mitochondrial elongation in metastatic breast cancer cells by individual genetic deletion of three key regulators of mitochondrial fission (Drp1, Fis1, Mff) or by pharmacological intervention with leflunomide. Omics analyses revealed that mitochondrial elongation causes substantial alterations in metabolic pathways and processes related to cell adhesion. In vivo, enhanced mitochondrial elongation by loss of mitochondrial fission mediators or treatment with leflunomide notably reduced metastasis formation. Furthermore, the transcriptomic signature associated with elongated mitochondria correlated with improved clinical outcome in patients with breast cancer. Overall, our findings highlight mitochondrial dynamics as a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Lucía Minarrieta
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew G. Annis
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Yannick Audet-Delage
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hellen Kuasne
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Alain Pacis
- McGill Genome Centre, Montréal, QC, Canada
- Canadian Centre for Computational Genomics (C3G), McGill University, Montréal, QC, Canada
| | - Catherine St-Louis
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alexander Nowakowski
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Marco Biondini
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Mireille Khacho
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Morag Park
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
| | - Peter M. Siegel
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Julie St-Pierre
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
20
|
Wang M, Min M, Duan H, Mai J, Liu X. The role of macrophage and adipocyte mitochondrial dysfunction in the pathogenesis of obesity. Front Immunol 2024; 15:1481312. [PMID: 39582861 PMCID: PMC11581950 DOI: 10.3389/fimmu.2024.1481312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Obesity has emerged as a prominent global public health concern, leading to the development of numerous metabolic disorders such as cardiovascular diseases, type-2 diabetes mellitus (T2DM), sleep apnea and several system diseases. It is widely recognized that obesity is characterized by a state of inflammation, with immune cells-particularly macrophages-playing a significant role in its pathogenesis through the production of inflammatory cytokines and activation of corresponding pathways. In addition to their immune functions, macrophages have also been implicated in lipogenesis. Additionally, the mitochondrial disorders existed in macrophages commonly, leading to decreased heat production. Meantime, adipocytes have mitochondrial dysfunction and damage which affect thermogenesis and insulin resistance. Therefore, enhancing our comprehension of the role of macrophages and mitochondrial dysfunction in both macrophages and adipose tissue will facilitate the identification of potential therapeutic targets for addressing this condition.
Collapse
Affiliation(s)
- Min Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Min Min
- Outpatient Department, The Air Force Hospital of Western Theater, PLA, Chengdu, Sichuan, China
| | - Haojie Duan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Chen L, Hao J, Zhang J, Wu J, Ren Z. Rosiglitazone-induced white adipocyte browning is regulated by actin and Myh9. Life Sci 2024; 359:123217. [PMID: 39510170 DOI: 10.1016/j.lfs.2024.123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/22/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
AIMS This study investigates the role of actin polymerization and Myh9 in mediating lipid droplet (LD) fission during rosiglitazone-induced browning of white adipocytes. The aim is to understand how LD splitting might contribute to the beige conversion of white adipose tissue, providing insights into adipocyte plasticity and metabolic regulation. MATERIALS AND METHODS C3H10 T1/2-differentiated adipocytes were used as a classical model to study white adipocyte browning. Rosiglitazone was applied to induce browning, and the interactions between LDs and actin, as well as the distribution of Myh9, were assessed using immunofluorescence and Western blotting. In vivo, we employed a microfilament inhibitor to block actin polymerization in cold-stimulated mice and evaluated changes in LD morphology and browning. Furthermore, dynamic live-cell imaging using confocal microscopy was conducted to observe the real-time behavior of LDs during the browning process and to determine whether they undergo fission. MAIN FINDINGS Our results demonstrate that rosiglitazone significantly induces LD size reduction, a process correlated with the increased contact of LDs with microfilaments. Inhibition of actin polymerization prevented both the reduction in LD size and the browning of white adipocytes, indicating that actin plays a critical role. Myh9 was enriched at the LD fission sites, forming a structure resembling a contractile ring. Overexpression of Myh9 promoted the shrinkage of LD, suggesting that it may be involved in LD fission. SIGNIFICANCE This study identifies actin and Myh9 as key regulators of LD fission in rosiglitazone-induced browning of white adipocytes, offering new insights into the cellular mechanisms of adipocyte plasticity. The findings propose a novel pathway by which LD dynamics contribute to the beige conversion of white fat, with potential implications for metabolic disease therapies targeting adipocyte function and energy expenditure.
Collapse
Affiliation(s)
- Lupeng Chen
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jingjie Hao
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junzhi Zhang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
22
|
Lin J, Li X, Lu K, Song K, Wang L, Dai W, Mohamed M, Zhang C. Low Phosphorus Causes Hepatic Energy Metabolism Disorder Through Dynamin-Related Protein 1-Mediated Mitochondrial Fission in Fish. J Nutr 2024:S0022-3166(24)01121-0. [PMID: 39491675 DOI: 10.1016/j.tjnut.2024.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Low phosphorus (LP) diets perturb hepatic energy metabolism homeostasis in fish. However, the specific mechanisms in LP-induced hepatic energy metabolism disorders remain to be fully elucidated. OBJECTIVES This study sought to elucidate the underlying mechanisms of mitochondria involved in LP-induced energy metabolism disorders. METHODS Spotted seabass were fed diets with 0.72% (S-AP, control) or 0.36% (S-LP) available phosphorus for 10 wk. Drp1 was knocked down or protein kinase (PK) A was activated using 8Br-cAMP (5 μM, a PKA activator) in spotted seabass hepatocytes under LP medium. Zebrafish were fed Z-LP diets (0.30% available phosphorus) containing Mdivi-1 (5 mg/kg, a Drp1 inhibitor) or 8Br-cAMP (0.5 mg/kg) for 6 wk. Biochemical and molecular parameters, along with transmission electron microscopy and immunofluorescence, were used to assess hepatic glycolipid metabolism, mitochondrial function, and morphology. RESULTS Spotted seabass fed S-LP diets showed reduced ATP (52%) and cAMP (52%) concentrations, along with reduced Drp1 (s582) (38%) and PKA (61%) phosphorylation concentrations in the liver compared with those fed S-AP diets (P < 0.05). Drp1 knockdown elevated ATP concentrations (1.99-fold), decreased mitochondrial DRP1 protein amounts (45%), and increased mitochondrial aspect ratio (1.82-fold) in LP-treated hepatocytes (P < 0.05). Furthermore, 8Br-cAMP-treated hepatocytes exhibited higher PKA phosphorylation (2.85-fold), ATP concentrations (1.60-fold), and mitochondrial aspect ratio (2.00-fold), along with decreased mitochondrial DRP1 protein concentrations (29%) under LP medium (P < 0.05). However, mutating s582 to alanine mimic Drp1 dephosphorylation decreased ATP concentrations (63%) and mitochondrial aspect ratio (53%) in 8Br-cAMP-treated hepatocytes (P < 0.05). In addition, zebrafish fed Z-LP diets containing Mdivi-1 or 8Br-cAMP had higher ATP concentrations (3.44-fold or 1.98-fold) than those fed Z-LP diets (P < 0.05). CONCLUSIONS These findings provide a potential mechanistic elucidation for LP-induced energy metabolism disorders through the cAMP/PKA/Drp1-mediated mitochondrial fission signaling pathway.
Collapse
Affiliation(s)
- Jibin Lin
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Xueshan Li
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Kangle Lu
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Kai Song
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Ling Wang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Weiwei Dai
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, PR China
| | - Mohsen Mohamed
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Chunxiao Zhang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China.
| |
Collapse
|
23
|
Nevoit G, Jarusevicius G, Potyazhenko M, Mintser O, Bumblyte IA, Vainoras A. Mitochondrial Dysfunction and Risk Factors for Noncommunicable Diseases: From Basic Concepts to Future Prospective. Diseases 2024; 12:277. [PMID: 39589951 PMCID: PMC11592525 DOI: 10.3390/diseases12110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Noncommunicable diseases (NCDs) are a very important medical problem. The key role of mitochondrial dysfunction (MD) in the occurrence and progression of NCDs has been proven. However, the etiology and pathogenesis of MD itself in many NCDs has not yet been clarified, which makes it one of the most serious medical problems in the modern world, according to many scientists. METHODS An extensive research in the literature was implemented in order to elucidate the role of MD and NCDs' risk factors in the pathogenesis of NCDs. RESULTS The authors propose to take a broader look at the problem of the pathogenesis of NCDs. It is important to understand exactly how NCD risk factors lead to MD. The review is structured in such a way as to answer this question. Based on a systematic analysis of scientific data, a theoretical concept of modern views on the occurrence of MD under the influence of risk factors for the occurrence of NCDs is presented. This was done in order to update MD issues in clinical medicine. MD and NCDs progress throughout a patient's life. Based on this, the review raised the question of the existence of an NCDs continuum. CONCLUSIONS MD is a universal mechanism that causes organ dysfunction and comorbidity of NCDs. Prevention of MD involves diagnosing and eliminating the factors that cause it. Mitochondria are an important therapeutic target.
Collapse
Affiliation(s)
- Ganna Nevoit
- Laboratory of Population Studies, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Gediminas Jarusevicius
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Maksim Potyazhenko
- Department of Internal Medicine and Emergency Medicine, Poltava State Medical University, 36011 Poltava, Ukraine;
| | - Ozar Mintser
- Department of Fundamental Disciplines and Informatics, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine;
| | - Inga Arune Bumblyte
- Department of Nephrology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Alfonsas Vainoras
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| |
Collapse
|
24
|
Neira G, Hernández-Pardos AW, Becerril S, Ramírez B, Valentí V, Moncada R, Catalán V, Gómez-Ambrosi J, Burrell MA, Silva C, Escalada J, Frühbeck G, Rodríguez A. Differential mitochondrial adaptation and FNDC5 production in brown and white adipose tissue in response to cold and obesity. Obesity (Silver Spring) 2024; 32:2120-2134. [PMID: 39327772 DOI: 10.1002/oby.24132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVE Fibronectin type III domain-containing protein 5 (FNDC5) modulates adipocyte metabolism by increasing white and brown adipose tissue (WAT and BAT) browning and activity, respectively. We investigated whether FNDC5 can regulate visceral WAT and BAT adaptive thermogenesis by improving mitochondrial homeostasis in response to cold and obesity. METHODS Adipose tissue expression of FNDC5 and factors involved in mitochondrial homeostasis were determined in patients with normal weight and obesity (n = 159) and in rats with diet-induced obesity after 1 week of cold exposure (n = 61). The effect of different FNDC5 concentrations on mitochondrial biogenesis, dynamics, and mitophagy was evaluated in vitro in human adipocytes. RESULTS In human visceral adipocytes, FNDC5/irisin triggered mitochondrial biogenesis (TFAM) and fusion (MFN1, MFN2, and OPA1) while inhibiting peripheral fission (DNM1L and FIS1) and mitophagy (PINK1 and PRKN). Circulating and visceral WAT expression of FNDC5 was decreased in patients and experimental animals with obesity, whereas its receptor, integrin αV, was upregulated. Obesity increased mitochondrial fusion while decreasing mitophagy in visceral WAT from patients and rats. By contrast, in rat BAT, an upregulation of Fndc5 and genes involved in mitochondrial biogenesis and fission was observed. Cold exposure promoted mitochondrial biogenesis and healthy peripheral fission while repressing Fndc5 expression and mitophagy in BAT from rats. CONCLUSIONS Depot differences in FNDC5 production and mitochondrial adaptations in response to obesity and cold might indicate a self-regulatory mechanism to control thermogenesis in response to energy needs.
Collapse
Affiliation(s)
- Gabriela Neira
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Víctor Valentí
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - María A Burrell
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Camilo Silva
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Escalada
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
25
|
Valera-Alberni M, Yao P, Romero-Sanz S, Lanjuin A, Mair WB. Novel imaging tools to study mitochondrial morphology in Caenorhabditis elegans. Life Sci Alliance 2024; 7:e202402918. [PMID: 39260886 PMCID: PMC11391045 DOI: 10.26508/lsa.202402918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Mitochondria exhibit a close interplay between their structure and function. Understanding this intricate relationship requires advanced imaging techniques that can capture the dynamic nature of mitochondria and their impact on cellular processes. However, much of the work on mitochondrial dynamics has been performed in single celled organisms or in vitro cell culture. Here, we introduce novel genetic tools for live imaging of mitochondrial morphology in the nematode Caenorhabditis elegans, addressing a pressing need for advanced techniques in studying organelle dynamics within live intact multicellular organisms. Through a comprehensive analysis, we directly compare our tools with existing methods, demonstrating their advantages for visualizing mitochondrial morphology and contrasting their impact on organismal physiology. We reveal limitations of conventional techniques, whereas showcasing the utility and versatility of our approaches, including endogenous CRISPR tags and ectopic labeling. By providing a guide for selecting the most suitable tools based on experimental goals, our work advances mitochondrial research in C. elegans and enhances the strategic integration of diverse imaging modalities for a holistic understanding of organelle dynamics in living organisms.
Collapse
Affiliation(s)
- Miriam Valera-Alberni
- Department of Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Pallas Yao
- Department of Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Silvia Romero-Sanz
- Department of Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Anne Lanjuin
- Department of Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
26
|
Jiménez-Sánchez C, Oberhauser L, Maechler P. Role of fatty acids in the pathogenesis of ß-cell failure and Type-2 diabetes. Atherosclerosis 2024; 398:118623. [PMID: 39389828 DOI: 10.1016/j.atherosclerosis.2024.118623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Pancreatic ß-cells are glucose sensors in charge of regulated insulin delivery to the organism, achieving glucose homeostasis and overall energy storage. The latter function promotes obesity when nutrient intake chronically exceeds daily expenditure. In case of ß-cell failure, such weight gain may pave the way for the development of Type-2 diabetes. However, the causal link between excessive body fat mass and potential degradation of ß-cells remains largely unknown and debated. Over the last decades, intensive research has been conducted on the role of lipids in the pathogenesis of ß-cells, also referred to as lipotoxicity. Among various lipid species, the usual suspects are essentially the non-esterified fatty acids (NEFA), in particular the saturated ones such as palmitate. This review describes the fundamentals and the latest advances of research on the role of fatty acids in ß-cells. This includes intracellular pathways and receptor-mediated signaling, both participating in regulated glucose-stimulated insulin secretion as well as being implicated in ß-cell dysfunction. The discussion extends to the contribution of high glucose exposure, or glucotoxicity, to ß-cell defects. Combining glucotoxicity and lipotoxicity results in the synergistic and more deleterious glucolipotoxicity effect. In recent years, alternative roles for intracellular lipids have been uncovered, pointing to a protective function in case of nutrient overload. This requires dynamic storage of NEFA as neutral lipid droplets within the ß-cell, along with active glycerolipid/NEFA cycle allowing subsequent recruitment of lipid species supporting glucose-stimulated insulin secretion. Overall, the latest studies have revealed the two faces of the same coin.
Collapse
Affiliation(s)
- Cecilia Jiménez-Sánchez
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Lucie Oberhauser
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.
| |
Collapse
|
27
|
Díaz-Sáez F, Balcells C, Rosselló L, López-Soldado I, Romero M, Sebastián D, López-Soriano FJ, Busquets S, Cascante M, Ricart W, Fernández-Real JM, Moreno-Navarrete JM, Aragonés J, Testar X, Camps M, Zorzano A, Gumà A. Neuregulin 4 Downregulation Alters Mitochondrial Morphology and Induces Oxidative Stress in 3T3-L1 Adipocytes. Int J Mol Sci 2024; 25:11718. [PMID: 39519269 PMCID: PMC11546241 DOI: 10.3390/ijms252111718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Neuregulin 4 (Nrg4) is an adipokine that belongs to the epidermal growth factor family and binds to ErbB4 tyrosine kinase receptors. In 3T3-L1 adipocytes, the downregulation of Nrg4 expression enhances inflammation and autophagy, resulting in insulin resistance. Here, we searched for the causes of this phenotype. Nrg4 knockdown (Nrg4 KD) adipocytes showed a significant reduction in mitochondrial content and elongation, along with a lower content of the mitochondria fusion protein mitofusin 2 (MFN2), and increased H2O2 production compared to the control scrambled cells (Scr). The antioxidant N-acetylcysteine reversed the oxidative stress and reduced the gene expression of the pro-inflammatory cytokine tumor necrosis factor α (TNFα). Nrg4 KD adipocytes showed enhanced lipolysis and reduced lipogenesis, in addition to a significant reduction in several intermediates of the Krebs cycle. In summary, Nrg4 downregulation in adipocytes affects mitochondrial content and functioning, causing impaired cellular metabolism, which in turn results in oxidative stress, inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Francisco Díaz-Sáez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Cristina Balcells
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
| | - Laura Rosselló
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
| | - Iliana López-Soldado
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Montserrat Romero
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - David Sebastián
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Francisco Javier López-Soriano
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Sílvia Busquets
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Marta Cascante
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Wifredo Ricart
- Department of Medical Sciences, University of Girona, Carrer Emili Grahit, 77, 17003 Girona, Spain; (W.R.); (J.M.F.-R.); (J.M.M.-N.)
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute (IDIBGI), Carrer del Dr. Castany, s/n, 17190 Salt, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Medical Sciences, University of Girona, Carrer Emili Grahit, 77, 17003 Girona, Spain; (W.R.); (J.M.F.-R.); (J.M.M.-N.)
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute (IDIBGI), Carrer del Dr. Castany, s/n, 17190 Salt, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José María Moreno-Navarrete
- Department of Medical Sciences, University of Girona, Carrer Emili Grahit, 77, 17003 Girona, Spain; (W.R.); (J.M.F.-R.); (J.M.M.-N.)
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute (IDIBGI), Carrer del Dr. Castany, s/n, 17190 Salt, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Julián Aragonés
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa, University Hospital of la Princesa, Autonomous University of Madrid, c/Maestro Vives, 2, 28009 Madrid, Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Xavier Testar
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Marta Camps
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Antonio Zorzano
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Anna Gumà
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
28
|
Pietramale AN, Bame X, Doty ME, Hill RA. Mitochondria are absent from microglial processes performing surveillance, chemotaxis, and phagocytic engulfment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618505. [PMID: 39463986 PMCID: PMC11507814 DOI: 10.1101/2024.10.15.618505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Microglia continually surveil the brain allowing for rapid detection of tissue damage or infection. Microglial metabolism is linked to tissue homeostasis, yet how mitochondria are subcellularly partitioned in microglia and dynamically reorganize during surveillance, injury responses, and phagocytic engulfment in the intact brain are not known. Here, we performed intravital imaging of microglia mitochondria, revealing that microglial processes diverge, with some containing multiple mitochondria while others are completely void. Microglial processes that engage in minute-to-minute surveillance typically do not have mitochondria. Moreover, unlike process surveillance, mitochondrial motility does not change with animal anesthesia. Likewise, the processes that acutely chemoattract to a lesion site or initially engage with a neuron undergoing programmed cell death do not contain mitochondria. Rather, microglia mitochondria have a delayed arrival into the responding cell processes. Thus, there is subcellular heterogeneity of mitochondrial partitioning and asymmetry between mitochondrial localization and cell process motility or acute damage responses.
Collapse
Affiliation(s)
| | - Xhoela Bame
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| | - Megan E. Doty
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| | - Robert A. Hill
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| |
Collapse
|
29
|
Verhoeven N, Oshima Y, Cartier E, Bippes CC, Neutzner A, Boyman L, Karbowski M. Outer mitochondrial membrane E3 Ub ligase MARCH5 controls de novo peroxisome biogenesis. Dev Cell 2024:S1534-5807(24)00538-0. [PMID: 39423819 DOI: 10.1016/j.devcel.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/03/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
We report that the outer mitochondrial membrane (OMM)-associated E3 Ub ligase MARCH5 is vital for generating mitochondria-derived pre-peroxisomes. In human immortalized cells, MARCH5 knockout leads to the accumulation of immature peroxisomes, reduced fatty-acid-induced peroxisomal biogenesis, and abnormal peroxisome biogenesis in MARCH5/Pex14 and MARCH5/Pex3 dko cells. Upon fatty-acid-induced peroxisomal biogenesis, MARCH5 redistributes to peroxisomes, and ubiquitination activity-deficient mutants of MARCH5 accumulate on peroxisomes containing high levels of the OMM protein Tom20 (mitochondria-derived pre-peroxisomes). Similarly, depletion of peroxisome biogenesis factor Pex14 leads to the accumulation of MARCH5- and Tom20-positive pre-peroxisomes, whereas no peroxisomes are detected in MARCH5/Pex14 dko cells. Inconsistent with MARCH5 merely acting as a quality factor, mitochondrial decline is not evident in tested models. Furthermore, reduced expression of peroxisomal proteins is detected in MARCH5-/- cells, whereas some of these proteins are stabilized in peroxisome biogenesis deficiency models lacking MARCH5 expression. Thus, MARCH5 is central for mitochondria-dependent peroxisome biogenesis.
Collapse
Affiliation(s)
- Nicolas Verhoeven
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Yumiko Oshima
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Etienne Cartier
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Albert Neutzner
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
30
|
Murata D, Roy S, Lutsenko S, Iijima M, Sesaki H. Slc25a3-dependent copper transport controls flickering-induced Opa1 processing for mitochondrial safeguard. Dev Cell 2024; 59:2578-2592.e7. [PMID: 38986607 PMCID: PMC11461135 DOI: 10.1016/j.devcel.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Following the Goldilocks principle, mitochondria size must be "just right." Mitochondria balance division and fusion to avoid becoming too big or too small. Defects in this balance produce dysfunctional mitochondria in human diseases. Mitochondrial safeguard (MitoSafe) is a defense mechanism that protects mitochondria against extreme enlarging by suppressing fusion in mammalian cells. In MitoSafe, hyperfused mitochondria elicit flickering-short pulses of mitochondrial depolarization. Flickering activates an inner membrane protease, Oma1, which in turn proteolytically inactivates a mitochondrial fusion protein, Opa1. The mechanisms underlying flickering are unknown. Using a live-imaging screen, we identified Slc25a3 (a mitochondrial carrier transporting phosphate and copper) as necessary for flickering and Opa1 cleavage. Remarkably, copper, but not phosphate, is critical for flickering. Furthermore, we found that two copper-containing mitochondrial enzymes, superoxide dismutase 1 and cytochrome c oxidase, regulate flickering. Our data identify an unforeseen mechanism linking copper, redox homeostasis, and membrane flickering in mitochondrial defense against deleterious fusion.
Collapse
Affiliation(s)
- Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
31
|
Tseng WW, Chu CH, Lee YJ, Zhao S, Chang C, Ho YP, Wei AC. Metabolic regulation of mitochondrial morphologies in pancreatic beta cells: coupling of bioenergetics and mitochondrial dynamics. Commun Biol 2024; 7:1267. [PMID: 39369076 PMCID: PMC11455970 DOI: 10.1038/s42003-024-06955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
Cellular bioenergetics and mitochondrial dynamics are crucial for the secretion of insulin by pancreatic beta cells in response to elevated levels of blood glucose. To elucidate the interactions between energy production and mitochondrial fission/fusion dynamics, we combine live-cell mitochondria imaging with biophysical-based modeling and graph-based network analysis. The aim is to determine the mechanism that regulates mitochondrial morphology and balances metabolic demands in pancreatic beta cells. A minimalistic differential equation-based model for beta cells is constructed that includes glycolysis, oxidative phosphorylation, calcium dynamics, and fission/fusion dynamics, with ATP synthase flux and proton leak flux as main regulators of mitochondrial dynamics. The model shows that mitochondrial fission occurs in response to hyperglycemia, starvation, ATP synthase inhibition, uncoupling, and diabetic conditions, in which the rate of proton leakage exceeds the rate of mitochondrial ATP synthesis. Under these metabolic challenges, the propensities of tip-to-tip fusion events simulated from the microscopy images of the mitochondrial networks are lower than those in the control group and prevent the formation of mitochondrial networks. The study provides a quantitative framework that couples bioenergetic regulation with mitochondrial dynamics, offering insights into how mitochondria adapt to metabolic challenges.
Collapse
Affiliation(s)
- Wen-Wei Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsiang Chu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ju Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Shirui Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of the CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
| | - Chen Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of the CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
32
|
Wang Y, Yue F. FAM210A: An emerging regulator of mitochondrial homeostasis. Bioessays 2024; 46:e2400090. [PMID: 39159484 DOI: 10.1002/bies.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Mitochondrial homeostasis serves as a cornerstone of cellular function, orchestrating a delicate balance between energy production, redox status, and cellular signaling transduction. This equilibrium involves a myriad of interconnected processes, including mitochondrial dynamics, quality control mechanisms, and biogenesis and degradation. Perturbations in mitochondrial homeostasis have been implicated in a wide range of diseases, including neurodegenerative diseases, metabolic syndromes, and aging-related disorders. In the past decades, the discovery of numerous mitochondrial proteins and signaling has led to a more complete understanding of the intricate mechanisms underlying mitochondrial homeostasis. Recent studies have revealed that Family with sequence similarity 210 member A (FAM210A) is a novel nuclear-encoded mitochondrial protein involved in multiple aspects of mitochondrial homeostasis, including mitochondrial quality control, dynamics, cristae remodeling, metabolism, and proteostasis. Here, we review the function and physiological role of FAM210A in cellular and organismal health. This review discusses how FAM210A acts as a regulator on mitochondrial inner membrane to coordinate mitochondrial dynamics and metabolism.
Collapse
Affiliation(s)
- Yubo Wang
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Feng Yue
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
33
|
Kobayashi H, Imanaka S, Yoshimoto C, Matsubara S, Shigetomi H. Rethinking the pathogenesis of endometriosis: Complex interactions of genomic, epigenetic, and environmental factors. J Obstet Gynaecol Res 2024; 50:1771-1784. [PMID: 39293995 DOI: 10.1111/jog.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
AIM Endometriosis is a complex, multifactorial disease. Recent advances in molecular biology underscore that somatic mutations within the epithelial component of the normal endometrium, alongside aberrant epigenetic alterations within endometrial stromal cells, may serve as stimulators for the proliferation of endometriotic tissue within the peritoneal cavity. Nevertheless, pivotal inquiries persist: the deterministic factors driving endometriosis development in certain women while sparing others, notwithstanding comparable experiences of retrograde menstruation. Within this review, we endeavor to synopsize the current understanding of diverse pathophysiologic mechanisms underlying the initiation and progression of endometriosis and delineate avenues for future research. METHODS A literature search without time restriction was conducted utilizing PubMed and Google Scholar. RESULTS Given that aberrant clonal expansion stemming from cancer-associated mutations is common in normal endometrial tissue, only endometrial cells harboring mutations imparting proliferative advantages may be selected for survival outside the uterus. Endometriotic cells capable of engendering metabolic plasticity and modulating mitochondrial dynamics, thereby orchestrating responses to hypoxia, oxidative stress, inflammation, hormonal stimuli, and immune surveillance, and adeptly acclimating to their harsh surroundings, stand a chance at viability. CONCLUSION The genesis of endometriosis appears to reflect the evolutionary principles of mutation, selection, clonal expansion, and adaptation to the environment.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara, Japan
| |
Collapse
|
34
|
Javed Z, Shin DH, Pan W, White SR, Elhaw AT, Kim YS, Kamlapurkar S, Cheng YY, Benson JC, Abdelnaby AE, Phaëton R, Wang HG, Yang S, Sullivan MLG, St Croix CM, Watkins SC, Mullett SJ, Gelhaus SL, Lee N, Coffman LG, Aird KM, Trebak M, Mythreye K, Walter V, Hempel N. Drp1 splice variants regulate ovarian cancer mitochondrial dynamics and tumor progression. EMBO Rep 2024; 25:4281-4310. [PMID: 39191946 PMCID: PMC11467262 DOI: 10.1038/s44319-024-00232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Aberrant mitochondrial fission/fusion dynamics are frequently associated with pathologies, including cancer. We show that alternative splice variants of the fission protein Drp1 (DNM1L) contribute to the complexity of mitochondrial fission/fusion regulation in tumor cells. High tumor expression of the Drp1 alternative splice variant lacking exon 16 relative to other transcripts is associated with poor outcome in ovarian cancer patients. Lack of exon 16 results in Drp1 localization to microtubules and decreased association with mitochondrial fission sites, culminating in fused mitochondrial networks, enhanced respiration, changes in metabolism, and enhanced pro-tumorigenic phenotypes in vitro and in vivo. These effects are inhibited by siRNAs designed to specifically target the endogenously expressed transcript lacking exon 16. Moreover, lack of exon 16 abrogates mitochondrial fission in response to pro-apoptotic stimuli and leads to decreased sensitivity to chemotherapeutics. These data emphasize the pathophysiological importance of Drp1 alternative splicing, highlight the divergent functions and consequences of changing the relative expression of Drp1 splice variants in tumor cells, and strongly warrant consideration of alternative splicing in future studies focused on Drp1.
Collapse
Affiliation(s)
- Zaineb Javed
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Dong Hui Shin
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Weihua Pan
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sierra R White
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amal Taher Elhaw
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Yeon Soo Kim
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shriya Kamlapurkar
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ya-Yun Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rébécca Phaëton
- Department of Obstetrics & Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- GlaxoSmithKline, Collegeville, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Mara L G Sullivan
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Claudette M St Croix
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy L Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nam Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Lan G Coffman
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katherine M Aird
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Mohamed Trebak
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Karthikeyan Mythreye
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vonn Walter
- Department of Public Health Sciences, Division of Biostatistics and Bioinformatics and Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Nadine Hempel
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
35
|
Qu J, Tian L, Zhang M, Sun B, Chen L. SGLT2 inhibitor canagliflozin reduces visceral adipose tissue in db/db mice by modulating AMPK/KLF4 signaling and regulating mitochondrial dynamics to induce browning. Mol Cell Endocrinol 2024; 592:112320. [PMID: 38964727 DOI: 10.1016/j.mce.2024.112320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Obesity is characterized by excessive accumulation of adipose tissue (mainly visceral). The morphology and function of mitochondria are crucial for regulating adipose browning and weight loss. Research suggests that the SGLT2 inhibitor canagliflozin may induce weight loss through an unknown mechanism, particularly targeting visceral adipose tissue. While Krueppel-Like Factor 4 (KLF4) is known to be essential for energy metabolism and mitochondrial function, its specific impact on visceral adipose tissue remains unclear. We administered canagliflozin to db/db mice for 8 weeks, or exposed adipocytes to canagliflozin for 24 h. The expression levels of browning markers, mitochondrial dynamics, and KLF4 were assessed. Then we validated the function of KLF4 through overexpression in vivo and in vitro. Adenosine monophosphate-activated protein kinase (AMPK) agonists, inhibitors, and KLF4 si-RNA were employed to elucidate the relationship between AMPK and KLF4. The findings demonstrated that canagliflozin significantly decreased body weight in db/db mice and augmented cold-induced thermogenesis. Additionally, canagliflozin increased the expression of mitochondrial fusion-related factors while reducing the levels of fission markers in epididymal white adipose tissue. These consistent findings were mirrored in canagliflozin-treated adipocytes. Similarly, overexpression of KLF4 in both adipocytes and db/db mice yielded comparable results. In all, canagliflozin mitigates obesity in db/db mice by promoting the brown visceral adipocyte phenotype through enhanced mitochondrial fusion via AMPK/KLF4 signaling.
Collapse
Affiliation(s)
- Jingru Qu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People's Republic of China
| | - Lei Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People's Republic of China
| | - Man Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People's Republic of China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People's Republic of China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People's Republic of China.
| |
Collapse
|
36
|
Shaulson ED, Cohen AA, Picard M. The brain-body energy conservation model of aging. NATURE AGING 2024; 4:1354-1371. [PMID: 39379694 DOI: 10.1038/s43587-024-00716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
Aging involves seemingly paradoxical changes in energy metabolism. Molecular damage accumulation increases cellular energy expenditure, yet whole-body energy expenditure remains stable or decreases with age. We resolve this apparent contradiction by positioning the brain as the mediator and broker in the organismal energy economy. As somatic tissues accumulate damage over time, costly intracellular stress responses are activated, causing aging or senescent cells to secrete cytokines that convey increased cellular energy demand (hypermetabolism) to the brain. To conserve energy in the face of a shrinking energy budget, the brain deploys energy conservation responses, which suppress low-priority processes, producing fatigue, physical inactivity, blunted sensory capacities, immune alterations and endocrine 'deficits'. We term this cascade the brain-body energy conservation (BEC) model of aging. The BEC outlines (1) the energetic cost of cellular aging, (2) how brain perception of senescence-associated hypermetabolism may drive the phenotypic manifestations of aging and (3) energetic principles underlying the modifiability of aging trajectories by stressors and geroscience interventions.
Collapse
Affiliation(s)
- Evan D Shaulson
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Alan A Cohen
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
37
|
Bahety D, Böke E, Rodríguez-Nuevo A. Mitochondrial morphology, distribution and activity during oocyte development. Trends Endocrinol Metab 2024; 35:902-917. [PMID: 38599901 DOI: 10.1016/j.tem.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Mitochondria have a crucial role in cellular function and exhibit remarkable plasticity, adjusting both their structure and activity to meet the changing energy demands of a cell. Oocytes, female germ cells that become eggs, undergo unique transformations: the extended dormancy period, followed by substantial increase in cell size and subsequent maturation involving the segregation of genetic material for the next generation, present distinct metabolic challenges necessitating varied mitochondrial adaptations. Recent findings in dormant oocytes challenged the established respiratory complex hierarchies and underscored the extent of mitochondrial plasticity in long-lived oocytes. In this review, we discuss mitochondrial adaptations observed during oocyte development across three vertebrate species (Xenopus, mouse, and human), emphasising current knowledge, acknowledging limitations, and outlining future research directions.
Collapse
Affiliation(s)
- Devesh Bahety
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Aida Rodríguez-Nuevo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
38
|
Llanquinao J, Jara C, Cortés-Díaz D, Kerr B, Tapia-Rojas C. Contrasting Effects of an Atherogenic Diet and High-Protein/Unsaturated Fatty Acids Diet on the Accelerated Aging Mouse Model SAMP8 Phenotype. Neurol Int 2024; 16:1066-1085. [PMID: 39452682 PMCID: PMC11510401 DOI: 10.3390/neurolint16050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Aging has been extensively studied, with a growing interest in memory impairment by a neurobiological approach. Mitochondrial dysfunction is a hallmark of aging, contributing to the aging phenotype; therefore, mitochondrial interventions seem fundamental. The diet is a physiological approximation for modifying mitochondria, which could impact the age-related phenotype. Methods: We studied two diets with low-carbohydrate and high-fat compositions, differing in the amount of protein and the fat type disposable-the atherogenic diet Cocoa (high protein/high saturated fat/high cholesterol) and the South Beach diet (very high-protein/high-unsaturated fat)-on oxidative stress, mitochondrial state, and hippocampus-dependent memory in 3-month-old Senescence-Accelerated Mouse Model (SAMP8) seed over 3 months to determine their pro- or anti-aging effects. Results: Despite its bad reputation, the Cocoa diet reduces the reactive oxygen species (ROS) content without impacting the energy state and hippocampus-dependent spatial acuity. In contrast to the beneficial impact proposed for the South Beach diet, it induced a pro-aging phenotype, increasing oxidative damage and the levels of NR2B subunit of the NMDA, impairing energy and spatial acuity. Surprisingly, despite the negative changes observed with both diets, this led to subtle memory impairment, suggesting the activation of compensatory mechanisms preventing more severe cognitive decline. Conclusions: Our results demonstrated that diets usually considered good could be detrimental to the onset of aging. Also, probably due to the brain plasticity of non-aged animals, they compensate for the damage, preventing a more aggravated phenotype. Nevertheless, these silent changes could predispose or increase the risk of suffering pathologies at advanced age.
Collapse
Affiliation(s)
- Jesús Llanquinao
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile; (J.L.); (C.J.); (D.C.-D.)
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida (FCV), Avenida Del Valle Norte #725, Huechuraba, Santiago 8580702, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile; (J.L.); (C.J.); (D.C.-D.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida (FCV), Avenida Del Valle Norte #725, Huechuraba, Santiago 8580702, Chile
| | - Daniela Cortés-Díaz
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile; (J.L.); (C.J.); (D.C.-D.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida (FCV), Avenida Del Valle Norte #725, Huechuraba, Santiago 8580702, Chile
| | - Bredford Kerr
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile; (J.L.); (C.J.); (D.C.-D.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida (FCV), Avenida Del Valle Norte #725, Huechuraba, Santiago 8580702, Chile
| |
Collapse
|
39
|
Li J, Yang Z, Song H, Yang L, Na K, Mei Z, Zhang S, Liu J, Xu K, Yan C, Wang X. The role of mitofusin 2 in regulating endothelial cell senescence: Implications for vascular aging. iScience 2024; 27:110809. [PMID: 39290834 PMCID: PMC11406077 DOI: 10.1016/j.isci.2024.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/18/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Endothelial cell dysfunction contributes to age-related vascular diseases. Analyzing public databases and mouse tissues, we found decreased MFN2 expression in senescent endothelial cells and angiotensin II-treated mouse aortas. In human endothelial cells, Ang II reduced MFN2 expression while increasing senescence markers P21 and P53. siMFN2 treatment worsened Ang II-induced senescence, while MFN2 overexpression alleviated it. siMFN2 or Ang II treatment caused mitochondrial dysfunction and morphological abnormalities, including increased ROS production and reduced respiration, mitigated by ovMFN2 treatment. Further study revealed that BCL6, a negative regulator of MFN2, significantly contributes to Ang II-induced endothelial senescence. In vivo, Ang II infusion decreased MFN2 expression and increased BCL6, P21, and P53 expression in vascular endothelial cells. The shMfn2+Ang II group showed elevated senescence markers in vascular tissues. These findings highlight MFN2's regulatory role in endothelial cell senescence, emphasizing its importance in maintaining endothelial homeostasis and preventing age-related vascular diseases.
Collapse
Affiliation(s)
- Jiayin Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Zheming Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Lin Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Kun Na
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Zhu Mei
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Shuli Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Jing Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Kai Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Xiaozeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| |
Collapse
|
40
|
Cappelletti M, Pallotta L, Vona R, Tinari A, Pisano A, Casella G, Crocetti D, Carlomagno D, Tattoli I, Giordano C, Matarrese P, Severi C. The Unexplored Role of Mitochondria-Related Oxidative Stress in Diverticular Disease. Int J Mol Sci 2024; 25:9680. [PMID: 39273627 PMCID: PMC11395029 DOI: 10.3390/ijms25179680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
The pathophysiology of diverticular disease (DD) is not well outlined. Recent studies performed on the DD human ex vivo model have shown the presence of a predominant transmural oxidative imbalance whose origin remains unknown. Considering the central role of mitochondria in oxidative stress, the present study evaluates their involvement in the alterations of DD clinical phenotypes. Colonic surgical samples of patients with asymptomatic diverticulosis, complicated DD, and controls were analyzed. Electron microscopy, protein expression, and cytofluorimetric analyses were performed to assess the contribution of mitochondrial oxidative stress. Functional muscle activity was tested on cells in response to contractile and relaxant agents. To assess the possibility of reverting oxidative damages, N-acetylcysteine was tested on an in vitro model. Compared with the controls, DD tissues showed a marketed increase in mitochondrial number and fusion accompanied by the altered mitochondrial electron transport chain complexes. In SMCs, the mitochondrial mass increase was accompanied by altered mitochondrial metabolic activity supported by a membrane potential decrease. Ulteriorly, a decrease in antioxidant content and altered contraction-relaxation dynamics reverted by N-acetylcysteine were observed. Therefore, the oxidative stress-driven alterations resulted in mitochondrial impairment. The beneficial effects of antioxidant treatments open new possibilities for tailored therapeutic strategies that have not been tested for this disease.
Collapse
Affiliation(s)
- Martina Cappelletti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Lucia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Rosa Vona
- Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Antonella Tinari
- Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Annalinda Pisano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Giovanni Casella
- Department of Surgical Science, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Daniele Crocetti
- Department of Surgical Science, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Dominga Carlomagno
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Ivan Tattoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| |
Collapse
|
41
|
Deng Y, Dong Y, Zhang S, Feng Y. Targeting mitochondrial homeostasis in the treatment of non-alcoholic fatty liver disease: a review. Front Pharmacol 2024; 15:1463187. [PMID: 39290869 PMCID: PMC11405192 DOI: 10.3389/fphar.2024.1463187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and its prevalence is rapidly increasing. Antioxidants, lipid-lowering medications, and lifestyle interventions are the most commonly used treatment options for NAFLD, but their efficacy in inhibiting steatosis progression is limited and their long-term ineffectiveness and adverse effects have been widely reported. Therefore, it is important to gain a deeper understanding of the pathogenesis of NAFLD and to identify more effective therapeutic approaches. Mitochondrial homeostasis governs cellular redox biology, lipid metabolism, and cell death, all of which are crucial to control hepatic function. Recent findings have indicated that disruption of mitochondrial homeostasis occurs in the early stage of NAFLD and mitochondrial dysfunction reinforces disease progression. In this review, we summarize the physical roles of the mitochondria and describe their response and dysfunction in the context of NAFLD. We also discuss the drug targets associated with the mitochondria that are currently in the clinical trial phase of exploration. From our findings, we hope that the mitochondria may be a promising therapeutic target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yalan Deng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuan Dong
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Sitian Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yingmei Feng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
42
|
Li X, Pham K, Ysaguirre J, Mahmud I, Tan L, Wei B, Shao LJ, Elizondo M, Habib R, Elizondo F, Sesaki H, Lorenzi PL, Sun K. Mechanistic insights into metabolic function of dynamin-related protein 1. J Lipid Res 2024; 65:100633. [PMID: 39182608 PMCID: PMC11426057 DOI: 10.1016/j.jlr.2024.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Dynamin-related protein 1 (DRP1) plays crucial roles in mitochondrial and peroxisome fission. However, the mechanisms underlying the functional regulation of DRP1 in adipose tissue during obesity remain unclear. To elucidate the metabolic and pathological significance of diminished DRP1 in obese adipose tissue, we utilized adipose tissue-specific DRP1 KO mice challenged with a high-fat diet. We observed significant metabolic dysregulations in the KO mice. Mechanistically, DRP1 exerts multifaceted functions in mitochondrial dynamics and endoplasmic reticulum (ER)-lipid droplet crosstalk in normal mice. Loss of function of DRP1 resulted in abnormally giant mitochondrial shapes, distorted mitochondrial membrane structure, and disrupted cristae architecture. Meanwhile, DRP1 deficiency induced the retention of nascent lipid droplets in ER, leading to perturbed overall lipid dynamics in the KO mice. Collectively, dysregulation of the dynamics of mitochondria, ER, and lipid droplets contributes to whole-body metabolic disorders, as evidenced by perturbations in energy metabolites. Our findings demonstrate that DRP1 plays diverse and critical roles in regulating energy metabolism within adipose tissue during the progression of obesity.
Collapse
Affiliation(s)
- Xin Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Katherine Pham
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jazmin Ysaguirre
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bo Wei
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Long J Shao
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maryam Elizondo
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rabie Habib
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Fathima Elizondo
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA; Graduate Program in Biochemistry and Cellular Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
43
|
Song X, Fan C, Wei C, Yu W, Tang J, Ma F, Chen Y, Wu B. Mitochondria fission accentuates oxidative stress in hyperglycemia-induced H9c2 cardiomyoblasts in vitro by regulating fatty acid oxidation. Cell Biol Int 2024; 48:1378-1391. [PMID: 38922770 DOI: 10.1002/cbin.12204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/14/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Oxidative stress plays a pivotal role in the development of diabetic cardiomyopathy (DCM). Previous studies have revealed that inhibition of mitochondrial fission suppressed oxidative stress and alleviated mitochondrial dysfunction and cardiac dysfunction in diabetic mice. However, no research has confirmed whether mitochondria fission accentuates hyperglycemia-induced cardiomyoblast oxidative stress through regulating fatty acid oxidation (FAO). We used H9c2 cardiomyoblasts exposed to high glucose (HG) 33 mM to simulate DCM in vitro. Excessive mitochondrial fission, poor cell viability, and lipid accumulation were observed in hyperglycemia-induced H9c2 cardiomyoblasts. Also, the cells were led to oxidative stress injury, lower adenosine triphosphate (ATP) levels, and apoptosis. Dynamin-related protein 1 (Drp1) short interfering RNA (siRNA) decreased targeted marker expression, inhibited mitochondrial fragmentation and lipid accumulation, suppressed oxidative stress, reduced cardiomyoblast apoptosis, and improved cell viability and ATP levels in HG-exposed H9c2 cardiomyoblasts, but not in carnitine palmitoyltransferase 1 (CPT1) inhibitor etomoxir treatment cells. We also found subcellular localization of CPT1 on the mitochondrial membrane, FAO, and levels of nicotinamide adenine dinucleotide phosphate (NADPH) were suppressed after exposure to HG treatment, whereas Drp1 siRNA normalized mitochondrial CPT1, FAO, and NADPH. However, the blockade of FAO with etomoxir abolished the above effects of Drp1 siRNA in hyperglycemia-induced H9c2 cardiomyoblasts. The preservation of mitochondrial function through the Drp1/CPT1/FAO pathway is the potential mechanism of inhibited mitochondria fission in attenuating oxidative stress injury of hyperglycemia-induced H9c2 cardiomyoblasts.
Collapse
Affiliation(s)
- Xiaogang Song
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu, China
- Department of Cardiology, Xi'an Central Hospital, Xi'an, Shaanxi, China
- Department of Cardiology, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chongxi Fan
- Department of Gastroenterology, Air Force Medical Center, Beijing, China
| | - Chao Wei
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wuhan Yu
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jichao Tang
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu, China
| | - Feng Ma
- Department of Cardiology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Yongqing Chen
- Department of Cardiology, Gansu Provincial Central Hospital, Lanzhou, Gansu, China
| | - Bing Wu
- Department of Geriatrics, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu, China
| |
Collapse
|
44
|
Joof AN, Ren F, Zhou Y, Wang M, Li J, Tan Y. Targeting Mitochondria: Influence of Metabolites on Mitochondrial Heterogeneity. Cell Biochem Funct 2024; 42:e4131. [PMID: 39380166 DOI: 10.1002/cbf.4131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria are vital organelles that provide energy for the metabolic processes of cells. These include regulating cellular metabolism, autophagy, apoptosis, calcium ions, and signaling processes. Despite their varying functions, mitochondria are considered semi-independent organelles that possess their own genome, known as mtDNA, which encodes 13 proteins crucial for oxidative phosphorylation. However, their diversity reflects an organism's adaptation to physiological conditions and plays a complex function in cellular metabolism. Mitochondrial heterogeneity exists at the single-cell and tissue levels, impacting cell shape, size, membrane potential, and function. This heterogeneity can contribute to the progression of diseases such as neurodegenerative diseases, metabolic diseases, and cancer. Mitochondrial dynamics enhance the stability of cells and sufficient energy requirement, but these activities are not universal and can lead to uneven mitochondria, resulting in heterogeneity. Factors such as genetics, environmental compounds, and signaling pathways are found to affect these cellular processes and heterogeneity. Additionally, the varying roles of metabolites such as NADH and ATP affect glycolysis's speed and efficiency. An imbalance in metabolites can impair ATP production and redox potential in the mitochondria. Therefore, this review will explore the influence of metabolites in shaping mitochondrial morphology, how these changes contribute to age-related diseases and the therapeutic targets for regulating mitochondrial heterogeneity.
Collapse
Affiliation(s)
- Amie N Joof
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Fangyuan Ren
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, China
| | - Yan Zhou
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, China
| | - Mengyu Wang
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Jiani Li
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| |
Collapse
|
45
|
Kodavati M, Maloji Rao VH, Provasek VE, Hegde ML. Regulation of DNA damage response by RNA/DNA-binding proteins: Implications for neurological disorders and aging. Ageing Res Rev 2024; 100:102413. [PMID: 39032612 PMCID: PMC11463832 DOI: 10.1016/j.arr.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
RNA-binding proteins (RBPs) are evolutionarily conserved across most forms of life, with an estimated 1500 RBPs in humans. Traditionally associated with post-transcriptional gene regulation, RBPs contribute to nearly every known aspect of RNA biology, including RNA splicing, transport, and decay. In recent years, an increasing subset of RBPs have been recognized for their DNA binding properties and involvement in DNA transactions. We refer to these RBPs with well-characterized DNA binding activity as RNA/DNA binding proteins (RDBPs), many of which are linked to neurological diseases. RDBPs are associated with both nuclear and mitochondrial DNA repair. Furthermore, the presence of intrinsically disordered domains in RDBPs appears to be critical for regulating their diverse interactions and plays a key role in controlling protein aggregation, which is implicated in neurodegeneration. In this review, we discuss the emerging roles of common RDBPs from the heterogeneous nuclear ribonucleoprotein (hnRNP) family, such as TAR DNA binding protein-43 (TDP43) and fused in sarcoma (FUS) in controlling DNA damage response (DDR). We also explore the implications of RDBP pathology in aging and neurodegenerative diseases and provide a prospective on the therapeutic potential of targeting RDBP pathology mediated DDR defects for motor neuron diseases and aging.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA.
| | - Vikas H Maloji Rao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA
| | - Vincent E Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA; Department of Neurosurgery, Weill Medical College, New York, NY 10065, USA.
| |
Collapse
|
46
|
Li Z, Liang S, Ke L, Wang M, Gao K, Li D, Xu Z, Li N, Zhang P, Cheng W. Cell life-or-death events in osteoporosis: All roads lead to mitochondrial dynamics. Pharmacol Res 2024; 208:107383. [PMID: 39214266 DOI: 10.1016/j.phrs.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria exhibit heterogeneous shapes and networks within and among cell types and tissues, also in normal or osteoporotic bone tissues with complex cell types. This dynamic characteristic is determined by the high plasticity provided by mitochondrial dynamics and is stemmed from responding to the survival and functional requirements of various bone cells in a specific microenvironments. In contrast, mitochondrial dysfunction, induced by dysregulation of mitochondrial dynamics, may act as a trigger of cell death signals, including common apoptosis and other forms of programmed cell death (PCD). These PCD processes consisting of tightly structured cascade gene expression events, can further influence the bone remodeling by facilitating the death of various bone cells. Mitochondrial dynamics, therefore, drive the bone cells to stand at the crossroads of life and death by integrating external signals and altering metabolism, shape, and signal-response properties of mitochondria. This implies that targeting mitochondrial dynamics displays significant potential in treatment of osteoporosis. Considerable effort has been made in osteoporosis to emphasize the parallel roles of mitochondria in regulating energy metabolism, calcium signal transduction, oxidative stress, inflammation, and cell death. However, the emerging field of mitochondrial dynamics-related PCD is not well understood. Herein, to bridge the gap, we outline the latest knowledge on mitochondrial dynamics regulating bone cell life or death during normal bone remodeling and osteoporosis.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050011, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000, China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300, China.
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
47
|
Yu SB, Wang H, Sanchez RG, Carlson NM, Nguyen K, Zhang A, Papich ZD, Abushawish AA, Whiddon Z, Matysik W, Zhang J, Whisenant TC, Ghassemian M, Koberstein JN, Stewart ML, Myers SA, Pekkurnaz G. Neuronal activity-driven O-GlcNAcylation promotes mitochondrial plasticity. Dev Cell 2024; 59:2143-2157.e9. [PMID: 38843836 PMCID: PMC11338717 DOI: 10.1016/j.devcel.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024]
Abstract
Neuronal activity is an energy-intensive process that is largely sustained by instantaneous fuel utilization and ATP synthesis. However, how neurons couple ATP synthesis rate to fuel availability is largely unknown. Here, we demonstrate that the metabolic sensor enzyme O-linked N-acetyl glucosamine (O-GlcNAc) transferase regulates neuronal activity-driven mitochondrial bioenergetics in hippocampal and cortical neurons. We show that neuronal activity upregulates O-GlcNAcylation in mitochondria. Mitochondrial O-GlcNAcylation is promoted by activity-driven glucose consumption, which allows neurons to compensate for high energy expenditure based on fuel availability. To determine the proteins that are responsible for these adjustments, we mapped the mitochondrial O-GlcNAcome of neurons. Finally, we determine that neurons fail to meet activity-driven metabolic demand when O-GlcNAcylation dynamics are prevented. Our findings suggest that O-GlcNAcylation provides a fuel-dependent feedforward control mechanism in neurons to optimize mitochondrial performance based on neuronal activity. This mechanism thereby couples neuronal metabolism to mitochondrial bioenergetics and plays a key role in sustaining energy homeostasis.
Collapse
Affiliation(s)
- Seungyoon B Yu
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Haoming Wang
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Richard G Sanchez
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Natasha M Carlson
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Khanh Nguyen
- Laboratory for Immunochemical Circuits, Center of Autoimmunity and Inflammation, and Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92093, USA
| | - Andrew Zhang
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zachary D Papich
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ahmed A Abushawish
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zachary Whiddon
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Weronika Matysik
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jie Zhang
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas C Whisenant
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, La Jolla, CA 92093, USA
| | - John N Koberstein
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa L Stewart
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Samuel A Myers
- Laboratory for Immunochemical Circuits, Center of Autoimmunity and Inflammation, and Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92093, USA; Department of Pharmacology, Program in Immunology, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Gulcin Pekkurnaz
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
48
|
Read TA, Cisterna BA, Skruber K, Ahmadieh S, Liu TM, Vitriol JA, Shi Y, Black JB, Butler MT, Lindamood HL, Lefebvre AE, Cherezova A, Ilatovskaya DV, Bear JE, Weintraub NL, Vitriol EA. The actin binding protein profilin 1 localizes inside mitochondria and is critical for their function. EMBO Rep 2024; 25:3240-3262. [PMID: 39026010 PMCID: PMC11316047 DOI: 10.1038/s44319-024-00209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
The monomer-binding protein profilin 1 (PFN1) plays a crucial role in actin polymerization. However, mutations in PFN1 are also linked to hereditary amyotrophic lateral sclerosis, resulting in a broad range of cellular pathologies which cannot be explained by its primary function as a cytosolic actin assembly factor. This implies that there are important, undiscovered roles for PFN1 in cellular physiology. Here we screened knockout cells for novel phenotypes associated with PFN1 loss of function and discovered that mitophagy was significantly upregulated. Indeed, despite successful autophagosome formation, fusion with the lysosome, and activation of additional mitochondrial quality control pathways, PFN1 knockout cells accumulate depolarized, dysmorphic mitochondria with altered metabolic properties. Surprisingly, we also discovered that PFN1 is present inside mitochondria and provide evidence that mitochondrial defects associated with PFN1 loss are not caused by reduced actin polymerization in the cytosol. These findings suggest a previously unrecognized role for PFN1 in maintaining mitochondrial integrity and highlight new pathogenic mechanisms that can result from PFN1 dysregulation.
Collapse
Affiliation(s)
- Tracy-Ann Read
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| | - Bruno A Cisterna
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kristen Skruber
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Samah Ahmadieh
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Tatiana M Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Josefine A Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yang Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Population Health Sciences, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Joseph B Black
- Division of Urologic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mitchell T Butler
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Halli L Lindamood
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | | | - Alena Cherezova
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Eric A Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
49
|
Carroll DT, Miller A, Fuhr J, Elsakr JM, Ricciardi V, Del Bene AN, Stephens S, Krystofiak E, Lindsley SR, Kirigiti M, Takahashi DL, Dean TA, Wesolowski SR, McCurdy CE, Friedman JE, Aagaard KM, Kievit P, Gannon M. Analysis of beta-cell maturity and mitochondrial morphology in juvenile non-human primates exposed to maternal Western-style diet during development. Front Endocrinol (Lausanne) 2024; 15:1417437. [PMID: 39114287 PMCID: PMC11304003 DOI: 10.3389/fendo.2024.1417437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Using a non-human primate (NHP) model of maternal Western-style diet (mWSD) feeding during pregnancy and lactation, we previously reported altered offspring beta:alpha cell ratio in vivo and insulin hyper-secretion ex vivo. Mitochondria are known to maintain beta-cell function by producing ATP for insulin secretion. In response to nutrient stress, the mitochondrial network within beta cells undergoes morphological changes to maintain respiration and metabolic adaptability. Given that mitochondrial dynamics have also been associated with cellular fate transitions, we assessed whether mWSD exposure was associated with changes in markers of beta-cell maturity and/or mitochondrial morphology that might explain the offspring islet phenotype. Methods We evaluated the expression of beta-cell identity/maturity markers (NKX6.1, MAFB, UCN3) via florescence microscopy in islets of Japanese macaque pre-adolescent (1 year old) and peri-adolescent (3-year-old) offspring born to dams fed either a control diet or WSD during pregnancy and lactation and weaned onto WSD. Mitochondrial morphology in NHP offspring beta cells was analyzed in 2D by transmission electron microscopy and in 3D using super resolution microscopy to deconvolve the beta-cell mitochondrial network. Results There was no difference in the percent of beta cells expressing key maturity markers in NHP offspring from WSD-fed dams at 1 or 3 years of age; however, beta cells of WSD-exposed 3 year old offspring showed increased levels of NKX6.1 per beta cell at 3 years of age. Regardless of maternal diet, the beta-cell mitochondrial network was found to be primarily short and fragmented at both ages in NHP; overall mitochondrial volume increased with age. In utero and lactational exposure to maternal WSD consumption may increase mitochondrial fragmentation. Discussion Despite mWSD consumption having clear developmental effects on offspring beta:alpha cell ratio and insulin secretory response to glucose, this does not appear to be mediated by changes to beta-cell maturity or the beta-cell mitochondrial network. In general, the more fragmented mitochondrial network in NHP beta cells suggests greater ability for metabolic flexibility.
Collapse
Affiliation(s)
- Darian T. Carroll
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Allie Miller
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer Fuhr
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs Tennessee Valley, Nashville, TN, United States
| | - Joseph M. Elsakr
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Valerie Ricciardi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Alexa N. Del Bene
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Stedman Stephens
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Evan Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Sarah R. Lindsley
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Melissa Kirigiti
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Diana L. Takahashi
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Tyler A. Dean
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Stephanie R. Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Carrie E. McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Jacob E. Friedman
- Department of Physiology and Biochemistry and Harold Hamm Diabetes Center at the University of Oklahoma, Oklahoma City, OK, United States
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, United States
| | - Paul Kievit
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs Tennessee Valley, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
50
|
Valera-Alberni M, Yao P, Romero-Sanz S, Lanjuin A, Mair WB. Novel Imaging Tools to Study Mitochondrial Dynamics in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603730. [PMID: 39071403 PMCID: PMC11275731 DOI: 10.1101/2024.07.16.603730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Mitochondria exhibit a close interplay between their structure and function. Understanding this intricate relationship requires advanced imaging techniques that can capture the dynamic nature of mitochondria and their impact on cellular processes. However, much of the work on mitochondrial dynamics has been done in single celled organisms or in vitro cell culture. Here, we introduce novel genetic tools for live imaging of mitochondrial networks in the nematode Caenorhabditis elegans , addressing a pressing need for advanced techniques in studying organelle dynamics within live intact multicellular organisms. Through a comprehensive analysis, we directly compare our tools with existing methods, demonstrating their advantages for visualizing mitochondrial morphology and contrasting their impact on organismal physiology. We reveal limitations of conventional techniques, while showcasing the utility and versatility of our approaches, including endogenous CRISPR tags and ectopic labeling. By providing a guide for selecting the most suitable tools based on experimental goals, our work advances mitochondrial research in C. elegans and enhances the strategic integration of diverse imaging modalities for a holistic understanding of organelle dynamics in living organisms.
Collapse
|