1
|
Song MJ, Kim MK, Park CH, Kim H, Lee SH, Lee DH, Chung JH. Downregulation of carnitine acetyltransferase by promoter hypermethylation regulates ultraviolet-induced matrix metalloproteinase-1 expression in human dermal fibroblasts. J Dermatol Sci 2024:S0923-1811(24)00198-1. [PMID: 39443271 DOI: 10.1016/j.jdermsci.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND Overexposure to ultraviolet (UV) radiation accelerates skin aging, resulting in wrinkle formation, reduced skin elasticity, and hyperpigmentation. UV irradiation induces increased matrix metalloproteinases (MMPs) that degrade collagen in the extracellular matrix. Skin aging is also accompanied by epigenetic alterations such as promoter methylation by DNA methyltransferases, leading to the activation or suppression of gene expression. Although carnitine acetyltransferase (CRAT) is implicated in aging, the effect of UV on the expression of CRAT and regulatory mechanisms of UV-induced MMP-1 expression remain unknown. OBJECTIVE We investigated changes in CRAT expression upon UV irradiation and its effect on MMP-1 expression. METHODS Primary human dermal fibroblasts were UV irradiated with either control or 5-AZA-dC. CRAT knockdown or overexpression was performed to investigate its effect on MMP-1 expression. The mRNA level was analyzed by quantitative real-time PCR, and protein level by western blotting. RESULTS The expression of CRAT was decreased in UV-irradiated human skin in vivo and in human dermal fibroblasts in vitro. CRAT was downregulated upon UV irradiation by hypermethylation, and treatment with 5-Aza-2'-deoxycytidine, a DNA methyltransferase inhibitor, reversed UV-induced downregulation of CRAT. CRAT knockdown activated the JNK, ERK, and p38 MAPK signaling pathways, which increased MMP-1 expression. Stable overexpression of CRAT alleviated UV-induced MMP-1 induction. CONCLUSION CRAT downregulation caused by promoter hypermethylation may play an important role in UV-induced skin aging via upregulation of MMP-1 expression.
Collapse
Affiliation(s)
- Min Ji Song
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Min-Kyoung Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Chi-Hyun Park
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Haesoo Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Si Hyung Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Hernández-Saavedra D, Hinkley JM, Baer LA, Pinckard KM, Vidal P, Nirengi S, Brennan AM, Chen EY, Narain NR, Bussberg V, Tolstikov VV, Kiebish MA, Markunas C, Ilkayeva O, Goodpaster BH, Newgard CB, Goodyear LJ, Coen PM, Stanford KI. Chronic exercise improves hepatic acylcarnitine handling. iScience 2024; 27:109083. [PMID: 38361627 PMCID: PMC10867450 DOI: 10.1016/j.isci.2024.109083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 02/17/2024] Open
Abstract
Exercise mediates tissue metabolic function through direct and indirect adaptations to acylcarnitine (AC) metabolism, but the exact mechanisms are unclear. We found that circulating medium-chain acylcarnitines (AC) (C12-C16) are lower in active/endurance trained human subjects compared to sedentary controls, and this is correlated with elevated cardiorespiratory fitness and reduced adiposity. In mice, exercise reduced serum AC and increased liver AC, and this was accompanied by a marked increase in expression of genes involved in hepatic AC metabolism and mitochondrial β-oxidation. Primary hepatocytes from high-fat fed, exercise trained mice had increased basal respiration compared to hepatocytes from high-fat fed sedentary mice, which may be attributed to increased Ca2+ cycling and lipid uptake into mitochondria. The addition of specific medium- and long-chain AC to sedentary hepatocytes increased mitochondrial respiration, mirroring the exercise phenotype. These data indicate that AC redistribution is an exercise-induced mechanism to improve hepatic function and metabolism.
Collapse
Affiliation(s)
- Diego Hernández-Saavedra
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - J. Matthew Hinkley
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lisa A. Baer
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kelsey M. Pinckard
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Pablo Vidal
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shinsuke Nirengi
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Andrea M. Brennan
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | | | | | | | | | - Christina Markunas
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Durham, NC 27701, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Durham, NC 27701, USA
| | - Bret H. Goodpaster
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Durham, NC 27701, USA
| | - Laurie J. Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Paul M. Coen
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Kristin I. Stanford
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
3
|
Yang T, Liu S, Ma H, Lai H, Wang C, Ni K, Lu Y, Li W, Hu X, Zhou Z, Lou C, He D. Carnitine functions as an enhancer of NRF2 to inhibit osteoclastogenesis via regulating macrophage polarization in osteoporosis. Free Radic Biol Med 2024; 213:174-189. [PMID: 38246515 DOI: 10.1016/j.freeradbiomed.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Osteoporosis, which manifests as reduced bone mass and deteriorated bone quality, is common in the elderly population. It is characterized by persistent elevation of macrophage-associated inflammation and active osteoclast bone resorption. Currently, the roles of intracellular metabolism in regulating these processes remain unclear. In this study, we initially performed bioinformatics analysis and observed a significant increase in the proportion of M1 macrophages in bone marrow with aging. Further metabolomics analysis demonstrated a notable reduction in the expression of carnitine metabolites in aged macrophages, while carnitine was not detected in osteoclasts. During the differentiation process, osteoclasts took up carnitine synthesized by macrophages to regulate their own activity. Mechanistically, carnitine enhanced the function of Nrf2 by inhibiting the Keap1-Nrf2 interaction, reducing the proteasome-dependent ubiquitination and degradation of Nrf2. In silico molecular ligand docking analysis of the interaction between carnitine and Keap1 showed that carnitine binds to Keap1 to stabilize Nrf2 and enhance its function. In this study, we found that the decrease in carnitine levels in aging macrophages causes overactivation of osteoclasts, ultimately leading to osteoporosis. A decrease in serum carnitine levels in patients with osteoporosis was found to have good diagnostic and predictive value. Moreover, supplementation with carnitine was shown to be effective in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Tao Yang
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Shijie Liu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Haiwei Ma
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Hehuan Lai
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Chengdi Wang
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Kainan Ni
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Yahong Lu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Weiqing Li
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Xingyu Hu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Zhiguo Zhou
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Chao Lou
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China.
| | - Dengwei He
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China.
| |
Collapse
|
4
|
Klepochová R, Niess F, Meyerspeer M, Slukova D, Just I, Trattnig S, Ukropec J, Ukropcová B, Kautzky-Willer A, Leutner M, Krššák M. Correlation between skeletal muscle acetylcarnitine and phosphocreatine metabolism during submaximal exercise and recovery: interleaved 1H/ 31P MRS 7 T study. Sci Rep 2024; 14:3254. [PMID: 38332163 PMCID: PMC10853526 DOI: 10.1038/s41598-024-53221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Acetylcarnitine is an essential metabolite for maintaining metabolic flexibility and glucose homeostasis. The in vivo behavior of muscle acetylcarnitine content during exercise has not been shown with magnetic resonance spectroscopy. Therefore, this study aimed to explore the behavior of skeletal muscle acetylcarnitine during rest, plantar flexion exercise, and recovery in the human gastrocnemius muscle under aerobic conditions. Ten lean volunteers and nine overweight volunteers participated in the study. A 7 T whole-body MR system with a double-tuned surface coil was used to acquire spectra from the gastrocnemius medialis. An MR-compatible ergometer was used for the plantar flexion exercise. Semi-LASER-localized 1H MR spectra and slab-localized 31P MR spectra were acquired simultaneously in one interleaved exercise/recovery session. The time-resolved interleaved 1H/31P MRS acquisition yielded excellent data quality. A between-group difference in acetylcarnitine metabolism over time was detected. Significantly slower τPCr recovery, τPCr on-kinetics, and lower Qmax in the overweight group, compared to the lean group was found. Linear relations between τPCr on-kinetics, τPCr recovery, VO2max and acetylcarnitine content were identified. In conclusion, we are the first to show in vivo changes of skeletal muscle acetylcarnitine during acute exercise and immediate exercise recovery with a submaximal aerobic workload using interleaved 1H/31P MRS at 7 T.
Collapse
Affiliation(s)
- Radka Klepochová
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Fabian Niess
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Meyerspeer
- High-Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Dorota Slukova
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Ivica Just
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging (MOLIMA), Vienna, Austria
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Ukropcová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Michael Leutner
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Williams AS, Crown SB, Lyons SP, Koves TR, Wilson RJ, Johnson JM, Slentz DH, Kelly DP, Grimsrud PA, Zhang GF, Muoio DM. Ketone flux through BDH1 supports metabolic remodeling of skeletal and cardiac muscles in response to intermittent time-restricted feeding. Cell Metab 2024; 36:422-437.e8. [PMID: 38325337 PMCID: PMC10961007 DOI: 10.1016/j.cmet.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Time-restricted feeding (TRF) has gained attention as a dietary regimen that promotes metabolic health. This study questioned if the health benefits of an intermittent TRF (iTRF) schedule require ketone flux specifically in skeletal and cardiac muscles. Notably, we found that the ketolytic enzyme beta-hydroxybutyrate dehydrogenase 1 (BDH1) is uniquely enriched in isolated mitochondria derived from heart and red/oxidative skeletal muscles, which also have high capacity for fatty acid oxidation (FAO). Using mice with BDH1 deficiency in striated muscles, we discover that this enzyme optimizes FAO efficiency and exercise tolerance during acute fasting. Additionally, iTRF leads to robust molecular remodeling of muscle tissues, and muscle BDH1 flux does indeed play an essential role in conferring the full adaptive benefits of this regimen, including increased lean mass, mitochondrial hormesis, and metabolic rerouting of pyruvate. In sum, ketone flux enhances mitochondrial bioenergetics and supports iTRF-induced remodeling of skeletal muscle and heart.
Collapse
Affiliation(s)
- Ashley S Williams
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Scott B Crown
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Scott P Lyons
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Geriatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Rebecca J Wilson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Jordan M Johnson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Dorothy H Slentz
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Daniel P Kelly
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Guo-Fang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Hayden CMT, Nagarajan R, Smith ZH, Gilmore S, Kent JA. Postcontraction [acetylcarnitine] reflects interindividual variation in skeletal muscle ATP production patterns in vivo. Am J Physiol Regul Integr Comp Physiol 2024; 326:R66-R78. [PMID: 37955131 DOI: 10.1152/ajpregu.00027.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
In addition to its role in substrate selection (carbohydrate vs. fat) for oxidative metabolism in muscle, acetylcarnitine production may be an important modulator of the energetic pathway by which ATP is produced. A combination of noninvasive magnetic resonance spectroscopy measures of cytosolic acetylcarnitine and ATP production pathways was used to investigate the link between [acetylcarnitine] and energy production in vivo. Intracellular metabolites were measured in the vastus lateralis muscle of eight males (mean: 28.4 yr, range: 25-35) during 8 min of incremental, dynamic contractions (0.5 Hz, 2-min stages at 6%, 9%, 12%, and 15% maximal torque) that increased [acetylcarnitine] approximately fivefold from resting levels. ATP production via oxidative phosphorylation, glycolysis, and the creatine kinase reaction was calculated based on phosphorus metabolites and pH. Spearman rank correlations indicated that postcontraction [acetylcarnitine] was positively associated with both absolute (mM) and relative (% total ATP) glycolytic ATP production (rs = 0.95, P = 0.001; rs = 0.93, P = 0.002), and negatively associated with relative (rs = -0.81, P = 0.02) but not absolute (rs = -0.14, P = 0.75) oxidative ATP production. Thus, acetylcarnitine accumulated more when there was a greater reliance on "nonoxidative" glycolysis and a relatively lower contribution from oxidative phosphorylation, reflecting the fate of pyruvate in working skeletal muscle. Furthermore, these data indicate striking interindividual variation in responses to the energy demand of submaximal contractions. Overall, the results of this preliminary study provide novel evidence of the coupling in vivo between ATP production pathways and the carnitine system.NEW & NOTEWORTHY Production of acetylcarnitine from acetyl-CoA and free carnitine may be important for energy pathway regulation in contracting skeletal muscle. Noninvasive magnetic resonance spectroscopy was used to investigate the link between acetylcarnitine and energy production in the vastus lateralis muscle during dynamic contractions (n = 8 individuals). A positive correlation between acetylcarnitine accumulation and "nonoxidative" glycolysis and an inverse relationship with oxidative phosphorylation, provides novel evidence of the coupling between ATP production and the carnitine system in vivo.
Collapse
Affiliation(s)
- Christopher M T Hayden
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, United States
| | - Zoe H Smith
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Samantha Gilmore
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Jane A Kent
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| |
Collapse
|
7
|
Jasbi P, Nikolich-Žugich J, Patterson J, Knox KS, Jin Y, Weinstock GM, Smith P, Twigg HL, Gu H. Targeted metabolomics reveals plasma biomarkers and metabolic alterations of the aging process in healthy young and older adults. GeroScience 2023; 45:3131-3146. [PMID: 37195387 PMCID: PMC10643785 DOI: 10.1007/s11357-023-00823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023] Open
Abstract
With the exponential growth in the older population in the coming years, many studies have aimed to further investigate potential biomarkers associated with the aging process and its incumbent morbidities. Age is the largest risk factor for chronic disease, likely due to younger individuals possessing more competent adaptive metabolic networks that result in overall health and homeostasis. With aging, physiological alterations occur throughout the metabolic system that contribute to functional decline. In this cross-sectional analysis, a targeted metabolomic approach was applied to investigate the plasma metabolome of young (21-40y; n = 75) and older adults (65y + ; n = 76). A corrected general linear model (GLM) was generated, with covariates of gender, BMI, and chronic condition score (CCS), to compare the metabolome of the two populations. Among the 109 targeted metabolites, those associated with impaired fatty acid metabolism in the older population were found to be most significant: palmitic acid (p < 0.001), 3-hexenedioic acid (p < 0.001), stearic acid (p = 0.005), and decanoylcarnitine (p = 0.036). Derivatives of amino acid metabolism, 1-methlyhistidine (p = 0.035) and methylhistamine (p = 0.027), were found to be increased in the younger population and several novel metabolites were identified, such as cadaverine (p = 0.034) and 4-ethylbenzoic acid (p = 0.029). Principal component analysis was conducted and highlighted a shift in the metabolome for both groups. Receiver operating characteristic analyses of partial least squares-discriminant analysis models showed the candidate markers to be more powerful indicators of age than chronic disease. Pathway and enrichment analyses uncovered several pathways and enzymes predicted to underlie the aging process, and an integrated hypothesis describing functional characteristics of the aging process was synthesized. Compared to older participants, the young group displayed greater abundance of metabolites related to lipid and nucleotide synthesis; older participants displayed decreased fatty acid oxidation and reduced tryptophan metabolism, relative to the young group. As a result, we offer a better understanding of the aging metabolome and potentially reveal new biomarkers and predicted mechanisms for future study.
Collapse
Affiliation(s)
- Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Janko Nikolich-Žugich
- University of Arizona Center on Aging, University of Arizona, Tucson, AZ, 85724, USA
| | - Jeffrey Patterson
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA
| | - Kenneth S Knox
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Yan Jin
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL, 34987, USA
| | | | - Patricia Smith
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, 1120 West Michigan Street, CL 260A, Indianapolis, IN, 46202, USA
| | - Homer L Twigg
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, 1120 West Michigan Street, CL 260A, Indianapolis, IN, 46202, USA.
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA.
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL, 34987, USA.
| |
Collapse
|
8
|
Song MJ, Park C, Kim H, Han S, Lee SH, Lee DH, Chung JH. Carnitine acetyltransferase deficiency mediates mitochondrial dysfunction-induced cellular senescence in dermal fibroblasts. Aging Cell 2023; 22:e14000. [PMID: 37828898 PMCID: PMC10652321 DOI: 10.1111/acel.14000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Aging is accompanied by impaired mitochondrial function and accumulation of senescent cells. Mitochondrial dysfunction contributes to senescence by increasing the levels of reactive oxygen species and compromising energy metabolism. Senescent cells secrete a senescence-associated secretory phenotype (SASP) and stimulate chronic low-grade inflammation, ultimately inducing inflammaging. Mitochondrial dysfunction and cellular senescence are two closely related hallmarks of aging; however, the key driver genes that link mitochondrial dysfunction and cellular senescence remain unclear. Here, we aimed to elucidate a novel role of carnitine acetyltransferase (CRAT) in the development of mitochondrial dysfunction and cellular senescence in dermal fibroblasts. Transcriptomic analysis of skin tissues from young and aged participants showed significantly decreased CRAT expression in intrinsically aged skin. CRAT downregulation in human dermal fibroblasts recapitulated mitochondrial changes in senescent cells and induced SASP secretion. Specifically, CRAT knockdown caused mitochondrial dysfunction, as indicated by increased oxidative stress, disruption of mitochondrial morphology, and a metabolic shift from oxidative phosphorylation to glycolysis. Mitochondrial damage induced the release of mitochondrial DNA into the cytosol, which activated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and NF-ĸB pathways to induce SASPs. Consistently, fibroblast-specific CRAT-knockout mice showed increased skin aging phenotypes in vivo, including decreased cell proliferation, increased SASP expression, increased inflammation, and decreased collagen density. Our results suggest that CRAT deficiency contributes to aging by mediating mitochondrial dysfunction-induced senescence.
Collapse
Affiliation(s)
- Min Ji Song
- Department of DermatologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoulRepublic of Korea
- Institute of Human‐Environment Interface Biology, Medical Research Center, Seoul National UniversitySeoulRepublic of Korea
| | - Chi‐Hyun Park
- Department of DermatologySeoul National University College of MedicineSeoulRepublic of Korea
- Institute of Human‐Environment Interface Biology, Medical Research Center, Seoul National UniversitySeoulRepublic of Korea
| | - Haesoo Kim
- Department of DermatologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoulRepublic of Korea
- Institute of Human‐Environment Interface Biology, Medical Research Center, Seoul National UniversitySeoulRepublic of Korea
| | - Sangbum Han
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoulRepublic of Korea
- Institute of Human‐Environment Interface Biology, Medical Research Center, Seoul National UniversitySeoulRepublic of Korea
| | - Si Hyung Lee
- Department of DermatologySeoul National University College of MedicineSeoulRepublic of Korea
- Institute of Human‐Environment Interface Biology, Medical Research Center, Seoul National UniversitySeoulRepublic of Korea
| | - Dong Hun Lee
- Department of DermatologySeoul National University College of MedicineSeoulRepublic of Korea
- Institute of Human‐Environment Interface Biology, Medical Research Center, Seoul National UniversitySeoulRepublic of Korea
| | - Jin Ho Chung
- Department of DermatologySeoul National University College of MedicineSeoulRepublic of Korea
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoulRepublic of Korea
- Institute of Human‐Environment Interface Biology, Medical Research Center, Seoul National UniversitySeoulRepublic of Korea
- Institute on Aging, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
9
|
Smith JAB, Murach KA, Dyar KA, Zierath JR. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 2023; 24:607-632. [PMID: 37225892 PMCID: PMC10527431 DOI: 10.1038/s41580-023-00606-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/26/2023]
Abstract
Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.
Collapse
Affiliation(s)
- Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A Murach
- Molecular Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Affiliation(s)
- Dan Tong
- Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, USA
- Harry S. Moss Heart Center, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joseph A Hill
- Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, USA.
- Harry S. Moss Heart Center, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Izzo LT, Trefely S, Demetriadou C, Drummond JM, Mizukami T, Kuprasertkul N, Farria AT, Nguyen PT, Murali N, Reich L, Kantner DS, Shaffer J, Affronti H, Carrer A, Andrews A, Capell BC, Snyder NW, Wellen KE. Acetylcarnitine shuttling links mitochondrial metabolism to histone acetylation and lipogenesis. SCIENCE ADVANCES 2023; 9:eadf0115. [PMID: 37134161 PMCID: PMC10156126 DOI: 10.1126/sciadv.adf0115] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
The metabolite acetyl-CoA is necessary for both lipid synthesis in the cytosol and histone acetylation in the nucleus. The two canonical precursors to acetyl-CoA in the nuclear-cytoplasmic compartment are citrate and acetate, which are processed to acetyl-CoA by ATP-citrate lyase (ACLY) and acyl-CoA synthetase short-chain 2 (ACSS2), respectively. It is unclear whether other substantial routes to nuclear-cytosolic acetyl-CoA exist. To investigate this, we generated cancer cell lines lacking both ACLY and ACSS2 [double knockout (DKO) cells]. Using stable isotope tracing, we show that both glucose and fatty acids contribute to acetyl-CoA pools and histone acetylation in DKO cells and that acetylcarnitine shuttling can transfer two-carbon units from mitochondria to cytosol. Further, in the absence of ACLY, glucose can feed fatty acid synthesis in a carnitine responsive and carnitine acetyltransferase (CrAT)-dependent manner. The data define acetylcarnitine as an ACLY- and ACSS2-independent precursor to nuclear-cytosolic acetyl-CoA that can support acetylation, fatty acid synthesis, and cell growth.
Collapse
Affiliation(s)
- Luke T. Izzo
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sophie Trefely
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Christina Demetriadou
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jack M. Drummond
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takuya Mizukami
- Department of Cancer Epigenetics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Nina Kuprasertkul
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimee T. Farria
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phuong T. T. Nguyen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nivitha Murali
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren Reich
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel S. Kantner
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Joshua Shaffer
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hayley Affronti
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessandro Carrer
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Andrews
- Department of Cancer Epigenetics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Brian C. Capell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathaniel W. Snyder
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kathryn E. Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Koves TR, Zhang GF, Davidson MT, Chaves AB, Crown SB, Johnson JM, Slentz DH, Grimsrud PA, Muoio DM. Pyruvate-supported flux through medium-chain ketothiolase promotes mitochondrial lipid tolerance in cardiac and skeletal muscles. Cell Metab 2023:S1550-4131(23)00094-3. [PMID: 37060901 DOI: 10.1016/j.cmet.2023.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/07/2023] [Accepted: 03/24/2023] [Indexed: 04/17/2023]
Abstract
Even-chain acylcarnitine (AC) metabolites, most of which are generated as byproducts of incomplete fatty acid oxidation (FAO), are viewed as biomarkers of mitochondrial lipid stress attributable to one or more metabolic bottlenecks in the β-oxidation pathway. The origins and functional implications of FAO bottlenecks remain poorly understood. Here, we combined a sophisticated mitochondrial phenotyping platform with state-of-the-art molecular profiling tools and multiple two-state mouse models of respiratory function to uncover a mechanism that connects AC accumulation to lipid intolerance, metabolic inflexibility, and respiratory inefficiency in skeletal muscle mitochondria. These studies also identified a short-chain carbon circuit at the C4 node of FAO wherein reverse flux of glucose-derived acetyl CoA through medium-chain ketothiolase enhances lipid tolerance and redox stability in heart mitochondria by regenerating free CoA and NAD+. The findings help to explain why diminished FAO capacity, AC accumulation, and metabolic inflexibility are tightly linked to poor health outcomes.
Collapse
Affiliation(s)
- Timothy R Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Geriatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Guo-Fang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael T Davidson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Alec B Chaves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Scott B Crown
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Jordan M Johnson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Dorothy H Slentz
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
13
|
Polizel GHG, Fernandes AC, Furlan É, Prati BCT, Ferraz JBS, Santana MHDA. Impacts of Different Prenatal Supplementation Strategies on the Plasma Metabolome of Bulls in the Rearing and Finishing Phase. Metabolites 2023; 13:259. [PMID: 36837878 PMCID: PMC9960736 DOI: 10.3390/metabo13020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
This study investigated the effects of maternal nutrition on the plasma metabolome of Nellore bulls in the rearing and finishing phases, and metabolic differences between these phases. For this study, three nutritional approaches were used in 126 cows during pregnancy: NP-(control) mineral supplementation; PP-protein-energy supplementation in the final third; and FP-protein-energy supplementation during the entire pregnancy. We collected blood samples from male offspring in the rearing (450 ± 28 days old) and finishing phases (660 ± 28 days old). The blood was processed, and from plasma samples, we performed the targeted metabolome analysis (AbsoluteIDQ® p180 Kit). Multiple linear regression, principal component analysis (PCA), repeated measures analysis over time, and an enrichment analysis were performed. PCA showed an overlap of treatments and time clusters in the analyses. We identified significant metabolites among the treatments (rearing phase = six metabolites; finishing phase = three metabolites) and over time (21 metabolites). No significant metabolic pathways were found in the finishing phase, however, we found significant pathways in the rearing phase (Arginine biosynthesis and Histidine metabolism). Thus, prenatal nutrition impacted on plasma metabolome of bulls during the rearing and finishing phase and the different production stages showed an effect on the metabolic levels of bulls.
Collapse
Affiliation(s)
- Guilherme Henrique Gebim Polizel
- Department of Animal Science, Faculty of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| | - Arícia Christofaro Fernandes
- Department of Animal Science, Faculty of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| | - Édison Furlan
- Department of Animal Science, Faculty of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| | - Barbara Carolina Teixeira Prati
- Department of Animal Science, Faculty of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| | - José Bento Sterman Ferraz
- Department of Basic Sciences, Faculty of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| | - Miguel Henrique de Almeida Santana
- Department of Animal Science, Faculty of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| |
Collapse
|
14
|
Mancilla RF, Lindeboom L, Grevendonk L, Hoeks J, Koves TR, Muoio DM, Schrauwen P, Schrauwen-Hinderling V, Hesselink MK. Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans. JCI Insight 2023; 8:e163855. [PMID: 36413408 PMCID: PMC9870054 DOI: 10.1172/jci.insight.163855] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUNDAt the onset of exercise, the speed at which phosphocreatine (PCr) decreases toward a new steady state (PCr on-kinetics) reflects the readiness to activate mitochondrial ATP synthesis, which is secondary to Acetyl-CoA availability in skeletal muscle. We hypothesized that PCr on-kinetics are slower in metabolically compromised and older individuals and are associated with low carnitine acetyltransferase (CrAT) protein activity and compromised physical function.METHODSWe applied 31P-magnetic resonance spectroscopy (31P-MRS) to assess PCr on-kinetics in 2 cohorts of volunteers. Cohort 1 included patients who had type 2 diabetes, were obese, were lean trained (VO2max > 55 mL/kg/min), and were lean untrained (VO2max < 45 mL/kg/min). Cohort 2 included young (20-30 years) and older (65-80 years) individuals with normal physical activity and older, trained individuals. Previous results of CrAT protein activity and acetylcarnitine content in muscle tissue were used to explore the underlying mechanisms of PCr on-kinetics, along with various markers of physical function.RESULTSPCr on-kinetics were significantly slower in metabolically compromised and older individuals (indicating mitochondrial inertia) as compared with young and older trained volunteers, regardless of in vivo skeletal muscle oxidative capacity (P < 0.001). Mitochondrial inertia correlated with reduced CrAT protein activity, low acetylcarnitine content, and functional outcomes (P < 0.001).CONCLUSIONPCr on-kinetics are significantly slower in metabolically compromised and older individuals with normal physical activity compared with young and older trained individuals, regardless of in vivo skeletal muscle oxidative capacity, indicating greater mitochondrial inertia. Thus, PCr on-kinetics are a currently unexplored signature of skeletal muscle mitochondrial metabolism, tightly linked to functional outcomes. Skeletal muscle mitochondrial inertia might emerge as a target of intervention to improve physical function.TRIAL REGISTRATIONNCT01298375 and NCT03666013 (clinicaltrials.gov).FUNDINGRM and MH received an EFSD/Lilly grant from the European Foundation for the Study of Diabetes (EFSD). VS was supported by an ERC starting grant (grant 759161) "MRS in Diabetes."
Collapse
Affiliation(s)
- Rodrigo F. Mancilla
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lucas Lindeboom
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lotte Grevendonk
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Joris Hoeks
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Tim R. Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Deborah M. Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Patrick Schrauwen
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Vera Schrauwen-Hinderling
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Radiology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Matthijs K.C. Hesselink
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
15
|
Dhillon RS, Qin Y(A, van Ginkel PR, Fu VX, Vann JM, Lawton AJ, Green CL, Manchado‐Gobatto FB, Gobatto CA, Lamming DW, Prolla TA, Denu JM. SIRT3 deficiency decreases oxidative metabolism capacity but increases lifespan in male mice under caloric restriction. Aging Cell 2022; 21:e13721. [PMID: 36199173 PMCID: PMC9741511 DOI: 10.1111/acel.13721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial NAD+ -dependent protein deacetylase Sirtuin3 (SIRT3) has been proposed to mediate calorie restriction (CR)-dependent metabolic regulation and lifespan extension. Here, we investigated the role of SIRT3 in CR-mediated longevity, mitochondrial function, and aerobic fitness. We report that SIRT3 is required for whole-body aerobic capacity but is dispensable for CR-dependent lifespan extension. Under CR, loss of SIRT3 (Sirt3-/- ) yielded a longer overall and maximum lifespan as compared to Sirt3+/+ mice. This unexpected lifespan extension was associated with altered mitochondrial protein acetylation in oxidative metabolic pathways, reduced mitochondrial respiration, and reduced aerobic exercise capacity. Also, Sirt3-/- CR mice exhibit lower spontaneous activity and a trend favoring fatty acid oxidation during the postprandial period. This study shows the uncoupling of lifespan and healthspan parameters (aerobic fitness and spontaneous activity) and provides new insights into SIRT3 function in CR adaptation, fuel utilization, and aging.
Collapse
Affiliation(s)
- Rashpal S. Dhillon
- Department of Biomolecular ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Yiming (Amy) Qin
- Department of Biomolecular ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Interdepartmental Graduate Program in Nutritional SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Paul R. van Ginkel
- Department of Genetics and Medical GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Vivian X. Fu
- Department of Genetics and Medical GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - James M. Vann
- Department of Genetics and Medical GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Alexis J. Lawton
- Department of Biomolecular ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Cara L. Green
- Department of Medicine, SMPHUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | | | - Claudio A. Gobatto
- Laboratory of Applied Sport Physiology, School of Applied SciencesUniversity of CampinasLimeiraBrazil
| | - Dudley W. Lamming
- Interdepartmental Graduate Program in Nutritional SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Department of Medicine, SMPHUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Tomas A. Prolla
- Department of Genetics and Medical GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - John M. Denu
- Department of Biomolecular ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Interdepartmental Graduate Program in Nutritional SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
16
|
Ji X, Chen X, Sheng L, Deng D, Wang Q, Meng Y, Qiu Z, Zhang B, Zheng G, Hu J. Metabolomics profiling of AKT/c-Met-induced hepatocellular carcinogenesis and the inhibitory effect of Cucurbitacin B in mice. Front Pharmacol 2022; 13:1009767. [PMID: 36506561 PMCID: PMC9728611 DOI: 10.3389/fphar.2022.1009767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common kind of liver cancer, accounts for the majority of liver cancer diagnoses and fatalities. Clinical aggressiveness, resistance to traditional therapy, and a high mortality rate are all features of this disease. Our previous studies have shown that co-activation of AKT and c-Met induces HCC development, which is the malignant biological feature of human HCC. Cucurbitacin B (CuB), a naturally occurring tetracyclic triterpenoid compound with potential antitumor activity. However, the metabolic mechanism of AKT/c-Met-induced Hepatocellular Carcinogenesis and CuB in HCC remains unclear. In this study, we established an HCC mouse model by hydrodynamically transfecting active AKT and c-Met proto-oncogenes. Based on the results of hematoxylin-eosin (H&E), oil red O (ORO) staining, and immunohistochemistry (IHC), HCC progression was divided into two stages: the early stage of HCC (3 weeks after AKT/c-Met injection) and the formative stage of HCC (6 weeks after AKT/c-Met injection), and the therapeutic effect of CuB was evaluated. Through UPLC-Q-TOF-MS/MS metabolomics, a total of 26 distinct metabolites were found in the early stage of HCC for serum samples, while in the formative stage of HCC, 36 distinct metabolites were found in serum samples, and 13 different metabolites were detected in liver samples. 33 metabolites in serum samples and 11 in live samples were affected by CuB administration. Additionally, metabolic pathways and western blotting analysis revealed that CuB influences lipid metabolism, amino acid metabolism, and glucose metabolism by altering the AKT/mTORC1 signaling pathway, hence decreasing tumor progression. This study provides a metabolic basis for the early diagnosis, therapy, and prognosis of HCC and the clinical application of CuB in HCC.
Collapse
Affiliation(s)
- Xiangyu Ji
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Lei Sheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Dongjie Deng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Qi Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Baohui Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Guohua Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China,Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, Hubei, China,*Correspondence: Guohua Zheng, ; Junjie Hu,
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China,*Correspondence: Guohua Zheng, ; Junjie Hu,
| |
Collapse
|
17
|
Andonian BJ, Koss A, Koves TR, Hauser ER, Hubal MJ, Pober DM, Lord JM, MacIver NJ, St Clair EW, Muoio DM, Kraus WE, Bartlett DB, Huffman KM. Rheumatoid arthritis T cell and muscle oxidative metabolism associate with exercise-induced changes in cardiorespiratory fitness. Sci Rep 2022; 12:7450. [PMID: 35523821 PMCID: PMC9076829 DOI: 10.1038/s41598-022-11458-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
Rheumatoid arthritis (RA) T cells drive autoimmune features via metabolic reprogramming that reduces oxidative metabolism. Exercise training improves cardiorespiratory fitness (i.e., systemic oxidative metabolism) and thus may impact RA T cell oxidative metabolic function. In this pilot study of RA participants, we took advantage of heterogeneous responses to a high-intensity interval training (HIIT) exercise program to identify relationships between improvements in cardiorespiratory fitness with changes in peripheral T cell and skeletal muscle oxidative metabolism. In 12 previously sedentary persons with seropositive RA, maximal cardiopulmonary exercise tests, fasting blood, and vastus lateralis biopsies were obtained before and after 10 weeks of HIIT. Following HIIT, improvements in RA cardiorespiratory fitness were associated with changes in RA CD4 + T cell basal and maximal respiration and skeletal muscle carnitine acetyltransferase (CrAT) enzyme activity. Further, changes in CD4 + T cell respiration were associated with changes in naïve CD4 + CCR7 + CD45RA + T cells, muscle CrAT, and muscle medium-chain acylcarnitines and fat oxidation gene expression profiles. In summary, modulation of cardiorespiratory fitness and molecular markers of skeletal muscle oxidative metabolism during exercise training paralleled changes in T cell metabolism. Exercise training that improves RA cardiorespiratory fitness may therefore be valuable in managing pathologically related immune and muscle dysfunction.Trial registration: ClinicalTrials.gov, NCT02528344. Registered on 19 August 2015.
Collapse
Affiliation(s)
- Brian J Andonian
- Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC, 27701, USA.
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 22701, USA.
| | - Alec Koss
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 22701, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 22701, USA
| | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 22701, USA
| | - Monica J Hubal
- Department of Kinesiology, Indiana University-Purdue University Indianapolis School of Health & Human Sciences, Indianapolis, IN, 46202, USA
| | | | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Nancie J MacIver
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - E William St Clair
- Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 22701, USA
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 22701, USA
| | - David B Bartlett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 22701, USA
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Kim M Huffman
- Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC, 27701, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 22701, USA
| |
Collapse
|
18
|
Liu HX, Liu QJ. Logistic role of carnitine shuttle system on radiation-induced L-carnitine and acylcarnitines alteration. Int J Radiat Biol 2022; 98:1-14. [PMID: 35384773 DOI: 10.1080/09553002.2022.2063430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE With the development of radiation metabolomics, a large number of radiation-related metabolic biomarkers have been identified and validated. The L-carnitine and acylcarnitines have the potential to be the new promising candidate indicators of radiation exposure. This review summarizes the effect of carnitine shuttle system on the profile of acylcarnitines and correlates the radiation effects on upstream regulators of carnitine shuttle system with the change characteristics of L-carnitine and acylcarnitines after irradiation across different animal models as well as a few humans. CONCLUSIONS Studies report that acylcarnitines were ubiquitously elevated after irradiation, especially the free L-carnitine and short-chain acylcarnitines (C2-C5). However, the molecular mechanism underlying acylcarnitine alterations after irradiation is not fully investigated, and further studies are needed to explore the biological effect and its mechanism. The activity of the carnitine shuttle system plays a key role in the alteration of L-carnitine and acylcarnitines, and the upstream regulators of the system are known to be affected by irradiation. These evidences indicate that that there is a logistic role of carnitine shuttle system on radiation-induced L-carnitine and acylcarnitines alteration.
Collapse
Affiliation(s)
- Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
19
|
Williams AS, Koves TR, Pettway YD, Draper JA, Slentz DH, Grimsrud PA, Ilkayeva OR, Muoio DM. Nicotinamide riboside supplementation confers marginal metabolic benefits in obese mice without remodeling the muscle acetyl-proteome. iScience 2022; 25:103635. [PMID: 35028529 PMCID: PMC8741497 DOI: 10.1016/j.isci.2021.103635] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/22/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Nicotinamide riboside supplements (NRS) have been touted as a nutraceutical that promotes cardiometabolic and musculoskeletal health by enhancing nicotinamide adenine dinucleotide (NAD+) biosynthesis, mitochondrial function, and/or the activities of NAD-dependent sirtuin deacetylase enzymes. This investigation examined the impact of NRS on whole body energy homeostasis, skeletal muscle mitochondrial function, and corresponding shifts in the acetyl-lysine proteome, in the context of diet-induced obesity using C57BL/6NJ mice. The study also included a genetically modified mouse model that imposes greater demand on sirtuin flux and associated NAD+ consumption, specifically within muscle tissues. In general, whole body glucose control was marginally improved by NRS when administered at the midpoint of a chronic high-fat diet, but not when given as a preventative therapy upon initiation of the diet. Contrary to anticipated outcomes, the study produced little evidence that NRS increases tissue NAD+ levels, augments mitochondrial function, and/or mitigates diet-induced hyperacetylation of the skeletal muscle proteome.
Collapse
Affiliation(s)
- Ashley S. Williams
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Timothy R. Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
- Divison of Geriatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Yasminye D. Pettway
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - James A. Draper
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Dorothy H. Slentz
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Paul A. Grimsrud
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Olga R. Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Deborah M. Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
20
|
Chen H, Ma X, Cao L, Zhao S, Zhao C, Yin S, Hu H. A Multi-Ingredient Formula Ameliorates Exercise-Induced Fatigue by Changing Metabolic Pathways and Increasing Antioxidant Capacity in Mice. Foods 2021; 10:3120. [PMID: 34945671 PMCID: PMC8701726 DOI: 10.3390/foods10123120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple mechanisms are involved in exercise-induced fatigue, including energy depletion, metabolite accumulation, and oxidative stress, etc. The mechanistic findings provide a rationale for a multi-targeted approach to exercise-induced fatigue management. This study created a multi-ingredient formula mixed with valine, isoleucine, leucine, β-alanine, creatine, l-carnitine, quercetin, and betaine, based on the functional characteristics of these agents, and evaluated the preventive effect of this mechanism-based formula on exercise-induced fatigue. Results showed that the 7-d formula supplement significantly increased the running duration time of mice by 14% and the distance by 20% in an exhaustive treadmill test, indicating that the formula could delay fatigue appearance and improve exercise performance. Mechanistically, the formula enhanced fatty acid oxidation and spared liver glycogen by regulating the fat/glucose metabolism-related signaling pathways, including phospho-adenosine monophosphate-activated protein kinase α (p-AMPKα), phospho-acetyl CoA carboxylase (p-ACC), carnitine palmitoyl-transferase 1B (CPT1B), fatty acid translocase (CD36), and glucose transporter type 4 (GLUT4), and increased antioxidant capacity. The findings suggested that the formula tested in this study effectively ameliorated exercise-induced fatigue by targeting multi-signaling pathways, showing promise as a regimen to fight exercise-induced fatigue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongbo Hu
- Department of Food Nutrition and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.C.); (X.M.); (L.C.); (S.Z.); (C.Z.); (S.Y.)
| |
Collapse
|
21
|
Li DK, Smith LE, Rookyard AW, Lingam SJ, Koay YC, McEwen HP, Twigg SM, Don AS, O'Sullivan JF, Cordwell SJ, White MY. Multi-omics of a pre-clinical model of diabetic cardiomyopathy reveals increased fatty acid supply impacts mitochondrial metabolic selectivity. J Mol Cell Cardiol 2021; 164:92-109. [PMID: 34826416 DOI: 10.1016/j.yjmcc.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
The incidence of type 2 diabetes (T2D) is increasing globally, with long-term implications for human health and longevity. Heart disease is the leading cause of death in T2D patients, who display an elevated risk of an acute cardiovascular event and worse outcomes following such an insult. The underlying mechanisms that predispose the diabetic heart to this poor prognosis remain to be defined. This study developed a pre-clinical model (Rattus norvegicus) that complemented caloric excess from a high-fat diet (HFD) and pancreatic β-cell dysfunction from streptozotocin (STZ) to produce hyperglycaemia, peripheral insulin resistance, hyperlipidaemia and elevated fat mass to mimic the clinical features of T2D. Ex vivo cardiac function was assessed using Langendorff perfusion with systolic and diastolic contractile depression observed in T2D hearts. Cohorts representing untreated, individual HFD- or STZ-treatments and the combined HFD + STZ approach were used to generate ventricular samples (n = 9 per cohort) for sequential and integrated analysis of the proteome, lipidome and metabolome by liquid chromatography-tandem mass spectrometry. This study found that in T2D hearts, HFD treatment primed the metabolome, while STZ treatment was the major driver for changes in the proteome. Both treatments equally impacted the lipidome. Our data suggest that increases in β-oxidation and early TCA cycle intermediates promoted rerouting via 2-oxaloacetate to glutamate, γ-aminobutyric acid and glutathione. Furthermore, we suggest that the T2D heart activates networks to redistribute excess acetyl-CoA towards ketogenesis and incomplete β-oxidation through the formation of short-chain acylcarnitine species. Multi-omics provided a global and comprehensive molecular view of the diabetic heart, which distributes substrates and products from excess β-oxidation, reduces metabolic flexibility and impairs capacity to restore high energy reservoirs needed to respond to and prevent subsequent acute cardiovascular events.
Collapse
Affiliation(s)
- Desmond K Li
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia
| | - Lauren E Smith
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia
| | - Alexander W Rookyard
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Life and Environmental Sciences, Camperdown, The University of Sydney, Australia
| | - Shivanjali J Lingam
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia
| | - Yen C Koay
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; Sydney Medical School, The University of Sydney, Camperdown, Australia; Heart Research Institute, Newtown, Australia
| | - Holly P McEwen
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Stephen M Twigg
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; Sydney Medical School, The University of Sydney, Camperdown, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Anthony S Don
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia; Centenary Institute, The University of Sydney, Camperdown, Australia
| | - John F O'Sullivan
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; Sydney Medical School, The University of Sydney, Camperdown, Australia; Heart Research Institute, Newtown, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Stuart J Cordwell
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia; School of Life and Environmental Sciences, Camperdown, The University of Sydney, Australia; Sydney Mass Spectrometry, The University of Sydney, Camperdown, Australia
| | - Melanie Y White
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia.
| |
Collapse
|
22
|
Ma X, Chen H, Cao L, Zhao S, Zhao C, Yin S, Hu H. 18β-glycyrrhetinic acid improves high-intensity exercise performance by promoting glucose-dependent energy production and inhibiting oxidative stress in mice. Phytother Res 2021; 35:6932-6943. [PMID: 34709693 DOI: 10.1002/ptr.7310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/10/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023]
Abstract
It has been shown that 18β-glycyrrhetinic acid (18β-GA), the main bioactive compound of licorice, can modulate oxidative stress and metabolic processes in liver and skin. Given the critical role of oxidative stress and energy metabolism in exercise-induced fatigue, we hypothesized that 18β-GA could exert an ergogenic action by inhibiting excess reactive oxygen species (ROS) induction and promoting energy production in muscles. Mice were gavage-fed with 18β-GA for four consecutive days. Running ability was assessed based on the exhaustive treadmill test with high- and moderate-intensity. Western blot analysis, enzyme-linked immunosorbent assay, and immunofluorescence staining were used to measure the changes of muscle fatigue-related markers, oxidative stress status, and energy metabolism in response to 18β-GA exposure. Treatment with 18β-GA significantly increased the exhaustive running distance (~37%) in the high-intensity exercise, but not in the moderate-intensity exercise. Mechanistically, reduction of oxidative stress and induction of antioxidants (SOD, CAT, and GSH) by 18β-GA were observed. Moreover, 18β-GA treatment caused an improved preservation of muscle glycogen (12%), which was associated with upregulation of glucose transporter 4 (GLUT4) (91%) and increased insulin level (17%). The findings of the present study clearly suggest that 18β-GA holds excellent potential as a novel bioactive agent against high-intensity exercise-induced fatigue.
Collapse
Affiliation(s)
- Xuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lixing Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shuang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Ma X, Chen H, Cao L, Zhao S, Zhao C, Yin S, Hu H. Mechanisms of Physical Fatigue and its Applications in Nutritional Interventions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6755-6768. [PMID: 34124894 DOI: 10.1021/acs.jafc.1c01251] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Physical fatigue during exercise can be defined as an impairment of physical performance. Multiple factors have been found contributing to physical fatigue, including neurotransmitter-mediated defense action, insufficient energy supply, and induction of oxidative stress. These mechanistic findings provide a sound theoretical rationale for nutritional intervention since most of these factors can be modulated by nutrient supplementation. In this review, we summarize the current evidence regarding the functional role of nutrients supplementation in managing physical performance and propose the issues that need to be addressed for better utilization of nutritional supplementation approach to improve physical performance.
Collapse
Affiliation(s)
- Xuan Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Hui Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lixing Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shuang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
24
|
Kolodziej F, O’Halloran KD. Re-Evaluating the Oxidative Phenotype: Can Endurance Exercise Save the Western World? Antioxidants (Basel) 2021; 10:609. [PMID: 33921022 PMCID: PMC8071436 DOI: 10.3390/antiox10040609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/16/2023] Open
Abstract
Mitochondria are popularly called the "powerhouses" of the cell. They promote energy metabolism through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, which in contrast to cytosolic glycolysis are oxygen-dependent and significantly more substrate efficient. That is, mitochondrial metabolism provides substantially more cellular energy currency (ATP) per macronutrient metabolised. Enhancement of mitochondrial density and metabolism are associated with endurance training, which allows for the attainment of high relative VO2 max values. However, the sedentary lifestyle and diet currently predominant in the Western world lead to mitochondrial dysfunction. Underdeveloped mitochondrial metabolism leads to nutrient-induced reducing pressure caused by energy surplus, as reduced nicotinamide adenine dinucleotide (NADH)-mediated high electron flow at rest leads to "electron leak" and a chronic generation of superoxide radicals (O2-). Chronic overload of these reactive oxygen species (ROS) damages cell components such as DNA, cell membranes, and proteins. Counterintuitively, transiently generated ROS during exercise contributes to adaptive reduction-oxidation (REDOX) signalling through the process of cellular hormesis or "oxidative eustress" defined by Helmut Sies. However, the unaccustomed, chronic oxidative stress is central to the leading causes of mortality in the 21st century-metabolic syndrome and the associated cardiovascular comorbidities. The endurance exercise training that improves mitochondrial capacity and the protective antioxidant cellular system emerges as a universal intervention for mitochondrial dysfunction and resultant comorbidities. Furthermore, exercise might also be a solution to prevent ageing-related degenerative diseases, which are caused by impaired mitochondrial recycling. This review aims to break down the metabolic components of exercise and how they translate to athletic versus metabolically diseased phenotypes. We outline a reciprocal relationship between oxidative metabolism and inflammation, as well as hypoxia. We highlight the importance of oxidative stress for metabolic and antioxidant adaptation. We discuss the relevance of lactate as an indicator of critical exercise intensity, and inferring from its relationship with hypoxia, we suggest the most appropriate mode of exercise for the case of a lost oxidative identity in metabolically inflexible patients. Finally, we propose a reciprocal signalling model that establishes a healthy balance between the glycolytic/proliferative and oxidative/prolonged-ageing phenotypes. This model is malleable to adaptation with oxidative stress in exercise but is also susceptible to maladaptation associated with chronic oxidative stress in disease. Furthermore, mutations of components involved in the transcriptional regulatory mechanisms of mitochondrial metabolism may lead to the development of a cancerous phenotype, which progressively presents as one of the main causes of death, alongside the metabolic syndrome.
Collapse
Affiliation(s)
- Filip Kolodziej
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, T12 XF62 Cork, Ireland;
| | | |
Collapse
|
25
|
Nie C, Li Y, Guan Y, Zhang K, Liu J, Fan M, Qian H, Wang L. Highland barley tea represses palmitic acid-induced apoptosis and mitochondrial dysfunction via regulating AMPK/SIRT3/FoxO3a in myocytes. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Yin C, Ma Z, Li F, Duan C, Yuan Y, Zhu C, Wang L, Zhu X, Wang S, Gao P, Shu G, Zhang H, Jiang Q. Hypoxanthine Induces Muscular ATP Depletion and Fatigue via UCP2. Front Physiol 2021; 12:647743. [PMID: 33746782 PMCID: PMC7966526 DOI: 10.3389/fphys.2021.647743] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/11/2021] [Indexed: 01/01/2023] Open
Abstract
Hypoxanthine (Hx), an intermediate metabolite of the purine metabolism pathway which is dramatically increased in blood and skeletal muscle during muscle contraction and metabolism, is characterized as a marker of exercise exhaustion. However, the physiological effects of Hx on skeletal muscle remain unknown. Herein, we demonstrate that chronic treatment with Hx through dietary supplementation resulted in skeletal muscle fatigue and impaired the exercise performance of mice without affecting their growth and skeletal muscle development. Hx increased the uncoupling protein 2 (UCP2) expression in the skeletal muscle, which led to decreased energy substrate storage and enhanced glycolysis. These effects could also be verified in acute treatment with Hx through intraperitoneal injection. In addition, muscular specifically knockout of UCP2 through intra-muscle tissue injection of adenovirus-associated virus reversed the effects of Hx. In conclusion, we identified a novel role of Hx in the skeletal muscular fatigue mediated by UCP2-dependent mitochondrial uncoupling. This finding may shed light on the pathological mechanism of clinical muscle dysfunctions due to abnormal metabolism, such as muscle fatigue and weakness.
Collapse
Affiliation(s)
- Cong Yin
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zewei Ma
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chen Duan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yexian Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Canjun Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lina Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaotong Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Songbo Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ping Gao
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Huihua Zhang
- College of Life and Science, Foshan University, Foshan, China
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Bardova K, Funda J, Pohl R, Cajka T, Hensler M, Kuda O, Janovska P, Adamcova K, Irodenko I, Lenkova L, Zouhar P, Horakova O, Flachs P, Rossmeisl M, Colca J, Kopecky J. Additive Effects of Omega-3 Fatty Acids and Thiazolidinediones in Mice Fed a High-Fat Diet: Triacylglycerol/Fatty Acid Cycling in Adipose Tissue. Nutrients 2020; 12:nu12123737. [PMID: 33291653 PMCID: PMC7761951 DOI: 10.3390/nu12123737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
Long-chain n-3 polyunsaturated fatty acids (Omega-3) and anti-diabetic drugs thiazolidinediones (TZDs) exhibit additive effects in counteraction of dietary obesity and associated metabolic dysfunctions in mice. The underlying mechanisms need to be clarified. Here, we aimed to learn whether the futile cycle based on the hydrolysis of triacylglycerol and re-esterification of fatty acids (TAG/FA cycling) in white adipose tissue (WAT) could be involved. We compared Omega-3 (30 mg/g diet) and two different TZDs—pioglitazone (50 mg/g diet) and a second-generation TZD, MSDC-0602K (330 mg/g diet)—regarding their effects in C57BL/6N mice fed an obesogenic high-fat (HF) diet for 8 weeks. The diet was supplemented or not by the tested compound alone or with the two TZDs combined individually with Omega-3. Activity of TAG/FA cycle in WAT was suppressed by the obesogenic HF diet. Additive effects in partial rescue of TAG/FA cycling in WAT were observed with both combined interventions, with a stronger effect of Omega-3 and MSDC-0602K. Our results (i) supported the role of TAG/FA cycling in WAT in the beneficial additive effects of Omega-3 and TZDs on metabolism of diet-induced obese mice, and (ii) showed differential modulation of WAT gene expression and metabolism by the two TZDs, depending also on Omega-3.
Collapse
Affiliation(s)
- Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Radek Pohl
- NMR Spectroscopy, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemmingovo Namesti 542/2, 160 00 Prague 6, Czech Republic;
| | - Tomas Cajka
- Laboratory of Metabolomics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic;
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Michal Hensler
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Ondrej Kuda
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic;
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Katerina Adamcova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Ilaria Irodenko
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Lucie Lenkova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Pavel Flachs
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Jerry Colca
- Cirius Therapeutics, Kalamazoo, MI 490 07, USA;
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
- Correspondence: ; Tel.: +420-296442554; Fax: +420-296442599
| |
Collapse
|
28
|
Mezhnina V, Pearce R, Poe A, Velingkaar N, Astafev A, Ebeigbe OP, Makwana K, Sandlers Y, Kondratov RV. CR reprograms acetyl-CoA metabolism and induces long-chain acyl-CoA dehydrogenase and CrAT expression. Aging Cell 2020; 19:e13266. [PMID: 33105059 PMCID: PMC7681051 DOI: 10.1111/acel.13266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/05/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023] Open
Abstract
Calorie restriction (CR), an age delaying diet, affects fat oxidation through poorly understood mechanisms. We investigated the effect of CR on fat metabolism gene expression and intermediate metabolites of fatty acid oxidation in the liver. We found that CR changed the liver acylcarnitine profile: acetylcarnitine, short‐chain acylcarnitines, and long‐chain 3‐hydroxy‐acylcarnitines increased, and several long‐chain acylcarnitines decreased. Acetyl‐CoA and short‐chain acyl‐CoAs were also increased in CR. CR did not affect the expression of CPT1 and upregulated the expression of long‐chain and very‐long‐chain Acyl‐CoA dehydrogenases (LCAD and VLCAD, respectively). The expression of downstream enzymes such as mitochondrial trifunctional protein and enzymes in medium‐ and short‐chain acyl‐CoAs oxidation was not affected in CR. CR shifted the balance of fatty acid oxidation enzymes and fatty acid metabolites in the liver. Acetyl‐CoA generated through beta‐oxidation can be used for ketogenesis or energy production. In agreement, blood ketone bodies increased under CR in a time of the day‐dependent manner. Carnitine acetyltransferase (CrAT) is a bidirectional enzyme that interconverts short‐chain acyl‐CoAs and their corresponding acylcarnitines. CrAT expression was induced in CR liver supporting the increased acetylcarnitine and short‐chain acylcarnitine production. Acetylcarnitine can freely travel between cellular sub‐compartments. Supporting this CR increased protein acetylation in the mitochondria, cytoplasm, and nucleus. We hypothesize that changes in acyl‐CoA and acylcarnitine levels help to control energy metabolism and contribute to metabolic flexibility under CR.
Collapse
Affiliation(s)
- Volha Mezhnina
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences Cleveland State University Cleveland Ohio USA
| | - Ryan Pearce
- Department of Chemistry Cleveland State University Cleveland Ohio USA
| | - Allan Poe
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences Cleveland State University Cleveland Ohio USA
| | - Nikkhil Velingkaar
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences Cleveland State University Cleveland Ohio USA
| | - Artem Astafev
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences Cleveland State University Cleveland Ohio USA
| | - Oghogho P. Ebeigbe
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences Cleveland State University Cleveland Ohio USA
| | - Kuldeep Makwana
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences Cleveland State University Cleveland Ohio USA
| | - Yana Sandlers
- Department of Chemistry Cleveland State University Cleveland Ohio USA
| | - Roman V. Kondratov
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences Cleveland State University Cleveland Ohio USA
| |
Collapse
|
29
|
Affiliation(s)
- Iain Scott
- Cardiology Division, Department of Medicine, University of Pittsburgh, PA (I.S., M.N.S.)
- Cardiovascular Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD (I.S., M.N.S.)
| | - Michael N Sack
- Cardiology Division, Department of Medicine, University of Pittsburgh, PA (I.S., M.N.S.)
- Cardiovascular Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD (I.S., M.N.S.)
| |
Collapse
|
30
|
Teren A, Vogel A, Beutner F, Gielen S, Burkhardt R, Scholz M, Thiery J, Ceglarek U. Relationship between fermented dairy consumption, circulating short-chain acylcarnitines and angiographic severity of coronary artery disease. Nutr Metab Cardiovasc Dis 2020; 30:1662-1672. [PMID: 32684363 DOI: 10.1016/j.numecd.2020.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Current epidemiologic data suggest beneficial cardiovascular effects of fermented dairy products (FDP). However, the relationship between FDP consumption and angiographic coronary status has not been previously studied. Furthermore, the role of novel metabolomic biomarkers of cardiovascular risk in this context is unclear. We hypothesize that short-chain acylcarnitines (SCA) reflect the link between FDP intake and angiographic extent of stable coronary artery disease (CAD). METHODS AND RESULTS We recruited 1185 patients admitted for suspected CAD [median age 62 years (interquartile range: 54-69); 714 men (60.3%)]. Prior to coronary angiography, each patient completed a validated Food Frequency Questionnaire. In addition, venous blood was collected from each patient for whole blood metabolomic analysis, using targeted mass-spectrometry. CAD was defined by the presence of ≥1 coronary stenosis ≥50%. Patients with CAD (n = 441) reported lower median FDP intake [86.8 g/day (IQR: 53.4-127.6)] than patients without CAD [n = 744; 103.9 g/day (IQR: 62.9-152.7); p < 0.001]. Upon adjustment for relevant confounders, increased circulating SCA, particularly level of acetylcarnitine (C2) associated with both higher CAD probability [SCA:β(SE) = 0.584 (0.235), p = 0.013; C2:β(SE) = 0.575 (0.242), p = 0.017] and decreased FDP consumption [SCA:β/100 g FDP-increment/day (SE) = -0.785 (0.242), p = 0.001; C2:β(SE) = -0.560 (0.230), p = 0.015]. By mediation analysis, neither SCA nor C2 showed relevant mediator effect linking FDP consumption to the risk of CAD. CONCLUSION Increased consumption of fermented milk was associated with lower prevalence of CAD and correlated inversely with circulating SCA, in particular with acetylcarnitine. No substantial mediator effect of SCA linking fermented milk intake with risk of CAD was found. CLINICAL TRIAL REGISTRY NCT00497887.
Collapse
Affiliation(s)
- Andrej Teren
- LIFE - Leipzig Research Center for Civilization Diseases, Germany; University Leipzig, Germany; Department of Cardiology, Angiology and Intensive Care, Detmold, Germany; Klinikum Lippe, Detmold, Germany.
| | - Anika Vogel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Germany
| | - Frank Beutner
- LIFE - Leipzig Research Center for Civilization Diseases, Germany; University Leipzig, Germany; Department of Internal Medicine/Cardiology, Germany; Heart Center University Leipzig, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Germany
| | - Stephan Gielen
- LIFE - Leipzig Research Center for Civilization Diseases, Germany; University Leipzig, Germany; Department of Cardiology, Angiology and Intensive Care, Detmold, Germany; Klinikum Lippe, Detmold, Germany
| | - Ralph Burkhardt
- LIFE - Leipzig Research Center for Civilization Diseases, Germany; University Leipzig, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Germany
| | - Markus Scholz
- LIFE - Leipzig Research Center for Civilization Diseases, Germany; University Leipzig, Germany; Institute of Medical Informatics, Statistics and Epidemiology, Germany
| | - Joachim Thiery
- LIFE - Leipzig Research Center for Civilization Diseases, Germany; University Leipzig, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Germany
| | - Uta Ceglarek
- LIFE - Leipzig Research Center for Civilization Diseases, Germany; University Leipzig, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Germany
| |
Collapse
|
31
|
Kratochvil MJ, Balerud NK, Schindler SJ, Moxley MA. Evidence of a preferred kinetic pathway in the carnitine acetyltransferase reaction. Arch Biochem Biophys 2020; 691:108507. [PMID: 32710884 DOI: 10.1016/j.abb.2020.108507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
Mammalian carnitine acetyltransferase (CrAT) is a mitochondrial enzyme that catalyzes the reversible transfer of an acetyl group from acetyl-CoA to carnitine. CrAT knockout studies have shown that this enzyme is critical to sustain metabolic flexibility, or the ability to switch between different fuel types, an underlying theme of the metabolic syndrome. These recent physiological findings imply that CrAT dysfunction, or its catalytic impairment, may lead to disease. To gain insight into the CrAT kinetic mechanism, we conducted stopped-flow experiments in various enzyme substrate/product conditions and analyzed full progress curves by global fitting. Simultaneous mixing of both substrates with CrAT produced relatively fast kinetics that follows an ordered bi bi mechanism. A great preference for ordered binding is supported by stopped-flow double mixing experiments such that premixed CrAT with acetyl-CoA or CoA demonstrated a biphasic decrease in initial rate that produces about a 100-fold attenuation in catalysis. Double mixing experiments also revealed that the CrAT initial rate is inhibited by 50% in approximately 8 s by either acetyl-CoA or CoA premixing. Analysis of available CrAT structures support a substrate conformational change between acetyl-CoA/CoA binary versus ternary complexes. Additional viscosity-based kinetic experiments yielded strong evidence that product release is the rate limiting step in the CrAT-catalyzed reaction.
Collapse
Affiliation(s)
- Michael J Kratochvil
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 68849, USA
| | - Nick K Balerud
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 68849, USA
| | - Samantha J Schindler
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 68849, USA
| | - Michael A Moxley
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 68849, USA.
| |
Collapse
|
32
|
Manceau R, Majeur D, Alquier T. Neuronal control of peripheral nutrient partitioning. Diabetologia 2020; 63:673-682. [PMID: 32030470 DOI: 10.1007/s00125-020-05104-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022]
Abstract
The appropriate utilisation, storage and conversion of nutrients in peripheral tissues, referred to as nutrient partitioning, is a fundamental process to adapt to nutritional and metabolic challenges and is thus critical for the maintenance of a healthy energy balance. Alterations in this process during nutrient excess can have deleterious effects on glucose and lipid homeostasis and contribute to the development of obesity and type 2 diabetes. Nutrient partitioning is a complex integrated process under the control of hormonal and neural signals. Neural control relies on the capacity of the brain to sense circulating metabolic signals and mount adaptive neuroendocrine and autonomic responses. This review aims to discuss the hypothalamic neurocircuits and molecular mechanisms controlling nutrient partitioning and their potential contribution to metabolic maladaptation and disease.
Collapse
Affiliation(s)
- Romane Manceau
- Montréal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Montréal, QC, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Danie Majeur
- Montréal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Montréal, QC, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Thierry Alquier
- Montréal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Montréal, QC, H2X 0A9, Canada.
- Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
33
|
Baugh ME, Bowser SM, McMillan RP, Davy BM, Essenmacher LA, Neilson AP, Hulver MW, Davy KP. Postprandial skeletal muscle metabolism following a high-fat diet in sedentary and endurance-trained males. J Appl Physiol (1985) 2020; 128:872-883. [PMID: 32163335 DOI: 10.1152/japplphysiol.00576.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Our objective was to determine the influence of a high-fat diet (HFD) on fasting and postprandial skeletal muscle substrate metabolism in endurance-trained (ET) compared with sedentary (SED) humans. SED (n = 17) and ET (n = 7) males were control-fed a 10-day moderate-fat diet followed by a 5-day isocaloric HFD (55% fat, 30% carbohydrate). Skeletal muscle biopsies were taken in the fasted condition and 4 h after a high-fat meal (820 kcals; 63% fat and 25% carbohydrate). Palmitate-induced suppression of pyruvate oxidation, an indication of substrate preference, and oxidation of fat and glucose were measured in homogenized skeletal muscle in fasted and fed states. Postprandial responses were calculated as percent changes from fasting to fed states. Postprandial suppression of pyruvate oxidation was maintained after the HFD in ET, but not SED skeletal muscle, suggesting greater adaptability to dietary intake changes in the former. Fasting total fat oxidation increased due to the HFD in ET skeletal muscle (P = 0.006), which was driven by incomplete fat oxidation (P = 0.008). Fasting fat oxidation remained unchanged in skeletal muscle of SED individuals. Yet, postprandial fat oxidation was similar between groups. Fasting glucose oxidation was elevated after the HFD in ET (P = 0.036), but not SED, skeletal muscle. Postprandial glucose oxidation was reduced due to the HFD in SED (P = 0.002), but not ET, skeletal muscle. These findings provide insight into differing substrate metabolism responses between SED and ET individuals and highlight the role that the prevailing diet may play in modulating fasting and postprandial metabolic responses in skeletal muscle.NEW & NOTEWORTHY The relationship between high dietary fat intake and physical activity level and their combined effect on skeletal muscle substrate metabolism remains unclear. We assessed the influence of the prevailing diet in modulating substrate oxidation in skeletal muscle of endurance-trained compared with sedentary humans during a high-fat challenge meal. Collectively, our findings demonstrate the adaptability of skeletal muscle in endurance-trained individuals to high dietary fat intake.
Collapse
Affiliation(s)
- Mary Elizabeth Baugh
- Section on Gerontology and Geriatric Medicine, Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Suzanne M Bowser
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ryan P McMillan
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia.,Metabolic Phenotyping Core, Virginia Tech, Blacksburg, Virginia
| | - Brenda M Davy
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia.,Translational Obesity Research Interdisciplinary Graduate Education Program, Virginia Tech, Blacksburg, Virginia
| | | | - Andrew P Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Kannapolis, North Carolina
| | - Matthew W Hulver
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia.,Metabolic Phenotyping Core, Virginia Tech, Blacksburg, Virginia.,Translational Obesity Research Interdisciplinary Graduate Education Program, Virginia Tech, Blacksburg, Virginia
| | - Kevin P Davy
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia.,Metabolic Phenotyping Core, Virginia Tech, Blacksburg, Virginia.,Translational Obesity Research Interdisciplinary Graduate Education Program, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
34
|
Ghaffari MH, Sadri H, Schuh K, Dusel G, Prehn C, Adamski J, Koch C, Sauerwein H. Alterations of the acylcarnitine profiles in blood serum and in muscle from periparturient cows with normal or elevated body condition. J Dairy Sci 2020; 103:4777-4794. [PMID: 32113781 DOI: 10.3168/jds.2019-17713] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
The objective of the current study was to characterize muscle and blood serum acylcarnitine (AcylCN) profiles and to determine the mRNA abundance of muscle carnitine acyltransferases in periparturient dairy cows with high (HBCS) and normal body condition (NBCS). Fifteen weeks antepartum, 38 pregnant multiparous Holstein cows were assigned to 2 groups that were fed differently to reach the targeted BCS and backfat thickness (BFT) until dry-off at -49 d before calving (HBCS: BCS >3.75 and BFT >1.4 cm; NBCS: <3.5 and <1.2 cm). Thereafter, both groups were fed identical diets. Blood samples and biopsies from the semitendinosus muscle were collected on d -49, 3, 21, and 84 relative to calving. Actual BCS at d -49 were 3.02 ± 0.24 and 3.82 ± 0.33 (mean ± SD) for NBCS and HBCS, respectively. In both groups, serum profiles showed marked changes during the periparturient period, with decreasing concentrations of free carnitine and increasing concentrations of long-chain AcylCN. Compared with NBCS, HBCS had greater serum long-chain AcylCN in early lactation, which may point to an insufficient adaptation of their metabolism in response to the metabolic load of fatty acids around parturition. The muscle concentrations of C5-, C9-, C18:1-, and C18:2-AcylCN were lower and those of C14:2-AcylCN were greater in HBCS than in NBCS cows. The mRNA abundance of carnitine palmitoyltransferase (CPT)1, muscle isoform (CPT1b) and CPT2 increased from d -49 to early lactation (d 3, d 21), followed by a decline to nearly antepartum values by d 84; this change was not affected by group. In conclusion, over-conditioning around calving seems to be associated with mitochondrial overload, which can result in incomplete fatty acid oxidation in dairy cows.
Collapse
Affiliation(s)
- Morteza H Ghaffari
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Katharina Schuh
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany; Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Georg Dusel
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan 85350, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Christian Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweileran der Alsenz, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
35
|
Sinturel F, Petrenko V, Dibner C. Circadian Clocks Make Metabolism Run. J Mol Biol 2020; 432:3680-3699. [PMID: 31996313 DOI: 10.1016/j.jmb.2020.01.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Most organisms adapt to the 24-h cycle of the Earth's rotation by anticipating the time of the day through light-dark cycles. The internal time-keeping system of the circadian clocks has been developed to ensure this anticipation. The circadian system governs the rhythmicity of nearly all physiological and behavioral processes in mammals. In this review, we summarize current knowledge stemming from rodent and human studies on the tight interconnection between the circadian system and metabolism in the body. In particular, we highlight recent advances emphasizing the roles of the peripheral clocks located in the metabolic organs in regulating glucose, lipid, and protein homeostasis at the organismal and cellular levels. Experimental disruption of circadian system in rodents is associated with various metabolic disturbance phenotypes. Similarly, perturbation of the clockwork in humans is linked to the development of metabolic diseases. We discuss recent studies that reveal roles of the circadian system in the temporal coordination of metabolism under physiological conditions and in the development of human pathologies.
Collapse
Affiliation(s)
- Flore Sinturel
- Department of Medicine, Division of Endocrinology, Diabetes, Hypertension and Nutrition, Faculty of Medicine, University of Geneva, Rue Michel-Servet, 1, CH-1211, Geneva, 14, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| | - Volodymyr Petrenko
- Department of Medicine, Division of Endocrinology, Diabetes, Hypertension and Nutrition, Faculty of Medicine, University of Geneva, Rue Michel-Servet, 1, CH-1211, Geneva, 14, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Charna Dibner
- Department of Medicine, Division of Endocrinology, Diabetes, Hypertension and Nutrition, Faculty of Medicine, University of Geneva, Rue Michel-Servet, 1, CH-1211, Geneva, 14, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
36
|
Casciano JC, Perry C, Cohen-Nowak AJ, Miller KD, Vande Voorde J, Zhang Q, Chalmers S, Sandison ME, Liu Q, Hedley A, McBryan T, Tang HY, Gorman N, Beer T, Speicher DW, Adams PD, Liu X, Schlegel R, McCarron JG, Wakelam MJO, Gottlieb E, Kossenkov AV, Schug ZT. MYC regulates fatty acid metabolism through a multigenic program in claudin-low triple negative breast cancer. Br J Cancer 2020; 122:868-884. [PMID: 31942031 PMCID: PMC7078291 DOI: 10.1038/s41416-019-0711-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/22/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Background Recent studies have suggested that fatty acid oxidation (FAO) is a key metabolic pathway for the growth of triple negative breast cancers (TNBCs), particularly those that have high expression of MYC. However, the underlying mechanism by which MYC promotes FAO remains poorly understood. Methods We used a combination of metabolomics, transcriptomics, bioinformatics, and microscopy to elucidate a potential mechanism by which MYC regulates FAO in TNBC. Results We propose that MYC induces a multigenic program that involves changes in intracellular calcium signalling and fatty acid metabolism. We determined key roles for fatty acid transporters (CD36), lipases (LPL), and kinases (PDGFRB, CAMKK2, and AMPK) that each contribute to promoting FAO in human mammary epithelial cells that express oncogenic levels of MYC. Bioinformatic analysis further showed that this multigenic program is highly expressed and predicts poor survival in the claudin-low molecular subtype of TNBC, but not other subtypes of TNBCs, suggesting that efforts to target FAO in the clinic may best serve claudin-low TNBC patients. Conclusion We identified critical pieces of the FAO machinery that have the potential to be targeted for improved treatment of patients with TNBC, especially the claudin-low molecular subtype.
Collapse
Affiliation(s)
- Jessica C Casciano
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Caroline Perry
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam J Cohen-Nowak
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Katelyn D Miller
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Johan Vande Voorde
- The Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Qifeng Zhang
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Mairi E Sandison
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow, G4 0RE, UK.,Department of Biomedical Engineering, University of Strathclyde, Wolfson Centre, 106 Rottenrow, Glasgow, G4 0NW, UK
| | - Qin Liu
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Ann Hedley
- The Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Tony McBryan
- The Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Hsin-Yao Tang
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Nicole Gorman
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Thomas Beer
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - David W Speicher
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Xuefeng Liu
- Center for Cell Reprogramming, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3900 Reservoir Road, Washington D.C., 20057, USA
| | - Richard Schlegel
- Center for Cell Reprogramming, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3900 Reservoir Road, Washington D.C., 20057, USA
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | | | - Eyal Gottlieb
- The Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron St. Bat Galim, 3525433, Haifa, Israel
| | - Andrew V Kossenkov
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Zachary T Schug
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
37
|
Disruption of Acetyl-Lysine Turnover in Muscle Mitochondria Promotes Insulin Resistance and Redox Stress without Overt Respiratory Dysfunction. Cell Metab 2020; 31:131-147.e11. [PMID: 31813822 PMCID: PMC6952241 DOI: 10.1016/j.cmet.2019.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/30/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
This study sought to examine the functional significance of mitochondrial protein acetylation using a double knockout (DKO) mouse model harboring muscle-specific deficits in acetyl-CoA buffering and lysine deacetylation, due to genetic ablation of carnitine acetyltransferase and Sirtuin 3, respectively. DKO mice are highly susceptible to extreme hyperacetylation of the mitochondrial proteome and develop a more severe form of diet-induced insulin resistance than either single KO mouse line. However, the functional phenotype of hyperacetylated DKO mitochondria is largely normal. Of the >120 measures of respiratory function assayed, the most consistently observed traits of a markedly heightened acetyl-lysine landscape are enhanced oxygen flux in the context of fatty acid fuel and elevated rates of electron leak. In sum, the findings challenge the notion that lysine acetylation causes broad-ranging damage to mitochondrial quality and performance and raise the possibility that acetyl-lysine turnover, rather than acetyl-lysine stoichiometry, modulates redox balance and carbon flux.
Collapse
|
38
|
Laera L, Punzi G, Porcelli V, Gambacorta N, Trisolini L, Pierri CL, De Grassi A. CRAT missense variants cause abnormal carnitine acetyltransferase function in an early-onset case of Leigh syndrome. Hum Mutat 2019; 41:110-114. [PMID: 31448845 DOI: 10.1002/humu.23901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/19/2019] [Accepted: 08/20/2019] [Indexed: 11/12/2022]
Abstract
Leigh syndrome, or subacute necrotizing encephalomyelopathy, is one of the most severe pediatric disorders of the mitochondrial energy metabolism. By performing whole-exome sequencing in a girl affected by Leigh syndrome and her parents, we identified two heterozygous missense variants (p.Tyr110Cys and p.Val569Met) in the carnitine acetyltransferase (CRAT) gene, encoding an enzyme involved in the control of mitochondrial short-chain acyl-CoA concentrations. Biochemical assays revealed carnitine acetyltransferase deficiency in the proband-derived fibroblasts. Functional analyses of recombinant-purified CRAT proteins demonstrated that both missense variants, located in the acyl-group binding site of the enzyme, severely impair its catalytic function toward acetyl-CoA, and the p.Val569Met variant also toward propionyl-CoA and octanoyl-CoA. Although a single recessive variant in CRAT has been recently associated with neurodegeneration with brain iron accumulation (NBIA), this study reports the first kinetic analysis of naturally occurring CRAT variants and demonstrates the genetic basis of carnitine acetyltransferase deficiency in a case of mitochondrial encephalopathy.
Collapse
Affiliation(s)
- Luna Laera
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Giuseppe Punzi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Vito Porcelli
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Nicola Gambacorta
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Lucia Trisolini
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Ciro L Pierri
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
39
|
The Effects of Caffeine on Metabolomic Responses to Muscle Contraction in Rat Skeletal Muscle. Nutrients 2019; 11:nu11081819. [PMID: 31394740 PMCID: PMC6723980 DOI: 10.3390/nu11081819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Exercise has beneficial effects on our health by stimulating metabolic activation of skeletal muscle contraction. Caffeine is a powerful metabolic stimulant in the skeletal muscle that has ergogenic effects, including enhanced muscle power output and endurance capacity. In the present study, we aim to characterize the metabolic signatures of contracting muscles with or without caffeine stimulation using liquid chromatography-mass spectrometry and capillary electrophoresis coupled to mass spectrometry. Isolated rat epitrochlearis muscle was incubated in the presence or absence or of 3 mM caffeine for 30 min. Electrical stimulation (ES) was used to induce tetanic contractions during the final 10 min of incubation. Principal component analysis and hierarchical clustering analysis detected 184 distinct metabolites across three experimental groups—basal, ES, and ES with caffeine (ES + C). Significance Analysis of Microarray identified a total of 50 metabolites with significant changes in expression, and 23 metabolites significantly changed between the ES and ES + C groups. Changes were observed in metabolite levels of various metabolic pathways, including the pentose phosphate, nucleotide synthesis, β-oxidation, tricarboxylic acid cycle, and amino acid metabolism. In particular, D-ribose 5-phosphate, IMP, O-acetylcarnitine, butyrylcarnitine, L-leucine, L-valine, and L-aspartate levels were higher in the ES + C group than in the ES group. These metabolic alterations induced by caffeine suggest that caffeine accelerates contraction-induced metabolic activations, thereby contributing to muscle endurance performance and exercise benefits to our health.
Collapse
|
40
|
|
41
|
Reichenbach A, Stark R, Mequinion M, Denis RRG, Goularte JF, Clarke RE, Lockie SH, Lemus MB, Kowalski GM, Bruce CR, Huang C, Schittenhelm RB, Mynatt RL, Oldfield BJ, Watt MJ, Luquet S, Andrews ZB. AgRP Neurons Require Carnitine Acetyltransferase to Regulate Metabolic Flexibility and Peripheral Nutrient Partitioning. Cell Rep 2019; 22:1745-1759. [PMID: 29444428 DOI: 10.1016/j.celrep.2018.01.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 11/13/2017] [Accepted: 01/22/2018] [Indexed: 01/29/2023] Open
Abstract
AgRP neurons control peripheral substrate utilization and nutrient partitioning during conditions of energy deficit and nutrient replenishment, although the molecular mechanism is unknown. We examined whether carnitine acetyltransferase (Crat) in AgRP neurons affects peripheral nutrient partitioning. Crat deletion in AgRP neurons reduced food intake and feeding behavior and increased glycerol supply to the liver during fasting, as a gluconeogenic substrate, which was mediated by changes to sympathetic output and peripheral fatty acid metabolism in the liver. Crat deletion in AgRP neurons increased peripheral fatty acid substrate utilization and attenuated the switch to glucose utilization after refeeding, indicating altered nutrient partitioning. Proteomic analysis in AgRP neurons shows that Crat regulates protein acetylation and metabolic processing. Collectively, our studies highlight that AgRP neurons require Crat to provide the metabolic flexibility to optimize nutrient partitioning and regulate peripheral substrate utilization, particularly during fasting and refeeding.
Collapse
Affiliation(s)
- Alex Reichenbach
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia
| | - Romana Stark
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia
| | - Mathieu Mequinion
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia
| | - Raphael R G Denis
- Université of Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionelle et Adaptative, CNRS UMR 8251, 75205 Paris, France
| | - Jeferson F Goularte
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Rachel E Clarke
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia
| | - Moyra B Lemus
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, VIC, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, VIC, Australia
| | - Cheng Huang
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Monash Biomedical Proteomics Facility and Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Monash Biomedical Proteomics Facility and Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Randall L Mynatt
- Gene Nutrient Interactions Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA; Transgenic Core Facility, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Brian J Oldfield
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia
| | - Matthew J Watt
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia
| | - Serge Luquet
- Université of Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionelle et Adaptative, CNRS UMR 8251, 75205 Paris, France
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia.
| |
Collapse
|
42
|
van de Weijer T, Schrauwen-Hinderling VB. Application of Magnetic Resonance Spectroscopy in metabolic research. Biochim Biophys Acta Mol Basis Dis 2019; 1865:741-748. [DOI: 10.1016/j.bbadis.2018.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 02/08/2023]
|
43
|
Li S, Gao D, Jiang Y. Function, Detection and Alteration of Acylcarnitine Metabolism in Hepatocellular Carcinoma. Metabolites 2019; 9:E36. [PMID: 30795537 PMCID: PMC6410233 DOI: 10.3390/metabo9020036] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
Acylcarnitines play an essential role in regulating the balance of intracellular sugar and lipid metabolism. They serve as carriers to transport activated long-chain fatty acids into mitochondria for β-oxidation as a major source of energy for cell activities. The liver is the most important organ for endogenous carnitine synthesis and metabolism. Hepatocellular carcinoma (HCC), a primary malignancy of the live with poor prognosis, may strongly influence the level of acylcarnitines. In this paper, the function, detection and alteration of acylcarnitine metabolism in HCC were briefly reviewed. An overview was provided to introduce the metabolic roles of acylcarnitines involved in fatty acid β-oxidation. Then different analytical platforms and methodologies were also briefly summarised. The relationship between HCC and acylcarnitine metabolism was described. Many of the studies reported that short, medium and long-chain acylcarnitines were altered in HCC patients. These findings presented current evidence in support of acylcarnitines as new candidate biomarkers for studies on the pathogenesis and development of HCC. Finally we discussed the challenges and perspectives of exploiting acylcarnitine metabolism and its related metabolic pathways as a target for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Shangfu Li
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- National & Local United Engineering Lab for Personalized Anti-tumour Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- National & Local United Engineering Lab for Personalized Anti-tumour Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- Key Laboratory of Metabolomics at Shenzhen, Shenzhen 518055, China.
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
44
|
Lantier L, Williams AS, Hughey CC, Bracy DP, James FD, Ansari MA, Gius D, Wasserman DH. SIRT2 knockout exacerbates insulin resistance in high fat-fed mice. PLoS One 2018; 13:e0208634. [PMID: 30533032 PMCID: PMC6289500 DOI: 10.1371/journal.pone.0208634] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/20/2018] [Indexed: 01/26/2023] Open
Abstract
The NAD+-dependent deacetylase SIRT2 is unique amongst sirtuins as it is effective in the cytosol, as well as the mitochondria. Defining the role of cytosolic acetylation state in specific tissues is difficult since even physiological effects at the whole body level are unknown. We hypothesized that genetic SIRT2 knockout (KO) would lead to impaired insulin action, and that this impairment would be worsened in HF fed mice. Insulin sensitivity was tested using the hyperinsulinemic-euglycemic clamp in SIRT2 KO mice and WT littermates. SIRT2 KO mice exhibited reduced skeletal muscle insulin-induced glucose uptake compared to lean WT mice, and this impairment was exacerbated in HF SIRT2 KO mice. Liver insulin sensitivity was unaffected in lean SIRT2 KO mice. However, the insulin resistance that accompanies HF-feeding was worsened in SIRT2 KO mice. It was notable that the effects of SIRT2 KO were largely disassociated from cytosolic acetylation state, but were closely linked to acetylation state in the mitochondria. SIRT2 KO led to an increase in body weight that was due to increased food intake in HF fed mice. In summary, SIRT2 deletion in vivo reduces muscle insulin sensitivity and contributes to liver insulin resistance by a mechanism that is unrelated to cytosolic acetylation state. Mitochondrial acetylation state and changes in feeding behavior that result in increased body weight correspond to the deleterious effects of SIRT2 KO on insulin action.
Collapse
Affiliation(s)
- Louise Lantier
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, United States of America
| | - Ashley S. Williams
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Curtis C. Hughey
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Deanna P. Bracy
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Freyja D. James
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Muhammad A. Ansari
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - David Gius
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - David H. Wasserman
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, United States of America
| |
Collapse
|
45
|
Wallace M, Green CR, Roberts LS, Lee YM, McCarville JL, Sanchez-Gurmaches J, Meurs N, Gengatharan JM, Hover JD, Phillips SA, Ciaraldi TP, Guertin DA, Cabrales P, Ayres JS, Nomura DK, Loomba R, Metallo CM. Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nat Chem Biol 2018; 14:1021-1031. [PMID: 30327559 PMCID: PMC6245668 DOI: 10.1038/s41589-018-0132-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/02/2018] [Indexed: 01/12/2023]
Abstract
Fatty acid synthase (FASN) predominantly generates straight-chain fatty acids using acetyl-CoA as the initiating substrate. However, monomethyl branched-chain fatty acids (mmBCFAs) are also present in mammals but are thought to be primarily diet derived. Here we demonstrate that mmBCFAs are de novo synthesized via mitochondrial BCAA catabolism, exported to the cytosol by adipose-specific expression of carnitine acetyltransferase (CrAT), and elongated by FASN. Brown fat exhibits the highest BCAA catabolic and mmBCFA synthesis fluxes, whereas these lipids are largely absent from liver and brain. mmBCFA synthesis is also sustained in the absence of microbiota. We identify hypoxia as a potent suppressor of BCAA catabolism that decreases mmBCFA synthesis in obese adipose tissue, such that mmBCFAs are significantly decreased in obese animals. These results identify adipose tissue mmBCFA synthesis as a novel link between BCAA metabolism and lipogenesis, highlighting roles for CrAT and FASN promiscuity influencing acyl-chain diversity in the lipidome.
Collapse
Affiliation(s)
- Martina Wallace
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Courtney R Green
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Lindsay S Roberts
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Science and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Yujung Michelle Lee
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Justin L McCarville
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Noah Meurs
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Jivani M Gengatharan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Justin D Hover
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Susan A Phillips
- Division of Pediatric Endocrinology, Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
| | - Theodore P Ciaraldi
- Virginia San Diego Healthcare System, San Diego, CA, USA.,Division of Endocrinology & Metabolism, Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Janelle S Ayres
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Daniel K Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Science and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. .,Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA. .,Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
46
|
JUNG CHANYONG, PARK JUNSIK, LIM YONGHYUN, KIM YOUNGBEOM, PARK KWANKYU, MOON JEHEON, SONG JOOHO, LEE SANGHOON. ESTIMATING FATIGUE LEVEL OF FEMORAL AND GASTROCEMIUS MUSCLES BASED ON SURFACE ELECTROMYOGRAPHY IN TIME AND FREQUENCY DOMAIN. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519418500422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper presents a new method for estimating muscle fatigue level based on surface electromyography (EMG) of femoral and gastrocnemius muscles during repetitive motions with various load. The relationship between fatigue level and EMG signals was examined through repetitive movements of the femoral and gastrocnemius muscles with the use of leg extension and squat machines. The fatigue level was based on the maximum voluntary contraction (MVC) levels with various loads. The integrated EMG (IEMG) value and the mean frequency value for each load cycle were obtained through the surface EMG signal. This work presents a global EMG index map by using the new analytical technique based on the relationship between the average IEMG and mean power frequency (MPF) values. The proposed method enables simultaneous estimation of muscle fatigue level and force using real-time EMG signals from the femoral and gastrocnemius muscles.
Collapse
Affiliation(s)
- CHAN YONG JUNG
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04736, South Korea
| | - JUN-SIK PARK
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04736, South Korea
| | - YONGHYUN LIM
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04736, South Korea
| | - YOUNG-BEOM KIM
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04736, South Korea
| | - KWAN KYU PARK
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04736, South Korea
| | - JE HEON MOON
- Korea Institute of Sport Science, Seoul 01794, South Korea
| | - JOO-HO SONG
- Korea Institute of Sport Science, Seoul 01794, South Korea
| | - SANGHOON LEE
- Agency for Defense Development, Daejeon 34186, South Korea
| |
Collapse
|
47
|
Handzlik MK, Constantin‐Teodosiu D, Greenhaff PL, Cole MA. Increasing cardiac pyruvate dehydrogenase flux during chronic hypoxia improves acute hypoxic tolerance. J Physiol 2018; 596:3357-3369. [PMID: 29383727 PMCID: PMC6068244 DOI: 10.1113/jp275357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/19/2018] [Indexed: 01/18/2023] Open
Abstract
KEY POINTS The cardiac metabolic reprogramming seen in heart diseases such as myocardial infarction and hypertrophy shares similarities with that seen in chronic hypoxia, but understanding of how the hypoxic heart responds to further hypoxic challenge - hypoxic tolerance - is limited. The pyruvate dehydrogenase complex serves to control irreversible decarboxylation of pyruvate within mitochondria, and is a key regulator of substrate metabolism, potentially regulating hypoxic tolerance. Acute activation of the pyruvate dehydrogenase complex did not improve cardiac function during acute hypoxia; however, simultaneous activation of the pyruvate dehydrogenase complex during chronic hypoxic exposure improved tolerance to subsequent acute hypoxia. Activation of the pyruvate dehydrogenase complex during chronic hypoxia stockpiled cardiac acetylcarnitine, and this was used during acute hypoxia. This maintained cardiac ATP and glycogen, and improved hypoxic tolerance as a result. These findings demonstrate that pyruvate dehydrogenase complex activation can improve cardiac function under hypoxia. ABSTRACT The pattern of metabolic reprogramming in chronic hypoxia shares similarities with that following myocardial infarction or hypertrophy; however, the response of the chronically hypoxic heart to subsequent acute injury, and the role of metabolism is not well understood. Here, we determined the myocardial tolerance of the chronically hypoxic heart to subsequent acute injury, and hypothesised that activation of a key regulator of myocardial metabolism, the pyruvate dehydrogenase complex (PDC), could improve hypoxic tolerance. Mouse hearts, perfused in Langendorff mode, were exposed to 30 min of hypoxia, and lost 80% of pre-hypoxic function (P = 0.001), with only 51% recovery of pre-hypoxic function with 30 min of reoxygenation (P = 0.046). Activation of the PDC with infusion of 1 mm dichloroacetate (DCA) during hypoxia and reoxygenation did not alter function. Acute hypoxic tolerance was assessed in hearts of mice housed in hypoxia for 3 weeks. Chronic hypoxia reduced cardiac tolerance to subsequent acute hypoxia, with recovery of function 22% of pre-acute hypoxic levels vs. 39% in normoxic control hearts (P = 0.012). DCA feeding in chronic hypoxia (per os, 70 mg kg-1 day-1 ) doubled cardiac acetylcarnitine content, and this fell following acute hypoxia. This acetylcarnitine use maintained cardiac ATP and glycogen content during acute hypoxia, with hypoxic tolerance normalised. In summary, chronic hypoxia renders the heart more susceptible to acute hypoxic injury, which can be improved by activation of the PDC and pooling of acetylcarnitine. This is the first study showing functional improvement of the chronically hypoxic heart with activation of the PDC, and offers therapeutic potential in cardiac disease with a hypoxic component.
Collapse
Affiliation(s)
- Michal K. Handzlik
- School of Life SciencesUniversity of Nottingham Medical SchoolQueen's Medical CentreNottinghamUK
| | - Dumitru Constantin‐Teodosiu
- School of Life SciencesUniversity of Nottingham Medical SchoolQueen's Medical CentreNottinghamUK
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing ResearchUK
| | - Paul L. Greenhaff
- School of Life SciencesUniversity of Nottingham Medical SchoolQueen's Medical CentreNottinghamUK
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing ResearchUK
| | - Mark A. Cole
- School of Life SciencesUniversity of Nottingham Medical SchoolQueen's Medical CentreNottinghamUK
| |
Collapse
|
48
|
Klepochová R, Valkovič L, Hochwartner T, Triska C, Bachl N, Tschan H, Trattnig S, Krebs M, Krššák M. Differences in Muscle Metabolism Between Triathletes and Normally Active Volunteers Investigated Using Multinuclear Magnetic Resonance Spectroscopy at 7T. Front Physiol 2018; 9:300. [PMID: 29666584 PMCID: PMC5891578 DOI: 10.3389/fphys.2018.00300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/13/2018] [Indexed: 11/29/2022] Open
Abstract
Purpose: The influence of endurance training on skeletal muscle metabolism can currently be studied only by invasive sampling or through a few related parameters that are investigated by either proton (1H) or phosphorus (31P) magnetic resonance spectroscopy (MRS). The aim of this study was to compare the metabolic differences between endurance-trained triathletes and healthy volunteers using multi-parametric data acquired by both, 31P- and 1H-MRS, at ultra-high field (7T) in a single experimental protocol. This study also aimed to determine the interrelations between these MRS-derived metabolic parameters. Methods: Thirteen male triathletes and ten active male volunteers participated in the study. Proton MRS data from the vastus lateralis yielded concentrations of acetylcarnitine, carnosine, and intramyocellular lipids (IMCL). For the measurement of phosphodiesters (PDEs), inorganic phosphate (Pi), phosphocreatine (PCr), and maximal oxidative capacity (Qmax) phosphorus MRS data were acquired at rest, during 6 min of submaximal exercise and following immediate recovery. Results: The triathletes exhibited significantly higher IMCL levels, higher initial rate of PCr resynthesis (VPCr) during the recovery period, a shorter PCr recovery time constant (τPCr), and higher Qmax. Multivariate stepwise regression analysis identified PDE as the strongest independent predictor of whole-body maximal oxygen uptake (VO2max). Conclusion: In conclusion, we cannot suggest a single MRS-based parameter as an exclusive biomarker of muscular fitness and training status. There is, rather, a combination of different parameters, assessable during a single multi-nuclear MRS session that could be useful for further cross-sectional and/or focused interventional studies on skeletal muscle fitness and training effects.
Collapse
Affiliation(s)
- Radka Klepochová
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, MOLIMA, Vienna, Austria
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom.,Department of Imaging Methods, Institute of Measurements Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Thomas Hochwartner
- Centre of Sport Science and University Sport, University of Vienna, Vienna, Austria
| | - Christoph Triska
- Centre of Sport Science and University Sport, University of Vienna, Vienna, Austria
| | - Norbert Bachl
- Centre of Sport Science and University Sport, University of Vienna, Vienna, Austria
| | - Harald Tschan
- Centre of Sport Science and University Sport, University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, MOLIMA, Vienna, Austria
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martin Krššák
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, MOLIMA, Vienna, Austria.,Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: a randomised trial. Br J Nutr 2018; 119:759-770. [DOI: 10.1017/s000711451800017x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractBalanced vegetarian diets are popular, although they are nearly absent in creatine and carnosine and contain considerably less carnitine than non-vegetarian diets. Few longitudinal intervention studies investigating the effect of a vegetarian diet on the availability of these compounds currently exist. We aimed to investigate the effect of transiently switching omnivores onto a vegetarian diet for 6 months on muscle and plasma creatine, carnitine and carnosine homeostasis. In a 6-month intervention, forty omnivorous women were ascribed to three groups: continued omnivorous diet (control,n10), vegetarian diet without supplementation (Veg+Pla,n15) and vegetarian diet combined with dailyβ-alanine (0·8–0·4 g/d) and creatine supplementation (1 g creatine monohydrate/d) (Veg+Suppl,n15). Before (0 months; 0M), after 3 months (3M) and 6 months (6M), a fasted venous blood sample and 24-h urine was collected, and muscle carnosine content was determined by proton magnetic resonance spectroscopy (1H-MRS). Muscle biopsies were obtained at 0M and 3M. Plasma creatine and muscle total creatine content declined from 0M to 3M in Veg+Pla (P=0·013 andP=0·009, respectively), whereas plasma creatine increased from 0M in Veg+Suppl (P=0·004). None of the carnitine-related compounds in plasma or muscle showed a significant time×group interaction effect.1H-MRS-determined muscle carnosine content was unchanged over 6M in control and Veg+Pla, but increased in Veg+Suppl in soleus (P<0·001) and gastrocnemius (P=0·001) muscle. To conclude, the body creatine pool declined over a 3-month vegetarian diet in omnivorous women, which was ameliorated when accompanied by low-dose dietary creatine supplementation. Carnitine and carnosine homeostasis was unaffected by a 3- or 6-month vegetarian diet, respectively.
Collapse
|
50
|
Abstract
Objectives The aims of this study were to detect the acetylcarnitine resonance line at 2.13 ppm in the human vastus lateralis and soleus muscles, assess T1 and T2 relaxation times, and investigate the diurnal and exercise-related changes in absolute concentration noninvasively, using proton magnetic resonance spectroscopy at 7 T. Materials and Methods All measurements were performed on a 7 T whole-body Magnetom MR system with a 28-channel knee coil. Five healthy, moderately trained volunteers participated in the assessment of the detectability, repeatability, and relaxation times of acetylcarnitine. For the evaluation of the effect of training status, another 5 healthy, normally active volunteers were examined. In addition, normally active volunteers underwent a day-long protocol to estimate diurnal changes and response to the exercise. Results Using a long echo time of 350 milliseconds, we were able to detect the acetylcarnitine resonance line at 2.13 ppm in both muscle groups without significant lipid contamination. The T1 of acetylcarnitine in the vastus lateralis muscle was found to be 1807.2 ± 513.1 milliseconds and T2 was found to be 129.9 ± 44.9 milliseconds. Concentrations of acetylcarnitine from the vastus lateralis muscle in moderately trained volunteers were higher than concentrations from normally active volunteers. Acetylcarnitine concentrations changed during the day, tending to be higher in the morning after an overnight fast than after lunch. After 10 minutes of high-intensity exercise, the concentration significantly increased, and 15 minutes after cessation of exercise, a decrease could be observed. Conclusions Our results demonstrate an effective detection of acetylcarnitine using a long TE of 350 milliseconds at 7 T in the vastus lateralis and soleus muscles with high repeatability and reliability on a 7 T scanner. Our data emphasize the need for strict standardization, physical activity, and dietary conditions for the measurement of the acetylcarnitine.
Collapse
|