1
|
Kojima F, Hioki Y, Sumida M, Iizuka Y, Kashiwagi H, Eto K, Arichi S, Maehana S, Kubo M, Uchida HA, Ichikawa T. Genetic deletion of microsomal prostaglandin E synthase-1 promotes imiquimod-induced psoriasis in mice. Inflamm Regen 2025; 45:18. [PMID: 40481552 PMCID: PMC12142878 DOI: 10.1186/s41232-025-00385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 05/29/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory disease associated with abnormalities in the immune system. Microsomal prostaglandin E synthase-1 (mPGES-1), a terminal enzyme for prostaglandin (PG) E2 biosynthesis, is highly expressed in the skin of psoriasis patients. However, the detailed role of mPGES-1 in psoriasis remains unclear. In the present study, we aimed to investigate the role of mPGES-1 in psoriasis-like skin inflammation induced by imiquimod (IMQ), a well-established model of psoriasis. METHODS Psoriasis was induced in mPGES-1-deficient (mPGES-1-/-) and wild-type (WT) mice by administering IMQ for 6 days. Psoriasis was evaluated based on the scores of the macroscopic symptoms, including skin scaling, thickness, and redness, and on the histological features. The skin expression of mPGES-1 was determined by real-time polymerase chain reaction and Western blotting. The impact of mPGES-1 deficiency on T-cell immunity was determined by flow cytometry and γδ T-cell depletion in vivo with anti-T-cell receptor (TCR) γδ antibody. RESULTS The inflamed skin of mPGES-1-/- mice showed severe symptoms after the administration of IMQ. Histological analysis further showed significant exacerbation of psoriasis in mPGES-1-/- mice. In WT mice, the mPGES-1 expression was highly induced at both mRNA and protein levels in the skin, and PGE2 increased significantly after IMQ administration, while the PGE2 production was largely abolished in mPGES-1-/- mice. These data indicate that mPGES-1 is the main enzyme responsible for PGE2 production in the skin. Furthermore, the lack of mPGES-1 increased the numbers of IL-17A-producing γδ T cells in the skin with IMQ-induced psoriasis, and γδ T-cell depletion resulted in a reduction of the facilitated psoriasis symptoms under the condition of mPGES-1 deficiency. CONCLUSIONS Our study results demonstrate that mPGES-1 is the main enzyme responsible for skin PGE2 production, and that mPGES-1 deficiency facilitates the development of psoriasis by affecting the development of T-cell-mediated immunity. Therefore, mPGES-1 might impact both skin inflammation and T-cell-mediated immunity associated with psoriasis.
Collapse
Affiliation(s)
- Fumiaki Kojima
- Department of Pharmacology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan.
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan.
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan.
| | - Yuka Hioki
- Department of Pharmacology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan
| | - Miori Sumida
- Department of Pharmacology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan
| | - Yoshiko Iizuka
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan
- Department of Public Health, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan
| | - Hitoshi Kashiwagi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-Jo, Nishi 6-Chome, Kita-Ku, Sapporo, 060-0812, Japan
| | - Kei Eto
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan
- Department of Physiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan
| | - Shiho Arichi
- Department of Physiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan
| | - Shotaro Maehana
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan
- Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan
| | - Makoto Kubo
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan
- Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan
| | - Haruhito A Uchida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Pharmaceutical Science, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0373, Japan
| |
Collapse
|
2
|
Yuan VG, Xia A, Santa Maria PL. Chronic suppurative otitis media: disrupted host-microbial interactions and immune dysregulation. Front Immunol 2025; 16:1547206. [PMID: 40114926 PMCID: PMC11923626 DOI: 10.3389/fimmu.2025.1547206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Recent research has uncovered new mechanisms that disrupt the balance between the host and microbes in the middle ear, potentially leading to dysbiosis and chronic suppurative otitis media (CSOM). Dysbiotic microbial communities, including core pathogens such as persister cells, are recognized for displaying cooperative virulence. These microbial communities not only evade the host's immune defenses but also promote inflammation that leads to tissue damage. This leads to uncontrolled disorder and pathogen proliferation, potentially causing hearing loss and systemic complications. In this discussion, we examine emerging paradigms in the study of CSOM that could provide insights into other polymicrobial inflammatory diseases. Additionally, we underscore critical knowledge gaps essential for developing a comprehensive understanding of how microbes interact with both the innate and adaptive immune systems to trigger and maintain CSOM.
Collapse
Affiliation(s)
- Vincent G. Yuan
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburg, PA, United States
| | - Anping Xia
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburg, PA, United States
| | - Peter L. Santa Maria
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburg, PA, United States
| |
Collapse
|
3
|
Karaś K, Pastwińska J, Sałkowska A, Karwaciak I, Bachorz RA, Ratajewski M. The cyclin-dependent kinase inhibitor AT7519 is a human RORγt agonist. Immunol Cell Biol 2025; 103:317-327. [PMID: 39853787 DOI: 10.1111/imcb.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/18/2024] [Accepted: 01/05/2025] [Indexed: 01/26/2025]
Abstract
AT7519, which inhibits multiple cyclin-dependent kinases, has been extensively investigated in various types of cancer cells. Previous studies have demonstrated the ability of this molecule to suppress the expression of the nuclear receptor retinoic acid-related orphan receptor gamma (RORγ) and several genes involved in hepatocellular carcinoma progression. In this study, we identified a distinct agonistic effect of AT7519 on RORγt, an isoform expressed by various immune cells, including T helper 17 lymphocytes. These immune cells play pivotal roles in shaping the tumor microenvironment and promoting the anticancer response of the immune system. After exposure to AT7519 during differentiation, primary human CD4+ T cells presented increased expression of IL17A/F, IFNG and GZMB and decreased expression of PDCD1 and CTLA4. These findings elucidate a previously unrecognized facet of AT7519 activity and suggest the potential incorporation of this molecule into immune therapies to augment the effectiveness of diverse anticancer strategies involving anti-programmed cell death protein 1 (anti-PD-1) and anti-cytotoxic T-lymphocyte antigen 4 (anti-CTLA4) regimens.
Collapse
Affiliation(s)
- Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Joanna Pastwińska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Anna Sałkowska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Iwona Karwaciak
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Rafał A Bachorz
- Laboratory of Molecular Modeling, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
4
|
Spencer BL, Nguyen DT, Marroquin SM, Gapin L, O’Brien RL, Doran KS. Characterization of the Cellular Immune Response to Group B Streptococcal Vaginal Colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635275. [PMID: 39975125 PMCID: PMC11838357 DOI: 10.1101/2025.01.29.635275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Introduction Group B Streptococcus (GBS) asymptomatic colonizes the female genital tract (FGT) but can contribute to adverse pregnancy outcomes including pre-term birth, chorioamnionitis, and neonatal infection. We previously observed that GBS elicits FGT cytokine responses, including IL-17, during murine vaginal colonization; yet the anti-GBS cellular immune response during colonization remained unknown. We hypothesized that GBS may induce cellular immunity, resulting in FGT clearance. Methods Herein, we utilize depleting antibodies and knockout mice and performed flow cytometry to investigate cellular immunes responses during GBS colonization. Results We found that neutrophils (effectors of the IL-17 response) are important for GBS mucosal control as neutrophil depletion promoted increased GBS burdens in FGT tissues. Flow cytometric analysis of immune populations in the vagina, cervix, and uterus revealed, however, that GBS colonization did not induce a marked increase in FGT CD45+ immune cells. We also found that that Vγ6+ γδ T cells comprise a primary source of FGT IL-17. Finally, using knockout mice, we observed that IL-17-producing γδ T cells are important for the control of GBS in the FGT during murine colonization. Conclusions Taken together, this work characterizes FGT cellular immunity and suggests that GBS colonization does not elicit a significant immune response, which may be a bacterial directed adaptive outcome. However, certain FGT immune cells, such as neutrophils and ɣδ T cells, contribute to host defense and control of GBS colonization.
Collapse
Affiliation(s)
- Brady L. Spencer
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Dustin T. Nguyen
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Stephanie M. Marroquin
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Laurent Gapin
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Rebecca L. O’Brien
- National Jewish Health, Department of Biomedical Research, Denver, CO, USA
| | - Kelly S. Doran
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| |
Collapse
|
5
|
Xu L, Chen F, Fan W, Saito S, Cao D. The role of γδT lymphocytes in atherosclerosis. Front Immunol 2024; 15:1369202. [PMID: 38774876 PMCID: PMC11106432 DOI: 10.3389/fimmu.2024.1369202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Atherosclerosis poses a significant threat to human health, impacting overall well-being and imposing substantial financial burdens. Current treatment strategies mainly focus on managing low-density lipids (LDL) and optimizing liver functions. However, it's crucial to recognize that Atherosclerosis involves more than just lipid accumulation; it entails a complex interplay of immune responses. Research highlights the pivotal role of lipid-laden macrophages in the formation of atherosclerotic plaques. These macrophages attract lymphocytes like CD4 and CD8 to the inflamed site, potentially intensifying the inflammatory response. γδ T lymphocytes, with their diverse functions in innate and adaptive immune responses, pathogen defense, antigen presentation, and inflammation regulation, have been implicated in the early stages of Atherosclerosis. However, our understanding of the roles of γδ T cells in Atherosclerosis remains limited. This mini-review aims to shed light on the characteristics and functions of γδ T cells in Atherosclerosis. By gaining insights into the roles of γδ T cells, we may uncover a promising strategy to mitigate plaque buildup and dampen the inflammatory response, thereby opening new avenues for effectively managing this condition.
Collapse
Affiliation(s)
- LiMin Xu
- Department of Neurosurgery, Shenzhen Entry-Exit Frontier Inspection Hospital, Shenzhen, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
6
|
Teräsjärvi J, Tenhu E, Cruzeiro ML, Savonius O, Rugemalira E, He Q, Pelkonen T. Gene polymorphisms of IL-17A and bacterial meningitis in Angolan children. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105553. [PMID: 38228216 DOI: 10.1016/j.meegid.2024.105553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
Interleukin (IL)-17 A plays a crucial role in protecting hosts from invading bacterial pathogens. In this study, we investigated if single nucleotide polymorphisms (SNPs) in IL-17A are associated with susceptibility and outcome of bacterial meningitis (BM) in Angolan children. The study sample comprised 241 confirmed BM patients and 265 controls, which were matched for age and ethnicity. Three IL-17A SNPs - rs2275913 (-197G > A), rs8193036 (-737C > T) and rs4711998 (-877 A > G) - were determined by high-resolution melting analysis (HRMA). The frequency of variant genotype rs4711998 was significantly higher in patients with BM caused by Haemophilus influenzae (odds ratio [OR] 3.5; 95% confidence interval [CI] 1.49-8.23; P = 0.0025) than in controls. Also, patients with BM caused by Gram-negative bacteria and who carried the variant genotype rs2275913 had a lower glucose level (P = 0.0051) in cerebrospinal fluid (CSF). Patients with BM caused by Streptococcus pneumoniae who carried the variant type rs8193036 had a reduced risk for severe neurological sequelae (OR: 0.14; 95% CI: 0.029-0.68; P = 0.0079), blindness (OR: 0.012; 95% CI: 0.012-0.87; P = 0.017) and ataxia (OR: 0.28; 95% CI: 0.091-0.83; P = 0.023). This study suggests an association of IL-17A genetic variations with susceptibility and outcome of bacterial meningitis in Angolan children.
Collapse
Affiliation(s)
- Johanna Teräsjärvi
- Institute of Biomedicine, Research Centre of Infections and Immunity, University of Turku, Turku, Finland
| | - Elina Tenhu
- Institute of Biomedicine, Research Centre of Infections and Immunity, University of Turku, Turku, Finland
| | | | - Okko Savonius
- Pediatrics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; New Children's Hospital, Pediatric Research Center, Helsinki, Finland
| | - Emilie Rugemalira
- Pediatrics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; New Children's Hospital, Pediatric Research Center, Helsinki, Finland
| | - Qiushui He
- Institute of Biomedicine, Research Centre of Infections and Immunity, University of Turku, Turku, Finland; InFLAMES Research Flagship Centre, University of Turku, Turku, Finland.
| | - Tuula Pelkonen
- Hospital Pediátrico David Bernardino, Luanda, Angola; Pediatrics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; New Children's Hospital, Pediatric Research Center, Helsinki, Finland
| |
Collapse
|
7
|
Choi B, Vu HT, Vu HT, Radwanska M, Magez S. Advances in the Immunology of the Host-Parasite Interactions in African Trypanosomosis, including Single-Cell Transcriptomics. Pathogens 2024; 13:188. [PMID: 38535532 PMCID: PMC10975194 DOI: 10.3390/pathogens13030188] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/11/2025] Open
Abstract
Trypanosomes are single-celled extracellular parasites that infect mammals, including humans and livestock, causing global public health concerns and economic losses. These parasites cycle between insect vectors, such as tsetse flies and vertebrate hosts, undergoing morphological, cellular, and biochemical changes. They have remarkable immune evasion mechanisms to escape the host's innate and adaptive immune responses, such as surface coat antigenic variation and the induction of the loss of specificity and memory of antibody responses, enabling the prolongation of infection. Since trypanosomes circulate through the host body in blood and lymph fluid and invade various organs, understanding the interaction between trypanosomes and tissue niches is essential. Here, we present an up-to-date overview of host-parasite interactions and survival strategies for trypanosomes by introducing and discussing the latest studies investigating the transcriptomics of parasites according to life cycle stages, as well as host cells in various tissues and organs, using single-cell and spatial sequencing applications. In recent years, this information has improved our understanding of trypanosomosis by deciphering the diverse populations of parasites in the developmental process, as well as the highly heterogeneous immune and tissue-resident cells involved in anti-trypanosome responses. Ultimately, the goal of these approaches is to gain an in-depth understanding of parasite biology and host immunity, potentially leading to new vaccination and therapeutic strategies against trypanosomosis.
Collapse
Affiliation(s)
- Boyoon Choi
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Department of Biochemistry and Microbiology WE10, Ghent University, 9000 Ghent, Belgium
| | - Hien Thi Vu
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Department of Biomedical Molecular Biology WE14, Ghent University, 9052 Ghent, Belgium
| | - Hai Thi Vu
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Department of Biomedical Molecular Biology WE14, Ghent University, 9052 Ghent, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Department of Biomedical Molecular Biology WE14, Ghent University, 9052 Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Department of Biochemistry and Microbiology WE10, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Nah J, Lee Y, Seong RH. PRDM16 regulates γδT17 cell differentiation via controlling type 17 program and lipid-dependent cell fitness. Front Immunol 2024; 14:1332386. [PMID: 38239368 PMCID: PMC10794300 DOI: 10.3389/fimmu.2023.1332386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
γδT17 cells are a subset of γδT cells producing IL-17, which is crucial for protection against bacterial and fungal infections. It has recently been shown that γδT17 cells have enriched lipid storage and lipid metabolism. However, the regulation of γδT17 cell function and differentiation with respect to lipids remains unknown. Here, we report that PRDM16 is a critical regulator of γδT17 cell differentiation, controlling type 17 immunity gene expression program and lipid-dependent cell fitness. We demonstrated that γδT17 cells have higher lipid-dependent cell fitness, which is negatively correlated with the expression of Prdm16. Loss of Prdm16 enhances the function and differentiation of γδT17 cells, and increases their fitness in lipid-rich environments. Specifically, loss of Prdm16 exacerbates development of psoriasis in the skin, a lipid-rich organ, and Prdm16 controls lipid-mediated differentiation of Vγ4+ γδT17 cells, which are the major source of IL-17 during the onset of psoriasis. Our study highlights the potential impact of PRDM16 on lipid-dependent fitness and protective immune function of γδT cells and also on the immunotherapy of psoriasis and inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Rho H. Seong
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Pastwińska J, Karwaciak I, Karaś K, Bachorz RA, Ratajewski M. RORγT agonists as immune modulators in anticancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189021. [PMID: 37951483 DOI: 10.1016/j.bbcan.2023.189021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
RORγT is a transcription factor that directs the development of Th17 lymphocytes and other IL-17-expressing cells (e.g., Tc17 and ILC3 cells). These cells are involved in the body's defense against pathogenic bacteria and fungi, but they also participate in maintaining the proinflammatory environment in some autoimmune diseases and play a role in the immune system's response to cancer. Similar to other members of the nuclear receptor superfamily, the activity of RORγT is regulated by low-molecular-weight ligands. Therefore, extensive efforts have been dedicated to identifying inverse agonists that diminish the activity of this receptor and subsequently inhibit the development of autoimmune diseases. Unfortunately, in the pursuit of an ideal inverse agonist, the development of agonists has been overlooked. It is important to remember that these types of compounds, by stimulating lymphocytes expressing RORγT (Th17 and Tc17), can enhance the immune system's response to tumors. In this review, we present recent advancements in the biology of RORγT agonists and their potential application in anticancer therapy.
Collapse
Affiliation(s)
- Joanna Pastwińska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Iwona Karwaciak
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Rafał A Bachorz
- Laboratory of Molecular Modeling, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland.
| |
Collapse
|
10
|
Kim SH, Lee SH. Updates on ankylosing spondylitis: pathogenesis and therapeutic agents. JOURNAL OF RHEUMATIC DISEASES 2023; 30:220-233. [PMID: 37736590 PMCID: PMC10509639 DOI: 10.4078/jrd.2023.0041] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/23/2023]
Abstract
Ankylosing spondylitis (AS) is an autoinflammatory disease that manifests with the unique feature of enthesitis. Gut microbiota, HLA-B*27, and biomechanical stress mutually influence and interact resulting in setting off a flame of inflammation. In the HLA-B*27 positive group, dysbiosis in the gut environment disrupts the barrier to exogenous bacteria or viruses. Additionally, biomechanical stress induces inflammation through enthesial resident or gut-origin immune cells. On this basis, innate and adaptive immunity can propagate inflammation and lead to chronic disease. Finally, bone homeostasis is regulated by cytokines, by which the inflamed region is substituted into new bone. Agents that block cytokines are constantly being developed to provide diverse therapeutic options for preventing the progression of inflammation. In addition, some antibodies have been shown to distinguish disease selectively, which support the involvement of autoimmune immunity in AS. In this review, we critically analyze the complexity and uniqueness of the pathogenesis with updates on the findings of immunity and provide new information about biologics and biomarkers.
Collapse
Affiliation(s)
- Se Hee Kim
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Hoon Lee
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
11
|
Stepanova H, Scheirichova M, Matiasovic J, Hlavova K, Sinkora M, Stepanova K, Faldyna M. Interleukin-17 producing cells in swine induced by microbiota during the early postnatal period - a brief research report. Front Immunol 2023; 14:1214444. [PMID: 37799720 PMCID: PMC10548118 DOI: 10.3389/fimmu.2023.1214444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Interleukin-17A (IL-17) is a pro-inflammatory cytokine involved in the immune response to many pathogens playing also a role in certain chronic and autoimmune diseases. The presented study focused on the early postnatal development of IL-17 producing cells in swine. In agreement with previous studies, αβ T-helper (CD3+CD4+) and γδ T (CD3+TCRγδ+) cells were found to be the major producers of IL-17. In newborn conventional piglets, αβ T-helper cells positive for IL-17 were almost undetectable, but their frequency increased markedly with age in all issues examined, i.e., blood, spleen, and mesenteric lymph nodes (MLN). Additional analyses of CD8 and CD27 expression showed that the main αβ T-helper producers of IL-17 has CD8+CD27- phenotype in all tissues. IL-17 positive CD8+CD27+ αβ T-helper subpopulation was found only in blood and spleen. The production of IL17 in CD8-CD27+ αβ T-helper cells was always minor. In contrast, γδ T cells positive for IL-17 did not show a similar age-dependent increase in blood and spleen, whereas they increased in MLN. Because of the age-dependent increase in conventional animals, we included a comparison with germ-free piglets to show that the increase in IL-17 positive cells was clearly depended on the presence of the microbiota as the production in germ-free animals was negligible without any age-dependent increase.
Collapse
Affiliation(s)
- Hana Stepanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Marketa Scheirichova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Jan Matiasovic
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Karolina Hlavova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| |
Collapse
|
12
|
Quintana JF, Sinton MC, Chandrasegaran P, Lestari AN, Heslop R, Cheaib B, Ogunsola J, Ngoyi DM, Kuispond Swar NR, Cooper A, Mabbott NA, Coffelt SB, MacLeod A. γδ T cells control murine skin inflammation and subcutaneous adipose wasting during chronic Trypanosoma brucei infection. Nat Commun 2023; 14:5279. [PMID: 37644007 PMCID: PMC10465518 DOI: 10.1038/s41467-023-40962-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
African trypanosomes colonise the skin to ensure parasite transmission. However, how the skin responds to trypanosome infection remains unresolved. Here, we investigate the local immune response of the skin in a murine model of infection using spatial and single cell transcriptomics. We detect expansion of dermal IL-17A-producing Vγ6+ cells during infection, which occurs in the subcutaneous adipose tissue. In silico cell-cell communication analysis suggests that subcutaneous interstitial preadipocytes trigger T cell activation via Cd40 and Tnfsf18 signalling, amongst others. In vivo, we observe that female mice deficient for IL-17A-producing Vγ6+ cells show extensive inflammation and limit subcutaneous adipose tissue wasting, independently of parasite burden. Based on these observations, we propose that subcutaneous adipocytes and Vγ6+ cells act in concert to limit skin inflammation and adipose tissue wasting. These studies provide new insights into the role of γδ T cell and subcutaneous adipocytes as homeostatic regulators of skin immunity during chronic infection.
Collapse
Affiliation(s)
- Juan F Quintana
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK.
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Lydia Becker Institute of Immunology and Inflammation. University of Manchester, Manchester, UK.
| | - Matthew C Sinton
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Praveena Chandrasegaran
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Agatha Nabilla Lestari
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Rhiannon Heslop
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Bachar Cheaib
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Translational Lung Research Center Heidelberg (TLRC), Center for Infectious Diseases, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - John Ogunsola
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dieudonne Mumba Ngoyi
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Nono-Raymond Kuispond Swar
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Anneli Cooper
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Seth B Coffelt
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK.
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
13
|
Wang Y, Zhang Y, Shou S, Jin H. The role of IL-17 in acute kidney injury. Int Immunopharmacol 2023; 119:110307. [PMID: 37182383 DOI: 10.1016/j.intimp.2023.110307] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Acute kidney injury (AKI) is a common clinical kidney disease with a high mortality rate. AKI is caused by a variety of factors, including sepsis, ischemia, and nephrotoxic drugs, and can progress to chronic kidney disease and end-stage renal disease. Numerous studies have suggested that cytokines can be used as therapeutic targets for AKI. IL-17 is a pro-inflammatory cytokine that not only participates in the host defense and the development of autoimmune diseases but also is linked to AKI due to a variety of factors. This review will give an overview of the structure, signaling pathways, and biological functions of IL-17, as well as its role in AKI, to show that IL-17 is a potential target for the prevention and treatment of AKI.
Collapse
Affiliation(s)
- Yali Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Yan Zhang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, PR China.
| |
Collapse
|
14
|
Cai X, Han M, Lou F, Sun Y, Yin Q, Sun L, Wang Z, Li X, Zhou H, Xu Z, Wang H, Deng S, Zheng X, Zhang T, Li Q, Zhou B, Wang H. Tenascin C + papillary fibroblasts facilitate neuro-immune interaction in a mouse model of psoriasis. Nat Commun 2023; 14:2004. [PMID: 37037861 PMCID: PMC10086024 DOI: 10.1038/s41467-023-37798-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Dermal fibroblasts and cutaneous nerves are important players in skin diseases, while their reciprocal roles during skin inflammation have not been characterized. Here we identify an inflammation-induced subset of papillary fibroblasts that promotes aberrant neurite outgrowth and psoriasiform skin inflammation by secreting the extracellular matrix protein tenascin-C (TNC). Single-cell analysis of fibroblast lineages reveals a Tnc+ papillary fibroblast subset with pro-axonogenesis and neuro-regulation transcriptomic hallmarks. TNC overexpression in fibroblasts boosts neurite outgrowth in co-cultured neurons, while fibroblast-specific TNC ablation suppresses hyperinnervation and alleviates skin inflammation in male mice modeling psoriasis. Dermal γδT cells, the main producers of type 17 pathogenic cytokines, frequently contact nerve fibers in mouse psoriasiform lesions and are likely modulated by postsynaptic signals. Overall, our results highlight the role of an inflammation-responsive fibroblast subset in facilitating neuro-immune synapse formation and suggest potential avenues for future therapeutic research.
Collapse
Affiliation(s)
- Xiaojie Cai
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Maoying Han
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fangzhou Lou
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yang Sun
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Qianqian Yin
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Libo Sun
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Zhikai Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiangxiao Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Hong Zhou
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Zhenyao Xu
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Hong Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Siyu Deng
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Xichen Zheng
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Taiyu Zhang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Qun Li
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Honglin Wang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
15
|
Wu H, Ou J, Li K, Wang T, Nandakumar KS. Comparative studies on mannan and imiquimod induced experimental plaque psoriasis inflammation in inbred mice. Clin Exp Immunol 2023; 211:288-300. [PMID: 36645209 PMCID: PMC10038325 DOI: 10.1093/cei/uxad004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/22/2022] [Accepted: 01/14/2023] [Indexed: 01/17/2023] Open
Abstract
Psoriasis is a genetically determined, environmentally triggered, immune system-mediated autoimmune disease. Different animal models are needed to investigate the complex pathological mechanisms underlying this disease. Therefore, we established mannan-induced psoriasis model and compared with the most commonly used imiquimod-induced psoriasis in terms of disease, induction of innate immune cells, expression of cytokines, and the effect of dexamethasone treatment. Mannan significantly induced more severe psoriasis with better disease relapsing feature than imiquimod (IMQ). As determined by immunohistochemistry, IMQ induced significantly more infiltration of CD11c+ and F4/80+ cells than mannan in the skin. However, cytometric analysis showed a significant increase in the percentage of Gr-1+ neutrophils in the spleen and lymph nodes as well as F4/80+ macrophages in the spleen after mannan exposure. Variation in the percentage of significantly increased Vγ4 T cells was also found to be dependent on the lymphoid organs tested. However, there is a clear difference between these models in terms of expression of certain cytokine genes: IL-22, IL-23, IL-17E, and IL-17F were expressed more predominantly in mannan-induced inflammation, while IL-6 and IL-17A expressions were significantly higher in IMQ model. Interestingly, dexamethasone treatment strongly reduced epidermal thickness and histological scores induced by mannan than IMQ. Despite inducing psoriasis-like inflammation, certain differences and similarities were observed in the immune responses induced by mannan and IMQ. However, mannan-induced psoriasis model is relatively more simple, economical and less harmful to mice with an increased possibility to develop a chronic psoriasis model by exposing mice to mannan.
Collapse
Affiliation(s)
- Huimei Wu
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- School of medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiaxin Ou
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kangxin Li
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Department of Endocrinology, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Wang
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Kutty Selva Nandakumar
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability (FIH), Halmstad University, Halmstad, Sweden
| |
Collapse
|
16
|
Topical phage therapy in a mouse model of Cutibacterium acnes-induced acne-like lesions. Nat Commun 2023; 14:1005. [PMID: 36813793 PMCID: PMC9947178 DOI: 10.1038/s41467-023-36694-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Acne vulgaris is a common neutrophil-driven inflammatory skin disorder in which Cutibacterium acnes (C. acnes) is known to play a key role. For decades, antibiotics have been widely employed to treat acne vulgaris, inevitably resulting in increased bacterial antibiotic resistance. Phage therapy is a promising strategy to combat the growing challenge of antibiotic-resistant bacteria, utilizing viruses that specifically lyse bacteria. Herein, we explore the feasibility of phage therapy against C. acnes. Eight novel phages, isolated in our laboratory, and commonly used antibiotics eradicate 100% of clinically isolated C. acnes strains. Topical phage therapy in a C. acnes-induced acne-like lesions mouse model affords significantly superior clinical and histological scores. Moreover, the decrease in inflammatory response was reflected by the reduced expression of chemokine CXCL2, neutrophil infiltration, and other inflammatory cytokines when compared with the infected-untreated group. Overall, these findings indicate the potential of phage therapy for acne vulgaris as an additional tool to conventional antibiotics.
Collapse
|
17
|
Peripheral Blood Mononuclear Cells from Patients with Type 1 Diabetes and Diabetic Retinopathy Produce Higher Levels of IL-17A, IL-10 and IL-6 and Lower Levels of IFN-γ-A Pilot Study. Cells 2023; 12:cells12030467. [PMID: 36766809 PMCID: PMC9913819 DOI: 10.3390/cells12030467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammation is key to the pathogenesis of diabetic retinopathy (DR). This prospective study investigated alterations in inflammatory cytokines in peripheral blood mononuclear cells (PBMCs) in 41 people with type 1 diabetes (T1D), sub-grouped into mild non-proliferative DR (mNPDR; n = 13) and active and inactive (each n = 14) PDR. Age/gender-matched healthy controls (n = 13) were included. PBMCs were isolated from blood samples. Intracellular cytokine expression by PBMCs after 16-h stimulation (either E. coli lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate plus ionomycin, D-glucose or D-mannitol) were assessed by flow cytometry. Cytokine production in plasma, non-stimulated and LPS-stimulated PBMC supernatant was also assessed. Increased BMC IL-10 secretion and reduced expression of IL-6 and IFN-γ in CD3+ cells were observed in mNPDR. Reduced IL-6 and IL-10 secretion, and higher levels of intracellular IL-6 expression, especially in CD11b+ PBMCs, was detected in aPDR; levels were positively correlated with DR duration. Patients with T1D demonstrated increased intracellular expression of IL-17A in myeloid cells and reduced IFN-γ expression in CD3+ cells. Plasma levels of IL-1R1 were increased in mNPDR compared with controls. Results suggest that elevated PBMC-released IL-10, IL-6, in particular myeloid-produced IL-17A, may be involved in early stages of DR. IL-6-producing myeloid cells may play a role in PDR development.
Collapse
|
18
|
γδ T Lymphocytes as a Double-Edged Sword-State of the Art in Gynecological Diseases. Int J Mol Sci 2022; 23:ijms232314797. [PMID: 36499125 PMCID: PMC9740168 DOI: 10.3390/ijms232314797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Human gamma-delta (γδ) T cells are a heterogeneous cell population that bridges the gap between innate and acquired immunity. They are involved in a variety of immunological processes, including tumor escape mechanisms. However, by being prolific cytokine producers, these lymphocytes also participate in antitumor cytotoxicity. Which one of the two possibilities takes place depends on the tumor microenvironment (TME) and the subpopulation of γδ T lymphocytes. The aim of this paper is to summarize existing knowledge about the phenotype and dual role of γδ T cells in cancers, including ovarian cancer (OC). OC is the third most common gynecological cancer and the most lethal gynecological malignancy. Anticancer immunity in OC is modulated by the TME, including by immunosuppressive cells, cytokines, and soluble factors. Immune cells are exposed in the TME to many signals that determine their immunophenotype and can manipulate their functions. The significance of γδ T cells in the pathophysiology of OC is enigmatic and remains to be investigated.
Collapse
|
19
|
Wang X, Zhang X, Sun L, Gao G, Li Y. Protective effect of Secukinumab on severe sepsis model rats by neutralizing IL-17A to inhibit IKBα/NFκB inflammatory signal pathway. Eur J Med Res 2022; 27:206. [PMID: 36253831 PMCID: PMC9578221 DOI: 10.1186/s40001-022-00845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022] Open
Abstract
Secukinumab is a specific neutralizing antibody for IL-17A. At present, numerous studies have confirmed the important role of IL-17A in sepsis, but the role of secukinumab in sepsis has not been studied. The present study explored the protective effect and underlying mechanism of secukinumab in severe sepsis model rats. We established a severe sepsis rat model using cecal ligation and puncture (CLP). The optimal dose of secukinumab was determined by observing the 7-day survival rate of severe sepsis model rats. The expression levels of TNF-α, IL-6, and IL-17A in plasma and lung tissue were determined by enzyme-linked immunosorbent assay. The degree of pathological damage to lung tissue was evaluated by hematoxylin–eosin (H–E) staining and pathological damage scale. The expressions of IKBα/NFκB pathway proteins and downstream-related inflammatory factors were detected by western blotting and real-time quantitative polymerase chain reaction (RT-qPCR). Our results show that high-dose secukinumab can inhibit the activation of the IKBα/NFκB inflammatory pathway by neutralizing IL-17A and reducing the gene expression of pathway-related inflammatory cytokines, thereby reducing the levels of inflammatory cytokines in lung tissue and plasma, thereby reducing the damage of lung tissue in severe sepsis model rats and improving the systemic inflammatory response.
Collapse
Affiliation(s)
- Xingsheng Wang
- Intensive Care Unit, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Intensive Care Unit, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xinxin Zhang
- Department of Emergency Medicine, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Li Sun
- Intensive Care Unit, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Intensive Care Unit, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guangsheng Gao
- Intensive Care Unit, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China. .,Intensive Care Unit, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,Central Hospital Affiliated to Shandong First Medical University, NO. 105 Jiefang Road, Jinan, 250000, Shandong, China.
| | - Yun Li
- Intensive Care Unit, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China. .,Intensive Care Unit, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,Central Hospital Affiliated to Shandong First Medical University, NO. 105 Jiefang Road, Jinan, 250000, Shandong, China.
| |
Collapse
|
20
|
Kumawat AK, Zegeye MM, Paramel GV, Baumgartner R, Gisterå A, Amegavie O, Hellberg S, Jin H, Caravaca AS, Söderström LÅ, Gudmundsdotter L, Frejd FY, Ljungberg LU, Olofsson PS, Ketelhuth DFJ, Sirsjö A. Inhibition of IL17A Using an Affibody Molecule Attenuates Inflammation in ApoE-Deficient Mice. Front Cardiovasc Med 2022; 9:831039. [PMID: 35282365 PMCID: PMC8907570 DOI: 10.3389/fcvm.2022.831039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
The balance between pro- and anti-inflammatory cytokines released by immune and non-immune cells plays a decisive role in the progression of atherosclerosis. Interleukin (IL)-17A has been shown to accelerate atherosclerosis. In this study, we investigated the effect on pro-inflammatory mediators and atherosclerosis development of an Affibody molecule that targets IL17A. Affibody molecule neutralizing IL17A, or sham were administered in vitro to human aortic smooth muscle cells (HAoSMCs) and murine NIH/3T3 fibroblasts and in vivo to atherosclerosis-prone, hyperlipidaemic ApoE−/− mice. Levels of mediators of inflammation and development of atherosclerosis were compared between treatments. Exposure of human smooth muscle cells and murine NIH/3T3 fibroblasts in vitro to αIL-17A Affibody molecule markedly reduced IL6 and CXCL1 release in supernatants compared with sham exposure. Treatment of ApoE−/− mice with αIL-17A Affibody molecule significantly reduced plasma protein levels of CXCL1, CCL2, CCL3, HGF, PDGFB, MAP2K6, QDPR, and splenocyte mRNA levels of Ccxl1, Il6, and Ccl20 compared with sham exposure. There was no significant difference in atherosclerosis burden between the groups. In conclusion, administration of αIL17A Affibody molecule reduced levels of pro-inflammatory mediators and attenuated inflammation in ApoE−/− mice.
Collapse
Affiliation(s)
- Ashok Kumar Kumawat
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Orebro, Sweden
- *Correspondence: Ashok Kumar Kumawat
| | - Mulugeta M. Zegeye
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Orebro, Sweden
| | - Geena Varghese Paramel
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Orebro, Sweden
| | - Roland Baumgartner
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Centre for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anton Gisterå
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Centre for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Obed Amegavie
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Orebro, Sweden
| | - Sanna Hellberg
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Centre for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Hong Jin
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Centre for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - April S. Caravaca
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Centre for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Leif Å. Söderström
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Centre for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Liza U. Ljungberg
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Orebro, Sweden
| | - Peder S. Olofsson
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Centre for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Daniel F. J. Ketelhuth
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Centre for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Allan Sirsjö
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Orebro, Sweden
| |
Collapse
|
21
|
Gong Z, Li Q, Shi J, Ren G. An Artifact in Intracellular Cytokine Staining for Studying T Cell Responses and Its Alleviation. Front Immunol 2022; 13:759188. [PMID: 35126389 PMCID: PMC8813780 DOI: 10.3389/fimmu.2022.759188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Intracellular cytokine staining (ICS) is a widely employed ex vivo method for quantitative determination of the activation status of immune cells, most often applied to T cells. ICS test samples are commonly prepared from animal or human tissues as unpurified cell mixtures, and cell-specific cytokine signals are subsequently discriminated by gating strategies using flow cytometry. Here, we show that when ICS samples contain Ly6G+ neutrophils, neutrophils are ex vivo activated by an ICS reagent – phorbol myristate acetate (PMA) – which leads to hydrogen peroxide (H2O2) release and death of cytokine-expressing T cells. This artifact is likely to result in overinterpretation of the degree of T cell suppression, misleading immunological research related to cancer, infection, and inflammation. We accordingly devised easily implementable improvements to the ICS method and propose alternative methods for assessing or confirming cellular cytokine expression.
Collapse
Affiliation(s)
- Zheng Gong
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Qing Li
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Jiayuan Shi
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Guangwen Ren
- The Jackson Laboratory, Bar Harbor, ME, United States
- The Jackson Laboratory Cancer Center, Bar Harbor, ME, United States
- *Correspondence: Guangwen Ren,
| |
Collapse
|
22
|
Kai Lin R, Venkatesan P, Hsuan Yeh C, Chien CM, Lin TS, Lin CC, Lin CC, Lai PS. Effective topical treatments of innovative NNO-tridentate vanadium (IV) complexes-mediated photodynamic therapy in psoriasis-like mice model. J Mater Chem B 2022; 10:4759-4770. [DOI: 10.1039/d2tb00344a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease that can significantly impact the quality of human life. Various drug treatments with long-term severe side effects limit those drugs usage. Photodynamic therapy...
Collapse
|
23
|
Malengier-Devlies B, Metzemaekers M, Wouters C, Proost P, Matthys P. Neutrophil Homeostasis and Emergency Granulopoiesis: The Example of Systemic Juvenile Idiopathic Arthritis. Front Immunol 2021; 12:766620. [PMID: 34966386 PMCID: PMC8710701 DOI: 10.3389/fimmu.2021.766620] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are key pathogen exterminators of the innate immune system endowed with oxidative and non-oxidative defense mechanisms. More recently, a more complex role for neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and adaptive immune responses has come into view. Under homeostatic conditions, neutrophils are short-lived cells that are continuously released from the bone marrow. Their development starts with undifferentiated hematopoietic stem cells that pass through different immature subtypes to eventually become fully equipped, mature neutrophils capable of launching fast and robust immune responses. During severe (systemic) inflammation, there is an increased need for neutrophils. The hematopoietic system rapidly adapts to this increased demand by switching from steady-state blood cell production to emergency granulopoiesis. During emergency granulopoiesis, the de novo production of neutrophils by the bone marrow and at extramedullary sites is augmented, while additional mature neutrophils are rapidly released from the marginated pools. Although neutrophils are indispensable for host protection against microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases. Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during emergency myelopoiesis and provide an overview of the different molecular players involved in this regulation. We substantiate this review with the example of an autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- Bert Malengier-Devlies
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Metzemaekers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Division of Pediatric Rheumatology, University Hospitals Leuven, Leuven, Belgium.,European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Impact of STING Inflammatory Signaling during Intracellular Bacterial Infections. Cells 2021; 11:cells11010074. [PMID: 35011636 PMCID: PMC8750390 DOI: 10.3390/cells11010074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
The early detection of bacterial pathogens through immune sensors is an essential step in innate immunity. STING (Stimulator of Interferon Genes) has emerged as a key mediator of inflammation in the setting of infection by connecting pathogen cytosolic recognition with immune responses. STING detects bacteria by directly recognizing cyclic dinucleotides or indirectly by bacterial genomic DNA sensing through the cyclic GMP-AMP synthase (cGAS). Upon activation, STING triggers a plethora of powerful signaling pathways, including the production of type I interferons and proinflammatory cytokines. STING activation has also been associated with the induction of endoplasmic reticulum (ER) stress and the associated inflammatory responses. Recent reports indicate that STING-dependent pathways participate in the metabolic reprogramming of macrophages and contribute to the establishment and maintenance of a robust inflammatory profile. The induction of this inflammatory state is typically antimicrobial and related to pathogen clearance. However, depending on the infection, STING-mediated immune responses can be detrimental to the host, facilitating bacterial survival, indicating an intricate balance between immune signaling and inflammation during bacterial infections. In this paper, we review recent insights regarding the role of STING in inducing an inflammatory profile upon intracellular bacterial entry in host cells and discuss the impact of STING signaling on the outcome of infection. Unraveling the STING-mediated inflammatory responses can enable a better understanding of the pathogenesis of certain bacterial diseases and reveal the potential of new antimicrobial therapy.
Collapse
|
25
|
von Massow G, Oh S, Lam A, Gustafsson K. Gamma Delta T Cells and Their Involvement in COVID-19 Virus Infections. Front Immunol 2021; 12:741218. [PMID: 34777353 PMCID: PMC8586491 DOI: 10.3389/fimmu.2021.741218] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
The global outbreak of the SARS-Cov-2 virus in 2020 has killed millions of people worldwide and forced large parts of the world into lockdowns. While multiple vaccine programs are starting to immunize the global population, there is no direct cure for COVID-19, the disease caused by the SARS-Cov-2 infection. A common symptom in patients is a decrease in T cells, called lymphopenia. It is as of yet unclear what the exact role of T cells are in the immune response to COVID-19. The research so far has mainly focused on the involvement of classical αβ T cells. However, another subset of T cells called γδ T cells could have an important role to play. As part of the innate immune system, γδ T cells respond to inflammation and stressed or infected cells. The γδ T cell subset appears to be particularly affected by lymphopenia in COVID-19 patients and commonly express activation and exhaustion markers. Particularly in children, this subset of T cells seems to be most affected. This is interesting and relevant because γδ T cells are more prominent and active in early life. Their specific involvement in this group of patients could indicate a significant role for γδ T cells in this disease. Furthermore, they seem to be involved in other viral infections and were able to kill SARS infected cells in vitro. γδ T cells can take up, process and present antigens from microbes and human cells. As e.g. tumour-associated antigens are presented by MHC on γδ T cells to classical T-cells, we argue here that it stands to reason that also viral antigens, such as SARS-Cov-2-derived peptides, can be presented in the same way. γδ T cells are already used for medical purposes in oncology and have potential in cancer therapy. As γδ T cells are not necessarily able to distinguish between a transformed and a virally infected cell it could therefore be of great interest to investigate further the relationship between COVID-19 and γδ T cells.
Collapse
Affiliation(s)
- Georg von Massow
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Steve Oh
- Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Alan Lam
- Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Kenth Gustafsson
- Department of Biochemical Engineering, University College London, London, United Kingdom
| |
Collapse
|
26
|
Yao YE, Qin CC, Yang CM, Huang TX. γδT17/γδTreg cell subsets: a new paradigm for asthma treatment. J Asthma 2021; 59:2028-2038. [PMID: 34634976 DOI: 10.1080/02770903.2021.1980585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bronchial asthma (abbreviated as asthma), is a heterogeneous disease characterized by chronic airway inflammation and airway hyperresponsiveness. The main characteristics of asthma include variable reversible airflow limitation and airway remodeling. The pathogenesis of asthma is still unclear. Th1/Th2 imbalance, Th1 deficiency and Th2 hyperfunction are classic pathophysiological mechanisms of asthma. Some studies have shown that the imbalance of the Th1/Th2 cellular immune model and Th17/Treg imbalance play a key role in the occurrence and development of asthma; however, these imbalances do not fully explain the disease. In recent years, studies have shown that γδT and γδT17 cells are involved in the pathogenesis of asthma. γδTreg has a potential immunosuppressive function, but its regulatory mechanisms have not been fully elucidated. In this paper, we reviewed the role of γδT17/γδTreg cells in bronchial asthma, including the mechanisms of their development and activation. Here we propose that γδT17/Treg cell subsets contribute to the occurrence and development of asthma, constituting a novel potential target for asthma treatment.
Collapse
Affiliation(s)
- Yi-En Yao
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cai-Cheng Qin
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao-Mian Yang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tian-Xia Huang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
27
|
Adam A, Luo H, Osman SR, Wang B, Roundy CM, Auguste AJ, Plante KS, Peng BH, Thangamani S, Frolova EI, Frolov I, Weaver SC, Wang T. Optimized production and immunogenicity of an insect virus-based chikungunya virus candidate vaccine in cell culture and animal models. Emerg Microbes Infect 2021; 10:305-316. [PMID: 33539255 PMCID: PMC7919884 DOI: 10.1080/22221751.2021.1886598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A chimeric Eilat/ Chikungunya virus (EILV/CHIKV) was previously reported to replicate only in mosquito cells but capable of inducing robust adaptive immunity in animals. Here, we initially selected C7/10 cells to optimize the production of the chimeric virus. A two-step procedure produced highly purified virus stocks, which was shown to not cause hypersensitive reactions in a mouse sensitization study. We further optimized the dose and characterized the kinetics of EILV/CHIKV-induced immunity. A single dose of 108 PFU was sufficient for induction of high levels of CHIKV-specific IgM and IgG antibodies, memory B cell and CD8+ T cell responses. Compared to the live-attenuated CHIKV vaccine 181/25, EILV/CHIKV induced similar levels of CHIKV-specific memory B cells, but higher CD8+ T cell responses at day 28. It also induced stronger CD8+, but lower CD4+ T cell responses than another live-attenuated CHIKV strain (CHIKV/IRES) at day 55 post-vaccination. Lastly, the purified EILV/CHIKV triggered antiviral cytokine responses and activation of antigen presenting cell (APC)s in vivo, but did not induce APCs alone upon in vitro exposure. Overall, our results demonstrate that the EILV/CHIKV vaccine candidate is safe, inexpensive to produce and a potent inducer of both innate and adaptive immunity in mice.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Samantha R Osman
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Binbin Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Christopher M Roundy
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Albert J Auguste
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Kenneth S Plante
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Saravanan Thangamani
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elena I Frolova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ilya Frolov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Scott C Weaver
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.,World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
28
|
Charitidis FT, Damlund DSM, Koch J. Psoriasis-like Inflammation Induced in an Air-pouch Mouse Model. In Vivo 2021; 35:1985-1997. [PMID: 34182473 DOI: 10.21873/invivo.12467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND/AIM The pathway of initiation of psoriasis comprises the differentiation and infiltration of T-helper 17 (Th17) cells into the skin, characterized by the production of interleukin 17A and 17F (IL-17A/IL-17F) among other cytokines, resulting in a downstream cascade of events. Due to the lack of simplicity in psoriasis models, we aimed to develop an easily and rapidly inducible mouse model for the IL-23/IL-17 pathway with quick readouts from a straightforward lavaging process and with detectable cytokine levels. MATERIALS AND METHODS We utilized the 6-day air-pouch mouse model, injected with a combination of anti-CD3, IL-23 and IL-1β. At 24, 48 and 72 h, intra-pouch secretion of IL-17A, IL-17F and C-X-C motif chemokine ligand 1 were measured. Skin biopsies were collected and immune cell infiltration evaluated, and intra-pouch immune cells were isolated and analyzed. RESULTS The combination of anti-CD3, IL-23 with and without IL-1β significantly increased intra-pouch levels of IL-17A/IL-17F at 24 and 72 h, triggering a downstream production of C-X-C motif chemokine ligand 1. The cytokines were detectable even 72 h post-induction. T-cell receptor beta was down-regulated on CD4+ and CD8+ T-cells, indicating intra-pouch T-cell activation. Αnti-CD3 induced CD3+ cell migration into the subcutis and the lining tissue surrounding the cavity of the air pouch, where in the latter, a similar distribution pattern of Il17a mRNA-expressing cells was also observed. However, no Th17 cell differentiation nor changes in IL-17A+ granulocytes were observed. CONCLUSION The induced air-pouch mouse model induced with a cocktail of anti-CD3, IL-23 with or without IL-1β is able to mirror the IL-23/IL-17 axis of psoriasis-like inflammation characterized by immune cell infiltration and cytokine secretion.
Collapse
Affiliation(s)
| | - Dina S M Damlund
- Department of In Vivo Biology & Safety, LEO Pharma A/S, Ballerup, Denmark
| | - Janne Koch
- Department of In Vivo Biology & Safety, LEO Pharma A/S, Ballerup, Denmark
| |
Collapse
|
29
|
Estrogenic bias in T-Lymphocyte biology: Implications for cardiovascular disease. Pharmacol Res 2021; 170:105606. [PMID: 34119620 DOI: 10.1016/j.phrs.2021.105606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022]
Abstract
Gender bias in cardiovascular disease has been extensively documented in epidemiological and clinical studies. Despite this, the precise molecular mechanisms underlying these disparities between men and women are poorly understood. It is clear that physiological concentrations of estradiol, such as those present in pre-menopausal women, exert cardioprotective effects that are absent in men or in post-menopausal women. These cardioprotective effects, in part, are due to the estrogen receptor-mediated modulation of the immune system including T-cells. Estrogen receptors (ERs) are widely expressed in different T-cell subsets which are known to play an indispensable role in the progression of cardiovascular disease. Because T-cells can be polarized into several distinct subsets depending on the activation milieu, they can have many different, potentially opposing functions, and it is unclear what roles estrogen receptor signaling may play in mediating these functions. This is further complicated by the discrete and often antagonistic actions of different ERs on T-cell biology which dictate the balance between numerous ER-dependent signaling pathways. While myriad effects of estrogen in T-cells are relevant for many cardiovascular diseases, their widespread effects on several other (patho)physiological systems introduce several obstacles to understanding ER signaling and its precise effects on the immune system. This review aims to provide a more comprehensive summary of the mechanisms of estrogen receptor-mediated modulation of T-cell function, polarization, and cytokine production in the context of cardiovascular disease.
Collapse
|
30
|
Luo Y, Li C, Zhou Z, Gong Z, Zhu C, Lei A. Biological functions of IL-17-producing cells in mycoplasma respiratory infection. Immunology 2021; 164:223-230. [PMID: 33930194 DOI: 10.1111/imm.13346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/17/2022] Open
Abstract
Mycoplasmas are the smallest and simplest bacteria that lack a cell wall but have the capability of self-replication. Among them, Mycoplasma pneumoniae is one of the most common causes of community-acquired pneumonia. The hallmark of mycoplasma respiratory diseases is the persistence of lung inflammation that involves both innate and adaptive immune responses. In recent years, a growing body of evidence demonstrates that IL-17 plays an important role in respiratory mycoplasma infection, and associates with the pathologic outcomes of infection, such as pneumonitis and asthma. Numerous studies have shown that a variety of cells, in particular Th17 cells, in the lung can secrete IL-17 during respiratory mycoplasma infection. In this article, we review the biological functions of distinct IL-17-producing cells in mycoplasma respiratory infection with a focus on the effect of IL-17 on the outcomes of infection.
Collapse
Affiliation(s)
- Ying Luo
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation enter for Molecular Target New Drug Study, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China.,Changsha Central Hospital, University of South China, Changsha, China
| | - Cheng Li
- Changsha Central Hospital, University of South China, Changsha, China
| | - Zhou Zhou
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation enter for Molecular Target New Drug Study, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Zhande Gong
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation enter for Molecular Target New Drug Study, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Cuiming Zhu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation enter for Molecular Target New Drug Study, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Aihua Lei
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation enter for Molecular Target New Drug Study, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| |
Collapse
|
31
|
Schinocca C, Rizzo C, Fasano S, Grasso G, La Barbera L, Ciccia F, Guggino G. Role of the IL-23/IL-17 Pathway in Rheumatic Diseases: An Overview. Front Immunol 2021; 12:637829. [PMID: 33692806 PMCID: PMC7937623 DOI: 10.3389/fimmu.2021.637829] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Interleukin-23 (IL-23) is a pro-inflammatory cytokine composed of two subunits, IL-23A (p19) and IL-12/23B (p40), the latter shared with Interleukin-12 (IL-12). IL-23 is mainly produced by macrophages and dendritic cells, in response to exogenous or endogenous signals, and drives the differentiation and activation of T helper 17 (Th17) cells with subsequent production of IL-17A, IL-17F, IL-6, IL-22, and tumor necrosis factor α (TNF-α). Although IL-23 plays a pivotal role in the protective immune response to bacterial and fungal infections, its dysregulation has been shown to exacerbate chronic immune-mediated inflammation. Well-established experimental data support the concept that IL-23/IL-17 axis activation contributes to the development of several inflammatory diseases, such as PsA, Psoriasis, Psoriatic Arthritis; AS, Ankylosing Spondylitis; IBD, Inflammatory Bowel Disease; RA, Rheumatoid Arthritis; SS, Sjogren Syndrome; MS, Multiple Sclerosis. As a result, emerging clinical studies have focused on the blockade of this pathogenic axis as a promising therapeutic target in several autoimmune disorders; nevertheless, a greater understanding of its contribution still requires further investigation. This review aims to elucidate the most recent studies and literature data on the pathogenetic role of IL-23 and Th17 cells in inflammatory rheumatic diseases.
Collapse
Affiliation(s)
- Claudia Schinocca
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital “P. Giaccone”, Palermo, Italy
| | - Chiara Rizzo
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital “P. Giaccone”, Palermo, Italy
| | - Serena Fasano
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giulia Grasso
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital “P. Giaccone”, Palermo, Italy
| | - Lidia La Barbera
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital “P. Giaccone”, Palermo, Italy
| | - Francesco Ciccia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuliana Guggino
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital “P. Giaccone”, Palermo, Italy
| |
Collapse
|
32
|
Regulation of Pulmonary Bacterial Immunity by Follistatin-Like Protein 1. Infect Immun 2020; 89:IAI.00298-20. [PMID: 33077624 DOI: 10.1128/iai.00298-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a common cause of antibiotic-resistant pneumonia. Follistatin-like protein 1 (FSTL-1) is highly expressed in the lung and is critical for lung homeostasis. The role of FSTL-1 in immunity to bacterial pneumonia is unknown. Wild-type (WT) and FSTL-1 hypomorphic (Hypo) mice were infected with Klebsiella pneumoniae to determine infectious burden, immune cell abundance, and cytokine production. FSTL-1 Hypo/TCRδ-/- and FSTL-1 Hypo/IL17ra-/- were also generated to assess the role of γδT17 cells in this model. FSTL-1 Hypo mice had reduced K. pneumoniae lung burden compared with that of WT controls. FSTL-1 Hypo mice had increased Il17a/interleukin-17A (IL-17A) and IL-17-dependent cytokine expression. FSTL-1 Hypo lungs also had increased IL-17A+ and TCRγδ+ cells. FSTL-1 Hypo/TCRδ-/- displayed a lung burden similar to that of FSTL-1 Hypo and reduced lung burden compared with the TCRδ-/- controls. However, FSTL-1 Hypo/TCRδ-/- mice had greater bacterial dissemination than FSTL-1 Hypo mice, suggesting that gamma delta T (γδT) cells are dispensable for FSTL-1 Hypo control of pulmonary infection but are required for dissemination control. Confusing these observations, FSTL-1 Hypo/TCRδ-/- lungs had an increased percentage of IL-17A-producing cells compared with that of TCRδ-/- mice. Removal of IL-17A signaling in the FSTL-1 Hypo mouse resulted in an increased lung burden. These findings identify a novel role for FSTL-1 in innate lung immunity to bacterial infection, suggesting that FSTL-1 influences type-17 pulmonary bacterial immunity.
Collapse
|
33
|
Wo J, Zhang F, Li Z, Sun C, Zhang W, Sun G. The Role of Gamma-Delta T Cells in Diseases of the Central Nervous System. Front Immunol 2020; 11:580304. [PMID: 33193380 PMCID: PMC7644879 DOI: 10.3389/fimmu.2020.580304] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/30/2020] [Indexed: 01/08/2023] Open
Abstract
Gamma-delta (γδ) T cells are a subset of T cells that promote the inflammatory responses of lymphoid and myeloid lineages, and are especially vital to the initial inflammatory and immune responses. Given the capability to connect crux inflammations of adaptive and innate immunity, γδ T cells are responsive to multiple molecular cues and can acquire the capacity to induce various cytokines, such as GM-CSF, IL-4, IL-17, IL-21, IL-22, and IFN-γ. Nevertheless, the exact mechanisms responsible for γδ T cell proinflammatory functions remain poorly understood, particularly in the context of the central nervous system (CNS) diseases. CNS disease, usually leading to irreversible cognitive and physical disability, is becoming a worldwide public health problem. Here, we offer a review of the neuro-inflammatory and immune functions of γδ T cells, intending to understand their roles in CNS diseases, which may be crucial for the development of novel clinical applications.
Collapse
Affiliation(s)
- Jin Wo
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Feng Zhang
- Intensive Care Unit, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhizhong Li
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chenghong Sun
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Wencai Zhang
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Guodong Sun
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
34
|
Yao YE, Zhang JH, Chen XJ, Huang JL, Sun QX, Liu WW, Zeng H, Li CQ. Regulation of γδT17 cells by Mycobacterium vaccae through interference with Notch/Jagged1 signaling pathway. ACTA ACUST UNITED AC 2020; 53:e9551. [PMID: 33053115 PMCID: PMC7552905 DOI: 10.1590/1414-431x20209551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the effect of Mycobacterium vaccae on Jagged 1 and gamma delta T17 (γδT17) cells in asthmatic mice. An asthma mouse model was established through immunization with ovalbumin (OVA). Gamma-secretase inhibitor (DAPT) was used to block the Notch signaling pathway. M. vaccae was used to treat asthma, and related indicators were measured. Blocking Notch signaling inhibited the production of γδT17 cells and secretion of cytokine interleukin (IL)-17, which was accompanied by a decrease in Jagged1 mRNA and protein expression in the treated asthma group compared with the untreated asthma group. Similarly, treatment with M. vaccae inhibited Jagged1 expression and γδT17 cell production, which was associated with decreased airway inflammation and reactivity. The Notch signaling pathway may play a role in the pathogenesis of asthma through the induction of Jagged1 receptor. On the other hand, the inhibitory effect of M. vaccae on Jagged1 receptor in γδT17 cells could be used for the prevention and treatment of asthma.
Collapse
Affiliation(s)
- Yi En Yao
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Hong Zhang
- Department of Internal Medicine, Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao Ju Chen
- Department of Critical Care, First People's Hospital of Yulin City, Nanning, Guangxi, China
| | - Jian Lin Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qi Xiang Sun
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Wei Liu
- Department of Emergency Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huan Zeng
- The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Chao Qian Li
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
35
|
Ru Y, Li H, Zhang R, Luo Y, Song J, Kuai L, Xing M, Hong S, Sun X, Ding X, Lu Y, Liu L, Na C, Zhou Y, Li B, Li X. Role of keratinocytes and immune cells in the anti-inflammatory effects of Tripterygium wilfordii Hook. f. in a murine model of psoriasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153299. [PMID: 32823074 DOI: 10.1016/j.phymed.2020.153299] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Tripterygium wilfordii Hook. f. (TwHf) belonging to the Celastraceae family is widely used for psoriasis treatment, especially in topical therapy in Chinese traditional medicine. PURPOSE In this study, we investigated the anti-psoriatic effects of topical administration of Tripterygium wilfordii Hook. f. root decoction (TwHf-RD), as well as its safety and potential mechanisms of action in vivo and in vitro. METHODS Psoriasis-like lesions were induced in mice using imiquimod (IMQ). The liver and kidney function and the pathological changes in the liver, kidney, and spleen were measured using ELISA and hematoxylin and eosin (H&E) staining after TwHf-RD treatment. H&E staining was used to determine the optimum concentration of TwHf-RD. The expression levels of ki67 and apoptosis related-factors in vivo and in vitro were measured by immunohistochemical staining, flow cytometry, and western blotting. Immunocyte differentiation and pro-inflammatory cytokine (IL-17A, IL-17F, IL-10, IL-22, IL-23, IFN-γ, and TNF-α) expression levels were determined by flow cytometry and RT-qPCR. RESULTS TwHf-RD treatment attenuated skin inflammation, inhibited keratinocyte (KC) proliferation, increased the levels of apoptosis factors, and influenced the differentiation and inflammatory response of T lymphocytes and regulatory T cells in mice. In vitro experiments proved that Tripterygium wilfordii Hook. f. root extract (TwHf-RE) regulates the proliferation and apoptosis of PAM212 cells. CONCLUSION TwHf-RD alleviates IMQ-induced psoriasis lesions by regulating the proliferation and apoptosis of KC and immune cells and by inhibiting immunocyte differentiation and pro-inflammatory cytokine expression.
Collapse
MESH Headings
- Administration, Topical
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/immunology
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Cytokines/metabolism
- Dermatologic Agents/administration & dosage
- Dermatologic Agents/chemistry
- Dermatologic Agents/immunology
- Dermatologic Agents/pharmacology
- Disease Models, Animal
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Imiquimod/toxicity
- Keratinocytes/drug effects
- Male
- Mice, Inbred BALB C
- Plant Roots/chemistry
- Psoriasis/chemically induced
- Psoriasis/drug therapy
- Psoriasis/immunology
- Psoriasis/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Tripterygium/chemistry
Collapse
Affiliation(s)
- Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongjin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruoxi Zhang
- Research Laboratory of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiankun Song
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Meng Xing
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Seokgyeong Hong
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoying Sun
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaojie Ding
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Lu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Na
- Department of Dermatology, Weihai Hospital of Traditional Chinese Medicine, Shandong 264200, China
| | - Yaqiong Zhou
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
36
|
Association between IL-17 gene polymorphisms and circulating IL-17 levels in osteoarthritis: a meta-analysis. Z Rheumatol 2020; 79:482-490. [PMID: 31664512 DOI: 10.1007/s00393-019-00720-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study systemically reviewed the evidence regarding associations between polymorphisms in interleukin-17 (IL-17) genes and osteoarthritis (OA) susceptibility, and the relationship between circulating IL-17 levels and OA. METHODS We performed a meta-analysis of the associations between the IL-17A rs2275913 and IL-17F rs763780 polymorphisms and risk for OA and serum/plasma IL-17 levels in OA patients and controls. RESULTS Eight studies including 2214 OA patients and 2474 controls were included. Our meta-analysis identified a significant association between OA and the AA genotype of the IL-17A rs2275913 polymorphism in a pooled cohort of affected individuals, compared to the case in a pooled cohort of control participants (OR = 1.516, 95% CI = 1.260-1.825, P < 0.001), and a significant association between OA and the CC genotype of the IL-17F rs763780 polymorphism (OR = 2.257, 95% CI = 1.376-3.704, p = 0.001). OA site-based stratification identified an association between the AA genotype of the IL-17A rs2275913 polymorphism and the CC genotype of the IL-17F rs763780 polymorphism and knee OA, but not hip OA. Furthermore, the same patterns of significant associations between OA and the IL-17A rs2275913 and IL-17F rs763780 polymorphisms were identified based on homozygote contrasts. The OA patients showed significantly higher IL-17 levels than the control subjects (SMD = 1.830, 95% CI = 1.184-2.477, P < 0.001). CONCLUSION Our meta-analysis revealed associations between the IL-17A rs2275913 and IL-17F rs763780 polymorphisms and OA susceptibility, and the presence of significantly higher circulating IL-17 levels in OA patients.
Collapse
|
37
|
Tsukazaki H, Kaito T. The Role of the IL-23/IL-17 Pathway in the Pathogenesis of Spondyloarthritis. Int J Mol Sci 2020; 21:E6401. [PMID: 32899140 PMCID: PMC7504446 DOI: 10.3390/ijms21176401] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022] Open
Abstract
Spondyloarthritis (SpA) is a subset of seronegative rheumatic-related autoimmune diseases that consist of ankylosing spondylitis (AS), psoriatic spondylitis (PsA), reactive spondylitis (re-SpA), inflammatory bowel disease (IBD)-associated spondylitis, and unclassifiable spondylitis. These subsets share clinical phenotypes such as joint inflammation and extra-articular manifestations (uveitis, IBD, and psoriasis [Ps]). Inflammation at the enthesis, where ligaments and tendons attach to bones, characterizes and distinguishes SpA from other types of arthritis. Over the past several years, genetic, experimental, and clinical studies have accumulated evidence showing that the IL-23/IL-17 axis plays a critical role in the pathogenesis of SpA. These discoveries include genetic association and the identification of IL-23- and IL-17-producing cells in the tissue of mouse models and human patients. In this review, we summarize the current knowledge of the pathomechanism by focusing on the IL-23/IL-17 pathway and examine the recent clinical studies of biological agents targeting IL-23 and IL-17 in the treatment of SpA.
Collapse
Affiliation(s)
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan;
| |
Collapse
|
38
|
The microbiota protects against Pseudomonas aeruginosa pneumonia via γδ T cell-neutrophil axis in mice. Microbes Infect 2020; 22:294-302. [DOI: 10.1016/j.micinf.2020.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
|
39
|
Takahashi Y, Okamura Y, Morimoto N, Mihara K, Maekawa S, Wang HC, Aoki T, Kono T, Sakai M, Hikima JI. Interleukin-17A/F1 from Japanese pufferfish (Takifugu rubripes) stimulates the immune response in head kidney and intestinal cells. FISH & SHELLFISH IMMUNOLOGY 2020; 103:143-149. [PMID: 32437858 DOI: 10.1016/j.fsi.2020.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
In mammals, interleukin (IL)-17A and IL-17F, mainly produced by Th17 cells, are hallmark inflammatory cytokines that play important roles in the intestinal mucosal immune response. In contrast, three mammalian IL-17A and IL-17F counterparts (IL-17A/F1-3) have been identified in teleosts, and most of their functions have been described in the lymphoid organs. However, their function in the intestinal mucosal immune response is poorly understood. In this study, a recombinant (r) tiger puffer fish fugu (Takifugu rubripes) IL-17A/F1 was produced and purified using a mammalian expression system, and was used to stimulate cells isolated from fugu head kidney and intestines. The gene expression levels of TNF-α, IL-1β, IL-6, and β-defensin-like protein-1 (BD-1) genes were evaluated at 0, 3, 6 and 12 h post-stimulation (hps). Phagocytic activity and superoxide anion production were evaluated at the same time points using an NBT assay. The rIL-17A/F1 protein was shown to induce the expression of pro-inflammatory cytokines and antimicrobial peptides in both head kidney and intestinal cells. Expression levels for IL-1β, TNF-α, and IL-6 were all up-regulated between 3 and 12 hps. In addition, stimulation with rIL-17A/F1 enhanced phagocytic activity at 24 hps. Superoxide anion production was increased at 48 hps in the head kidney cells and moderately increased at 48 hps in intestinal cells. This study suggests that fugu IL-17A/F1 plays an important role in promoting the innate immune response and may act as a bridge between innate and adaptive immunity in the head kidney and intestine.
Collapse
Affiliation(s)
- Yoshie Takahashi
- International Course of Agriculture, Graduate School of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Natsuki Morimoto
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Koshin Mihara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Shun Maekawa
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Han-Ching Wang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Takashi Aoki
- Integrated Institute for Regulatory Science, Research Organization for Nao and Life Innovation, Waseda University, 513 Tsurumaki-cho, Sbinjuku-ku, Tokyo, 162-0041, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
40
|
Prinz I, Sandrock I, Mrowietz U. Interleukin-17 cytokines: Effectors and targets in psoriasis-A breakthrough in understanding and treatment. J Exp Med 2020; 217:jem.20191397. [PMID: 31727784 PMCID: PMC7037256 DOI: 10.1084/jem.20191397] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
This review summarizes the steps from basic research on IL-17 family cytokines to understanding their role in psoriasis pathogenesis to the approval of a number of monoclonal antibodies targeting IL-17 pathways as first line treatment of psoriasis and psoriatic arthritis. The IL-17 cytokine family comprising IL-17A to IL-17F and receptor subunits IL-17RA to IL-17RE represents a genetically ancient intercellular network regulating local tissue homeostasis. Its pivotal role in antifungal defense and its central position in the pathogenesis of inflammatory diseases including psoriasis were discovered only relatively late in the early 2000s. Since the connection of dysregulated IL-17 and psoriasis pathogenesis turned out to be particularly evident, a number of monoclonal antibodies targeting IL-17 pathways have been approved and are used as first line treatment of moderate-to-severe plaque psoriasis and psoriatic arthritis, and further agents are currently in clinical development.
Collapse
Affiliation(s)
- Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Centre for Individualized Infection Medicine, Hannover, Germany.,Cluster of Excellence RESIST - Resolving Infection Susceptibility (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ulrich Mrowietz
- Psoriasis Center at the Department of Dermatology and Comprehensive Center for Inflammation Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| |
Collapse
|
41
|
Li T, Zhou Y, Sun X, Bian Y, Wang K, Guo Q, Wang Q, Qiu F. Interleukin-2 maintains the survival of interleukin-17 + gamma/delta T cells in inflammation and autoimmune diseases. Int Immunopharmacol 2020; 86:106721. [PMID: 32615450 DOI: 10.1016/j.intimp.2020.106721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
There is increasing appreciation of the critical pathogenic role of IL-17 in inflammation and autoimmune diseases, which could be produced from both adaptive Th17 cells and innate γδ T cells. Existing evidences suggest that IL-2 is important for in vivo accumulation of IL-17+ γδ T cells, leaving the mechanisms still elusive. Herein, using lupus-prone MRL/lpr mice, we demonstrated that splenic γδ T cells were potent IL-17 producers at the onset of lupus, which could be diminished by in vivo IL-2 neutralization. Additional in vivo results showed that neutralization of IL-2 also significantly deleted the IL-17-producing γδ T cells in ovalbumin (OVA) /CFA-immunized B6 mice. Using splenic γδ T cells from OVA/CFA-immunized B6 mice, we further demonstrated that IL-2 could induce IL-17 production alone or together with IL-1β or IL-23 or anti-TCRγδ. Mechanism studies demonstrated that IL-2 could support the survival of γδ T cells, rather than induce the proliferation. Through specific pharmacologic inhibitor, we demonstrated that IL-2 could maintain that RORγt expression of γδ T cells in a STAT5-dependent manner. Collectively, this study suggested that the interplay between IL and 2 and other pro-inflammatory cytokines could trigger the rapid IL-17 production from innate γδ T cells, thus to orchestrate an inflammatory response before the development of adaptive Th17 cells.
Collapse
Affiliation(s)
- Tingting Li
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Yaxin Zhou
- Department of Clinical Immunology, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), No.127 Changle West Road, Xi'an 710032, China
| | - Xi Sun
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Yang Bian
- Department of Neurology, The Sixth Medical Center, Chinese PLA General Hospital, No.6 Fucheng Road, Beijing 100048, China
| | - Kunyu Wang
- Department of Neurology, The Sixth Medical Center, Chinese PLA General Hospital, No.6 Fucheng Road, Beijing 100048, China
| | - Qifeng Guo
- Department of Neurology, The Sixth Medical Center, Chinese PLA General Hospital, No.6 Fucheng Road, Beijing 100048, China
| | - Qingqing Wang
- Department of Neurology, The Sixth Medical Center, Chinese PLA General Hospital, No.6 Fucheng Road, Beijing 100048, China
| | - Feng Qiu
- Department of Neurology, The Sixth Medical Center, Chinese PLA General Hospital, No.6 Fucheng Road, Beijing 100048, China.
| |
Collapse
|
42
|
Mice Lacking γδ T Cells Exhibit Impaired Clearance of Pseudomonas aeruginosa Lung Infection and Excessive Production of Inflammatory Cytokines. Infect Immun 2020; 88:IAI.00171-20. [PMID: 32229615 PMCID: PMC7240087 DOI: 10.1128/iai.00171-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic and life-threatening infections in immunocompromised patients. A better understanding of the role that innate immunity plays in the control of P. aeruginosa infection is crucial for therapeutic development. Specifically, the role of unconventional immune cells like γδ T cells in the clearance of P. aeruginosa lung infection is not yet well characterized. Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic and life-threatening infections in immunocompromised patients. A better understanding of the role that innate immunity plays in the control of P. aeruginosa infection is crucial for therapeutic development. Specifically, the role of unconventional immune cells like γδ T cells in the clearance of P. aeruginosa lung infection is not yet well characterized. In this study, the role of γδ T cells was examined in an acute mouse model of P. aeruginosa lung infection. In the absence of γδ T cells, mice displayed impaired bacterial clearance and decreased survival, outcomes which were associated with delayed neutrophil recruitment and impaired recruitment of other immune cells (macrophages, T cells, natural killer cells, and natural killer T [NKT] cells) into the airways. Despite reduced NKT cell recruitment in the airways of mice lacking γδ T cells, NKT cell-deficient mice exhibited wild-type level control of P. aeruginosa infection. Proinflammatory cytokines were also altered in γδ T cell-deficient mice, with increased production of interleukin-1β, interleukin-6, and tumor necrosis factor. γδ T cells did not appear to contribute significantly to the production of interleukin-17A or the chemokines CXCL1 and CXCL2. Importantly, host survival could be improved by inhibiting tumor necrosis factor signaling with the soluble receptor construct etanercept in γδ cell-deficient mice. These findings demonstrate that γδ T cells play a protective role in coordinating the host response to P. aeruginosa lung infection, both in contributing to early immune cell recruitment and by limiting inflammation.
Collapse
|
43
|
Chen HH, Lin CC, Tung YT, Chao YH, Huang WC, Lee PY. Combination Therapy of Acarbose and Cyclosporine a Ameliorates Imiquimod-Induced Psoriasis-Like Dermatitis in Mice. Molecules 2020; 25:molecules25081822. [PMID: 32316255 PMCID: PMC7221909 DOI: 10.3390/molecules25081822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 01/10/2023] Open
Abstract
Moderate to severe psoriasis, an immune-mediated inflammatory disease, adversely affects patients' lives. Cyclosporin A (CsA), an effective immunomodulator, is used to treat psoriasis. CsA is ineffective at low doses and toxic at high doses. Acarbose (Acar), a common antidiabetic drug with anti-inflammatory and immunomodulatory effects, reduces imiquimod (IMQ)-induced psoriasis severity. Combinations of systemic drugs are generally more efficacious and safer than higher doses of single drugs. We observed that mice treated with a combination of Acar (250 mg/kg) and low-dose CsA (10 or 20 mg/kg) exhibited significantly milder IMQ-induced psoriasis-like dermatitis and smoother back skin than those treated with Acar (250 mg/kg), low-dose CsA (10 or 20 mg/kg), or IMQ alone. The combination therapy significantly reduced serum and skin levels of Th17-related cytokines (interleukin (IL)-17A, IL-22, and IL-23) and the Th1-related cytokine tumor necrosis factor-α (TNF-α) compared with Acar, low-dose CsA, and IMQ alone. Additionally, the combination therapy significantly reduced the percentages of IL-17- and IL-22-producing CD4+ T-cells (Th17 and Th22 cells, respectively) and increased that of Treg cells. Our data suggested that Acar and low-dose CsA in combination alleviates psoriatic skin lesions by inhibiting inflammation. The findings provide new insights into the effects of immunomodulatory drugs in psoriasis treatment.
Collapse
Affiliation(s)
- Hsin-Hua Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Chi-Chien Lin
- Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (C.-C.L.); (Y.-H.C.)
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan;
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Ya-Hsuan Chao
- Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (C.-C.L.); (Y.-H.C.)
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan;
| | - Po-Ying Lee
- Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei 280, Taiwan
- Correspondence:
| |
Collapse
|
44
|
Wang J, Yoon TW, Read R, Yi AK, Williams RW, Fitzpatrick EA. Genetic variability of T cell responses in hypersensitivity pneumonitis identified using the BXD genetic reference panel. Am J Physiol Lung Cell Mol Physiol 2020; 318:L631-L643. [PMID: 31940220 DOI: 10.1152/ajplung.00120.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypersensitivity pneumonitis (HP) is an interstitial lung disease that may progress to fibrosis and significant risk of death. HP develops following repeated exposures to inhaled environmental antigens; however, only a fraction of the exposed population develops the disease, suggesting that host genetics contribute to disease susceptibility. We used the BXD family of mice with the Saccharopolyspora rectivirgula (SR) model of HP to investigate the role of genetics in susceptibility to HP. The BXD family is derived from a B6 mother and a D2 father and has been used to map susceptibility loci to numerous diseases. B6, D2, and BXD progeny strains were exposed to SR for 3 wk, and the development of HP was monitored. The B6 and D2 strains developed alveolitis; however, the cellular composition was neutrophilic in the D2 strain and more lymphocytic in the B6 strain. Hematoxylin-eosin staining of lung sections revealed lymphoid aggregates in B6 lungs, whereas D2 lungs exhibited a neutrophilic infiltration. Twenty-eight BXD strains of mice were tested, and the results reveal significant heritable variation for numbers of CD4+ or CD8+ T cells in the air spaces. There was significant genetic variability for lymphoid aggregates and alveolar wall thickening. We mapped a significant quantitative trait locus (QTL) on chromosome 18 for CD8+CD69+ T cells that includes cadherin 2 (Cdh2), an excellent candidate gene associated with epithelial-mesenchymal transition, which is upregulated in lungs of strains with HP. These results demonstrate that the BXD family is a valuable and translationally relevant model to identify genes contributing to HP and to devise early and effective interventions.
Collapse
Affiliation(s)
- Jin Wang
- Integrated Biomedical Science Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Tae Won Yoon
- Integrated Biomedical Science Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Robert Read
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee.,TriMetis Life Sciences, Memphis, Tennessee
| | - Ae-Kyung Yi
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Robert W Williams
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee
| | - Elizabeth A Fitzpatrick
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
45
|
Naito Y, Tsuji T, Nagata S, Tsuji N, Fujikura T, Ohashi N, Kato A, Miyajima H, Yasuda H. IL-17A activated by Toll-like receptor 9 contributes to the development of septic acute kidney injury. Am J Physiol Renal Physiol 2020; 318:F238-F247. [PMID: 31760767 DOI: 10.1152/ajprenal.00313.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Toll-like receptor 9 (TLR9), which is activated by endogenously released mtDNA during sepsis, contributes to the development of polymicrobial septic acute kidney injury (AKI). However, downstream factors of TLR9 to AKI remain unknown. We hypothesized that IL-17A activated by TLR9 may play a critical role in septic AKI development. To determine the effects of TLR9 on IL-17A production in septic AKI, we used a cecal ligation and puncture (CLP) model in Tlr9 knockout (Tlr9KO) mice and wild-type (WT) littermates. We also investigated the pathway from TLR9 activation in dendritic cells (DCs) to IL-17A production by γδT cells in vitro. To elucidate the effects of IL-17A on septic AKI, Il-17a knockout (Il-17aKO) mice and WT littermates were subjected to CLP. We further investigated the relationship between the TLR9-IL-17A axis and septic AKI by intravenously administering recombinant IL-17A or vehicle into Tlr9KO mice and assessing kidney function. IL-17A levels in both plasma and the peritoneal cavity and mRNA levels of IL-23 in the spleen were significantly higher in WT mice after CLP than in Tlr9KO mice. Bone marrow-derived DCs activated by TLR9 induced IL-23 and consequently promoted IL-17A production in γδT cells in vitro. Knockout of Il-17a improved survival, functional and morphological aspects of AKI, and splenic apoptosis after CLP. Exogenous IL-17A administration aggravated CLP-induced AKI attenuated by knockout of Tlr9. TLR9 in DCs mediated IL-17A production in γδT cells during sepsis and contributed to the development of septic AKI.
Collapse
Affiliation(s)
- Yoshitaka Naito
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takayuki Tsuji
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Soichiro Nagata
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Naoko Tsuji
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomoyuki Fujikura
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Naro Ohashi
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Akihiko Kato
- Division of Blood Purification, Hamamatsu University School of Medicine Hospital, Hamamatsu, Shizuoka, Japan
| | - Hiroaki Miyajima
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hideo Yasuda
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
46
|
JunB plays a crucial role in development of regulatory T cells by promoting IL-2 signaling. Mucosal Immunol 2019; 12:1104-1117. [PMID: 31285535 DOI: 10.1038/s41385-019-0182-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 05/18/2019] [Accepted: 06/06/2019] [Indexed: 02/04/2023]
Abstract
The AP-1 transcription factor JunB plays crucial roles in multiple biological processes, including placental formation and bone homeostasis. We recently reported that JunB is essential for development of Th17 cells, and thus Junb-deficient mice are resistant to experimental autoimmune encephalomyelitis. However, the role of JunB in CD4+ T cells under other inflammatory disease conditions is unknown. Here we show that mice lacking JunB in CD4+ T cells (Junbfl/flCd4-Cre mice) were more susceptible to dextran sulfate sodium (DSS)-induced colitis because of impaired development of regulatory T (Treg) cells. Production of interleukin (IL)-2 and expression of CD25, a high affinity IL-2 receptor component, were decreased in Junb-deficient CD4+ T cells in vitro and in vivo. Naive CD4+ T cells from Junbfl/flCd4-Cre mice failed to differentiate into Treg cells in the absence of exogenously added IL-2 in vitro. A mixed bone marrow transfer experiment revealed that defective Treg development of Junb-deficient CD4+ T cells was not rescued by co-transferred wild-type cells, indicating a significance of the cell-intrinsic defect. Injection of IL-2-anti-IL-2 antibody complexes induced expansion of Treg cells and alleviated DSS-induced colitis in Junbfl/flCd4-Cre mice. Thus JunB plays a crucial role in the development of Treg cells by facilitating IL-2 signaling.
Collapse
|
47
|
Effects of 3 Different Commercial Vaccines Formulations against BVDV and BHV-1 on the Inflammatory Response of Holstein Heifers. Vet Sci 2019; 6:vetsci6030069. [PMID: 31455017 PMCID: PMC6789449 DOI: 10.3390/vetsci6030069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
After vaccination, vaccine components must activate the immune response, but the ideal vaccine should not result in undesirable effects in cattle. The aim of this study was to evaluate the inflammatory and humoral responses and adverse reactions induced by three adjuvanted commercial vaccines against bovine viral diarrhea virus (BVDV) and bovine herpesvirus 1 (BHV-1). Holstein heifers (n = 35) were divided into four groups by adjuvant compounds: Vaccine A (Alum; n = 9), Vaccine B (Oil-in-water; n = 10), Vaccine C (Amphigen/Quil A cholesterol and dimethyl-dioctadecyl ammonium (DDA) bromide (QAD; n = 10), and Control (n = 6). Heifers were assessed at 0 h, 6, 24, 48, 72 and 168 h post-vaccination; serology was evaluated at first dose (D0), booster (D21) and D42. Heifers vaccinated with Vaccine B (p = 0.0001) and C (p = 0.0001) had a more intense local reaction, while there was a higher rectal temperature detected in heifers vaccinated with Vaccine C (p = 0.020). There was greater systemic reaction observed for heifers vaccinated with Vaccines B and C at 48 h (p = 0.002) after a second dose. Clinical pathology parameters [white blood count (WBC) (p = 0.001), neutrophils (p = 0.0001) and haptoglobin concentrations (p = 0.0001)] were higher in animals vaccinated with Vaccine C. Neutralizing Abs against BVDV type 1 strains, NADL and Singer, were detected in animals vaccinated with Vaccines A or C at D42, while BVDV-2 antibodies were detected only in animals vaccinated with Vaccine C. A BHV-1 antibody was detected in all three vaccine groups (Vaccines A, B or C) at day 42 (21 days post booster vaccination). The findings of this research were based on three different commercial laboratory formulations and also according to the conditions which the study was conducted. In this context, vaccine containing mineral oil or Amphigen/QAD presented greater local reactivity and induced a significant systemic inflammatory response. Vaccinated heifers with Alum and Amphigen/QAD commercial vaccines enhanced humoral immune response against BVDV and BHV-1.
Collapse
|
48
|
Burgmeijer EH, Duijkers R, Lutter R, Bonten MJM, Schweitzer VA, Boersma WG. Plasma cytokine profile on admission related to aetiology in community-acquired pneumonia. CLINICAL RESPIRATORY JOURNAL 2019; 13:605-613. [PMID: 31310442 DOI: 10.1111/crj.13062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 06/20/2019] [Accepted: 07/08/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Potentially unnecessary antibiotic use for community-acquired pneumonia (CAP) contributes to selection of antibiotic-resistant pathogens. Cytokine expression at the time that treatment is started may assist in identifying patients not requiring antibiotics. We determined plasma cytokine patterns in patients retrospectively categorized as strict viral, pneumococcal or combined viral-bacterial CAP. OBJECTIVE To investigate whether cytokine-based prediction models can be used to differentiate strict viral CAP from other aetiologies at admission. METHODS From 344 hospitalized CAP patients, 104 patients were categorized as viral CAP (n = 17), pneumococcal CAP (n = 48) and combined bacterial-viral CAP (n = 39). IL-6, IL-10, IL-27, IFN-γ and C-reactive protein (CRP) were determined on admission in plasma. Prediction of strict viral aetiology was explored with two multivariate regression models and ROC curves. RESULTS Viral pneumonia was predicted by logistic regression using multiple cytokine levels (IL-6, IL-27 and CRP) with an AUC of 0.911 (95% CI: 0.852-0.971, P < .001). For the same patients the AUC of CRP was 0.813 (95% CI: 0.728-0.898, P < .001). CONCLUSIONS This study demonstrated differences in cytokine expression in selected CAP patients between viral and bacterial aetiology. Prospective validation studies are warranted.
Collapse
Affiliation(s)
- Eduard H Burgmeijer
- Department of Pulmonology, North West Hospital Alkmaar, Alkmaar, the Netherlands
| | - Ruud Duijkers
- Department of Pulmonology, North West Hospital Alkmaar, Alkmaar, the Netherlands
| | - René Lutter
- Departments of Respiratory Medicine and Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marc J M Bonten
- Department of Molecular Epidemiology of Infectious diseases, Department of Medical Microbiology and Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Valentijn A Schweitzer
- Department of Molecular Epidemiology of Infectious diseases, Department of Medical Microbiology and Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Wim G Boersma
- Department of Pulmonology, North West Hospital Alkmaar, Alkmaar, the Netherlands
| |
Collapse
|
49
|
Zhang X, Yuan Y, Pan Z, Ma Y, Wu M, Yang J, Han R, Chen M, Hu X, Liu R, Sam NB, Xu S, Pan F. Elevated circulating IL-17 level is associated with inflammatory arthritis and disease activity: A meta-analysis. Clin Chim Acta 2019; 496:76-83. [PMID: 31271739 DOI: 10.1016/j.cca.2019.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/15/2019] [Accepted: 06/29/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Previous studies found that the interleukin (IL)-17 level was elevated in inflammatory arthritis, but results were inconsistent. This meta-analysis aimed to investigate the association of IL-17 cytokine with osteoarthritis (OA), rheumatoid arthritis (RA), ankylosing spondylitis (AS) and psoriatic arthritis (PsA). METHODS Relevant studies were searched using databases. Standardized mean difference (SMD) was calculated. Correlation coefficient was utilized to evaluate the relationship between IL-17 and disease activity of AS and RA. Subgroup analysis, sensitivity analysis and meta-regression were applied to explore the sources of heterogeneity. RESULTS 83 records were enrolled. The IL-17 level was elevated in AS (SMD = 2.348, P < .001), RA (SMD = 1.502, P < .001), PsA (SMD = 1.710, P < .001) and OA (SMD = 1.192, P = .016), and similar results occurred in subgroup analysis. Furthermore, the IL-17 level was positively associated with disease activity of AS and RA. CONCLUSION Circulating IL-17 level is significantly elevated in inflammatory arthritis and is related to the disease activity of AS and RA, suggesting that it plays an important role in the pathogenesis and progression of inflammatory arthritis (especially in AS and RA).
Collapse
Affiliation(s)
- Xu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yaping Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Zhipeng Pan
- Department of Medical Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Meng Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jiajia Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Renfang Han
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Mengya Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xingxing Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Rui Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Napoleon Bellua Sam
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; University for Development Studies, Ghana Students Information Systems Unit, University of Ghana, P.O Box 143, Korle-Bu, Accra, Ghana
| | - Shengqian Xu
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
50
|
Zhao H, Feng R, Peng A, Li G, Zhou L. The expanding family of noncanonical regulatory cell subsets. J Leukoc Biol 2019; 106:369-383. [DOI: 10.1002/jlb.6ru0918-353rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hai Zhao
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Ridong Feng
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Aijun Peng
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Gaowei Li
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Liangxue Zhou
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| |
Collapse
|