1
|
Tian Z, Wang X, Chen S, Guo Z, Di J, Xiang C. Mitochondria-Targeted Biomaterials-Regulating Macrophage Polarization Opens New Perspectives for Disease Treatment. Int J Nanomedicine 2025; 20:1509-1528. [PMID: 39925677 PMCID: PMC11806677 DOI: 10.2147/ijn.s505591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/18/2025] [Indexed: 02/11/2025] Open
Abstract
Macrophage immunotherapy is an emerging therapeutic approach designed for modulating the immune response to alleviate disease symptoms. The balance between pro-inflammatory and anti-inflammatory macrophages plays a pivotal role in the progression of inflammatory diseases. Mitochondria, often referred to as the "power plants" of the cell, are essential organelles responsible for critical functions such as energy metabolism, material synthesis, and signal transduction. The functional state of mitochondria is closely linked to macrophage polarization, prompting interest in therapeutic strategies that target mitochondria to regulate this process. To this end, biomaterials with excellent targeting capabilities and effective therapeutic properties have been developed to influence mitochondrial function and regulate macrophage polarization. However, a comprehensive summary of biomaterial-driven modulation of mitochondrial function to control macrophage phenotypes is still lacking. This review highlights the critical role of mitochondrial function in macrophage polarization and discusses therapeutic strategies mediated by biomaterials, including mitochondria-targeted biomaterials. Finally, the prospects and challenges of the use of these biomaterials in disease modulation have been explored, emphasizing their potential to be translated to the clinic. It is anticipated that this review will serve as a valuable resource for materials scientists and clinicians in the development of next-generation mitochondria-targeted biomaterials.
Collapse
Affiliation(s)
- Zui Tian
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xudong Wang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Shuai Chen
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Zijian Guo
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jingkai Di
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Chuan Xiang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
2
|
Li J, Guo C, Yang X, Xie W, Mi W, Hua C, Tang C, Wang H. Effects of natural products on macrophage immunometabolism: A new frontier in the treatment of metabolic diseases. Pharmacol Res 2025; 213:107634. [PMID: 39889866 DOI: 10.1016/j.phrs.2025.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Immunometabolic variations in macrophages critically influence their differentiation into pro-inflammatory or anti-inflammatory phenotypes, thereby contributing to immune homeostasis, defense against infection, and tissue repair. Dysregulation of macrophage immunometabolism has been closely implicated in several metabolic diseases, including obesity, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), hypertension, atherosclerosis, and gout, which positions macrophages as potential therapeutic targets. Recently, several natural products that target macrophage metabolic pathways have shown significant efficacy in managing metabolic diseases; however, a systematic review of these findings has yet to be conducted. This study consolidates natural products with immunoregulatory properties, including flavonoids, phenols, terpenoids, and naphthoquinones, which can alleviate chronic inflammation associated with metabolic disorders by modulating macrophage metabolic pathways, such as aerobic glycolysis, oxidative phosphorylation (OXPHOS), and fatty acid oxidation (FAO). This review aims to elucidate the metabolic regulation of the immune system, analyze metabolic alterations in macrophage associated with metabolic diseases, and summarize the beneficial roles of natural products in immunometabolism, providing novel insights for the prevention and therapeutic management of metabolic diseases.
Collapse
Affiliation(s)
- Jiani Li
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chen Guo
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaofei Yang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weinan Xie
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenjing Mi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chenglong Hua
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Tang
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
3
|
Nascimento Da Conceicao V, Sun Y, Venkatesan M, De La Chapa Chapa J, Ramachandran K, Jasrotia RS, Drel V, Chai X, Mishra BB, Madesh M, Singh BB. Naltriben promotes tumor growth by activating the TRPM7-mediated development of the anti-inflammatory M2 phenotype. NPJ Precis Oncol 2025; 9:29. [PMID: 39875485 PMCID: PMC11775176 DOI: 10.1038/s41698-025-00815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025] Open
Abstract
Macrophage plasticity is critical for maintaining immune function and developing solid tumors; however, the macrophage polarization mechanism remains incompletely understood. Our findings reveal that Mg2+ entry through distinct plasma membrane channels is critical to macrophage plasticity. Naïve macrophages displayed a previously unidentified Mg2+ dependent current, and TRPM7-like activity, which modulates its survival. Significantly, in M1 macrophages, Mg2+ entry is facilitated by a novel Mg²-dependent current that relies on extracellular Mg2+, which was crucial for activating iNOS/NFκB pathways and cellular bioenergetics, which drives pro-inflammatory cytokines. Conversely, in M2 macrophages, Mg2+ entry occurs primarily through TRPM7 channels, pivotal for IL-4 and IL-10-mediated anti-inflammatory cytokine secretion. Notably, the Mg2+ deficient diet or addition of TRPM7 agonist Naltriben suppresses the M1 phenotype while promoting angiogenic factors and fostering tumor growth. These findings suggest that Mg2+ flux via specific channels is indispensable for macrophage polarization, with its dysregulation playing a pivotal role in tumor progression.
Collapse
Affiliation(s)
| | - Yuyang Sun
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Manigandan Venkatesan
- Center for Mitochondrial Medicine, Department of Medicine/Cardiology Division, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Jorge De La Chapa Chapa
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Karthik Ramachandran
- Center for Mitochondrial Medicine, Department of Medicine/Cardiology Division, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Rahul S Jasrotia
- Department of Developmental Dentistry, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Victor Drel
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Xiufang Chai
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Bibhuti B Mishra
- Department of Developmental Dentistry, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Muniswamy Madesh
- Center for Mitochondrial Medicine, Department of Medicine/Cardiology Division, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| | - Brij B Singh
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
4
|
Yao Y, Li B, Chen C, Wang J, Yao F, Li Z. HVEM as a tumor-intrinsic regulator in non-small cell lung cancer: Suppression of metastasis via glycolysis inhibition and modulation of macrophage polarization. Pharmacol Res 2025; 213:107604. [PMID: 39832683 DOI: 10.1016/j.phrs.2025.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Herpes virus entry mediator (HVEM) is a novel costimulatory molecule which mediates stimulatory or inhibitory signals in immune responses which makes it an attractive target in cancer therapeutics. However, the role of tumor cell intrinsic HVEM on tumor biology remains largely unknown. In this study, We demonstrated that CK+HVEM+ tumor correlates with better survival using Multiplex immuno histochemistry (mIHC) in Human Lung Adenocarcinoma Tissue microarray. Next, we showed that HVEM knockdown promoted NSCLC cell invasion and metastasis in vitro whereas exhibited no effect on proliferation. Conversely, HVEM overexpression results in the opposite phenotype. Meanwhile, the conclusion were further confirmed in vivo experiment that overexpression of HVEM reduced the invasion and metastasis of NSCLC whereas no effect on tumor mass. Besides, vivo experiment showed that M1 TAMs in the HVEM overxrpression group was increased and the proportion of M2 macrophages was decreased compared to the vector group. Mechanistically, The C-terminal 228-283 amino acid segment of HVEM protein interacts with the N-terminal 1-383 amino acid segment of MPRIP protein, inhibiting its downstream glycolysis signaling pathway and suppressing NSCLC cells progression. In addition, macrophage coculture assay suggested that HVEM overexpression inhibited M2 macrophage polarization through GM-CSF/GM-CSFRα axis. In summary, our study has demonstrated that tumor cell intrinsic HVEM is a potential tumour metastasis suppressor, which may serve as a potential target for immunotherapy.
Collapse
Affiliation(s)
- Yuanshan Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Bin Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chunji Chen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jing Wang
- Department of Thoracic Surgery, Huadong Hospital affiliated to Fudan University, Shanghai 200040, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai 200030, China.
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai 200030, China.
| |
Collapse
|
5
|
Li J, Ping P, Li Y, Xu X. Fatty acid metabolism: A new target for nasopharyngeal carcinoma therapy. Chin J Cancer Res 2024; 36:652-668. [PMID: 39802901 PMCID: PMC11724175 DOI: 10.21147/j.issn.1000-9604.2024.06.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Lipid metabolic reprogramming is considered one of the most prominent metabolic abnormalities in cancer, and fatty acid metabolism is a key aspect of lipid metabolism. Recent studies have shown that fatty acid metabolism and its related lipid metabolic pathways play important roles in the malignant progression of nasopharyngeal carcinoma (NPC). NPC cells adapt to harsh environments by enhancing biological processes such as fatty acid metabolism, uptake, production, and oxidation, thereby accelerating their growth. In addition, the reprogramming of fatty acid metabolism plays a central role in the tumor microenvironment (TME) of NPC, and the phenotypic transformation of immune cells is closely related to fatty acid metabolism. Moreover, the reprogramming of fatty acid metabolism in NPC contributes to immune escape, which significantly affects disease treatment, progression, recurrence, and metastasis. This review explores recent advances in fatty acid metabolism in NPC and focuses on the interconnections among metabolic reprogramming, tumor immunity, and corresponding therapies. In conclusion, fatty acid metabolism represents a potential target for NPC treatment, and further exploration is needed to develop strategies that target the interaction between fatty acid metabolic reprogramming and immunotherapy.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiotherapy Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Pengbin Ping
- Department of Radiotherapy Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yanhua Li
- Department of International Medical, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xiaoying Xu
- Department of Radiotherapy Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
6
|
Shen JW, Pan PK, Chen YY, Nan FH, Wu YS. Characteristics of Gracilariopsis lemaneiformis hydrocolloids and their effects on intestine PPAR signaling and liver lipid metabolism in Oreochromis niloticus: A multiomics analysis. Heliyon 2024; 10:e40416. [PMID: 39669144 PMCID: PMC11635660 DOI: 10.1016/j.heliyon.2024.e40416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
This study evaluated the effects of Gracilariopsis lemaneiformis hydrocolloids on Nile tilapia (Oreochromis niloticus) using an advanced multiomics approach (transcriptome and proteome) linked with genomic isoform structure to elucidate the biofunctions of G. lemaneiformis hydrocolloids. The results showed that G. lemaneiformis hydrocolloids did not affect growth, as indicated by the nonsignificant differences in growth and blood biochemical indicators. Regarding the response, both intestine and liver tissues were assessed. These findings indicate that 20 % G. lemaneiformis hydrocolloids enhanced cytokine expression, which may contribute to a biological function in the intestine and liver of O. niloticus. Genome and proteome profiles indicated that G. lemaneiformis hydrocolloids upregulated the intestine and liver peroxisome proliferator-activated receptor (PPAR) signaling pathway, nucleocytoplasmic transport, steroid biosynthesis, and histidine metabolism. In contrast, co-factor biosynthesis, nucleocytoplasmic transport, tryptophan metabolism, arginine and proline metabolism, arginine biosynthesis, and ribosome activity were downregulated. These findings indicate that G. lemaneiformis hydrocolloids significantly affect liver lipid and carbohydrate metabolism. Proteomics analysis revealed that G. lemaneiformis hydrocolloids upregulated the PPAR signaling pathway, playing a crucial role in lipid metabolism. In summary, 20 % G. lemaneiformis hydrocolloids are primarily involved in modulating the intestine and liver PPAR signaling pathway to regulate lipid metabolism.
Collapse
Affiliation(s)
- Jia-Wei Shen
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Po-Kai Pan
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Yin-Yu Chen
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| |
Collapse
|
7
|
Cheng S, Li Y, Sun X, Liu Z, Guo L, Wu J, Yang X, Wei S, Wu G, Xu S, Yang F, Wu J. The impact of glucose metabolism on inflammatory processes in sepsis-induced acute lung injury. Front Immunol 2024; 15:1508985. [PMID: 39712019 PMCID: PMC11659153 DOI: 10.3389/fimmu.2024.1508985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Acute lung injury (ALI) is a prevalent and critical complication of sepsis, marked by high incidence and mortality rates, with its pathogenesis still not being fully elucidated. Recent research has revealed a significant correlation between the metabolic reprogramming of glucose and sepsis-associated ALI (S-ALI). Throughout the course of S-ALI, immune cells, including macrophages and dendritic cells, undergo metabolic shifts to accommodate the intricate demands of immune function that emerge as sepsis advances. Indeed, glucose metabolic reprogramming in S-ALI serves as a double-edged sword, fueling inflammatory immune responses in the initial stages and subsequently initiating anti-inflammatory responses as the disease evolves. In this review, we delineate the current research progress concerning the pathogenic mechanisms linked to glucose metabolic reprogramming in S-ALI, with a focus on the pertinent immune cells implicated. We encapsulate the impact of glucose metabolic reprogramming on the onset, progression, and prognosis of S-ALI. Ultimately, by examining key regulatory factors within metabolic intermediates and enzymes, We have identified potential therapeutic targets linked to metabolic reprogramming, striving to tackle the inherent challenges in diagnosing and treating Severe Acute Lung Injury (S-ALI) with greater efficacy.
Collapse
Affiliation(s)
- Shilei Cheng
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Yufei Li
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan, China
| | - Xiaoliang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhirui Liu
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Liang Guo
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jueheng Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaohan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Sisi Wei
- Department of Anesthesiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Guanghan Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Shilong Xu
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Fan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jianbo Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| |
Collapse
|
8
|
Jeroundi N, Roy C, Basset L, Pignon P, Preisser L, Blanchard S, Bocca C, Abadie C, Lalande J, Gueguen N, Mabilleau G, Lenaers G, Moreau A, Copin MC, Tcherkez G, Delneste Y, Couez D, Jeannin P. Glycogenesis and glyconeogenesis from glutamine, lactate and glycerol support human macrophage functions. EMBO Rep 2024; 25:5383-5407. [PMID: 39424955 PMCID: PMC11624281 DOI: 10.1038/s44319-024-00278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024] Open
Abstract
Macrophages fight infection and ensure tissue repair, often operating at nutrient-poor wound sites. We investigated the ability of human macrophages to metabolize glycogen. We observed that the cytokines GM-CSF and M-CSF plus IL-4 induced glycogenesis and the accumulation of glycogen by monocyte-derived macrophages. Glyconeogenesis occurs in cells cultured in the presence of the inflammatory cytokines GM-CSF and IFNγ (M1 cells), via phosphoenolpyruvate carboxykinase 2 (PCK2) and fructose-1,6-bisphosphatase 1 (FBP1). Enzyme inhibition with drugs or gene silencing techniques and 13C-tracing demonstrate that glutamine (metabolized by the TCA cycle), lactic acid, and glycerol were substrates of glyconeogenesis only in M1 cells. Tumor-associated macrophages (TAMs) also store glycogen and can perform glyconeogenesis. Finally, macrophage glycogenolysis and the pentose phosphate pathway (PPP) support cytokine secretion and phagocytosis regardless of the availability of extracellular glucose. Thus, glycogen metabolism supports the functions of human M1 and M2 cells, with inflammatory M1 cells displaying a possible dependence on glyconeogenesis.
Collapse
Affiliation(s)
- Najia Jeroundi
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Charlotte Roy
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Laetitia Basset
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Pascale Pignon
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Laurence Preisser
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Simon Blanchard
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
- Immunology and Allergology laboratory, University Hospital, Angers, France
| | - Cinzia Bocca
- Univ Angers, Inserm, CNRS, MitoVasc, SFR ICAT, F-49000, Angers, France
- Department of Genetics and Biochemistry, University Hospital, Angers, France
| | - Cyril Abadie
- Univ Angers, INRAe, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Julie Lalande
- Univ Angers, INRAe, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Naïg Gueguen
- Univ Angers, Inserm, CNRS, MitoVasc, SFR ICAT, F-49000, Angers, France
- Department of Genetics and Biochemistry, University Hospital, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, Inserm, Oniris, RMeS, SFR ICAT, F-49000, Angers, France
- Department of Cell and Tissue Pathology, University Hospital, Angers, France
| | - Guy Lenaers
- Univ Angers, Inserm, CNRS, MitoVasc, SFR ICAT, F-49000, Angers, France
- Department of Genetics and Biochemistry, University Hospital, Angers, France
| | - Aurélie Moreau
- Inserm, Nantes Université, University Hospital of Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Marie-Christine Copin
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
- Department of Cell and Tissue Pathology, University Hospital, Angers, France
| | - Guillaume Tcherkez
- Univ Angers, INRAe, IRHS, SFR QUASAV, F-49000, Angers, France
- Research School of Biology, ANU College of Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Yves Delneste
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
- Immunology and Allergology laboratory, University Hospital, Angers, France
| | - Dominique Couez
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France
| | - Pascale Jeannin
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, LabEx IGO, F-49000, Angers, France.
- Immunology and Allergology laboratory, University Hospital, Angers, France.
| |
Collapse
|
9
|
Cao R, Feng Z, Mo J, Wu J, Li J, Li W, Wang Z, Ma Q, Wu Z, Zhou C. Pharmacological inhibition of SREBP1 suppresses pancreatic cancer growth via inducing GPX4-mediated ferroptosis. Cell Signal 2024; 124:111381. [PMID: 39243918 DOI: 10.1016/j.cellsig.2024.111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/18/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Pancreatic cancer (PC) is highly malignancy with poor survival. Ferroptosis offers a novel therapeutic target for cancer treatment and glutathione peroxidase 4 (GPX4) shields tumor cells from ferroptosis damage. Although Sterol regulatory element-binding protein 1 (SREBP1) has been implicated in the development of pancreatic cancer, its underlying mechanisms remain unclear. This research aims to explore the role of SREBP1 in ferroptosis by using its inhibitor Fatostatin. In this study, Fatostatin was found to inhibit the proliferation and clonogenicity of pancreatic cancer cell lines. This was accompanied by a reduction in intracellular lipid synthesis, increased iron accumulation, elevated levels of reactive oxygen species (ROS), and accumulation of malondialdehyde (MDA). The JASPAR database shows that there is a binding site of the SREBP1 on the promoter region of GPX4. What's more, it was verified that SREBP1 can transcriptionally regulate GPX4 by CHIP. In vivo experiments further revealed that Fatostatin could suppress the growth of subcutaneous tumors in nude mice. In conclusion, our study suggests that Fatostatin may inhibit pancreatic cancer cell proliferation by inducing ferroptosis through the SREBP1/GPX4 pathway. These findings shed light on the therapeutic potential of Fatostatin and lay the groundwork for future investigations into its mechanism of action in pancreatic cancer.
Collapse
Affiliation(s)
- Ruiqi Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhengyuan Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiantao Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiaoxing Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jie Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
10
|
Santarsiero A, Convertini P, Iacobazzi D, Infantino V, Todisco S. Metabolic Crossroad Between Macrophages and Cancer Cells: Overview of Hepatocellular Carcinoma. Biomedicines 2024; 12:2684. [PMID: 39767591 PMCID: PMC11727080 DOI: 10.3390/biomedicines12122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
The metabolic interplay between macrophages and cancer cells mirrors the plasticity of both kinds of cells, which adapt to the microenvironment by sustaining cell growth and proliferation. In this way, cancer cells induce macrophage polarization, and, on the other hand, tumor-associated macrophages (TAMs) contribute to the survival of cancer cells. In a simplified manner, macrophages can assume two opposite subtypes: M1, pro-inflammatory and anti-tumor phenotype, and M2, anti-inflammatory and protumor phenotype. How do cancer cells induce macrophage polarization? Any actor involved in tumor growth, including the mitochondria, releases molecules into the tumor microenvironment (TME) that trigger a subtype transition. These metabolic changes are the primary cause of this polarization. Hepatocellular carcinoma (HCC), the prevalent type of liver primary tumor, is characterized by cells with extensive metabolic adaptions due to high flexibility in different environmental conditions. This review focuses on the main metabolic features of M1 and M2 macrophages and HCC cells underlying their metabolic behavior in response to TME.
Collapse
Affiliation(s)
- Anna Santarsiero
- Department of Health Sciences, University of Basilicata, 85100 Potenza, Italy; (A.S.); (V.I.)
| | - Paolo Convertini
- Department of Basic and Applied Science, University of Basilicata, 85100 Potenza, Italy;
| | - Dominga Iacobazzi
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS2 8HW, UK;
| | - Vittoria Infantino
- Department of Health Sciences, University of Basilicata, 85100 Potenza, Italy; (A.S.); (V.I.)
| | - Simona Todisco
- Department of Basic and Applied Science, University of Basilicata, 85100 Potenza, Italy;
| |
Collapse
|
11
|
Hou N, Zhou H, Li J, Xiong X, Deng H, Xiong S. Macrophage polarization and metabolic reprogramming in abdominal aortic aneurysm. Immun Inflamm Dis 2024; 12:e1268. [PMID: 39530309 PMCID: PMC11555488 DOI: 10.1002/iid3.1268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a macrovascular disease with high morbidity and mortality in the elderly. The limitation of the current management is that most patients can only be followed up until the AAA diameter increases to a threshold, and surgical intervention is recommended. The development of preventive and curative drugs for AAA is urgently needed. Macrophage-mediated immune inflammation is one of the key pathological links in the occurrence and development of AAA. AIMS This review article aims to evaluate the impact of immunometabolism on macrophage biology and its role in AAA. METHODS We analyze publications focusing on the polarization and metabolic reprogramming in macrophages as well as their potential impact on AAA, and summarize the potential interventions that are currently available to regulate these processes. RESULTS The phenotypic and functional changes in macrophages are accompanied by significant alterations in metabolic pathways. The interaction between macrophage polarization and metabolic pathways significantly influences the progression of AAA. CONCLUSION Macrophage polarization is a manifestation of the gross dichotomy of macrophage function into pro-inflammatory killing and tissue repair, that is, classically activated M1 macrophages and alternatively activated M2 macrophages. Macrophage functions are closely linked to metabolic changes, and the emerging field of immunometabolism is providing unique insights into the role of macrophages in AAA. It is essential to further investigate the precise metabolic changes and their functional consequences in AAA-associated macrophages.
Collapse
Affiliation(s)
- Ningxin Hou
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongmin Zhou
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jun Li
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hongping Deng
- Department of Vascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Sizheng Xiong
- Department of Vascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
12
|
Ortiz D, Guajardo F, Talamilla-Espinoza A, Vera-Tamargo F, Pérez-Valenzuela J, Mejías M, Pino-Quezada L, Galdames-Contreras F, Mandakovic D, Wacyk J, Urra FA, Pulgar R. Metabolic energetic adaptation of Atlantic salmon phagocytes to changes in carbon sources and exposure to PAMPs. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109926. [PMID: 39370021 DOI: 10.1016/j.fsi.2024.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Phagocytic cells are pivotal for host homeostasis and infection defense, necessitating metabolic adaptations in glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS). While mammalian phagocytes shift towards glycolysis and glutaminolysis during polarization, research on fish phagocyte metabolic reprogramming is limited. To address this, the Atlantic salmon phagocytic cell line, SHK-1, serves as a valuable model. Using the Seahorse XFe96 Flux Analyzer, this study compares SHK-1 bioenergetics under glucose-restricted (L-15 medium) and glucose-supplemented (PM) conditions, providing insights into metabolic characteristics and responses to Piscirickettsia salmonis bacterium Pathogen-associated molecular patterns (PAMPs). A standardized protocol for the study of real-time changes in the metabolism study of SHK-1 in PM and L-15 media, determining oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) is shown. Exhibiting metabolic adaptations, SHK-1 cells in the PM medium have higher basal and maximal OCR and spare capacity (SRC), while those grown in the L-15 medium favor OXPHOS, showing minimal glycolytic function. Despite metabolic differences, intracellular ATP levels are comparable, highlighting the metabolic plasticity and adaptability of SHK-1 cells to various carbon sources. Exposure to PAMPs from Piscirickettsia salmonis induces a metabolic shift, increasing glycolysis and OXPHOS, influencing ATP, lactate, glutamine, and glutamate levels. These findings highlight the role of mitochondrial bioenergetics and metabolic plasticity in salmon phagocytes, offering novel nutritional strategies for host-pathogen interventions based on energy metabolism.
Collapse
Affiliation(s)
- Daniela Ortiz
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Laboratory of Animal Nutrition, Faculty of Agronomy, University of Chile, Avenida Santa Rosa 11315, La Pintana, Santiago, 8820808, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Francisco Guajardo
- Laboratory of Metabolic Plasticity and Bioenergetics, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Independencia 1027, PO Box 7, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 7810000, Chile
| | - Andrea Talamilla-Espinoza
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Francisca Vera-Tamargo
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Javiera Pérez-Valenzuela
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Madelaine Mejías
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Lucas Pino-Quezada
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Felipe Galdames-Contreras
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Dinka Mandakovic
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - Jurij Wacyk
- Laboratory of Animal Nutrition, Faculty of Agronomy, University of Chile, Avenida Santa Rosa 11315, La Pintana, Santiago, 8820808, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Félix A Urra
- Laboratory of Metabolic Plasticity and Bioenergetics, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Independencia 1027, PO Box 7, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 7810000, Chile.
| | - Rodrigo Pulgar
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Ho QV, Young MJ. Mineralocorticoid receptors, macrophages and new mechanisms for cardiovascular disease. Mol Cell Endocrinol 2024; 593:112340. [PMID: 39134137 DOI: 10.1016/j.mce.2024.112340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Quoc Viet Ho
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Australia
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Australia; Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Ren H, Zhang R, Zhang H, Bian C. Ecnomotopic olfactory receptors in metabolic regulation. Biomed Pharmacother 2024; 179:117403. [PMID: 39241572 DOI: 10.1016/j.biopha.2024.117403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Olfactory receptors are seven-transmembrane G-protein-coupled receptors on the cell surface. Over the past few decades, evidence has been mounting that olfactory receptors are not unique to the nose and that their ectopic existence plays an integral role in extranasal diseases. Coupled with the discovery of many natural or synthetic odor-compound ligands, new roles of ecnomotopic olfactory receptors regulating blood glucose, obesity, blood pressure, and other metabolism-related diseases are emerging. Many well-known scientific journals have called for attention to extranasal functions of ecnomotopic olfactory receptors. Thus, the prospect of ecnomotopic olfactory receptors in drug target research has been greatly underestimated. Here, we have provided an overview for the role of ecnomotopic olfactory receptors in metabolic diseases, focusing on their effects on various metabolic tissues, and discussed the possible molecular biological and pathophysiological mechanisms, which provide the basis for drug development and clinical application targeting the function of ecnomotopic olfactory receptors via literature machine learning and screening.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Ruijing Zhang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haibo Zhang
- Departments of Infectious Disease, the Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Che Bian
- Department of General Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
16
|
Wang J, Wu Q, Wang X, Liu H, Chen M, Xu L, Zhang Z, Li K, Li W, Zhong J. Targeting Macrophage Phenotypes and Metabolism as Novel Therapeutic Approaches in Atherosclerosis and Related Cardiovascular Diseases. Curr Atheroscler Rep 2024; 26:573-588. [PMID: 39133247 PMCID: PMC11392985 DOI: 10.1007/s11883-024-01229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE OF THE REVIEW Macrophage accumulation and activation function as hallmarks of atherosclerosis and have complex and intricate dynamics throughout all components and stages of atherosclerotic plaques. In this review, we focus on the regulatory roles and underlying mechanisms of macrophage phenotypes and metabolism in atherosclerosis. We highlight the diverse range of macrophage phenotypes present in atherosclerosis and their potential roles in progression and regression of atherosclerotic plaque. Furthermore, we discuss the challenges and opportunities in developing therapeutic strategies for preventing and treating atherosclerotic cardiovascular disease. RECENT FINDINGS Dysregulation of macrophage polarization between the proinflammatory M1 and anti-inflammatory M2 phenotypealters the immuno-inflammatory response during atherosclerosis progression, leading to plaque initiation, growth, and ultimately rupture. Altered metabolism of macrophage is a key feature for their function and the subsequent progression of atherosclerotic cardiovascular disease. The immunometabolism of macrophage has been implicated to macrophage activation and metabolic rewiring of macrophages within atherosclerotic lesions, thereby shifting altered macrophage immune-effector and tissue-reparative function. Targeting macrophage phenotypes and metabolism are potential therapeutic strategies in the prevention and treatment of atherosclerosis and atherosclerotic cardiovascular diseases. Understanding the precise function and metabolism of specific macrophage subsets and their contributions to the composition and growth of atherosclerotic plaques could reveal novel strategies to delay or halt development of atherosclerotic cardiovascular diseases and their associated pathophysiological consequences. Identifying biological stimuli capable of modulating macrophage phenotypes and metabolism may lead to the development of innovative therapeutic approaches for treating patients with atherosclerosis and coronary artery diseases.
Collapse
Affiliation(s)
- Juan Wang
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Qiang Wu
- Senior Department of Cardiology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
- Journal of Geriatric Cardiology Editorial Office, Chinese PLA General Hospital, Beijing, China
| | - Xinyu Wang
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongbin Liu
- Department of Cardiology, the Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Mulei Chen
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Li Xu
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ze Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Kuibao Li
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weiming Li
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Jiuchang Zhong
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Zhu W, Qiong D, Changzhi X, Meiyu J, Hui L. Macrophage polarization regulation shed lights on immunotherapy for CaOx kidney stone disease. Biomed Pharmacother 2024; 179:117336. [PMID: 39180792 DOI: 10.1016/j.biopha.2024.117336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Kidney stone disease (KSD) is a major public health concern associated with high morbidity and recurrence, places a significant burden on the health care system worldwide. Calcium oxalate (CaOx) alone or a mixture of CaOx and calcium phosphate stones accounting for more than 80 % of cases. However, beyond surgical removal, the prevention and reduction of recurrence of CaOx kidney stones have always been a challenge. Given that macrophages are traditional innate immune cells that play critical roles in the clearance of pathogens and the maintenance of tissue homeostasis, which have gained more and more interests in nephrolithiasis. Several studies recently clearly demonstrated that M2-macrophage could reduce the renal calcium oxalate (CaOx) crystal acumination, and provide premise insights and therapeutic options for KSD by modulating the macrophage phenotypes. However, the mechanism of macrophage-polarization regulation and that effects on kidney stone prevention and treatments are far from clear. Here, we comprehensively reviewed the literatures related to cytokines, epigenetic modifications and metabolic reprograming of macrophage in CaOx kidney stone disease, aimed to provide better understandings on macrophage polarization regulation as well as its potential clinical applications in CaOx kidney stone disease treatments and prevention.
Collapse
Affiliation(s)
- Wang Zhu
- Department of Urology, The People's Hospital of Longhua, Shenzhen 518109, Guangdong, China.
| | - Deng Qiong
- Department of Urology, The People's Hospital of Longhua, Shenzhen 518109, Guangdong, China
| | - Xu Changzhi
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin Meiyu
- Department of Urology, The People's Hospital of Longhua, Shenzhen 518109, Guangdong, China
| | - Liang Hui
- Department of Urology, The People's Hospital of Longhua, Shenzhen 518109, Guangdong, China.
| |
Collapse
|
18
|
Tang J, Wang X, Chen S, Chang T, Gu Y, Zhang F, Hou J, Luo Y, Li M, Huang J, Liu M, Zhang L, Wang Y, Shen X, Xu L. Disruption of glucose homeostasis by bacterial infection orchestrates host innate immunity through NAD +/NADH balance. Cell Rep 2024; 43:114648. [PMID: 39167491 DOI: 10.1016/j.celrep.2024.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Metabolic reprogramming is crucial for activating innate immunity in macrophages, and the accumulation of immunometabolites is essential for effective defense against infection. The NAD+/NADH (ratio of nicotinamide adenine dinucleotide and its reduced counterpart) redox couple serves as a critical node that integrates metabolic pathways and signaling events, but how this metabolite couple engages macrophage activation remains unclear. Here, we show that the NAD+/NADH ratio serves as a molecular signal that regulates proinflammatory responses and type I interferon (IFN) responses divergently. Salmonella Typhimurium infection leads to a decreased NAD+/NADH ratio by inducing the accumulation of NADH. Further investigation shows that an increased NAD+/NADH ratio correlates with attenuated proinflammatory responses and enhanced type I IFN responses. Conversely, a decreased NAD+/NADH ratio is linked to intensified proinflammatory responses and restrained type I IFN responses. These results show that the NAD+/NADH ratio is an essential cell-intrinsic factor that orchestrates innate immunity, which enhances our understanding of how metabolites fine-tune innate immunity.
Collapse
Affiliation(s)
- Jingjing Tang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shukun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianyuan Chang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuhua Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Hou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Luo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengyuan Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianan Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mohua Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Lei Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
20
|
Smith LC, Abramova E, Vayas K, Rodriguez J, Gelfand-Titiyevksiy B, Roepke TA, Laskin JD, Gow AJ, Laskin DL. Transcriptional profiling of lung macrophages following ozone exposure in mice identifies signaling pathways regulating immunometabolic activation. Toxicol Sci 2024; 201:103-117. [PMID: 38897669 PMCID: PMC11347782 DOI: 10.1093/toxsci/kfae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Macrophages play a key role in ozone-induced lung injury by regulating both the initiation and resolution of inflammation. These distinct activities are mediated by pro-inflammatory and anti-inflammatory/proresolution macrophages which sequentially accumulate in injured tissues. Macrophage activation is dependent, in part, on intracellular metabolism. Herein, we used RNA-sequencing (seq) to identify signaling pathways regulating macrophage immunometabolic activity following exposure of mice to ozone (0.8 ppm, 3 h) or air control. Analysis of lung macrophages using an Agilent Seahorse showed that inhalation of ozone increased macrophage glycolytic activity and oxidative phosphorylation at 24 and 72 h post-exposure. An increase in the percentage of macrophages in S phase of the cell cycle was observed 24 h post ozone. RNA-seq revealed significant enrichment of pathways involved in innate immune signaling and cytokine production among differentially expressed genes at both 24 and 72 h after ozone, whereas pathways involved in cell cycle regulation were upregulated at 24 h and intracellular metabolism at 72 h. An interaction network analysis identified tumor suppressor 53 (TP53), E2F family of transcription factors (E2Fs), cyclin-dependent kinase inhibitor 1A (CDKN1a/p21), and cyclin D1 (CCND1) as upstream regulators of cell cycle pathways at 24 h and TP53, nuclear receptor subfamily 4 group a member 1 (NR4A1/Nur77), and estrogen receptor alpha (ESR1/ERα) as central upstream regulators of mitochondrial respiration pathways at 72 h. To assess whether ERα regulates metabolic activity, we used ERα-/- mice. In both air and ozone-exposed mice, loss of ERα resulted in increases in glycolytic capacity and glycolytic reserve in lung macrophages with no effect on mitochondrial oxidative phosphorylation. Taken together, these results highlight the complex interaction between cell cycle, intracellular metabolism, and macrophage activation which may be important in the initiation and resolution of inflammation following ozone exposure.
Collapse
Affiliation(s)
- Ley Cody Smith
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, United States
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Kinal Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Jessica Rodriguez
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Benjamin Gelfand-Titiyevksiy
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, United States
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| |
Collapse
|
21
|
Ran L, Chen M, Ye J, Zhang S, Luo Z, Bai T, Qian C, Zhou Q, Shan M, Chu Y, Herrmann J, Li Q, Wang F. UK5099 Inhibits the NLRP3 Inflammasome Independently of its Long-Established Target Mitochondrial Pyruvate Carrier. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307224. [PMID: 38946607 PMCID: PMC11434118 DOI: 10.1002/advs.202307224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Targeting NLRP3 inflammasome has been recognized as a promising therapeutic strategy for the treatment of numerous common diseases. UK5099, a long-established inhibitor of mitochondrial pyruvate carrier (MPC), is previously found to inhibit macrophage inflammatory responses independent of MPC expression. However, the mechanisms by which UK5099 inhibit inflammatory responses remain unclear. Here, it is shown that UK5099 is a potent inhibitor of the NLRP3 inflammasome in both mouse and human primary macrophages. UK5099 selectively suppresses the activation of the NLRP3 but not the NLRC4 or AIM2 inflammasomes. Of note, UK5099 retains activities on NLRP3 in macrophages devoid of MPC expression, indicating this inhibitory effect is MPC-independent. Mechanistically, UK5099 abrogates mitochondria-NLRP3 interaction and in turn inhibits the assembly of the NLRP3 inflammasome. Further, a single dose of UK5099 persistently reduces IL-1β production in an endotoxemia mouse model. Importantly, structure modification reveals that the inhibitory activities of UK5099 on NLRP3 are unrelated to the existence of the activated double bond within the UK5099 molecule. Thus, this study uncovers a previously unknown molecular target for UK5099, which not only offers a new candidate for the treatment of NLRP3-driven diseases but also confounds its use as an MPC inhibitor in immunometabolism studies.
Collapse
Affiliation(s)
- Linyu Ran
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
- Medical CollegeTongji UniversityShanghai200092China
| | - Miao Chen
- Department of EmergencyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainan570102China
| | - Jihui Ye
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
- Medical CollegeTongji UniversityShanghai200092China
| | - Song Zhang
- Department of Cardiovascular MedicineMayo ClinicRochesterMN55902USA
- Center for Regenerative MedicineMayo ClinicRochesterMN55902USA
| | - Zhibing Luo
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
- Medical CollegeTongji UniversityShanghai200092China
| | - Tengfei Bai
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RdShanghai201203China
| | - Chenchen Qian
- Division of Hospital Internal MedicineMayo ClinicPhoenixAZ85054USA
| | - Quan Zhou
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
- Medical CollegeTongji UniversityShanghai200092China
| | - Mengtian Shan
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
- Medical CollegeTongji UniversityShanghai200092China
| | - Yong Chu
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RdShanghai201203China
| | - Joerg Herrmann
- Department of Cardiovascular MedicineMayo ClinicRochesterMN55902USA
| | - Qiang Li
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
| | - Feilong Wang
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
| |
Collapse
|
22
|
Serrano-Marín J, Valenzuela R, Delgado C, Quijano A, Navarro G, Labandeira-García JL, Franco R. Neuroprotective compounds alter the expression of genes coding for proteins related to mitochondrial function in activated microglia. Mitochondrion 2024; 78:101934. [PMID: 38992856 DOI: 10.1016/j.mito.2024.101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
A hallmark of neuroinflammatory disorders is mitochondrial dysfunction. Nevertheless, the transcriptional changes underlying this alteration are not well-defined. Microglia activation, a decrease in mitochondrion biogenesis and a subsequent alteration of the redox are common factors in diseases coursing with neuroinflammation. In the last two decades, components of the adenosinergic system have been proposed as potential therapeutic targets to combat neuroinflammation. In this research, we analyzed by RNAseq the gene expression in activated microglia treated with an adenosine A2A receptor antagonist, SCH 582561, and/or an A3 receptor agonist, 2-Cl-IB-MECA, since these receptors are deeply related to neurodegeneration and inflammation. The analysis was focused on genes related to inflammation and REDOX homeostasis. It was detected that in the three conditions (microglia treated with 2-Cl-IB-MECA, SCH 582561, and their combination) more than 40 % of the detected genes codified by the mitochondrial genome were differentially expressed (FDR < 0.05) (14/34, 16/34, and 13/34) respectively, being almost all of them (>85 %) upregulated in the microglia treated with adenosinergic compounds. Also, we analyzed the differential expression of genes related to mitochondrial function and oxidative stress codified by the nuclear genome. Additionally, we evaluated the oxygen consumption rate (OCR) of mitochondria in microglia treated with LPS and IFN-γ, both alone and in combination with adenosinergic compounds. The data showed an improvement in mitochondrial function with the antagonist of the adenosine A2A receptor, compared to the effects of pro-inflammatory stimulus, confirming a functional effect consistent with the RNAseq data.
Collapse
Affiliation(s)
- Joan Serrano-Marín
- Molecular Neurobiology laboratory. Department of Biochemistry and Molecular Biomedicine, Faculty of Biology. Universitat de Barcelona. Barcelona. Spain
| | - Rita Valenzuela
- CIMUS, University of Santiago de Compostela. IDIS (Heath Reserch Institute), Santiago de Compostela, Spain; CiberNed. Network Center for Neurodegenerative diseases. National Spanish Health Institute Carlos III. Madrid. Spain
| | - Cristina Delgado
- Molecular Neurobiology laboratory. Department of Biochemistry and Molecular Biomedicine, Faculty of Biology. Universitat de Barcelona. Barcelona. Spain
| | - Aloia Quijano
- CIMUS, University of Santiago de Compostela. IDIS (Heath Reserch Institute), Santiago de Compostela, Spain; CiberNed. Network Center for Neurodegenerative diseases. National Spanish Health Institute Carlos III. Madrid. Spain
| | - Gemma Navarro
- CiberNed. Network Center for Neurodegenerative diseases. National Spanish Health Institute Carlos III. Madrid. Spain; Department of Biochemistry and Physiology. School of Pharmacy and Food Sciences. Universitat de Barcelona. Barcelona. Spain; Institute of Neurosciences. Universitat de Barcelona. Barcelona. Spain.
| | - José Luis Labandeira-García
- CIMUS, University of Santiago de Compostela. IDIS (Heath Reserch Institute), Santiago de Compostela, Spain; CiberNed. Network Center for Neurodegenerative diseases. National Spanish Health Institute Carlos III. Madrid. Spain
| | - Rafael Franco
- Molecular Neurobiology laboratory. Department of Biochemistry and Molecular Biomedicine, Faculty of Biology. Universitat de Barcelona. Barcelona. Spain; CiberNed. Network Center for Neurodegenerative diseases. National Spanish Health Institute Carlos III. Madrid. Spain; School of Chemistry. Universitat de Barcelona. Barcelona. Spain.
| |
Collapse
|
23
|
Wong A, Sun Q, Latif II, Karwi QG. Macrophage energy metabolism in cardiometabolic disease. Mol Cell Biochem 2024:10.1007/s11010-024-05099-6. [PMID: 39198360 DOI: 10.1007/s11010-024-05099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
In a rapidly expanding body of literature, the major role of energy metabolism in determining the response and polarization status of macrophages has been examined, and it is currently a very active area of research. The metabolic flux through different metabolic pathways in the macrophage is interconnected and complex and could influence the polarization of macrophages. Earlier studies suggested glucose flux through cytosolic glycolysis is a prerequisite to trigger the pro-inflammatory phenotypes of macrophages while proposing that fatty acid oxidation is essential to support anti-inflammatory responses by macrophages. However, recent studies have shown that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully defined yet. In this review, we systematically reviewed and summarized the literature regarding the role of energy metabolism in controlling macrophage activity and how that might be altered in cardiometabolic diseases, namely heart failure, obesity, and diabetes. We critically appraised the experimental studies and methodologies in the published studies. We also highlighted the challenging concepts in macrophage metabolism and identified several research questions yet to be addressed in future investigations.
Collapse
Affiliation(s)
- Angela Wong
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiuyu Sun
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ismail I Latif
- Department of Microbiology, College of Medicine, University of Diyala, Baqubaa, Diyala, Iraq
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada.
| |
Collapse
|
24
|
Zuo S, Wang Y, Bao H, Zhang Z, Yang N, Jia M, Zhang Q, Jian A, Ji R, Zhang L, Lu Y, Huang Y, Shen P. Lipid synthesis, triggered by PPARγ T166 dephosphorylation, sustains reparative function of macrophages during tissue repair. Nat Commun 2024; 15:7269. [PMID: 39179603 PMCID: PMC11343878 DOI: 10.1038/s41467-024-51736-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Macrophages may acquire a reparative phenotype that supports tissue repair and remodeling in response to tissue injury. However, the metabolic requirements underpinning this process are incompletely understood. Here, we show that posttranslational modification (PTM) of PPARγ regulates lipid synthesis in response to wound microenvironmental cues and that metabolic rewiring orchestrates function of reparative macrophages. In injured tissues, repair signaling leads to decreased macrophage PPARγ threonine 166 (T166) phosphorylation, which results in a partially active PPARγ transcriptional program comprised of increased binding activity to the regulator regions of lipid synthesis-associated genes, thereby increased lipogenesis. The accumulated lipids serve as signaling molecules, triggering STAT3-mediated growth factor expression, and supporting the synthesis of phospholipids for the expansion of the endoplasmic reticulum (ER), which is required for protein secretion. Genetic or pharmacological inhibition of PPARγ T166 phosphorylation promotes the reparative function of macrophages and facilitates tissue regeneration. In summary, our work identifies PPARγ T166-regulated lipid biosynthesis as an essential pathway for meeting the anabolic demands of the activation and function of macrophages and provides a rationale for potential therapeutic targeting of tissue repair.
Collapse
Affiliation(s)
- Shiman Zuo
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuxin Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hanjing Bao
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zehui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Nanfei Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Meng Jia
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qing Zhang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Ani Jian
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lidan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yan Lu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yahong Huang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China.
| |
Collapse
|
25
|
He Y, Xu H, Liu Y, Kempa S, Vechiatto C, Schmidt R, Yilmaz EY, Heidemann L, Schnorr J, Metzkow S, Schellenberger E, Häckel A, Patzak A, Müller DN, Savic LJ. The Effects of Hypoxia on the Immune-Metabolic Interplay in Liver Cancer. Biomolecules 2024; 14:1024. [PMID: 39199411 PMCID: PMC11352590 DOI: 10.3390/biom14081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
M2-like macrophages promote tumor growth and cancer immune evasion. This study used an in vitro model to investigate how hypoxia and tumor metabolism affect macrophage polarization. Liver cancer cells (HepG2 and VX2) and macrophages (THP1) were cultured under hypoxic (0.1% O2) and normoxic (21% O2) conditions with varying glucose levels (2 g/L or 4.5 g/L). Viability assays and extracellular pH (pHe) measurements were conducted over 96 hours. Macrophages were exposed to the tumor-conditioned medium (TCM) from the cancer cells, and polarization was assessed using arginase and nitrite assays. GC-MS-based metabolic profiling quantified TCM meta-bolites and correlated them with M2 polarization. The results showed that pHe in TCMs decreased more under hypoxia than normoxia (p < 0.0001), independent of glucose levels. The arginase assay showed hypoxia significantly induced the M2 polarization of macrophages (control group: p = 0.0120,0.1%VX2-TCM group: p = 0.0149, 0.1%HepG2-TCM group: p < 0.0001, 0.1%VX2-TCMHG group: p = 0.0001, and 0.1%HepG2-TCMHG group: p < 0.0001). TCMs also induced M2 polarization under normoxic conditions, but the strongest M2 polarization occurred when both tumor cells and macrophages were incubated under hypoxia with high glucose levels. Metabolomics revealed that several metabolites, particularly lactate, were correlated with hypoxia and M2 polarization. Under normoxia, elevated 2-amino-butanoic acid (2A-BA) strongly correlated with M2 polarization. These findings suggest that targeting tumor hypoxia could mitigate immune evasion in liver tumors. Lactate drives acidity in hypoxic tumors, while 2A-BA could be a therapeutic target for overcoming immunosuppression in normoxic conditions.
Collapse
Affiliation(s)
- Yubei He
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Han Xu
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Yu Liu
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Stefan Kempa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (S.K.); (C.V.)
| | - Carolina Vechiatto
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (S.K.); (C.V.)
| | - Robin Schmidt
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Emine Yaren Yilmaz
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Luisa Heidemann
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Jörg Schnorr
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Susanne Metzkow
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Eyk Schellenberger
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Akvile Häckel
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Andreas Patzak
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Dominik N. Müller
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (S.K.); (C.V.)
| | - Lynn Jeanette Savic
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
26
|
Zhao J, Zhang K, Sui D, Wang S, Li Y, Tang X, Liu X, Song Y, Deng Y. Recent advances in sialic acid-based active targeting chemoimmunotherapy promoting tumor shedding: a systematic review. NANOSCALE 2024; 16:14621-14639. [PMID: 39023195 DOI: 10.1039/d4nr01740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Tumors have always been a major public health concern worldwide, and attempts to look for effective treatments have never ceased. Sialic acid is known to be a crucial element for tumor development and its receptors are highly expressed on tumor-associated immune cells, which perform significant roles in establishing the immunosuppressive tumor microenvironment and further boosting tumorigenesis, progression, and metastasis. Obviously, it is essential to consider sophisticated crosstalk between tumors, the immune system, and preparations, and understand the links between pharmaceutics and immunology. Sialic acid-based chemoimmunotherapy enables active targeting drug delivery via mediating the recognition between the sialic acid-modified nano-drug delivery system represented by liposomes and sialic acid-binding receptors on tumor-associated immune cells, which inhibit their activity and utilize their homing ability to deliver drugs. Such a "Trojan horse" strategy has remarkably improved the shortcomings of traditional passive targeting treatments, unexpectedly promoted tumor shedding, and persistently induced robust immunological memory, thus highlighting its prospective application potential for targeting various tumors. Herein, we review recent advances in sialic acid-based active targeting chemoimmunotherapy to promote tumor shedding, summarize the current viewpoints on the tumor shedding mechanism, especially the formation of durable immunological memory, and analyze the challenges and opportunities of this attractive approach.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Kunfeng Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yantong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| |
Collapse
|
27
|
Wang H, Rouhi N, Slotabec LA, Seale BC, Wen C, Filho F, Adenawoola MI, Li J. Myeloid Cells in Myocardial Ischemic Injury: The Role of the Macrophage Migration Inhibitory Factor. Life (Basel) 2024; 14:981. [PMID: 39202723 PMCID: PMC11355293 DOI: 10.3390/life14080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Ischemic heart disease, manifesting as myocardial infarction (MI), remains the leading cause of death in the western world. Both ischemia and reperfusion (I/R) cause myocardial injury and result in cardiac inflammatory responses. This sterile inflammation in the myocardium consists of multiple phases, involving cell death, tissue remodeling, healing, and scar formation, modulated by various cytokines, including the macrophage migration inhibitory factor (MIF). Meanwhile, different immune cells participate in these phases, with myeloid cells acting as first responders. They migrate to the injured myocardium and regulate the initial phase of inflammation. The MIF modulates the acute inflammatory response by affecting the metabolic profile and activity of myeloid cells. This review summarizes the role of the MIF in regulating myeloid cell subsets in MI and I/R injury and discusses emerging evidence of metabolism-directed cellular inflammatory responses. Based on the multifaceted role of the MIF affecting myeloid cells in MI or I/R, the MIF can be a therapeutic target to achieve metabolic balance under pathology and alleviate inflammation in the heart.
Collapse
Affiliation(s)
- Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Lily A. Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| | - Blaise C. Seale
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Changhong Wen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Fernanda Filho
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Michael I. Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
28
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
29
|
Wang M, Flaswinkel H, Joshi A, Napoli M, Masgrau-Alsina S, Kamper JM, Henne A, Heinz A, Berouti M, Schmacke NA, Hiller K, Kremmer E, Wefers B, Wurst W, Sperandio M, Ruland J, Fröhlich T, Hornung V. Phosphorylation of PFKL regulates metabolic reprogramming in macrophages following pattern recognition receptor activation. Nat Commun 2024; 15:6438. [PMID: 39085210 PMCID: PMC11291651 DOI: 10.1038/s41467-024-50104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Innate immune responses are linked to key metabolic pathways, yet the proximal signaling events that connect these systems remain poorly understood. Here we show that phosphofructokinase 1, liver type (PFKL), a rate-limiting enzyme of glycolysis, is phosphorylated at Ser775 in macrophages following several innate stimuli. This phosphorylation increases the catalytic activity of PFKL, as shown by biochemical assays and glycolysis monitoring in cells expressing phosphorylation-defective PFKL variants. Using a genetic mouse model in which PFKL Ser775 phosphorylation cannot take place, we observe that upon activation, glycolysis in macrophages is lower than in the same cell population of wild-type animals. Consistent with their higher glycolytic activity, wild-type cells have higher levels of HIF1α and IL-1β than PfklS775A/S775A after LPS treatment. In an in vivo inflammation model, PfklS775A/S775A mice show reduced levels of MCP-1 and IL-1β. Our study thus identifies a molecular link between innate immune activation and early induction of glycolysis.
Collapse
Affiliation(s)
- Meiyue Wang
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heinrich Flaswinkel
- Faculty of Biology, Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Abhinav Joshi
- TranslaTUM, Center of Translational Cancer Research, Technische Universität München, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technische Universität München, Munich, Germany
| | - Matteo Napoli
- Faculty of Medicine Biomedical Center, Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Sergi Masgrau-Alsina
- Faculty of Medicine Biomedical Center, Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Julia M Kamper
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Antonia Henne
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Alexander Heinz
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marleen Berouti
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Niklas A Schmacke
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karsten Hiller
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Elisabeth Kremmer
- Faculty of Biology, Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Benedikt Wefers
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus Sperandio
- Faculty of Medicine Biomedical Center, Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Jürgen Ruland
- TranslaTUM, Center of Translational Cancer Research, Technische Universität München, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technische Universität München, Munich, Germany
| | - Thomas Fröhlich
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
30
|
Lee J, Mani A, Shin MJ, Krauss RM. Leveraging altered lipid metabolism in treating B cell malignancies. Prog Lipid Res 2024; 95:101288. [PMID: 38964473 PMCID: PMC11347096 DOI: 10.1016/j.plipres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
B cell malignancies, comprising over 80 heterogeneous blood cancers, pose significant prognostic challenges due to intricate oncogenic signaling. Emerging evidence emphasizes the pivotal role of disrupted lipid metabolism in the development of these malignancies. Variations in lipid species, such as phospholipids, cholesterol, sphingolipids, and fatty acids, are widespread across B cell malignancies, contributing to uncontrolled cell proliferation and survival. Phospholipids play a crucial role in initial signaling cascades leading to B cell activation and malignant transformation through constitutive B cell receptor (BCR) signaling. Dysregulated cholesterol and sphingolipid homeostasis support lipid raft integrity, crucial for propagating oncogenic signals. Sphingolipids impact malignant B cell stemness, proliferation, and survival, while glycosphingolipids in lipid rafts modulate BCR activation. Additionally, cancer cells enhance fatty acid-related processes to meet heightened metabolic demands. In obese individuals, the obesity-derived lipids and adipokines surrounding adipocytes rewire lipid metabolism in malignant B cells, evading cytotoxic therapies. Genetic drivers such as MYC translocations also intrinsically alter lipid metabolism in malignant B cells. In summary, intrinsic and extrinsic factors converge to reprogram lipid metabolism, fostering aggressive phenotypes in B cell malignancies. Therefore, targeting altered lipid metabolism has translational potential for improving risk stratification and clinical management of diverse B cell malignancy subtypes.
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea; Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA.
| | - Arya Mani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511, USA; Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Min-Jeong Shin
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Ronald M Krauss
- Department of Pediatrics and Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
31
|
Gu J, Xu X, Li X, Yue L, Zhu X, Chen Q, Gao J, Takashi M, Zhao W, Zhao B, Zhang Y, Lin M, Zhou J, Liang Y, Dai S, Pan Y, Shao Q, Li Y, Wang Y, Xu Z, Qian Q, Huang T, Qian X, Lu L. Tumor-resident microbiota contributes to colorectal cancer liver metastasis by lactylation and immune modulation. Oncogene 2024; 43:2389-2404. [PMID: 38890429 PMCID: PMC11281901 DOI: 10.1038/s41388-024-03080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
The role of tumor-resident microbiota in modulating tumor immunity remains unclear. Here, we discovered an abundance of intra-tumoral bacteria, such us E.coli, residing and resulting in Colorectal cancer liver metastasis (CRLM). E.coli enhanced lactate production, which mediated M2 macrophage polarization by suppressing nuclear factor-κB -gene binding (NF-κB) signaling through retinoic acid-inducible gene 1 (RIG-I) lactylation. Lactylation of RIG-I suppressed recruitment of NF-κB to the Nlrp3 promoter in macrophages, thereby reducing its transcription. This loss of Nlrp3 affected the immunosuppressive activities of regulatory T cells (Tregs) and the antitumor activities of and CD8+ T cells. Small-molecule compound screening identified a RIG-I lactylation inhibitor that suppressed M2 polarization and sensitized CRLM to 5-fluorouracil (5-FU). Our findings suggest that tumor-resident microbiota may be a potential target for preventing and treating CRLM.
Collapse
Affiliation(s)
- Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Xiaozhang Xu
- Department of General Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangyu Li
- Department of General Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Yue
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaowen Zhu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qiuyang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ji Gao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | | | - Wenhu Zhao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Yue Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Minjie Lin
- The Clinical Skills Training Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yuan Liang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Shipeng Dai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yufeng Pan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Qing Shao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yu Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yiming Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zibo Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qufei Qian
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tianning Huang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaofeng Qian
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
- Department of General Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
32
|
Harjunpää H, Somermäki R, Saldo Rubio G, Fusciello M, Feola S, Faisal I, Nieminen AI, Wang L, Llort Asens M, Zhao H, Eriksson O, Cerullo V, Fagerholm SC. Loss of β2-integrin function results in metabolic reprogramming of dendritic cells, leading to increased dendritic cell functionality and anti-tumor responses. Oncoimmunology 2024; 13:2369373. [PMID: 38915784 PMCID: PMC11195491 DOI: 10.1080/2162402x.2024.2369373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
Dendritic cells (DCs) are the main antigen presenting cells of the immune system and are essential for anti-tumor responses. DC-based immunotherapies are used in cancer treatment, but their functionality is not optimized and their clinical efficacy is currently limited. Approaches to improve DC functionality in anti-tumor immunity are therefore required. We have previously shown that the loss of β2-integrin-mediated adhesion leads to epigenetic reprogramming of bone marrow-derived DCs (BM-DCs), resulting in an increased expression of costimulatory markers (CD86, CD80, and CD40), cytokines (IL-12) and the chemokine receptor CCR7. We now show that the loss of β2-integrin-mediated adhesion of BM-DCs also leads to a generally suppressed metabolic profile, with reduced metabolic rate, decreased ROS production, and lowered glucose uptake in cells. The mRNA levels of glycolytic enzymes and glucose transporters were reduced, indicating transcriptional regulation of the metabolic phenotype. Surprisingly, although signaling through a central regulator of immune cell metabolisms, the mechanistic target of rapamycin (mTOR), was increased in BM-DCs with dysfunctional integrins, rapamycin treatment revealed that mTOR signaling was not involved in suppressing DC metabolism. Instead, bioinformatics and functional analyses showed that the Ikaros transcription factor may be involved in regulating the metabolic profile of non-adhesive DCs. Inversely, we found that induction of metabolic stress through treatment of cells with low levels of an inhibitor of glycolysis, 2-deoxyglucose (2DG), led to increased BM-DC activation. Specifically, 2DG treatment led to increased levels of Il-12 and Ccr7 mRNA, increased production of IL-12, increased levels of cell surface CCR7 and increased in vitro migration and T cell activation potential. Furthermore, 2DG treatment led to increased histone methylation in cells (H3K4me3, H3K27me3), indicating metabolic reprogramming. Finally, metabolic stress induced by 2DG treatment led to improved BM-DC-mediated anti-tumor responses in vivo in a melanoma cancer model, B16-OVA. In conclusion, our results indicate a role for β2-integrin-mediated adhesion in regulating a novel type of metabolic reprogramming of DCs and DC-mediated anti-tumor responses, which may be targeted to enhance DC-mediated anti-tumor responses in cancer immunotherapy.
Collapse
Affiliation(s)
- Heidi Harjunpää
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Riku Somermäki
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Guillem Saldo Rubio
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Sara Feola
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Imrul Faisal
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Liang Wang
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Hongxia Zhao
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ove Eriksson
- Biochemistry and Developmental biology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Liu B, Li S, Cheng Y, Song P, Xu M, Li Z, Shao W, Xin J, Fu Z, Gu D, Du M, Zhang Z, Wang M. Distinctive multicellular immunosuppressive hubs confer different intervention strategies for left- and right-sided colon cancers. Cell Rep Med 2024; 5:101589. [PMID: 38806057 PMCID: PMC11228667 DOI: 10.1016/j.xcrm.2024.101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Primary colon cancers arising from the left and right sides exhibit distinct clinical and molecular characteristics. Sidedness-associated heterogeneity relies intricately on the oncogenic properties of cancer cells and multicellular interactions in tumor microenvironments. Here, combining transcriptomic profiling of 426,863 single cells from 105 colon cancer patients and validation with spatial transcriptomics and large-scale histological analysis, we capture common transcriptional heterogeneity patterns between left- and right-sided malignant epithelia through delineating two side-specific expression meta-programs. The proliferation stemness meta-program is notably enriched in left-sided malignant epithelia that colocalize with Mph-PLTP cells, activated regulatory T cells (Tregs), and exhausted CD8-LAYN cells, constituting the glucose metabolism reprogramming niche. The immune secretory (IS) meta-program exhibits specific enrichment in right-sided malignant epithelia, especially in smoking patients with right-sided colon cancer. The IShigh malignant epithelia spatially localize in hypoxic regions and facilitate immune evasion through attenuating Mph-SPP1 cell antigen presentation and recruiting innate-like cytotoxicity-reduced CD8-CD161 cells.
Collapse
Affiliation(s)
- Bingxin Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yifei Cheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Song
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Menghuan Xu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengyi Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Shao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
34
|
Zhang S, Zhang Y, Duan X, Wang B, Zhan Z. Targeting NPM1 Epigenetically Promotes Postinfarction Cardiac Repair by Reprogramming Reparative Macrophage Metabolism. Circulation 2024; 149:1982-2001. [PMID: 38390737 PMCID: PMC11175795 DOI: 10.1161/circulationaha.123.065506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Reparative macrophages play a crucial role in limiting excessive fibrosis and promoting cardiac repair after myocardial infarction (MI), highlighting the significance of enhancing their reparative phenotype for wound healing. Metabolic adaptation orchestrates the phenotypic transition of macrophages; however, the precise mechanisms governing metabolic reprogramming of cardiac reparative macrophages remain poorly understood. In this study, we investigated the role of NPM1 (nucleophosmin 1) in the metabolic and phenotypic shift of cardiac macrophages in the context of MI and explored the therapeutic effect of targeting NPM1 for ischemic tissue repair. METHODS Peripheral blood mononuclear cells were obtained from healthy individuals and patients with MI to explore NPM1 expression and its correlation with prognostic indicators. Through RNA sequencing, metabolite profiling, histology, and phenotype analyses, we investigated the role of NPM1 in postinfarct cardiac repair using macrophage-specific NPM1 knockout mice. Epigenetic experiments were conducted to study the mechanisms underlying metabolic reprogramming and phenotype transition of NPM1-deficient cardiac macrophages. The therapeutic efficacy of antisense oligonucleotide and inhibitor targeting NPM1 was then assessed in wild-type mice with MI. RESULTS NPM1 expression was upregulated in the peripheral blood mononuclear cells from patients with MI that closely correlated with adverse prognostic indicators of MI. Macrophage-specific NPM1 deletion reduced infarct size, promoted angiogenesis, and suppressed tissue fibrosis, in turn improving cardiac function and protecting against adverse cardiac remodeling after MI. Furthermore, NPM1 deficiency boosted the reparative function of cardiac macrophages by shifting macrophage metabolism from the inflammatory glycolytic system to oxygen-driven mitochondrial energy production. The oligomeric NPM1 recruited histone demethylase KDM5b to the promoter of Tsc1 (TSC complex subunit 1), the mTOR (mechanistic target of rapamycin kinase) complex inhibitor, reduced histone H3K4me3 modification, and inhibited TSC1 expression, which then facilitated mTOR-related inflammatory glycolysis and antagonized the reparative function of cardiac macrophages. The in vivo administration of antisense oligonucleotide targeting NPM1 or oligomerization inhibitor NSC348884 substantially ameliorated tissue injury and enhanced cardiac recovery in mice after MI. CONCLUSIONS Our findings uncover the key role of epigenetic factor NPM1 in impeding postinfarction cardiac repair by remodeling metabolism pattern and impairing the reparative function of cardiac macrophages. NPM1 may serve as a promising prognostic biomarker and a valuable therapeutic target for heart failure after MI.
Collapse
Affiliation(s)
- Sheng Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China (S.Z., X.D., Z.Z.)
| | - Yunkai Zhang
- Naval Medical Center, Naval Medical University, Shanghai, China (Y.Z.)
| | - Xuewen Duan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China (S.Z., X.D., Z.Z.)
| | - Bo Wang
- Shanghai Institute of Transplantation, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Z.Z., B.W.)
| | - Zhenzhen Zhan
- Shanghai Institute of Transplantation, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Z.Z., B.W.)
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China (S.Z., X.D., Z.Z.)
| |
Collapse
|
35
|
Kaviraj M, Kumar U, Snigdha A, Chatterjee S. Nitrate reduction to ammonium: a phylogenetic, physiological, and genetic aspects in Prokaryotes and eukaryotes. Arch Microbiol 2024; 206:297. [PMID: 38861039 DOI: 10.1007/s00203-024-04009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
The microbe-mediated conversion of nitrate (NO3-) to ammonium (NH4+) in the nitrogen cycle has strong implications for soil health and crop productivity. The role of prokaryotes, eukaryotes and their phylogeny, physiology, and genetic regulations are essential for understanding the ecological significance of this empirical process. Several prokaryotes (bacteria and archaea), and a few eukaryotes (fungi and algae) are reported as NO3- reducers under certain conditions. This process involves enzymatic reactions which has been catalysed by nitrate reductases, nitrite reductases, and NH4+-assimilating enzymes. Earlier reports emphasised that single-cell prokaryotic or eukaryotic organisms are responsible for this process, which portrayed a prominent gap. Therefore, this study revisits the similarities and uniqueness of mechanism behind NO3- -reduction to NH4+ in both prokaryotes and eukaryotes. Moreover, phylogenetic, physiological, and genetic regulation also shed light on the evolutionary connections between two systems which could help us to better explain the NO3--reduction mechanisms over time. Reports also revealed that certain transcription factors like NtrC/NtrB and Nit2 have shown a major role in coordinating the expression of NO3- assimilation genes in response to NO3- availability. Overall, this review provides a comprehensive information about the complex fermentative and respiratory dissimilatory nitrate reduction to ammonium (DNRA) processes. Uncovering the complexity of this process across various organisms may further give insight into sustainable nitrogen management practices and might contribute to addressing global environmental challenges.
Collapse
Affiliation(s)
- Megha Kaviraj
- ICAR- National Rice Research Institute, Cuttack, 753006, Odisha, India.
- The University of Burdwan, Burdwan, 713104, West Bengal, India.
| | - Upendra Kumar
- ICAR- National Rice Research Institute, Cuttack, 753006, Odisha, India.
| | - Alisha Snigdha
- Siksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India
| | | |
Collapse
|
36
|
Li H, Wang S, Yang Z, Meng X, Niu M. Nanomaterials modulate tumor-associated macrophages for the treatment of digestive system tumors. Bioact Mater 2024; 36:376-412. [PMID: 38544737 PMCID: PMC10965438 DOI: 10.1016/j.bioactmat.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 11/25/2024] Open
Abstract
The treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity. Additionally, nanomaterials target immunosuppressive cells and reshape the tumor immune microenvironment (TIME). Among the various cells in the TIME, tumor-associated macrophages (TAMs) are the most abundant and play a crucial role in tumor progression. Therefore, investigating the modulation of TAMs by nanomaterials for the treatment of digestive system tumors is of great significance. Here, we present a comprehensive review of the utilization of nanomaterials to modulate TAMs for the treatment of gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer. We also investigated the underlying mechanisms by which nanomaterials modulate TAMs to treat tumors in the digestive system. Furthermore, this review summarizes the role of macrophage-derived nanomaterials in the treatment of digestive system tumors. Overall, this research offers valuable insights into the development of nanomaterials tailored for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Hao Li
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Niu
- China Medical University, Shenyang, China
| |
Collapse
|
37
|
Marques E, Kramer R, Ryan DG. Multifaceted mitochondria in innate immunity. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:6. [PMID: 38812744 PMCID: PMC11129950 DOI: 10.1038/s44324-024-00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024]
Abstract
The ability of mitochondria to transform the energy we obtain from food into cell phosphorylation potential has long been appreciated. However, recent decades have seen an evolution in our understanding of mitochondria, highlighting their significance as key signal-transducing organelles with essential roles in immunity that extend beyond their bioenergetic function. Importantly, mitochondria retain bacterial motifs as a remnant of their endosymbiotic origin that are recognised by innate immune cells to trigger inflammation and participate in anti-microbial defence. This review aims to explore how mitochondrial physiology, spanning from oxidative phosphorylation (OxPhos) to signalling of mitochondrial nucleic acids, metabolites, and lipids, influences the effector functions of phagocytes. These myriad effector functions include macrophage polarisation, efferocytosis, anti-bactericidal activity, antigen presentation, immune signalling, and cytokine regulation. Strict regulation of these processes is critical for organismal homeostasis that when disrupted may cause injury or contribute to disease. Thus, the expanding body of literature, which continues to highlight the central role of mitochondria in the innate immune system, may provide insights for the development of the next generation of therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Eloïse Marques
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Robbin Kramer
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Dylan G. Ryan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Xu B, Liu Y, Li N, Geng Q. Lactate and lactylation in macrophage metabolic reprogramming: current progress and outstanding issues. Front Immunol 2024; 15:1395786. [PMID: 38835758 PMCID: PMC11148263 DOI: 10.3389/fimmu.2024.1395786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
It is commonly known that different macrophage phenotypes play specific roles in different pathophysiological processes. In recent years, many studies have linked the phenotypes of macrophages to their characteristics in different metabolic pathways, suggesting that macrophages can perform different functions through metabolic reprogramming. It is now gradually recognized that lactate, previously overlooked as a byproduct of glycolytic metabolism, acts as a signaling molecule in regulating multiple biological processes, including immunological responses and metabolism. Recently, lactate has been found to mediate epigenetic changes in macrophages through a newfound lactylation modification, thereby regulating their phenotypic transformation. This novel finding highlights the significant role of lactate metabolism in macrophage function. In this review, we summarize the features of relevant metabolic reprogramming in macrophages and the role of lactate metabolism therein. We also review the progress of research on the regulation of macrophage metabolic reprogramming by lactylation through epigenetic mechanisms.
Collapse
Affiliation(s)
- Bangjun Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
39
|
Liu Y, Kwok W, Yoon H, Ryu JC, Stevens P, Hawkinson TR, Shedlock CJ, Ribas RA, Medina T, Keohane SB, Scharre D, Bruschweiler-Li L, Bruschweiler R, Gaultier A, Obrietan K, Sun RC, Yoon SO. Imbalance in Glucose Metabolism Regulates the Transition of Microglia from Homeostasis to Disease-Associated Microglia Stage 1. J Neurosci 2024; 44:e1563232024. [PMID: 38565291 PMCID: PMC11097271 DOI: 10.1523/jneurosci.1563-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Microglia undergo two-stage activation in neurodegenerative diseases, known as disease-associated microglia (DAM). TREM2 mediates the DAM2 stage transition, but what regulates the first DAM1 stage transition is unknown. We report that glucose dyshomeostasis inhibits DAM1 activation and PKM2 plays a role. As in tumors, PKM2 was aberrantly elevated in both male and female human AD brains, but unlike in tumors, it is expressed as active tetramers, as well as among TREM2+ microglia surrounding plaques in 5XFAD male and female mice. snRNAseq analyses of microglia without Pkm2 in 5XFAD mice revealed significant increases in DAM1 markers in a distinct metabolic cluster, which is enriched in genes for glucose metabolism, DAM1, and AD risk. 5XFAD mice incidentally exhibited a significant reduction in amyloid pathology without microglial Pkm2 Surprisingly, microglia in 5XFAD without Pkm2 exhibited increases in glycolysis and spare respiratory capacity, which correlated with restoration of mitochondrial cristae alterations. In addition, in situ spatial metabolomics of plaque-bearing microglia revealed an increase in respiratory activity. These results together suggest that it is not only glycolytic but also respiratory inputs that are critical to the development of DAM signatures in 5XFAD mice.
Collapse
Affiliation(s)
- Yuxi Liu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210
| | - Witty Kwok
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210
| | - Hyojung Yoon
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Jae Cheon Ryu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210
| | - Patrick Stevens
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210
| | - Tara R Hawkinson
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Cameron J Shedlock
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Roberto A Ribas
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Terrymar Medina
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Shannon B Keohane
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Douglas Scharre
- Department of Neurology, The Ohio State University, Columbus, Ohio 43210
| | - Lei Bruschweiler-Li
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Rafael Bruschweiler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Alban Gaultier
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, 22908
| | - Karl Obrietan
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Sung Ok Yoon
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
40
|
Ball AB, Jones AE, Nguyễn KB, Rios A, Marx N, Hsieh WY, Yang K, Desousa BR, Kim KK, Veliova M, del Mundo ZM, Shirihai OS, Benincá C, Stiles L, Bensinger SJ, Divakaruni AS. Pro-inflammatory macrophage activation does not require inhibition of mitochondrial respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593451. [PMID: 38798678 PMCID: PMC11118427 DOI: 10.1101/2024.05.10.593451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Upon classical macrophage activation, oxidative phosphorylation sharply decreases and mitochondria are repurposed to accumulate signals that amplify effector function. However, evidence is conflicting as to whether this collapse in respiration is essential or largely dispensable. Here we systematically examine this question and show that reduced oxidative phosphorylation is not required for pro-inflammatory macrophage activation. Only stimuli that engage both MyD88- and TRIF-linked pathways decrease mitochondrial respiration, and different pro-inflammatory stimuli have varying effects on other bioenergetic parameters. Additionally, pharmacologic and genetic models of electron transport chain inhibition show no direct link between respiration and pro-inflammatory activation. Studies in mouse and human macrophages also reveal accumulation of the signaling metabolites succinate and itaconate can occur independently of characteristic breaks in the TCA cycle. Finally, in vivo activation of peritoneal macrophages further demonstrates that a pro-inflammatory response can be elicited without reductions to oxidative phosphorylation. Taken together, the results suggest the conventional model of mitochondrial reprogramming upon macrophage activation is incomplete.
Collapse
Affiliation(s)
- Andréa B. Ball
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anthony E. Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kaitlyn B. Nguyễn
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amy Rios
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nico Marx
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - Wei Yuan Hsieh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Krista Yang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brandon R. Desousa
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristen K.O. Kim
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michaela Veliova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zena Marie del Mundo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Orian S. Shirihai
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cristiane Benincá
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Linsey Stiles
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Steven J. Bensinger
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ajit S. Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
41
|
Kumar V, Stewart Iv JH. Pattern-Recognition Receptors and Immunometabolic Reprogramming: What We Know and What to Explore. J Innate Immun 2024; 16:295-323. [PMID: 38740018 PMCID: PMC11250681 DOI: 10.1159/000539278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Evolutionarily, immune response is a complex mechanism that protects the host from internal and external threats. Pattern-recognition receptors (PRRs) recognize MAMPs, PAMPs, and DAMPs to initiate a protective pro-inflammatory immune response. PRRs are expressed on the cell membranes by TLR1, 2, 4, and 6 and in the cytosolic organelles by TLR3, 7, 8, and 9, NLRs, ALRs, and cGLRs. We know their downstream signaling pathways controlling immunoregulatory and pro-inflammatory immune response. However, the impact of PRRs on metabolic control of immune cells to control their pro- and anti-inflammatory activity has not been discussed extensively. SUMMARY Immune cell metabolism or immunometabolism critically determines immune cells' pro-inflammatory phenotype and function. The current article discusses immunometabolic reprogramming (IR) upon activation of different PRRs, such as TLRs, NLRs, cGLRs, and RLRs. The duration and type of PRR activated, species studied, and location of immune cells to specific organ are critical factors to determine the IR-induced immune response. KEY MESSAGE The work herein describes IR upon TLR, NLR, cGLR, and RLR activation. Understanding IR upon activating different PRRs is critical for designing better immune cell-specific immunotherapeutics and immunomodulators targeting inflammation and inflammatory diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
42
|
Chen S, Zeng J, Li R, Zhang Y, Tao Y, Hou Y, Yang L, Zhang Y, Wu J, Meng X. Traditional Chinese medicine in regulating macrophage polarization in immune response of inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117838. [PMID: 38310986 DOI: 10.1016/j.jep.2024.117838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Numerous studies have demonstrated that various traditional Chinese medicines (TCMs) exhibit potent anti-inflammatory effects against inflammatory diseases mediated through macrophage polarization and metabolic reprogramming. AIM OF THE STUDY The objective of this review was to assess and consolidate the current understanding regarding the pathogenic mechanisms governing macrophage polarization in the context of regulating inflammatory diseases. We also summarize the mechanism action of various TCMs on the regulation of macrophage polarization, which may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization. MATERIALS AND METHODS We conducted a comprehensive review of recently published articles, utilizing keywords such as "macrophage polarization" and "traditional Chinese medicines" in combination with "inflammation," as well as "macrophage polarization" and "inflammation" in conjunction with "natural products," and similar combinations, to search within PubMed and Google Scholar databases. RESULTS A total of 113 kinds of TCMs (including 62 components of TCMs, 27 TCMs as well as various types of extracts of TCMs and 24 Chinese prescriptions) was reported to exert anti-inflammatory effects through the regulation of key pathways of macrophage polarization and metabolic reprogramming. CONCLUSIONS In this review, we have analyzed studies concerning the involvement of macrophage polarization and metabolic reprogramming in inflammation therapy. TCMs has great advantages in regulating macrophage polarization in treating inflammatory diseases due to its multi-pathway and multi-target pharmacological action. This review may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization.
Collapse
Affiliation(s)
- Shiyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Rui Li
- The Affiliated Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, PR China
| | - Yingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Ya Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yating Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
43
|
Han X, Bao J, Ni J, Li B, Song P, Wan R, Wang X, Hu G, Chen C. Qing Xia Jie Yi Formula granules alleviated acute pancreatitis through inhibition of M1 macrophage polarization by suppressing glycolysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117750. [PMID: 38216100 DOI: 10.1016/j.jep.2024.117750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal formulas from Traditional Chinese Medicine are common and well-established practice for treating acute pancreatitis (AP) patients. However, little is known about their bioactive ingredients and mechanisms, such as their targets and pathways to inhibit inflammation. AIM OF THE STUDY This study aimed to evaluate the effect of Qing Xia Jie Yi Formula (QXJYF) granules on AP and discuss the molecular mechanisms involved. MATERIALS AND METHODS Major compounds in QXJYF granules were identified using UPLC-quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap MS). The effect of QXJYF granules on experimental AP models both in vitro and in vivo, and detailed mechanisms were clarified. Two AP models were induced in mice by intraperitoneally injections of caerulein or L-arginine, and QXJYF granules were used to treat AP mice in vivo. Histological evaluation of pancreas and lung, serum amylase and lipase levels, serum inflammatory cytokines, inflammatory cell infiltration and macrophage phenotype were assessed. Bone marrow derived macrophages (BMDMs) were cultured and treated with QXJYF granules in vitro. BMDM phenotype and glycolysis levels were measured. Lastly, clinical effect of QXJYF granules on AP patients was verified. Predicted severe AP (pSAP) patients eligible for inclusion were assessed for enrollment. RESULTS Nine major compounds were identified in QXJYF granules. Data showed that QXJYF granules significantly alleviated AP severity both in caerulein and L-arginine-induced AP models in vivo, pancreatic injury and inflammatory cell infiltration, systematic inflammation, lung injury and inflammatory cell infiltration were all improved after QXJYF treatment. QXJYF granules significantly reduced M1 macrophages during AP both in vivo and in vitro; besides, the mRNA expression levels of M1 genes such as inos, Tnfα, Il1β and Il6 were significantly lower after QXJYF treatment in M1 macrophages. Mechanistically, we found that HK2, PFKFB3, PKM, LDHα levels were increased in M1 macrophages, but significantly decreased after QXJYF treatment. Clinical data indicated that QXJYF granules could significantly reduce CRP levels and shorten the duration of organ failure, thereby reducing the incidence of SAP and preventing pSAP patients from progressing to SAP. CONCLUSION QXJYF granules alleviated AP through the inhibition of M1 macrophage polarization by suppressing glycolysis.
Collapse
Affiliation(s)
- Xiao Han
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingpiao Bao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengli Song
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Congying Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Yurakova TR, Gorshkova EA, Nosenko MA, Drutskaya MS. Metabolic Adaptations and Functional Activity of Macrophages in Homeostasis and Inflammation. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:817-838. [PMID: 38880644 DOI: 10.1134/s0006297924050043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 06/18/2024]
Abstract
In recent years, the role of cellular metabolism in immunity has come into the focus of many studies. These processes form a basis for the maintenance of tissue integrity and homeostasis, as well as represent an integral part of the immune response, in particular, inflammation. Metabolic adaptations not only ensure energy supply for immune response, but also affect the functions of immune cells by controlling transcriptional and post-transcriptional programs. Studying the immune cell metabolism facilitates the search for new treatment approaches, especially for metabolic disorders. Macrophages, innate immune cells, are characterized by a high functional plasticity and play a key role in homeostasis and inflammation. Depending on the phenotype and origin, they can either perform various regulatory functions or promote inflammation state, thus exacerbating the pathological condition. Furthermore, their adaptations to the tissue-specific microenvironment influence the intensity and type of immune response. The review examines the effect of metabolic reprogramming in macrophages on the functional activity of these cells and their polarization. The role of immunometabolic adaptations of myeloid cells in tissue homeostasis and in various pathological processes in the context of inflammatory and metabolic diseases is specifically discussed. Finally, modulation of the macrophage metabolism-related mechanisms reviewed as a potential therapeutic approach.
Collapse
Affiliation(s)
- Taisiya R Yurakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ekaterina A Gorshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Maxim A Nosenko
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02F306, Ireland
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
| |
Collapse
|
45
|
Wang X, Liang Y, Li J, Wang J, Yin G, Chen Z, Huang Z, Pu X. Artificial periosteum promotes bone regeneration through synergistic immune regulation of aligned fibers and BMSC-recruiting phages. Acta Biomater 2024; 180:262-278. [PMID: 38579918 DOI: 10.1016/j.actbio.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Given the crucial role of periosteum in bone repair, the use of artificial periosteum to induce spontaneous bone healing instead of using bone substitutes has become a potential strategy. Also, the proper transition from pro-inflammatory signals to anti-inflammatory signals is pivotal for achieving optimal repair outcomes. Hence, we designed an artificial periosteum loaded with a filamentous bacteriophage clone named P11, featuring an aligned fiber morphology. P11 endowed the artificial periosteum with the capacity to recruit bone marrow mesenchymal stem cells (BMSCs). The artificial periosteum also regulated the immune microenvironment at the bone injury site through the synergistic effects of biochemical factors and topography. Specifically, the inclusion of P11 preserved inflammatory signaling in macrophages and additionally facilitated the migration of BMSCs. Subsequently, aligned fibers stimulated macrophages, inducing alterations in cytoskeletal and metabolic activities, resulting in the polarization into the M2 phenotype. This progression encouraged the osteogenic differentiation of BMSCs and promoted vascularization. In vivo experiments showed that the new bone generated in the AP group exhibited the most efficient healing pattern. Overall, the integration of biochemical factors with topographical considerations for sequential immunomodulation during bone repair indicates a promising approach for artificial periosteum development. STATEMENT OF SIGNIFICANCE: The appropriate transition of macrophages from a pro-inflammatory to an anti-inflammatory phenotype is pivotal for achieving optimal bone repair outcomes. Hence, we designed an artificial periosteum featuring an aligned fiber morphology and loaded with specific phage clones. The artificial periosteum not only fostered the recruitment of BMSCs but also achieved sequential regulation of the immune microenvironment through the synergistic effects of biochemical factors and topography, and improved the effect of bone repair. This study indicates that the integration of biochemical factors with topographical considerations for sequential immunomodulation during bone repair is a promising approach for artificial periosteum development.
Collapse
Affiliation(s)
- Xingming Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Yingyue Liang
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Jingtao Li
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Zhuo Chen
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
46
|
Williams D, Hargrove-Wiley E, Bindeman W, Valent D, Miranda AX, Beckstead J, Fingleton B. Type II Interleukin-4 Receptor Activation in Basal Breast Cancer Cells Promotes Tumor Progression via Metabolic and Epigenetic Modulation. Int J Mol Sci 2024; 25:4647. [PMID: 38731867 PMCID: PMC11083536 DOI: 10.3390/ijms25094647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Interleukin-4 (IL4) is a Th2 cytokine that can signal through two different receptors, one of which-the type II receptor-is overexpressed by various cancer cells. Previously, we have shown that type II IL4 receptor signaling increases proliferation and metastasis in mouse models of breast cancer, as well as increasing glucose and glutamine metabolism. Here, we expand on those findings to determine mechanistically how IL4 signaling links glucose metabolism and histone acetylation to drive proliferation in the context of triple-negative breast cancer (TNBC). We used a combination of cellular, biochemical, and genomics approaches to interrogate TNBC cell lines, which represent a cancer type where high expression of the type II IL4 receptor is linked to reduced survival. Our results indicate that type II IL4 receptor activation leads to increased glucose uptake, Akt and ACLY activation, and histone acetylation in TNBC cell lines. Inhibition of glucose uptake through the deletion of Glut1 ablates IL4-induced proliferation. Additionally, pharmacological inhibition of histone acetyltransferase P300 attenuates IL4-mediated gene expression and proliferation in vitro. Our work elucidates a role for type II IL4 receptor signaling in promoting TNBC progression, and highlights type II IL4 signaling, as well as histone acetylation, as possible targets for therapy.
Collapse
Affiliation(s)
- Demond Williams
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (D.W.); (E.H.-W.); (W.B.); (D.V.); (A.X.M.)
| | - Ebony Hargrove-Wiley
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (D.W.); (E.H.-W.); (W.B.); (D.V.); (A.X.M.)
| | - Wendy Bindeman
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (D.W.); (E.H.-W.); (W.B.); (D.V.); (A.X.M.)
| | - Daniel Valent
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (D.W.); (E.H.-W.); (W.B.); (D.V.); (A.X.M.)
| | - Adam X. Miranda
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (D.W.); (E.H.-W.); (W.B.); (D.V.); (A.X.M.)
| | - Jacob Beckstead
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA;
| | - Barbara Fingleton
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (D.W.); (E.H.-W.); (W.B.); (D.V.); (A.X.M.)
| |
Collapse
|
47
|
Shan M, Wan H, Ran L, Ye J, Xie W, Lu J, Hu X, Deng S, Zhang W, Chen M, Wang F, Guo Z. Dynasore Alleviates LPS-Induced Acute Lung Injury by Inhibiting NLRP3 Inflammasome-Mediated Pyroptosis. Drug Des Devel Ther 2024; 18:1369-1384. [PMID: 38681210 PMCID: PMC11055558 DOI: 10.2147/dddt.s444408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Background Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinically severe respiratory disorders without available pharmacological therapies. Dynasore is a cell-permeable molecule that inhibits GTPase activity and exerts protective effects in several disease models. However, whether dynasore can alleviate lipopolysaccharide (LPS)-induced ALI is unknown. This study investigated the effect of dynasore on macrophage activation and explored its potential mechanisms in LPS-induced ALI in vitro and in vivo. Methods Bone marrow-derived macrophages (BMDMs) were activated classically with LPS or subjected to NLRP3 inflammasome activation with LPS+ATP. A mouse ALI model was established by the intratracheal instillation (i.t.) of LPS. The expression of PYD domains-containing protein 3 (NLRP3), caspase-1, and gasdermin D (GSDMD) protein was detected by Western blots. Inflammatory mediators were analyzed in the cell supernatant, in serum and bronchoalveolar lavage fluid (BALF) by enzyme-linked immunosorbent assays. Morphological changes in lung tissues were evaluated by hematoxylin and eosin staining. F4/80, Caspase-1 and GSDMD distribution in lung tissue was detected by immunofluorescence. Results Dynasore downregulated nuclear factor (NF)-κB signaling and reduced proinflammatory cytokine production in vitro and inhibited the production and release of interleukin (IL)-1β, NLRP3 inflammasome activation, and macrophage pyroptosis through the Drp1/ROS/NLRP3 axis. Dynasore significantly reduced lung injury scores and proinflammatory cytokine levels in both BALF and serum in vivo, including IL-1β and IL-6. Dynasore also downregulated the co-expression of F4/80, caspase-1 and GSDMD in lung tissue. Conclusion Collectively, these findings demonstrated that dynasore could alleviate LPS-induced ALI by regulating macrophage pyroptosis, which might provide a new therapeutic strategy for ALI/ARDS.
Collapse
Affiliation(s)
- Mengtian Shan
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Huimin Wan
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Linyu Ran
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jihui Ye
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Wang Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Jingjing Lu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xueping Hu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Shengjie Deng
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Wenyu Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Miao Chen
- Department of Emergency, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, People’s Republic of China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Zhongliang Guo
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Department of Respiratory Medicine, Ji’an Hospital, Shanghai East Hospital, Shanghai, Jiangxi, People’s Republic of China
| |
Collapse
|
48
|
Yuan Y, Zhang Y, Lu X, Li J, Wang M, Zhang W, Zheng M, Sun Z, Xing Y, Li Y, Qu Y, Jiao Y, Han H, Xie C, Mao T. Novel insights into macrophage immunometabolism in nonalcoholic steatohepatitis. Int Immunopharmacol 2024; 131:111833. [PMID: 38503012 DOI: 10.1016/j.intimp.2024.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), an inflammatory subtype of nonalcoholic fatty liver disease (NAFLD), is characterized by liver steatosis, inflammation, hepatocellular injury and different degrees of fibrosis, and has been becoming the leading cause of liver-related morbidity and mortality worldwide. Unfortunately, the pathogenesis of NASH has not been completely clarified, and there are no approved therapeutic drugs. Recent accumulated evidences have revealed the involvement of macrophage in the regulation of host liver steatosis, inflammation and fibrosis, and different phenotypes of macrophages have different metabolic characteristics. Therefore, targeted regulation of macrophage immunometabolism may contribute to the treatment and prognosis of NASH. In this review, we summarized the current evidences of the role of macrophage immunometabolism in NASH, especially focused on the related function conversion, as well as the strategies to promote its polarization balance in the liver, and hold promise for macrophage immunometabolism-targeted therapies in the treatment of NASH.
Collapse
Affiliation(s)
- Yali Yuan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Ye Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Xinyu Lu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Junxiang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Muyuan Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Wenji Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | | | | | - Yunqi Xing
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yitong Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yingdi Qu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yao Jiao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Haixiao Han
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Chune Xie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China; Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, PR China.
| | - Tangyou Mao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China.
| |
Collapse
|
49
|
Xu J, Zhao Y, Tyler Mertens R, Ding Y, Xiao P. Sweet regulation - The emerging immunoregulatory roles of hexoses. J Adv Res 2024:S2090-1232(24)00157-7. [PMID: 38631430 DOI: 10.1016/j.jare.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/20/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND It is widely acknowledged that dietary habits have profound impacts on human health and diseases. As the most important sweeteners and energy sources in human diets, hexoses take part in a broad range of physiopathological processes. In recent years, emerging evidence has uncovered the crucial roles of hexoses, such as glucose, fructose, mannose, and galactose, in controlling the differentiation or function of immune cells. AIM OF REVIEW Herein, we reviewed the latest research progresses in the hexose-mediated modulation of immune responses, provided in-depth analyses of the underlying mechanisms, and discussed the unresolved issues in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Owing to their immunoregulatory effects, hexoses affect the onset and progression of various types of immune disorders, including inflammatory diseases, autoimmune diseases, and tumor immune evasion. Thus, targeting hexose metabolism is becoming a promising strategy for reversing immune abnormalities in diseases.
Collapse
Affiliation(s)
- Junjie Xu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuening Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Yimin Ding
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
50
|
Liu X, Xiang R, Fang X, Wang G, Zhou Y. Advances in Metabolic Regulation of Macrophage Polarization State. Immunol Invest 2024; 53:416-436. [PMID: 38206296 DOI: 10.1080/08820139.2024.2302828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Macrophages are significant immune-related cells that are essential for tissue growth, homeostasis maintenance, pathogen resistance, and damage healing. The studies on the metabolic control of macrophage polarization state in recent years and the influence of polarization status on the development and incidence of associated disorders are expounded upon in this article. Firstly, we reviewed the origin and classification of macrophages, with particular attention paid to how the tricarboxylic acid cycle and the three primary metabolites affect macrophage polarization. The primary metabolic hub that controls macrophage polarization is the tricarboxylic acid cycle. Finally, we reviewed the polarization state of macrophages influences the onset and progression of cancers, inflammatory disorders, and other illnesses.
Collapse
Affiliation(s)
- Xin Liu
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Ruoxuan Xiang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Xue Fang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Guodong Wang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Yuyan Zhou
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| |
Collapse
|