1
|
Zhang Y, Kong X, Song K, He M, Xian Y, Xie X, Cheng J, Bai R, Ren Y. Long-Term Protective Effects and Mechanisms of Gastric Bypass Surgery on the Kidneys in Hypertensive Obese Rat. Obes Surg 2024; 34:1257-1266. [PMID: 38396260 DOI: 10.1007/s11695-024-07108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Investigate the long-term protective effects of gastric bypass surgery on the kidneys of hypertensive obese rats to better understand the role of gastric bypass surgery in preventing renal injury in humans with hypertension and obesity. METHODS Compare 6-week-old spontaneously hypertensive rats, including 30 Roux-en-Y gastric bypass (RYGB) and 30 sham operations. Body weight and blood pressure were monitored before and up to 12 months after the operation. Blood lipids, blood creatinine, and blood urea nitrogen were measured. Kidney pathology was assessed using HE staining, while renal fibrosis was observed via Masson staining. Inflammatory indicators were examined by ELISA. The expression of the NLRP3 gene in the kidney was measured using immunofluorescence and western blot, and the changes in key pathways including ASC/IL-1β protein were verified. RESULTS RYGB reduced the body weight of hypertensive obese rats and had a protective effect on blood pressure. Additionally, the bypass effectively mitigated renal inflammation and fibrosis. Moreover, RYGB modulated the expression of NLRP3 and prevented kidney damage via the ASC/IL-1 pathway. CONCLUSION This study validates that RYGB effectively attains sustained blood pressure control in hypertensive obese rats and has a potential kidney-protective mechanism via the NLRP3-ASC/IL-1β pathway.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan Province, China
- Institute of Hepatobiliary, Pancreatic and Gastroenterology, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan Province, China
- Institute of Hepatobiliary, Pancreatic and Gastroenterology, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan Province, China
- Institute of Hepatobiliary, Pancreatic and Gastroenterology, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan Province, China
| | - Yin Xian
- Nanchong Psychosomatic Hospital, Nanchong, 637000, China
| | - Xing Xie
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan Province, China
| | - Junming Cheng
- People's Hospital of Dazhu County, Dazhou, 635100, Sichuan Province, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan Province, China
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan Province, China.
- General Surgery, Xinhua Hospital, Chengdu, 610000, China.
| |
Collapse
|
2
|
Koch-Laskowski K, Kim KS, Bethea M, Fuller KNZ, Sandoval DA, Sethupathy P. Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution. Genomics 2024; 116:110805. [PMID: 38309446 PMCID: PMC10959023 DOI: 10.1016/j.ygeno.2024.110805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/05/2023] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
The gut plays a key role in regulating metabolic health. Dietary factors disrupt intestinal physiology and contribute to obesity and diabetes, whereas bariatric procedures such as vertical sleeve gastrectomy (VSG) cause gut adaptations that induce robust metabolic improvements. However, our understanding of these adaptations at the cellular and molecular levels remains limited. In a validated murine model, we leverage single-cell transcriptomics to determine how VSG impacts different cell lineages of the small intestinal epithelium. We define cell type-specific genes and pathways that VSG rescues from high-fat diet perturbation and characterize additional rescue-independent changes brought about by VSG. We show that Paneth cells have increased expression of the gut peptide Reg3g after VSG. We also find that VSG restores pathways pertaining to mitochondrial respiration and cellular metabolism, especially within crypt-based cells. Overall, our study provides unprecedented molecular resolution of VSG's therapeutic effects on the gut epithelium.
Collapse
Affiliation(s)
- Kieran Koch-Laskowski
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Ki-Suk Kim
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Maigen Bethea
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly N Z Fuller
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Darleen A Sandoval
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
3
|
Tong D, Xiang J, Liu W, Sun F, Wang L, Mou A, Cao T, Zhou Q, You M, Liao Y, Gao P, Liu D, Lu Z, Zhu Z. Leptin receptor deficiency impedes metabolic surgery related-weight loss through inhibition of energy expenditure in db/db mice. Diabetol Metab Syndr 2024; 16:33. [PMID: 38302999 PMCID: PMC10832203 DOI: 10.1186/s13098-024-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) surgery is an effective metabolic surgery against diabetes and obesity. Clinical evidence indicates that patients with severe obesity have a poor curative effect in losing weight if they suffer from leptin or its receptor deficiency, but the underlying mechanism remains elusive. Here, we investigated the effect of leptin receptor deficiency on metabolic dysfunction in db/db mice treated by RYGB surgery. METHODS The db/db mice and their heterozygote control db/m mice were subjected to RYGB or sham surgery. Body weight, blood glucose, food intake and glucose tolerance were evaluated. Micro-PET/CT and histological analysis were performed to examine the glucose uptake of tissues and the fat changes in mice. The key factors in glucose and fatty acid metabolism were detected by western blot analysis. RESULTS Compared with the sham group, the db/db mice in the RYGB group showed more significant weight regain after surgical recovery and improvement in hyperinsulinemia and glucose tolerance. However, the total body fat and multiple organ lipid deposition of RYGB-treated db/db mice was increased. The underlying mechanism studies suggested that the activation of AMPK regulated GLUT4 to increase glucose uptake, but AMPK could not promote fatty acid oxidation through the JAK2/STAT3 pathway under leptin receptor deficiency in db/db mice. CONCLUSION We conclude that leptin receptor deficiency impedes the AMPK activation-mediated fat catabolism but does not affect AMPK-related glucose utilization after metabolic surgery in db/db mice. This result helps select surgical indications for patients with obesity and diabetes.
Collapse
Affiliation(s)
- Dan Tong
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Jie Xiang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Wei Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Fang Sun
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Aidi Mou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Qing Zhou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Mei You
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Yingying Liao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China.
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China.
| |
Collapse
|
4
|
Flanagan EW, Spann R, Berry SE, Berthoud HR, Broyles S, Foster GD, Krakoff J, Loos RJF, Lowe MR, Ostendorf DM, Powell-Wiley TM, Redman LM, Rosenbaum M, Schauer PR, Seeley RJ, Swinburn BA, Hall K, Ravussin E. New insights in the mechanisms of weight-loss maintenance: Summary from a Pennington symposium. Obesity (Silver Spring) 2023; 31:2895-2908. [PMID: 37845825 PMCID: PMC10915908 DOI: 10.1002/oby.23905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 10/18/2023]
Abstract
Obesity is a chronic disease that affects more than 650 million adults worldwide. Obesity not only is a significant health concern on its own, but predisposes to cardiometabolic comorbidities, including coronary heart disease, dyslipidemia, hypertension, type 2 diabetes, and some cancers. Lifestyle interventions effectively promote weight loss of 5% to 10%, and pharmacological and surgical interventions even more, with some novel approved drugs inducing up to an average of 25% weight loss. Yet, maintaining weight loss over the long-term remains extremely challenging, and subsequent weight gain is typical. The mechanisms underlying weight regain remain to be fully elucidated. The purpose of this Pennington Biomedical Scientific Symposium was to review and highlight the complex interplay between the physiological, behavioral, and environmental systems controlling energy intake and expenditure. Each of these contributions were further discussed in the context of weight-loss maintenance, and systems-level viewpoints were highlighted to interpret gaps in current approaches. The invited speakers built upon the science of obesity and weight loss to collectively propose future research directions that will aid in revealing the complicated mechanisms involved in the weight-reduced state.
Collapse
Affiliation(s)
| | - Redin Spann
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Sarah E. Berry
- Department of Nutritional Sciences, King’s College London, London, UK
| | | | | | - Gary D. Foster
- WW International, New York, New York, USA
- Center for Weight and Eating Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology & Clinical Research Branch, NIDDK-Phoenix, Phoenix, Arizona, USA
| | - Ruth J. F. Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Danielle M. Ostendorf
- Department of Medicine, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, Maryland, USA
| | - Leanne M. Redman
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Michael Rosenbaum
- Division of Molecular Genetics and Irving Center for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Randy J. Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Boyd A. Swinburn
- School of Population Health, University of Auckland, Auckland, New Zealand
| | - Kevin Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
5
|
Ross RC, Heintz EC, Zunica ERM, Townsend RL, Spence AE, Schauer PR, Kirwan JP, Axelrod CL, Albaugh VL. Bariatric surgery alters mitochondrial function in gut mucosa. Surg Endosc 2023; 37:8810-8817. [PMID: 37620650 PMCID: PMC10865135 DOI: 10.1007/s00464-023-10351-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND The obesity pandemic has worsened global disease burden, including type 2 diabetes, cardiovascular disease, and cancer. Metabolic/bariatric surgery (MBS) is the most effective and durable obesity treatment, but the mechanisms underlying its long-term weight loss efficacy remain unclear. MBS drives substrate oxidation that has been linked to improvements in metabolic function and improved glycemic control that are potentially mediated by mitochondria-a primary site of energy production. As such, augmentation of intestinal mitochondrial function may drive processes underlying the systemic metabolic benefits of MBS. Herein, we applied a highly sensitive technique to evaluate intestinal mitochondrial function ex vivo in a mouse model of MBS. METHODS Mice were randomized to surgery, sham, or non-operative control. A simplified model of MBS, ileal interposition, was performed by interposition of a 2-cm segment of terminal ileum into the proximal bowel 5 mm from the ligament of Treitz. After a four-week recovery period, intestinal mucosa of duodenum, jejunum, ileum, and interposed ileum were assayed for determination of mitochondrial respiratory function. Citrate synthase activity was measured as a marker of mitochondrial content. RESULTS Ileal interposition was well tolerated and associated with modest body weight loss and transient hypophagia relative to controls. Mitochondrial capacity declined in the native duodenum and jejunum of animals following ileal interposition relative to controls, although respiration remained unchanged in these segments. Similarly, ileal interposition lowered citrate synthase activity in the duodenum and jejunum following relative to controls but ileal function remained constant across all groups. CONCLUSION Ileal interposition decreases mitochondrial volume in the proximal intestinal mucosa of mice. This change in concentration with preserved respiration suggests a global mucosal response to segment specific nutrition signals in the distal bowel. Future studies are required to understand the causes underlying these mitochondrial changes.
Collapse
Affiliation(s)
- Robert C Ross
- Translational & Integrative Gastrointestinal & Endocrine Research (TIGER) Laboratory, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Rd, Baton Rouge, LA, USA
| | - Elizabeth C Heintz
- Integrated Physiology & Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Elizabeth R M Zunica
- Integrated Physiology & Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - R Leigh Townsend
- Translational & Integrative Gastrointestinal & Endocrine Research (TIGER) Laboratory, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Rd, Baton Rouge, LA, USA
| | - Amanda E Spence
- Translational & Integrative Gastrointestinal & Endocrine Research (TIGER) Laboratory, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Rd, Baton Rouge, LA, USA
| | - Philip R Schauer
- Pennington Biomedical Research Center, Metamor Institute, Louisiana State University, Baton Rouge, LA, USA
- Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - John P Kirwan
- Integrated Physiology & Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Christopher L Axelrod
- Integrated Physiology & Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Vance L Albaugh
- Translational & Integrative Gastrointestinal & Endocrine Research (TIGER) Laboratory, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Rd, Baton Rouge, LA, USA.
- Pennington Biomedical Research Center, Metamor Institute, Louisiana State University, Baton Rouge, LA, USA.
- Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
6
|
Shin JH, Bozadjieva-Kramer N, Seeley RJ. Reg3γ: current understanding and future therapeutic opportunities in metabolic disease. Exp Mol Med 2023; 55:1672-1677. [PMID: 37524871 PMCID: PMC10474034 DOI: 10.1038/s12276-023-01054-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 08/02/2023] Open
Abstract
Regenerating family member gamma, Reg3γ (the mouse homolog of human REG3A), belonging to the antimicrobial peptides (AMPs), functions as a part of the host immune system to maintain spatial segregation between the gut bacteria and the host in the intestine via bactericidal activity. There is emerging evidence that gut manipulations such as bariatric surgery, dietary supplementation or drug treatment to produce metabolic benefits alter the gut microbiome. In addition to changes in a wide range of gut hormones, these gut manipulations also induce the expression of Reg3γ in the intestine. Studies over the past decades have revealed that Reg3γ not only plays a role in the gut lumen but can also contribute to host physiology through interaction with the gut microbiota. Herein, we discuss the current knowledge regarding the biology of Reg3γ, its role in various metabolic functions, and new opportunities for therapeutic strategies to treat metabolic disorders.
Collapse
Affiliation(s)
- Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Pannu PR, Chukwudi C, Wang J, Yang P, Esfahani FN, Saeidi N. Physical properties of food or bile redirection do not contribute to the intestinal adaptations after Roux-en-Y Gastric Bypass in rats. Obes Sci Pract 2023; 9:274-284. [PMID: 37287514 PMCID: PMC10242252 DOI: 10.1002/osp4.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 06/09/2023] Open
Abstract
Objective Metabolic and morphological adaptations of the intestine have been suggested to play a role in the various therapeutic benefits of Roux-en-Y Gastric Bypass (RYGB) surgery. However, the precise underlying mechanisms remain unclear. In this study, the effects of physical properties of ingested food and redirection of biliopancreatic secretions on intestinal remodeling were investigated in RYGB operated rats. Methods RYGB employing two different Roux Limb (RL) lengths was performed on high fat diet induced obese rats. Post-operatively, rats were fed either Solid or isocaloric Liquid diets. Metabolic and morphological remodeling of intestine was compared across both diet forms (Solid and Liquid diets) and surgical models (Short RL and Long RL). Results RYGB surgery in rats induced weight loss and improved glucose tolerance which was independent of physical properties of ingested food and biliopancreatic secretions. Intestinal glucose utilization after RYGB was not determined by either food form or biliopancreatic secretions. The GLUT-1 expression in RL was not influenced by physical properties of food. Furthermore, both physical properties of food and biliopancreatic secretions showed no effects on intestinal morphological adaptations after RYGB. Conclusion Results of this study demonstrate that physical properties of food and bile redirection are not major determinants of intestinal remodeling after RYGB in rats.
Collapse
Affiliation(s)
- Prabh R. Pannu
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
| | - Chijioke Chukwudi
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
| | - Jianxun Wang
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
| | - Po‐Jen Yang
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| | - Farid Nasr Esfahani
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
| | - Nima Saeidi
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
| |
Collapse
|
8
|
Abstract
Many people with obesity and type 2 diabetes achieve remission of their diabetes after Roux-en-Y Gastric Bypass Surgery but the mechanisms remain disputed. We provide our perspective on competing data sets that either point towards this effect being entirely due to the loss of weight, or due to weight loss-independent effects.
Collapse
Affiliation(s)
- Samuel Klein
- Center for Human Nutrition, Washington University, St. Louis, Missouri, USA
- Sansum Diabetes Research Institute, Santa Barbara, CA, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Caiazzo R, Marciniak C, Rémond A, Baud G, Pattou F. Future of bariatric surgery beyond simple weight loss: Metabolic surgery. J Visc Surg 2023; 160:S55-S62. [PMID: 36774271 DOI: 10.1016/j.jviscsurg.2023.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Anatomical modifications implemented during bariatric surgery not only result in weight loss, but also lead to metabolic corrections that translate into better glycemia stability and improvement in cardiovascular and liver disorders. The logical extension of surgical indications beyond mere reduction of the body mass index (BMI) (i.e. patients with<35kg/m2) is a hot topic today in France and worldwide. Metabolic surgeries make use of multiple modalities (endoscopic, mini-invasive, invasive) that should be carried out by trained physicians and within the same type of multidisciplinary formation as that for bariatric surgery. The aim of this update is to describe the physiological mechanisms that result in the benefits of bariatric surgery, the various procedures currently available and the perspectives for this new field in visceral and digestive surgery.
Collapse
Affiliation(s)
- R Caiazzo
- General and Endocrine Surgery Department, Inuversity Hospital of Lille, Lille, France.
| | - C Marciniak
- General and Endocrine Surgery Department, Inuversity Hospital of Lille, Lille, France
| | - A Rémond
- General and Endocrine Surgery Department, Inuversity Hospital of Lille, Lille, France
| | - G Baud
- General and Endocrine Surgery Department, Inuversity Hospital of Lille, Lille, France
| | - F Pattou
- General and Endocrine Surgery Department, Inuversity Hospital of Lille, Lille, France
| |
Collapse
|
10
|
Hayashi M, Kaye JA, Douglas ER, Joshi NR, Gribble FM, Reimann F, Liberles SD. Enteroendocrine cell lineages that differentially control feeding and gut motility. eLife 2023; 12:78512. [PMID: 36810133 PMCID: PMC10032656 DOI: 10.7554/elife.78512] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Enteroendocrine cells are specialized sensory cells of the gut-brain axis that are sparsely distributed along the intestinal epithelium. The functions of enteroendocrine cells have classically been inferred by the gut hormones they release. However, individual enteroendocrine cells typically produce multiple, sometimes apparently opposing, gut hormones in combination, and some gut hormones are also produced elsewhere in the body. Here, we developed approaches involving intersectional genetics to enable selective access to enteroendocrine cells in vivo in mice. We targeted FlpO expression to the endogenous Villin1 locus (in Vil1-p2a-FlpO knock-in mice) to restrict reporter expression to intestinal epithelium. Combined use of Cre and Flp alleles effectively targeted major transcriptome-defined enteroendocrine cell lineages that produce serotonin, glucagon-like peptide 1, cholecystokinin, somatostatin, or glucose-dependent insulinotropic polypeptide. Chemogenetic activation of different enteroendocrine cell types variably impacted feeding behavior and gut motility. Defining the physiological roles of different enteroendocrine cell types provides an essential framework for understanding sensory biology of the intestine.
Collapse
Affiliation(s)
- Marito Hayashi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Judith A Kaye
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Ella R Douglas
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Narendra R Joshi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Fiona M Gribble
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Frank Reimann
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Stephen D Liberles
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
11
|
Evenepoel C, Vandermeulen G, Luypaerts A, Vermeulen D, Lannoo M, Van der Schueren B, Buyse J, Verbeke K. The impact of bariatric surgery on macronutrient malabsorption depends on the type of procedure. Front Nutr 2023; 9:1028881. [PMID: 36712518 PMCID: PMC9877414 DOI: 10.3389/fnut.2022.1028881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Bariatric surgery, currently the most effective treatment for morbidly obese patients, may induce macronutrient malabsorption depending on the type of procedure. Macronutrient malabsorption affects the supply of substrates to the colon, subsequent microbial fermentation and possibly colonic health. Methods Using isotope technology, we quantified the extent of macronutrient and bile acid malabsorption and its impact on colonic protein fermentation in patients after Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) and in controls. Participants consumed a single test meal (day 0) that contained intrinsically labeled (13C, 15N, and 2H) egg protein for quantification of protein digestion, malabsorption and fermentation, respectively, together with a transit marker and a marker for bile acid malabsorption. They collected breath samples up to 6 h and all urine and stool for 48 and 72 h, respectively. Food intake was registered from day -3 to day 2. Results Malabsorption of fat, protein and carbohydrates differed between groups (p = 0.040; p = 0.046; and p = 0.003, respectively) and was slightly higher in RYGB but not in SG patients compared to controls. Protein fermentation was increased in both RYGB and SG patients compared to controls (p = 0.001) and was negatively correlated to 2H-recovery as a marker of transit (ρ = -0.47, p = 0.013). Conclusion The limited macronutrient malabsorption likely does not affect the nutritional status of the patient. However, the higher protein fermentation may affect colonic health and warrants further investigation.
Collapse
Affiliation(s)
- Charlotte Evenepoel
- Department of Chronic Diseases, Metabolism and Aging, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Greet Vandermeulen
- Department of Chronic Diseases, Metabolism and Aging, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Anja Luypaerts
- Department of Chronic Diseases, Metabolism and Aging, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Daniel Vermeulen
- Laboratory of Lifestock Physiology, Department of Animal and Human Health, KU Leuven, Leuven, Belgium
| | - Matthias Lannoo
- Nutrition & Obesity Unit, Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Aging, KU Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Nutrition & Obesity Unit, Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Aging, KU Leuven, Leuven, Belgium,Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Johan Buyse
- Laboratory of Lifestock Physiology, Department of Animal and Human Health, KU Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Department of Chronic Diseases, Metabolism and Aging, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium,Leuven Food Science and Nutrition Research Centre, KU Leuven, Leuven, Belgium,*Correspondence: Kristin Verbeke,
| |
Collapse
|
12
|
Taylor VJ. Lactation from the inside out: Maternal homeorhetic gastrointestinal adaptations regulating energy and nutrient flow into milk production. Mol Cell Endocrinol 2023; 559:111797. [PMID: 36243202 DOI: 10.1016/j.mce.2022.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Lactation invokes homeorhetic processes to ramp up and supply milk synthesis components to fulfil nutritional, immunological and microbiological requirements of developing offspring, overseen by complex neuroendocrine networks. The maternal gut meets these intense metabolic demands, supported by hyperphagia and rapid adjustments to process larger food quantities. Enteroplasticity describes an inherent ability of the gastrointestinal tract to harness metabolic and structural adaptations that increase nutrient absorption. Most shifts in response to increased demands are transitory and by secreting milk, the continuous energetic drain out of the maternal body avoids development of pathological metabolic diseases. Lactation has various positive benefits for long-term maternal health but many females do not lactate for long post pregnancy and younger women are increasingly pre-disposed to excessive body mass and/or metabolic complications prior to reproducing. Inadvertently invoking intestinal adaptations to harvest and store excess nutrients has negative health implications with increased risks for both mother and offspring.
Collapse
Affiliation(s)
- Vicky J Taylor
- School of Life, Health and Chemical Sciences (LHCS), Faculty of Science, Technology, Engineering and Mathematics (STEM), The Open University, United Kingdom.
| |
Collapse
|
13
|
Richter LR, Albert BI, Zhang L, Ostropolets A, Zitsman JL, Fennoy I, Albers DJ, Hripcsak G. Data assimilation on mechanistic models of glucose metabolism predicts glycemic states in adolescents following bariatric surgery. Front Physiol 2022; 13:923704. [PMID: 36518108 PMCID: PMC9744230 DOI: 10.3389/fphys.2022.923704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
Type 2 diabetes mellitus is a complex and under-treated disorder closely intertwined with obesity. Adolescents with severe obesity and type 2 diabetes have a more aggressive disease compared to adults, with a rapid decline in pancreatic β cell function and increased incidence of comorbidities. Given the relative paucity of pharmacotherapies, bariatric surgery has become increasingly used as a therapeutic option. However, subsets of this population have sub-optimal outcomes with either inadequate weight loss or little improvement in disease. Predicting which patients will benefit from surgery is a difficult task and detailed physiological characteristics of patients who do not respond to treatment are generally unknown. Identifying physiological predictors of surgical response therefore has the potential to reveal both novel phenotypes of disease as well as therapeutic targets. We leverage data assimilation paired with mechanistic models of glucose metabolism to estimate pre-operative physiological states of bariatric surgery patients, thereby identifying latent phenotypes of impaired glucose metabolism. Specifically, maximal insulin secretion capacity, σ, and insulin sensitivity, SI, differentiate aberrations in glucose metabolism underlying an individual's disease. Using multivariable logistic regression, we combine clinical data with data assimilation to predict post-operative glycemic outcomes at 12 months. Models using data assimilation sans insulin had comparable performance to models using oral glucose tolerance test glucose and insulin. Our best performing models used data assimilation and had an area under the receiver operating characteristic curve of 0.77 (95% confidence interval 0.7665, 0.7734) and mean average precision of 0.6258 (0.6206, 0.6311). We show that data assimilation extracts knowledge from mechanistic models of glucose metabolism to infer future glycemic states from limited clinical data. This method can provide a pathway to predict long-term, post-surgical glycemic states by estimating the contributions of insulin resistance and limitations of insulin secretion to pre-operative glucose metabolism.
Collapse
Affiliation(s)
- Lauren R. Richter
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, United States
| | - Benjamin I. Albert
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, United States
| | - Linying Zhang
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, United States
| | - Anna Ostropolets
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, United States
| | - Jeffrey L. Zitsman
- Division of Pediatric Surgery, Department of Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Ilene Fennoy
- Division of Pediatric Endocrinology, Metabolism, and Diabetes, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
| | - David J. Albers
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - George Hripcsak
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
14
|
Herzig D, Schiavon M, Tripyla A, Lehmann V, Meier J, Jainandunsing S, Kuenzli C, Stauffer TP, Dalla Man C, Bally L. Unraveling, contributing factors to the severity of postprandial hypoglycemia after gastric bypass surgery. Surg Obes Relat Dis 2022; 19:467-472. [PMID: 36509672 DOI: 10.1016/j.soard.2022.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/22/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Despite the increasing prevalence of postbariatric hypoglycemia (PBH), a late metabolic complication of bariatric surgery, our understanding of its diverse manifestations remains incomplete. OBJECTIVES To contrast parameters of glucose-insulin homeostasis in 2 distinct phenotypes of PBH (mild versus moderate hypoglycemia) based on nadir plasma glucose. SETTING University Hospital (Bern, Switzerland). METHODS Twenty-five subjects with PBH following gastric bypass surgery (age, 41 ± 12 years; body mass index, 28.1 ± 6.1kg/m2) received 75g of glucose with frequent blood sampling for glucose, insulin, C-peptide, and glucagon-like peptide 1 (GLP)-1. Based on nadir plasma glucose (</≥50mg/dL), subjects were grouped into level 1 (L1) and level 2 (L2) PBH groups. Beta-cell function (BCF), GLP-1 exposure (λ), beta-cell sensitivity to GLP-1 (π), potentiation of insulin secretion by GLP-1 (PI), first-pass hepatic insulin extraction (HE), insulin sensitivity (SI), and rate of glucose appearance (Ra) were calculated using an oral model of GLP-1 action coupled with the oral minimal model. RESULTS Nadir glucose was 43.3 ± 6.0mg/dL (mean ± standard deviation) and 60.1 ± 9.1mg/dL in L2- and L1-PBH, respectively. Insulin exposure was significantly higher in L2 versus L1 (P = .004). Mathematical modeling revealed higher BCF in L2 versus L1 (34.3 versus 18.8 10-9∗min-1; P = .003). Despite an increased GLP-1 exposure in L2 compared to L1 PBH (50.7 versus 31.9pmol∗L-1∗min∗102; P = .021), no significant difference in PI was observed (P = .204). No significant differences were observed for HE, Ra, and SI. CONCLUSIONS Our results suggest that higher insulin exposure in PBH patients with lower postprandial nadir glucose values mainly relate to a higher responsiveness to glucose, rather than GLP-1.
Collapse
Affiliation(s)
- David Herzig
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michele Schiavon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Afroditi Tripyla
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Vera Lehmann
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jasmin Meier
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sjaam Jainandunsing
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Internal Medicine, Maasstad Hospital, Rotterdam, the Netherlands
| | | | | | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Lia Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Abstract
Modern changes in diet and lifestyle have led to an explosion of insulin resistance and metabolic diseases around the globe which, if left unchecked, will become a principal driver of morbidity and mortality in the 21st century. The nature of the metabolic homeostatic shift within the body has therefore become a topic of considerable interest. While the gut has long been recognized as an acute nutrient sensor with signaling mechanisms to the other metabolic organs of the body, its role in regulating the body's metabolic status over longer periods of time has been underappreciated. Recent insights from bariatric surgery and intestinal nutrient stimulation experiments provide a window into the adaptive role of the intestinal mucosa in a foregut/hindgut metabolic balance model that helps to define metabolic parameters within the body-informing the metabolic regulation of insulin resistance versus sensitivity, hunger versus satiety, energy utilization versus energy storage, and protection from hypoglycemia versus protection from hyperglycemia. This intestinal metabolic balance model provides an intellectual framework with which to understand the distinct roles of proximal and distal intestinal segments in metabolic regulation. The model may also aid in the development of novel disease-modifying therapies that can correct the dysregulated metabolic signals from the intestine and stem the tide of metabolic diseases in society.
Collapse
Affiliation(s)
- Harith Rajagopalan
- Fractyl Health, Inc., Lexington,
MA, USA
- Harith Rajagopalan, M.D. PhD.,
Fractyl Health, Inc., 17 Hartwell Avenue, Lexington, MA 02421, USA.
| | | | - David C. Klonoff
- Diabetes Research Institute,
Mills-Peninsula Medical Center, San Mateo, California
| | - Alan D. Cherrington
- Department of Molecular
Physiology and Biophysics, Vanderbilt University School of Medicine,
Nashville, TN, USA
| |
Collapse
|
16
|
Peptide Tyrosine-Tyrosine Triggers GLP-2-Mediated Intestinal Hypertrophy After Roux-en-Y Gastric Bypass. Obes Surg 2022; 32:4023-4032. [PMID: 36301409 PMCID: PMC9671997 DOI: 10.1007/s11695-022-06328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022]
Abstract
Purpose Intestinal remodeling and adaptation of the alimentary limb after Roux-en-Y gastric bypass (RYGB) play an important role in the pathophysiological events that lead to type 2 diabetes mellitus (T2DM) improvement. Intestinal absorptive loop hypertrophy and growth following surgery have been related to GLP-2 secretion by ileal L-cells. The secretion of peptide tyrosine-tyrosine (PYY) enterohormone after a meal has been proposed as a trigger for ileal secretion of GLP-1. Our aim is to determine the role of PYY as a GLP-2 secretion modulator as an adaptation result in the alimentary limb after RYGB. Method We used a non-obese euglycemic rodent model. Circulating glucose, insulin, PYY, and GLP-2 were measured in the experimental and control groups. We used four groups: fasting control, Sham-operated, RYGB-operated (RYGB), and RYGB-operated and treated with BIIE0246 (RYGB + BII). BIIE0246 is a NPY2 receptor antagonist in L-cells. Intestinal glucose transporters and GLP-1 and PYY gut expression and hypertrophy were analyzed after 12 weeks of surgery. Results RYGB increased PYY3-36 plasma levels in rats with or without BII treatment. A high-insulin response was observed in the RYGB group but not in the control or RYGB + BII groups. BIIE0246 treatment limited plasma GLP-2 levels. In the alimentary intestinal limb, hypertrophy and SGLT1 and GLUT1 expression appeared to be reduced after RYGB compared to controls. Conclusion The postprandial ileal PYY secretion is enhanced after RYGB. This increase mediates GLP-2 release through its binding to the Y2 receptor on L-cells. This mechanism plays a role in alimentary limb hypertrophy after surgery. Graphical abstract ![]()
Collapse
|
17
|
Seo SH, Cho Y, Heo YS, Seo DH, Ahn SH, Hong SB, Suh YJ, Kim SH. Prediction of antidiabetic effect after gastrectomy with Roux-en-Y reconstruction in patients with gastric cancer and type 2 diabetes. Medicine (Baltimore) 2022; 101:e30309. [PMID: 36086777 PMCID: PMC10980430 DOI: 10.1097/md.0000000000030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
This study investigated the antidiabetic outcomes after gastrectomy with long-limb RY reconstruction (LRYR) and the prognostic factors for remission after 1 year in patients with type 2 diabetes (T2DM) and gastric cancer. In 25 Koreans with T2DM and gastric cancer, plasma glucose and insulin levels were measured during a 75 g oral glucose tolerance test, before and 1 week after gastrectomy with LRYR. Patients were examined after 1 year and we defined glycemic control as "remission" when the HbA1c level after 1 year was <6.0% without medication. One year after surgery, 12 patients achieved HbA1c < 6.0% without medication. Among the preoperative indices, the duration of diabetes was shorter in the remission group than that in the non-remission group (median 2.0 [0-6.5] years vs 7.0 [4.5-10.0] years, P = .023). At 1 week after surgery, significant improvements in fasting, 30 minutes, 60 minutes, 90 minutes stimulated glucose levels and insulin resistance (HOMA-IR and Matsuda index) were found only in the remission group. The multivariable logistic regression analysis results showed that higher 30 minutes stimulated glucose level and HOMA-IR index at 1 week after surgery were independent factors for lower odds of 1-year diabetes remission. Shorter duration of diabetes and early postoperative improvements in 30 minutes stimulated glucose level and HOMA-IR were important determinants of long-term antidiabetic outcomes after gastrectomy with LRYR in patients with T2DM and gastric cancer.
Collapse
Affiliation(s)
- Seong Ha Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea
| | - Yongin Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea
| | - Yoon Seok Heo
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| | - Da Hea Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea
| | - Seong Hee Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea
| | - Seong Bin Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea
| | - Young Ju Suh
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| | - So Hun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
18
|
Ross RC, Akinde YM, Schauer PR, le Roux CW, Brennan D, Jernigan AM, Bueter M, Albaugh VL. The role of bariatric and metabolic surgery in the development, diagnosis, and treatment of endometrial cancer. Front Surg 2022; 9:943544. [PMID: 36117808 PMCID: PMC9470773 DOI: 10.3389/fsurg.2022.943544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
The obesity pandemic continues to contribute to a worsening burden of disease worldwide. The link between obesity and diseases such as diabetes, cardiovascular disease, and cancer has been well established, yet most patients living with obesity remain untreated or undertreated. Metabolic and bariatric surgery is the most effective and durable treatment for obesity, is safe, and may have a protective benefit with respect to cancer incidence. In this review, an overview of the link between obesity, metabolic surgery, and cancer is discussed with emphasis on indications for endometrial cancer, the malignancy most strongly associated with obesity. Considerable evidence from retrospective and prospective cohort studies supports a decreased risk of endometrial cancer in patients with obesity who undergo bariatric surgery compared with nonsurgical controls. Survivors of endometrial cancer are at increased risk of poor health outcomes associated with obesity, and women with endometrial cancer are more likely to die of cardiovascular disease and other obesity-related illnesses than of the malignancy itself. Recent advances in anticancer drug therapies have targeted pathways that may also be therapeutically altered with metabolic surgery. Metabolic surgery has significant potential to enter the treatment paradigm for endometrial cancer, and gynecologic oncologist visits present an opportunity to identify patients who may benefit the most.
Collapse
Affiliation(s)
- Robert C. Ross
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Yetunde M. Akinde
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Philip R. Schauer
- Metamor Institute, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Carel W. le Roux
- School of Medicine, St. Vincent's University Hospital and University College Dublin, Dublin, Ireland
| | - Donal Brennan
- UCD Gynecological Oncology Group, UCD School of Medicine, Catherine McAuley Research Centre, Mater Misericordiae University Hospital, Belfield, Dublin, Ireland
| | - Amelia M. Jernigan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Marco Bueter
- Department of Visceral and Transplantation Surgery, University Hospital of Zürich, Zürich, Switzerland
| | - Vance L. Albaugh
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
- Metamor Institute, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
- Correspondence: Vance L. Albaugh
| |
Collapse
|
19
|
Giron LB, Peluso MJ, Ding J, Kenny G, Zilberstein NF, Koshy J, Hong KY, Rasmussen H, Miller GE, Bishehsari F, Balk RA, Moy JN, Hoh R, Lu S, Goldman AR, Tang HY, Yee BC, Chenna A, Winslow JW, Petropoulos CJ, Kelly JD, Wasse H, Martin JN, Liu Q, Keshavarzian A, Landay A, Deeks SG, Henrich TJ, Abdel-Mohsen M. Markers of fungal translocation are elevated during post-acute sequelae of SARS-CoV-2 and induce NF-κB signaling. JCI Insight 2022; 7:e160989. [PMID: 35727635 PMCID: PMC9462470 DOI: 10.1172/jci.insight.160989] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Long COVID, a type of post-acute sequelae of SARS-CoV-2 (PASC), has been associated with sustained elevated levels of immune activation and inflammation. However, the mechanisms that drive this inflammation remain unknown. Inflammation during acute coronavirus disease 2019 could be exacerbated by microbial translocation (from the gut and/or lung) to blood. Whether microbial translocation contributes to inflammation during PASC is unknown. We did not observe a significant elevation in plasma markers of bacterial translocation during PASC. However, we observed higher levels of fungal translocation - measured as β-glucan, a fungal cell wall polysaccharide - in the plasma of individuals experiencing PASC compared with those without PASC or SARS-CoV-2-negative controls. The higher β-glucan correlated with higher inflammation and elevated levels of host metabolites involved in activating N-methyl-d-aspartate receptors (such as metabolites within the tryptophan catabolism pathway) with established neurotoxic properties. Mechanistically, β-glucan can directly induce inflammation by binding to myeloid cells (via Dectin-1) and activating Syk/NF-κB signaling. Using a Dectin-1/NF-κB reporter model, we found that plasma from individuals experiencing PASC induced higher NF-κB signaling compared with plasma from negative controls. This higher NF-κB signaling was abrogated by piceatannol (Syk inhibitor). These data suggest a potential targetable mechanism linking fungal translocation and inflammation during PASC.
Collapse
Affiliation(s)
| | | | - Jianyi Ding
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Grace Kenny
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | | | - Jane Koshy
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kai Ying Hong
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | - Faraz Bishehsari
- Department of Internal Medicine, Rush University, Chicago, Illinois, USA
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, Illinois, USA
| | - Robert A. Balk
- Department of Internal Medicine, Rush University, Chicago, Illinois, USA
| | - James N. Moy
- Department of Internal Medicine, Rush University, Chicago, Illinois, USA
| | | | - Scott Lu
- UCSF, San Francisco, California, USA
| | | | - Hsin-Yao Tang
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Brandon C. Yee
- Monogram Biosciences, Inc., Labcorp, South San Francisco, California, USA
| | - Ahmed Chenna
- Monogram Biosciences, Inc., Labcorp, South San Francisco, California, USA
| | - John W. Winslow
- Monogram Biosciences, Inc., Labcorp, South San Francisco, California, USA
| | | | | | - Haimanot Wasse
- Department of Internal Medicine, Rush University, Chicago, Illinois, USA
| | | | - Qin Liu
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Rush University, Chicago, Illinois, USA
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, Illinois, USA
| | - Alan Landay
- Department of Internal Medicine, Rush University, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
20
|
De Novo Inflammatory Bowel Disease Following Bariatric Surgery: a Systematic Review and Meta-analysis. Obes Surg 2022; 32:3426-3434. [PMID: 35906528 DOI: 10.1007/s11695-022-06226-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
The incidence of both obesity and inflammatory bowel disease (IBD) is rising globally. The influence of bariatric metabolic surgery (BMS) upon IBD development is largely unknown. This systematic review and meta-analysis aimed to evaluate the relationship between BMS and the risk of de novo IBD development following surgery. A systematic literature search and meta-analysis were performed using PubMed and Scopus databases. Inclusion criteria were any study reporting risk of de novo IBD development following BMS relative to an appropriate control cohort. Pooled odds ratios (POR) were calculated. A total of 31 articles were identified by the literature search. Four studies including 149,385 patients met the inclusion criteria and were included in the meta-analysis. Pooled estimation of a meta-analysis of risk ratios studies demonstrated a POR for the development of IBD following BMS of 1.17 (95% CI, 1.06-1.29). This indicates a 17% increase in relative risk of de novo IBD development for those patients receiving BMS compared to those treated by non-surgical methods. Based on the present data, there appears to be an association between BMS and risk of de novo IBD. Compared to the proven benefits of BMS on other aspects of patient health, this potential risk remains proportionally low but may be an important consideration for patients both pre- and post-operatively.
Collapse
|
21
|
Spencer NJ, Keating DJ. Role of 5-HT in the enteric nervous system and enteroendocrine cells. Br J Pharmacol 2022. [PMID: 35861711 DOI: 10.1111/bph.15930] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Since the 1950s, considerable circumstantial evidence had been presented that endogenous 5-HT (serotonin) synthesized from within the wall of the gastrointestinal (GI) tract played an important role in GI motility and transit. However, identifying the precise functional role of gut-derived 5-HT has been difficult to ascertain, for a number of reasons. Over the past decade, as recording techniques have advanced significantly and access to new genetically modified animals improved, there have been major new insights and major changes in our understanding of the functional role of endogenous 5-HT in the GI tract. Data from many different laboratories have shown that major patterns of GI motility and transit still occur with minor or no, change when all endogenous 5-HT is pharmacologically or genetically ablated from the gut. Furthermore, antagonists of 5-HT3 receptors are equally, or more potent at inhibiting GI motility in segments of intestine that are completely depleted of endogenous 5-HT. Here, the most recent findings are discussed with regard to the functional role of endogenous 5-HT in enterochromaffin cells and enteric neurons in gut motility and more broadly in some major homeostatic pathways.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
22
|
Sheehan A, Goldfine A, Bajwa M, Wolfs D, Kozuka C, Piper J, Fowler K, Patti ME. Pramlintide for post-bariatric hypoglycaemia. Diabetes Obes Metab 2022; 24:1021-1028. [PMID: 35137513 PMCID: PMC9035096 DOI: 10.1111/dom.14665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 11/27/2022]
Abstract
AIMS The aim of this study was to examine the hypothesis that pramlintide would reduce hypoglycaemia by slowing gastric emptying and reducing postprandial glucagon secretion, thus limiting postprandial glycaemic excursions and insulin secretion, and thus to determine the efficacy of pramlintide on frequency and severity of hypoglycaemia in post-bariatric hypoglycaemia (PBH). MATERIALS AND METHODS Participants with PBH following gastric bypass were recruited from outpatient clinics at the Joslin Diabetes Center, Boston, Massachusetts for an open-label study of pramlintide efficacy over 8 weeks. Twenty-three participants were assessed for eligibility, 20 participants had at least one pramlintide dose, and 14 completed the study. A mixed-meal tolerance test (MMTT) was performed at baseline and after 8 weeks of subcutaneous pramlintide with a sequential dose increase to a maximum of 120 micrograms (mean 69 ± 32 mcg) three times daily. The primary endpoint was change in glucose excursions during the MMTT. Secondary measures included MMTT insulin response, satiety and dumping score, percentage time with sensor glucose (SG) <3.9 mM, and number of days with minimum SG <3 mM, during masked continuous glucose monitoring. RESULTS There were no differences in MMTT glucose, glucagon or insulin between baseline and post treatment. We observed no significant change in satiety or dumping scores. The overall frequency of low SG values did not change, although there was substantial inter-individual variability. CONCLUSIONS In PBH, pramlintide does not modulate glycaemic or insulin responses, satiety, or dumping scores during an MMTT and does not impact glycaemic excursions or decrease low SG levels in the outpatient setting.
Collapse
Affiliation(s)
- Amanda Sheehan
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Allison Goldfine
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Muhammed Bajwa
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Danielle Wolfs
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Chisayo Kozuka
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jacqueline Piper
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Kristen Fowler
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Mary Elizabeth Patti
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Dietary Alpha-Ketoglutarate Partially Abolishes Adverse Changes in the Small Intestine after Gastric Bypass Surgery in a Rat Model. Nutrients 2022; 14:nu14102062. [PMID: 35631203 PMCID: PMC9146360 DOI: 10.3390/nu14102062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/03/2023] Open
Abstract
Alpha-ketoglutarate (AKG) is one of the key metabolites that play a crucial role in cellular energy metabolism. Bariatric surgery is a life-saving procedure, but it carries many gastrointestinal side effects. The present study investigated the beneficial effects of dietary AKG on the structure, integrity, and absorption surface of the small intestine after bariatric surgery. Male 7-week-old Sprague Dowley rats underwent gastric bypass surgery, after which they received AKG, 0.2 g/kg body weight/day, administered in drinking water for 6 weeks. Changes in small intestinal morphology, including histomorphometric parameters of enteric plexuses, immunolocalization of claudin 3, MarvelD3, occludin and zonula ocludens 1 in the intestinal mucosa, and selected hormones, were evaluated. Proliferation, mucosal and submucosal thickness, number of intestinal villi and Paneth cells, and depth of crypts were increased; however, crypt activity, the absorption surface, the expression of claudin 3, MarvelD3, occludin and zonula ocludens 1 in the intestinal epithelium were decreased after gastric bypass surgery. Alpha-ketoglutarate supplementation partially improved intestinal structural parameters and epithelial integrity in rats undergoing this surgical procedure. Dietary AKG can abolish adverse functional changes in the intestinal mucosa, enteric nervous system, hormonal response, and maintenance of the intestinal barrier that occurred after gastric bypass surgery.
Collapse
|
24
|
Oh TJ, Lee H, Cho YM. East Asian perspectives in metabolic and bariatric surgery. J Diabetes Investig 2022; 13:756-761. [PMID: 35029061 PMCID: PMC9077716 DOI: 10.1111/jdi.13748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/28/2022] Open
Abstract
The prevalence of diabetes and obesity continues to rise in East Asia. As the risk of diabetes increases at a lower body mass index (BMI) in East Asians than in Europeans, the threshold of BMI values for metabolic and bariatric surgery (MBS) is lower in East Asians. MBS is considered upon reaching a BMI of 27.5 kg/m2 and is recommended at a BMI of ≥ 32.5 kg/m2 , depending on the status of glucose homeostasis. The most commonly performed MBS in East Asia is sleeve gastrectomy, followed by Roux-en-Y gastric bypass (RYGB). Because the incidence of gastric cancer is higher in East Asia than in other regions, concerns regarding surveillance for gastric cancer might be related to a preference for sleeve gastrectomy over RYGB in this region. Even though there is a paucity of data on direct comparisons of the efficacy of MBS among different ethnic groups, the degree of weight reduction in East Asians is not inferior to other ethnic groups. Moreover, studies suggest that the diabetes remission rate in East Asians seemed to be higher than in other ethnic groups. Future studies involving multiethnic groups are necessary to identify possible ethnic differences in diabetes remission and to determine the appropriate BMI threshold for MBS according to ethnicity.
Collapse
Affiliation(s)
- Tae Jung Oh
- Department of Internal MedicineSeoul National University College of Medicine and Seoul National University Bundang HospitalSeongnamKorea
| | - Hyuk‐Joon Lee
- Department of SurgerySeoul National University HospitalSeoulKorea
| | - Young Min Cho
- Department of Internal MedicineSeoul National University College of Medicine and Seoul National University HospitalSeoulKorea
| |
Collapse
|
25
|
Long-Term Diabetes Improvement After Duodenal Exclusion in Zucker Diabetic Fatty Rats Is Associated with Prevention of Strain-Specific Pancreatic Remodeling and Increased Beta Cell Proliferation. Obes Surg 2022; 32:1980-1989. [PMID: 35384574 PMCID: PMC9072278 DOI: 10.1007/s11695-022-06040-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
Background Response to metabolic surgery is heterogeneous and the metabolic states that underpin weight loss and metabolic improvement are still unclear. In this study, we investigate parameters of post-bariatric fasting glucoregulation and leverage artificial intelligence-assisted whole-slide image analyses to characterize associated immunohistologic features of the pancreas. Materials and Methods We performed either loop duodeno-jejunostomy (DJOS) with exclusion of 1/3 of total intestinal length, loop duodeno-ileostomy with exclusion of 2/3 of total intestinal length (DiOS), or a sham operation on 8-week-old male obese ZDF rats. Six months post-operative, we measured blood metabolites and hormones. Subsequently, pancreatic and intestinal tissue was removed, formalin fixed, and paraffin embedded. Immunohistologic (IHC) analyses included proliferating cell nuclear antigen (PCNA) to visualize the proliferation fraction and pancreatic and duodenal homeobox 1 (PDX 1) as a measure of pancreatic cell differentiation. For IHC quantification, all slides were digitalized and analyzed using QuPath. All analyzed slides were reviewed by two independent pathologists for correctness. Results DJOS and DiOS were associated with preserved fasting insulin production compared to sham. Histopathologic evaluation showed significantly higher numbers of beta cells and specifically of clustered cell organization in DJOS and DiOS compared to sham. Cell proliferation (PCNA) was significantly elevated in DJOS and DiOS compared to sham. Conclusion In this interventional model of bariatric surgery in severe genetic diabetes, we demonstrate post-operative histologic and immunohistologic features of the pancreas associated with improved fasting glucose homeostasis. Graphical abstract ![]()
Collapse
|
26
|
Camastra S, Palumbo M, Santini F. Nutrients handling after bariatric surgery, the role of gastrointestinal adaptation. Eat Weight Disord 2022; 27:449-461. [PMID: 33895917 PMCID: PMC8933374 DOI: 10.1007/s40519-021-01194-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/10/2021] [Indexed: 01/19/2023] Open
Abstract
Bariatric surgery determines a rearrangement of the gastrointestinal tract that influences nutrient handling and plays a role in the metabolic changes observed after surgery. Most of the changes depend on the accelerated gastric emptying observed in Roux-en-Y gastric bypass (RYGB) and, to a lesser extent, in sleeve gastrectomy (SG). The rapid delivery of meal into the jejunum, particularly after RYGB, contributes to the prompt appearance of glucose in peripheral circulation. Glucose increase is the principal determinant of GLP-1 increase with the consequent stimulation of insulin secretion, the latter balanced by a paradoxical glucagon increase that stimulates EGP to prevent hypoglycaemia. Protein digestion and amino acid absorption appear accelerated after RYGB but not after SG. After RYGB, the adaptation of the gut to the new condition participates to the metabolic change. The intestinal transit is delayed, the gut microbioma is changed, the epithelium becomes hypertrophic and increases the expression of glucose transporter and of the number of cell secreting hormones. These changes are not observed after SG. After RYGB-less after SG-bile acids (BA) increase, influencing glucose metabolism probably modulating FXR and TGR5 with an effect on insulin sensitivity. Muscle, hepatic and adipose tissue insulin sensitivity improve, and the gut reinforces the recovery of IS by enhancing glucose uptake and through the effect of the BA. The intestinal changes observed after RYGB result in a light malabsorption of lipid but not of carbohydrate and protein. In conclusion, functional and morphological adaptations of the gut after RYGB and SG activate inter-organs cross-talk that modulates the metabolic changes observed after surgery.Level of evidence Level V, narrative literature review.
Collapse
Affiliation(s)
- Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy. .,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| | - Maria Palumbo
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | - Ferruccio Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
27
|
AbdAlla Salman M, Rabiee A, Salman A, Elewa A, Tourky M, Mahmoud AA, Moustafa A, El-Din Shaaban H, Ismail AA, Noureldin K, Issa M, Farah M, Barbary H, Elhaj MGF, Omar HS. Predictors of type-2 diabetes remission following bariatric surgery after a two-year follow up. Asian J Surg 2022; 45:2645-2650. [PMID: 35256262 DOI: 10.1016/j.asjsur.2021.12.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/05/2021] [Accepted: 12/24/2021] [Indexed: 12/29/2022] Open
|
28
|
Lebrun LJ, Moreira S, Tavernier A, Niot I. Postprandial consequences of lipid absorption in the onset of obesity: Role of intestinal CD36. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159154. [DOI: 10.1016/j.bbalip.2022.159154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
29
|
Beale EO, Horowitz M. Hypothesis: Bolus jejunal feeding via an enteral feeding tube simulates key features of gastric bypass to initiate similar clinical benefits. Nutrition 2022; 94:111537. [PMID: 34920411 DOI: 10.1016/j.nut.2021.111537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Therapy for obesity and related comorbidities should be clinically effective, widely available and acceptable, and used in conjunction with an optimized lifestyle. Dieting is widely available and acceptable but has poorly sustained clinical efficacy. By contrast, Roux-en-Y gastric bypass (GB) is highly effective but cost and safety concerns limit widespread use. In this article this we discuss the hypothesis that bolus jejunal feeding (BJ) via an enteral feeding tube simulates key features of GB with the potential for similar clinical benefits. We further hypothesize that a practical manner of providing BJ therapeutically is via an externally inapparent orojejunal feeding tube. RATIONALE The first hypothesis is underpinned by the outcomes of research in three fields: 1) investigations into the mechanisms underlying the benefit of GB, 2) studies investigating gastrointestinal physiology and pathophysiology using enteral feeding tubes, and3) investigations into the mechanism underlying involuntary anorexia and weight loss in clinical situations that entail rapid nutrient delivery to the jejunum. There is compelling evidence that a supraphysiologic rate of delivery of nutrient to the jejunum suppresses appetite and energy intake and improves glucose homeostasis, and that these effects can be achieved non-surgically using an enteral feeding tube. The second hypothesis is supported by clinical demonstration of the feasibility of administering intermittent cycles of bolus feeds via an intraorally anchored feeding tube in ambulatory obese adults. CONCLUSION The hypotheses are testable in clinical studies. If validated, BJ could be used to induce the clinical benefits of GB, but without its costs or safety concerns.
Collapse
Affiliation(s)
- Elizabeth Ogden Beale
- Division of Endocrinology and Diabetes, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| | - Michael Horowitz
- Endocrine and Metabolic Unit, The Royal Adelaide Hospital, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
30
|
Oppenländer L, Palit S, Stemmer K, Greisle T, Sterr M, Salinno C, Bastidas-Ponce A, Feuchtinger A, Böttcher A, Ansarullah, Theis FJ, Lickert H. Vertical sleeve gastrectomy triggers fast β-cell recovery upon overt diabetes. Mol Metab 2021; 54:101330. [PMID: 34500108 PMCID: PMC8487975 DOI: 10.1016/j.molmet.2021.101330] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The effectiveness of bariatric surgery in restoring β-cell function has been described in type-2 diabetes (T2D) patients and animal models for years, whereas the mechanistic underpinnings are largely unknown. The possibility of vertical sleeve gastrectomy (VSG) to rescue far-progressed, clinically-relevant T2D and to promote β-cell recovery has not been investigated on a single-cell level. Nevertheless, characterization of the heterogeneity and functional states of β-cells after VSG is a fundamental step to understand mechanisms of glycaemic recovery and to ultimately develop alternative, less-invasive therapies. METHODS We performed VSG in late-stage diabetic db/db mice and analyzed the islet transcriptome using single-cell RNA sequencing (scRNA-seq). Immunohistochemical analyses and quantification of β-cell area and proliferation complement our findings from scRNA-seq. RESULTS We report that VSG was superior to calorie restriction in late-stage T2D and rapidly restored normoglycaemia in morbidly obese and overt diabetic db/db mice. Single-cell profiling of islets of Langerhans showed that VSG induced distinct, intrinsic changes in the β-cell transcriptome, but not in that of α-, δ-, and PP-cells. VSG triggered fast β-cell redifferentiation and functional improvement within only two weeks of intervention, which is not seen upon calorie restriction. Furthermore, VSG expanded β-cell area by means of redifferentiation and by creating a proliferation competent β-cell state. CONCLUSION Collectively, our study reveals the superiority of VSG in the remission of far-progressed T2D and presents paths of β-cell regeneration and molecular pathways underlying the glycaemic benefits of VSG.
Collapse
Affiliation(s)
- Lena Oppenländer
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Subarna Palit
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, TUM School of Life Sciences Weihenstephan, 85354, Freising, Germany
| | - Kerstin Stemmer
- Institute of Diabetes and Obesity, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392, Giessen, Germany
| | - Tobias Greisle
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Annette Feuchtinger
- Core Facility Pathology and Tissue Analytics, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Ansarullah
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany; Department of Mathematics, Technical University of Munich, 85748, Garching, Germany; Technical University of Munich, TUM School of Life Sciences Weihenstephan, 85354, Freising, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Department of Medicine, Technical University of Munich, 81675, Munich, Germany.
| |
Collapse
|
31
|
Pérez-Arana GM, Gómez AD, de Los Reyes JB, Camacho-Ramírez A, Fernández-Vivero J, Ribelles-García A, Almorza-Gomar D, Carrasco-Molinillo C, Mateo-Gavira I, Prada-Oliveira JA. The long-term failure of RYGB surgery in improving T2DM is related to hyperinsulinism. Ann Anat 2021; 240:151855. [PMID: 34785322 DOI: 10.1016/j.aanat.2021.151855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) is the gold standard method for bariatric surgery and leads to substantial improvements in Type 2 Diabetes mellitus. However, many patients experience relapses in diabetes five years after undergoing this aggressive surgical procedure. We focus on beta-cell population changes and absorptive intestinal consequences after RYGB in a healthy nonobese animal model after a long survival period. METHODS For our purpose, we use three groups of Wistar rats: RYGB-operated, surgical control (Sham) and fasting control. We measure alpha-, beta-cell mass; transcription (Arx, and Pdx-1) and proliferation (Ki67) factors; glucose tolerance and insulin release after oral glucose tests; histological adaptive changes in the jejunum; and intestinal glucose transporters. RESULTS Our results showed an early increase in insulin secretion after surgery, that decrease at the end of the study. The beta-cell mass reduces twenty-four weeks after RYGB, which coincides with decrease of Pdx-1 transcription promoter factor. These was coincident with an increase in alpha-mass and a high expression of Arx in RYGB group. CONCLUSIONS The analysis of all data showed beta-cell mass transdifferentiation into alpha-cell mass in RYGB rats. Due to long-term exhaustion of the beta-cell population by hyperinsulinism derived from digestive tract adaptation to surgery.
Collapse
Affiliation(s)
- Gonzalo-Martín Pérez-Arana
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, Spain; Asociación Gaditana de Apoyo al Investigador (AGAI) Cádiz, Spain; Institute for Bi omedical Science Research and Innovation (INIBICA) University of Cadiz, Spain.
| | | | | | | | - José Fernández-Vivero
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, Spain
| | | | - David Almorza-Gomar
- Complejo Hospitalario de Badajoz, Servicio Extremeño de Salud, Spain; Operative Statistic and Research Department, University of Cádiz, Spain
| | | | - Isabel Mateo-Gavira
- Institute for Bi omedical Science Research and Innovation (INIBICA) University of Cadiz, Spain; Endocrine and Metabolic Unit, Puerta del Mar Universitary Hospital, University of Cadiz, Spain
| | - José-Arturo Prada-Oliveira
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, Spain; Asociación Gaditana de Apoyo al Investigador (AGAI) Cádiz, Spain; Institute for Bi omedical Science Research and Innovation (INIBICA) University of Cadiz, Spain.
| |
Collapse
|
32
|
Ladebo L, Abuhelwa AY, Foster DJR, Kroustrup JP, Pacyk GJ, Kongstad KT, Drewes AM, Christrup LL, Olesen AE. Effect of Roux-en-Y gastric bypass on the pharmacokinetic-pharmacodynamic relationships of liquid and controlled-release formulations of oxycodone. Basic Clin Pharmacol Toxicol 2021; 129:232-245. [PMID: 34228875 DOI: 10.1111/bcpt.13634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022]
Abstract
The physiological changes following Roux-en-Y gastric bypass (RYGB) surgery may impact drug release from mechanistically different controlled-release tablets, making generic substitution inappropriate. This study aimed to characterise the pharmacokinetic-pharmacodynamic relationships of oxycodone from a lipid-based and water-swellable controlled-release tablet in RYGB patients. Twenty RYGB patients received 10-mg oral solution oxycodone or 20-mg controlled-release (water-swellable or lipid-based) oxycodone in a three-way, randomised, semiblinded and cross-over study. Blood sampling and pupillary recordings were conducted over a 24-h period. A previously established pharmacokinetic-pharmacodynamic model of these three formulations in healthy volunteers was used in the analysis as a reference model. No differences in absorption kinetics were seen between controlled-release formulations in patients. However, the absorption lag time was 11.5 min in patients vs 14 min in healthy volunteers for controlled-release tablets (P < 0.001). Furthermore, oral bioavailability was 14.4% higher in patients compared to healthy volunteers regardless of formulation type (P < 0.001). Oxycodone pharmacodynamics were not significantly affected by formulation or patient status. However, baseline pupil diameter was inversely correlated with age (P < 0.001) and plasma concentrations of oxycodone at half-maximum effect were 31% lower in males compared to females (P < 0.05). Generic substitution of monophasic lipid-based and water-swellable controlled-release oxycodone tablets may be considered safe in RYGB patients.
Collapse
Affiliation(s)
- Louise Ladebo
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ahmad Y Abuhelwa
- Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - David J R Foster
- Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jens P Kroustrup
- Department of Clinical Medicine and Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Grzegorz J Pacyk
- Department of Clinical Medicine and Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asbjørn M Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Lona L Christrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne E Olesen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Pharmacology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The prevalence of obesity is increasing in all age groups. Following its success in adults, and with limited success using conservative therapies, metabolic and bariatric surgery (MBS) is increasingly being utilized in adolescents. This review highlights the current evidence and guidelines supporting its use. RECENT FINDINGS Safety and efficacy mirror results seen in adults. The most recent evidence, as outcomes enter the long term, suggests that comorbidity resolution, including diabetes and hypertension, can even outperform that of adults. Mental health problems persist despite good weight loss. Overall, the positive early weight and comorbidity outcomes are well sustained into the long term. There is a growing need to prevent and treat adolescent obesity. Current evidence supports the use of MBS in adolescents. Ongoing and future studies will provide 10-year outcomes and assist in the refinement of multimodal pathways incorporating MBS for the treatment of severe childhood obesity.
Collapse
Affiliation(s)
| | | | - Andrew J Beamish
- Department of Gastrosurgical Research, Institute of Clinical Sciences, Gothenburg University, Gothenburg, Sweden.
- Swansea University Medical School, Swansea University, Swansea, UK.
- Department of GastroSurgical Research and Education, Sahlgrenska Universitetsjukhuset, Institute of Clinical Sciences, Gothenburg University, Gothenburg, 41431, UK.
| |
Collapse
|
34
|
Wang Y, Wang G, Bai J, Zhao N, Wang Q, Zhou R, Li G, Hu C, Li X, Tao K, Xia Z, Wang G. Role of Indole-3-Acetic Acid in NAFLD Amelioration After Sleeve Gastrectomy. Obes Surg 2021; 31:3040-3052. [DOI: 10.1007/s11695-021-05321-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
|
35
|
Adiponectin/SIRT1 Axis Induces White Adipose Browning After Vertical Sleeve Gastrectomy of Obese Rats with Type 2 Diabetes. Obes Surg 2021; 30:1392-1403. [PMID: 31781938 DOI: 10.1007/s11695-019-04295-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE White adipose tissue (WAT) browning plays a crucial role in energy metabolism. However, it remains unclear whether WAT browning is involved in the adipose reduction following sleeve gastrectomy (SG). Adiponectin is upregulated after Roux-en-Y gastric bypass surgery. The role of adiponectin in SG was further investigated in the current study. MATERIALS AND METHODS Diabetic Sprague Dawley rats were randomly divided into control, sham + libitum, sham + food restriction, and sleeve groups. Browning markers, including uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor (PPAR) γ, and PPARγ coactivator-1 alpha (PGC-1α), were examined 4 weeks after the operation. RESULTS UCP1, PPARγ, and PGC-1α expression were significantly higher in the sleeve group compared to the other study groups. The adipose tissue of the sleeve group exhibited tissue weight loss and additional morphological browning features. In addition, adiponectin expression in the sleeve group was significantly increased. Adiponectin upregulated the expression of the browning genes and sirtuin 1 (SIRT1) in 3T3-L1 adipocytes. SIRT1 could increase the WAT browning levels, revealing that adiponectin induced the browning process via the upregulation of SIRT1. Furthermore, SIRT1 represented a positive regulatory feedback loop for adiponectin. SIRT1 activated adenosine monophosphate-activated protein kinase (AMPK), which can mediate WAT browning. Inhibition of the AMPK signaling pathway by dorsomorphin decreased UCP1, PPARγ, and PGC-1α expression. However, additional studies are needed to understand the relationship between adiponectin and glucose homeostasis. CONCLUSIONS Sleeve gastrectomy increased adiponectin levels, which in turn upregulated SIRT1. Thus, SIRT1 may function as an endocrine signal to mediate WAT browning.
Collapse
|
36
|
West JA, Tsakmaki A, Ghosh SS, Parkes DG, Grønlund RV, Pedersen PJ, Maggs D, Rajagopalan H, Bewick GA. Chronic peptide-based GIP receptor inhibition exhibits modest glucose metabolic changes in mice when administered either alone or combined with GLP-1 agonism. PLoS One 2021; 16:e0249239. [PMID: 33788878 PMCID: PMC8011784 DOI: 10.1371/journal.pone.0249239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/13/2021] [Indexed: 12/04/2022] Open
Abstract
Combinatorial gut hormone therapy is one of the more promising strategies for identifying improved treatments for metabolic disease. Many approaches combine the established benefits of glucagon-like peptide-1 (GLP-1) agonism with one or more additional molecules with the aim of improving metabolic outcomes. Recent attention has been drawn to the glucose-dependent insulinotropic polypeptide (GIP) system due to compelling pre-clinical evidence describing the metabolic benefits of antagonising the GIP receptor (GIPR). We rationalised that benefit might be accrued from combining GIPR antagonism with GLP-1 agonism. Two GIPR peptide antagonists, GIPA-1 (mouse GIP(3–30)NH2) and GIPA-2 (NαAc-K10[γEγE-C16]-Arg18-hGIP(5–42)), were pharmacologically characterised and both exhibited potent antagonist properties. Acute in vivo administration of GIPA-1 during an oral glucose tolerance test (OGTT) had negligible effects on glucose tolerance and insulin in lean mice. In contrast, GIPA-2 impaired glucose tolerance and attenuated circulating insulin levels. A mouse model of diet-induced obesity (DIO) was used to investigate the potential metabolic benefits of chronic dosing of each antagonist, alone or in combination with liraglutide. Chronic administration studies showed expected effects of liraglutide, lowering food intake, body weight, fasting blood glucose and plasma insulin concentrations while improving glucose sensitivity, whereas delivery of either GIPR antagonist alone had negligible effects on these parameters. Interestingly, chronic dual therapy augmented insulin sensitizing effects and lowered plasma triglycerides and free-fatty acids, with more notable effects observed with GIPA-1 compared to GIPA-2. Thus, the co-administration of both a GIPR antagonist with a GLP1 agonist uncovers interesting beneficial effects on measures of insulin sensitivity, circulating lipids and certain adipose stores that seem influenced by the degree or nature of GIP receptor antagonism.
Collapse
Affiliation(s)
- Jason A. West
- Fractyl Laboratories Inc, Lexington, MA, United States of America
| | - Anastasia Tsakmaki
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, England, United Kingdom
| | | | | | | | | | - David Maggs
- Fractyl Laboratories Inc, Lexington, MA, United States of America
| | | | - Gavin A. Bewick
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, England, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Ladebo L, Pedersen PV, Pacyk GJ, Kroustrup JP, Drewes AM, Brock C, Olesen AE. Gastrointestinal pH, Motility Patterns, and Transit Times After Roux-en-Y Gastric Bypass. Obes Surg 2021; 31:2632-2640. [PMID: 33709293 DOI: 10.1007/s11695-021-05308-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Studies investigating the underlying pathophysiology are needed to help explain and understand the postoperative complications following Roux-en-Y gastric bypass (RYGB) surgery. This study aimed to characterize segmental gastrointestinal pH profiles, motility measures, and transit times in patients with RYGB. MATERIALS AND METHODS Nineteen patients with RYGB underwent a standardized wireless motility capsule assessment. The oro-cecal segment was defined from capsule ingestion until the passage of the ileocecal junction. Segmental median pH, motility index, and transit time were determined for the oro-cecal and colonic segment as well as for the first and last hour of both these segments. For comparison to reference values, data from 17 healthy age- and gender-matched controls was used. A mixed effect model was used to describe differences between groups. RESULTS Median pH was high in patients with RYGB during the first hour of the oro-cecal segment (6.45 ± 0.4 vs 3.65 ± 1.55 pH units for healthy controls; P < 0.001), as well as during the entire oro-cecal segment (6.97 ± 0.4 vs 5.51 ± 1.1 pH units; P < 0.001). The same was evident for the median motility index (152 ± 64 vs 35.8 ± 31.1 mmHg*sec/min; P < 0.001 and 130 ± 65.9 vs 89.1 ± 20 mmHg*sec/min; P < 0.012, respectively). Median motility index was low the first hour of the colon (55.2 ± 45.7 vs 122 ± 77.9 mmHg*sec/min; P < 0.002). Additionally, patients had short oro-cecal transit time (5.8 ± 1.6 vs 7.6 ± 1.4 h; P < 0.001) and long colonic transit time (29.4 ± 17.5 vs 19.6 ± 12.2 h; P = 0.048). CONCLUSIONS In patients with RYGB, the oro-cecal segment was characterized by an alkaline intraluminal environment, high motility activity, and short transit time. In contrast, colonic transit time was long.
Collapse
Affiliation(s)
- Louise Ladebo
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Medicinerhuset 4th floor, Mølleparkvej 4, DK-9000, Aalborg, Denmark. .,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | | | - Grzegorz J Pacyk
- Department of Clinical Medicine and Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Jens Peter Kroustrup
- Department of Clinical Medicine and Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Asbjørn M Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Medicinerhuset 4th floor, Mølleparkvej 4, DK-9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Christina Brock
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Medicinerhuset 4th floor, Mølleparkvej 4, DK-9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Anne E Olesen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Pharmacology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
38
|
Differences in the effects of laparoscopic sleeve gastrectomy and laparoscopic Roux-en-Y gastric bypass on gut hormones: systematic and meta-analysis. Surg Obes Relat Dis 2021; 17:444-455. [DOI: 10.1016/j.soard.2020.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
|
39
|
Myronovych A, Peck BCE, An M, Zhu J, Warm A, Kupe A, Lubman DM, Seeley RJ. Intestinal extracellular vesicles are altered by vertical sleeve gastrectomy. Am J Physiol Gastrointest Liver Physiol 2021; 320:G153-G165. [PMID: 33175569 PMCID: PMC7864234 DOI: 10.1152/ajpgi.00224.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bariatric surgery is the most effective treatment for obesity and its comorbidities. However, our understanding of the molecular mechanisms behind its beneficial effects is limited. Extracellular vesicles (EVs) comprise an important mode of intercellular communication. They carry nucleic acids, hormones, and signaling molecules and regulate multiple processes. Our aim was to test the role of EVs in the effects of vertical sleeve gastrectomy (VSG) using a mouse model. Small intestinal EVs were obtained from the mice that underwent VSG or control surgery and were on chow or high-fat diet or diet-restricted, and then they were subjected to the proteomic analysis. Enteroid and bacterial cultures were treated with EVs to evaluate their survival effect. A mouse cohort received intraduodenal administration of EVs from VSG or Sham mice for 10 days. Body weight, glucose metabolism, and intestinal morphology were evaluated. EVs were enriched in the intestinal lumen and mucus of VSG compared with Sham mice. Protein composition of VSG and Sham-derived EVs was highly distinct. When introduced into culture, VSG EVs decreased survival of intestinal enteroids and, conversely, promoted proliferation of bacteria. Mice administered with EVs obtained from VSG and Sham groups did not show differences in body weight, food intake, or glucose metabolism. Intestinal morphology was altered, as VSG EVs caused reduction of ileal villi length and decreased epithelial proliferation in the jejunum and ileum. VSG causes remodeling of intestinal EVs, which results in unique protein composition. VSG-derived EVs exhibit cytotoxic effects on epithelial cells and reduce proliferation of intestinal progenitor cells in mice.NEW & NOTEWORTHY This is the first study that investigates the impact of bariatric surgery on protein composition of intestinal extracellular vesicles. Extracellular vesicle composition is greatly altered after vertical sleeve gastrectomy and may potentially modulate various signaling pathways. In our study, extracellular vesicles from vertical sleeve gastrectomy-treated mice promote bacterial proliferation but exhibit cytotoxic effect on epithelial cells and reduce proliferation of intestinal progenitor cells in mice.
Collapse
Affiliation(s)
| | | | - Mingrui An
- 1Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Jianhui Zhu
- 1Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Aleksander Kupe
- 1Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - David M. Lubman
- 1Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Randy J. Seeley
- 1Department of Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
40
|
Alterations in Small Intestine and Liver Morphology, Immunolocalization of Leptin, Ghrelin and Nesfatin-1 as Well as Immunoexpression of Tight Junction Proteins in Intestinal Mucosa after Gastrectomy in Rat Model. J Clin Med 2021; 10:jcm10020272. [PMID: 33450994 PMCID: PMC7828391 DOI: 10.3390/jcm10020272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/01/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
The stomach is responsible for the processing of nutrients as well as for the secretion of various hormones which are involved in many activities throughout the gastrointestinal tract. Experimental adult male Wistar rats (n = 6) underwent a modified gastrectomy, while control rats (n = 6) were sham-operated. After six weeks, changes in small intestine (including histomorphometrical parameters of the enteric nervous plexuses) and liver morphology, immunolocalization of leptin, ghrelin and nesfatin-1 as well as proteins forming adherens and tight junctions (E-cadherin, zonula occludens-1, occludin, marvelD3) in intestinal mucosa were evaluated. A number of effects on small intestine morphology, enteric nervous system ganglia, hormones and proteins expression were found, showing intestinal enteroplasticity and neuroplasticity associated with changes in gastrointestinal tract condition. The functional changes in intestinal mucosa and the enteric nervous system could be responsible for the altered intestinal barrier and hormonal responses following gastrectomy. The results suggest that more complicated regulatory mechanisms than that of compensatory mucosal hypertrophy alone are involved.
Collapse
|
41
|
Ileal interposition improves metabolic syndrome parameters in a rat model of metabolic syndrome induced by monosodium glutamate. Life Sci 2020; 266:118846. [PMID: 33309719 DOI: 10.1016/j.lfs.2020.118846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/23/2022]
Abstract
AIMS Metabolic syndrome (MetS) is a cluster of metabolic abnormalities. Anatomically restructuring of the gastrointestinal system has recently been an important subject of research in the treatment of MetS and closely related diseases. The aim of this study is to ensure the remission of parameters that define MetS by ileal interposition (IT) and to examine the effect of IT on plasma total GLP-1 and pancreatic GLP-1R expression. MAIN METHODS To induce MetS, newborn male Wistar albino rats were given MSG (4 g/mg) on days 0, 2, 4, 6, 8, and 10. The control group was injected with saline. In the 5th month, IT or sham surgery was performed on the MetS rats. The lipid levels, abdominal obesity, insulin level, OGTT, Lee index, HOMA-IR, plasma GLP-1 and pancreas GLP-1R expression were evaluated 2 months after surgery. KEY FINDINGS The results showed that IT significantly improved hyperinsulinemia (p = 0.013) and lipid profile (TG p = 0.0001; TCHOL p = 0.018; HDL p = 0.001). Furthermore, it normalized the Lee index (p = 0.006) and insulin resistance. The IT did not affect the secretion of the GLP-1, but the expression levels of pancreas GLP-1R were increased (p = 0.006). SIGNIFICANCE IT surgery corrected the MetS parameters in this rat model. The healing effects of IT surgery could be caused by mechanisms in the target tissues of insulin. The decrease in pancreatic GLP-1R levels in the MetS groups might be a compensatory response to the harmful effects of hyperinsulinemia in these groups. These results show that IT can be useful in the treatment of MetS.
Collapse
|
42
|
Gut Microbiota in Patients with Morbid Obesity Before and After Bariatric Surgery: a Ten-Year Review Study (2009-2019). Obes Surg 2020; 31:317-326. [PMID: 33130944 DOI: 10.1007/s11695-020-05074-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The changes in the composition and function of gut microbiota affect the metabolic functions (which are mediated by microbial effects) in patients with obesity, resulting in significant physiological regulation in these patients. Most of the studies emphasize that the Western-style diet (high fat and low vegetable consumption) leads to significant changes in the intestinal microbiome in individuals with metabolic syndrome. A deeper understanding of the profiles of gut microbes will contribute to the development of new therapeutic strategies for the management of metabolic syndrome and other metabolic diseases and related disorders. The aim of this review is to evaluate recent experimental evidence outlining the alterations of gut microbiota composition and function in recovery from bariatric surgical operations with an emphasis on sleeve gastrectomy and gastric bypass.
Collapse
|
43
|
Dragano NRV, Fernø J, Diéguez C, López M, Milbank E. Reprint of: Recent Updates on Obesity Treatments: Available Drugs and Future Directions. Neuroscience 2020; 447:191-215. [PMID: 33046217 DOI: 10.1016/j.neuroscience.2020.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the last thirty years, obesity has reached epidemic proportions and is now regarded as a major health issue in contemporary society trending to serious economic and social burdens. The latest projections of the World Health Organization are alarming. By 2030, nearly 60% of the worldwide population could be either obese or overweight, highlighting the needs to find innovative treatments. Currently, bariatric surgery is the most effective way to efficiently lower body mass. Although great improvements in terms of recovery and patient care were made in these surgical procedures, bariatric surgery remains an option for extreme forms of obesity and seems unable to tackle obesity pandemic expansion. Throughout the last century, numerous pharmacological strategies targeting either peripheral or central components of the energy balance regulatory system were designed to reduce body mass, some of them reaching sufficient levels of efficiency and safety. Nevertheless, obesity drug therapy remains quite limited on its effectiveness to actually overcome the obesogenic environment. Thus, innovative unimolecular polypharmacology strategies, able to simultaneously target multiple actors involved in the obesity initiation and expansion, were developed during the last ten years opening a new promising avenue in the pharmacological management of obesity. In this review, we first describe the clinical features of obesity-associated conditions and then focus on the outcomes of currently approved drug therapies for obesity as well as new ones expecting to reach the clinic in the near future.
Collapse
Affiliation(s)
- Nathalia R V Dragano
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Carlos Diéguez
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Edward Milbank
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
44
|
Ye Y, Abu El Haija M, Morgan DA, Guo D, Song Y, Frank A, Tian L, Riedl RA, Burnett CML, Gao Z, Zhu Z, Shahi SK, Zarei K, Couvelard A, Poté N, Ribeiro-Parenti L, Bado A, Noureddine L, Bellizzi A, Kievit P, Mangalam AK, Zingman LV, Le Gall M, Grobe JL, Kaplan LM, Clegg D, Rahmouni K, Mokadem M. Endocannabinoid Receptor-1 and Sympathetic Nervous System Mediate the Beneficial Metabolic Effects of Gastric Bypass. Cell Rep 2020; 33:108270. [PMID: 33113371 PMCID: PMC7660289 DOI: 10.1016/j.celrep.2020.108270] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/18/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
The exact mechanisms underlying the metabolic effects of bariatric surgery remain unclear. Here, we demonstrate, using a combination of direct and indirect calorimetry, an increase in total resting metabolic rate (RMR) and specifically anaerobic RMR after Roux-en-Y gastric bypass (RYGB), but not sleeve gastrectomy (SG). We also show an RYGB-specific increase in splanchnic sympathetic nerve activity and "browning" of visceral mesenteric fat. Consequently, selective splanchnic denervation abolishes all beneficial metabolic outcomes of gastric bypass that involve changes in the endocannabinoid signaling within the small intestine. Furthermore, we demonstrate that administration of rimonabant, an endocannabinoid receptor-1 (CB1) inverse agonist, to obese mice mimics RYGB-specific effects on energy balance and splanchnic nerve activity. On the other hand, arachidonoylethanolamide (AEA), a CB1 agonist, attenuates the weight loss and metabolic signature of this procedure. These findings identify CB1 as a key player in energy regulation post-RYGB via a pathway involving the sympathetic nervous system.
Collapse
Affiliation(s)
- Yuanchao Ye
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Marwa Abu El Haija
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Deng Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Yang Song
- College of Pharmacy, China Medical University, 77 Puhe Rd., Liaoning 110122, P.R. China
| | - Aaron Frank
- The Biomedical Research Department, Diabetes and Obesity Research Division, Cedars Sinai Medical Center, Beverly Hills, CA 90048, USA
| | - Liping Tian
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Ruth A Riedl
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Colin M L Burnett
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zhan Gao
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zhiyong Zhu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Shailesh K Shahi
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kasra Zarei
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Anne Couvelard
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France; Department of Pathology, Bichat Hospital, AP-HP, Paris 75018, France
| | - Nicolas Poté
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France; Department of Pathology, Bichat Hospital, AP-HP, Paris 75018, France
| | - Lara Ribeiro-Parenti
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France; Department of General and Digestive Surgery, Bichat Hospital, AP-HP, Paris 75018, France
| | - André Bado
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France
| | - Lama Noureddine
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andrew Bellizzi
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Paul Kievit
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology and Molecular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Leonid V Zingman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Orders of Eagles Diabetes Research Center, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA; Obesity Research & Education Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Maude Le Gall
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France
| | - Justin L Grobe
- Departments of Physiology and Biomedical Engineering, Medical College of Wisconsin, Milwaukee, MI 53226, USA
| | - Lee M Kaplan
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Obesity, Metabolism, and Nutrition Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Deborah Clegg
- College of Nursing and Health Professions, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA
| | - Kamal Rahmouni
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Orders of Eagles Diabetes Research Center, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA; Obesity Research & Education Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Mohamad Mokadem
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Orders of Eagles Diabetes Research Center, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA; Obesity Research & Education Initiative, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
45
|
Myronovych A, Bhattacharjee J, Salazar-Gonzalez RM, Tan B, Mowery S, Ferguson D, Ryan KK, Zhang W, Zhao X, Oehrle M, Setchell KD, Seeley RJ, Sandoval DA, Kohli R. Assessment of the role of FGF15 in mediating the metabolic outcomes of murine Vertical Sleeve Gastrectomy (VSG). Am J Physiol Gastrointest Liver Physiol 2020; 319:G669-G684. [PMID: 32967428 PMCID: PMC7792670 DOI: 10.1152/ajpgi.00175.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 01/31/2023]
Abstract
Vertical sleeve gastrectomy (VSG) is the best current therapy for remission of obesity and its co-morbidities. It is understood to alter the enterohepatic circulation of bile acids in vivo. Fibroblast growth factor 19 (FGF19) in human and its murine orthologue Fgf15 plays a pivotal role in this bile acid driven enterohepatic signaling. The present study evaluated the metabolic outcomes of VSG in Fgf15 deficient mice. 6-8 weeks old male wildtype mice (WT) and Fgf15 deficient mice (KO) were fed a high fat diet (HFD) for 8 weeks. At 8th week of diet, both WT and KO mice were randomly distributed to VSG or sham surgery. Post-surgery, mice were observed for 8 weeks while fed a HFD and then euthanized to collect tissues for experimental analysis. Fgf15 deficient (KO) mice lost weight post VSG, but glucose tolerance in KO mice did not improve post VSG compared to WT mice. Enteroids derived from WT and KO mice proliferated with bile acid exposure in vitro. Post VSG both WT and KO mice had similarly altered bile acid enterohepatic flux, however Fgf15 deficient mice post VSG had increased hepatic accumulation of free and esterified cholesterol leading to lipotoxicity related ER stress, inflammasome activation, and increased Fgf21 expression. Intact Fgf15 mediated enterohepatic bile acid signaling, but not changes in bile acid flux, appear to be important for the metabolic improvements post-murine bariatric surgery. These novel data introduce a potential point of distinction between bile acids acting as ligands compared to their canonical downstream signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Brandon Tan
- Pediatrics, Cincinnati Children's Hospital Medical Center, United States
| | - Sarah Mowery
- Pediatrics, Cincinnati Children's Hospital Medical Center, United States
| | - Danielle Ferguson
- Pediatrics, Cincinnati Children's Hospital Medical Center, United States
| | | | - Wujuan Zhang
- Human Genetics, Cincinnati Children's Hospital Medical Center, United States
| | - Xueheng Zhao
- Pediatrics, Cincinnati Children's Hospital Medical Center, United States
| | - Melissa Oehrle
- Pediatrics, Cincinnati Children's Hospital Medical Center, United States
| | | | - Randy J Seeley
- Surgery, University of Michigan-Ann Arbor, United States
| | - Darleen A Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Rohit Kohli
- Pediatrics, Children's Hospital of Los Angeles, United States
| |
Collapse
|
46
|
Modifications of IGF2 and EGFR plasma protein concentrations in NAFLD patients after bariatric surgery. Int J Obes (Lond) 2020; 45:374-382. [PMID: 32943763 DOI: 10.1038/s41366-020-00687-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is strictly associated with the epidemic of obesity and is becoming the most prevalent liver disease worldwide. In severe obesity, bariatric surgery (BS) is the most effective treatment not only for obesity but also for the associated metabolic co-morbidities, NAFLD, among others. To date, noninvasive diagnostic/prognostic methods cannot evaluate hepatic improvements following surgery. OBJECTIVES We aimed to measure plasma level of insulin-growth factor-2 protein (IGF2) and epithermal growth factor receptor (EGFR), and to assess their relationship with clinical and biochemical parameters during the 12 months follow-up. METHODS Demographic, clinical-biochemical data, and plasma IGF2 and EGFR were measured in 69 patients preoperatively (T0) and 6 and 12 months (T6M and T12M, respectively) after BS. Liver biopsy was performed at T0. Relationships between IGF2, EGFR, and several biochemical parameters were performed using Pearson or Spearman correlation analysis. RESULTS IGF2 plasma level increases during follow-up, passing from 2.5 (1.8-15.5) at baseline to 13.3 (8.6-19.1) at T12M, p < 0.001. Conversely, EGFR showed a not significant reduction. At T12M, the plasma level of both markers was comparable to those of lean subjects. The clinical-biochemical parameters (BMI, glycated hemoglobin, HOMA-IR) also return to the normal range at T12M. Correlation analysis demonstrated that IGF2 was significantly associated with total bilirubin, direct bilirubin, and albumin at T0 while with blood glucose, ALT, GGT, and AST/ALT ratio at T6M and T12M. CONCLUSIONS IGF2 plasma levels increase after bariatric surgery, and these changes are associated with the modification of hepatic biochemical parameters, even if other clinic or metabolic improvements cannot be excluded.
Collapse
|
47
|
Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch 2020; 472:1207-1248. [PMID: 32829466 PMCID: PMC7462918 DOI: 10.1007/s00424-020-02439-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Absorption of monosaccharides is mainly mediated by Na+-D-glucose cotransporter SGLT1 and the facititative transporters GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of D-glucose and D-galactose while GLUT5 is relevant for D-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes, whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal D-glucose concentrations, respectively. At high luminal D-glucose, the abundance SGLT1 in the BBM is increased. Hence, D-glucose absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLM whereas high-capacity D-glucose absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed. Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide transporters in the small intestine. Finally, food components that decrease D-glucose absorption and drugs in development that inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose transporters, and for interplay between D-fructose transport and metabolism, are discussed.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstr 6, 97070, Würzburg, Germany.
| |
Collapse
|
48
|
Lutz TA, Bueter M, Geary N. Introduction to the special issue "bariatric surgery and appetite". Appetite 2020; 155:104810. [PMID: 32750394 DOI: 10.1016/j.appet.2020.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marco Bueter
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Nori Geary
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, 10025, USA(1).
| |
Collapse
|
49
|
van Olst N, Meiring S, de Brauw M, Bergman JJ, Nieuwdorp M, van der Peet DL, Gerdes VE. Small intestinal physiology relevant to bariatric and metabolic endoscopic therapies: Incretins, bile acid signaling, and gut microbiome. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.tige.2020.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Yang H, Liu H, Jiao Y, Qian J. Roux-en-Y Gastrointestinal Bypass Promotes Activation of TGR5 and Peptide YY. Endocr Metab Immune Disord Drug Targets 2020; 20:1262-1267. [PMID: 32600238 DOI: 10.2174/1871530320666200628024500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/26/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND G protein-coupled bile acid receptor (TGR5) is involved in a number of metabolic diseases. The aim of this study was to identify the role of TGR5 after Roux-en-Y gastric bypass (GBP). METHODS Wild type and TGR5 knockout mice (tgr5-/-) were fed a high-fat diet (HFD) to establish the obesity model. GBP was performed. The changes in body weight and food intake were measured. The levels of TGR5 and peptide YY (PYY) were evaluated by RT-PCR, Western blot, and ELISA. Moreover, the L-cells were separated from wild type and tgr5-/- mice. The levels of PYY in L-cells were evaluated by ELISA. RESULTS The body weights were significantly decreased after GBP in wild type mice (p<0.05), but not tgr5-/- mice (p>0.05). Food intake was reduced after GBP in wild type mice, but also not significantly affected in tgr5-/- mice (p>0.05). The levels of PYY were significantly increased after GBP compared with the sham group (p<0.05); however, in tgr5-/- mice the expression of PYY was not significantly affected (p>0.05). After INT-777 stimulation in L-cells obtained from murine intestines, the levels of PYY were significantly increased in L-cells tgr5+/+ (p<0.05). CONCLUSION Our study suggests that GBP up-regulated the expression of TGR5 in murine intestines, and increased the levels of PYY, which further reduced food intake and decreased the body weight.
Collapse
Affiliation(s)
- Haojun Yang
- Department of Gastrointestinal Surgery, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, 213000, China
| | - Hanyang Liu
- Department of Gastrointestinal Surgery, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, 213000, China
| | - YuWen Jiao
- Department of Gastrointestinal Surgery, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, 213000, China
| | - Jun Qian
- Department of Gastrointestinal Surgery, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, 213000, China
| |
Collapse
|