1
|
Gaugel J, Jähnert M, Neumann A, Heyd F, Schürmann A, Vogel H. Alternative splicing landscape in mouse skeletal muscle and adipose tissue: Effects of intermittent fasting and exercise. J Nutr Biochem 2024; 137:109837. [PMID: 39725041 DOI: 10.1016/j.jnutbio.2024.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/28/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Alternative splicing contributes to diversify the cellular protein landscape, but aberrant splicing is implicated in many diseases. To which extent mis-splicing contributes to insulin resistance as the causal defect of type 2 diabetes and whether this can be reversed by lifestyle interventions is largely unknown. Therefore, RNA sequencing data from skeletal muscle and adipose tissue of diabetes-susceptible NZO mice treated with or without intermittent fasting and of healthy C57BL/6J mice subjected to exercise were analyzed for alternative splicing differences using Whippet and rMATS. Diet and exercise interventions triggered comparable levels of splicing changes, although the splicing profile of skeletal muscle appeared to be more flexible than that of adipose tissue, with 72-114 differential splicing events in muscle and less than 25 in adipose tissue. Splicing changes induced by time-restricted feeding, alternate-day fasting and exercise were generally mild, with a maximal percent spliced in (PSI) difference of 67%, indicating that alternative splicing plays a rather minor role in lifestyle-induced adaptations of muscle and adipose tissue in mice. However, intron retention contributed to the regulation of gene expression, influencing genes whose expression was directly linked to phenotypic parameters (e.g. Eno2 and Pan2). Alternate-day fasting promoted skipping of exon 7 in Mlxipl (coding for ChREBP), thereby affecting the glucose sensing module of this carbohydrate-responsive transcription factor. Both intermittent fasting and exercise training led to alternative splicing of known diabetes-related GWAS genes (e.g. Abcc8, Ifnar2, Smarcad1), highlighting the potential metabolic relevance of these changes.
Collapse
Affiliation(s)
- Jasmin Gaugel
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany
| | - Markus Jähnert
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexander Neumann
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Omiqa Bioinformatics, Berlin, Germany
| | - Florian Heyd
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Annette Schürmann
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Heike Vogel
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany.
| |
Collapse
|
2
|
Ogawa T, Isik M, Wu Z, Kurmi K, Meng J, Cho S, Lee G, Fernandez-Cardenas LP, Mizunuma M, Blenis J, Haigis MC, Blackwell TK. Nutrient control of growth and metabolism through mTORC1 regulation of mRNA splicing. Mol Cell 2024; 84:4558-4575.e8. [PMID: 39571580 DOI: 10.1016/j.molcel.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/30/2024] [Accepted: 10/28/2024] [Indexed: 12/08/2024]
Abstract
Cellular growth and organismal development are remarkably complex processes that require the nutrient-responsive kinase mechanistic target of rapamycin complex 1 (mTORC1). Anticipating that important mTORC1 functions remained to be identified, we employed genetic and bioinformatic screening in C. elegans to uncover mechanisms of mTORC1 action. Here, we show that during larval growth, nutrients induce an extensive reprogramming of gene expression and alternative mRNA splicing by acting through mTORC1. mTORC1 regulates mRNA splicing and the production of protein-coding mRNA isoforms largely independently of its target p70 S6 kinase (S6K) by increasing the activity of the serine/arginine-rich (SR) protein RSP-6 (SRSF3/7) and other splicing factors. mTORC1-mediated mRNA splicing regulation is critical for growth; mediates nutrient control of mechanisms that include energy, nucleotide, amino acid, and other metabolic pathways; and may be conserved in humans. Although mTORC1 inhibition delays aging, mTORC1-induced mRNA splicing promotes longevity, suggesting that when mTORC1 is inhibited, enhancement of this splicing might provide additional anti-aging benefits.
Collapse
Affiliation(s)
- Takafumi Ogawa
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Meltem Isik
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kiran Kurmi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Meng
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sungyun Cho
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gina Lee
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA; Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - L Paulette Fernandez-Cardenas
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Masaki Mizunuma
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - John Blenis
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center, Harvard Medical School, Boston, MA 02115, USA
| | - T Keith Blackwell
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
McKimpson WM, Spiegel S, Mukhanova M, Kraakman M, Du W, Kitamoto T, Yu J, Deng Z, Pajvani U, Accili D. Calorie restriction activates a gastric Notch-FOXO1 pathway to expand ghrelin cells. J Cell Biol 2024; 223:e202305093. [PMID: 38958606 PMCID: PMC11222742 DOI: 10.1083/jcb.202305093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Calorie restriction increases lifespan. Among the tissue-specific protective effects of calorie restriction, the impact on the gastrointestinal tract remains unclear. We report increased numbers of chromogranin A-positive (+), including orexigenic ghrelin+ cells, in the stomach of calorie-restricted mice. This effect was accompanied by increased Notch target Hes1 and Notch ligand Jag1 and was reversed by blocking Notch with DAPT, a gamma-secretase inhibitor. Primary cultures and genetically modified reporter mice show that increased endocrine cell abundance is due to altered Lgr5+ stem and Neurog3+ endocrine progenitor cell proliferation. Different from the intestine, calorie restriction decreased gastric Lgr5+ stem cells, while increasing a FOXO1/Neurog3+ subpopulation of endocrine progenitors in a Notch-dependent manner. Further, activation of FOXO1 was sufficient to promote endocrine cell differentiation independent of Notch. The Notch inhibitor PF-03084014 or ghrelin receptor antagonist GHRP-6 reversed the phenotypic effects of calorie restriction in mice. Tirzepatide additionally expanded ghrelin+ cells in mice. In summary, calorie restriction promotes Notch-dependent, FOXO1-regulated gastric endocrine cell differentiation.
Collapse
Affiliation(s)
- Wendy M. McKimpson
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Sophia Spiegel
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Maria Mukhanova
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Michael Kraakman
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Wen Du
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Takumi Kitamoto
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Junjie Yu
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Zhaobin Deng
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Utpal Pajvani
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Domenico Accili
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Jamerson LE, Bradshaw PC. The Roles of White Adipose Tissue and Liver NADPH in Dietary Restriction-Induced Longevity. Antioxidants (Basel) 2024; 13:820. [PMID: 39061889 PMCID: PMC11273496 DOI: 10.3390/antiox13070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary restriction (DR) protocols frequently employ intermittent fasting. Following a period of fasting, meal consumption increases lipogenic gene expression, including that of NADPH-generating enzymes that fuel lipogenesis in white adipose tissue (WAT) through the induction of transcriptional regulators SREBP-1c and CHREBP. SREBP-1c knockout mice, unlike controls, did not show an extended lifespan on the DR diet. WAT cytoplasmic NADPH is generated by both malic enzyme 1 (ME1) and the pentose phosphate pathway (PPP), while liver cytoplasmic NADPH is primarily synthesized by folate cycle enzymes provided one-carbon units through serine catabolism. During the daily fasting period of the DR diet, fatty acids are released from WAT and are transported to peripheral tissues, where they are used for beta-oxidation and for phospholipid and lipid droplet synthesis, where monounsaturated fatty acids (MUFAs) may activate Nrf1 and inhibit ferroptosis to promote longevity. Decreased WAT NADPH from PPP gene knockout stimulated the browning of WAT and protected from a high-fat diet, while high levels of NADPH-generating enzymes in WAT and macrophages are linked to obesity. But oscillations in WAT [NADPH]/[NADP+] from feeding and fasting cycles may play an important role in maintaining metabolic plasticity to drive longevity. Studies measuring the WAT malate/pyruvate as a proxy for the cytoplasmic [NADPH]/[NADP+], as well as studies using fluorescent biosensors expressed in the WAT of animal models to monitor the changes in cytoplasmic [NADPH]/[NADP+], are needed during ad libitum and DR diets to determine the changes that are associated with longevity.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
5
|
Liu Y, Lu S, Yang J, Yang Y, Jiao L, Hu J, Li Y, Yang F, Pang Y, Zhao Y, Gao Y, Liu W, Shu P, Ge W, He Z, Peng X. Analysis of the aging-related biomarker in a nonhuman primate model using multilayer omics. BMC Genomics 2024; 25:639. [PMID: 38926642 PMCID: PMC11209966 DOI: 10.1186/s12864-024-10556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Aging is a prominent risk factor for diverse diseases; therefore, an in-depth understanding of its physiological mechanisms is required. Nonhuman primates, which share the closest genetic relationship with humans, serve as an ideal model for exploring the complex aging process. However, the potential of the nonhuman primate animal model in the screening of human aging markers is still not fully exploited. Multiomics analysis of nonhuman primate peripheral blood offers a promising approach to evaluate new therapies and biomarkers. This study explores aging-related biomarker through multilayer omics, including transcriptomics (mRNA, lncRNA, and circRNA) and proteomics (serum and serum-derived exosomes) in rhesus monkeys (Macaca mulatta). RESULTS Our findings reveal that, unlike mRNAs and circRNAs, highly expressed lncRNAs are abundant during the key aging period and are associated with cancer pathways. Comparative analysis highlighted exosomal proteins contain more types of proteins than serum proteins, indicating that serum-derived exosomes primarily regulate aging through metabolic pathways. Finally, eight candidate aging biomarkers were identified, which may serve as blood-based indicators for detecting age-related brain changes. CONCLUSIONS Our results provide a comprehensive understanding of nonhuman primate blood transcriptomes and proteomes, offering novel insights into the aging mechanisms for preventing or treating age-related diseases.
Collapse
Affiliation(s)
- Yunpeng Liu
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, Beijing, 100021, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Jing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Li Jiao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Jingwen Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yunli Pang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yuan Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yanpan Gao
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China
| | - Wei Liu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China
| | - Pengcheng Shu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China
| | - Wei Ge
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China.
| | - Xiaozhong Peng
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, Beijing, 100021, China.
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China.
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China.
| |
Collapse
|
6
|
Das JK, Banskota N, Candia J, Griswold ME, Orenduff M, de Cabo R, Corcoran DL, Das SK, De S, Huffman KM, Kraus VB, Kraus WE, Martin C, Racette SB, Redman LM, Schilling B, Belsky D, Ferrucci L. Calorie restriction modulates the transcription of genes related to stress response and longevity in human muscle: The CALERIE study. Aging Cell 2023; 22:e13963. [PMID: 37823711 PMCID: PMC10726900 DOI: 10.1111/acel.13963] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 10/13/2023] Open
Abstract
The lifespan extension induced by 40% caloric restriction (CR) in rodents is accompanied by postponement of disease, preservation of function, and increased stress resistance. Whether CR elicits the same physiological and molecular responses in humans remains mostly unexplored. In the CALERIE study, 12% CR for 2 years in healthy humans induced minor losses of muscle mass (leg lean mass) without changes of muscle strength, but mechanisms for muscle quality preservation remained unclear. We performed high-depth RNA-Seq (387-618 million paired reads) on human vastus lateralis muscle biopsies collected from the CALERIE participants at baseline, 12- and 24-month follow-up from the 90 CALERIE participants randomized to CR and "ad libitum" control. Using linear mixed effect model, we identified protein-coding genes and splicing variants whose expression was significantly changed in the CR group compared to controls, including genes related to proteostasis, circadian rhythm regulation, DNA repair, mitochondrial biogenesis, mRNA processing/splicing, FOXO3 metabolism, apoptosis, and inflammation. Changes in some of these biological pathways mediated part of the positive effect of CR on muscle quality. Differentially expressed splicing variants were associated with change in pathways shown to be affected by CR in model organisms. Two years of sustained CR in humans positively affected skeletal muscle quality, and impacted gene expression and splicing profiles of biological pathways affected by CR in model organisms, suggesting that attainable levels of CR in a lifestyle intervention can benefit muscle health in humans.
Collapse
Affiliation(s)
- Jayanta Kumar Das
- Longitudinal Studies Section, Translation Gerontology BranchNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Nirad Banskota
- Computational Biology and Genomics CoreNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Julián Candia
- Longitudinal Studies Section, Translation Gerontology BranchNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | | | - Melissa Orenduff
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Rafael de Cabo
- Translation Gerontology Branch, National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - David L. Corcoran
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Sai Krupa Das
- Energy Metabolism, Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Supriyo De
- Computational Biology and Genomics CoreNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Kim Marie Huffman
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - William E. Kraus
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Corby K. Martin
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Susan B. Racette
- College of Health SolutionsArizona State UniversityPhoenixArizonaUSA
| | - Leanne M. Redman
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | | | - Daniel W. Belsky
- Department of Epidemiology & Butler Columbia Aging CenterColumbia University Mailman School of Public HealthNew York CityNew YorkUSA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translation Gerontology BranchNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| |
Collapse
|
7
|
Peng K, Zeng C, Gao Y, Liu B, Li L, Xu K, Yin Y, Qiu Y, Zhang M, Ma F, Wang Z. Overexpressed SIRT6 ameliorates doxorubicin-induced cardiotoxicity and potentiates the therapeutic efficacy through metabolic remodeling. Acta Pharm Sin B 2023; 13:2680-2700. [PMID: 37425037 PMCID: PMC10326298 DOI: 10.1016/j.apsb.2023.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/12/2023] [Accepted: 03/02/2023] [Indexed: 07/11/2023] Open
Abstract
Since the utilization of anthracyclines in cancer therapy, severe cardiotoxicity has become a major obstacle. The major challenge in treating cancer patients with anthracyclines is minimizing cardiotoxicity without compromising antitumor efficacy. Herein, histone deacetylase SIRT6 expression was reduced in plasma of patients treated with anthracyclines-based chemotherapy regimens. Furthermore, overexpression of SIRT6 alleviated doxorubicin-induced cytotoxicity in cardiomyocytes, and potentiated cytotoxicity of doxorubicin in multiple cancer cell lines. Moreover, SIRT6 overexpression ameliorated doxorubicin-induced cardiotoxicity and potentiated antitumor efficacy of doxorubicin in mice, suggesting that SIRT6 overexpression could be an adjunctive therapeutic strategy during doxorubicin treatment. Mechanistically, doxorubicin-impaired mitochondria led to decreased mitochondrial respiration and ATP production. And SIRT6 enhanced mitochondrial biogenesis and mitophagy by deacetylating and inhibiting Sgk1. Thus, SIRT6 overexpression coordinated metabolic remodeling from glycolysis to mitochondrial respiration during doxorubicin treatment, which was more conducive to cardiomyocyte metabolism, thus protecting cardiomyocytes but not cancer cells against doxorubicin-induced energy deficiency. In addition, ellagic acid, a natural compound that activates SIRT6, alleviated doxorubicin-induced cardiotoxicity and enhanced doxorubicin-mediated tumor regression in tumor-bearing mice. These findings provide a preclinical rationale for preventing cardiotoxicity by activating SIRT6 in cancer patients undergoing chemotherapy, but also advancing the understanding of the crucial role of SIRT6 in mitochondrial homeostasis.
Collapse
Affiliation(s)
- Kezheng Peng
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Chenye Zeng
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuqi Gao
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Binliang Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liyuan Li
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Kang Xu
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuemiao Yin
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Qiu
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mingkui Zhang
- Department of Cardiac Surgery, First Hospital of Tsinghua University, Beijing 100016, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhao Wang
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Wang M, Shen Y, Tan Z, Yasen A, Fan B, Shen X. Metabolomics analysis of dietary restriction results in a longer lifespan due to alters of amino acid levels in larval hemolymph of Bombyx mori. Sci Rep 2023; 13:6828. [PMID: 37100857 PMCID: PMC10133320 DOI: 10.1038/s41598-023-34132-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 04/28/2023] Open
Abstract
Dietary restriction (DR) has been a very important discovery in modern aging biology research. Its remarkable anti-aging effect has been proved in a variety of organisms, including members of Lepidoptera, but mechanisms by which DR increases longevity are not fully understood. By using the silkworm (Bombyx mori), a model of lepidopteran insect, we established a DR model, isolated hemolymph from fifth instar larvae and employed LC-MS/MS metabolomics to analyze the effect of DR on the endogenous metabolites of silkworm, and tried to clarify the mechanism of DR to prolong lifespan. We identified the potential biomarkers by analyzing the metabolites of the DR and control groups. Then, we constructed relevant metabolic pathways and networks with MetaboAnalyst. DR significantly prolonged the lifespan of silkworm. The differential metabolites between the DR and control groups were mainly organic acids (including amino acid), and amines. These metabolites are involved in metabolic pathways such as amino acid metabolism. Further analysis showed that, the levels of 17 amino acids were significantly changed in the DR group, indicating that the prolonged lifespan was mainly due to changes in amino acid metabolism. Furthermore, we identified 41 and 28 unique differential metabolites in males and females, respectively, demonstrating sex differences in biological responses to DR. The DR group showed higher antioxidant capacity and lower lipid peroxidation and inflammatory precursors, with differences between the sexes. These results provide evidence for various DR anti-aging mechanisms at the metabolic level and novel reference for the future development of DR-simulating drugs or foods.
Collapse
Affiliation(s)
- Meixian Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Yichen Shen
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Zhicheng Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Ayinuer Yasen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Bingyan Fan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Xingjia Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China.
| |
Collapse
|
9
|
Stoeger T. The Road Less Traveled: Uncovering the Convergence Toward Specific Pleiotropic Phenotypes in Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534472. [PMID: 37034589 PMCID: PMC10081180 DOI: 10.1101/2023.03.28.534472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Aging is a complex process influenced by a wide range of environmental and molecular factors. Despite this complexity, individuals tend to age in highly similar ways, leading to the question of what drives this convergence. Recent research, including my own discoveries, suggests that the length of transcript molecules plays a crucial role in age-dependent changes to the transcriptome. Drawing inspiration from the road trip analogy of cellular transcription, I propose that a non-linear scaling law drives convergence towards specific pleiotropic phenotypes in biological aging. This scaling law is based on the notion that molecular changes observed during aging may reflect unspecific damage to cellular physiology. By validating this hypothesis, I can improve our understanding of biological aging and identify new candidate compounds for anti-aging interventions, as well as re-identify one known intervention. This work has actionable implications for improving human health and extending lifespans.
Collapse
Affiliation(s)
- Thomas Stoeger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
10
|
McKimpson WM, Spiegel S, Mukhanova M, Kraakman M, Du W, Kitamoto T, Yu J, Pajvani U, Accili D. Calorie Restriction activates a gastric Notch-FOXO1 pathway to expand Ghrelin cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531352. [PMID: 36945500 PMCID: PMC10028817 DOI: 10.1101/2023.03.06.531352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Calorie restriction increases lifespan. While some tissue-specific protective effects of calorie restriction have been described, the impact of calorie restriction on the gastrointestinal tract remains unclear. We found increased abundance of chromogranin A+, including orexigenic ghrelin+, endocrine cells in the stomach of calorie-restricted mice. This effect coincided with increased Notch target Hes1 and Notch ligand Jag1 and was reversed when Notch signaling was blocked using the γ-secretase inhibitor DAPT. Using primary cultures and genetically-modified reporter mice, we determined that increased endocrine cell abundance was due to altered stem and progenitor proliferation. Different from the intestine, calorie restriction decreased gastric Lgr5+ stem cells, while increasing a FOXO1/Neurog3+ subpopulation of endocrine progenitors in a Notch-dependent manner. Further, calorie restriction triggered nuclear localization of FOXO1, which was sufficient to promote endocrine cell differentiation. Taken together, the data indicate that calorie restriction promotes gastric endocrine cell differentiation triggered by active Notch signaling and regulated by FOXO1.
Collapse
|
11
|
Preservation of mitochondrial membrane potential is necessary for lifespan extension from dietary restriction. GeroScience 2023:10.1007/s11357-023-00766-w. [PMID: 36877298 PMCID: PMC10400507 DOI: 10.1007/s11357-023-00766-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Dietary restriction (DR) increases lifespan in many organisms, but its underlying mechanisms are not fully understood. Mitochondria play a central role in metabolic regulation and are known to undergo changes in structure and function in response to DR. Mitochondrial membrane potential (Δψm) is the driving force for ATP production and mitochondrial outputs that integrate many cellular signals. One such signal regulated by Δψm is nutrient-status sensing. Here, we tested the hypothesis that DR promotes longevity through preserved Δψm during adulthood. Using the nematode Caenorhabditis elegans, we find that Δψm declines with age relatively early in the lifespan, and this decline is attenuated by DR. Pharmacologic depletion of Δψm blocked the longevity and health benefits of DR. Genetic perturbation of Δψm and mitochondrial ATP availability similarly prevented lifespan extension from DR. Taken together, this study provides further evidence that appropriate regulation of Δψm is a critical factor for health and longevity in response to DR.
Collapse
|
12
|
Deota S, Lin T, Chaix A, Williams A, Le H, Calligaro H, Ramasamy R, Huang L, Panda S. Diurnal transcriptome landscape of a multi-tissue response to time-restricted feeding in mammals. Cell Metab 2023; 35:150-165.e4. [PMID: 36599299 PMCID: PMC10026518 DOI: 10.1016/j.cmet.2022.12.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/08/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023]
Abstract
Time-restricted feeding (TRF) is an emerging behavioral nutrition intervention that involves a daily cycle of feeding and fasting. In both animals and humans, TRF has pleiotropic health benefits that arise from multiple organ systems, yet the molecular basis of TRF-mediated benefits is not well understood. Here, we subjected mice to isocaloric ad libitum feeding (ALF) or TRF of a western diet and examined gene expression changes in samples taken from 22 organs and brain regions collected every 2 h over a 24-h period. We discovered that TRF profoundly impacts gene expression. Nearly 80% of all genes show differential expression or rhythmicity under TRF in at least one tissue. Functional annotation of these changes revealed tissue- and pathway-specific impacts of TRF. These findings and resources provide a critical foundation for future mechanistic studies and will help to guide human time-restricted eating (TRE) interventions to treat various disease conditions with or without pharmacotherapies.
Collapse
Affiliation(s)
- Shaunak Deota
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Terry Lin
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Amandine Chaix
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - April Williams
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hiep Le
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hugo Calligaro
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ramesh Ramasamy
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ling Huang
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Satchidananda Panda
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Huang W, Kew C, Fernandes SDA, Löhrke A, Han L, Demetriades C, Antebi A. Decreased spliceosome fidelity and egl-8 intron retention inhibit mTORC1 signaling to promote longevity. NATURE AGING 2022; 2:796-808. [PMID: 37118503 PMCID: PMC10154236 DOI: 10.1038/s43587-022-00275-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
AbstractChanges in splicing fidelity are associated with loss of homeostasis and aging, yet only a handful of splicing factors have been shown to be causally required to promote longevity, and the underlying mechanisms and downstream targets in these paradigms remain elusive. Surprisingly, we found a hypomorphic mutation within ribonucleoprotein RNP-6/poly(U)-binding factor 60 kDa (PUF60), a spliceosome component promoting weak 3′-splice site recognition, which causes aberrant splicing, elevates stress responses and enhances longevity in Caenorhabditis elegans. Through genetic suppressor screens, we identify a gain-of-function mutation within rbm-39, an RNP-6-interacting splicing factor, which increases nuclear speckle formation, alleviates splicing defects and curtails longevity caused by rnp-6 mutation. By leveraging the splicing changes induced by RNP-6/RBM-39 activities, we uncover intron retention in egl-8/phospholipase C β4 (PLCB4) as a key splicing target prolonging life. Genetic and biochemical evidence show that neuronal RNP-6/EGL-8 downregulates mammalian target of rapamycin complex 1 (mTORC1) signaling to control organismal lifespan. In mammalian cells, PUF60 downregulation also potently and specifically inhibits mTORC1 signaling. Altogether, our results reveal that splicing fidelity modulates lifespan through mTOR signaling.
Collapse
|
14
|
Chomyshen SC, Tabarraei H, Wu CW. Translational suppression via IFG-1/eIF4G inhibits stress-induced RNA alternative splicing in Caenorhabditis elegans. Genetics 2022; 221:iyac075. [PMID: 35536193 PMCID: PMC9252287 DOI: 10.1093/genetics/iyac075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Splicing of precursor mRNA is an essential process for dividing cells, and splicing defects have been linked to aging and various chronic diseases. Environmental stress has recently been shown to modify alternative splicing, and molecular mechanisms that influence stress-induced alternative splicing remain unclear. Using an in vivo RNA splicing reporter, we performed a genome-wide RNAi screen in Caenorhabditis elegans and found that protein translation suppression via silencing of the conserved eukaryotic initiation factor 4G (IFG-1/eIF4G) inhibits cadmium-induced alternative splicing. Transcriptome analysis of an ifg-1-deficient mutant revealed an overall decrease in intronic and intergenic reads and prevented cadmium-induced alternative splicing compared to the wild type. We found that the ifg-1 mutant up-regulates >80 RNA splicing regulatory genes controlled by the TGF-β transcription factor SMA-2. The extended lifespan of the ifg-1 mutant is partially reduced upon sma-2 depletion and completely nullified when core spliceosome genes including snr-1, snr-2, and uaf-2 are knocked down. Depletion of snr-1 and snr-2 also diminished the enhanced cadmium resistance of the ifg-1 mutant. Together, these data describe a molecular mechanism through which translation suppression inhibits stress-induced alternative splicing and demonstrate an essential role for RNA splicing in promoting longevity and stress resistance in a translation-compromised mutant.
Collapse
Affiliation(s)
- Samantha C Chomyshen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Hadi Tabarraei
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
15
|
Potential Methods of Targeting Cellular Aging Hallmarks to Reverse Osteoarthritic Phenotype of Chondrocytes. BIOLOGY 2022; 11:biology11070996. [PMID: 36101377 PMCID: PMC9312132 DOI: 10.3390/biology11070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that causes pain, physical disability, and life quality impairment. The pathophysiology of OA remains largely unclear, and currently no FDA-approved disease-modifying OA drugs (DMOADs) are available. As has been acknowledged, aging is the primary independent risk factor for OA, but the mechanisms underlying such a connection are not fully understood. In this review, we first revisit the changes in OA chondrocytes from the perspective of cellular hallmarks of aging. It is concluded that OA chondrocytes share many alterations similar to cellular aging. Next, based on the findings from studies on other cell types and diseases, we propose methods that can potentially reverse osteoarthritic phenotype of chondrocytes back to a healthier state. Lastly, current challenges and future perspectives are summarized.
Collapse
|
16
|
Chen L, Li J, Yuan R, Wang Y, Zhang J, Lin Y, Wang L, Zhu X, Zhu W, Bai J, Kong F, Zeng B, Lu L, Ma J, Long K, Jin L, Huang Z, Huo J, Gu Y, Wang D, Mo D, Li D, Tang Q, Li X, Wu J, Chen Y, Li M. Dynamic 3D genome reorganization during development and metabolic stress of the porcine liver. Cell Discov 2022; 8:56. [PMID: 35701393 PMCID: PMC9197842 DOI: 10.1038/s41421-022-00416-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/28/2022] [Indexed: 11/28/2022] Open
Abstract
Liver development is a complex process that is regulated by a series of signaling pathways. Three-dimensional (3D) chromatin architecture plays an important role in transcriptional regulation; nonetheless, its dynamics and role in the rapid transition of core liver functions during development and obesity-induced metabolic stress remain largely unexplored. To investigate the dynamic chromatin architecture during liver development and under metabolic stress, we generated high-resolution maps of chromatin architecture for porcine livers across six major developmental stages (from embryonic day 38 to the adult stage) and under a high-fat diet-induced obesity. The characteristically loose chromatin architecture supports a highly plastic genome organization during early liver development, which fundamentally contributes to the rapid functional transitions in the liver after birth. We reveal the multi-scale reorganization of chromatin architecture and its influence on transcriptional regulation of critical signaling processes during liver development, and show its close association with transition in hepatic functions (i.e., from hematopoiesis in the fetus to metabolism and immunity after birth). The limited changes in chromatin structure help explain the observed metabolic adaptation to excessive energy intake in pigs. These results provide a global overview of chromatin architecture dynamics associated with the transition of physiological liver functions between prenatal development and postnatal maturation, and a foundational resource that allows for future in-depth functional characterization.
Collapse
Affiliation(s)
- Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renqiang Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yujie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiaman Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Lin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lina Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xingxing Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jingyi Bai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fanli Kong
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lu Lu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinlong Huo
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yiren Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Danyang Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiangwei Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Wood EK, Sullivan EL. The Influence of Diet on Metabolism and Health Across the Lifespan in Nonhuman Primates. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 24. [PMID: 35425871 DOI: 10.1016/j.coemr.2022.100336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The macro and micronutrient composition and the overall quantity of the diet are important predictors of physical and psychological health and, as a consequence, behavior. Translational preclinical models are critical to identifying the mechanisms underlying these relationships. Nonhuman primate models are particularly instrumental to this line of research as they exhibit considerable genetic, social, and physiological similarities, as well as similarities in their developmental trajectories to humans. This review aims to discuss recent contributions to the field of diet and metabolism and health using nonhuman primate models. The influence of diet composition on health and physiology across the lifespan will be the primary focus, including recent work examining the impact of maternal diet programming of offspring physiologic and behavioral developmental outcomes.
Collapse
Affiliation(s)
- Elizabeth K Wood
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Elinor L Sullivan
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
- Oregon National Primate Research Center, 505 NW 185 Avenue, Beaverton, OR 97006
| |
Collapse
|
18
|
Promislow D, Anderson RM, Scheffer M, Crespi B, DeGregori J, Harris K, Horowitz BN, Levine ME, Riolo MA, Schneider DS, Spencer SL, Valenzano DR, Hochberg ME. Resilience integrates concepts in aging research. iScience 2022; 25:104199. [PMID: 35494229 PMCID: PMC9044173 DOI: 10.1016/j.isci.2022.104199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aging research is unparalleled in the breadth of disciplines it encompasses, from evolutionary studies examining the forces that shape aging to molecular studies uncovering the underlying mechanisms of age-related functional decline. Despite a common focus to advance our understanding of aging, these disciplines have proceeded along distinct paths with little cross-talk. We propose that the concept of resilience can bridge this gap. Resilience describes the ability of a system to respond to perturbations by returning to its original state. Although resilience has been applied in a few individual disciplines in aging research such as frailty and cognitive decline, it has not been explored as a unifying conceptual framework that is able to connect distinct research fields. We argue that because a resilience-based framework can cross broad physiological levels and time scales it can provide the missing links that connect these diverse disciplines. The resulting framework will facilitate predictive modeling and validation and influence targets and directions in research on the biology of aging.
Collapse
Affiliation(s)
- Daniel Promislow
- Department of Lab Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Corresponding author
| | - Rozalyn M. Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
- GRECC, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Corresponding author
| | - Marten Scheffer
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen, the Netherlands
- Santa Fe Institute, Santa Fe, NM 87501, USA
- Corresponding author
| | - Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Morgan E. Levine
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06524, USA
| | | | - David S. Schneider
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Sabrina L. Spencer
- Department of Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80303, USA
| | - Dario Riccardo Valenzano
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- CECAD, University of Cologne, Cologne, Germany
| | - Michael E. Hochberg
- Santa Fe Institute, Santa Fe, NM 87501, USA
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, 34095 France
- Corresponding author
| |
Collapse
|
19
|
Longo VD, Anderson RM. Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 2022; 185:1455-1470. [PMID: 35487190 PMCID: PMC9089818 DOI: 10.1016/j.cell.2022.04.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022]
Abstract
Diet as a whole, encompassing food composition, calorie intake, and the length and frequency of fasting periods, affects the time span in which health and functional capacity are maintained. Here, we analyze aging and nutrition studies in simple organisms, rodents, monkeys, and humans to link longevity to conserved growth and metabolic pathways and outline their role in aging and age-related disease. We focus on feasible nutritional strategies shown to delay aging and/or prevent diseases through epidemiological, model organism, clinical, and centenarian studies and underline the need to avoid malnourishment and frailty. These findings are integrated to define a longevity diet based on a multi-pillar approach adjusted for age and health status to optimize lifespan and healthspan in humans.
Collapse
Affiliation(s)
- Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; IFOM, FIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milano, Italy.
| | - Rozalyn M Anderson
- Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI, USA; GRECC, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| |
Collapse
|
20
|
The Role of Intermittent Energy Restriction Diet on Metabolic Profile and Weight Loss among Obese Adults. Nutrients 2022; 14:nu14071509. [PMID: 35406122 PMCID: PMC9002823 DOI: 10.3390/nu14071509] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a disease defined by an elevated body mass index (BMI), which is the result of excessive or abnormal accumulation of fat. Dietary intervention is fundamental and essential as the first-line treatment for obese patients, and the main rule of every dietary modification is calorie restriction and consequent weight loss. Intermittent energy restriction (IER) is a special type of diet consisting of intermittent pauses in eating. There are many variations of IER diets such as alternate-day fasting (ADF) and time-restricted feeding (TRF). In the literature, the IER diet is known as an effective method for bodyweight reduction. Furthermore, IER diets have a beneficial effect on systolic or diastolic pressure, lipid profile, and glucose homeostasis. In addition, IER diets are presented as being as efficient as a continuous energy restriction diet (CER) in losing weight and improving metabolic parameters. Thus, the IER diet could present an alternative option for those who cannot accept a constant food regimen.
Collapse
|
21
|
Ferrucci L, Wilson DM, Donegà S, Gorospe M. The energy-splicing resilience axis hypothesis of aging. NATURE AGING 2022; 2:182-185. [PMID: 37118371 PMCID: PMC11330567 DOI: 10.1038/s43587-022-00189-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Aging can be conceptualized as the stochastic accumulation of damage and loss of resilience leading to organism demise. Resilience mechanisms that repair, recycle or replace damaged molecules and organelles are energy-demanding, therefore energy availability is essential to healthy aging. We propose that changes in mitochondrial and energy status regulate RNA splicing and that splicing is a resilience strategy that preserves energetic homeostasis with aging.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Biomedical Research Center, National Institute on Aging, National Institute of Health, Baltimore, MD, USA.
| | - David M Wilson
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Stefano Donegà
- Biomedical Research Center, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Biomedical Research Center, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| |
Collapse
|
22
|
Murphy ME, Narasimhan A, Adrian A, Kumar A, Green CL, Soto-Palma C, Henpita C, Camell C, Morrow CS, Yeh CY, Richardson CE, Hill CM, Moore DL, Lamming DW, McGregor ER, Simmons HA, Pak HH, Bai H, Denu JM, Clark J, Simcox J, Chittimalli K, Dahlquist K, Lee KA, Calubag M, Bouska M, Yousefzadeh MJ, Sonsalla M, Babygirija R, Yuan R, Tsuji T, Rhoads T, Menon V, Jarajapu YP, Zhu Y. Metabolism in the Midwest: research from the Midwest Aging Consortium at the 49 th Annual Meeting of the American Aging Association. GeroScience 2022; 44:39-52. [PMID: 34714522 PMCID: PMC8554732 DOI: 10.1007/s11357-021-00479-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Michaela E Murphy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Akilavalli Narasimhan
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Alexis Adrian
- Department of Urology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- U54 George M. O'Brien Center for Benign Urology Research, Madison, WI, 53705, USA
| | - Ankur Kumar
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Carolina Soto-Palma
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Chathurika Henpita
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christina Camell
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christopher S Morrow
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Claire E Richardson
- Department of Genetics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Cristal M Hill
- Neurosignaling Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70809, USA
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Eric R McGregor
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53175, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - John M Denu
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, Madison, WI, USA
| | - Josef Clark
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kishore Chittimalli
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58105, USA
| | - Korbyn Dahlquist
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Kyoo-A Lee
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Mariah Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mark Bouska
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew J Yousefzadeh
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Michelle Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Rong Yuan
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA
| | - Tadataka Tsuji
- Section On Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Timothy Rhoads
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Vinal Menon
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Yagna Pr Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58105, USA
| | - Yun Zhu
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA.
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA.
| |
Collapse
|
23
|
Lee YC, Christensen JJ, Parnell LD, Smith CE, Shao J, McKeown NM, Ordovás JM, Lai CQ. Using Machine Learning to Predict Obesity Based on Genome-Wide and Epigenome-Wide Gene-Gene and Gene-Diet Interactions. Front Genet 2022; 12:783845. [PMID: 35047011 PMCID: PMC8763388 DOI: 10.3389/fgene.2021.783845] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity is associated with many chronic diseases that impair healthy aging and is governed by genetic, epigenetic, and environmental factors and their complex interactions. This study aimed to develop a model that predicts an individual's risk of obesity by better characterizing these complex relations and interactions focusing on dietary factors. For this purpose, we conducted a combined genome-wide and epigenome-wide scan for body mass index (BMI) and up to three-way interactions among 402,793 single nucleotide polymorphisms (SNPs), 415,202 DNA methylation sites (DMSs), and 397 dietary and lifestyle factors using the generalized multifactor dimensionality reduction (GMDR) method. The training set consisted of 1,573 participants in exam 8 of the Framingham Offspring Study (FOS) cohort. After identifying genetic, epigenetic, and dietary factors that passed statistical significance, we applied machine learning (ML) algorithms to predict participants' obesity status in the test set, taken as a subset of independent samples (n = 394) from the same cohort. The quality and accuracy of prediction models were evaluated using the area under the receiver operating characteristic curve (ROC-AUC). GMDR identified 213 SNPs, 530 DMSs, and 49 dietary and lifestyle factors as significant predictors of obesity. Comparing several ML algorithms, we found that the stochastic gradient boosting model provided the best prediction accuracy for obesity with an overall accuracy of 70%, with ROC-AUC of 0.72 in test set samples. Top predictors of the best-fit model were 21 SNPs, 230 DMSs in genes such as CPT1A, ABCG1, SLC7A11, RNF145, and SREBF1, and 26 dietary factors, including processed meat, diet soda, French fries, high-fat dairy, artificial sweeteners, alcohol intake, and specific nutrients and food components, such as calcium and flavonols. In conclusion, we developed an integrated approach with ML to predict obesity using omics and dietary data. This extends our knowledge of the drivers of obesity, which can inform precision nutrition strategies for the prevention and treatment of obesity. Clinical Trial Registration: [www.ClinicalTrials.gov], the Framingham Heart Study (FHS), [NCT00005121].
Collapse
Affiliation(s)
- Yu-Chi Lee
- USDA ARS, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Jacob J. Christensen
- Department of Nutrition, Norwegian National Advisory Unit on FH, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Laurence D. Parnell
- USDA ARS, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Caren E. Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Jonathan Shao
- Statistical and Bioinformatics Group, Northeast Area, USDA ARS, Beltsville, MD, United States
| | - Nicola M. McKeown
- Nutritional Epidemiology Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - José M. Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
- CEI UAM + CSIC, IMDEA Food Institute, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Chao-Qiang Lai
- USDA ARS, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| |
Collapse
|
24
|
Mitigation of Iron Irradiation-Induced Genotoxicity and Genomic Instability by Postexposure Dietary Restriction in Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2888393. [PMID: 34926683 PMCID: PMC8677402 DOI: 10.1155/2021/2888393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
Background and Purpose. Postexposure onset of dietary restriction (DR) is expected to provide therapeutic nutritional approaches to reduce health risk from exposure to ionizing radiation (IR) due to such as manned space exploration, radiotherapy, or nuclear accidents as IR could alleviate radiocarcinogenesis in animal models. However, the underlying mechanisms remain largely unknown. This study is aimed at investigating the effect from postexposure onset of DR on genotoxicity and genomic instability (GI) induced by total body irradiation (TBI) in mice. Materials and Methods. Mice were exposed to 2.0 Gy of accelerated iron particles with an initial energy of 500 MeV/nucleon and a linear energy transfer (LET) value of about 200 keV/μm. After TBI, mice were either allowed to free access to a standard laboratory chow or treated under DR (25% cut in diet). Using micronucleus frequency (MNF) in bone marrow erythrocytes, induction of acute genotoxicity and GI in the hematopoietic system was, respectively, determined 1 and 2 months after TBI. Results and Conclusions. TBI alone caused a significant increase in MNF while DR alone did not markedly influence the MNF. DR induced a significant decrease in MNF compared to the treatment by TBI alone. Results demonstrated that postexposure onset of DR could relieve the elevated MNF induced by TBI with high-LET iron particles. These findings indicated that reduction in acute genotoxicity and late GI may be at least a part of the mechanisms underlying decreased radiocarcinogenesis by DR.
Collapse
|
25
|
Nutritional reprogramming of mouse liver proteome is dampened by metformin, resveratrol, and rapamycin. Cell Metab 2021; 33:2367-2379.e4. [PMID: 34767745 DOI: 10.1016/j.cmet.2021.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/17/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Nutrient sensing pathways influence metabolic health and aging, offering the possibility that diet might be used therapeutically, alone or with drugs targeting these pathways. We used the Geometric Framework for Nutrition to study interactive and comparative effects of diet and drugs on the hepatic proteome in mice across 40 dietary treatments differing in macronutrient ratios, energy density, and drug treatment (metformin, rapamycin, resveratrol). There was a strong negative correlation between dietary energy and the spliceosome and a strong positive correlation between dietary protein and mitochondria, generating oxidative stress at high protein intake. Metformin, rapamycin, and resveratrol had lesser effects than and dampened responses to diet. Rapamycin and metformin reduced mitochondrial responses to dietary protein while the effects of carbohydrates and fat were downregulated by resveratrol. Dietary composition has a powerful impact on the hepatic proteome, not just on metabolic pathways but fundamental processes such as mitochondrial function and RNA splicing.
Collapse
|
26
|
Wahl D, LaRocca TJ. Transcriptomic Effects of Healthspan-Promoting Dietary Interventions: Current Evidence and Future Directions. Front Nutr 2021; 8:712129. [PMID: 34447778 PMCID: PMC8383293 DOI: 10.3389/fnut.2021.712129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Aging is the greatest risk factor most diseases, including cardiovascular disorders, cancers, diabetes, and neurodegeneration, but select nutritional interventions may profoundly reduce the risk for these conditions. These interventions include calorie restriction, intermittent fasting, protein restriction, and reducing intake of certain amino acids. Certain ad libitum diets, including the Mediterranean, Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability, and Okinawan diets also promote healthy aging. Evidence indicates that these dietary strategies influence aging and healthspan by acting on the biological "hallmarks of aging" and especially upstream nutrient sensing pathways. Recent advances in "omics" technologies, including RNA-sequencing (transcriptomics), have increased our understanding of how such nutritional interventions may influence gene expression related to these biological mediators of aging, primarily in pre-clinical studies. However, whether these effects are also reflected in the human transcriptome, which may provide insight on other downstream/related cellular processes with aging, is an emerging topic. Broadly, the investigation of how these nutritional interventions influence the transcriptome may provide novel insight into pathways associated with aging, and potential targets to treat age-associated disease and increase healthspan. Therefore, the purpose of this mini review is to summarize what is known about the transcriptomic effects of key dietary/nutritional interventions in both pre-clinical models and humans, address gaps in the literature, and provide insight into future research directions.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States
| | - Thomas J. LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
27
|
Green CL, Englund DA, Das S, Herrerias MM, Yousefzadeh MJ, Grant RA, Clark J, Pak HH, Liu P, Bai H, Prahlad V, Lamming DW, Chusyd DE. The Second Annual Symposium of the Midwest Aging Consortium: The Future of Aging Research in the Midwestern United States. J Gerontol A Biol Sci Med Sci 2021; 76:2156-2161. [PMID: 34323268 PMCID: PMC8599030 DOI: 10.1093/gerona/glab210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 01/07/2023] Open
Abstract
While the average human life span continues to increase, there is little evidence that this is leading to a contemporaneous increase in "healthy years" experienced by our aging population. Consequently, many scientists focus their research on understanding the process of aging and trialing interventions that can promote healthspan. The 2021 Midwest Aging Consortium consensus statement is to develop and further the understanding of aging and age-related disease using the wealth of expertise across universities in the Midwestern United States. This report summarizes the cutting-edge research covered in a virtual symposium held by a consortium of researchers in the Midwestern United States, spanning topics such as senescence biomarkers, serotonin-induced DNA protection, immune system development, multisystem impacts of aging, neural decline following severe infection, the unique transcriptional impact of calorie restriction of different fat depots, the pivotal role of fasting in calorie restriction, the impact of peroxisome dysfunction, and the influence of early life trauma on health. The symposium speakers presented data from studies conducted in a variety of common laboratory animals as well as less-common species, including Caenorhabditis elegans, Drosophila, mice, rhesus macaques, elephants, and humans. The consensus of the symposium speakers is that this consortium highlights the strength of aging research in the Midwestern United States as well as the benefits of a collaborative and diverse approach to geroscience.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Davis A Englund
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Srijit Das
- Department of Biology, Aging Mind & Brain Initiative, University of Iowa, Iowa City, Iowa, USA
| | - Mariana M Herrerias
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Matthew J Yousefzadeh
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rogan A Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Josef Clark
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Peiduo Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind & Brain Initiative, University of Iowa, Iowa City, Iowa, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Daniella E Chusyd
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington, Bloomington, Indiana, USA,Address correspondence to: Daniella E. Chusyd, PhD, School of Public Health, Indiana University-Bloomington, 701 E. Kirkwood Ave., Bloomington, IN 47405-7100, USA. E-mail:
| |
Collapse
|
28
|
Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nat Commun 2021; 12:3208. [PMID: 34050173 PMCID: PMC8163764 DOI: 10.1038/s41467-021-23545-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Aging leads to a gradual decline in physical activity and disrupted energy homeostasis. The NAD+-dependent SIRT6 deacylase regulates aging and metabolism through mechanisms that largely remain unknown. Here, we show that SIRT6 overexpression leads to a reduction in frailty and lifespan extension in both male and female B6 mice. A combination of physiological assays, in vivo multi-omics analyses and 13C lactate tracing identified an age-dependent decline in glucose homeostasis and hepatic glucose output in wild type mice. In contrast, aged SIRT6-transgenic mice preserve hepatic glucose output and glucose homeostasis through an improvement in the utilization of two major gluconeogenic precursors, lactate and glycerol. To mediate these changes, mechanistically, SIRT6 increases hepatic gluconeogenic gene expression, de novo NAD+ synthesis, and systemically enhances glycerol release from adipose tissue. These findings show that SIRT6 optimizes energy homeostasis in old age to delay frailty and preserve healthy aging.
Collapse
|
29
|
Ge W, Zhao Y, Yang Y, Ding Z, Xu X, Weng D, Wang S, Cheng R, Zhang J. An insulin-independent mechanism for transcriptional regulation of Foxo1 in type 2 diabetic mice. J Biol Chem 2021; 297:100846. [PMID: 34058194 PMCID: PMC8233149 DOI: 10.1016/j.jbc.2021.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/08/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Hepatic gluconeogenesis is the major contributor to the hyperglycemia observed in both patients and animals with type 2 diabetes. The transcription factor FOXO1 plays a dominant role in stimulating hepatic gluconeogenesis. FOXO1 is mainly regulated by insulin under physiological conditions, but liver-specific disruption of Foxo1 transcription restores normal gluconeogenesis in mice in which insulin signaling has been blocked, suggesting that additional regulatory mechanisms exist. Understanding the transcriptional regulation of Foxo1 may be conducive to the development of insulin-independent strategies for the control of hepatic gluconeogenesis. Here, we found that elevated plasma levels of adenine nucleotide in type 2 diabetes are the major regulators of Foxo1 transcription. We treated lean mice with 5'-AMP and examined their transcriptional profiles using RNA-seq. KEGG analysis revealed that the 5'-AMP treatment led to shifted profiles that were similar to db/db mice. Many of the upregulated genes were in pathways associated with the pathology of type 2 diabetes including Foxo1 signaling. As observed in diabetic db/db mice, lean mice treated with 5'-AMP displayed enhanced Foxo1 transcription, involving an increase in cellular adenosine levels and a decrease in the S-adenosylmethionine to S-adenosylhomocysteine ratio. This reduced methylation potential resulted in declining histone H3K9 methylation in the promoters of Foxo1, G6Pc, and Pepck. In mouse livers and cultured cells, 5'-AMP induced expression of more FOXO1 protein, which was found to be localized in the nucleus, where it could promote gluconeogenesis. Our results revealed that adenine nucleotide-driven Foxo1 transcription is crucial for excessive glucose production in type 2 diabetic mice.
Collapse
Affiliation(s)
- Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Dan Weng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Shiming Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Rui Cheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
30
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021. [PMID: 33565261 DOI: 10.1002/wrna.1643.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
31
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1643. [PMID: 33565261 DOI: 10.1002/wrna.1643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
32
|
Soares EL, Dos Santos FA, Mroczek T, de Lima DC, Josefino HVB, da Silva LAB, Mecca LEA, Franco GCN. Effect of caloric restriction on alveolar bone loss in rats. Life Sci 2021; 269:119067. [PMID: 33465390 DOI: 10.1016/j.lfs.2021.119067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Affiliation(s)
| | | | - Tayline Mroczek
- Department of Health Sciences, Universidade Estadual de Ponta Grossa, PR, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Still Living Better through Chemistry: An Update on Caloric Restriction and Caloric Restriction Mimetics as Tools to Promote Health and Lifespan. Int J Mol Sci 2020; 21:ijms21239220. [PMID: 33287232 PMCID: PMC7729921 DOI: 10.3390/ijms21239220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR), the reduction of caloric intake without inducing malnutrition, is the most reproducible method of extending health and lifespan across numerous organisms, including humans. However, with nearly one-third of the world’s population overweight, it is obvious that caloric restriction approaches are difficult for individuals to achieve. Therefore, identifying compounds that mimic CR is desirable to promote longer, healthier lifespans without the rigors of restricting diet. Many compounds, such as rapamycin (and its derivatives), metformin, or other naturally occurring products in our diets (nutraceuticals), induce CR-like states in laboratory models. An alternative to CR is the removal of specific elements (such as individual amino acids) from the diet. Despite our increasing knowledge of the multitude of CR approaches and CR mimetics, the extent to which these strategies overlap mechanistically remains unclear. Here we provide an update of CR and CR mimetic research, summarizing mechanisms by which these strategies influence genome function required to treat age-related pathologies and identify the molecular fountain of youth.
Collapse
|
34
|
The evolving metabolic landscape of chromatin biology and epigenetics. Nat Rev Genet 2020; 21:737-753. [PMID: 32908249 DOI: 10.1038/s41576-020-0270-8] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Molecular inputs to chromatin via cellular metabolism are modifiers of the epigenome. These inputs - which include both nutrient availability as a result of diet and growth factor signalling - are implicated in linking the environment to the maintenance of cellular homeostasis and cell identity. Recent studies have demonstrated that these inputs are much broader than had previously been known, encompassing metabolism from a wide variety of sources, including alcohol and microbiotal metabolism. These factors modify DNA and histones and exert specific effects on cell biology, systemic physiology and pathology. In this Review, we discuss the nature of these molecular networks, highlight their role in mediating cellular responses and explore their modifiability through dietary and pharmacological interventions.
Collapse
|
35
|
Abstract
In this issue of Cell Metabolism, Asadi Shahmirzadi et al. (2020) demonstrate that late-onset dietary supplementation with calcium alpha-ketoglutarate results in increased survival, compressed morbidity, and reduced frailty in mice. The study provides further evidence for critical links between metabolism, inflammation, and aging.
Collapse
Affiliation(s)
- Timothy W Rhoads
- Department of Medicine, SMPH University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rozalyn M Anderson
- Department of Medicine, SMPH University of Wisconsin-Madison, Madison, WI 53705, USA; GRECC, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
36
|
Aon MA, Bernier M, Mitchell SJ, Di Germanio C, Mattison JA, Ehrlich MR, Colman RJ, Anderson RM, de Cabo R. Untangling Determinants of Enhanced Health and Lifespan through a Multi-omics Approach in Mice. Cell Metab 2020; 32:100-116.e4. [PMID: 32413334 PMCID: PMC8214079 DOI: 10.1016/j.cmet.2020.04.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/20/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
The impact of chronic caloric restriction (CR) on health and survival is complex with poorly understood underlying molecular mechanisms. A recent study in mice addressing the diets used in nonhuman primate CR studies found that while diet composition did not impact longevity, fasting time and total calorie intake were determinant for increased survival. Here, integrated analysis of physiological and multi-omics data from ad libitum, meal-fed, or CR animals was used to gain insight into pathways associated with improved health and survival. We identified a potential involvement of the glycine-serine-threonine metabolic axis in longevity and related molecular mechanisms. Direct comparison of the different feeding strategies unveiled a pattern of shared pathways of improved health that included short-chain fatty acids and essential PUFA metabolism. These findings were recapitulated in the serum metabolome from nonhuman primates. We propose that the pathways identified might be targeted for their potential role in healthy aging.
Collapse
Affiliation(s)
- Miguel A Aon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sarah J Mitchell
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Clara Di Germanio
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Margaux R Ehrlich
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53715, USA; Geriatric Research, Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
37
|
Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med 2020; 152:116-141. [PMID: 32156524 DOI: 10.1016/j.freeradbiomed.2020.02.025] [Citation(s) in RCA: 699] [Impact Index Per Article: 139.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common chronic liver disease worldwide and is strongly associated with the presence of oxidative stress. Disturbances in lipid metabolism lead to hepatic lipid accumulation, which affects different reactive oxygen species (ROS) generators, including mitochondria, endoplasmic reticulum, and NADPH oxidase. Mitochondrial function adapts to NAFLD mainly through the downregulation of the electron transport chain (ETC) and the preserved or enhanced capacity of mitochondrial fatty acid oxidation, which stimulates ROS overproduction within different ETC components upstream of cytochrome c oxidase. However, non-ETC sources of ROS, in particular, fatty acid β-oxidation, appear to produce more ROS in hepatic metabolic diseases. Endoplasmic reticulum stress and NADPH oxidase alterations are also associated with NAFLD, but the degree of their contribution to oxidative stress in NAFLD remains unclear. Increased ROS generation induces changes in insulin sensitivity and in the expression and activity of key enzymes involved in lipid metabolism. Moreover, the interaction between redox signaling and innate immune signaling forms a complex network that regulates inflammatory responses. Based on the mechanistic view described above, this review summarizes the mechanisms that may account for the excessive production of ROS, the potential mechanistic roles of ROS that drive NAFLD progression, and therapeutic interventions that are related to oxidative stress.
Collapse
Affiliation(s)
- Ze Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Ruifeng Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China; Basic Medical School, Wuhan University, Wuhan, 430071, PR China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, PR China
| | - Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China; Basic Medical School, Wuhan University, Wuhan, 430071, PR China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
38
|
Hatchwell L, Harney DJ, Cielesh M, Young K, Koay YC, O’Sullivan JF, Larance M. Multi-omics Analysis of the Intermittent Fasting Response in Mice Identifies an Unexpected Role for HNF4α. Cell Rep 2020; 30:3566-3582.e4. [DOI: 10.1016/j.celrep.2020.02.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
|
39
|
Ma S, Sun S, Geng L, Song M, Wang W, Ye Y, Ji Q, Zou Z, Wang S, He X, Li W, Esteban CR, Long X, Guo G, Chan P, Zhou Q, Belmonte JCI, Zhang W, Qu J, Liu GH. Caloric Restriction Reprograms the Single-Cell Transcriptional Landscape of Rattus Norvegicus Aging. Cell 2020; 180:984-1001.e22. [PMID: 32109414 DOI: 10.1016/j.cell.2020.02.008] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Aging causes a functional decline in tissues throughout the body that may be delayed by caloric restriction (CR). However, the cellular profiles and signatures of aging, as well as those ameliorated by CR, remain unclear. Here, we built comprehensive single-cell and single-nucleus transcriptomic atlases across various rat tissues undergoing aging and CR. CR attenuated aging-related changes in cell type composition, gene expression, and core transcriptional regulatory networks. Immune cells were increased during aging, and CR favorably reversed the aging-disturbed immune ecosystem. Computational prediction revealed that the abnormal cell-cell communication patterns observed during aging, including the excessive proinflammatory ligand-receptor interplay, were reversed by CR. Our work provides multi-tissue single-cell transcriptional landscapes associated with aging and CR in a mammal, enhances our understanding of the robustness of CR as a geroprotective intervention, and uncovers how metabolic intervention can act upon the immune system to modify the process of aging.
Collapse
Affiliation(s)
- Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuhui Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingling Geng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxia Ye
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiran Zou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojuan He
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | | | - Xiao Long
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100032, China
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Piu Chan
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Weiqi Zhang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
40
|
Rhoads TW, Clark JP, Gustafson GE, Miller KN, Conklin MW, DeMuth TM, Berres ME, Eliceiri KW, Vaughan LK, Lary CW, Beasley TM, Colman RJ, Anderson RM. Molecular and Functional Networks Linked to Sarcopenia Prevention by Caloric Restriction in Rhesus Monkeys. Cell Syst 2020; 10:156-168.e5. [PMID: 31982367 PMCID: PMC7047532 DOI: 10.1016/j.cels.2019.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/03/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Abstract
Caloric restriction (CR) improves survival in nonhuman primates and delays the onset of age-related morbidities including sarcopenia, which is characterized by the age-related loss of muscle mass and function. A shift in metabolism anticipates the onset of muscle-aging phenotypes in nonhuman primates, suggesting a potential role for metabolism in the protective effects of CR. Here, we show that CR induced profound changes in muscle composition and the cellular metabolic environment. Bioinformatic analysis linked these adaptations to proteostasis, RNA processing, and lipid synthetic pathways. At the tissue level, CR maintained contractile content and attenuated age-related metabolic shifts among individual fiber types with higher mitochondrial activity, altered redox metabolism, and smaller lipid droplet size. Biometric and metabolic rate data confirm preserved metabolic efficiency in CR animals that correlated with the attenuation of age-related muscle mass and physical activity. These data suggest that CR-induced reprogramming of metabolism plays a role in delayed aging of skeletal muscle in rhesus monkeys.
Collapse
Affiliation(s)
- Timothy W Rhoads
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Josef P Clark
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Grace E Gustafson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Karl N Miller
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Matthew W Conklin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tyler M DeMuth
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark E Berres
- Biotechnolgoy Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laura K Vaughan
- Department of Biostatistics, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - Christine W Lary
- Department of Biostatistics, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - T Mark Beasley
- Department of Biostatistics, University of Alabama-Birmingham, Birmingham, AL 35294, USA; Geriatric Research Education and Clinical Center, Birmingham/Atlanta Veterans Administration Hospital, Birmingham, AL 35297, USA
| | - Ricki J Colman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
41
|
Zhang W, Qu J, Liu GH, Belmonte JCI. The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol 2020; 21:137-150. [PMID: 32020082 DOI: 10.1038/s41580-019-0204-5] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Ageing is characterized by the functional decline of tissues and organs and the increased risk of ageing-associated disorders. Several 'rejuvenating' interventions have been proposed to delay ageing and the onset of age-associated decline and disease to extend healthspan and lifespan. These interventions include metabolic manipulation, partial reprogramming, heterochronic parabiosis, pharmaceutical administration and senescent cell ablation. As the ageing process is associated with altered epigenetic mechanisms of gene regulation, such as DNA methylation, histone modification and chromatin remodelling, and non-coding RNAs, the manipulation of these mechanisms is central to the effectiveness of age-delaying interventions. This Review discusses the epigenetic changes that occur during ageing and the rapidly increasing knowledge of how these epigenetic mechanisms have an effect on healthspan and lifespan extension, and outlines questions to guide future research on interventions to rejuvenate the epigenome and delay ageing processes.
Collapse
Affiliation(s)
- Weiqi Zhang
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.,Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guang-Hui Liu
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | | |
Collapse
|
42
|
Faragher RGA, Ostler EL. Resveralogues: From Novel Ageing Mechanisms to New Therapies? Gerontology 2020; 66:231-237. [PMID: 31914446 DOI: 10.1159/000504845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022] Open
Abstract
For much of the 20th century the ageing process was thought to be the result of the interplay of many different biological processes, each with relatively small effects on organismal lifespan. However, this model is no longer tenable. Rather it seems a few biological mechanisms, including nutrient sensing, telomere attrition and cellular senescence, mediate large effects on health and longevity. Biogerontology may have suffered from initial delusions of complexity. However, we argue that it is premature to assume either that the list of biological processes influencing lifespan is now comprehensive or that these mechanisms act independently of each other. A case in point is provided by recent work linking together changes in RNA splicing with advancing age and the ability of polyphenolics based on resveratrol to reverse replicative senescence. In this opinion piece, we propose a novel model in which the factors regulating splice restriction and those controlling cell senescence intersect across chronological and divisional time, giving rise to senescent and growing cells with more diverse properties than previously thought. We also consider therapeutic opportunities and potential problems in the light of this revised conceptual understanding of human cell senescence and ageing.
Collapse
Affiliation(s)
- Richard G A Faragher
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom,
| | - Elizabeth L Ostler
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
43
|
Naiman S, Huynh FK, Gil R, Glick Y, Shahar Y, Touitou N, Nahum L, Avivi MY, Roichman A, Kanfi Y, Gertler AA, Doniger T, Ilkayeva OR, Abramovich I, Yaron O, Lerrer B, Gottlieb E, Harris RA, Gerber D, Hirschey MD, Cohen HY. SIRT6 Promotes Hepatic Beta-Oxidation via Activation of PPARα. Cell Rep 2019; 29:4127-4143.e8. [PMID: 31851938 PMCID: PMC7165364 DOI: 10.1016/j.celrep.2019.11.067] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/11/2019] [Accepted: 11/15/2019] [Indexed: 12/27/2022] Open
Abstract
The pro-longevity enzyme SIRT6 regulates various metabolic pathways. Gene expression analyses in SIRT6 heterozygotic mice identify significant decreases in PPARα signaling, known to regulate multiple metabolic pathways. SIRT6 binds PPARα and its response element within promoter regions and activates gene transcription. Sirt6+/- results in significantly reduced PPARα-induced β-oxidation and its metabolites and reduced alanine and lactate levels, while inducing pyruvate oxidation. Reciprocally, starved SIRT6 transgenic mice show increased pyruvate, acetylcarnitine, and glycerol levels and significantly induce β-oxidation genes in a PPARα-dependent manner. Furthermore, SIRT6 mediates PPARα inhibition of SREBP-dependent cholesterol and triglyceride synthesis. Mechanistically, SIRT6 binds PPARα coactivator NCOA2 and decreases liver NCOA2 K780 acetylation, which stimulates its activation of PPARα in a SIRT6-dependent manner. These coordinated SIRT6 activities lead to regulation of whole-body respiratory exchange ratio and liver fat content, revealing the interactions whereby SIRT6 synchronizes various metabolic pathways, and suggest a mechanism by which SIRT6 maintains healthy liver.
Collapse
Affiliation(s)
- Shoshana Naiman
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Frank K Huynh
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA; Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Reuven Gil
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Yair Glick
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Yael Shahar
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Noga Touitou
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Liat Nahum
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Matan Y Avivi
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Asael Roichman
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Yariv Kanfi
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Asaf A Gertler
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Tirza Doniger
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Ifat Abramovich
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa, Israel
| | - Orly Yaron
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Batia Lerrer
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa, Israel
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Doron Gerber
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel; Bar Ilan Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Matthew D Hirschey
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Haim Y Cohen
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
44
|
Bhadra M, Howell P, Dutta S, Heintz C, Mair WB. Alternative splicing in aging and longevity. Hum Genet 2019; 139:357-369. [PMID: 31834493 DOI: 10.1007/s00439-019-02094-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022]
Abstract
Alternative pre-mRNA splicing increases the complexity of the proteome that can be generated from the available genomic coding sequences. Dysregulation of the splicing process has been implicated in a vast repertoire of diseases. However, splicing has recently been linked to both the aging process itself and pro-longevity interventions. This review focuses on recent research towards defining RNA splicing as a new hallmark of aging. We highlight dysfunctional alternative splicing events that contribute to the aging phenotype across multiple species, along with recent efforts toward deciphering mechanistic roles for RNA splicing in the regulation of aging and longevity. Further, we discuss recent research demonstrating a direct requirement for specific splicing factors in pro-longevity interventions, and specifically how nutrient signaling pathways interface to splicing factor regulation and downstream splicing targets. Finally, we review the emerging potential of using splicing profiles as a predictor of biological age and life expectancy. Understanding the role of RNA splicing components and downstream targets altered in aging may provide opportunities to develop therapeutics and ultimately extend healthy lifespan in humans.
Collapse
Affiliation(s)
- Malini Bhadra
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Porsha Howell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Sneha Dutta
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Caroline Heintz
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
45
|
Sharma A, Smith HJ, Yao P, Mair WB. Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep 2019; 20:e48395. [PMID: 31667999 PMCID: PMC6893295 DOI: 10.15252/embr.201948395] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/24/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are organized in the cell in the form of a dynamic, interconnected network. Mitochondrial dynamics, regulated by mitochondrial fission, fusion, and trafficking, ensure restructuring of this complex reticulum in response to nutrient availability, molecular signals, and cellular stress. Aberrant mitochondrial structures have long been observed in aging and age-related diseases indicating that mitochondrial dynamics are compromised as cells age. However, the specific mechanisms by which aging affects mitochondrial dynamics and whether these changes are causally or casually associated with cellular and organismal aging is not clear. Here, we review recent studies that show specifically how mitochondrial fission, fusion, and trafficking are altered with age. We discuss factors that change with age to directly or indirectly influence mitochondrial dynamics while examining causal roles for altered mitochondrial dynamics in healthy aging and underlying functional outputs that might affect longevity. Lastly, we propose that altered mitochondrial dynamics might not just be a passive consequence of aging but might constitute an adaptive mechanism to mitigate age-dependent cellular impairments and might be targeted to increase longevity and promote healthy aging.
Collapse
Affiliation(s)
- Arpit Sharma
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Hannah J Smith
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Pallas Yao
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - William B Mair
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| |
Collapse
|
46
|
Hahn O, Drews LF, Nguyen A, Tatsuta T, Gkioni L, Hendrich O, Zhang Q, Langer T, Pletcher S, Wakelam MJO, Beyer A, Grönke S, Partridge L. A nutritional memory effect counteracts benefits of dietary restriction in old mice. Nat Metab 2019; 1:1059-1073. [PMID: 31742247 PMCID: PMC6861129 DOI: 10.1038/s42255-019-0121-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dietary restriction (DR) during adulthood can greatly extend lifespan and improve metabolic health in diverse species. However, whether DR in mammals is still effective when applied for the first time at old age remains elusive. Here, we report results of a late-life DR switch experiment employing 800 mice, in which 24 months old female mice were switched from ad libitum (AL) to DR or vice versa. Strikingly, the switch from DR-to-AL acutely increases mortality, whereas the switch from AL-to-DR causes only a weak and gradual increase in survival, suggesting a memory of earlier nutrition. RNA-seq profiling in liver, brown (BAT) and white adipose tissue (WAT) demonstrate a largely refractory transcriptional and metabolic response to DR after AL feeding in fat tissue, particularly in WAT, and a proinflammatory signature in aged preadipocytes, which is prevented by chronic DR feeding. Our results provide evidence for a nutritional memory as a limiting factor for DR-induced longevity and metabolic remodeling of WAT in mammals.
Collapse
Affiliation(s)
- Oliver Hahn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa F Drews
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - An Nguyen
- Inositide lab, The Babraham Institute, Cambridge, UK
| | - Takashi Tatsuta
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Lisonia Gkioni
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Oliver Hendrich
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Qifeng Zhang
- Inositide lab, The Babraham Institute, Cambridge, UK
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Scott Pletcher
- Department of Molecular & Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, USA
| | | | - Andreas Beyer
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| | | | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK.
| |
Collapse
|
47
|
Miller KN, Clark JP, Martin SA, Howell PR, Burhans MS, Haws SA, Johnson NB, Rhoads TW, Pavelec DM, Eliceiri KW, Roopra AS, Ntambi JM, Denu JM, Parks BW, Anderson RM. PGC-1a integrates a metabolism and growth network linked to caloric restriction. Aging Cell 2019; 18:e12999. [PMID: 31267675 PMCID: PMC6718593 DOI: 10.1111/acel.12999] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/25/2022] Open
Abstract
Deleterious changes in energy metabolism have been linked to aging and disease vulnerability, while activation of mitochondrial pathways has been linked to delayed aging by caloric restriction (CR). The basis for these associations is poorly understood, and the scope of impact of mitochondrial activation on cellular function has yet to be defined. Here, we show that mitochondrial regulator PGC-1a is induced by CR in multiple tissues, and at the cellular level, CR-like activation of PGC-1a impacts a network that integrates mitochondrial status with metabolism and growth parameters. Transcriptional profiling reveals that diverse functions, including immune pathways, growth, structure, and macromolecule homeostasis, are responsive to PGC-1a. Mechanistically, these changes in gene expression were linked to chromatin remodeling and RNA processing. Metabolic changes implicated in the transcriptional data were confirmed functionally including shifts in NAD metabolism, lipid metabolism, and membrane lipid composition. Delayed cellular proliferation, altered cytoskeleton, and attenuated growth signaling through post-transcriptional and post-translational mechanisms were also identified as outcomes of PGC-1a-directed mitochondrial activation. Furthermore, in vivo in tissues from a genetically heterogeneous mouse population, endogenous PGC-1a expression was correlated with this same metabolism and growth network. These data show that small changes in metabolism have broad consequences that arguably would profoundly alter cell function. We suggest that this PGC-1a sensitive network may be the basis for the association between mitochondrial function and aging where small deficiencies precipitate loss of function across a spectrum of cellular activities.
Collapse
Affiliation(s)
- Karl N. Miller
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Josef P. Clark
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Stephen A. Martin
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Porsha R. Howell
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Maggie S. Burhans
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Spencer A. Haws
- Department of Biomolecular Chemistry University of Wisconsin Madison Wisconsin USA
- Wisconsin Institute for Discovery University of Wisconsin Madison Wisconsin USA
| | - Nathan B. Johnson
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Timothy W Rhoads
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Derek M. Pavelec
- Biotechnology Center University of Wisconsin Madison Wisconsin USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation University of Wisconsin Madison Wisconsin USA
| | - Avtar S. Roopra
- Department of Neuroscience University of Wisconsin Madison Wisconsin USA
| | - James M. Ntambi
- Department of Biochemistry University of Wisconsin Madison Wisconsin USA
- Department of Nutritional Sciences University of Wisconsin Madison Wisconsin USA
| | - John M. Denu
- Department of Biomolecular Chemistry University of Wisconsin Madison Wisconsin USA
- Wisconsin Institute for Discovery University of Wisconsin Madison Wisconsin USA
- Morgridge Institute for Research Madison Wisconsin USA
| | - Brian W. Parks
- Department of Nutritional Sciences University of Wisconsin Madison Wisconsin USA
| | - Rozalyn M. Anderson
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
- Geriatric Research, Education, and Clinical Center William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
| |
Collapse
|
48
|
Identification and Application of Gene Expression Signatures Associated with Lifespan Extension. Cell Metab 2019; 30:573-593.e8. [PMID: 31353263 PMCID: PMC6907080 DOI: 10.1016/j.cmet.2019.06.018] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 04/14/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023]
Abstract
Several pharmacological, dietary, and genetic interventions that increase mammalian lifespan are known, but general principles of lifespan extension remain unclear. Here, we performed RNA sequencing (RNA-seq) analyses of mice subjected to 8 longevity interventions. We discovered a feminizing effect associated with growth hormone regulation and diminution of sex-related differences. Expanding this analysis to 17 interventions with public data, we observed that many interventions induced similar gene expression changes. We identified hepatic gene signatures associated with lifespan extension across interventions, including upregulation of oxidative phosphorylation and drug metabolism, and showed that perturbed pathways may be shared across tissues. We further applied the discovered longevity signatures to identify new lifespan-extending candidates, such as chronic hypoxia, KU-0063794, and ascorbyl-palmitate. Finally, we developed GENtervention, an app that visualizes associations between gene expression changes and longevity. Overall, this study describes general and specific transcriptomic programs of lifespan extension in mice and provides tools to discover new interventions.
Collapse
|
49
|
Barja G. Towards a unified mechanistic theory of aging. Exp Gerontol 2019; 124:110627. [DOI: 10.1016/j.exger.2019.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/08/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022]
|
50
|
Rollins JA, Shaffer D, Snow SS, Kapahi P, Rogers AN. Dietary restriction induces posttranscriptional regulation of longevity genes. Life Sci Alliance 2019; 2:2/4/e201800281. [PMID: 31253655 PMCID: PMC6600014 DOI: 10.26508/lsa.201800281] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Dietary restriction (DR) increases life span through adaptive changes in gene expression. To understand more about these changes, we analyzed the transcriptome and translatome of Caenorhabditis elegans subjected to DR. Transcription of muscle regulatory and structural genes increased, whereas increased expression of amino acid metabolism and neuropeptide signaling genes was controlled at the level of translation. Evaluation of posttranscriptional regulation identified putative roles for RNA-binding proteins, RNA editing, miRNA, alternative splicing, and nonsense-mediated decay in response to nutrient limitation. Using RNA interference, we discovered several differentially expressed genes that regulate life span. We also found a compensatory role for translational regulation, which offsets dampened expression of a large subset of transcriptionally down-regulated genes. Furthermore, 3' UTR editing and intron retention increase under DR and correlate with diminished translation, whereas trans-spliced genes are refractory to reduced translation efficiency compared with messages with the native 5' UTR. Finally, we find that smg-6 and smg-7, which are genes governing selection and turnover of nonsense-mediated decay targets, are required for increased life span under DR.
Collapse
Affiliation(s)
- Jarod A Rollins
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Dan Shaffer
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Santina S Snow
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Aric N Rogers
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| |
Collapse
|