1
|
Hidalgo-Gutierrez A, Shintaku J, Ramon J, Barriocanal-Casado E, Pesini A, Saneto RP, Garrabou G, Milisenda JC, Matas-Garcia A, Gort L, Ugarteburu O, Gu Y, Koganti L, Wang T, Tadesse S, Meneri M, Sciacco M, Wang S, Tanji K, Horwitz MS, Dorschner MO, Mansukhani M, Comi GP, Ronchi D, Marti R, Ribes A, Tort F, Hirano M. Guanylate Kinase 1 Deficiency: A Novel and Potentially Treatable Mitochondrial DNA Depletion/Deletions Disease. Ann Neurol 2024; 96:1209-1224. [PMID: 39230499 PMCID: PMC11563867 DOI: 10.1002/ana.27071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE Mitochondrial DNA (mtDNA) depletion/deletions syndrome (MDDS) comprises a group of diseases caused by primary autosomal defects of mtDNA maintenance. Our objective was to study the etiology of MDDS in 4 patients who lack pathogenic variants in known genetic causes. METHODS Whole exome sequencing of the probands was performed to identify pathogenic variants. We validated the mitochondrial defect by analyzing mtDNA, mitochondrial dNTP pools, respiratory chain activities, and GUK1 activity. To confirm pathogenicity of GUK1 deficiency, we expressed 2 GUK1 isoforms in patient cells. RESULTS We identified biallelic GUK1 pathogenic variants in all 4 probands who presented with ptosis, ophthalmoparesis, and myopathic proximal limb weakness, as well as variable hepatopathy and altered T-lymphocyte profiles. Muscle biopsies from all probands showed mtDNA depletion, deletions, or both, as well as reduced activities of mitochondrial respiratory chain enzymes. GUK1 encodes guanylate kinase, originally identified as a cytosolic enzyme. Long and short isoforms of GUK1 exist. We observed that the long isoform is intramitochondrial and the short is cytosolic. In probands' fibroblasts, we noted decreased GUK1 activity causing unbalanced mitochondrial dNTP pools and mtDNA depletion in both replicating and quiescent fibroblasts indicating that GUK1 deficiency impairs de novo and salvage nucleotide pathways. Proband fibroblasts treated with deoxyguanosine and/or forodesine, a purine phosphatase inhibitor, ameliorated mtDNA depletion, indicating potential pharmacological therapies. INTERPRETATION Primary GUK1 deficiency is a new and potentially treatable cause of MDDS. The cytosolic isoform of GUK1 may contribute to the T-lymphocyte abnormality, which has not been observed in other MDDS disorders. ANN NEUROL 2024;96:1209-1224.
Collapse
Affiliation(s)
| | - Jonathan Shintaku
- Department of Neurology, Columbia University Irving Medical Center; New York, NY, USA
| | - Javier Ramon
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Vall d’Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Alba Pesini
- Department of Neurology, Columbia University Irving Medical Center; New York, NY, USA
| | | | - Gloria Garrabou
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Inherited Metabolic Diseases and Muscle Disorder’s Lab, Cellex – IDIBAPS. Faculty of Medicine and Health Science – University of Barcelona (UB); Barcelona, Spain
| | - Jose Cesar Milisenda
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Inherited Metabolic Diseases and Muscle Disorder’s Lab, Cellex – IDIBAPS. Faculty of Medicine and Health Science – University of Barcelona (UB); Barcelona, Spain
- Department of Internal Medicine, Hospital Clínic of Barcelona; Barcelona, Spain
| | - Ana Matas-Garcia
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Inherited Metabolic Diseases and Muscle Disorder’s Lab, Cellex – IDIBAPS. Faculty of Medicine and Health Science – University of Barcelona (UB); Barcelona, Spain
- Department of Internal Medicine, Hospital Clínic of Barcelona; Barcelona, Spain
| | - Laura Gort
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Section of Inborn Errors of Metabolism-IBC. Department of Biochemistry and Molecular Genetics. Hospital Clinic de Barcelona-IDIBAPS; Barcelona, Spain
| | - Olatz Ugarteburu
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Section of Inborn Errors of Metabolism-IBC. Department of Biochemistry and Molecular Genetics. Hospital Clinic de Barcelona-IDIBAPS; Barcelona, Spain
| | - Yue Gu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; New York, NY, USA
| | - Lahari Koganti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; New York, NY, USA
| | - Tian Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University; New York, NY, USA
| | - Saba Tadesse
- Department of Neurology, Columbia University Irving Medical Center; New York, NY, USA
| | - Megi Meneri
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan; Milan, Italy
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit; Milan, Italy
| | - Monica Sciacco
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit; Milan, Italy
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University; New York, NY, USA
| | - Kurenai Tanji
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; New York, NY, USA
| | - Marshall S. Horwitz
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, USA
| | - Michael O. Dorschner
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, USA
| | - Mahesh Mansukhani
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; New York, NY, USA
| | - Giacomo Pietro Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan; Milan, Italy
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit; Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan; Milan, Italy
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit; Milan, Italy
| | - Ramon Marti
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Vall d’Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Antonia Ribes
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Section of Inborn Errors of Metabolism-IBC. Department of Biochemistry and Molecular Genetics. Hospital Clinic de Barcelona-IDIBAPS; Barcelona, Spain
| | - Frederic Tort
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Section of Inborn Errors of Metabolism-IBC. Department of Biochemistry and Molecular Genetics. Hospital Clinic de Barcelona-IDIBAPS; Barcelona, Spain
| | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center; New York, NY, USA
| |
Collapse
|
2
|
Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochem J 2024; 481:683-715. [PMID: 38804971 PMCID: PMC11346376 DOI: 10.1042/bcj20230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Human mitochondria possess a multi-copy circular genome, mitochondrial DNA (mtDNA), that is essential for cellular energy metabolism. The number of copies of mtDNA per cell, and their integrity, are maintained by nuclear-encoded mtDNA replication and repair machineries. Aberrant mtDNA replication and mtDNA breakage are believed to cause deletions within mtDNA. The genomic location and breakpoint sequences of these deletions show similar patterns across various inherited and acquired diseases, and are also observed during normal ageing, suggesting a common mechanism of deletion formation. However, an ongoing debate over the mechanism by which mtDNA replicates has made it difficult to develop clear and testable models for how mtDNA rearrangements arise and propagate at a molecular and cellular level. These deletions may impair energy metabolism if present in a high proportion of the mtDNA copies within the cell, and can be seen in primary mitochondrial diseases, either in sporadic cases or caused by autosomal variants in nuclear-encoded mtDNA maintenance genes. These mitochondrial diseases have diverse genetic causes and multiple modes of inheritance, and show notoriously broad clinical heterogeneity with complex tissue specificities, which further makes establishing genotype-phenotype relationships challenging. In this review, we aim to cover our current understanding of how the human mitochondrial genome is replicated, the mechanisms by which mtDNA replication and repair can lead to mtDNA instability in the form of large-scale rearrangements, how rearranged mtDNAs subsequently accumulate within cells, and the pathological consequences when this occurs.
Collapse
Affiliation(s)
- Tiago M. Bernardino Gomes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- NHS England Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - James B. Stewart
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
3
|
Song Q, Song C, Chen X, Xiong Y, He Z, Su X, Zhou J, Ke H, Dong C, Liao W, Yang S. Oxalate regulates crystal-cell adhesion and macrophage metabolism via JPT2/PI3K/AKT signaling to promote the progression of kidney stones. J Pharm Anal 2024; 14:100956. [PMID: 39035219 PMCID: PMC11259813 DOI: 10.1016/j.jpha.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 07/23/2024] Open
Abstract
Oxalate is an organic dicarboxylic acid that is a common component of plant foods. The kidneys are essential organs for oxalate excretion, but excessive oxalates may induce kidney stones. Jupiter microtubule associated homolog 2 (JPT2) is a critical molecule in Ca2+ mobilization, and its intrinsic mechanism in oxalate exposure and kidney stones remains unclear. This study aimed to reveal the mechanism of JPT2 in oxalate exposure and kidney stones. Genetic approaches were used to control JPT2 expression in cells and mice, and the JPT2 mechanism of action was analyzed using transcriptomics and untargeted metabolomics. The results showed that oxalate exposure triggered the upregulation of JPT2, which is involved in nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ mobilization. Transcriptomic analysis revealed that cell adhesion and macrophage inflammatory polarization were inhibited by JPT2 knockdown, and these were dominated by phosphatidylinositol 3-kinase (PI3K)/AKT signaling, respectively. Untargeted metabolomics indicated that JPT2 knockdown inhibited the production of succinic acid semialdehyde (SSA) in macrophages. Furthermore, JPT2 deficiency in mice inhibited kidney stones mineralization. In conclusion, this study demonstrates that oxalate exposure facilitates kidney stones by promoting crystal-cell adhesion, and modulating macrophage metabolism and inflammatory polarization via JPT2/PI3K/AKT signaling.
Collapse
Affiliation(s)
- Qianlin Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yunhe Xiong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaozhe Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiawei Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hu Ke
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
4
|
Kang Y, Hepojoki J, Maldonado RS, Mito T, Terzioglu M, Manninen T, Kant R, Singh S, Othman A, Verma R, Uusimaa J, Wartiovaara K, Kareinen L, Zamboni N, Nyman TA, Paetau A, Kipar A, Vapalahti O, Suomalainen A. Ancestral allele of DNA polymerase gamma modifies antiviral tolerance. Nature 2024; 628:844-853. [PMID: 38570685 PMCID: PMC11041766 DOI: 10.1038/s41586-024-07260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Age of Onset
- Alleles
- COVID-19/immunology
- COVID-19/virology
- COVID-19/genetics
- DNA Polymerase gamma/genetics
- DNA Polymerase gamma/immunology
- DNA Polymerase gamma/metabolism
- DNA, Mitochondrial/immunology
- DNA, Mitochondrial/metabolism
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis, Tick-Borne/genetics
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/virology
- Founder Effect
- Gene Knock-In Techniques
- Herpes Simplex/genetics
- Herpes Simplex/immunology
- Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interferon Type I/immunology
- Mitochondrial Diseases/enzymology
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/immunology
- Mutation
- RNA, Mitochondrial/immunology
- RNA, Mitochondrial/metabolism
- SARS-CoV-2/immunology
Collapse
Affiliation(s)
- Yilin Kang
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Rocio Sartori Maldonado
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Takayuki Mito
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mügen Terzioglu
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula Manninen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Sachin Singh
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Alaa Othman
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Rohit Verma
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine and Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Unit of Child Neurology, Oulu University Hospital, Oulu, Finland
| | - Kirmo Wartiovaara
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
| | - Lauri Kareinen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Safety Authority, Helsinki, Finland
| | - Nicola Zamboni
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Tuula Anneli Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Anders Paetau
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
| | - Anu Suomalainen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland.
- HiLife, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Messina A, Magrì A. Special Issue "Mitochondrial Respiration in Physiology and Pathology". Int J Mol Sci 2024; 25:2958. [PMID: 38474206 DOI: 10.3390/ijms25052958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondria are key organelles that regulate several functions essential for maintaining cellular homeostasis [...].
Collapse
Affiliation(s)
- Angela Messina
- Molecular Biology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Andrea Magrì
- Molecular Biology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| |
Collapse
|
6
|
Zhang H, Cai C, Li Q, Nie Z, Wang M, Liu Y, Shen W, Song H. Copper oxide nanoparticles suppress retinal angiogenesis via inducing endothelial cell cuproptosis. Nanomedicine (Lond) 2024; 19:597-613. [PMID: 38299352 DOI: 10.2217/nnm-2023-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Background: Copper oxide nanoparticles (CuO NPs) exhibit antitumor activity; however, their potential as an antiangiogenesis agent is unknown. Materials & methods: The antiangiogenesis properties of CuO NPs were evaluated in vitro and in vivo and the underlying mechanism was examined using RNA sequencing and metabolomic analyses. Results: CuO NPs inhibited endothelial cell function in vitro. They also mitigated retinal vasculature development and alleviated pathological retinal angiogenesis in vivo. RNA sequencing and metabolomic analyses revealed that CuO NPs disrupt the tricarboxylic acid cycle and induce cuproptosis, which was further supported by evaluating cuproptosis-related metabolites and proteins. Conclusion: CuO NPs may be an effective antiangiogenic agent for the treatment of retinal angiogenesis.
Collapse
Affiliation(s)
- Haorui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Chang Cai
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, 200433, China
- Department of Spine Surgery, Changzheng Hospital, Shanghai, 200040, China
| | - Qing Li
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Zheng Nie
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Mengzhu Wang
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Yongxuan Liu
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Wei Shen
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Hongyuan Song
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, 200433, China
| |
Collapse
|
7
|
Amin U, Jiang R, Raza SM, Fan M, Liang L, Feng N, Li X, Yang Y, Guo F. Gut-joint axis: Oral Probiotic ameliorates Osteoarthritis. J Tradit Complement Med 2024; 14:26-39. [PMID: 38223812 PMCID: PMC10785157 DOI: 10.1016/j.jtcme.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 06/13/2023] [Indexed: 01/16/2024] Open
Abstract
Osteoarthritis (OA) etiology is multifactorial, and its prevalence is growing globally. The Gut microbiota shapes our immune system and impacts all aspects of health and disease. The idea of utilizing probiotics to treat different conditions prevails. Concerning musculoskeletal illness and health, current data lack the link to understand the interactions between the host and microbiome. We report that S. thermophilus, L. pentosus (as probiotics), and γ-aminobutyric acid (GABA) harbour against osteoarthritis in vivo and alleviate IL-1β induced changes in chondrocytes in vitro. We examined the increased GABA concentration in mice's serum and small intestine content followed by bacterial treatment. The treatment inhibited the catabolism of cartilage and rescued mice joints from degradation. Furthermore, the anabolic markers upregulated and decreased inflammatory markers in mice knee joints and chondrocytes. This study is the first to represent GABA's chondrogenic and chondroprotective effects on joints and human chondrocytes. This data provides a foundation for future studies to elucidate the role of GABA in regulating chondrocyte cell proliferation. These findings opened future horizons to understanding the gut-joint axis and OA treatment. Thus, probiotic/GABA therapy shields OA joints in mice and could at least serve as adjuvant therapy to treat osteoarthritis.
Collapse
Affiliation(s)
- Uzma Amin
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Microbiology, Government College University, Faisalabad, 38000, Punjab, Pakistan
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Shahid Masood Raza
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Microbiology, Government College University, Faisalabad, 38000, Punjab, Pakistan
| | - Mengtian Fan
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Liang
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Naibo Feng
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yuyou Yang
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Fengjin Guo
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Marghany F, Ayobahan SU, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Transcriptomic and proteomic fingerprints induced by the fungicides difenoconazole and metalaxyl in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104348. [PMID: 38135202 DOI: 10.1016/j.etap.2023.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
In this study, we applied OMICs analysis to identify substance-specific biomarker candidates, which may act as early indicators for specific ecotoxic modes of actions (MoA). Zebrafish embryos were exposed to two sublethal concentrations of difenoconazole and metalaxyl according to a modified protocol of the OECD test guideline No. 236. At the end of exposure, total RNA and protein were extracted, followed by transcriptomics and proteomics analysis. The analysis of significantly differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) revealed a positive exposure-response correlation in all test concentrations for both fungicides. Similarly, also a positive correlation between the obtained transcriptome and proteome data was observed, highlighting the robustness of our approach. From the detected DEGs, candidate biomarkers specific for difenoconazole (apoa1b, gatm, mylpfb and acta1b) and metalaxyl (lgals2b, abat, fabp1b.1 and myh9a) were selected, and their biological functions were discussed to assess the predictive potential.
Collapse
Affiliation(s)
- Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
9
|
Li Q, Jia Y, Tang B, Yang H, Yang Q, Luo X, Pan Y. Mitochondrial subtype MB-G3 contains potential novel biomarkers and therapeutic targets associated with prognosis of medulloblastoma. Biomarkers 2023; 28:643-651. [PMID: 37886818 DOI: 10.1080/1354750x.2023.2276670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Medulloblastoma is the most common malignant brain tumor in children. There are four groups, each with different causal mutations, affected pathways and prognosis. Here, we investigated the role of mitochondria in medulloblastoma and whether there are differences between the different groups. METHODS We compared the gene expression levels in the four different medulloblastoma groups (MB-WNT, MB-SHH, MB-G3 and MB-G4), with the focus on genes associated with mitochondria. We used several tools including Salmon, Tximeta, DESeq2, BiomaRt, STRING, Ggplot2, EnhancedVolcano, Venny 2.1 and Metscape. RESULTS A total of 668 genes were differentially expressed and the most abundant genes were associated with cell division pathway followed by modulation of chemical synaptic transmission. We also identified several genes (ABAT, SOX9, ALDH5A, FOXM1, ABL1, NHLH1, NEUROD1 and NEUROD2) known to play vital role in medulloblastoma. Comparative expression analysis revealed OXPHOS complex-associated proteins of mitochondria. The most significantly expressed genes in the MB-SHH and MB-G4 groups were AHCYL1 and SFXN5 while PAICS was significantly upregulated in MB-WNT group. Notably, MB-G3 contained the most downregulated genes from the OXPHOS complexes, except COX6B2 which was strongly upregulated. CONCLUSIONS We show the importance of mitochondria and compare their role in the four different medulloblastoma groups.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurosurgery, China Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yanfei Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo Tang
- Department of Neurosurgery, China Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Hu Yang
- Department of Neurosurgery, China Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Qiang Yang
- Department of Neurosurgery, China Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xiaodong Luo
- Department of Neurosurgery, China Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yawen Pan
- Department of Neurosurgery, China Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
10
|
Ryytty S, Hämäläinen RH. The Mitochondrial m.3243A>G Mutation on the Dish, Lessons from In Vitro Models. Int J Mol Sci 2023; 24:13478. [PMID: 37686280 PMCID: PMC10487608 DOI: 10.3390/ijms241713478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The m.3243A>G mutation in the tRNA Leu(UUR) gene (MT-TL1) is one of the most common pathogenic point mutations in human mtDNA. Patient symptoms vary widely and the severity of the disease ranges from asymptomatic to lethal. The reason for the high heterogeneity of m.3243A>G-associated disease is still unknown, and the treatment options are limited, with only supportive interventions available. Furthermore, the heteroplasmic nature of the m.3243A>G mutation and lack of specific animal models of mtDNA mutations have challenged the study of m.3243A>G, and, besides patient data, only cell models have been available for studies. The most commonly used cell models are patient derived, such as fibroblasts and induced pluripotent stem cell (iPSC)-derived models, and cybrid models where the mutant DNA is transferred to an acceptor cell. Studies on cell models have revealed cell-type-specific effects of the m.3243A>G mutation and that the tolerance for this mutation varies between cell types and between patients. In this review, we summarize the literature on the effects of m.3243A>G in cell models.
Collapse
Affiliation(s)
| | - Riikka H. Hämäläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland;
| |
Collapse
|
11
|
Medina AM, Hagenauer MH, Krolewski DM, Hughes E, Forrester LCT, Walsh DM, Waselus M, Richardson E, Turner CA, Sequeira PA, Cartagena PM, Thompson RC, Vawter MP, Bunney BG, Myers RM, Barchas JD, Lee FS, Schatzberg AF, Bunney WE, Akil H, Watson SJ. Neurotransmission-related gene expression in the frontal pole is altered in subjects with bipolar disorder and schizophrenia. Transl Psychiatry 2023; 13:118. [PMID: 37031222 PMCID: PMC10082811 DOI: 10.1038/s41398-023-02418-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/10/2023] Open
Abstract
The frontal pole (Brodmann area 10, BA10) is the largest cytoarchitectonic region of the human cortex, performing complex integrative functions. BA10 undergoes intensive adolescent grey matter pruning prior to the age of onset for bipolar disorder (BP) and schizophrenia (SCHIZ), and its dysfunction is likely to underly aspects of their shared symptomology. In this study, we investigated the role of BA10 neurotransmission-related gene expression in BP and SCHIZ. We performed qPCR to measure the expression of 115 neurotransmission-related targets in control, BP, and SCHIZ postmortem samples (n = 72). We chose this method for its high sensitivity to detect low-level expression. We then strengthened our findings by performing a meta-analysis of publicly released BA10 microarray data (n = 101) and identified sources of convergence with our qPCR results. To improve interpretation, we leveraged the unusually large database of clinical metadata accompanying our samples to explore the relationship between BA10 gene expression, therapeutics, substances of abuse, and symptom profiles, and validated these findings with publicly available datasets. Using these convergent sources of evidence, we identified 20 neurotransmission-related genes that were differentially expressed in BP and SCHIZ in BA10. These results included a large diagnosis-related decrease in two important therapeutic targets with low levels of expression, HTR2B and DRD4, as well as other findings related to dopaminergic, GABAergic and astrocytic function. We also observed that therapeutics may produce a differential expression that opposes diagnosis effects. In contrast, substances of abuse showed similar effects on BA10 gene expression as BP and SCHIZ, potentially amplifying diagnosis-related dysregulation.
Collapse
Affiliation(s)
- Adriana M Medina
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - David M Krolewski
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Evan Hughes
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Maria Waselus
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Evelyn Richardson
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Cortney A Turner
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Robert C Thompson
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | | | | | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Stanley J Watson
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Monzel AS, Enríquez JA, Picard M. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat Metab 2023; 5:546-562. [PMID: 37100996 PMCID: PMC10427836 DOI: 10.1038/s42255-023-00783-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/10/2023] [Indexed: 04/28/2023]
Abstract
Mitochondria have cell-type specific phenotypes, perform dozens of interconnected functions and undergo dynamic and often reversible physiological recalibrations. Given their multifunctional and malleable nature, the frequently used terms 'mitochondrial function' and 'mitochondrial dysfunction' are misleading misnomers that fail to capture the complexity of mitochondrial biology. To increase the conceptual and experimental specificity in mitochondrial science, we propose a terminology system that distinguishes between (1) cell-dependent properties, (2) molecular features, (3) activities, (4) functions and (5) behaviours. A hierarchical terminology system that accurately captures the multifaceted nature of mitochondria will achieve three important outcomes. It will convey a more holistic picture of mitochondria as we teach the next generations of mitochondrial biologists, maximize progress in the rapidly expanding field of mitochondrial science, and also facilitate synergy with other disciplines. Improving specificity in the language around mitochondrial science is a step towards refining our understanding of the mechanisms by which this unique family of organelles contributes to cellular and organismal health.
Collapse
Affiliation(s)
- Anna S Monzel
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
13
|
Xu H, Shao Z, Zhang S, Liu X, Zeng P. How can childhood maltreatment affect post-traumatic stress disorder in adult: Results from a composite null hypothesis perspective of mediation analysis. Front Psychiatry 2023; 14:1102811. [PMID: 36970281 PMCID: PMC10033829 DOI: 10.3389/fpsyt.2023.1102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundA greatly growing body of literature has revealed the mediating role of DNA methylation in the influence path from childhood maltreatment to psychiatric disorders such as post-traumatic stress disorder (PTSD) in adult. However, the statistical method is challenging and powerful mediation analyses regarding this issue are lacking.MethodsTo study how the maltreatment in childhood alters long-lasting DNA methylation changes which further affect PTSD in adult, we here carried out a gene-based mediation analysis from a perspective of composite null hypothesis in the Grady Trauma Project (352 participants and 16,565 genes) with childhood maltreatment as exposure, multiple DNA methylation sites as mediators, and PTSD or its relevant scores as outcome. We effectively addressed the challenging issue of gene-based mediation analysis by taking its composite null hypothesis testing nature into consideration and fitting a weighted test statistic.ResultsWe discovered that childhood maltreatment could substantially affected PTSD or PTSD-related scores, and that childhood maltreatment was associated with DNA methylation which further had significant roles in PTSD and these scores. Furthermore, using the proposed mediation method, we identified multiple genes within which DNA methylation sites exhibited mediating roles in the influence path from childhood maltreatment to PTSD-relevant scores in adult, with 13 for Beck Depression Inventory and 6 for modified PTSD Symptom Scale, respectively.ConclusionOur results have the potential to confer meaningful insights into the biological mechanism for the impact of early adverse experience on adult diseases; and our proposed mediation methods can be applied to other similar analysis settings.
Collapse
Affiliation(s)
- Haibo Xu
- Center for Mental Health Education and Research, Xuzhou Medical University, Xuzhou, China
- School of Management, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Haibo Xu,
| | - Zhonghe Shao
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xin Liu
- Center for Mental Health Education and Research, Xuzhou Medical University, Xuzhou, China
- School of Management, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Ping Zeng,
| |
Collapse
|
14
|
Heli Z, Hongyu C, Dapeng B, Yee Shin T, Yejun Z, Xi Z, Yingying W. Recent advances of γ-aminobutyric acid: Physiological and immunity function, enrichment, and metabolic pathway. Front Nutr 2022; 9:1076223. [PMID: 36618705 PMCID: PMC9813243 DOI: 10.3389/fnut.2022.1076223] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
γ-aminobutyric acid (GABA) is a non-protein amino acid which naturally and widely occurs in animals, plants, and microorganisms. As the chief inhibitory neurotransmitter in the central nervous system of mammals, it has become a popular dietary supplement and has promising application in food industry. The current article reviews the most recent literature regarding the physiological functions, preparation methods, enrichment methods, metabolic pathways, and applications of GABA. This review sheds light on developing GABA-enriched plant varieties and food products, and provides insights for efficient production of GABA through synthetic biology approaches.
Collapse
Affiliation(s)
- Zhou Heli
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Hongyu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bao Dapeng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China,National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Tan Yee Shin
- Faculty of Science and Mushroom Research Centre, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Zhong Yejun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Zhang Xi
- BannerBio Nutraceuticals Inc., Shenzhen, China
| | - Wu Yingying
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China,*Correspondence: Wu Yingying,
| |
Collapse
|
15
|
Kentab AY. Gamma-Aminobutyric Acid Transaminase (GABA-T) Deficiency in a Consanguineous Saudi Family: A Case Report and Literature Review. JOURNAL OF PEDIATRIC EPILEPSY 2022. [DOI: 10.1055/s-0042-1757447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGamma-aminobutyric acid transaminase (GABA-T) deficiency is a rare, autosomal recessive disorder caused by mutations in the 4-aminobutyrate aminotransferase (ABAT) gene, which encodes an enzyme involved in GABA catabolism. It is characterized by severe psychomotor retardation, early-onset epileptic encephalopathy, intractable seizures, hypotonia, hyperreflexia, movement disorder, hypersomnolence, and early childhood mortality. It is associated with elevated free GABA in cerebrospinal fluid (CSF), GABA-T deficiency in cultured lymphoblasts, hypomyelination on brain magnetic resonance imaging (MRI), and elevated GABA level in the basal ganglia on proton magnetic resonance spectroscopy (MRS). Only 14 cases have been published in the literature. A rare case of infantile epileptic encephalopathy caused by GABA-T deficiency resulting from a previously unreported homozygous missense mutation in the ABAT gene is described. Our findings add to the phenotypic, neuroradiological, and genetic spectrum of ABAT mutations.
Collapse
Affiliation(s)
- Amal Y. Kentab
- Department of Paediatrics, Neurology Division, College of Medicine, King Saud University, King Saud University Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Yu T, Xu X, Mao H, Han X, Liu Y, Zhang H, Lai J, Gu J, Xia M, Hu C, Li D. Fenpropathrin exposure induces neurotoxicity in zebrafish embryos. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1539-1554. [PMID: 36266516 DOI: 10.1007/s10695-022-01134-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Fenpropathrin has been a commonly used insecticide to control agricultural and household insects over a few decades. Up to now, fenpropathrin residue in soil and water has been often determined due to its widespread use, which poses serious threat to environment and aquatic organisms. The potential of fenpropathrin to affect aquatic lives is still poorly understood. In this study, we used zebrafish (Danio rerio) embryo as an experimental model system to evaluate the toxicity of fenpropathrin to the development of zebrafish nervous system. Zebrafish embryos were separately exposed to fenpropathrin at the dose of 0.016 mg/L, 0.032 mg/L, 0.064 mg/L, starting at 6 h post-fertilizationhpf (hpf) up to 96 hpf. The results showed that fenpropathrin exposure gives rise to physiological, behavioral, and neurodevelopmental impairments in zebrafish embryos, including enhanced acetylcholinesterase (AChE) activity, abnormal swimming behavior, karyopyknosis in brain cells, increased intercellular space, and uneven migration of neuron in brain area. In addition, the expressions of genes concerning neurodevelopment and neurotransmitter system were inhibited following fenpropathrin exposure. We also found that fenpropathrin exposure distinctly induced oxidative stress by increasing reactive oxygen species (ROS) generation and inhibiting the production of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). Expectedly, some apoptosis-associated genes were induced and the apoptosis appeared in the brain and heart cells of zebrafish embryos. Moreover, fenpropathrin exposure also inhibited the expressions of genes in Nrf2 signaling pathway, such as heme oxygenase-1 (HO-1) and SOD. In summary, the results of this study indicate that oxidative stress-triggered apoptosis may be an underlying fundamental of fenpropathrin-induced neurotoxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Tingting Yu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xue Han
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yulong Liu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Hongying Zhang
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jingli Lai
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jianfeng Gu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Mengling Xia
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Dongming Li
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China.
- School of Basic Medical Sciences, Fuzhou Medical College, Nanchang University, Fuzhou, 344000, Jiangxi, China.
| |
Collapse
|
17
|
Zhao G, Li S, Wang Q, Wu W, Fu X, Zhu C, Wang W, Wang X. ABAT gene expression associated with the sensitivity of hypomethylating agents in myelodysplastic syndrome through CXCR4/mTOR signaling. Cell Death Dis 2022; 8:398. [PMID: 36163180 PMCID: PMC9512903 DOI: 10.1038/s41420-022-01170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022]
Abstract
The factors that affect hypomethylating agents (HMAs) sensitivity in myelodysplastic syndrome (MDS) are complex and multifaceted. They include DNA methylation, gene expression, mutation, etc. However, the underlying mechanisms are still not clearly illustrated. In the present work, ABAT gene expression was associated with HMAs sensitivity. It was found that ABAT gene interference increased the sensitivity of HL-60 and THP-1 cells to HMAs treatment, while ABAT overexpression decreased its sensitivity. RNA-sequencing analysis showed that ABAT knockdown activated both interferon I and interferon-gamma signaling while inhibiting the secondary metabolic synthesis and arginine metabolic process. Gas chromatography-mass spectrometry (GC-MS) based metabolic profiling also demonstrated that ABAT gene knockdown affected arginine, alanine, aspartate, and glutamate metabolism, in addition to the biosynthesis of valine, leucine, and isoleucine, and the metabolism of beta-alanine. The ABAT gene expression downregulation could activate the CXCR4/mTOR signaling pathway, which was related to HMAs sensitivity. CXCR4 expression was regulated by mTOR activity and vice versa. In vivo, mice injected with ABAT gene knockdown cells lived longer than control mice after HMAs treatment. Overall, this study elucidates the novel regulatory mechanisms of HMAs sensitivity and provides a potential therapeutic target in MDS.
Collapse
Affiliation(s)
- Guangjie Zhao
- Department of Hematology, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, China
| | - Shuang Li
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University, No.85 Wujin Road, Shanghai, China
| | - Qian Wang
- Department of Hematology, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, China
| | - Wanlin Wu
- Department of Hematology, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, China
| | - Xuewei Fu
- Department of Hematology, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, China
| | - Chen Zhu
- Department of Hematology, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, China
| | - Wei Wang
- Department of Hematology, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, China.
| | - Xiaoqin Wang
- Department of Hematology, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, China.
| |
Collapse
|
18
|
Zhang Q, Ding L, Zhou T, Zhai Q, Ni C, Liang C, Li J. A metabolic reprogramming-related prognostic risk model for clear cell renal cell carcinoma: From construction to preliminary application. Front Oncol 2022; 12:982426. [PMID: 36176391 PMCID: PMC9513462 DOI: 10.3389/fonc.2022.982426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic reprogramming is one of the characteristics of clear cell renal cell carcinoma (ccRCC). Although some treatments associated with the metabolic reprogramming for ccRCC have been identified, remain still lacking. In this study, we identified the differentially expressed genes (DEGs) associated with clinical traits with a total of 965 samples via DEG analysis and weighted correlation network analysis (WGCNA), screened the prognostic metabolism-related genes, and constructed the risk score prognostic models. We took the intersection of DEGs with significant difference coexpression modules and received two groups of intersection genes that were connected with metabolism via functional enrichment analysis. Then we respectively screened prognostic metabolic-related genes from the genes of the two intersection groups and constructed the risk score prognostic models. Compared with the predicted effect of clinical grade and stage for ccRCC patients, finally, we selected the model constructed with genes of ABAT, ALDH6A1, CHDH, EPHX2, ETNK2, and FBP1. The risk scores of the prognostic model were significantly related to overall survival (OS) and could serve as an independent prognostic factor. The Kaplan-Meier analysis and ROC curves revealed that the model efficiently predicts prognosis in the TCGA-KIRC cohort and the validation cohort. Then we investigated the potential underlying mechanism and sensitive drugs between high- and low-risk groups. The six key genes were significantly linked with worse OS and were downregulated in ccRCC, we confirmed the results in clinical samples. These results demonstrated the efficacy and robustness of the risk score prognostic model, based on the characteristics of metabolic reprogramming in ccRCC, and the key genes used in constructing the model also could develop into targets of molecular therapy for ccRCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jie Li
- *Correspondence: Jie Li, ; Chao Liang,
| |
Collapse
|
19
|
Belal S, Goudenège D, Bocca C, Dumont F, Chao De La Barca JM, Desquiret-Dumas V, Gueguen N, Geffroy G, Benyahia R, Kane S, Khiati S, Bris C, Aranyi T, Stockholm D, Inisan A, Renaud A, Barth M, Simard G, Reynier P, Letournel F, Lenaers G, Bonneau D, Chevrollier A, Procaccio V. Glutamate-Induced Deregulation of Krebs Cycle in Mitochondrial Encephalopathy Lactic Acidosis Syndrome Stroke-Like Episodes (MELAS) Syndrome Is Alleviated by Ketone Body Exposure. Biomedicines 2022; 10:biomedicines10071665. [PMID: 35884972 PMCID: PMC9312837 DOI: 10.3390/biomedicines10071665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/19/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The development of mitochondrial medicine has been severely impeded by a lack of effective therapies. (2) Methods: To better understand Mitochondrial Encephalopathy Lactic Acidosis Syndrome Stroke-like episodes (MELAS) syndrome, neuronal cybrid cells carrying different mutation loads of the m.3243A > G mitochondrial DNA variant were analysed using a multi-omic approach. (3) Results: Specific metabolomic signatures revealed that the glutamate pathway was significantly increased in MELAS cells with a direct correlation between glutamate concentration and the m.3243A > G heteroplasmy level. Transcriptomic analysis in mutant cells further revealed alterations in specific gene clusters, including those of the glutamate, gamma-aminobutyric acid pathways, and tricarboxylic acid (TCA) cycle. These results were supported by post-mortem brain tissue analysis from a MELAS patient, confirming the glutamate dysregulation. Exposure of MELAS cells to ketone bodies significantly reduced the glutamate level and improved mitochondrial functions, reducing the accumulation of several intermediate metabolites of the TCA cycle and alleviating the NADH-redox imbalance. (4) Conclusions: Thus, a multi-omic integrated approach to MELAS cells revealed glutamate as a promising disease biomarker, while also indicating that a ketogenic diet should be tested in MELAS patients.
Collapse
Affiliation(s)
- Sophie Belal
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - David Goudenège
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Cinzia Bocca
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Florent Dumont
- Signalling and Cardiovascular Pathophysiology, INSERM UMR-S 1180, University of Paris-Saclay, 92296 Châtenay-Malabry, France;
| | - Juan Manuel Chao De La Barca
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Valérie Desquiret-Dumas
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Naïg Gueguen
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Guillaume Geffroy
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Rayane Benyahia
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Selma Kane
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Salim Khiati
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Céline Bris
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Tamas Aranyi
- Institute of Enzymology, Research Center for Natural Sciences, H-1519 Budapest, Hungary;
- Department of Molecular Biology, Semmelweis University of Medicine, H-1519 Budapest, Hungary
| | - Daniel Stockholm
- Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France;
- Centre de Recherche Saint-Antoine, UMRS-938, INSERM, Sorbonne Université, F-75012 Paris, France
| | - Aurore Inisan
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Aurélie Renaud
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Magalie Barth
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Gilles Simard
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Pascal Reynier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Franck Letournel
- Department of Neurobiology-Neuropathology, Angers Hospital, 49933 Angers, France;
- UMR INSERM 1066-CNRS 6021, MINT Laboratory, 49933 Angers, France
| | - Guy Lenaers
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Service de Neurologie, CHU d'Angers, 49933 Angers, France
| | - Dominique Bonneau
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Arnaud Chevrollier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Vincent Procaccio
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
- Correspondence:
| |
Collapse
|
20
|
Qiu Y, Huang Y, Chen M, Yang Y, Li X, Zhang W. Mitochondrial DNA in NLRP3 inflammasome activation. Int Immunopharmacol 2022; 108:108719. [DOI: 10.1016/j.intimp.2022.108719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/26/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022]
|
21
|
López-Gómez C, Cámara Y, Hirano M, Martí R. 232nd ENMC international workshop: Recommendations for treatment of mitochondrial DNA maintenance disorders. 16 - 18 June 2017, Heemskerk, The Netherlands. Neuromuscul Disord 2022; 32:609-620. [PMID: 35641351 DOI: 10.1016/j.nmd.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Affiliation(s)
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Michio Hirano
- Columbia University Irving Medical Center, New York, USA
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
22
|
Roy A, Kandettu A, Ray S, Chakrabarty S. Mitochondrial DNA replication and repair defects: Clinical phenotypes and therapeutic interventions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148554. [PMID: 35341749 DOI: 10.1016/j.bbabio.2022.148554] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome - mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.
Collapse
Affiliation(s)
- Abhipsa Roy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Swagat Ray
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
23
|
Shintaku J, Pernice WM, Eyaid W, Gc JB, Brown ZP, Juanola-Falgarona M, Torres-Torronteras J, Sommerville EW, Hellebrekers DM, Blakely EL, Donaldson A, van de Laar IM, Leu CS, Marti R, Frank J, Tanji K, Koolen DA, Rodenburg RJ, Chinnery PF, Smeets HJM, Gorman GS, Bonnen PE, Taylor RW, Hirano M. RRM1 variants cause a mitochondrial DNA maintenance disorder via impaired de novo nucleotide synthesis. J Clin Invest 2022; 132:145660. [PMID: 35617047 PMCID: PMC9246377 DOI: 10.1172/jci145660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial DNA (mtDNA) depletion/deletions syndromes (MDDS) encompass a clinically and etiologically heterogenous group of mitochondrial disorders due to impaired mtDNA maintenance. Among the most frequent causes of MDDS are defects in nucleoside/nucleotide metabolism, which is critical for synthesis and homeostasis of the deoxynucleoside triphosphate (dNTP) substrates of mtDNA replication. A central enzyme for generating dNTPs is ribonucleotide reductase, a critical mediator of de novo nucleotide synthesis composed of catalytic RRM1 subunits in complex with RRM2 or p53R2. Here, we report five probands from four families who presented with ptosis and ophthalmoplegia, plus other manifestations and multiple mtDNA deletions in muscle. We identified three RRM1 loss-of-function variants, including a dominant catalytic site variant (NP_001024.1: p.N427K) and two homozygous recessive variants at p.R381, which has evolutionarily conserved interactions with the specificity site. Atomistic molecular dynamics simulations indicate mechanisms by which RRM1 variants affect protein structure. Cultured primary skin fibroblasts of probands manifested mtDNA depletion under cycling conditions, indicating impaired de novo nucleotide synthesis. Fibroblasts also exhibited aberrant nucleoside diphosphate and dNTP pools and mtDNA ribonucleotide incorporation. Our data reveal primary RRM1 deficiency and, by extension, impaired de novo nucleotide synthesis are causes of MDDS.
Collapse
Affiliation(s)
- Jonathan Shintaku
- Department of Neurology, Columbia University Irving Medical Center, New York, United States of America
| | - Wolfgang M Pernice
- Department of Neurology, Columbia University Irving Medical Center, New York, United States of America
| | - Wafaa Eyaid
- Department of Pediatrics, King Saud bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia
| | - Jeevan B Gc
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, United States of America
| | - Zuben P Brown
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, United States of America
| | - Marti Juanola-Falgarona
- Department of Neurology, Columbia University Irving Medical Center, New York, United States of America
| | | | - Ewen W Sommerville
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle, United Kingdom
| | - Debby Mei Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Emma L Blakely
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle, United Kingdom
| | - Alan Donaldson
- Clinical Genetics Department, University of Bristol, Bristol, United Kingdom
| | - Ingrid Mbh van de Laar
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Cheng-Shiun Leu
- Biostatistics, Columbia University, New York, United States of America
| | - Ramon Marti
- Laboratori de patologia neuromuscular i mitocondrial, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, United States of America
| | - Kurenai Tanji
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| | - David A Koolen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Richard J Rodenburg
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Patrick F Chinnery
- Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - H J M Smeets
- University of Maastricht, Maastricht, Netherlands
| | - Gráinne S Gorman
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle, United Kingdom
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States of America
| | | | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York, United States of America
| |
Collapse
|
24
|
Lu H, Lei X, Winkler R, John S, Kumar D, Li W, Alnouti Y. Crosstalk of hepatocyte nuclear factor 4a and glucocorticoid receptor in the regulation of lipid metabolism in mice fed a high-fat-high-sugar diet. Lipids Health Dis 2022; 21:46. [PMID: 35614477 PMCID: PMC9134643 DOI: 10.1186/s12944-022-01654-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocyte nuclear factor 4α (HNF4α) and glucocorticoid receptor (GR), master regulators of liver metabolism, are down-regulated in fatty liver diseases. The present study aimed to elucidate the role of down-regulation of HNF4α and GR in fatty liver and hyperlipidemia. Methods Adult mice with liver-specific heterozygote (HET) and knockout (KO) of HNF4α or GR were fed a high-fat-high-sugar diet (HFHS) for 15 days. Alterations in hepatic and circulating lipids were determined with analytical kits, and changes in hepatic mRNA and protein expression in these mice were quantified by real-time PCR and Western blotting. Serum and hepatic levels of bile acids were quantified by LC-MS/MS. The roles of HNF4α and GR in regulating hepatic gene expression were determined using luciferase reporter assays. Results Compared to HFHS-fed wildtype mice, HNF4α HET mice had down-regulation of lipid catabolic genes, induction of lipogenic genes, and increased hepatic and blood levels of lipids, whereas HNF4α KO mice had fatty liver but mild hypolipidemia, down-regulation of lipid-efflux genes, and induction of genes for uptake, synthesis, and storage of lipids. Serum levels of chenodeoxycholic acid and deoxycholic acid tended to be decreased in the HNF4α HET mice but dramatically increased in the HNF4α KO mice, which was associated with marked down-regulation of cytochrome P450 7a1, the rate-limiting enzyme for bile acid synthesis. Hepatic mRNA and protein expression of sterol-regulatory-element-binding protein-1 (SREBP-1), a master lipogenic regulator, was induced in HFHS-fed HNF4α HET mice. In reporter assays, HNF4α cooperated with the corepressor small heterodimer partner to potently inhibit the transactivation of mouse and human SREBP-1C promoter by liver X receptor. Hepatic nuclear GR proteins tended to be decreased in the HNF4α KO mice. HFHS-fed mice with liver-specific KO of GR had increased hepatic lipids and induction of SREBP-1C and PPARγ, which was associated with a marked decrease in hepatic levels of HNF4α proteins in these mice. In reporter assays, GR and HNF4α synergistically/additively induced lipid catabolic genes. Conclusions induction of lipid catabolic genes and suppression of lipogenic genes by HNF4α and GR may mediate the early resistance to HFHS-induced fatty liver and hyperlipidemia. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01654-6.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Xiaohong Lei
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Rebecca Winkler
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Savio John
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Devendra Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wenkuan Li
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
25
|
Joseph LC, Shi J, Nguyen QN, Pensiero V, Goulbourne C, Bauer RC, Zhang H, Morrow JP. Combined metabolomic and transcriptomic profiling approaches reveal the cardiac response to high-fat diet. iScience 2022; 25:104184. [PMID: 35494220 PMCID: PMC9038541 DOI: 10.1016/j.isci.2022.104184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
The response of vital organs to different types of nutrition or diet is a fundamental question in physiology. We examined the cardiac response to 4 weeks of high-fat diet in mice, measuring cardiac metabolites and mRNA. Metabolomics showed dramatic differences after a high-fat diet, including increases in several acyl-carnitine species. The RNA-seq data showed changes consistent with adaptations to use more fatty acid as substrate and an increase in the antioxidant protein catalase. Changes in mRNA were correlated with changes in protein level for several highly responsive genes. We also found significant sex differences in both metabolomics and RNA-seq datasets, both at baseline and after high fat diet. This work reveals the response of a vital organ to dietary intervention at both metabolomic and transcriptomic levels, which is a fundamental question in physiology. This work also reveals significant sex differences in cardiac metabolites and gene expression.
Collapse
Affiliation(s)
- Leroy C. Joseph
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Jianting Shi
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
- Cardiometabolic Genomics Program, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Quynh N. Nguyen
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Victoria Pensiero
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Chris Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Robert C. Bauer
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Hanrui Zhang
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
- Cardiometabolic Genomics Program, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - John P. Morrow
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| |
Collapse
|
26
|
Carvalho G, Repolês BM, Mendes I, Wanrooij PH. Mitochondrial DNA Instability in Mammalian Cells. Antioxid Redox Signal 2022; 36:885-905. [PMID: 34015960 PMCID: PMC9127837 DOI: 10.1089/ars.2021.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Significance: The small, multicopy mitochondrial genome (mitochondrial DNA [mtDNA]) is essential for efficient energy production, as alterations in its coding information or a decrease in its copy number disrupt mitochondrial ATP synthesis. However, the mitochondrial replication machinery encounters numerous challenges that may limit its ability to duplicate this important genome and that jeopardize mtDNA stability, including various lesions in the DNA template, topological stress, and an insufficient nucleotide supply. Recent Advances: An ever-growing array of DNA repair or maintenance factors are being reported to localize to the mitochondria. We review current knowledge regarding the mitochondrial factors that may contribute to the tolerance or repair of various types of changes in the mitochondrial genome, such as base damage, incorporated ribonucleotides, and strand breaks. We also discuss the newly discovered link between mtDNA instability and activation of the innate immune response. Critical Issues: By which mechanisms do mitochondria respond to challenges that threaten mtDNA maintenance? What types of mtDNA damage are repaired, and when are the affected molecules degraded instead? And, finally, which forms of mtDNA instability trigger an immune response, and how? Future Directions: Further work is required to understand the contribution of the DNA repair and damage-tolerance factors present in the mitochondrial compartment, as well as the balance between mtDNA repair and degradation. Finally, efforts to understand the events underlying mtDNA release into the cytosol are warranted. Pursuing these and many related avenues can improve our understanding of what goes wrong in mitochondrial disease. Antioxid. Redox Signal. 36, 885-905.
Collapse
Affiliation(s)
- Gustavo Carvalho
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Bruno Marçal Repolês
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Isabela Mendes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Paulina H. Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| |
Collapse
|
27
|
Mamiya PC, Richards TL, Edden RAE, Lee AKC, Stein MA, Kuhl PK. Reduced Glx and GABA Inductions in the Anterior Cingulate Cortex and Caudate Nucleus Are Related to Impaired Control of Attention in Attention-Deficit/Hyperactivity Disorder. Int J Mol Sci 2022; 23:ijms23094677. [PMID: 35563067 PMCID: PMC9100027 DOI: 10.3390/ijms23094677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that impairs the control of attention and behavioral inhibition in affected individuals. Recent genome-wide association findings have revealed an association between glutamate and GABA gene sets and ADHD symptoms. Consistently, people with ADHD show altered glutamate and GABA content in the brain circuitry that is important for attention control function. Yet, it remains unknown how glutamate and GABA content in the attention control circuitry change when people are controlling their attention, and whether these changes can predict impaired attention control in people with ADHD. To study these questions, we recruited 18 adults with ADHD (31-51 years) and 16 adults without ADHD (28-54 years). We studied glutamate + glutamine (Glx) and GABA content in the fronto-striatal circuitry while participants performed attention control tasks. We found that Glx and GABA concentrations at rest did not differ between participants with ADHD or without ADHD. However, while participants were performing the attention control tasks, participants with ADHD showed smaller Glx and GABA increases than participants without ADHD. Notably, smaller GABA increases in participants with ADHD significantly predicted their poor task performance. Together, these findings provide the first demonstration showing that attention control deficits in people with ADHD may be related to insufficient responses of the GABAergic system in the fronto-striatal circuitry.
Collapse
Affiliation(s)
- Ping C. Mamiya
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195, USA;
- Correspondence:
| | - Todd L. Richards
- Department of Radiology, University of Washington, Seattle, WA 98195, USA;
| | - Richard A. E. Edden
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Adrian K. C. Lee
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Mark A. Stein
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Patricia K. Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
28
|
Oe S, Hayashi S, Tanaka S, Koike T, Hirahara Y, Seki-Omura R, Kakizaki R, Sakamoto S, Nakano Y, Noda Y, Yamada H, Kitada M. Cytoplasmic Polyadenylation Element-Binding Protein 1 Post-transcriptionally Regulates Fragile X Mental Retardation 1 Expression Through 3′ Untranslated Region in Central Nervous System Neurons. Front Cell Neurosci 2022; 16:869398. [PMID: 35496917 PMCID: PMC9051318 DOI: 10.3389/fncel.2022.869398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome (FXS) is an inherited intellectual disability caused by a deficiency in Fragile X mental retardation 1 (Fmr1) gene expression. Recent studies have proposed the importance of cytoplasmic polyadenylation element-binding protein 1 (CPEB1) in FXS pathology; however, the molecular interaction between Fmr1 mRNA and CPEB1 has not been fully investigated. Here, we revealed that CPEB1 co-localized and interacted with Fmr1 mRNA in hippocampal and cerebellar neurons and culture cells. Furthermore, CPEB1 knockdown upregulated Fmr1 mRNA and protein levels and caused aberrant localization of Fragile X mental retardation protein in neurons. In an FXS cell model, CPEB1 knockdown upregulated the mRNA levels of several mitochondria-related genes and rescued the intracellular heat shock protein family A member 9 distribution. These findings suggest that CPEB1 post-transcriptionally regulated Fmr1 expression through the 3′ untranslated region, and that CPEB1 knockdown might affect mitochondrial function.
Collapse
Affiliation(s)
- Souichi Oe
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
- *Correspondence: Souichi Oe,
| | - Shinichi Hayashi
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Susumu Tanaka
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Taro Koike
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yukie Hirahara
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | | | - Rio Kakizaki
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Sumika Sakamoto
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yosuke Nakano
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yasuko Noda
- Department of Anatomy, Bio-Imaging and Neuro-Cell Science, Jichi Medical University, Shimotsuke, Japan
| | - Hisao Yamada
- Biwako Professional University of Rehabilitation, Higashiomi, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
- Masaaki Kitada,
| |
Collapse
|
29
|
Liu C, Xiong Q, Li Q, Lin W, Jiang S, Zhang D, Wang Y, Duan X, Gong P, Kang N. CHD7 regulates bone-fat balance by suppressing PPAR-γ signaling. Nat Commun 2022; 13:1989. [PMID: 35418650 PMCID: PMC9007978 DOI: 10.1038/s41467-022-29633-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Chromodomain helicase DNA-binding protein 7 (CHD7), an ATP-dependent eukaryotic chromatin remodeling enzyme, is essential for the development of organs. The mutation of CHD7 is the main cause of CHARGE syndrome, but its function and mechanism in skeletal system remain unclear. Here, we show conditional knockout of Chd7 in bone marrow mesenchymal stem cells (MSCs) and preosteoblasts leads to a pathological phenotype manifested as low bone mass and severely high marrow adiposity. Mechanistically, we identify enhancement of the peroxisome proliferator-activated receptor (PPAR) signaling in Chd7-deficient MSCs. Loss of Chd7 reduces the restriction of PPAR-γ and then PPAR-γ associates with trimethylated histone H3 at lysine 4 (H3K4me3), which subsequently activates the transcription of downstream adipogenic genes and disrupts the balance between osteogenic and adipogenic differentiation. Our data illustrate the pathological manifestations of Chd7 mutation in MSCs and reveal an epigenetic mechanism in skeletal health and diseases. CHD7 is chromatin remodeler and mutations of CHD7 are the main cause of CHARGE syndrome. Here the authors show that conditional knockout of Chd7 in bone marrow mesenchymal stem cells (MSCs) and pre-osteoblasts leads to a skeletal system development disorder in mice and upregulated PPAR signaling, disrupting the balance between osteogenic and adipogenic differentiation.
Collapse
Affiliation(s)
- Caojie Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Danting Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xiaobo Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.
| | - Ning Kang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
30
|
Fang H, Xie A, Du M, Li X, Yang K, Fu Y, Yuan X, Fan R, Yu W, Zhou Z, Sang T, Nie K, Li J, Zhao Q, Chen Z, Yang Y, Hong C, Lyu J. SERAC1 is a component of the mitochondrial serine transporter complex required for the maintenance of mitochondrial DNA. Sci Transl Med 2022; 14:eabl6992. [PMID: 35235340 DOI: 10.1126/scitranslmed.abl6992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SERAC1 deficiency is associated with the mitochondrial 3-methylglutaconic aciduria with deafness, (hepatopathy), encephalopathy, and Leigh-like disease [MEGD(H)EL] syndrome, but the role of SERAC1 in mitochondrial physiology remains unknown. Here, we generated Serac1-/- mice that mimic the major diagnostic clinical and biochemical phenotypes of the MEGD(H)EL syndrome. We found that SERAC1 localizes to the outer mitochondrial membrane and is a protein component of the one-carbon cycle. By interacting with the mitochondrial serine transporter protein SFXN1, SERAC1 facilitated and was required for SFXN1-mediated serine transport from the cytosol to the mitochondria. Loss of SERAC1 impaired the one-carbon cycle and disrupted the balance of the nucleotide pool, which led to primary mitochondrial DNA (mtDNA) depletion in mice, HEK293T cells, and patient-derived immortalized lymphocyte cells due to insufficient supply of nucleotides. Moreover, both in vitro and in vivo supplementation of nucleosides/nucleotides restored mtDNA content and mitochondrial function. Collectively, our findings suggest that MEGD(H)EL syndrome shares both clinical and molecular features with the mtDNA depletion syndrome, and nucleotide supplementation may be an effective therapeutic strategy for MEGD(H)EL syndrome.
Collapse
Affiliation(s)
- Hezhi Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Anran Xie
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Miaomiao Du
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310000, China.,Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Xueyun Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China.,Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 318000, China
| | - Kaiqiang Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yinxu Fu
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiangshu Yuan
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Runxiao Fan
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weidong Yu
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhuohua Zhou
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tiantian Sang
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ke Nie
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jin Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiongya Zhao
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Zhehui Chen
- Department of Pediatrics, Peking University First Hospital, Beijing 100000, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing 100000, China
| | - Chaoyang Hong
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Jianxin Lyu
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310000, China.,Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
31
|
Zhang M, Zhong H, Cao T, Huang Y, Ji X, Fan GC, Peng T. Gamma-Aminobutyrate Transaminase Protects against Lipid Overload-Triggered Cardiac Injury in Mice. Int J Mol Sci 2022; 23:ijms23042182. [PMID: 35216295 PMCID: PMC8874535 DOI: 10.3390/ijms23042182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/26/2022] Open
Abstract
Lipid overload contributes to cardiac complications of diabetes and obesity. However, the underlying mechanisms remain obscure. This study investigates the role of gamma-aminobutyrate transaminase (ABAT), the key enzyme involved in the catabolism of γ-aminobutyric acid (GABA), in lipid overload-induced cardiac injury. Microarray revealed a down-regulation of ABAT mRNA expression in high fat diet (HFD)-fed mouse hearts, which correlated with a reduction in ABAT protein level and its GABA catabolic activity. Transgenic mice with cardiomyocyte-specific ABAT over-expression (Tg-ABAT/tTA) were generated to determine the role of ABAT in lipid overload-induced cardiac injury. Feeding with a HFD to control mice for 4 months reduced ATP production and the mitochondrial DNA copy number, and induced myocardial oxidative stress, hypertrophy, fibrosis and dysfunction. Such pathological effects of HFD were mitigated by ABAT over-expression in Tg-ABAT/tTA mice. In cultured cardiomyocytes, palmitate increased mitochondrial ROS production, depleted ATP production and promoted apoptosis, all of which were attenuated by ABAT over-expression. With the inhibition of ABAT’s GABA catabolic activity, the protective effects of ABAT remained unchanged in palmitate-induced cardiomyocytes. Thus, ABAT protects the mitochondrial function in defending the heart against lipid overload-induced injury through mechanisms independent of its GABA catabolic activity, and may represent a new therapeutic target for lipid overload-induced cardiac injury.
Collapse
Affiliation(s)
- Mengxiao Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (M.Z.); (H.Z.); (T.C.); (Y.H.)
- School of Pharmacy, Bengbu Medical College, Bengbu 233000, China
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada;
| | - Huiting Zhong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (M.Z.); (H.Z.); (T.C.); (Y.H.)
| | - Ting Cao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (M.Z.); (H.Z.); (T.C.); (Y.H.)
| | - Yifan Huang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (M.Z.); (H.Z.); (T.C.); (Y.H.)
| | - Xiaoyun Ji
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Tianqing Peng
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Medicine, Western University, London, ON N6A 5W9, Canada
- VRLA6-140, 800 Commissioners Road, London, ON N6A 5W9, Canada
- Correspondence: ; Tel.: +1-519-6858500-55441
| |
Collapse
|
32
|
Molecular Genetics Overview of Primary Mitochondrial Myopathies. J Clin Med 2022; 11:jcm11030632. [PMID: 35160083 PMCID: PMC8836969 DOI: 10.3390/jcm11030632] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial disorders are the most common inherited conditions, characterized by defects in oxidative phosphorylation and caused by mutations in nuclear or mitochondrial genes. Due to its high energy request, skeletal muscle is typically involved. According to the International Workshop of Experts in Mitochondrial Diseases held in Rome in 2016, the term Primary Mitochondrial Myopathy (PMM) should refer to those mitochondrial disorders affecting principally, but not exclusively, the skeletal muscle. The clinical presentation may include general isolated myopathy with muscle weakness, exercise intolerance, chronic ophthalmoplegia/ophthalmoparesis (cPEO) and eyelids ptosis, or multisystem conditions where there is a coexistence with extramuscular signs and symptoms. In recent years, new therapeutic targets have been identified leading to the launch of some promising clinical trials that have mainly focused on treating muscle symptoms and that require populations with defined genotype. Advantages in next-generation sequencing techniques have substantially improved diagnosis. So far, an increasing number of mutations have been identified as responsible for mitochondrial disorders. In this review, we focused on the principal molecular genetic alterations in PMM. Accordingly, we carried out a comprehensive review of the literature and briefly discussed the possible approaches which could guide the clinician to a genetic diagnosis.
Collapse
|
33
|
Han H, Zhou S, Chen G, Lu Y, Lin H. ABAT targeted by miR-183-5p regulates cell functions in liver cancer. Int J Biochem Cell Biol 2021; 141:106116. [PMID: 34742920 DOI: 10.1016/j.biocel.2021.106116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Liver cancer triggers a considerable number of global deaths. This work focused on mechanisms as well as impacts of ABAT in liver cancer. METHODS Differentially expressed mRNAs in liver cancer were analyzed with The Cancer Genome Atlas (TCGA) database to determine and evaluate the prognostic significance of the target gene ABAT. ABAT was overexpressed to explore its effect on liver cancer. Furthermore, the targeted regulation between miR-183-5p and ABAT was verified through dual-luciferase method. The effects of their expression on liver cancer functions were detected by cell functional experiments like Cell Counting Kit-8 (CCK8), Transwell and flow cytometry. Lastly, the inhibitory effect of ABAT on the tumor was proved in nude mice in vivo. RESULTS At tissue and cell levels, ABAT was inactivated in liver cancer, and liver cancer patients with lowly expressed ABAT had poor prognosis. Overexpressing ABAT could inhibit cancer cell behaviors, and suppress tumorigenesis in nude mice. Meanwhile, overexpressed ABAT could upregulate E-cadherin in liver cancer cells, while downregulate MMP-9, Vimentin, MMP-2, N-cadherin, Ki67. Of note, miR-183-5p was highly expressed in liver cancer tissue and cells, which could target and downregulate ABAT expression. It was indicated by rescue assay that lowly expressed miR-183-5p could repress functions of liver cancer cells, while such inhibitory effect could be recovered by ABAT silencing. CONCLUSION Downstream of miR-183-5p, ABAT was targeted to mediate progression of liver cancer.
Collapse
Affiliation(s)
- Hui Han
- Zhejiang University School of Medicine, Zhejiang 310011, PR China; Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Guangdong Province 515041, PR China
| | - Shenkang Zhou
- Department of Gastrointestinal Surgery, Taizhou Hospital, Zhejiang University, Zhejiang 310011, PR China; Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Zhejiang 310016, PR China
| | - Gengzhen Chen
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Guangdong Province 515041, PR China
| | - Yandi Lu
- Endoscopy Center, Taizhou Hospital of Zhejiang Province, Zhejiang 310016, PR China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang 310016, PR China.
| |
Collapse
|
34
|
Sledzieski S, Singh R, Cowen L, Berger B. D-SCRIPT translates genome to phenome with sequence-based, structure-aware, genome-scale predictions of protein-protein interactions. Cell Syst 2021; 12:969-982.e6. [PMID: 34536380 PMCID: PMC8586911 DOI: 10.1016/j.cels.2021.08.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022]
Abstract
We combine advances in neural language modeling and structurally motivated design to develop D-SCRIPT, an interpretable and generalizable deep-learning model, which predicts interaction between two proteins using only their sequence and maintains high accuracy with limited training data and across species. We show that a D-SCRIPT model trained on 38,345 human PPIs enables significantly improved functional characterization of fly proteins compared with the state-of-the-art approach. Evaluating the same D-SCRIPT model on protein complexes with known 3D structure, we find that the inter-protein contact map output by D-SCRIPT has significant overlap with the ground truth. We apply D-SCRIPT to screen for PPIs in cow (Bos taurus) at a genome-wide scale and focusing on rumen physiology, identify functional gene modules related to metabolism and immune response. The predicted interactions can then be leveraged for function prediction at scale, addressing the genome-to-phenome challenge, especially in species where little data are available.
Collapse
Affiliation(s)
- Samuel Sledzieski
- Computer Science and Artificial Intelligence Lab., Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rohit Singh
- Computer Science and Artificial Intelligence Lab., Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA 02155, USA.
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Lab., Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
35
|
Bentley RET, Hindmarch CCT, Dunham-Snary KJ, Snetsinger B, Mewburn JD, Thébaud A, Lima PDA, Thébaud B, Archer SL. The molecular mechanisms of oxygen-sensing in human ductus arteriosus smooth muscle cells: A comprehensive transcriptome profile reveals a central role for mitochondria. Genomics 2021; 113:3128-3140. [PMID: 34245829 PMCID: PMC10659099 DOI: 10.1016/j.ygeno.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/23/2021] [Accepted: 07/04/2021] [Indexed: 01/22/2023]
Abstract
The ductus arteriosus (DA) connects the fetal pulmonary artery and aorta, diverting placentally oxygenated blood from the developing lungs to the systemic circulation. The DA constricts in response to increases in oxygen (O2) with the first breaths, resulting in functional DA closure, with anatomic closure occurring within the first days of life. Failure of DA closure results in persistent patent ductus arteriosus (PDA), a common complication of extreme preterm birth. The DA's response to O2, though modulated by the endothelium, is intrinsic to the DA smooth muscle cells (DASMC). DA constriction is mediated by mitochondrial-derived reactive oxygen species, which increase in proportion to arterial partial pressure of oxygen (PaO2). The resulting redox changes inhibit voltage-gated potassium channels (Kv) leading to cell depolarization, calcium influx and DASMC constriction. To date, there has not been an unbiased assessment of the human DA O2-sensors using transcriptomics, nor are there known molecular mechanisms which characterize DA closure. DASMCs were isolated from DAs obtained from 10 term infants at the time of congenital heart surgery. Cells were purified by flow cytometry, negatively sorting using CD90 and CD31 to eliminate fibroblasts or endothelial cells, respectively. The purity of the DASMC population was confirmed by positive staining for α-smooth muscle actin, smoothelin B and caldesmon. Cells were grown for 96 h in hypoxia (2.5% O2) or normoxia (19% O2) and confocal imaging with Cal-520 was used to determine oxygen responsiveness. An oxygen-induced increase in intracellular calcium of 18.1% ± 4.4% and SMC constriction (-27% ± 1.5% shortening) occurred in all cell lines within five minutes. RNA sequencing of the cells grown in hypoxia and normoxia revealed significant regulation of 1344 genes (corrected p < 0.05). We examined these genes using Gene Ontology (GO). This unbiased assessment of altered gene expression indicated significant enrichment of the following GOterms: mitochondria, cellular respiration and transcription. The top regulated biologic process was generation of precursor metabolites and energy. The top regulated cellular component was mitochondrial matrix. The top regulated molecular function was transcription coactivator activity. Multiple members of the NADH-ubiquinone oxidoreductase (NDUF) family are upregulated in human DASMC (hDASMC) following normoxia. Several of our differentially regulated transcripts are encoded by genes that have been associated with genetic syndromes that have an increased incidence of PDA (Crebb binding protein and Histone Acetyltransferase P300). This first examination of the effects of O2 on human DA transcriptomics supports a putative role for mitochondria as oxygen sensors.
Collapse
Affiliation(s)
| | - Charles C T Hindmarch
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; QCPU, Queen's Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Science, Queen's University, Canada
| | - Brooke Snetsinger
- QCPU, Queen's Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Canada
| | - Jeffrey D Mewburn
- Department of Biomedical and Molecular Science, Queen's University, Canada
| | - Arthur Thébaud
- Department of Kinesiology and Health Studies, Queen's University, Canada
| | - Patricia D A Lima
- QCPU, Queen's Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Canada
| | - Bernard Thébaud
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada; Department of Pediatrics, Division of Neonatology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; QCPU, Queen's Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Canada.
| |
Collapse
|
36
|
Martirosian V, Deshpande K, Zhou H, Shen K, Smith K, Northcott P, Lin M, Stepanosyan V, Das D, Remsik J, Isakov D, Boire A, De Feyter H, Hurth K, Li S, Wiemels J, Nakamura B, Shao L, Danilov C, Chen T, Neman J. Medulloblastoma uses GABA transaminase to survive in the cerebrospinal fluid microenvironment and promote leptomeningeal dissemination. Cell Rep 2021; 35:109302. [PMID: 34192534 PMCID: PMC8848833 DOI: 10.1016/j.celrep.2021.109302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/02/2020] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Medulloblastoma (MB) is a malignant pediatric brain tumor arising in the cerebellum. Although abnormal GABAergic receptor activation has been described in MB, studies have not yet elucidated the contribution of receptor-independent GABA metabolism to MB pathogenesis. We find primary MB tumors globally display decreased expression of GABA transaminase (ABAT), the protein responsible for GABA metabolism, compared with normal cerebellum. However, less aggressive WNT and SHH subtypes express higher ABAT levels compared with metastatic G3 and G4 tumors. We show that elevated ABAT expression results in increased GABA catabolism, decreased tumor cell proliferation, and induction of metabolic and histone characteristics mirroring GABAergic neurons. Our studies suggest ABAT expression fluctuates depending on metabolite changes in the tumor microenvironment, with nutrient-poor conditions upregulating ABAT expression. We find metastatic MB cells require ABAT to maintain viability in the metabolite-scarce cerebrospinal fluid by using GABA as an energy source substitute, thereby facilitating leptomeningeal metastasis formation.
Collapse
Affiliation(s)
- Vahan Martirosian
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Krutika Deshpande
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Hao Zhou
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Keyue Shen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Kyle Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michelle Lin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Vazgen Stepanosyan
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Diganta Das
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jan Remsik
- Human Oncology and Pathogenesis Program, Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danielle Isakov
- Human Oncology and Pathogenesis Program, Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Henk De Feyter
- Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kyle Hurth
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Joseph Wiemels
- Center for Genetic Epidemiology, Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Brooke Nakamura
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Ling Shao
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Camelia Danilov
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Thomas Chen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Josh Neman
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
37
|
Ramón J, Vila-Julià F, Molina-Granada D, Molina-Berenguer M, Melià MJ, García-Arumí E, Torres-Torronteras J, Cámara Y, Martí R. Therapy Prospects for Mitochondrial DNA Maintenance Disorders. Int J Mol Sci 2021; 22:6447. [PMID: 34208592 PMCID: PMC8234938 DOI: 10.3390/ijms22126447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial DNA depletion and multiple deletions syndromes (MDDS) constitute a group of mitochondrial diseases defined by dysfunctional mitochondrial DNA (mtDNA) replication and maintenance. As is the case for many other mitochondrial diseases, the options for the treatment of these disorders are rather limited today. Some aggressive treatments such as liver transplantation or allogeneic stem cell transplantation are among the few available options for patients with some forms of MDDS. However, in recent years, significant advances in our knowledge of the biochemical pathomechanisms accounting for dysfunctional mtDNA replication have been achieved, which has opened new prospects for the treatment of these often fatal diseases. Current strategies under investigation to treat MDDS range from small molecule substrate enhancement approaches to more complex treatments, such as lentiviral or adenoassociated vector-mediated gene therapy. Some of these experimental therapies have already reached the clinical phase with very promising results, however, they are hampered by the fact that these are all rare disorders and so the patient recruitment potential for clinical trials is very limited.
Collapse
Affiliation(s)
- Javier Ramón
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ferran Vila-Julià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David Molina-Granada
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Molina-Berenguer
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Jesús Melià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena García-Arumí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
38
|
Liao JY, Salles PA, Shuaib UA, Fernandez HH. Genetic updates on paroxysmal dyskinesias. J Neural Transm (Vienna) 2021; 128:447-471. [PMID: 33929620 DOI: 10.1007/s00702-021-02335-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
The paroxysmal dyskinesias are a diverse group of genetic disorders that manifest as episodic movements, with specific triggers, attack frequency, and duration. With recent advances in genetic sequencing, the number of genetic variants associated with paroxysmal dyskinesia has dramatically increased, and it is now evident that there is significant genotype-phenotype overlap, reduced (or incomplete) penetrance, and phenotypic variability. In addition, a variety of genetic conditions can present with paroxysmal dyskinesia as the initial symptom. This review will cover the 34 genes implicated to date and propose a diagnostic workflow featuring judicious use of whole-exome or -genome sequencing. The goal of this review is to provide a common understanding of paroxysmal dyskinesias so basic scientists, geneticists, and clinicians can collaborate effectively to provide diagnoses and treatments for patients.
Collapse
Affiliation(s)
- James Y Liao
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Philippe A Salles
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Centro de Trastornos del Movimiento, CETRAM, Santiago, Chile
| | - Umar A Shuaib
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Hubert H Fernandez
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
39
|
Bi Y, Yin B, Fan G. Identification of metabolism genes related to hepatocarcinogenesis and progression in type 2 diabetes mellitus via co-expression networks analysis. Hereditas 2021; 158:14. [PMID: 33865459 PMCID: PMC8053303 DOI: 10.1186/s41065-021-00177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/04/2021] [Indexed: 11/16/2022] Open
Abstract
Background Type 2 Diabetes Mellitus (T2DM) is an independent risk factor of hepatocellular carcinoma (HCC). However, the related genes and modules to hepatocarcinogenesis and progression in T2DM remain unclear. Methods The microarray data from Gene Expression Omnibus (GEO) were analyzed to screen differentially expressed genes (DEGs) of T2DM and HCC dataset. Then, weighted gene co-expression network analysis (WGCNA) was performed on these DEGs to detect the modules and genes, respectively. Common genes in modules with clinical interests of T2DM and HCC were obtained and annotated via GOSemSim package and Metascape. Genes related to late-stage HCC and high glycated haemoglobin (HbA1c) were also identified. These genes were validated by UALCAN analysis and univariate cox regression based on The Cancer Genome Atlas (TCGA). Finally, another two independent datasets were applied to confirm the results of our study. Results A total of 1288 and 1559 DEGs of T2DM and HCC were screened, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment revealed several shared pathways in two diseases, such as pathways in cancer and metabolism. A total of 37 common genes correlated with T2DM and HCC were then identified with WGCNA. Furthermore, 12 genes from modules associated with late-stage HCC and high HbA1c were regarded as hub genes. Among these genes, 8 genes associated with tumor invasion and metastasis were validated by UALCAN analysis. Moreover, downregulations of ACAT1, SLC2A2, PCK1 and ABAT were significantly associated with poorer prognosis in HCC patients with elevated HbA1c. Additionally, the expressions of PCK1 and ABAT were raised in HepG2 cells pre-treated with metformin and phenformin. Conclusions The present study confirmed several metabolic genes related to hyperglycemia and malignant tumor, which may provide not only new insights into the pathogenesis of hepatocarcinogenesis and progression in T2DM, but also novel therapeutic targets for T2DM patients with HCC in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00177-x.
Collapse
Affiliation(s)
- Yiming Bi
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bei Yin
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanjie Fan
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
40
|
Jacinto S, Guerreiro P, de Oliveira RM, Cunha-Oliveira T, Santos MJ, Grazina M, Rego AC, Outeiro TF. MPV17 Mutations Are Associated With a Quiescent Energetic Metabolic Profile. Front Cell Neurosci 2021; 15:641264. [PMID: 33815063 PMCID: PMC8011494 DOI: 10.3389/fncel.2021.641264] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/08/2021] [Indexed: 02/03/2023] Open
Abstract
Mutations in the MPV17 gene are associated with hepatocerebral form of mitochondrial depletion syndrome. The mechanisms through which MPV17 mutations cause respiratory chain dysfunction and mtDNA depletion is still unclear. The MPV17 gene encodes an inner membrane mitochondrial protein that was recently described to function as a non-selective channel. Although its exact function is unknown, it is thought to be important in the maintenance of mitochondrial membrane potential (ΔΨm). To obtain more information about the role of MPV17 in human disease, we investigated the effect of MPV17 knockdown and of selected known MPV17 mutations associated with MPV17 disease in vitro. We used different approaches in order to evaluate the cellular consequences of MPV17 deficiency. We found that lower levels of MPV17 were associated with impaired mitochondrial respiration and with a quiescent energetic metabolic profile. All the mutations studied destabilized the protein, resulting in reduced protein levels. We also demonstrated that different mutations caused different cellular abnormalities, including increased ROS production, decreased oxygen consumption, loss of ΔΨm, and mislocalization of MPV17 protein. Our study provides novel insight into the molecular effects of MPV17 mutations and opens novel possibilities for testing therapeutic strategies for a devastating group of disorders.
Collapse
Affiliation(s)
- Sandra Jacinto
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Serviço de Neurologia Pediátrica, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central-EPE, Lisboa, Portugal
| | - Patrícia Guerreiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Switch Laboratory, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Katholiek Universiteit (KU), Leuven, Belgium
| | - Rita Machado de Oliveira
- CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | - Maria João Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Manuela Grazina
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
41
|
Oshi A, Alfaifi A, Seidahmed MZ, Al Hussein K, Miqdad A, Samadi A, Abdelbasit O. GABA transaminase deficiency. Case report and literature review. Clin Case Rep 2021; 9:1295-1298. [PMID: 33768830 PMCID: PMC7981681 DOI: 10.1002/ccr3.3753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 11/07/2022] Open
Abstract
GABA transaminase deficiency should be considered in the differential diagnosis of early onset epileptic encephalopathies. This case was diagnosed post-mortem, but increased vigilance to this will allow for earlier diagnoses in other infants and families. This is a case study which involved diagnosis of a rare neurometabolic disorder in one of the babies in the family and eventual genetic counselling of the family. The family has been offered pre-implantation genetic diagnosis for future pregnancies. This case reporting has been approved by the hospital research and ethical committee.
Collapse
Affiliation(s)
- Amira Oshi
- Department of PediatricsSecurity Forces HospitalRiyadhSaudi Arabia
| | - Abdullah Alfaifi
- Department of PediatricsSecurity Forces HospitalRiyadhSaudi Arabia
| | | | | | - Abeer Miqdad
- Department of PediatricsSecurity Forces HospitalRiyadhSaudi Arabia
| | | | - Omar Abdelbasit
- Department of PediatricsSecurity Forces HospitalRiyadhSaudi Arabia
| |
Collapse
|
42
|
Zheng Q, Bi R, Xu M, Zhang DF, Tan LW, Lu YP, Yao YG. Exploring the Genetic Association of the ABAT Gene with Alzheimer's Disease. Mol Neurobiol 2021; 58:1894-1903. [PMID: 33404980 DOI: 10.1007/s12035-020-02271-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Accumulating evidence demonstrated that GABAergic dysfunction contributes to the pathogenesis of Alzheimer's disease (AD). The GABA aminotransferase (ABAT) gene encodes a mitochondrial GABA transaminase and plays key roles in the biogenesis and metabolism of gamma-aminobutyric acid (GABA), which is a major inhibitory neurotransmitter. In this study, we performed an integrative study at the genetic and expression levels to investigate the potential genetic association between the ABAT gene and AD. Through re-analyzing data from the currently largest meta-analysis of AD genome-wide association study (GWAS), we identified genetic variants in the 3'-UTR of ABAT as the top AD-associated SNPs (P < 1 × 10-4) in this gene. Functional annotation of these AD-associated SNPs indicated that these SNPs are located in the regulatory regions of transcription factors or/and microRNAs. Expression quantitative trait loci (eQTL) analysis and luciferase reporter assay showed that the AD risk alleles of these SNPs were associated with a reduced expression level of ABAT. Further analysis of mRNA expression data and single-cell transcriptome data of AD patients showed that ABAT reduction in the neuron is an early event during AD development. Overall, our results indicated that ABAT genetic variants may be associated with AD through affecting its mRNA expression. An abnormal level of ABAT will lead to a disturbance of the GABAergic signal pathway in AD brains.
Collapse
Affiliation(s)
- Quanzhen Zheng
- College of Life Sciences, Anhui Normal University, Wuhu, 241002, Anhui, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Li-Wen Tan
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ya-Ping Lu
- College of Life Sciences, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
43
|
SUCLA2 mutations cause global protein succinylation contributing to the pathomechanism of a hereditary mitochondrial disease. Nat Commun 2020; 11:5927. [PMID: 33230181 PMCID: PMC7684291 DOI: 10.1038/s41467-020-19743-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial acyl-coenzyme A species are emerging as important sources of protein modification and damage. Succinyl-CoA ligase (SCL) deficiency causes a mitochondrial encephalomyopathy of unknown pathomechanism. Here, we show that succinyl-CoA accumulates in cells derived from patients with recessive mutations in the tricarboxylic acid cycle (TCA) gene succinyl-CoA ligase subunit-β (SUCLA2), causing global protein hyper-succinylation. Using mass spectrometry, we quantify nearly 1,000 protein succinylation sites on 366 proteins from patient-derived fibroblasts and myotubes. Interestingly, hyper-succinylated proteins are distributed across cellular compartments, and many are known targets of the (NAD+)-dependent desuccinylase SIRT5. To test the contribution of hyper-succinylation to disease progression, we develop a zebrafish model of the SCL deficiency and find that SIRT5 gain-of-function reduces global protein succinylation and improves survival. Thus, increased succinyl-CoA levels contribute to the pathology of SCL deficiency through post-translational modifications. The pathomechanism of succinyl-CoA ligase (SCL) deficiency, a hereditary mitochondrial disease, is not fully understood. Here, the authors show that increased succinyl-CoA levels contribute to SCL pathology by causing global protein hyper-succinylation.
Collapse
|
44
|
Knott EL, Leidenheimer NJ. A Targeted Bioinformatics Assessment of Adrenocortical Carcinoma Reveals Prognostic Implications of GABA System Gene Expression. Int J Mol Sci 2020; 21:ijms21228485. [PMID: 33187258 PMCID: PMC7697095 DOI: 10.3390/ijms21228485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare but deadly cancer for which few treatments exist. Here, we have undertaken a targeted bioinformatics study of The Cancer Genome Atlas (TCGA) ACC dataset focusing on the 30 genes encoding the γ-aminobutyric acid (GABA) system—an under-studied, evolutionarily-conserved system that is an emerging potential player in cancer progression. Our analysis identified a subset of ACC patients whose tumors expressed a distinct GABA system transcriptome. Transcript levels of ABAT (encoding a key GABA shunt enzyme), were upregulated in over 40% of tumors, and this correlated with several favorable clinical outcomes including patient survival; while enrichment and ontology analysis implicated two cancer-related biological pathways involved in metastasis and immune response. The phenotype associated with ABAT upregulation revealed a potential metabolic heterogeneity among ACC tumors associated with enhanced mitochondrial metabolism. Furthermore, many GABAA receptor subunit-encoding transcripts were expressed, including two (GABRB2 and GABRD) prognostic for patient survival. Transcripts encoding GABAB receptor subunits and GABA transporters were also ubiquitously expressed. The GABA system transcriptome of ACC tumors is largely mirrored in the ACC NCI-H295R cell line, suggesting that this cell line may be appropriate for future functional studies investigating the role of the GABA system in ACC cell growth phenotypes and metabolism.
Collapse
|
45
|
The characterization of psychotic symptoms in succinic semialdehyde dehydrogenase deficiency: a review. Psychiatr Genet 2020; 30:153-161. [PMID: 33165204 DOI: 10.1097/ypg.0000000000000264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Succinic semialdehyde dehydrogenase (SSADH) deficiency is an ultra-rare inborn error of metabolism that results in disrupted gamma-amino butyric acid (GABA) catabolism. In addition to developmental delay, intellectual disability, hypotonia, ataxia, and seizures, a variety of neuropsychiatric symptoms may occur, including psychosis. By highlighting all available and relevant case reports/series, this qualitative review seeks to characterize the prevalence, clinical manifestation, pathophysiology, and treatment of psychotic symptoms in this population. Psychosis occurs in a minority of SSADH-deficient individuals, and most commonly presents as auditory or visual hallucinations with an onset in adolescence or young adulthood. Although the pathophysiology underlying the development of psychosis in this context is not fully understood, it likely in part relates to increased GABA and/or gamma hydroxybutyric acid activity. Although antipsychotic medications should be used cautiously in SSADH deficiency, they may be effective at treating emergent psychotic symptoms.
Collapse
|
46
|
Saneto RP. Mitochondrial diseases: expanding the diagnosis in the era of genetic testing. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:384-428. [PMID: 33426505 PMCID: PMC7791531 DOI: 10.20517/jtgg.2020.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous. These diseases were initially described a little over three decades ago. Limited diagnostic tools created disease descriptions based on clinical, biochemical analytes, neuroimaging, and muscle biopsy findings. This diagnostic mechanism continued to evolve detection of inherited oxidative phosphorylation disorders and expanded discovery of mitochondrial physiology over the next two decades. Limited genetic testing hampered the definitive diagnostic identification and breadth of diseases. Over the last decade, the development and incorporation of massive parallel sequencing has identified approximately 300 genes involved in mitochondrial disease. Gene testing has enlarged our understanding of how genetic defects lead to cellular dysfunction and disease. These findings have expanded the understanding of how mechanisms of mitochondrial physiology can induce dysfunction and disease, but the complete collection of disease-causing gene variants remains incomplete. This article reviews the developments in disease gene discovery and the incorporation of gene findings with mitochondrial physiology. This understanding is critical to the development of targeted therapies.
Collapse
Affiliation(s)
- Russell P. Saneto
- Center for Integrative Brain Research, Neuroscience Institute, Seattle, WA 98101, USA
- Department of Neurology/Division of Pediatric Neurology, Seattle Children’s Hospital/University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
47
|
Adam K, Ning J, Reina J, Hunter T. NME/NM23/NDPK and Histidine Phosphorylation. Int J Mol Sci 2020; 21:E5848. [PMID: 32823988 PMCID: PMC7461546 DOI: 10.3390/ijms21165848] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
The NME (Non-metastatic) family members, also known as NDPKs (nucleoside diphosphate kinases), were originally identified and studied for their nucleoside diphosphate kinase activities. This family of kinases is extremely well conserved through evolution, being found in prokaryotes and eukaryotes, but also diverges enough to create a range of complexity, with homologous members having distinct functions in cells. In addition to nucleoside diphosphate kinase activity, some family members are reported to possess protein-histidine kinase activity, which, because of the lability of phosphohistidine, has been difficult to study due to the experimental challenges and lack of molecular tools. However, over the past few years, new methods to investigate this unstable modification and histidine kinase activity have been reported and scientific interest in this area is growing rapidly. This review presents a global overview of our current knowledge of the NME family and histidine phosphorylation, highlighting the underappreciated protein-histidine kinase activity of NME family members, specifically in human cells. In parallel, information about the structural and functional aspects of the NME family, and the knowns and unknowns of histidine kinase involvement in cell signaling are summarized.
Collapse
Affiliation(s)
| | | | | | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (K.A.); (J.N.); (J.R.)
| |
Collapse
|
48
|
Pharmacologically targetable vulnerability in prostate cancer carrying RB1-SUCLA2 deletion. Oncogene 2020; 39:5690-5707. [PMID: 32694611 DOI: 10.1038/s41388-020-1381-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
RB1 gene is often homozygously deleted or mutated in prostate adenocarcinomas following acquirement of castration resistance and/or metastatic ability. We found that SUCLA2 gene is frequently involved in the deletion of the RB1 gene region in advanced prostate cancer. SUCLA2 constitutes the β-subunit of succinate CoA ligase heterodimer that reversibly converts succinyl CoA into succinate. We sought the possibility that deletion of SUCLA2 gives rise to a metabolic vulnerability that could be targeted therapeutically. We found a significant metabolic shift in SUCLA2-deleted prostate cancer cells, including lower mitochondrial respiratory activity. By screening a number of libraries for compounds that induce cell death selectively in SUCLA2-deficient prostate cancer cells, we identified thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone) and PMA (phorbol-12-myristate-13-acetate) from a natural compound library. These findings indicate that the metabolic vulnerability in SUCLA2-deficient prostate cancer cells is pharmacologically targetable.
Collapse
|
49
|
Miserazzi A, Perrigault M, Sow M, Gelber C, Ciret P, Lomenech AM, Dalens JM, Weber C, Le Floch S, Lacroix C, Blanc P, Massabuau JC. Proteome changes in muscles, ganglia, and gills in Corbicula fluminea clams exposed to crude oil: Relationship with behavioural disturbances. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 223:105482. [PMID: 32371337 DOI: 10.1016/j.aquatox.2020.105482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The use of online remote control for 24/7 behavioural monitoring can play a key role in estimating the environmental status of aquatic ecosystems. Recording the valve activity of bivalve molluscs is a relevant approach in this context. However, a clear understanding of the underlying disturbances associated with behaviour is a key step. In this work, we studied freshwater Asian clams after exposure to crude oil (measured concentration, 167 ± 28 μg·L-1) for three days in a semi-natural environment using outdoor artificial streams. Three complementary approaches to assess and explore disturbances were used: behaviour by high frequency non-invasive (HFNI) valvometry, tissue contamination with polycyclic aromatic hydrocarbons (PAH), and proteomic analysis. Two tissues were targeted: the pool adductor muscles - retractor pedal muscle - cerebral and visceral ganglia, which is the effector of any valve movement and the gills, which are on the frontline during contamination. The behavioural response was marked by an increase in valve closure-duration, a decrease in valve opening-amplitude and an increase in valve agitation index during opening periods. There was no significant PAH accumulation in the muscle plus nervous ganglia pool, contrary to the situation in the gills, although the latter remained in the low range of data available in literature. Major proteomic changes included (i) a slowdown in metabolic and/or cellular processes in muscles plus ganglia pool associated with minor toxicological effect and (ii) an increase of metabolic and/or cellular processes in gills associated with a greater toxicological effect. The nature of the proteomic changes is discussed in terms of unequal PAH distribution and allows to propose a set of explanatory mechanisms to associate behaviour to underlying physiological changes following oil exposure. First, the first tissues facing contaminated water are the inhalant siphon, the mantle edge and the gills. The routine nervous activity in the visceral ganglia should be modified by nervous information originating from these tissues. Second, the nervous activity in the visceral ganglia could be modified by its own specific contamination. Third, a decrease in nervous activity of the cerebral ganglia close to the mouth, including some kind of narcosis, could contribute to a decrease in visceral ganglia activity via a decrease or blockage of the downward neuromodulation by the cerebro-visceral connective. This whole set of events can explain the decrease of metabolic activity in the adductor muscles, contribute to initiate the catch mechanism and then deeply modify the valve behaviour.
Collapse
Affiliation(s)
- A Miserazzi
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France
| | - M Perrigault
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France
| | - M Sow
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France
| | - C Gelber
- Pôles d'études et de Recherche de Lacq, TOTAL, Lacq, France
| | - P Ciret
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France
| | - A M Lomenech
- Center of Functional Genomics, Bordeaux University, Bordeaux, France
| | - J M Dalens
- Pôles d'études et de Recherche de Lacq, TOTAL, Lacq, France
| | - C Weber
- Pôles d'études et de Recherche de Lacq, TOTAL, Lacq, France
| | | | | | - P Blanc
- CSTJF, TOTAL SA, Pau, France
| | - J C Massabuau
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France.
| |
Collapse
|
50
|
Sommerville EW, Dalla Rosa I, Rosenberg MM, Bruni F, Thompson K, Rocha M, Blakely EL, He L, Falkous G, Schaefer AM, Yu‐Wai‐Man P, Chinnery PF, Hedstrom L, Spinazzola A, Taylor RW, Gorman GS. Identification of a novel heterozygous guanosine monophosphate reductase (GMPR) variant in a patient with a late-onset disorder of mitochondrial DNA maintenance. Clin Genet 2020; 97:276-286. [PMID: 31600844 PMCID: PMC7004030 DOI: 10.1111/cge.13652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022]
Abstract
Autosomal dominant progressive external ophthalmoplegia (adPEO) is a late-onset, Mendelian mitochondrial disorder characterised by paresis of the extraocular muscles, ptosis, and skeletal-muscle restricted multiple mitochondrial DNA (mtDNA) deletions. Although dominantly inherited, pathogenic variants in POLG, TWNK and RRM2B are among the most common genetic defects of adPEO, identification of novel candidate genes and the underlying pathomechanisms remains challenging. We report the clinical, genetic and molecular investigations of a patient who presented in the seventh decade of life with PEO. Oxidative histochemistry revealed cytochrome c oxidase-deficient fibres and occasional ragged red fibres showing subsarcolemmal mitochondrial accumulation in skeletal muscle, while molecular studies identified the presence of multiple mtDNA deletions. Negative candidate screening of known nuclear genes associated with PEO prompted diagnostic exome sequencing, leading to the prioritisation of a novel heterozygous c.547G>C variant in GMPR (NM_006877.3) encoding guanosine monophosphate reductase, a cytosolic enzyme required for maintaining the cellular balance of adenine and guanine nucleotides. We show that the novel c.547G>C variant causes aberrant splicing, decreased GMPR protein levels in patient skeletal muscle, proliferating and quiescent cells, and is associated with subtle changes in nucleotide homeostasis protein levels and evidence of disturbed mtDNA maintenance in skeletal muscle. Despite confirmation of GMPR deficiency, demonstrating marked defects of mtDNA replication or nucleotide homeostasis in patient cells proved challenging. Our study proposes that GMPR is the 19th locus for PEO and highlights the complexities of uncovering disease mechanisms in late-onset PEO phenotypes.
Collapse
Affiliation(s)
- Ewen W. Sommerville
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Ilaria Dalla Rosa
- Department of Clinical and Movement Neurosciences, UCL Queens Square Institute of Neurology, Royal Free CampusUniversity College LondonLondonUK
| | | | - Francesco Bruni
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of Bari “ldo Moro”BariItaly
| | - Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Mariana Rocha
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Emma L. Blakely
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Langping He
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Andrew M. Schaefer
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Patrick Yu‐Wai‐Man
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of OphthalmologyLondonUK
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
- Cambridge Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Patrick F. Chinnery
- Department of Clinical Neuroscience & Medical Research Council Mitochondrial Biology UnitSchool of Clinical Medicine, University of CambridgeCambridgeUK
| | - Lizbeth Hedstrom
- Department of BiologyBrandeis UniversityWalthamMA
- Department of ChemistryBrandeis University, 415 South St.WalthamMA
| | - Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Queens Square Institute of Neurology, Royal Free CampusUniversity College LondonLondonUK
- MRC Centre for Neuromuscular DiseasesUCL Institute of Neurology and National Hospital for Neurology and NeurosurgeryLondonUK
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Gráinne S. Gorman
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|