1
|
Granados JC, Nigam SK. Organic anion transporters in remote sensing and organ crosstalk. Pharmacol Ther 2024; 263:108723. [PMID: 39284369 DOI: 10.1016/j.pharmthera.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024]
Abstract
The organic anion transporters, OAT1 and OAT3, regulate the movement of drugs, toxins, and endogenous metabolites. In 2007, we proposed that OATs and other SLC22 transporters are involved in "remote sensing" and organ crosstalk. This is now known as the Remote Sensing and Signaling Theory (RSST). In the proximal tubule of the kidney, OATs regulate signaling molecules such as fatty acids, bile acids, indoxyl sulfate, kynurenine, alpha-ketoglutarate, urate, flavonoids, and antioxidants. OAT1 and OAT3 function as key hubs in a large homeostatic network involving multi-, oligo- and monospecific transporters, enzymes, and nuclear receptors. The Remote Sensing and Signaling Theory emphasizes the functioning of OATs and other "drug" transporters in the network at multiple biological scales (inter-organismal, organism, organ, cell, organelle). This network plays an essential role in the homeostasis of urate, bile acids, prostaglandins, sex steroids, odorants, thyroxine, gut microbiome metabolites, and uremic toxins. The transported metabolites have targets in the kidney and other organs, including nuclear receptors (e.g., HNF4a, AHR), G protein-coupled receptors (GPCRs), and protein kinases. Feed-forward and feedback loops allow OAT1 and OAT3 to mediate organ crosstalk as well as modulate energy metabolism, redox state, and remote sensing. Furthermore, there is intimate inter-organismal communication between renal OATs and the gut microbiome. Extracellular vesicles containing microRNAs and proteins (exosomes) play a key role in the Remote Sensing and Signaling System as does the interplay with the neuroendocrine, hormonal, and immune systems. Perturbation of function with OAT-interacting drugs (e.g., probenecid, diuretics, antivirals, antibiotics, NSAIDs) can lead to drug-metabolite interactions. The RSST has general applicability to other multi-specific SLC and ABC "drug" transporters (e.g., OCT1, OCT2, SLCO1B1, SLCO1B3, ABCG2, P-gp, ABCC2, ABCC3, ABCC4). Recent high-resolution structures of SLC22 and other transporters, together with chemoinformatic and artificial intelligence methods, will aid drug development and also lead to a deeper mechanistic understanding of polymorphisms.
Collapse
Affiliation(s)
- Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Tong X, Cui Y. Mendelian randomization analysis of the causal relationship between serum metabolites and thoracic aortic aneurysm. Medicine (Baltimore) 2024; 103:e39686. [PMID: 39287234 PMCID: PMC11404878 DOI: 10.1097/md.0000000000039686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Thoracic aortic aneurysm (TAA) is associated with changes in the levels of metabolites; however, the exact causal relationships remain unclear. Identifying this complex relationship may provide new insights into the pathogenesis of TAA. We used genome-wide association studies to investigate the relationship between metabolites and TAA in this study. A total of 1400 serum metabolites were investigated for their potential causal effects on the risk of TAA. We performed bidirectional and 2-sample Mendelian randomization (MR) analysis using 5 MR tests: MR-Egger, weighted mode, weighted median, inverse variance weighted (IVW), and simple mode. We also performed sensitivity analysis to verify our findings, including heterogeneity analysis using IVW and MR-Egger tests and pleiotropy analysis using the MR-Egger test. Multiple metabolites were identified as having a causal effect on the risk of TAA, particularly those related to lipid metabolites; the top 2 risk factors identified using the IVW test were 3-carboxy-4-methyl-5-pentyl-2-furanpropionate (P = .019) and 5alpha-androstan-3alpha,17alpha-diol (P = .021), whereas the 2 top protective factors were 1-stearoyl-2-docosahexaenoyl-gpc (P = .023) and 1-oleoyl-2-docosahexaenoyl-GPC (P = .005). Sensitivity analysis verified the lack of heterogeneity (P = .499, .584, .232, and .624, respectively; IVW test) or pleiotropy (P = .621, .483, .598, and .916, respectively; Egger test). Our study provides new evidence of a causal relationship between metabolites and the risk of TAA, thus providing new insights into the pathogenesis of this disease. These findings suggest a promising approach for metabolite-based therapeutic interventions.
Collapse
Affiliation(s)
- Xiaoshan Tong
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yu Cui
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Li Y, Qiao X, Feng Y, Zhou R, Zhang K, Pan Y, Yan T, Yan L, Yang S, Wei X, Li P, Xu C, Lv Z, Tian Z. Characterization of the gut microbiota and fecal metabolome in the osteosarcoma mouse model. Aging (Albany NY) 2024; 16:10841-10859. [PMID: 38967635 PMCID: PMC11272122 DOI: 10.18632/aging.205951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/21/2024] [Indexed: 07/06/2024]
Abstract
Previous studies have reported the correlation between gut microbiota (GM), GM-derived metabolites, and various intestinal and extra-intestinal cancers. However, limited studies have investigated the correlation between GM, GM-derived metabolites, and osteosarcoma (OS). This study successfully established a female BALB/c nude mouse model of OS. Mice (n = 14) were divided into the following two groups (n = 7/group): OS group named OG, injected with Saos-2 OS cells; normal control group named NCG, injected with Matrigel. The GM composition and metabolites were characterized using 16S rDNA sequencing and untargeted metabolomics, respectively. Bioinformatics analysis revealed that amino acid metabolism was dysregulated in OS. The abundances of bone metabolism-related genera Alloprevotella, Rikenellaceae_RC9_gut_group, and Muribaculum were correlated with amino acid metabolism, especially histidine metabolism. These findings suggest the correlation between GM, GM-derived metabolites, and OS pathogenesis. Clinical significance: The currently used standard therapeutic strategies for OS, including surgery, chemotherapy, and radiation, are not efficacious. The findings of this study provided novel insights for developing therapeutic, diagnostic, and prognostic strategies for OS.
Collapse
Affiliation(s)
- Yuan Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Xiaochen Qiao
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Yi Feng
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Ruhao Zhou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Kun Zhang
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Yongchun Pan
- Department of Orthopedics, Third People's Hospital of Datong City, Datong 037006, Shanxi, P.R. China
| | - Ting Yan
- Translational Medicine Center, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Lei Yan
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Sen Yang
- Department of Orthopedics, The Second People's Hospital of Changzhi, Changzhi 046000, Shanxi, P.R. China
| | - Xiaochun Wei
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Pengcui Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Chaojian Xu
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Zhi Lv
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Zhi Tian
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| |
Collapse
|
4
|
Li K, Song X, Li H, Kuang X, Liu S, Liu R, Li D. Mussel oil is superior to fish oil in preventing atherosclerosis of ApoE -/- mice. Front Nutr 2024; 11:1326421. [PMID: 38410635 PMCID: PMC10894946 DOI: 10.3389/fnut.2024.1326421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Objectives The present study aimed to explore the preventive effect of mussel oil (MO) on atherosclerosis and the potential mechanism in apolipoprotein E-null (ApoE-/-) mice. Methods ApoE-/- mice were fed with a high-fat and high-cholesterol chow and given corn oil (CO), fish oil (FO), MO, or aspirin (ASP, dissolved in CO) by gavage for 12 weeks. The total n-3 polyunsaturated fatty acids (PUFAs) in MO (51.01%) and FO (46.82%) were comparable (mainly C22:6n-3 and C20:5n-3). Wild-type mice were fed with a normal chow and given equivalent CO as health control (CON). Results Compared with the CON group, obvious atherosclerotic plaque appeared at aorta and aortic sinus in the CO group. Compared with the CO group, MO but not FO had a significantly smaller atherosclerotic plaque area in the aorta. The aortic atherosclerotic plaque area was comparable in the MO, CON, and ASP groups. The MO group had a significantly smaller atherosclerotic plaque area, lower lipid deposition, lower contents of smooth muscle cell (SMC), and slightly lower contents of macrophage at the aortic sinus than the FO group. Serum concentrations of IL-1β, NF-κB, and VCAM-1 were comparable in the MO and FO groups and were significantly lower than the CO group. Compared with the CO group, the MO group but not FO group had significantly lower aortic protein levels of p65NF-κB, p38MAPK, and VCAM-1. The aortic protein levels of p-p65NF-κB and p-p38MAPK were significantly lower in the MO group than the FO group. Conclusion In conclusion, MO is more potent than FO in preventing atherosclerosis, and the possible mechanism may be by downregulating p38MAPK/NF-κB signaling pathway, decreasing VCAM-1 and macrophage, and inhibiting proliferation and migration of SMC.
Collapse
Affiliation(s)
- Kelei Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaolei Song
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Huiying Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Shiyi Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Run Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Xie YP, Lin S, Xie BY, Zhao HF. Recent progress in metabolic reprogramming in gestational diabetes mellitus: a review. Front Endocrinol (Lausanne) 2024; 14:1284160. [PMID: 38234430 PMCID: PMC10791831 DOI: 10.3389/fendo.2023.1284160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Gestational diabetes mellitus is a prevalent metabolic disease that can impact the normal course of pregnancy and delivery, leading to adverse outcomes for both mother and child. Its pathogenesis is complex and involves various factors, such as insulin resistance and β-cell dysfunction. Metabolic reprogramming, which involves mitochondrial oxidative phosphorylation and glycolysis, is crucial for maintaining human metabolic balance and is involved in the pathogenesis and progression of gestational diabetes mellitus. However, research on the link and metabolic pathways between metabolic reprogramming and gestational diabetes mellitus is limited. Therefore, we reviewed the relationship between metabolic reprogramming and gestational diabetes mellitus to provide new therapeutic strategies for maternal health during pregnancy and reduce the risk of developing gestational diabetes mellitus.
Collapse
Affiliation(s)
- Ya-ping Xie
- Nursing Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Bao-yuan Xie
- Nursing Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hui-fen Zhao
- Nursing Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
6
|
Jaikumkao K, Thongnak L, Htun KT, Pengrattanachot N, Phengpol N, Sutthasupha P, Promsan S, Montha N, Sriburee S, Kothan S, Lungkaphin A. Dapagliflozin and metformin in combination ameliorates diabetic nephropathy by suppressing oxidative stress, inflammation, and apoptosis and activating autophagy in diabetic rats. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166912. [PMID: 37816397 DOI: 10.1016/j.bbadis.2023.166912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Considering the effects of sodium-glucose cotransporter inhibitors and metformin on the kidneys, a combination of both agents is postulated to provide protection against diabetic nephropathy (DN). We examined the potential protective effects of dapagliflozin, metformin, and their combination on kidney injury in rats with type 2 diabetes. Diabetic (DM) rats were administered dapagliflozin (1.0 mg/kg/day), metformin (100 mg/kg/day), or a combination (dapagliflozin 0.5 mg/kg/day plus metformin 50 mg/kg/day) by oral gavage for 4 weeks. Dapagliflozin monotherapy or in combination with metformin was more effective than metformin monotherapy in attenuating renal dysfunction, improving renal organic anion transporter 3 expression, and activating renal autophagy by modulating the AMPK/mTOR/SIRT1 axis in DM rats. Interestingly, dapagliflozin monotherapy exhibited greater efficacy in suppressing renal oxidative stress in DM rats than metformin or the combination treatment. Renal and pancreatic injury scores decreased in all treatment groups. Apoptotic markers were predominantly reduced in dapagliflozin monotherapy and combination treatment groups. The low-dose combination treatment, through synergistic coordination, appeared to modulate oxidative, autophagic, and apoptotic signaling and confer significant renoprotective effects against DM-induced complications. In addition, a low dose of the combination might be beneficial to patients by avoiding the risk of side effects of the medication. Future clinical trials are necessary to study the nephroprotective effects of the combined treatment at a low dosage in patients with diabetes.
Collapse
Affiliation(s)
- Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Khin Thandar Htun
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nattavadee Pengrattanachot
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Napatsorn Montha
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Sompong Sriburee
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Suchart Kothan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Functional Foods for Health and Disease, Department of Physiology, Chiang Mai University, Chiang Mai, Thailand; Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
7
|
Usman TO, Chhetri G, Yeh H, Dong HH. Beta-cell compensation and gestational diabetes. J Biol Chem 2023; 299:105405. [PMID: 38229396 PMCID: PMC10694657 DOI: 10.1016/j.jbc.2023.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 01/18/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is characterized by glucose intolerance in pregnant women without a previous diagnosis of diabetes. While the etiology of GDM remains elusive, the close association of GDM with increased maternal adiposity and advanced gestational age implicates insulin resistance as a culpable factor for the pathogenesis of GDM. Pregnancy is accompanied by the physiological induction of insulin resistance in the mother secondary to maternal weight gain. This effect serves to spare blood glucose for the fetus. To overcome insulin resistance, maternal β-cells are conditioned to release more insulin into the blood. Such an adaptive response, termed β-cell compensation, is essential for maintaining normal maternal metabolism. β-cell compensation culminates in the expansion of β-cell mass and augmentation of β-cell function, accounting for increased insulin synthesis and secretion. As a result, a vast majority of mothers are protected from developing GDM during pregnancy. In at-risk pregnant women, β-cells fail to compensate for maternal insulin resistance, contributing to insulin insufficiency and GDM. However, gestational β-cell compensation ensues in early pregnancy, prior to the establishment of insulin resistance in late pregnancy. How β-cells compensate for pregnancy and what causes β-cell failure in GDM are subjects of investigation. In this mini-review, we will provide clinical and preclinical evidence that β-cell compensation is pivotal for overriding maternal insulin resistance to protect against GDM. We will highlight key molecules whose functions are critical for integrating gestational hormones to β-cell compensation for pregnancy. We will provide mechanistic insights into β-cell decompensation in the etiology of GDM.
Collapse
Affiliation(s)
- Taofeek O Usman
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Goma Chhetri
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hsuan Yeh
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - H Henry Dong
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
8
|
Lai Q, Zhu X, Zhang L, Kou J, Liu F, Yu B, Li F. Inhibition of OAT1/3 and CMPF uptake attenuates myocardial ischemia-induced chronic heart failure via decreasing fatty acid oxidation and the therapeutic effects of ruscogenin. Transl Res 2023; 261:1-15. [PMID: 37315712 DOI: 10.1016/j.trsl.2023.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Chronic heart failure (CHF) as a long-term disease is highly prevalent in elder people worldwide. Early diagnosis and treatments are crucial for preventing the development of CHF. Herein, we aimed to identify novel diagnostic biomarker, therapeutic target and drug for CHF. Untargeted metabolomic analysis has been used to characterize the different metabolomic profile between CHF patients and healthy people. Meanwhile, the targeted metabolomic study demonstrated the elevation of 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) in the serum of CHF patients and coronary artery ligation-induced CHF mice. Subsequently, we firstly observed that elevation of CMPF impaired cardiac function and aggravated myocardial injury by enhancing fatty acid oxidation (FAO). Interestingly, inhibition of responsible transporters organic anion transporter 1/3 (OAT1/3) has been found to decrease the CMPF level, and suppress FAO-related key protein expressions including peroxisome proliferator-activated receptor alpha, peroxisome proliferative activated receptor-α, carnitine palmitoyl transferase 1, and malonyl CoA decarboxylase in coronary artery ligation-induced CHF mice. Meanwhile, the inhibitor of OAT1/3 presented an excellent improvement in cardiac function and histological injury. Based on the above findings, molecular docking was adopted to screen the potential therapeutic drug targeting OAT1/3, and ruscogenin (RUS) exhibited a great binding affinity with OAT1 and OAT3. Next, it was verified that RUS could remarkedly decrease the expression of OAT1/3 and CMPF levels in heart tissue of CHF mice, as well as suppress the expression of FAO-related proteins. What's more, RUS can effectively improve cardiac function, myocardial fibrosis and morphological damage. Collectively, this study provided a potential metabolic marker CMPF and novel target OAT1/3 for CHF, which were demonstrated to be involved in FAO. And RUS was identified as a potential anti-FAO drug for CHF by regulating OAT1/3.
Collapse
Affiliation(s)
- Qiong Lai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaozhou Zhu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lu Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fuming Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Liu Y, Wang D, Liu YP. Metabolite profiles of diabetes mellitus and response to intervention in anti-hyperglycemic drugs. Front Endocrinol (Lausanne) 2023; 14:1237934. [PMID: 38027178 PMCID: PMC10644798 DOI: 10.3389/fendo.2023.1237934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become a major health problem, threatening the quality of life of nearly 500 million patients worldwide. As a typical multifactorial metabolic disease, T2DM involves the changes and interactions of various metabolic pathways such as carbohydrates, amino acid, and lipids. It has been suggested that metabolites are not only the endpoints of upstream biochemical processes, but also play a critical role as regulators of disease progression. For example, excess free fatty acids can lead to reduced glucose utilization in skeletal muscle and induce insulin resistance; metabolism disorder of branched-chain amino acids contributes to the accumulation of toxic metabolic intermediates, and promotes the dysfunction of β-cell mitochondria, stress signal transduction, and apoptosis. In this paper, we discuss the role of metabolites in the pathogenesis of T2DM and their potential as biomarkers. Finally, we list the effects of anti-hyperglycemic drugs on serum/plasma metabolic profiles.
Collapse
Affiliation(s)
| | | | - Yi-Ping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
10
|
Miao Z, Zeng FF, Tian Y, Xiao C, Yan Y, Jiang Z, Fu Y, Chen YM, Zheng JS. Furan fatty acid metabolite CMPF is associated with lower risk of type 2 diabetes, but not chronic kidney disease: a longitudinal population-based cohort study. Am J Clin Nutr 2023; 118:637-645. [PMID: 37482300 DOI: 10.1016/j.ajcnut.2023.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Furan fatty acid metabolite 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) is a strong biomarker of fish and n-3 polyunsaturated fatty acid (PUFA) intake. The relationship of CMPF with human health has been controversial, especially for type 2 diabetes and chronic kidney disease. OBJECTIVE We performed a prospective cohort study to examine the association of serum CMPF with incident type 2 diabetes and chronic kidney disease. METHODS In the Guangzhou Nutrition and Health Study, during a median follow-up of 8.8 y, we used a multivariable-adjusted Poisson regression model to investigate the association of baseline serum CMPF with the incidence of type 2 diabetes (1470 participants and 170 incident cases) and chronic kidney disease (1436 participants and 112 incident cases). We also examined the association of serial measures of serum CMPF with glycemic and renal function biomarkers. Mediation analysis was also performed to examine the contribution of CMPF in the association between marine n-3 PUFAs and risk of type 2 diabetes or chronic kidney disease. RESULTS Each standard deviation increase in baseline serum CMPF was associated with an 18% lower risk of type 2 diabetes (relative risk: 0.82, 95% confidence interval [CI]: 0.68, 0.99) but was not associated with chronic kidney disease (relative risk: 0.95; 95% CI: 0.77-1.16). Correlation analyses of CMPF with glycemic and renal function biomarkers showed similar results. Mediation analysis suggested that serum CMPF contributed to the inverse association between erythrocyte marine n-3 PUFAs and incident type 2 diabetes (proportion mediated 37%, P-mediation = 0.022). CONCLUSIONS Our findings suggest that serum CMPF was associated with a lower risk of type 2 diabetes but not chronic kidney disease. This study also suggests that CMPF may be a functional metabolite underlying the protective relationship between marine n-3 PUFA intake and type 2 diabetes.
Collapse
Affiliation(s)
- Zelei Miao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Fang-Fang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yunyi Tian
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Congmei Xiao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yan Yan
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zengliang Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuanqing Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
11
|
Shen Y, Li X, Xiong S, Hou S, Zhang L, Wang L, Dai X, Zhao Y. Untargeted metabonomic analysis of non-alcoholic fatty liver disease with iron overload in rats via UPLC/MS. Free Radic Res 2023:1-15. [PMID: 37326040 DOI: 10.1080/10715762.2023.2226315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND/AIMS In recent years, many metabolites specific to nonalcoholic fatty liver disease (NAFLD) have been identified thanks to the application of metabolomics techniques. This study aimed to investigate the candidate targets and potential molecular pathways involved in NAFLD in the presence of iron overload. METHODS Male Sprague Dawley rats were fed with control or high-fat diet with or without excess iron. After 8,16,20 weeks of treatment, urine samples of rats were collected for metabolomics analysis using ultra-performance liquid chromatography/mass spectrometry (UPLC-MS). Blood and liver samples were also collected. RESULTS High-fat, high-iron diet resulted in increased triglyceride accumulation and increased oxidative damage. A total of 13 metabolites and four potential pathways were identified. Compared to the control group, the intensities of adenine, cAMP, hippuric acid, kynurenic acid, xanthurenic acid, uric acid, and citric acid were significantly lower (P < 0.05) and the concentration of other metabolites was significantly higher in the high-fat diet group. In the high-fat, high-iron group, the differences in the intensities of the above metabolites were amplified. CONCLUSION Our findings suggest that NAFLD rats have impaired antioxidant system and liver function, lipid disorders, abnormal energy, and glucose metabolism, and that iron overload may further exacerbate these disorders.
Collapse
Affiliation(s)
- Yang Shen
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Xianan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Shichao Xiong
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Shaoying Hou
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Lijia Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Li Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Xuezheng Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Yan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| |
Collapse
|
12
|
Leyrolle Q, Prado-Perez L, Layé S. The gut-derived metabolites as mediators of the effect of healthy nutrition on the brain. Front Nutr 2023; 10:1155533. [PMID: 37360297 PMCID: PMC10289296 DOI: 10.3389/fnut.2023.1155533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Nutrition is now well recognized to be an environmental factor which positively or negatively influences the risk to develop neurological and psychiatric disorders. The gut microbiota has recently been shown to be an important actor mediating the relationship between environmental factors, including nutrition, and brain function. While its composition has been widely studied and associated with the risk of brain diseases, the mechanisms underlying the relationship between the gut and brain diseases remain to be explored. The wide range of bioactive molecules produced by the gut microbiota, called gut-derived metabolites (GDM), represent new players in the gut to brain interactions and become interesting target to promote brain health. The aim of this narrative review is to highlight some GDMs of interest that are produced in response to healthy food consumption and to summarize what is known about their potential effects on brain function. Overall, GDMs represent future useful biomarkers for the development of personalized nutrition. Indeed, their quantification after nutritional interventions is a useful tool to determine individuals' ability to produce microbiota-derived bioactive compounds upon consumption of specific food or nutrients. Moreover, GDMs represent also a new therapeutic approach to counteract the lack of response to conventional nutritional interventions.
Collapse
Affiliation(s)
- Quentin Leyrolle
- NutriNeurO, UMR 1286, Bordeaux INP, INRAE, University of Bordeaux, Bordeaux, France
| | | | | |
Collapse
|
13
|
Wu D, Jiang Y, Wang Z, Ni Y, Ma A, Zhou Y, Liu R, Lou YR, Wang Q. Metabolomics analysis of islet regeneration in partial pancreatectomy mice reveals increased levels of long-chain fatty acids and activated cAMP signaling pathway. Biochem Biophys Res Commun 2023; 667:34-42. [PMID: 37207562 DOI: 10.1016/j.bbrc.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023]
Abstract
Islet regeneration is a complex process involving multiple metabolic adaptions, but the specific characterization of the islet metabolome in relation to cell proliferation has not been established. This study aimed to investigate the metabolomic changes of regenerative islets from partial pancreatectomy (Ppx) mice and speculate underlying mechanisms. Islet samples were collected from C57/BL6 mice undergoing 70-80% Ppx or sham surgery, followed by analyses of glucose homeostasis, islet morphology, and untargeted metabolomics profiles using liquid chromatography-tandem mass spectrometry (LC-MS/MS). There is no difference in blood glucose and body weight between sham and Ppx mice. After surgery, the Ppx mice showed impaired glucose tolerance, increased Ki67 positive beta cells, and elevated beta-cell mass. LC-MS/MS analysis identified fourteen differentially changed metabolites in islets of Ppx mice, including long-chain fatty acids (e.g., docosahexaenoic acid) and amino acid derivatives (e.g., creatine). Pathway analysis based on the KEGG database revealed five significantly enriched signaling pathways including cAMP signaling pathway. Further immunostaining assay on pancreatic tissue sections showed the levels of p-CREB, a transcription factor downstream of cAMP, elevated in islets from Ppx mice. In conclusion, our results demonstrate that islet regeneration involves metabolic alterations in long-chain fatty acids and amino acid derivatives, as well as the activation of the cAMP signaling pathway.
Collapse
Affiliation(s)
- Di Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetes, Fudan University, Shanghai, China
| | - Yaojing Jiang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetes, Fudan University, Shanghai, China
| | - Zhihong Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetes, Fudan University, Shanghai, China
| | - Yunzhi Ni
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetes, Fudan University, Shanghai, China
| | - Anran Ma
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetes, Fudan University, Shanghai, China
| | - Yue Zhou
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetes, Fudan University, Shanghai, China
| | - Rui Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetes, Fudan University, Shanghai, China
| | - Yan-Ru Lou
- School of Pharmacy, Fudan University, Shanghai, China
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetes, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Metformin can mitigate skeletal dysplasia caused by Pck2 deficiency. Int J Oral Sci 2022; 14:54. [PMCID: PMC9663691 DOI: 10.1038/s41368-022-00204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
As an important enzyme for gluconeogenesis, mitochondrial phosphoenolpyruvate carboxykinase (PCK2) has further complex functions beyond regulation of glucose metabolism. Here, we report that conditional knockout of Pck2 in osteoblasts results in a pathological phenotype manifested as craniofacial malformation, long bone loss, and marrow adipocyte accumulation. Ablation of Pck2 alters the metabolic pathways of developing bone, particularly fatty acid metabolism. However, metformin treatment can mitigate skeletal dysplasia of embryonic and postnatal heterozygous knockout mice, at least partly via the AMPK signaling pathway. Collectively, these data illustrate that PCK2 is pivotal for bone development and metabolic homeostasis, and suggest that regulation of metformin-mediated signaling could provide a novel and practical strategy for treating metabolic skeletal dysfunction.
Collapse
|
15
|
Zhang X, Kupczyk E, Schmitt-Kopplin P, Mueller C. Current and future approaches for in vitro hit discovery in diabetes mellitus. Drug Discov Today 2022; 27:103331. [PMID: 35926826 DOI: 10.1016/j.drudis.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/10/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a serious public health problem. In this review, we discuss current and promising future drugs, targets, in vitro assays and emerging omics technologies in T2DM. Importantly, we open the perspective to image-based high-content screening (HCS), with the focus of combining it with metabolomics or lipidomics. HCS has become a strong technology in phenotypic screens because it allows comprehensive screening for the cell-modulatory activity of small molecules. Metabolomics and lipidomics screen for perturbations at the molecular level. The combination of these data-intensive comprehensive technologies is enabled by the rapid development of artificial intelligence. It promises a deep cellular and molecular phenotyping directly linked to chemical information about the applied drug candidates or complex mixtures.
Collapse
Affiliation(s)
- Xin Zhang
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Erwin Kupczyk
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany; Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany; Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany.
| | - Constanze Mueller
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
16
|
Dai L, Massy ZA, Stenvinkel P, Chesnaye NC, Larabi IA, Alvarez JC, Caskey FJ, Torino C, Porto G, Szymczak M, Krajewska M, Drechsler C, Wanner C, Jager KJ, Dekker FW, Evenepoel P, Evans M, Torp A, Iwig B, Perras B, Marx C, Drechsler C, Blaser C, Wanner C, Emde C, Krieter D, Fuchs D, Irmler E, Platen E, Schmidt-Gürtler H, Schlee H, Naujoks H, Schlee I, Cäsar S, Beige J, Röthele J, Mazur J, Hahn K, Blouin K, Neumeier K, Anding-Rost K, Schramm L, Hopf M, Wuttke N, Frischmuth N, Ichtiaris P, Kirste P, Schulz P, Aign S, Biribauer S, Manan S, Röser S, Heidenreich S, Palm S, Schwedler S, Delrieux S, Renker S, Schättel S, Stephan T, Schmiedeke T, Weinreich T, Leimbach T, Stövesand T, Bahner U, Seeger W, Cupisti A, Sagliocca A, Ferraro A, Mele A, Naticchia A, Còsaro A, Ranghino A, Stucchi A, Pignataro A, De Blasio A, Pani A, Tsalouichos A, Antonio B, Iorio BRD, Alessandra B, Abaterusso C, Somma C, D'alessandro C, Torino C, Zullo C, Pozzi C, Bergamo D, Ciurlino D, Motta D, Russo D, Favaro E, Vigotti F, Ansali F, Conte F, Cianciotta F, Giacchino F, Cappellaio F, Pizzarelli F, Greco G, Porto G, Bigatti G, Marinangeli G, Cabiddu G, Fumagalli G, Caloro G, Piccoli G, Capasso G, Gambaro G, Tognarelli G, Bonforte G, Conte G, Toscano G, Del Rosso G, Capizzi I, Baragetti I, Oldrizzi L, Gesualdo L, Biancone L, Magnano M, Ricardi M, Bari MD, Laudato M, Sirico ML, Ferraresi M, Provenzano M, Malaguti M, Palmieri N, Murrone P, Cirillo P, Dattolo P, Acampora P, Nigro R, Boero R, Scarpioni R, Sicoli R, Malandra R, Savoldi S, Bertoli S, Borrelli S, Maxia S, Maffei S, Mangano S, Cicchetti T, Rappa T, Palazzo V, De Simone W, Schrander A, van Dam B, Siegert C, Gaillard C, Beerenhout C, Verburgh C, Janmaat C, Hoogeveen E, Hoorn E, Dekker F, Boots J, Boom H, Eijgenraam JW, Kooman J, Rotmans J, Jager K, Vogt L, Raasveld M, Vervloet M, van Buren M, van Diepen M, Chesnaye N, Leurs P, Voskamp P, van Esch S, Boorsma S, Berger S, Konings C, Aydin Z, Musiała A, Szymczak A, Olczyk E, Augustyniak-Bartosik H, Miśkowiec-Wiśniewska I, Manitius J, Pondel J, Jędrzejak K, Nowańska K, Nowak Ł, Szymczak M, Durlik M, Dorota S, Nieszporek T, Heleniak Z, Jonsson A, Rogland B, Wallquist C, Vargas D, Dimény E, Sundelin F, Uhlin F, Welander G, Hernandez IB, Gröntoft KC, Stendahl M, Svensson ME, Evans M, Heimburger O, Kashioulis P, Melander S, Almquist T, Woodman A, McKeever A, Ullah A, McLaren B, Harron C, Barrett C, O'Toole C, Summersgill C, Geddes C, Glowski D, McGlynn D, Sands D, Caskey F, Roy G, Hirst G, King H, McNally H, Masri-Senghor H, Murtagh H, Rayner H, Turner J, Wilcox J, Berdeprado J, Wong J, Banda J, Jones K, Haydock L, Wilkinson L, Carmody M, Weetman M, Joinson M, Dutton M, Matthews M, Morgan N, Bleakley N, Cockwell P, Roderick P, Mason P, Kalra P, Sajith R, Chapman S, Navjee S, Crosbie S, Brown S, Tickle S, Mathavakkannan S, Kuan Y. The association between TMAO, CMPF, and clinical outcomes in advanced chronic kidney disease: results from the European QUALity (EQUAL) Study. Am J Clin Nutr 2022; 116:1842-1851. [PMID: 36166845 PMCID: PMC9761748 DOI: 10.1093/ajcn/nqac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/18/2022] [Accepted: 09/24/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO), a metabolite from red meat and fish consumption, plays a role in promoting cardiovascular events. However, data regarding TMAO and its impact on clinical outcomes are inconclusive, possibly due to its undetermined dietary source. OBJECTIVES We hypothesized that circulating TMAO derived from fish intake might cause less harm compared with red meat sources by examining the concomitant level of 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF), a known biomarker of fish intake, and investigated the association between TMAO, CMPF, and outcomes. METHODS Patients were recruited from the European QUALity (EQUAL) Study on treatment in advanced chronic kidney disease among individuals aged ≥65 y whose estimated glomerular filtration rate (eGFR) had dropped for the first time to ≤20 mL/min per 1.73 m2 during the last 6 mo. The association between TMAO, CMPF, and outcomes including all-cause mortality and kidney replacement therapy (KRT) was assessed among 737 patients. Patients were further stratified by median cutoffs of TMAO and CMPF, suggesting high/low red meat and fish intake. RESULTS During a median of 39 mo of follow-up, 232 patients died. Higher TMAO was independently associated with an increased risk of all-cause mortality (multivariable HR: 1.46; 95% CI: 1.17, 1.83). Higher CMPF was associated with a reduced risk of both all-cause mortality (HR: 0.79; 95% CI: 0.71, 0.89) and KRT (HR: 0.80; 95% CI: 0.71, 0.90), independently of TMAO and other clinically relevant confounders. In comparison to patients with low TMAO and CMPF, patients with low TMAO and high CMPF had reduced risk of all-cause mortality (adjusted HR: 0.49; 95% CI: 0.31, 0.73), whereas those with high TMAO and high CMPF showed no association across adjusted models. CONCLUSIONS High CMPF conferred an independent role in health benefits and might even counteract the unfavorable association between TMAO and outcomes. Whether higher circulating CMPF concentrations are due to fish consumption, and/or if CMPF is a protective factor, remains to be verified.
Collapse
Affiliation(s)
- Lu Dai
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden,Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré University Hospital, Boulogne-Billancourt, France,Centre for Research in Epidemiology and Population Health (CESP), Inserm UMRS 1018, Team 5, University Versailles-Saint Quentin, University Paris-Saclay, Paris, France
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas C Chesnaye
- ERA-EDTA Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Islam Amine Larabi
- Laboratory of Pharmacology and Toxicology, CHU, Raymond Poincare, Garches, France,INSERM U1173, UFR des Sciences de la Santé Simone Veil, Montigny le Bretonneux, Université de Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Jean Claude Alvarez
- Laboratory of Pharmacology and Toxicology, CHU, Raymond Poincare, Garches, France,INSERM U1173, UFR des Sciences de la Santé Simone Veil, Montigny le Bretonneux, Université de Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Fergus J Caskey
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Claudia Torino
- IFC-CNR, Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Gaetana Porto
- G.O.M., Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Maciej Szymczak
- Clinical Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Krajewska
- Clinical Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | - Christoph Wanner
- Division of Nephrology, University Hospital of Würzburg, Würzburg, Germany
| | - Kitty J Jager
- ERA-EDTA Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Friedo W Dekker
- ERA-EDTA Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Pieter Evenepoel
- Department of Microbiology, Immunology, and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sutthasupha P, Promsan S, Thongnak L, Pengrattanachot N, Phengpol N, Jaruan O, Jaikumkao K, Muanprasat C, Pichyangkura R, Chatsudthipong V, Lungkaphin A. Chitosan oligosaccharide mitigates kidney injury in prediabetic rats by improving intestinal barrier and renal autophagy. Carbohydr Polym 2022; 288:119405. [PMID: 35450657 DOI: 10.1016/j.carbpol.2022.119405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
Consumption of a high-fat diet (HFD) not only increases the risk of metabolic syndrome but also initiates kidney injury. Lipid accumulation-induced systemic low-grade inflammation is an upstream mechanism of kidney injury associated with prediabetes. Chitosan oligosaccharide (COS) provides potent anti-obesity effects through several mechanisms including fecal lipid excretion. In this study, we investigated the effects of COS on the prevention of obesity-related complications and its ability to confer renoprotection in a prediabetic model. Rats fed on a HFD developed obesity, glucose intolerance and kidney dysfunction. COS intervention successfully ameliorated these conditions (p < 0.05) by attenuating intestinal lipid absorption and the renal inflammation-autophagy-apoptosis axis. A novel anti-inflammatory effect of COS had been demonstrated by the strengthening of intestinal barrier integrity via calcium-sensing receptor (p < 0.05). The use of COS as a supplement may be useful in reducing prediabetic complications especially renal injury and the risk of type 2 diabetes.
Collapse
Affiliation(s)
- Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Onanong Jaruan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Varanuj Chatsudthipong
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
18
|
Novel Biomolecules in the Pathogenesis of Gestational Diabetes Mellitus 2.0. Int J Mol Sci 2022; 23:ijms23084364. [PMID: 35457182 PMCID: PMC9031541 DOI: 10.3390/ijms23084364] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Gestational diabetes mellitus (GDM) has become a major public health problem and one of the most discussed issues in modern obstetrics. GDM is associated with serious adverse perinatal outcomes and long-term health consequences for both the mother and child. Currently, the importance and purposefulness of finding a biopredictor that will enable the identification of women with an increased risk of developing GDM as early as the beginning of pregnancy are highly emphasized. Both “older” molecules, such as adiponectin and leptin, and “newer” adipokines, including fatty acid-binding protein 4 (FABP4), have proven to be of pathophysiological importance in GDM. Therefore, in our previous review, we presented 13 novel biomolecules, i.e., galectins, growth differentiation factor-15, chemerin, omentin-1, osteocalcin, resistin, visfatin, vaspin, irisin, apelin, FABP4, fibroblast growth factor 21, and lipocalin-2. The purpose of this review is to present the potential and importance of another nine lesser known molecules in the pathogenesis of GDM, i.e., 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), angiopoietin-like protein-8 (ANGPTL-8), nesfatin-1, afamin, adropin, fetuin-A, zonulin, secreted frizzled-related proteins (SFRPs), and amylin. It seems that two of them, fetuin-A and zonulin in high serum levels, may be applied as biopredictors of GDM.
Collapse
|
19
|
Predictive Modeling of Alzheimer's and Parkinson's Disease Using Metabolomic and Lipidomic Profiles from Cerebrospinal Fluid. Metabolites 2022; 12:metabo12040277. [PMID: 35448464 PMCID: PMC9029812 DOI: 10.3390/metabo12040277] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, metabolomics has been used as a powerful tool to better understand the physiology of neurodegenerative diseases and identify potential biomarkers for progression. We used targeted and untargeted aqueous, and lipidomic profiles of the metabolome from human cerebrospinal fluid to build multivariate predictive models distinguishing patients with Alzheimer's disease (AD), Parkinson's disease (PD), and healthy age-matched controls. We emphasize several statistical challenges associated with metabolomic studies where the number of measured metabolites far exceeds sample size. We found strong separation in the metabolome between PD and controls, as well as between PD and AD, with weaker separation between AD and controls. Consistent with existing literature, we found alanine, kynurenine, tryptophan, and serine to be associated with PD classification against controls, while alanine, creatine, and long chain ceramides were associated with AD classification against controls. We conducted a univariate pathway analysis of untargeted and targeted metabolite profiles and find that vitamin E and urea cycle metabolism pathways are associated with PD, while the aspartate/asparagine and c21-steroid hormone biosynthesis pathways are associated with AD. We also found that the amount of metabolite missingness varied by phenotype, highlighting the importance of examining missing data in future metabolomic studies.
Collapse
|
20
|
Francis EC, Kechris K, Cohen CC, Michelotti G, Dabelea D, Perng W. Metabolomic Profiles in Childhood and Adolescence Are Associated with Fetal Overnutrition. Metabolites 2022; 12:265. [PMID: 35323708 PMCID: PMC8952572 DOI: 10.3390/metabo12030265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Fetal overnutrition predisposes offspring to increased metabolic risk. The current study used metabolomics to assess sustained differences in serum metabolites across childhood and adolescence among youth exposed to three typologies of fetal overnutrition: maternal obesity only, gestational diabetes mellitus (GDM) only, and obesity + GDM. We included youth exposed in utero to obesity only (BMI ≥ 30; n = 66), GDM only (n = 56), obesity + GDM (n = 25), or unexposed (n = 297), with untargeted metabolomics measured at ages 10 and 16 years. We used linear mixed models to identify metabolites across both time-points associated with exposure to any overnutrition, using a false-discovery-rate correction (FDR) <0.20. These metabolites were included in a principal component analysis (PCA) to generate profiles and assess metabolite profile differences with respect to overnutrition typology (adjusted for prenatal smoking, offspring age, sex, and race/ethnicity). Fetal overnutrition was associated with 52 metabolites. PCA yielded four factors accounting for 17−27% of the variance, depending on age of measurement. We observed differences in three factor patterns with respect to overnutrition typology: sphingomyelin-mannose (8−13% variance), skeletal muscle metabolism (6−10% variance), and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF; 3−4% variance). The sphingomyelin-mannose factor score was higher among offspring exposed to obesity vs. GDM. Exposure to obesity + GDM (vs. GDM or obesity only) was associated with higher skeletal muscle metabolism and CMPF scores. Fetal overnutrition is associated with metabolic changes in the offspring, but differences between typologies of overnutrition account for a small amount of variation in the metabolome, suggesting there is likely greater pathophysiological overlap than difference.
Collapse
Affiliation(s)
- Ellen C. Francis
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (C.C.C.); (D.D.); (W.P.)
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Catherine C. Cohen
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (C.C.C.); (D.D.); (W.P.)
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (C.C.C.); (D.D.); (W.P.)
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (C.C.C.); (D.D.); (W.P.)
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
21
|
The Interplay between Uremic Toxins and Albumin, Membrane Transporters and Drug Interaction. Toxins (Basel) 2022; 14:toxins14030177. [PMID: 35324674 PMCID: PMC8949274 DOI: 10.3390/toxins14030177] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/10/2023] Open
Abstract
Uremic toxins are a heterogeneous group of molecules that accumulate in the body due to the progression of chronic kidney disease (CKD). These toxins are associated with kidney dysfunction and the development of comorbidities in patients with CKD, being only partially eliminated by dialysis therapies. Importantly, drugs used in clinical treatments may affect the levels of uremic toxins, their tissue disposition, and even their elimination through the interaction of both with proteins such as albumin and cell membrane transporters. In this context, protein-bound uremic toxins (PBUTs) are highlighted for their high affinity for albumin, the most abundant serum protein with multiple binding sites and an ability to interact with drugs. Membrane transporters mediate the cellular influx and efflux of various uremic toxins, which may also compete with drugs as substrates, and both may alter transporter activity or expression. Therefore, this review explores the interaction mechanisms between uremic toxins and albumin, as well as membrane transporters, considering their potential relationship with drugs used in clinical practice.
Collapse
|
22
|
Dong Y, Yuan Y, Ma Y, Luo Y, Zhou W, Deng X, Pu J, Hu B, Liu S. Combined Intestinal Metabolomics and Microbiota Analysis for Acute Endometritis Induced by Lipopolysaccharide in Mice. Front Cell Infect Microbiol 2022; 11:791373. [PMID: 34976866 PMCID: PMC8718680 DOI: 10.3389/fcimb.2021.791373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023] Open
Abstract
Endometritis is generally caused by bacterial infections, including both acute and chronic infections. In the past few decades, accumulated evidence showed that the occurrence of diseases might be related to gut microbiota. The progression of diseases is previously known to change the composition and diversity of intestinal microbiota. Additionally, it also causes corresponding changes in metabolites, primarily by affecting the physiological processes of microbiota. However, the effects of acute endometritis on intestinal microbiota and its metabolism remain unknown. Thus, the present study aimed to assess the effects of acute endometritis on intestinal microbes and their metabolites. Briefly, endometritis was induced in 30 specific pathogen-free (SPF) BALB/c female mice via intrauterine administration of lipopolysaccharide (LPS) after anesthesia. Following this, 16S rRNA gene sequencing and liquid chromatogram-mass spectrometry (LC-MS) were performed. At the genus level, the relative abundance of Klebsiella, Lachnoclostridium_5, and Citrobacter was found to be greater in the LPS group than in the control group. Importantly, the control group exhibited a higher ratio of Christensenellaceae_R−7_group and Parasutterella. Furthermore, intestinal metabolomics analysis in mice showed that acute endometritis altered the concentration of intestinal metabolites and affected biological oxidation, energy metabolism, and biosynthesis of primary bile acids. The correlation analysis between microbial diversity and metabolome provided a basis for a comprehensive understanding of the composition and function of the microbial community. Altogether, the findings of this study would be helpful in the prevention and treatment of acute endometritis in the future.
Collapse
Affiliation(s)
- Yuqing Dong
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China.,College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yuan Yuan
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China.,College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Yichuan Ma
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Yuanyue Luo
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Wenjing Zhou
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Xin Deng
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jingyu Pu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Binhong Hu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Songqing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| |
Collapse
|
23
|
Zhang Z, Piro AL, Dai FF, Wheeler MB. Adaptive Changes in Glucose Homeostasis and Islet Function During Pregnancy: A Targeted Metabolomics Study in Mice. Front Endocrinol (Lausanne) 2022; 13:852149. [PMID: 35600586 PMCID: PMC9116578 DOI: 10.3389/fendo.2022.852149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Pregnancy is a dynamic state involving multiple metabolic adaptions in various tissues including the endocrine pancreas. However, a detailed characterization of the maternal islet metabolome in relation to islet function and the ambient circulating metabolome during pregnancy has not been established. METHODS A timed-pregnancy mouse model was studied, and age-matched non-pregnant mice were used as controls. Targeted metabolomics was applied to fasting plasma and purified islets during each trimester of pregnancy. Glucose homeostasis and islet function was assessed. Bioinformatic analyses were performed to reveal the metabolic adaptive changes in plasma and islets, and to identify key metabolic pathways associated with pregnancy. RESULTS Fasting glucose and insulin were found to be significantly lower in pregnant mice compared to non-pregnant controls, throughout the gestational period. Additionally, pregnant mice had superior glucose excursions and greater insulin response to an oral glucose tolerance test. Interestingly, both alpha and beta cell proliferation were significantly enhanced in early to mid-pregnancy, leading to significantly increased islet size seen in mid to late gestation. When comparing the plasma metabolome of pregnant and non-pregnant mice, phospholipid and fatty acid metabolism pathways were found to be upregulated throughout pregnancy, whereas amino acid metabolism initially decreased in early through mid pregnancy, but then increased in late pregnancy. Conversely, in islets, amino acid metabolism was consistently enriched throughout pregnancy, with glycerophospholid and fatty acid metabolism was only upregulated in late pregnancy. Specific amino acids (glutamate, valine) and lipids (acyl-alkyl-PC, diacyl-PC, and sphingomyelin) were found to be significantly differentially expressed in islets of the pregnant mice compared to controls, which was possibly linked to enhanced insulin secretion and islet proliferation. CONCLUSION Beta cell proliferation and function are elevated during pregnancy, and this is coupled to the enrichment of islet metabolites and metabolic pathways primarily associated with amino acid and glycerophospholipid metabolism. This study provides insight into metabolic adaptive changes in glucose homeostasis and islet function seen during pregnancy, which will provide a molecular rationale to further explore the regulation of maternal metabolism to avoid the onset of pregnancy disorders, including gestational diabetes.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Anthony L. Piro
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Feihan F. Dai
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- *Correspondence: Feihan F. Dai, ; Michael B. Wheeler,
| | - Michael B. Wheeler
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Metabolism Research Group, Division of Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON, Canada
- *Correspondence: Feihan F. Dai, ; Michael B. Wheeler,
| |
Collapse
|
24
|
Prentice KJ, Saksi J, Robertson LT, Lee GY, Inouye KE, Eguchi K, Lee A, Cakici O, Otterbeck E, Cedillo P, Achenbach P, Ziegler AG, Calay ES, Engin F, Hotamisligil GS. A hormone complex of FABP4 and nucleoside kinases regulates islet function. Nature 2021; 600:720-726. [PMID: 34880500 DOI: 10.1038/s41586-021-04137-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/14/2021] [Indexed: 11/09/2022]
Abstract
The liberation of energy stores from adipocytes is critical to support survival in times of energy deficit; however, uncontrolled or chronic lipolysis associated with insulin resistance and/or insulin insufficiency disrupts metabolic homeostasis1,2. Coupled to lipolysis is the release of a recently identified hormone, fatty-acid-binding protein 4 (FABP4)3. Although circulating FABP4 levels have been strongly associated with cardiometabolic diseases in both preclinical models and humans4-7, no mechanism of action has yet been described8-10. Here we show that hormonal FABP4 forms a functional hormone complex with adenosine kinase (ADK) and nucleoside diphosphate kinase (NDPK) to regulate extracellular ATP and ADP levels. We identify a substantial effect of this hormone on beta cells and given the central role of beta-cell function in both the control of lipolysis and development of diabetes, postulate that hormonal FABP4 is a key regulator of an adipose-beta-cell endocrine axis. Antibody-mediated targeting of this hormone complex improves metabolic outcomes, enhances beta-cell function and preserves beta-cell integrity to prevent both type 1 and type 2 diabetes. Thus, the FABP4-ADK-NDPK complex, Fabkin, represents a previously unknown hormone and mechanism of action that integrates energy status with the function of metabolic organs, and represents a promising target against metabolic disease.
Collapse
Affiliation(s)
- Kacey J Prentice
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Jani Saksi
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Lauren T Robertson
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Grace Y Lee
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Karen E Inouye
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Kosei Eguchi
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Alexandra Lee
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Ozgur Cakici
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Emily Otterbeck
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Paulina Cedillo
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Ediz S Calay
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Feyza Engin
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA.,Departments of Biomolecular Chemistry and Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
25
|
Iqbal A, Schulz P, Rizvi SS. Valorization of bioactive compounds in fruit pomace from agro-fruit industries: Present Insights and future challenges. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Fu A, van Rooyen L, Evans L, Armstrong N, Avizonis D, Kin T, Bird GH, Reddy A, Chouchani ET, Liesa-Roig M, Walensky LD, Shapiro AMJ, Danial NN. Glucose metabolism and pyruvate carboxylase enhance glutathione synthesis and restrict oxidative stress in pancreatic islets. Cell Rep 2021; 37:110037. [PMID: 34818536 PMCID: PMC8720303 DOI: 10.1016/j.celrep.2021.110037] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023] Open
Abstract
Glucose metabolism modulates the islet β cell responses to diabetogenic stress, including inflammation. Here, we probed the metabolic mechanisms that underlie the protective effect of glucose in inflammation by interrogating the metabolite profiles of primary islets from human donors and identified de novo glutathione synthesis as a prominent glucose-driven pro-survival pathway. We find that pyruvate carboxylase is required for glutathione synthesis in islets and promotes their antioxidant capacity to counter inflammation and nitrosative stress. Loss- and gain-of-function studies indicate that pyruvate carboxylase is necessary and sufficient to mediate the metabolic input from glucose into glutathione synthesis and the oxidative stress response. Altered redox metabolism and cellular capacity to replenish glutathione pools are relevant in multiple pathologies beyond obesity and diabetes. Our findings reveal a direct interplay between glucose metabolism and glutathione biosynthesis via pyruvate carboxylase. This metabolic axis may also have implications in other settings where sustaining glutathione is essential.
Collapse
Affiliation(s)
- Accalia Fu
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Lara van Rooyen
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02115, USA
| | - Lindsay Evans
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02115, USA
| | - Nina Armstrong
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02115, USA
| | - Daina Avizonis
- Rosalind and Morris Goodman Cancer Institute, Metabolomics Innovation Resource, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program, Department of Surgery, 2000 College Plaza, University of Alberta, Edmonton, AB T6G 2C8, Canada
| | - Gregory H Bird
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Anita Reddy
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Marc Liesa-Roig
- Department of Medicine, Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, 614 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Loren D Walensky
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - A M James Shapiro
- Clinical Islet Transplant Program, Department of Surgery, 2000 College Plaza, University of Alberta, Edmonton, AB T6G 2C8, Canada
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston 02115, MA, USA; Department of Medicine, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
27
|
Zhang H, Zhao Y, Zhao D, Chen X, Khan NU, Liu X, Zheng Q, Liang Y, Zhu Y, Iqbal J, Lin J, Shen L. Potential biomarkers identified in plasma of patients with gestational diabetes mellitus. Metabolomics 2021; 17:99. [PMID: 34739593 DOI: 10.1007/s11306-021-01851-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
Gestational diabetes mellitus (GDM) is a common complication during pregnancy. Looking for reliable diagnostic markers for early diagnosis can reduce the impact of the disease on the fetus OBJECTIVE: The present study is designed to find plasma metabolites that can be used as potential biomarkers for GDM, and to clarify GDM-related mechanisms METHODS: By non-target metabolomics analysis, compared with their respective controls, the plasma metabolites of GDM pregnant women at 12-16 weeks and 24-28 weeks of pregnancy were analyzed. Multiple reaction monitoring (MRM) analysis was performed to verify the potential marker RESULTS: One hundred and seventy-two (172) and 478 metabolites were identified as differential metabolites in the plasma of GDM pregnant women at 12-16 weeks and 24-28 weeks of pregnancy, respectively. Among these, 40 metabolites were overlapped. Most of them are associated with the mechanism of diabetes, and related to short-term and long-term complications in the perinatal period. Among them, 7 and 10 differential metabolites may serve as potential biomarkers at the 12-16 weeks and 24-28 weeks of pregnancy, respectively. By MRM analysis, compared with controls, increased levels of 17(S)-HDoHE and sebacic acid may serve as early prediction biomarkers of GDM. At 24-28 weeks of pregnancy, elevated levels of 17(S)-HDoHE and L-Serine may be used as auxiliary diagnostic markers for GDM CONCLUSION: Abnormal amino acid metabolism and lipid metabolism in patients with GDM may be related to GDM pathogenesis. Several differential metabolites identified in this study may serve as potential biomarkers for GDM prediction and diagnosis.
Collapse
Affiliation(s)
- Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Danqing Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Xinqian Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Qihong Zheng
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Yi Liang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Yuhua Zhu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Javed Iqbal
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, 518071, People's Republic of China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
- Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| |
Collapse
|
28
|
Al Rijjal D, Liu Y, Lai M, Song Y, Danaei Z, Wu A, Mohan H, Wei L, Schopfer FJ, Dai FF, Wheeler MB. Vascepa protects against high-fat diet-induced glucose intolerance, insulin resistance, and impaired β-cell function. iScience 2021; 24:102909. [PMID: 34458694 PMCID: PMC8379293 DOI: 10.1016/j.isci.2021.102909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Omega-3 fatty acid prescription drugs, Vascepa (≥96% eicosapentaenoic acid [EPA] ethyl ester) and Lovaza (46.5% EPA and 37.5% docosahexaenoic acid ethyl ester) are known therapeutic regimens to treat hypertriglyceridemia. However, their impact on glucose homeostasis, progression to type 2 diabetes, and pancreatic beta cell function are not well understood. In the present study, mice were treated with Vascepa or Lovaza for one week prior to six weeks of high-fat diet feeding. Vascepa but not Lovaza led to reduced insulin resistance, reduced fasting insulin and glucose, and improved glucose intolerance. Vascepa improved beta cell function, reduced liver triglycerides with enhanced expression of hepatic fatty acid oxidation genes, and altered microbiota composition. Vascepa has protective effects on diet-induced insulin resistance and glucose intolerance in mice.
Collapse
Affiliation(s)
- Dana Al Rijjal
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
| | - Ying Liu
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
- Division of Advanced Diagnostics, Metabolism, Toronto General Research Institute, ON, Canada
| | - Mi Lai
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
- Division of Advanced Diagnostics, Metabolism, Toronto General Research Institute, ON, Canada
| | - Youchen Song
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
| | - Zahra Danaei
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
| | - Anne Wu
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
| | - Haneesha Mohan
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
| | - Li Wei
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Francisco J. Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Feihan F. Dai
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
| | - Michael B. Wheeler
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
- Division of Advanced Diagnostics, Metabolism, Toronto General Research Institute, ON, Canada
| |
Collapse
|
29
|
Shi Y, Tian H, Wang Y, Shen Y, Zhu Q, Ding F. Improved Dialysis Removal of Protein-Bound Uraemic Toxins with a Combined Displacement and Adsorption Technique. Blood Purif 2021; 51:548-558. [PMID: 34515053 DOI: 10.1159/000518065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/04/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Protein-bound uraemic toxins (PBUTs) are poorly removed by conventional dialytic techniques, given their high plasma protein binding, and thus low, free (dialysable) plasma concentration. Here, we evaluated and compared PBUTs removal among conventional haemodialysis (HD), adsorption-based HD, displacement-based HD, and their 2 combinations both in vitro and in vivo. METHODS The removal of PBUTs, including 3-carboxy-4-methyl-5-propyl-2-furan-propanoic acid (CMPF), p-cresyl sulphate (PCS), indoxyl sulphate (IS), indole-3-acetic acid (3-IAA), and hippuric acid, was first evaluated in an in vitro single-pass HD model. Adsorption consisted of adding 40 g/L bovine serum albumin (Alb) to the dialysate and displacement involved infusing fatty acid (FA) mixtures predialyser. Then, uraemic rats were treated with either conventional HD, Alb-based HD, lipid emulsion infusion-based HD or their combination to calculate the reduction ratio (RR), and the total solute removal (TSR) of solutes after 4 h of therapy. RESULTS In vitro dialysis revealed that FAs infusion prefilter increased the removal of PCS, IS, and 3-IAA 3.23-fold, 3.01-fold, and 2.24-fold, respectively, compared with baseline and increased the fractional removal of CMPF from undetectable at baseline to 14.33 ± 0.24%, with a dialysis efficacy markedly superior to Alb dialysis. In vivo dialysis showed that ω-6 soybean oil-based lipid emulsion administration resulted in higher RRs and more TSRs for PCS, IS, and 3-IAA after 4-h HD than the control, and the corresponding TSR values for PCS and IS were also significantly increased compared to that of Alb dialysis. Finally, the highest dialysis efficacy for highly bound solute removal was always observed with their combination both in vitro and in vivo. CONCLUSIONS The concept of combined displacement- and adsorption-based dialysis may open up new avenues and possibilities in the field of dialysis to further enhance PBUTs removal in end-stage renal disease.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, .,Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China,
| | - Huajun Tian
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yifeng Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiuyu Zhu
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Feng Ding
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
30
|
Meng X, Zhu B, Liu Y, Fang L, Yin B, Sun Y, Ma M, Huang Y, Zhu Y, Zhang Y. Unique Biomarker Characteristics in Gestational Diabetes Mellitus Identified by LC-MS-Based Metabolic Profiling. J Diabetes Res 2021; 2021:6689414. [PMID: 34212051 PMCID: PMC8211500 DOI: 10.1155/2021/6689414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/18/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a type of glucose intolerance disorder that first occurs during women's pregnancy. The main diagnostic method for GDM is based on the midpregnancy oral glucose tolerance test. The rise of metabolomics has expanded the opportunity to better identify early diagnostic biomarkers and explore possible pathogenesis. METHODS We collected blood serum from 34 GDM patients and 34 normal controls for a LC-MS-based metabolomics study. RESULTS 184 metabolites were increased and 86 metabolites were decreased in the positive ion mode, and 65 metabolites were increased and 71 were decreased in the negative ion mode. Also, it was found that the unsaturated fatty acid metabolism was disordered in GDM. Ten metabolites with the most significant differences were selected for follow-up studies. Since the diagnostic specificity and sensitivity of a single differential metabolite are not definitive, we combined these metabolites to prepare a ROC curve. We found a set of metabolite combination with the highest sensitivity and specificity, which included eicosapentaenoic acid, docosahexaenoic acid, docosapentaenoic acid, arachidonic acid, citric acid, α-ketoglutaric acid, and genistein. The area under the curves (AUC) value of those metabolites was 0.984 between the GDM and control group. CONCLUSIONS Our results provide a direction for the mechanism of GDM research and demonstrate the feasibility of developing a diagnostic test that can distinguish between GDM and normal controls clearly. Our findings were helpful to develop novel biomarkers for precision or personalized diagnosis for GDM. In addition, we provide a critical insight into the pathological and biological mechanisms for GDM.
Collapse
Affiliation(s)
- Xingjun Meng
- Department of Clinical Laboratory, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou 310006, China
| | - Bo Zhu
- Department of Clinical Laboratory, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yan Liu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Lei Fang
- Department of Clinical Laboratory, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou 310006, China
| | - Binbin Yin
- Department of Clinical Laboratory, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yanni Sun
- Department of Clinical Laboratory, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou 310006, China
| | - Mengni Ma
- Department of Clinical Laboratory, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, China
| | - Yuning Zhu
- Department of Clinical Laboratory, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
31
|
Rumora AE, Guo K, Alakwaa FM, Andersen ST, Reynolds EL, Jørgensen ME, Witte DR, Tankisi H, Charles M, Savelieff MG, Callaghan BC, Jensen TS, Feldman EL. Plasma lipid metabolites associate with diabetic polyneuropathy in a cohort with type 2 diabetes. Ann Clin Transl Neurol 2021; 8:1292-1307. [PMID: 33955722 PMCID: PMC8164865 DOI: 10.1002/acn3.51367] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The global rise in type 2 diabetes is associated with a concomitant increase in diabetic complications. Diabetic polyneuropathy is the most frequent type 2 diabetes complication and is associated with poor outcomes. The metabolic syndrome has emerged as a major risk factor for diabetic polyneuropathy; however, the metabolites associated with the metabolic syndrome that correlate with diabetic polyneuropathy are unknown. METHODS We conducted a global metabolomics analysis on plasma samples from a subcohort of participants from the Danish arm of Anglo-Danish-Dutch study of Intensive Treatment of Diabetes in Primary Care (ADDITION-Denmark) with and without diabetic polyneuropathy versus lean control participants. RESULTS Compared to lean controls, type 2 diabetes participants had significantly higher HbA1c (p = 0.0028), BMI (p = 0.0004), and waist circumference (p = 0.0001), but lower total cholesterol (p = 0.0001). Out of 991 total metabolites, we identified 15 plasma metabolites that differed in type 2 diabetes participants by diabetic polyneuropathy status, including metabolites belonging to energy, lipid, and xenobiotic pathways, among others. Additionally, these metabolites correlated with alterations in plasma lipid metabolites in type 2 diabetes participants based on neuropathy status. Further evaluating all plasma lipid metabolites identified a shift in abundance, chain length, and saturation of free fatty acids in type 2 diabetes participants. Importantly, the presence of diabetic polyneuropathy impacted the abundance of plasma complex lipids, including acylcarnitines and sphingolipids. INTERPRETATION Our explorative study suggests that diabetic polyneuropathy in type 2 diabetes is associated with novel alterations in plasma metabolites related to lipid metabolism.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Kai Guo
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
- Department of Biomedical SciencesUniversity of North DakotaGrand ForksNorth Dakota
| | - Fadhl M. Alakwaa
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | | | - Evan L. Reynolds
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Marit E. Jørgensen
- Steno Diabetes Center CopenhagenGentofteDenmark
- University of Southern DenmarkOdenseDenmark
| | - Daniel R. Witte
- Department of Public HealthAarhus UniversityAarhusDenmark
- Danish Diabetes AcademyOdenseDenmark
| | - Hatice Tankisi
- Department of Clinical NeurophysiologyAarhus UniversityAarhusDenmark
| | - Morten Charles
- Department of Public HealthAarhus UniversityAarhusDenmark
| | - Masha G. Savelieff
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Brian C. Callaghan
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Troels S. Jensen
- Danish Pain Research CenterDepartment of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
32
|
Cherngwelling R, Pengrattanachot N, Swe MT, Thongnak L, Promsan S, Phengpol N, Sutthasupha P, Lungkaphin A. Agomelatine protects against obesity-induced renal injury by inhibiting endoplasmic reticulum stress/apoptosis pathway in rats. Toxicol Appl Pharmacol 2021; 425:115601. [PMID: 34081941 DOI: 10.1016/j.taap.2021.115601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/18/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022]
Abstract
Obesity is recognized as a risk for the development of chronic kidney disease. Excessive fat accumulation in obesity is associated with the overproduction of reactive oxygen species with the underproduction of antioxidant mechanisms generating oxidative stress together with chronic low-grade inflammation which subsequently leads to the development of several obesity-related complications. It has been suggested that the abnormal lipid accumulation can induce endoplasmic reticulum (ER) stress and cellular apoptosis in several tissue types. Agomelatine is a relatively new antidepressant which is a synthetic agonist of melatonin. Previous study reported the antioxidant and anti-inflammatory effects of agomelatine. In this study, we investigated the therapeutic effects of agomelatine in obesity-related renal injury. Male Wistar rats were fed with normal diet or high-fat diet (HF) for 16 weeks. After that, vehicle or agomelatine or vildagliptin was orally administered to HF rats for 4 weeks. Our results indicated that HF rats demonstrated insulin resistance which was accompanied by an impairment of renal function and renal organic anion transporter 3 (Oat3) function as well as renal oxidative stress, ER stress, and apoptosis. Interestingly, agomelatine treatment not only improved the metabolic parameters, renal function and renal Oat3 function but also attenuated renal oxidative stress, ER stress and subsequent apoptosis. Therefore, agomelatine exerted renoprotective effects in obese insulin-resistant condition. These results suggested that agomelatine could be used as a drug to improve metabolic disturbance and prevent kidney dysfunction in obese condition.
Collapse
Affiliation(s)
- Rada Cherngwelling
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Myat Theingi Swe
- Department of Physiology, University of Medicine 2, Yangon, Myanmar
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
33
|
Newman TM, Shively CA, Register TC, Appt SE, Yadav H, Colwell RR, Fanelli B, Dadlani M, Graubics K, Nguyen UT, Ramamoorthy S, Uberseder B, Clear KYJ, Wilson AS, Reeves KD, Chappell MC, Tooze JA, Cook KL. Diet, obesity, and the gut microbiome as determinants modulating metabolic outcomes in a non-human primate model. MICROBIOME 2021; 9:100. [PMID: 33952353 PMCID: PMC8101030 DOI: 10.1186/s40168-021-01069-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/01/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND The objective of this study was to increase understanding of the complex interactions between diet, obesity, and the gut microbiome of adult female non-human primates (NHPs). Subjects consumed either a Western (n=15) or Mediterranean (n=14) diet designed to represent human dietary patterns for 31 months. Body composition was determined using CT, fecal samples were collected, and shotgun metagenomic sequencing was performed. Gut microbiome results were grouped by diet and adiposity. RESULTS Diet was the main contributor to gut microbiome bacterial diversity. Adiposity within each diet was associated with subtle shifts in the proportional abundance of several taxa. Mediterranean diet-fed NHPs with lower body fat had a greater proportion of Lactobacillus animalis than their higher body fat counterparts. Higher body fat Western diet-fed NHPs had more Ruminococcus champaneliensis and less Bacteroides uniformis than their low body fat counterparts. Western diet-fed NHPs had significantly higher levels of Prevotella copri than Mediterranean diet NHPs. Western diet-fed subjects were stratified by P. copri abundance (P. copriHIGH versus P. copriLOW), which was not associated with adiposity. Overall, Western diet-fed animals in the P. copriHIGH group showed greater proportional abundance of B. ovatus, B. faecis, P. stercorea, P. brevis, and Faecalibacterium prausnitzii than those in the Western P. copriLOW group. Western diet P. copriLOW subjects had a greater proportion of Eubacterium siraeum. E. siraeum negatively correlated with P. copri proportional abundance regardless of dietary consumption. In the Western diet group, Shannon diversity was significantly higher in P. copriLOW when compared to P. copriHIGH subjects. Furthermore, gut E. siraeum abundance positively correlated with HDL plasma cholesterol indicating that those in the P. copriLOW population may represent a more metabolically healthy population. Untargeted metabolomics on urine and plasma from Western diet-fed P. copriHIGH and P. copriLOW subjects suggest early kidney dysfunction in Western diet-fed P. copriHIGH subjects. CONCLUSIONS In summary, the data indicate diet to be the major influencer of gut bacterial diversity. However, diet and adiposity must be considered together when analyzing changes in abundance of specific bacterial taxa. Interestingly, P. copri appears to mediate metabolic dysfunction in Western diet-fed NHPs. Video abstract.
Collapse
Affiliation(s)
- Tiffany M Newman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Carol A Shively
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thomas C Register
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Susan E Appt
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair, USF Center for Microbiome Research University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | | | | | | | | | | | | | - Beth Uberseder
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kenysha Y J Clear
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Adam S Wilson
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kimberly D Reeves
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mark C Chappell
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Janet A Tooze
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Katherine L Cook
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Wake Forest School of Medicine, 575 N. Patterson Ave, Suite 340, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
34
|
Alvarado K, Durand E, Vaysse L, Liengprayoon S, Gaillet S, Coudray C, Casas F, Feillet-Coudray C. Effets bénéfiques potentiels des acides gras furaniques, des lipides alimentaires bioactifs. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2021. [DOI: 10.1016/j.cnd.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
B Gowda SG, Minami Y, Gowda D, Furuko D, Chiba H, Hui SP. Lipidomic analysis of non-esterified furan fatty acids and fatty acid compositions in dietary shellfish and salmon by UHPLC/LTQ-Orbitrap-MS. Food Res Int 2021; 144:110325. [PMID: 34053529 DOI: 10.1016/j.foodres.2021.110325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 01/21/2023]
Abstract
Lipids such as furan fatty acids (F-acids) are the valuable minor bioactive components of food such as fatty fish and plants. They are reported to have positive health benefits, including antioxidant and anti-inflammatory activities. Despite their importance, limited studies are focusing on F-acid determination in dietary seafood. This study aimed to identify and profile non-esterified F-acids and free fatty acids in total lipid extract of seafood such as shellfish and salmon. The lipidomic analysis using liquid chromatography-linear trap quadrupole-orbitrap mass spectrometry led to identifying seven types of free F-acids in shellfish (n = 5) and salmon (n = 4). The identified F-acids were confirmed by their high-resolution masses and acquired mass spectra. The relative concentrations of F-acids in shellfish range from 0.01 to 10.93 mg/100 g of the fillet, and in salmon, 0.01 to 14.21 mg/100 g of the fillet. The results revealed the highest abundance of F-acids in Sakhalin surf clam, Japanese scallop, and a fatty salmon trout. Besides, relative levels of saturated, monounsaturated, and polyunsaturated fatty acids (PUFAs) in these seafoods were compared with each other, suggesting basket clams and salmon trout to have significantly higher levels of PUFAs. The dietary seafoods enriched with F-acids and PUFAs may have possible health benefits. Hence, the applied technique could be a promising tool for rapid detection and analysis of non-esterified fatty acids in food.
Collapse
Affiliation(s)
- Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Yusuke Minami
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Daisuke Furuko
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-ku, Sapporo 007-0894, Japan.
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
36
|
Granados JC, Richelle A, Gutierrez JM, Zhang P, Zhang X, Bhatnagar V, Lewis NE, Nigam SK. Coordinate regulation of systemic and kidney tryptophan metabolism by the drug transporters OAT1 and OAT3. J Biol Chem 2021; 296:100575. [PMID: 33757768 PMCID: PMC8102410 DOI: 10.1016/j.jbc.2021.100575] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
How organs sense circulating metabolites is a key question. Here, we show that the multispecific organic anion transporters of drugs, OAT1 (SLC22A6 or NKT) and OAT3 (SLC22A8), play a role in organ sensing. Metabolomics analyses of the serum of Oat1 and Oat3 knockout mice revealed changes in tryptophan derivatives involved in metabolism and signaling. Several of these metabolites are derived from the gut microbiome and are implicated as uremic toxins in chronic kidney disease. Direct interaction with the transporters was supported with cell-based transport assays. To assess the impact of the loss of OAT1 or OAT3 function on the kidney, an organ where these uptake transporters are highly expressed, knockout transcriptomic data were mapped onto a “metabolic task”-based computational model that evaluates over 150 cellular functions. Despite the changes of tryptophan metabolites in both knockouts, only in the Oat1 knockout were multiple tryptophan-related cellular functions increased. Thus, deprived of the ability to take up kynurenine, kynurenate, anthranilate, and N-formylanthranilate through OAT1, the kidney responds by activating its own tryptophan-related biosynthetic pathways. The results support the Remote Sensing and Signaling Theory, which describes how “drug” transporters help optimize levels of metabolites and signaling molecules by facilitating organ cross talk. Since OAT1 and OAT3 are inhibited by many drugs, the data implies potential for drug–metabolite interactions. Indeed, treatment of humans with probenecid, an OAT-inhibitor used to treat gout, elevated circulating tryptophan metabolites. Furthermore, given that regulatory agencies have recommended drugs be tested for OAT1 and OAT3 binding or transport, it follows that these metabolites can be used as endogenous biomarkers to determine if drug candidates interact with OAT1 and/or OAT3.
Collapse
Affiliation(s)
- Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Anne Richelle
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Jahir M Gutierrez
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Patrick Zhang
- Department of Biology, University of California San Diego, La Jolla, California, USA
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA
| | - Vibha Bhatnagar
- Department of Family and Preventative Medicine, University of California San Diego, La Jolla, California, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA; Department of Pediatrics, University of California San Diego, La Jolla, California, USA; Novo Nordisk Foundation Center for Biosustainability at UC San Diego, University of California San Diego, La Jolla, California, USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA; Department of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
37
|
Florian AR, Cruciat G, Pop RM, Staicu A, Daniel M, Florin S. Predictive role of altered leptin, adiponectin and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid secretion in gestational diabetes mellitus. Exp Ther Med 2021; 21:520. [PMID: 33815593 PMCID: PMC8014980 DOI: 10.3892/etm.2021.9951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy, leading to considerable maternal and fetal risks. The main aim of this study was to determine the predictive value of the levels of adiponectin (AN), leptin (L) and CMPF (3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid) in the development of GDM. We conducted a prospective longitudinal study on 68 pregnant women that were not at risk of developing GDM, in whom we determined AN, L, CMPF levels at 11-13 weeks +6 days of pregnancy during the first trimester screening. Twenty-one of all the patients included in the study developed GDM during pregnancy. Oral glucose tolerance test (OGTT)/75 g was performed at 24-28 weeks of gestation. L levels were significantly higher in patients who developed GDM than in those who did not develop diabetes (P<0.001). The AN/L ratio was significantly lower in patients with GDM (P=0.03). AN and CMPF levels were not associated with GDM. The probability of developing gestational diabetes was higher in patients with L levels above the L cut-off value of 16 ng/ml [area under the curve (AUC), 0.775; 95% confidence interval (CI) 0.658-0.867], sensitivity 100% (95% CI 83.9-100), specificity 48.9% (95% CI 34.1-63.9) (P<0.001). Advanced maternal age and higher L levels were found to be predictive factors [odds ratio (OR)=1.16 and OR=1.06, respectively] independently associated with gestational diabetes. In as far as general factors are concerned, the patient BMI (body mass index) at the beginning of the pregnancy and smoking were found to be the main risk factors for the onset of GDM. This study showed that elevated L levels are a strong predictor of GDM, while AN and CMPF levels are not, as they failed to show a significant association.
Collapse
Affiliation(s)
- Andreea Roxana Florian
- Obstetrics and Gynecology I, Mother and Child Department, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Gheorghe Cruciat
- Obstetrics and Gynecology I, Mother and Child Department, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Adelina Staicu
- Obstetrics and Gynecology I, Mother and Child Department, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Muresan Daniel
- Obstetrics and Gynecology I, Mother and Child Department, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Stamatian Florin
- Obstetrics and Gynecology I, Mother and Child Department, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
38
|
Challenges of reducing protein-bound uremic toxin levels in chronic kidney disease and end stage renal disease. Transl Res 2021; 229:115-134. [PMID: 32891787 DOI: 10.1016/j.trsl.2020.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
The prevalence of chronic kidney disease (CKD) in the worldwide population is currently estimated between 11% and 13%. Adequate renal clearance is compromised in these patients and the accumulation of a large number of uremic retention solutes results in an irreversible worsening of renal function which can lead to end stage renal disease (ESRD). Approximately three million ESRD patients currently receive renal replacement therapies (RRTs), such as hemodialysis, which only partially restore kidney function, as they are only efficient in removing mainly small, unbound solutes from the circulation while leaving larger and protein-bound uremic toxins (PBUTs) untouched. The accumulation of PBUTs in patients highly increases the risk of cardiovascular events and is associated with higher mortality and morbidity in CKD and ESRD. In this review, we address several strategies currently being explored toward reducing PBUT concentrations, including clinical and medical approaches, therapeutic techniques, and recent developments in RRT technology. These include preservation of renal function, limitation of colon derived PBUTs, oral sorbents, adsorbent RRT technology, and use of albumin displacers. Despite the promising results of the different approaches to promote enhanced removal of a small percentage of the more than 30 identified PBUTs, on their own, none of them provide a treatment with the required efficiency, safety and cost-effectiveness to prevent CKD-related complications and decrease mortality and morbidity in ESRD.
Collapse
|
39
|
Huo Z, Rana BK, Elman JA, Dong R, Engelman CD, Johnson SC, Lyons MJ, Franz CE, Kremen WS, Zhao J. Metabolic Profiling of Cognitive Aging in Midlife. Front Aging Neurosci 2020; 12:555850. [PMID: 33250761 PMCID: PMC7674168 DOI: 10.3389/fnagi.2020.555850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/16/2020] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's dementia (AD) begins many years before its clinical symptoms. Metabolic dysfunction represents a core feature of AD and cognitive impairment, but few metabolomic studies have focused on cognitive aging in midlife. Using an untargeted metabolomics approach, we identified metabolic predictors of cognitive aging in midlife using fasting plasma sample from 30 middle-aged (mean age 57.2), male-male twin pairs enrolled in the Vietnam Era Twin Study of Aging (VETSA). For all twin pairs, one twin developed incident MCI, whereas his co-twin brother remained to be cognitively normal during an average 5.5-year follow-up. Linear mixed model was used to identify metabolites predictive of MCI conversion or cognitive change over time, adjusting for traditional risk factors. Results from twins were replicated in an independent cohort of middle-aged adults (mean age 59.1) in the Wisconsin Registry for Alzheimer's Prevention (WRAP). Results in twins showed that higher baseline levels of four plasma metabolites, including sphingomyelin (d18:1/20:1 and d18:2/20:0), sphingomyelin (d18:1/22:1, d18:2/22:0, and d16:1/24:1), DAG (18:2/20:4), and hydroxy-CMPF, were significantly associated with a slower decrease in one or more domains of cognitive function. The association of sphingomyelin (d18:1/20:1 and d18:2/20:0) was replicated in WRAP. Our results support that metabolic perturbation occurs many years before cognitive impairment and plasma metabolites may serve as early biomarkers for prediction or monitoring of cognitive aging and AD in midlife.
Collapse
Affiliation(s)
- Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Brinda K. Rana
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Jeremy A. Elman
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Ruocheng Dong
- Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Corinne D. Engelman
- Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Michael J. Lyons
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, United States
| | - Carol E. Franz
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - William S. Kremen
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Jinying Zhao
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
40
|
Manialawy Y, Khan SR, Bhattacharjee A, Wheeler MB. The magnesium transporter NIPAL1 is a pancreatic islet-expressed protein that conditionally impacts insulin secretion. J Biol Chem 2020; 295:9879-9892. [PMID: 32439805 DOI: 10.1074/jbc.ra120.013277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/18/2020] [Indexed: 01/23/2023] Open
Abstract
Type 2 diabetes is a chronic metabolic disease characterized by pancreatic β-cell dysfunction and peripheral insulin resistance. Among individuals with type 2 diabetes, ∼30% exhibit hypomagnesemia. Hypomagnesemia has been linked to insulin resistance through reduced tyrosine kinase activity of the insulin receptor; however, its impact on pancreatic β-cell function is unknown. In this study, through analysis of several single-cell RNA-sequencing data sets in tandem with quantitative PCR validation in both murine and human islets, we identified NIPAL1 (NIPA-like domain containing 1), encoding a magnesium influx transporter, as an islet-enriched gene. A series of immunofluorescence experiments confirmed NIPAL1's magnesium-dependent expression and that it specifically localizes to the Golgi in Min6-K8 cells, a pancreatic β-cell-like cell line (mouse insulinoma 6 clone K8). Under varying magnesium concentrations, NIPAL1 knockdown decreased both basal insulin secretion and total insulin content; in contrast, its overexpression increased total insulin content. Although the expression, distribution, and magnesium responsiveness of NIPAL1 in α-TC6 glucagonoma cells (a pancreatic α-cell line) were similar to the observations in Min6-K8 cells, no effect was observed on glucagon secretion in α-TC6 cells under the conditions studied. Overall, these results suggest that NIPAL1 expression is regulated by extracellular magnesium and that down-regulation of this transporter decreases glucose-stimulated insulin secretion and intracellular insulin content, particularly under conditions of hypomagnesemia.
Collapse
Affiliation(s)
- Yousef Manialawy
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Saifur R Khan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada .,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alpana Bhattacharjee
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada .,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Xyda SE, Vuckovic I, Petterson XM, Dasari S, Lalia AZ, Parvizi M, Macura SI, Lanza IR. Distinct Influence of Omega-3 Fatty Acids on the Plasma Metabolome of Healthy Older Adults. J Gerontol A Biol Sci Med Sci 2020; 75:875-884. [PMID: 31168623 PMCID: PMC7164537 DOI: 10.1093/gerona/glz141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Indexed: 11/13/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n3-PUFA) are well recognized for their potent triglyceride-lowering effects, but the potential influence of these bioactive lipids on other biological processes, particularly in the context of healthy aging, remains unknown. With the goal of gaining new insight into some less well-characterized biological effects of n3-PUFAs in healthy older adults, we performed metabolomics of fasting peripheral blood plasma collected from 12 young adults and 12 older adults before and after an open-label intervention of n3-PUFA (3.9 g/day, 2.7 g eicosapentaenoic [EPA], 1.2 g docosahexaenoic [DHA]). Proton nuclear magnetic resonance (1H-NMR) based lipoprotein subclass analysis revealed the expected reduction in total triglyceride (TG), but also demonstrated that n3-PUFA supplementation reduced very low-density lipoprotein (VLDL) particle number, modestly increased high-density lipoprotein (HDL) cholesterol, and shifted the composition of HDL subclasses. Further metabolite profiling by 1H-NMR and mass spectrometry revealed pronounced changes in phospholipids, cholesterol esters, diglycerides, and triglycerides following n3-PUFA supplementation. Furthermore, significant changes in hydroxyproline, kynurenine, and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF) following n3-PUFA supplementation provide further insight into some less well-recognized biological effects of n3-PUFA supplementation, including possible effects on protein metabolism, the kynurenine pathway, and glucose metabolism.
Collapse
Affiliation(s)
- Souzana-Eirini Xyda
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | | - Surendra Dasari
- Division of Biomedical Statistics and Informatics, Rochester, Minnesota
| | - Antigoni Z Lalia
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Mojtaba Parvizi
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Slobodan I Macura
- Metabolomics Core Laboratory, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Ian R Lanza
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota
- Metabolomics Core Laboratory, Rochester, Minnesota
| |
Collapse
|
42
|
Shi Y, Zhang Y, Tian H, Wang Y, Shen Y, Zhu Q, Ding F. Improved dialytic removal of protein-bound uremic toxins by intravenous lipid emulsion in chronic kidney disease rats. Nephrol Dial Transplant 2020; 34:1842-1852. [PMID: 31071223 DOI: 10.1093/ndt/gfz079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/22/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Protein-bound uremic toxins (PBUTs) have received extensive attention, as their accumulation leads to pleiotropic toxic biological effects, while the removal of these solutes by conventional dialysis therapies is severely hampered. This study aimed to examine whether increased removal of PBUTs could be achieved with intravenous lipid emulsion (ILE). METHODS PBUTs such as 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF), p-cresyl sulfate (PCS) and indoxyl sulfate (IS) were spiked with human serum albumin (HSA) solution and the inhibitory effects of free fatty acid (FFA) on the binding of CMPF, PCS and IS to HSA were examined separately in vitro by ultrafiltration. In vitro dialysis of albumin solution was then performed to investigate the effects of fatty acid (FAs) mixtures infusion on the fractional removal of PBUTs. Finally, the inhibitory effect of FFA on the binding of PBUTs to albumin was examined in uremic rats, and blood purification therapy was conducted to calculate the reduction ratio (RR) and the total solute removal (TSR) of solutes. RESULTS The percentage protein binding of CMPF, PCS and IS decreased significantly with increasing FFAs concentrations, and the inhibitory effect was more remarkable with the addition of oleic acid or linoleic acid than that of eicosapentaenoic acid and docosahexaenoic acid. In vitro infusion of FAs increased the fractional removal of CMPF to 14.40 ± 2.38%. PCS, IS and indole-3-acetic acid removal increased from 8.00 ± 2.43%, 11.68 ± 1.54% and 15.38 ± 3.97%, respectively, at baseline to 28.21 ± 5.99%, 35.42 ± 5.27% and 40.18 ± 5.05%, respectively, when FAs were present. In vivo, rat serum concentrations of free PBUTs were significantly higher in the ILE group than in the control group, and administration of ILE resulted in higher RRs and more TSR for PBUTs after 3 h of hemodialysis (HD) therapy compared with the control group. CONCLUSIONS Administration of ILE effectively increased the dialytic removal of PBUTs. This method could be applied to current HD therapy.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yumei Zhang
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huajun Tian
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yifeng Wang
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Shen
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiuyu Zhu
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Feng Ding
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
43
|
Leung RY, Li GH, Cheung BM, Tan KC, Kung AW, Cheung CL. Serum metabolomic profiling and its association with 25-hydroxyvitamin D. Clin Nutr 2020; 39:1179-1187. [DOI: 10.1016/j.clnu.2019.04.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/20/2019] [Accepted: 04/27/2019] [Indexed: 02/01/2023]
|
44
|
Xu L, Hu C, Liu Y, Li S, Vetter W, Yin H, Wang Y. Development of a sensitive and quantitative method for the identification of two major furan fatty acids in human plasma. J Lipid Res 2020; 61:560-569. [PMID: 32029512 DOI: 10.1194/jlr.d119000514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/29/2020] [Indexed: 01/28/2023] Open
Abstract
This article focuses on the establishment of an accurate and sensitive quantitation method for the analysis of furan fatty acids. In particular, the sensitivity of GC/MS and UPLC/ESI/MS/MS was compared for the identification and quantification of furan fatty acids. Different methylation methods were tested with respect to GC/MS analysis. Special attention needs to be paid to the methylation of furan fatty acids, as acidic catalysts might lead to the degradation of the furan ring. GC/MS analysis in full-scan mode demonstrated that the limit of quantitation was 10 μM. UPLC/ESI/MS/MS in multiple reaction monitoring mode displayed a higher detection sensitivity than GC/MS. Moreover, the identification of furan fatty acids with charge-reversal derivatization was tested in the positive mode with two widely used pyridinium salts. Significant oxidation was unexpectedly observed using N-(4-aminomethylphenyl) pyridinium as a derivatization agent. The formed 3-acyl-oxymethyl-1-methylpyridinium iodide derivatized by 2-bromo-1-methylpyridinium iodide and 3-carbinol-1-methylpyridinium iodide improved the sensitivity more than 2,000-fold compared with nonderivatization in the negative mode by UPLC/ESI/MS/MS. This charge-reversal derivatization enabled the targeted quantitation of furan fatty acids in human plasma. Thus, it is anticipated that this protocol could greatly contribute to the clarification of pathological mechanisms related to furan fatty acids and their metabolites.
Collapse
Affiliation(s)
- Long Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongguo Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Siming Li
- Analytical Applications Center, Analytical Instruments Division, Shimadzu, Guangzhou, China
| | - Walter Vetter
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, Stuttgart, Germany
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
45
|
Dias-Audibert FL, Navarro LC, de Oliveira DN, Delafiori J, Melo CFOR, Guerreiro TM, Rosa FT, Petenuci DL, Watanabe MAE, Velloso LA, Rocha AR, Catharino RR. Combining Machine Learning and Metabolomics to Identify Weight Gain Biomarkers. Front Bioeng Biotechnol 2020; 8:6. [PMID: 32039191 PMCID: PMC6993102 DOI: 10.3389/fbioe.2020.00006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/06/2020] [Indexed: 12/20/2022] Open
Abstract
Weight gain is a metabolic disorder that often culminates in the development of obesity and other comorbidities such as diabetes. Obesity is characterized by the development of a chronic, subclinical systemic inflammation, and is regarded as a remarkably important factor that contributes to the development of such comorbidities. Therefore, laboratory methods that allow the identification of subjects at higher risk for severe weight-associated morbidity are of utter importance, considering the health, and safety of populations. This contribution analyzed the plasma of 180 Brazilian individuals, equally divided into a eutrophic control group and case group, to assess the presence of biomarkers related to weight gain, aiming at characterizing the phenotype of this population. Samples were analyzed by mass spectrometry and most discriminant features were determined by a machine learning approach using Random Forest algorithm. Five biomarkers related to the pathogenesis and chronicity of inflammation in weight gain were identified. Two metabolites of arachidonic acid were upregulated in the case group, indicating the presence of inflammation, as well as two other molecules related to dysfunctions in the cycle of nitric oxide (NO) and increase in superoxide production. Finally, a fifth case group marker observed in this study may indicate the trigger for diabetes in overweight and obesity individuals. The use of mass spectrometry combined with machine learning analyses to prospect and characterize biomarkers associated with weight gain will pave the way for elucidating potential therapeutic and prognostic targets.
Collapse
Affiliation(s)
- Flávia Luísa Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Luiz Claudio Navarro
- RECOD Laboratory, Institute of Computing (IC), University of Campinas, Campinas, Brazil
| | - Diogo Noin de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | | | - Tatiane Melina Guerreiro
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | | | - Diego Lima Petenuci
- Laboratory of Studies and Applications of DNA Polymorphisms, Biological Sciences Center, Londrina State University, Londrina, Brazil
| | - Maria Angelica Ehara Watanabe
- Laboratory of Studies and Applications of DNA Polymorphisms, Biological Sciences Center, Londrina State University, Londrina, Brazil
| | - Licio Augusto Velloso
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Rodrigo Ramos Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
46
|
Nigam AK, Li JG, Lall K, Shi D, Bush KT, Bhatnagar V, Abagyan R, Nigam SK. Unique metabolite preferences of the drug transporters OAT1 and OAT3 analyzed by machine learning. J Biol Chem 2020; 295:1829-1842. [PMID: 31896576 DOI: 10.1074/jbc.ra119.010729] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/30/2019] [Indexed: 01/04/2023] Open
Abstract
The multispecific organic anion transporters, OAT1 (SLC22A6) and OAT3 (SLC22A8), the main kidney elimination pathways for many common drugs, are often considered to have largely-redundant roles. However, whereas examination of metabolomics data from Oat-knockout mice (Oat1 and Oat3KO) revealed considerable overlap, over a hundred metabolites were increased in the plasma of one or the other of these knockout mice. Many of these relatively unique metabolites are components of distinct biochemical and signaling pathways, including those involving amino acids, lipids, bile acids, and uremic toxins. Cheminformatics, together with a "logical" statistical and machine learning-based approach, identified a number of molecular features distinguishing these unique endogenous substrates. Compared with OAT1, OAT3 tends to interact with more complex substrates possessing more rings and chiral centers. An independent "brute force" approach, analyzing all possible combinations of molecular features, supported the logical approach. Together, the results suggest the potential molecular basis by which OAT1 and OAT3 modulate distinct metabolic and signaling pathways in vivo As suggested by the Remote Sensing and Signaling Theory, the analysis provides a potential mechanism by which "multispecific" kidney proximal tubule transporters exert distinct physiological effects. Furthermore, a strong metabolite-based machine-learning classifier was able to successfully predict unique OAT1 versus OAT3 drugs; this suggests the feasibility of drug design based on knockout metabolomics of drug transporters. The approach can be applied to other SLC and ATP-binding cassette drug transporters to define their nonredundant physiological roles and for analyzing the potential impact of drug-metabolite interactions.
Collapse
Affiliation(s)
- Anisha K Nigam
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0693
| | - Julia G Li
- Department of Biology, University of California San Diego, La Jolla, California 92093-0693
| | - Kaustubh Lall
- Department of Computer Engineering, University of California San Diego, La Jolla, California 92093-0693
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0693
| | - Kevin T Bush
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0693
| | - Vibha Bhatnagar
- Department of Family and Preventative Medicine, University of California San Diego, La Jolla, California 92093-0693
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0693.
| | - Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0693; Department of Medicine, University of California San Diego, La Jolla, California 92093-0693.
| |
Collapse
|
47
|
Liu G, Gibson RA, Callahan D, Guo XF, Li D, Sinclair AJ. Pure omega 3 polyunsaturated fatty acids (EPA, DPA or DHA) are associated with increased plasma levels of 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) in a short-term study in women. Food Funct 2020; 11:2058-2066. [DOI: 10.1039/c9fo02440a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
3-Carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) is a metabolite of furan fatty acids found in plasma and urine. Our data show that purified EPA, DPA and DHA may also be precursors of CMPF; however the metabolic pathway(s) remain unclear.
Collapse
Affiliation(s)
- Ge Liu
- South Australian Health and Medical Research Institute
- Adelaide
- Australia
| | - Robert A. Gibson
- South Australian Health and Medical Research Institute
- Adelaide
- Australia
| | - Damien Callahan
- Deakin University
- School of Life and Environmental Sciences
- Burwood
- Australia
| | - Xiao-Fei Guo
- Institute of Nutrition and Health
- Qingdao University
- Qingdao
- China
| | - Duo Li
- Institute of Nutrition and Health
- Qingdao University
- Qingdao
- China
| | | |
Collapse
|
48
|
Zhao H, Tao S. MiRNA-221 protects islet β cell function in gestational diabetes mellitus by targeting PAK1. Biochem Biophys Res Commun 2019; 520:218-224. [PMID: 31587871 DOI: 10.1016/j.bbrc.2019.09.139] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022]
Abstract
To elucidate the potential function of miRNA-221 in gestational diabetes mellitus (GDM) and the underlying mechanism. MiRNA-221 level was analyzed in the microarray containing placental tissues of GDM rats. After constructing GDM model in rats, miRNA-221 level in placental tissues of GDM rats or controls was determined as well. The relationship between miRNA-221 level and blood glucose in GDM rats was analyzed by Spearman correlation test. Regulatory effects of miRNA-221 on proliferation, apoptosis and insulin secretion in INS-1 cells were assessed. Through dual-luciferase reporter gene assay, the direct target of miRNA-221, PAK1 was identified. At last, potential influences of miRNA-221/PAK1 axis on INS-1 cell phenotypes were determined. MiRNA-221 was downregulated in placental tissues of GDM rats, and its level was negatively correlated to that of blood glucose level in GDM rats. Overexpression of miRNA-221 stimulated insulin secretion, cell proliferation and suppressed apoptosis in INS-1 cells. Knockdown of miRNA-221 achieved the opposite results. PAK1 was proved as the direct target of miRNA-221. Notably, PAK1 was able to reverse regulatory effects of miRNA-221 on INS-1 cell phenotypes. MiRNA-221 regulates proliferation, apoptosis and insulin secretion in islet β cells through targeting PAK1, thus protecting GDM-induced islet dysfunction.
Collapse
Affiliation(s)
- Hongqiang Zhao
- Department of Gerontology, Jinan People's Hospital of Shandong Province, Jinan, China.
| | - Shujuan Tao
- Department of Obstetrics, Jinan Second Maternal and Child Health Hospital of Shandong Province, Jinan, China
| |
Collapse
|
49
|
Kadakia R, Talbot O, Kuang A, Bain JR, Muehlbauer MJ, Stevens RD, Ilkayeva OR, Lowe LP, Metzger BE, Newgard CB, Scholtens DM, Lowe WL. Cord Blood Metabolomics: Association With Newborn Anthropometrics and C-Peptide Across Ancestries. J Clin Endocrinol Metab 2019; 104:4459-4472. [PMID: 31498869 PMCID: PMC6735762 DOI: 10.1210/jc.2019-00238] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022]
Abstract
CONTEXT Newborn adiposity is associated with childhood obesity. Cord blood metabolomics is one approach that can be used to understand early-life contributors to adiposity and insulin resistance. OBJECTIVE To determine the association of cord blood metabolites with newborn adiposity and hyperinsulinemia in a multiethnic cohort of newborns. DESIGN Cross-sectional, observational study. SETTING Hyperglycemia and Adverse Pregnancy Outcome study. PARTICIPANTS One thousand six hundred multiethnic mother-newborn pairs. MAIN OUTCOME MEASURE Cord blood C-peptide, birthweight, and newborn sum of skinfolds. RESULTS Meta-analyses across four ancestry groups (Afro-Caribbean, Northern European, Thai, and Mexican American) demonstrated significant associations of cord blood metabolites with cord blood C-peptide, birthweight, and newborn sum of skinfolds. Several metabolites, including branched-chain amino acids (BCAAs), medium- and long-chain acylcarnitines, nonesterified fatty acids, and triglycerides were negatively associated with cord C-peptide but positively associated with birthweight and/or sum of skinfolds. 1,5-Anhydroglucitol, an inverse marker of recent maternal glycemia, was significantly inversely associated with birthweight and sum of skinfolds. Network analyses revealed groups of interrelated amino acid, acylcarnitine, and fatty acid metabolites associated with all three newborn outcomes. CONCLUSIONS Cord blood metabolites are associated with newborn size and cord blood C-peptide levels after adjustment for maternal body mass index and glucose during pregnancy. Negative associations of metabolites with C-peptide at birth were observed. 1,5-Anhydroglucitol appears to be a marker of adiposity in newborns. BCAAs were individually associated with birthweight and demonstrated possible associations with newborn adiposity in network analyses.
Collapse
Affiliation(s)
- Rachel Kadakia
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
- Correspondence and Reprint Requests: William L. Lowe, Jr., MD, Feinberg School of Medicine, Northwestern University, Rubloff Building, 12th Floor, 420 East Superior Street, Chicago, Ilinois 60611.
| | - Octavious Talbot
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Alan Kuang
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
- Duke Molecular Physiology Institute, Durham, North Carolina
- Duke University School of Medicine, Durham, North Carolina
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
- Duke Molecular Physiology Institute, Durham, North Carolina
- Duke University School of Medicine, Durham, North Carolina
| | - Robert D Stevens
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
- Duke Molecular Physiology Institute, Durham, North Carolina
- Duke University School of Medicine, Durham, North Carolina
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
- Duke Molecular Physiology Institute, Durham, North Carolina
- Duke University School of Medicine, Durham, North Carolina
| | - Lynn P Lowe
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Boyd E Metzger
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
- Duke Molecular Physiology Institute, Durham, North Carolina
- Duke University School of Medicine, Durham, North Carolina
| | | | - William L Lowe
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW A growing body of epidemiological and experimental data indicate that nutritional or environmental stressors during early development can induce long-term adaptations that increase risk of obesity, diabetes, cardiovascular disease, and other chronic conditions-a phenomenon termed "developmental programming." A common phenotype in humans and animal models is altered body composition, with reduced muscle and bone mass, and increased fat mass. In this review, we summarize the recent literature linking prenatal factors to future body composition and explore contributing mechanisms. RECENT FINDINGS Many prenatal exposures, including intrauterine growth restriction, extremes of birth weight, maternal obesity, and maternal diabetes, are associated with increased fat mass, reduced muscle mass, and decreased bone density, with effects reported throughout infancy and childhood, and persisting into middle age. Mechanisms and mediators include maternal diet, breastmilk composition, metabolites, appetite regulation, genetic and epigenetic influences, stem cell commitment and function, and mitochondrial metabolism. Differences in body composition are a common phenotype following disruptions to the prenatal environment, and may contribute to developmental programming of obesity and diabetes risk.
Collapse
Affiliation(s)
- Elvira Isganaitis
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Research Division, Joslin Diabetes Center, 1 Joslin Place, Room 655A, Boston, 02215, MA, USA.
| |
Collapse
|