1
|
Sok SPM, Pipkin K, Popescu NI, Reidy M, Li B, Van Remmen H, Kinter M, Sun XH, Fan Z, Zhao M. Gpx4 Regulates Invariant NKT Cell Homeostasis and Function by Preventing Lipid Peroxidation and Ferroptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:941-951. [PMID: 39158281 PMCID: PMC11408103 DOI: 10.4049/jimmunol.2400246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
Invariant NKT (iNKT) cells are a group of innate-like T cells that plays important roles in immune homeostasis and activation. We found that iNKT cells, compared with CD4+ T cells, have significantly higher levels of lipid peroxidation in both mice and humans. Proteomic analysis also demonstrated that iNKT cells express higher levels of phospholipid hydroperoxidase glutathione peroxidase 4 (Gpx4), a major antioxidant enzyme that reduces lipid peroxidation and prevents ferroptosis. T cell-specific deletion of Gpx4 reduces iNKT cell population, most prominently the IFN-γ-producing NKT1 subset. RNA-sequencing analysis revealed that IFN-γ signaling, cell cycle regulation, and mitochondrial function are perturbed by Gpx4 deletion in iNKT cells. Consistently, we detected impaired cytokine production, elevated cell proliferation and cell death, and accumulation of lipid peroxides and mitochondrial reactive oxygen species in Gpx4 knockout iNKT cells. Ferroptosis inhibitors, iron chelators, vitamin E, and vitamin K2 can prevent ferroptosis induced by Gpx4 deficiency in iNKT cells and ameliorate the impaired function of iNKT cells due to Gpx4 inhibition. Last, vitamin E rescues iNKT cell population in Gpx4 knockout mice. Altogether, our findings reveal the critical role of Gpx4 in regulating iNKT cell homeostasis and function, through controlling lipid peroxidation and ferroptosis.
Collapse
Affiliation(s)
- Sophia P. M. Sok
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 13 Street, Oklahoma City, Oklahoma, 73104, USA
| | - Kaitlyn Pipkin
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 13 Street, Oklahoma City, Oklahoma, 73104, USA
| | - Narcis I. Popescu
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 13 Street, Oklahoma City, Oklahoma, 73104, USA
| | - Megan Reidy
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 13 Street, Oklahoma City, Oklahoma, 73104, USA
| | - Bin Li
- Department of Cellular and Molecular Medicine, School of Medicine, University of California-San Diego, 9500 Gilman Dr, La Jolla, California, 92093, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 13 Street, Oklahoma City, Oklahoma, 73104, USA
- Oklahoma City VA Medical Center, 921 NE 13th St, Oklahoma City, Oklahoma, 73104,USA
| | - Mike Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 13 Street, Oklahoma City, Oklahoma, 73104, USA
| | - Xiao-Hong Sun
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 13 Street, Oklahoma City, Oklahoma, 73104, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, Connecticut 06030, USA
| | - Meng Zhao
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 13 Street, Oklahoma City, Oklahoma, 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, 1100 N Lindsay Ave, Oklahoma City, Oklahoma, 73104, USA
| |
Collapse
|
2
|
Montaño J, Garnica J, Yamanouchi J, Moro J, Solé P, Mondal D, Serra P, Yang Y, Santamaria P. Transcriptional re-programming of liver-resident iNKT cells into T-regulatory type-1-like liver iNKT cells involves extensive gene de-methylation. Front Immunol 2024; 15:1454314. [PMID: 39315110 PMCID: PMC11416961 DOI: 10.3389/fimmu.2024.1454314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Unlike conventional CD4+ T cells, which are phenotypically and functionally plastic, invariant NKT (iNKT) cells generally exist in a terminally differentiated state. Naïve CD4+ T cells can acquire alternative epigenetic states in response to different cues, but it remains unclear whether peripheral iNKT cells are epigenetically stable or malleable. Repetitive encounters of liver-resident iNKT cells (LiNKTs) with alpha-galactosylceramide (αGalCer)/CD1d-coated nanoparticles (NPs) can trigger their differentiation into a LiNKT cell subset expressing a T regulatory type 1 (TR1)-like (LiNKTR1) transcriptional signature. Here we dissect the epigenetic underpinnings of the LiNKT-LiNKTR1 conversion as compared to those underlying the peptide-major histocompatibility complex (pMHC)-NP-induced T-follicular helper (TFH)-to-TR1 transdifferentiation process. We show that gene upregulation during the LINKT-to-LiNKTR1 cell conversion is associated with demethylation of gene bodies, inter-genic regions, promoters and distal gene regulatory elements, in the absence of major changes in chromatin exposure or deposition of expression-promoting histone marks. In contrast, the naïve CD4+ T cell-to-TFH differentiation process involves extensive remodeling of the chromatin and the acquisition of a broad repertoire of epigenetic modifications that are then largely inherited by TFH cell-derived TR1 cell progeny. These observations indicate that LiNKT cells are epigenetically malleable and particularly susceptible to gene de-methylation.
Collapse
Affiliation(s)
- Javier Montaño
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Josep Garnica
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Jun Yamanouchi
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joel Moro
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Patricia Solé
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Debajyoti Mondal
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pau Serra
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Yang Yang
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pere Santamaria
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Hayashizaki K, Kamii Y, Kinjo Y. Glycolipid antigen recognition by invariant natural killer T cells and its role in homeostasis and antimicrobial responses. Front Immunol 2024; 15:1402412. [PMID: 38863694 PMCID: PMC11165115 DOI: 10.3389/fimmu.2024.1402412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Due to the COVID-19 pandemic, the importance of developing effective vaccines has received more attention than ever before. To maximize the effects of vaccines, it is important to select adjuvants that induce strong and rapid innate and acquired immune responses. Invariant natural killer T (iNKT) cells, which constitute a small population among lymphocytes, bypass the innate and acquired immune systems through the rapid production of cytokines after glycolipid recognition; hence, their activation could be used as a vaccine strategy against emerging infectious diseases. Additionally, the diverse functions of iNKT cells, including enhancing antibody production, are becoming more understood in recent years. In this review, we briefly describe the functional subset of iNKT cells and introduce the glycolipid antigens recognized by them. Furthermore, we also introduce novel vaccine development taking advantages of iNKT cell activation against infectious diseases.
Collapse
Affiliation(s)
- Koji Hayashizaki
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuhiro Kamii
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Kinjo
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Boonchalermvichian C, Yan H, Gupta B, Rubin A, Baker J, Negrin RS. invariant Natural Killer T cell therapy as a novel therapeutic approach in hematological malignancies. FRONTIERS IN TRANSPLANTATION 2024; 3:1353803. [PMID: 38993780 PMCID: PMC11235242 DOI: 10.3389/frtra.2024.1353803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 07/13/2024]
Abstract
Invariant Natural Killer T cell therapy is an emerging platform of immunotherapy for cancer treatment. This unique cell population is a promising candidate for cell therapy for cancer treatment because of its inherent cytotoxicity against CD1d positive cancers as well as its ability to induce host CD8 T cell cross priming. Substantial evidence supports that iNKT cells can modulate myelomonocytic populations in the tumor microenvironment to ameliorate immune dysregulation to antagonize tumor progression. iNKT cells can also protect from graft-versus-host disease (GVHD) through several mechanisms, including the expansion of regulatory T cells (Treg). Ultimately, iNKT cell-based therapy can retain antitumor activity while providing protection against GVHD simultaneously. Therefore, these biological properties render iNKT cells as a promising "off-the-shelf" therapy for diverse hematological malignancies and possible solid tumors. Further the introduction of a chimeric antigen recetor (CAR) can further target iNKT cells and enhance function. We foresee that improved vector design and other strategies such as combinatorial treatments with small molecules or immune checkpoint inhibitors could improve CAR iNKT in vivo persistence, functionality and leverage anti-tumor activity along with the abatement of iNKT cell dysfunction or exhaustion.
Collapse
|
5
|
Kamii Y, Hayashizaki K, Kanno T, Chiba A, Ikegami T, Saito M, Akeda Y, Ohteki T, Kubo M, Yoshida K, Kawakami K, Oishi K, Araya J, Kuwano K, Kronenberg M, Endo Y, Kinjo Y. IL-27 regulates the differentiation of follicular helper NKT cells via metabolic adaptation of mitochondria. Proc Natl Acad Sci U S A 2024; 121:e2313964121. [PMID: 38394242 PMCID: PMC10907256 DOI: 10.1073/pnas.2313964121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are innate-like T lymphocytes that express an invariant T cell receptor α chain and contribute to bridging innate and acquired immunity with rapid production of large amounts of cytokines after stimulation. Among effecter subsets of iNKT cells, follicular helper NKT (NKTFH) cells are specialized to help B cells. However, the mechanisms of NKTFH cell differentiation remain to be elucidated. In this report, we studied the mechanism of NKTFH cell differentiation induced by pneumococcal surface protein A and α-galactosylceramide (P/A) vaccination. We found that Gr-1+ cells helped iNKT cell proliferation and NKTFH cell differentiation in the spleen by producing interleukin-27 (IL-27) in the early phase after vaccination. The neutralization of IL-27 impaired NKTFH cell differentiation, which resulted in compromised antibody production and diminished protection against Streptococcus pneumoniae infection by the P/A vaccine. Our data indicated that Gr-1+ cell-derived IL-27 stimulated mitochondrial metabolism, meeting the energic demand required for iNKT cells to differentiate into NKTFH cells. Interestingly, Gr-1+ cell-derived IL-27 was induced by iNKT cells via interferon-γ production. Collectively, our findings suggest that optimizing the metabolism of iNKT cells was essential for acquiring specific effector functions, and they provide beneficial knowledge on iNKT cell-mediated vaccination-mediated therapeutic strategies.
Collapse
Affiliation(s)
- Yasuhiro Kamii
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Koji Hayashizaki
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Chiba292-0818, Japan
| | - Akio Chiba
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Taku Ikegami
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo162-8640, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo113-8510, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba278-0022, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi980-8575, Japan
| | | | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA92037
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA92093
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Chiba292-0818, Japan
| | - Yuki Kinjo
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo105-8461, Japan
| |
Collapse
|
6
|
Abstract
The thymus is an evolutionarily conserved organ that supports the development of T cells. Not only does the thymic environment support the rearrangement and expression of diverse T cell receptors but also provides a unique niche for the selection of appropriate T cell clones. Thymic selection ensures that the repertoire of available T cells is both useful (being MHC-restricted) and safe (being self-tolerant). The unique antigen-presentation features of the thymus ensure that the display of self-antigens is optimal to induce tolerance to all types of self-tissue. MHC class-specific functions of CD4+ T helper cells, CD8+ killer T cells and CD4+ regulatory T cells are also established in the thymus. Finally, the thymus provides signals for the development of several minor T cell subsets that promote immune and tissue homeostasis. This Review provides an introductory-level overview of our current understanding of the sophisticated thymic selection mechanisms that ensure T cells are useful and safe.
Collapse
Affiliation(s)
- K Maude Ashby
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
7
|
Joannou K, Baldwin TA. Destined for the intestine: thymic selection of TCRαβ CD8αα intestinal intraepithelial lymphocytes. Clin Exp Immunol 2023; 213:67-75. [PMID: 37137518 PMCID: PMC10324546 DOI: 10.1093/cei/uxad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023] Open
Abstract
The immune system is composed of a variety of different T-cell lineages distributed through both secondary lymphoid tissue and non-lymphoid tissue. The intestinal epithelium is a critical barrier surface that contains numerous intraepithelial lymphocytes that aid in maintaining homeostasis at that barrier. This review focuses on T-cell receptor αβ (TCRαβ) CD8αα intraepithelial lymphocytes, and how recent advances in the field clarify how this unique T-cell subset is selected, matures, and functions in the intestines. We consider how the available evidence reveals a story of ontogeny starting from agonist selection of T cells in the thymus and finishing through the specific signaling environment of the intestinal epithelium. We conclude with how this story raises further key questions about the development of different ontogenic waves of TCRαβ CD8αα IEL and their importance for intestinal epithelial homeostasis.
Collapse
Affiliation(s)
- Kevin Joannou
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
You M, Liu J, Li J, Ji C, Ni H, Guo W, Zhang J, Jia W, Wang Z, Zhang Y, Yao Y, Yu G, Ji H, Wang X, Han D, Du X, Xu MM, Yu S. Mettl3-m 6A-Creb1 forms an intrinsic regulatory axis in maintaining iNKT cell pool and functional differentiation. Cell Rep 2023; 42:112584. [PMID: 37267102 DOI: 10.1016/j.celrep.2023.112584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
N6-methyladenosine (m6A) methyltransferase Mettl3 is involved in conventional T cell immunity; however, its role in innate immune cells remains largely unknown. Here, we show that Mettl3 intrinsically regulates invariant natural killer T (iNKT) cell development and function in an m6A-dependent manner. Conditional ablation of Mettl3 in CD4+CD8+ double-positive (DP) thymocytes impairs iNKT cell proliferation, differentiation, and cytokine secretion, which synergistically causes defects in B16F10 melanoma resistance. Transcriptomic and epi-transcriptomic analyses reveal that Mettl3 deficiency disturbs the expression of iNKT cell-related genes with altered m6A modification. Strikingly, Mettl3 modulates the stability of the Creb1 transcript, which in turn controls the protein and phosphorylation levels of Creb1. Furthermore, conditional targeting of Creb1 in DP thymocytes results in similar phenotypes of iNKT cells lacking Mettl3. Importantly, ectopic expression of Creb1 largely rectifies such developmental defects in Mettl3-deficient iNKT cells. These findings reveal that the Mettl3-m6A-Creb1 axis plays critical roles in regulating iNKT cells at the post-transcriptional layer.
Collapse
Affiliation(s)
- Menghao You
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingjing Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China; Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ce Ji
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haochen Ni
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhui Guo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiarui Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Weiwei Jia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhao Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yajiao Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yingpeng Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guotao Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huanyu Ji
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dali Han
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Meng Michelle Xu
- Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Shuyang Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Iwanami N, Richter AS, Sikora K, Boehm T. Tnpo3 controls splicing of the pre-mRNA encoding the canonical TCR α chain of iNKT cells. Nat Commun 2023; 14:3645. [PMID: 37339974 DOI: 10.1038/s41467-023-39422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Unconventional T cells, such as innate natural killer T cells (iNKT) cells, are an important part of vertebrate immune defences. iNKT recognise glycolipids through a T cell receptor (TCR) that is composed of a semi-invariant TCR α chain, paired with a restricted set of TCR β chains. Here, we show that splicing of the cognate Trav11-Traj18-Trac pre-mRNA encoding the characteristic Vα14Jα18 variable region of this semi-invariant TCR depends on the presence of Tnpo3. The Tnpo3 gene encodes a nuclear transporter of the β-karyopherin family whose cargo includes various splice regulators. The block of iNKT cell development in the absence of Tnpo3 can be overcome by transgenic provision of a rearranged Trav11-Traj18-Trac cDNA, indicating that Tnpo3 deficiency does not interfere with the development of iNKT cells per se. Our study thus identifies a role for Tnpo3 in regulating the splicing of the pre-mRNA encoding the cognate TCRα chain of iNKT cells.
Collapse
Affiliation(s)
- Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Andreas S Richter
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Genedata AG, Margarethenstrasse 38, 4053, Basel, Switzerland
| | - Katarzyna Sikora
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Boehm
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany.
| |
Collapse
|
10
|
Li Z, Liu H, Teng J, Xu W, Shi H, Wang Y, Meng M. Epigenetic regulation of iNKT2 cell adoptive therapy on the imbalance of iNKT cell subsets in thymus of RA mice. Cell Immunol 2023; 386:104703. [PMID: 36889216 DOI: 10.1016/j.cellimm.2023.104703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Epigenetic regulation affects the development and differentiation of iNKT cells. Our previous study found that the number of iNKT cells in thymus of RA mice was reduced and the ratio of subsets was unbalanced, but the related mechanism remains unclear. We adopted an adoptive infusion of iNKT2 cells with specific phenotypes and functions to RA mice and used the α-Galcer treatment group as control. The findings revealed that: 1. Adoptive treatment of iNKT cells decreased the proportion of iNKT1 and iNKT17 subsets in the thymus of RA mice, and increased the proportion of iNKT2 subsets. 2. Following treatment with iNKT cells, the expression of PLZF in thymus DP T cells was increased whereas the expression of T-bet in thymus iNKT cells was decreased in RA mice. 3. Adoptive therapy reduced the modification levels of H3Kb7me3 and H3K4me3 in the promoter regions of Zbtb16 (encoding PLZF) and Tbx21 (encoding T-bet) gene in thymus DP T cells and iNKT cells, and the reduction of H3K4me3 was particularly significant in the cell treatment group. Furthermore, adoptive therapy also upregulated the expression of UTX (histone demethylase) in thymus lymphocytes of RA mice. As a result, it is hypothesized that adoptive therapy of iNKT2 cells may affect the level of histone methylation in the promoter region of important transcription factor genes for iNKT development and differentiation, thereby directly or indirectly correcting the imbalance of iNKT subsets in the thymus of RA mice. These findings offer a fresh rationale and concept for the management of RA that targets.
Collapse
Affiliation(s)
- Zhao Li
- College of Basic Medicine, Hebei University, Baoding 071000, Hebei Province, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Baoding 071000, Hebei Province, China
| | - Huifang Liu
- College of Basic Medicine, Hebei University, Baoding 071000, Hebei Province, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Baoding 071000, Hebei Province, China
| | - Jingfang Teng
- College of Basic Medicine, Hebei University, Baoding 071000, Hebei Province, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Baoding 071000, Hebei Province, China
| | - Wenbin Xu
- College of Basic Medicine, Hebei University, Baoding 071000, Hebei Province, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Baoding 071000, Hebei Province, China
| | - Hongyun Shi
- Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, China
| | - Yan Wang
- Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, China.
| | - Ming Meng
- College of Basic Medicine, Hebei University, Baoding 071000, Hebei Province, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Baoding 071000, Hebei Province, China.
| |
Collapse
|
11
|
Abstract
Mucosal associated invariant T (MAIT) cells are innate-like T lymphocytes, strikingly enriched at mucosal surfaces and characterized by a semi-invariant αβ T cell receptor (TCR) recognizing microbial derived intermediates of riboflavin synthesis presented by the MHC-Ib molecule MR1. At barrier sites MAIT cells occupy a prime position for interaction with commensal microorganisms, comprising the microbiota. The microbiota is a rich source of riboflavin derived antigens required in early life to promote intra-thymic MAIT cell development and sustain a life-long population of tissue resident cells. A symbiotic relationship is thought to be maintained in health whereby microbes promote maturation and homeostasis, and in turn MAIT cells can engage a TCR-dependent "tissue repair" program in the presence of commensal organisms conducive to sustaining barrier function and integrity of the microbial community. MAIT cell activation can be induced in a MR1-TCR dependent manner or through MR1-TCR independent mechanisms via pro-inflammatory cytokines interleukin (IL)-12/-15/-18 and type I interferon. MAIT cells provide immunity against bacterial, fungal and viral pathogens. However, MAIT cells may have deleterious effects through insufficient or exacerbated effector activity and have been implicated in autoimmune, inflammatory and allergic conditions in which microbial dysbiosis is a shared feature. In this review we summarize the current knowledge on the role of the microbiota in the development and maintenance of circulating and tissue resident MAIT cells. We also explore how microbial dysbiosis, alongside changes in intestinal permeability and imbalance between pro- and anti-inflammatory components of the immune response are together involved in the potential pathogenicity of MAIT cells. Whilst there have been significant improvements in our understanding of how the microbiota shapes MAIT cell function, human data are relatively lacking, and it remains unknown if MAIT cells can conversely influence the composition of the microbiota. We speculate whether, in a human population, differences in microbiomes might account for the heterogeneity observed in MAIT cell frequency across mucosal sites or between individuals, and response to therapies targeting T cells. Moreover, we speculate whether manipulation of the microbiota, or harnessing MAIT cell ligands within the gut or disease-specific sites could offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Maisha F. Jabeen
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
12
|
Ruiz-Cortes K, Villageliu DN, Samuelson DR. Innate lymphocytes: Role in alcohol-induced immune dysfunction. Front Immunol 2022; 13:934617. [PMID: 36105802 PMCID: PMC9464604 DOI: 10.3389/fimmu.2022.934617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol use is known to alter the function of both innate and adaptive immune cells, such as neutrophils, macrophages, B cells, and T cells. Immune dysfunction has been associated with alcohol-induced end-organ damage. The role of innate lymphocytes in alcohol-associated pathogenesis has become a focus of research, as liver-resident natural killer (NK) cells were found to play an important role in alcohol-associated liver damage pathogenesis. Innate lymphocytes play a critical role in immunity and homeostasis; they are necessary for an optimal host response against insults including infections and cancer. However, the role of innate lymphocytes, including NK cells, natural killer T (NKT) cells, mucosal associated invariant T (MAIT) cells, gamma delta T cells, and innate lymphoid cells (ILCs) type 1–3, remains ill-defined in the context of alcohol-induced end-organ damage. Innate-like B lymphocytes including marginal zone B cells and B-1 cells have also been identified; however, this review will address the effects of alcohol misuse on innate T lymphocytes, as well as the consequences of innate T-lymphocyte dysfunction on alcohol-induced tissue damage.
Collapse
|
13
|
Zhang H, Zhang F, Modrak S. Effects of TNF-α deletion on iNKT cell development, activation, and maturation in the steady-state and chronic alcohol-consuming mice. J Leukoc Biol 2022; 112:233-241. [PMID: 34766371 PMCID: PMC9095768 DOI: 10.1002/jlb.1a0821-466r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytokines play critical roles in regulating iNKT cell development, activation, and maturation. TNF-α co-occurs with iNKT cells in steady-state and many disease conditions. How TNF-α affects iNKT cell function has not been thoroughly investigated. It was found that chronic alcohol consumption enhanced iNKT cell activation and maturation. The underlying mechanism is not known. Herein, a TNF-α KO mouse model was used to address these issues. It was found that the depletion of TNF-α mitigated alcohol consumption-enhanced iNKT cell activation and maturation. In steady-state, depletion of TNF-α did not affect the frequency of iNKT cells in the thymus and spleen but decreased iNKT cells in the liver and increased liver iNKT cell apoptosis. The portion of stage-2 immature iNKT cells increased, stage-3 mature iNKT cells decreased in the thymus of TNF-α KO mice, suggesting that depletion of TNF-α impairs iNKT cell development and maturation. The percentage of CD69+ iNKT cells was significantly lower in the thymus, spleen, and liver of TNF-α KO mice compared to their wild-type littermates, suggesting that depletion of TNF-α inhibits iNKT cell activation. Moreover, the percentage of splenic IL-4- and IFN-γ-producing iNKT cells was significantly lower in TNF-α KO mice than in their wild-type littermates. The depletion of TNF-α increased PLZF+ iNKT cells in the thymus and down-regulated the expression of CD122 on iNKT cells. Collectively, these results support that TNF-α plays a vital role in the regulation of iNKT cell development, activation, and maturation, and alcohol consumption enhances iNKT cell activation and maturation through TNF-α.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Faya Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Samantha Modrak
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| |
Collapse
|
14
|
Wang X, Lei L, Su Y, Liu J, Yuan N, Gao Y, Yang X, Sun C, Ning B, Zhang B. Pbrm1 intrinsically controls the development and effector differentiation of iNKT cells. J Cell Mol Med 2022; 26:4268-4276. [PMID: 35770325 PMCID: PMC9344823 DOI: 10.1111/jcmm.17445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Under static condition, the pool size of peripheral invariant natural killer T (iNKT) cells is determined by their homeostatic proliferation, survival and thymic input. However, the underlying mechanism is not fully understood. In the present study, we found that the percentage and number of iNKT cells were significantly reduced in the spleen, but not in the thymus of mice with deletion of polybromo‐1 (Pbrm1) compared to wild type (WT) mice. Pbrm1 deletion did not affect iNKT cell proliferation and survival, instead significantly impaired their development from stage 1 to stage 2. Importantly, loss of Pbrm1 led to a dysfunction of RORγt expression and iNKT17 cell differentiation, but not iNKT1 and iNKT2 proportion. Collectively, our study reveals a novel mechanism of Pbrm1 controlling the peripheral size of iNKT cells through regulating their development and differentiation.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Ning Yuan
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Yang Gao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Bin Ning
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Umeshappa CS, Solé P, Yamanouchi J, Mohapatra S, Surewaard BGJ, Garnica J, Singha S, Mondal D, Cortés-Vicente E, D’Mello C, Mason A, Kubes P, Serra P, Yang Y, Santamaria P. Re-programming mouse liver-resident invariant natural killer T cells for suppressing hepatic and diabetogenic autoimmunity. Nat Commun 2022; 13:3279. [PMID: 35672409 PMCID: PMC9174212 DOI: 10.1038/s41467-022-30759-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractInvariant NKT (iNKT) cells comprise a heterogeneous group of non-circulating, tissue-resident T lymphocytes that recognize glycolipids, including alpha-galactosylceramide (αGalCer), in the context of CD1d, but whether peripheral iNKT cell subsets are terminally differentiated remains unclear. Here we show that mouse and human liver-resident αGalCer/CD1d-binding iNKTs largely correspond to a novel Zbtb16+Tbx21+Gata3+MaflowRorc– subset that exhibits profound transcriptional, phenotypic and functional plasticity. Repetitive in vivo encounters of these liver iNKT (LiNKT) cells with intravenously delivered αGalCer/CD1d-coated nanoparticles (NP) trigger their differentiation into immunoregulatory, IL-10+IL-21-producing Zbtb16highMafhighTbx21+Gata3+Rorc– cells, termed LiNKTR1, expressing a T regulatory type 1 (TR1)-like transcriptional signature. This response is LiNKT-specific, since neither lung nor splenic tissue-resident iNKT cells from αGalCer/CD1d-NP-treated mice produce IL-10 or IL-21. Additionally, these LiNKTR1 cells suppress autoantigen presentation, and recognize CD1d expressed on conventional B cells to induce IL-10+IL-35-producing regulatory B (Breg) cells, leading to the suppression of liver and pancreas autoimmunity. Our results thus suggest that LiNKT cells are plastic for further functional diversification, with such plasticity potentially targetable for suppressing tissue-specific inflammatory phenomena.
Collapse
|
16
|
Baranek T, de Amat Herbozo C, Mallevaey T, Paget C. Deconstructing iNKT cell development at single-cell resolution. Trends Immunol 2022; 43:503-512. [PMID: 35654639 DOI: 10.1016/j.it.2022.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022]
Abstract
Invariant natural killer T (iNKT) cells are increasingly regarded as disease biomarkers and immunotherapeutic targets. However, a greater understanding of their biology is necessary to effectively target these cells in the clinic. The discovery of iNKT1/2/17 cell effector subsets was a milestone in our understanding of iNKT cell development and function. Recent transcriptomic studies have uncovered an even greater heterogeneity and challenge our understanding of iNKT cell ontogeny and effector differentiation. We propose a refined model whereby iNKT cells differentiate through a dynamic and continuous instructive process that requires the accumulation and integration of various signals within the thymus or peripheral tissues. Within this framework, we question the existence of true iNKT2 cells and discuss the parallels between mouse and human iNKT cells.
Collapse
Affiliation(s)
- Thomas Baranek
- Centre d'Étude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 1100, Faculté de Médecine, Université de Tours, Tours, France
| | - Carolina de Amat Herbozo
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Thierry Mallevaey
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Christophe Paget
- Centre d'Étude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 1100, Faculté de Médecine, Université de Tours, Tours, France.
| |
Collapse
|
17
|
Krovi SH, Loh L, Spengler A, Brunetti T, Gapin L. Current insights in mouse iNKT and MAIT cell development using single cell transcriptomics data. Semin Immunol 2022; 60:101658. [PMID: 36182863 DOI: 10.1016/j.smim.2022.101658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 01/15/2023]
Abstract
Innate T (Tinn) cells are a collection of T cells with important regulatory functions that have a crucial role in immunity towards tumors, bacteria, viruses, and in cell-mediated autoimmunity. In mice, the two main αβ Tinn cell subsets include the invariant NKT (iNKT) cells that recognize glycolipid antigens presented by non-polymorphic CD1d molecules and the mucosal associated invariant T (MAIT) cells that recognize vitamin B metabolites presented by the non-polymorphic MR1 molecules. Due to their ability to promptly secrete large quantities of cytokines either after T cell antigen receptor (TCR) activation or upon exposure to tissue- and antigen-presenting cell-derived cytokines, Tinn cells are thought to act as a bridge between the innate and adaptive immune systems and have the ability to shape the overall immune response. Their swift response reflects the early acquisition of helper effector programs during their development in the thymus, independently of pathogen exposure and prior to taking up residence in peripheral tissues. Several studies recently profiled, in an unbiased manner, the transcriptomes of mouse thymic iNKT and MAIT cells at the single cell level. Based on these data, we re-examine in this review how Tinn cells develop in the mouse thymus and undergo effector differentiation.
Collapse
Affiliation(s)
| | - Liyen Loh
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | | | - Tonya Brunetti
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Laurent Gapin
- University of Colorado Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
18
|
Miko E, Barakonyi A, Meggyes M, Szereday L. The Role of Type I and Type II NKT Cells in Materno-Fetal Immunity. Biomedicines 2021; 9:1901. [PMID: 34944717 PMCID: PMC8698984 DOI: 10.3390/biomedicines9121901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022] Open
Abstract
NKT cells represent a small but significant immune cell population as being a part of and bridging innate and adaptive immunity. Their ability to exert strong immune responses via cytotoxicity and cytokine secretion makes them significant immune effectors. Since pregnancy requires unconventional maternal immunity with a tolerogenic phenotype, investigation of the possible role of NKT cells in materno-fetal immune tolerance mechanisms is of particular importance. This review aims to summarize and organize the findings of previous studies in this field. Data and information about NKT cells from mice and humans will be presented, focusing on NKT cells characteristics during normal pregnancy in the periphery and at the materno-fetal interface and their possible involvement in female reproductive failure and pregnancy complications with an immunological background.
Collapse
Affiliation(s)
- Eva Miko
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (A.B.); (M.M.); (L.S.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Aliz Barakonyi
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (A.B.); (M.M.); (L.S.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (A.B.); (M.M.); (L.S.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (A.B.); (M.M.); (L.S.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
| |
Collapse
|
19
|
Charmetant X, Bachelet T, Déchanet-Merville J, Walzer T, Thaunat O. Innate (and Innate-like) Lymphoid Cells: Emerging Immune Subsets With Multiple Roles Along Transplant Life. Transplantation 2021; 105:e322-e336. [PMID: 33859152 DOI: 10.1097/tp.0000000000003782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transplant immunology is currently largely focused on conventional adaptive immunity, particularly T and B lymphocytes, which have long been considered as the only cells capable of allorecognition. In this vision, except for the initial phase of ischemia/reperfusion, during which the role of innate immune effectors is well established, the latter are largely considered as "passive" players, recruited secondarily to amplify graft destruction processes during rejection. Challenging this prevalent dogma, the recent progresses in basic immunology have unraveled the complexity of the innate immune system and identified different subsets of innate (and innate-like) lymphoid cells. As most of these cells are tissue-resident, they are overrepresented among passenger leukocytes. Beyond their role in ischemia/reperfusion, some of these subsets have been shown to be capable of allorecognition and/or of regulating alloreactive adaptive responses, suggesting that these emerging immune players are actively involved in most of the life phases of the grafts and their recipients. Drawing upon the inventory of the literature, this review synthesizes the current state of knowledge of the role of the different innate (and innate-like) lymphoid cell subsets during ischemia/reperfusion, allorecognition, and graft rejection. How these subsets also contribute to graft tolerance and the protection of chronically immunosuppressed patients against infectious and cancerous complications is also examined.
Collapse
Affiliation(s)
- Xavier Charmetant
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Thomas Bachelet
- Clinique Saint-Augustin-CTMR, ELSAN, Bordeaux, France
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | | | - Thierry Walzer
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Olivier Thaunat
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
20
|
Liu J, You M, Yao Y, Ji C, Wang Z, Wang F, Wang D, Qi Z, Yu G, Sun Z, Guo W, Liu J, Li S, Jin Y, Zhao T, Xue HH, Xue Y, Yu S. SRSF1 plays a critical role in invariant natural killer T cell development and function. Cell Mol Immunol 2021; 18:2502-2515. [PMID: 34522020 PMCID: PMC8545978 DOI: 10.1038/s41423-021-00766-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are highly conserved innate-like T lymphocytes that originate from CD4+CD8+ double-positive (DP) thymocytes. Here, we report that serine/arginine splicing factor 1 (SRSF1) intrinsically regulates iNKT cell development by directly targeting Myb and balancing the abundance of short and long isoforms. Conditional ablation of SRSF1 in DP cells led to a substantially diminished iNKT cell pool due to defects in proliferation, survival, and TCRα rearrangement. The transition from stage 0 to stage 1 of iNKT cells was substantially blocked, and the iNKT2 subset was notably diminished in SRSF1-deficient mice. SRSF1 deficiency resulted in aberrant expression of a series of regulators that are tightly correlated with iNKT cell development and iNKT2 differentiation, including Myb, PLZF, Gata3, ICOS, and CD5. In particular, we found that SRSF1 directly binds and regulates pre-mRNA alternative splicing of Myb and that the expression of the short isoform of Myb is substantially reduced in SRSF1-deficient DP and iNKT cells. Strikingly, ectopic expression of the Myb short isoform partially rectified the defects caused by ablation of SRSF1. Furthermore, we confirmed that the SRSF1-deficient mice exhibited resistance to acute liver injury upon α-GalCer and Con A induction. Our findings thus uncovered a previously unknown role of SRSF1 as an essential post-transcriptional regulator in iNKT cell development and functional differentiation, providing new clinical insights into iNKT-correlated disease.
Collapse
Affiliation(s)
- Jingjing Liu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Menghao You
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingpeng Yao
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ce Ji
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhao Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fang Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Di Wang
- grid.9227.e0000000119573309Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhihong Qi
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guotao Yu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Sun
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenhui Guo
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Juanjuan Liu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shumin Li
- grid.22935.3f0000 0004 0530 8290Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- grid.22935.3f0000 0004 0530 8290Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tianyan Zhao
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hai-Hui Xue
- grid.429392.70000 0004 6010 5947Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ USA
| | - Yuanchao Xue
- grid.9227.e0000000119573309Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shuyang Yu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Luo S, Kwon J, Crossman A, Park PW, Park JH. CD138 expression is a molecular signature but not a developmental requirement for RORγt+ NKT17 cells. JCI Insight 2021; 6:148038. [PMID: 34549726 PMCID: PMC8492317 DOI: 10.1172/jci.insight.148038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/30/2021] [Indexed: 01/12/2023] Open
Abstract
Invariant NKT (iNKT) cells are potent immunomodulatory cells that acquire effector function during their development in the thymus. IL-17-producing iNKT cells are commonly referred to as NKT17 cells, and they are unique among iNKT cells to express the heparan sulfate proteoglycan CD138 and the transcription factor RORγt. Whether and how CD138 and RORγt contribute to NKT17 cell differentiation, and whether there is an interplay between RORγt and CD138 expression to control iNKT lineage fate, remain mostly unknown. Here, we showed that CD138 expression was only associated with and not required for the differentiation and IL-17 production of NKT17 cells. Consequently, CD138-deficient mice still generated robust numbers of IL-17-producing RORγt+ NKT17 cells. Moreover, forced expression of RORγt significantly promoted the generation of thymic NKT17 cells, but did not induce CD138 expression on non-NKT17 cells. These results indicated that NKT17 cell generation and IL-17 production were driven by RORγt, employing mechanisms that were independent of CD138. Therefore, our study effectively dissociated CD138 expression from the RORγt-driven molecular pathway of NKT17 cell differentiation.
Collapse
Affiliation(s)
- Shunqun Luo
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Juntae Kwon
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Assiatu Crossman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Pyong Woo Park
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Cheng ZY, He TT, Gao XM, Zhao Y, Wang J. ZBTB Transcription Factors: Key Regulators of the Development, Differentiation and Effector Function of T Cells. Front Immunol 2021; 12:713294. [PMID: 34349770 PMCID: PMC8326903 DOI: 10.3389/fimmu.2021.713294] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The development and differentiation of T cells represents a long and highly coordinated, yet flexible at some points, pathway, along which the sequential and dynamic expressions of different transcriptional factors play prominent roles at multiple steps. The large ZBTB family comprises a diverse group of transcriptional factors, and many of them have emerged as critical factors that regulate the lineage commitment, differentiation and effector function of hematopoietic-derived cells as well as a variety of other developmental events. Within the T-cell lineage, several ZBTB proteins, including ZBTB1, ZBTB17, ZBTB7B (THPOK) and BCL6 (ZBTB27), mainly regulate the development and/or differentiation of conventional CD4/CD8 αβ+ T cells, whereas ZBTB16 (PLZF) is essential for the development and function of innate-like unconventional γδ+ T & invariant NKT cells. Given the critical role of T cells in host defenses against infections/tumors and in the pathogenesis of many inflammatory disorders, we herein summarize the roles of fourteen ZBTB family members in the development, differentiation and effector function of both conventional and unconventional T cells as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zhong-Yan Cheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ting-Ting He
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Klibi J, Joseph C, Delord M, Teissandier A, Lucas B, Chomienne C, Toubert A, Bourc'his D, Guidez F, Benlagha K. PLZF Acetylation Levels Regulate NKT Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2021; 207:809-823. [PMID: 34282003 DOI: 10.4049/jimmunol.2001444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/23/2021] [Indexed: 12/13/2022]
Abstract
The transcription factor promyelocytic leukemia zinc finger (PLZF) is encoded by the BTB domain-containing 16 (Zbtb16) gene. Its repressor function regulates specific transcriptional programs. During the development of invariant NKT cells, PLZF is expressed and directs their effector program, but the detailed mechanisms underlying PLZF regulation of multistage NKT cell developmental program are not well understood. This study investigated the role of acetylation-induced PLZF activation on NKT cell development by analyzing mice expressing a mutant form of PLZF mimicking constitutive acetylation (PLZFON) mice. NKT populations in PLZFON mice were reduced in proportion and numbers of cells, and the cells present were blocked at the transition from developmental stage 1 to stage 2. NKT cell subset differentiation was also altered, with T-bet+ NKT1 and RORγt+ NKT17 subsets dramatically reduced and the emergence of a T-bet-RORγt- NKT cell subset with features of cells in early developmental stages rather than mature NKT2 cells. Preliminary analysis of DNA methylation patterns suggested that activated PLZF acts on the DNA methylation signature to regulate NKT cells' entry into the early stages of development while repressing maturation. In wild-type NKT cells, deacetylation of PLZF is possible, allowing subsequent NKT cell differentiation. Interestingly, development of other innate lymphoid and myeloid cells that are dependent on PLZF for their generation is not altered in PLZFON mice, highlighting lineage-specific regulation. Overall, we propose that specific epigenetic control of PLZF through acetylation levels is required to regulate normal NKT cell differentiation.
Collapse
Affiliation(s)
- Jihene Klibi
- Institut de Recherche Saint-Louis, Université Paris Diderot, Sorbonne Paris Cité, INSERM U1160, Paris, France;
| | - Claudine Joseph
- Institut de Recherche Saint-Louis, Université Paris Diderot, Sorbonne Paris Cité, INSERM U1160, Paris, France
| | - Marc Delord
- Plateforme de Bioinformatique et Biostatistique, Institut de Recherche Saint-Louis, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Aurelie Teissandier
- Génétique et Biologie du Développement, Institut Curie, CNRS UMR 3215/INSERM U934, Paris, Cedex 05, France
| | - Bruno Lucas
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U1016, Paris, France; and
| | - Christine Chomienne
- Institut de Recherche Saint-Louis, Université de Paris, UMRS 1131, INSERM, Paris, France
| | - Antoine Toubert
- Institut de Recherche Saint-Louis, Université Paris Diderot, Sorbonne Paris Cité, INSERM U1160, Paris, France
| | - Deborah Bourc'his
- Génétique et Biologie du Développement, Institut Curie, CNRS UMR 3215/INSERM U934, Paris, Cedex 05, France
| | - Fabien Guidez
- Institut de Recherche Saint-Louis, Université de Paris, UMRS 1131, INSERM, Paris, France
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université Paris Diderot, Sorbonne Paris Cité, INSERM U1160, Paris, France;
| |
Collapse
|
24
|
Regulation and Functions of Protumoral Unconventional T Cells in Solid Tumors. Cancers (Basel) 2021; 13:cancers13143578. [PMID: 34298791 PMCID: PMC8304984 DOI: 10.3390/cancers13143578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023] Open
Abstract
The vast majority of studies on T cell biology in tumor immunity have focused on peptide-reactive conventional T cells that are restricted to polymorphic major histocompatibility complex molecules. However, emerging evidence indicated that unconventional T cells, including γδ T cells, natural killer T (NKT) cells and mucosal-associated invariant T (MAIT) cells are also involved in tumor immunity. Unconventional T cells span the innate-adaptive continuum and possess the unique ability to rapidly react to nonpeptide antigens via their conserved T cell receptors (TCRs) and/or to activating cytokines to orchestrate many aspects of the immune response. Since unconventional T cell lineages comprise discrete functional subsets, they can mediate both anti- and protumoral activities. Here, we review the current understanding of the functions and regulatory mechanisms of protumoral unconventional T cell subsets in the tumor environment. We also discuss the therapeutic potential of these deleterious subsets in solid cancers and why further feasibility studies are warranted.
Collapse
|
25
|
Won HY, Kim HK, Crossman A, Awasthi P, Gress RE, Park JH. The Timing and Abundance of IL-2Rβ (CD122) Expression Control Thymic iNKT Cell Generation and NKT1 Subset Differentiation. Front Immunol 2021; 12:642856. [PMID: 34054809 PMCID: PMC8161506 DOI: 10.3389/fimmu.2021.642856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/27/2021] [Indexed: 12/26/2022] Open
Abstract
Invariant NKT (iNKT) cells are thymus-generated innate-like T cells, comprised of three distinct subsets with divergent effector functions. The molecular mechanism that drives the lineage trifurcation of immature iNKT cells into the NKT1, NKT2, and NKT17 subsets remains a controversial issue that remains to be resolved. Because cytokine receptor signaling is necessary for iNKT cell generation, cytokines are proposed to contribute to iNKT subset differentiation also. However, the precise roles and requirements of cytokines in these processes are not fully understood. Here, we show that IL-2Rβ, a nonredundant component of the IL-15 receptor complex, plays a critical role in both the development and differentiation of thymic iNKT cells. While the induction of IL-2Rβ expression on postselection thymocytes is necessary to drive the generation of iNKT cells, surprisingly, premature IL-2Rβ expression on immature iNKT cells was detrimental to their development. Moreover, while IL-2Rβ is necessary for NKT1 generation, paradoxically, we found that the increased abundance of IL-2Rβ suppressed NKT1 generation without affecting NKT2 and NKT17 cell differentiation. Thus, the timing and abundance of IL-2Rβ expression control iNKT lineage fate and development, thereby establishing cytokine receptor expression as a critical regulator of thymic iNKT cell differentiation.
Collapse
Affiliation(s)
- Hee Yeun Won
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Hye Kyung Kim
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Assiatu Crossman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ronald E Gress
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Wendel P, Reindl LM, Bexte T, Künnemeyer L, Särchen V, Albinger N, Mackensen A, Rettinger E, Bopp T, Ullrich E. Arming Immune Cells for Battle: A Brief Journey through the Advancements of T and NK Cell Immunotherapy. Cancers (Basel) 2021; 13:cancers13061481. [PMID: 33807011 PMCID: PMC8004685 DOI: 10.3390/cancers13061481] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This review is intended to provide an overview on the history and recent advances of T cell and natural killer (NK) cell-based immunotherapy. While the thymus was discovered as the origin of T cells in the 1960s, and NK cells were first described in 1975, the clinical application of adoptive cell therapies (ACT) only began in the early 1980s with the first lymphokine activated killer (LAK) cell product for the treatment of cancer patients. Over the past decades, further immunotherapies have been developed, including ACT using cytokine-induced killer (CIK) cells, products based on the NK cell line NK-92 as well as specific T and NK cell preparations. Recent advances have successfully improved the effectiveness of T, NK, CIK or NK-92 cells towards tumor-targeting antigens generated by genetic engineering of the immune cells. Herein, we summarize the promising development of ACT over the past decades in the fight against cancer. Abstract The promising development of adoptive immunotherapy over the last four decades has revealed numerous therapeutic approaches in which dedicated immune cells are modified and administered to eliminate malignant cells. Starting in the early 1980s, lymphokine activated killer (LAK) cells were the first ex vivo generated NK cell-enriched products utilized for adoptive immunotherapy. Over the past decades, various immunotherapies have been developed, including cytokine-induced killer (CIK) cells, as a peripheral blood mononuclear cells (PBMCs)-based therapeutic product, the adoptive transfer of specific T and NK cell products, and the NK cell line NK-92. In addition to allogeneic NK cells, NK-92 cell products represent a possible “off-the-shelf” therapeutic concept. Recent approaches have successfully enhanced the specificity and cytotoxicity of T, NK, CIK or NK-92 cells towards tumor-specific or associated target antigens generated by genetic engineering of the immune cells, e.g., to express a chimeric antigen receptor (CAR). Here, we will look into the history and recent developments of T and NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Philipp Wendel
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Lisa Marie Reindl
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Tobias Bexte
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Leander Künnemeyer
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, 60528 Frankfurt am Main, Germany;
| | - Nawid Albinger
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas Mackensen
- Department of Medicine 5, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Eva Rettinger
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- Research Center for Immunotherapy (FZI), University Medical Center Mainz, 55131 Mainz, Germany
- University Cancer Center Mainz, University Medical Center, 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 69120 Heidelberg, Germany
| | - Evelyn Ullrich
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 69120 Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
- Correspondence:
| |
Collapse
|
27
|
Gan J, Mao XR, Zheng SJ, Li JF. Invariant natural killer T cells: Not to be ignored in liver disease. J Dig Dis 2021; 22:136-142. [PMID: 33421264 DOI: 10.1111/1751-2980.12968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
Abstract
The liver is an important immune organ. Hepatocellular injury can be caused by many factors, which further leads to chronic liver diseases by activating the immune system. Multiple immune cells, such as T lymphocytes, B lymphocytes, natural killer cells (NKs), natural killer T cells (NKTs), and γδT cells, accumulate and participate in the immune regulation of the liver. NKTs are an indispensable component of immune cells in the liver, and invariant natural killer T cells (iNKTs) are the main subpopulation of NKTs. iNKTs activated by glycolipid antigen presented on CD1d secrete a series of cytokines and also act on other immune cells through cell-to-cell contact. Studies on the relationship between iNKTs and liver immunity have provided clues to uncover the pathogenesis of liver diseases and develop a promising strategy for the diagnosis and treatment of liver diseases.
Collapse
Affiliation(s)
- Jian Gan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiao Rong Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China.,Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Su Jun Zheng
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jun Feng Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China.,Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China.,Institute of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
28
|
Wang J, Li K, Zhang X, Li G, Liu T, Wu X, Brown SL, Zhou L, Mi QS. MicroRNA-155 Controls iNKT Cell Development and Lineage Differentiation by Coordinating Multiple Regulating Pathways. Front Cell Dev Biol 2021; 8:619220. [PMID: 33585457 PMCID: PMC7874147 DOI: 10.3389/fcell.2020.619220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
The development of invariant natural killer T (iNKT) cells requires a well-attuned set of transcription factors, but how these factors are regulated and coordinated remains poorly understood. MicroRNA-155 (miR-155) is a key regulator of numerous cellular processes that affects cell development and homeostasis. Here, we found that miR-155 was highly expressed in early iNKT cells upon thymic selection, and then its expression is gradually downregulated during iNKT cell development. However, the mice with miR-155 germline deletion had normal iNKT cell development. To address if downregulated miR-155 is required for iNKT cell development, we made a CD4Cre.miR-155 knock-in (KI) mouse model with miR-155 conditional overexpression in the T cell lineage. Upregulated miR-155 led to interruption of iNKT cell development, diminished iNKT17 and iNKT1 cells, augmented iNKT2 cells, and these defects were cell intrinsic. Furthermore, defective iNKT cells in miR-155KI mice resulted in the secondary innate-like CD8 T cell development. Mechanistically, miR-155 modulated multiple targets and signaling pathways to fine tune iNKT cell development. MiR-155 modulated Jarid2, a critical component of a histone modification complex, and Tab2, the upstream activation kinase complex component of NF-κB, which function additively in iNKT development and in promoting balanced iNKT1/iNKT2 differentiation. In addition, miR-155 also targeted Rictor, a signature component of mTORC2 that controls iNKT17 differentiation. Taken together, our results indicate that miR-155 serves as a key epigenetic regulator, coordinating multiple signaling pathways and transcriptional programs to precisely regulate iNKT cell development and functional lineage, as well as secondary innate CD8 T cell development.
Collapse
Affiliation(s)
- Jie Wang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Kai Li
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Xilin Zhang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Guihua Li
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Tingting Liu
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Xiaojun Wu
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Li Zhou
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
29
|
Hong Z, Zhutian Z, Fei W. Intravital Microscopy Imaging of Invariant Natural Killer T-Cell Dynamics in the Liver Using CXCR6-eGFP Transgenic Mice. Methods Mol Biol 2021; 2388:149-156. [PMID: 34524670 DOI: 10.1007/978-1-0716-1775-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The immune response in the liver is a highly dynamic process involving the recruitment of many types of immune cells. As a powerful imaging technique, intravital microscopy has been widely used for real-time observation and quantification of cell movements in living animals. Here we describe the use of an in vivo half-dissociated preparation method combined with intravital confocal microscopy to observe the dynamic activities of invariant natural killer T cells in the liver of CXCR6GFP/+ transgenic mice. We believe that this method will enable researchers to explore the dynamics of many other types of immune cells in the liver.
Collapse
Affiliation(s)
- Zhou Hong
- School of Life Science, Anhui Medical University, Hefei, China.
| | - Zeng Zhutian
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Wang Fei
- School of Life Science, Anhui Medical University, Hefei, China
| |
Collapse
|
30
|
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363
| |
Collapse
|
31
|
Papadogianni G, Ravens I, Dittrich-Breiholz O, Bernhardt G, Georgiev H. Impact of Aging on the Phenotype of Invariant Natural Killer T Cells in Mouse Thymus. Front Immunol 2020; 11:575764. [PMID: 33193368 PMCID: PMC7662090 DOI: 10.3389/fimmu.2020.575764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022] Open
Abstract
Invariant natural killer T (iNKT) cells represent a subclass of T cells possessing a restricted repertoire of T cell receptors enabling them to recognize lipid derived ligands. iNKT cells are continuously generated in thymus and differentiate into three main subpopulations: iNKT1, iNKT2, and iNKT17 cells. We investigated the transcriptomes of these subsets comparing cells isolated from young adult (6–10 weeks old) and aged BALB/c mice (25–30 weeks of age) in order to identify genes subject to an age-related regulation of expression. These time points were selected to take into consideration the consequences of thymic involution that radically alter the existing micro-milieu. Significant differences were detected in the expression of histone genes affecting all iNKT subsets. Also the proliferative capacity of iNKT cells decreased substantially upon aging. Several genes were identified as possible candidates causing significant age-dependent changes in iNKT cell generation and/or function such as genes coding for granzyme A, ZO-1, EZH2, SOX4, IGF1 receptor, FLT4, and CD25. Moreover, we provide evidence that IL2 differentially affects homeostasis of iNKT subsets with iNKT17 cells engaging a unique mechanism to respond to IL2 by initiating a slow rate of proliferation.
Collapse
Affiliation(s)
| | - Inga Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Günter Bernhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Hristo Georgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Lin Q, Kuypers M, Philpott DJ, Mallevaey T. The dialogue between unconventional T cells and the microbiota. Mucosal Immunol 2020; 13:867-876. [PMID: 32704035 DOI: 10.1038/s41385-020-0326-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 02/04/2023]
Abstract
The mammalian immune system is equipped with unconventional T cells that respond to microbial molecules such as glycolipids and small-molecule metabolites, which are invisible to conventional CD4 and CD8 T cells. Unconventional T cells include invariant natural killer T (iNKT) cells and mucosa-associated invariant T (MAIT) cells, which are involved in a wide range of infectious and non-infectious diseases, such as cancer and autoimmunity. In addition, their high conservation across mammals, their restriction by non-polymorphic antigen-presenting molecules, and their immediate and robust responses make these 'innate' T cells appealing targets for the development of one-size-fits-all immunotherapies. In this review, we discuss how iNKT and MAIT cells directly and indirectly detect the presence of and respond to pathogenic and commensal microbes. We also explore the current understanding of the bidirectional relationship between the microbiota and innate T cells, and how this crosstalk shapes the immune response in disease.
Collapse
Affiliation(s)
- Qiaochu Lin
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Meggie Kuypers
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada.
| |
Collapse
|
33
|
Innate lymphocytes: pathogenesis and therapeutic targets of liver diseases and cancer. Cell Mol Immunol 2020; 18:57-72. [PMID: 33041339 DOI: 10.1038/s41423-020-00561-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is a lymphoid organ with unique immunological properties, particularly, its predominant innate immune system. The balance between immune tolerance and immune activity is critical to liver physiological functions and is responsible for the sensitivity of this organ to numerous diseases, including hepatotropic virus infection, alcoholic liver disease, nonalcoholic fatty liver disease, autoimmune liver disease, and liver cancer, which are major health problems globally. In the past decade, with the discovery of liver-resident natural killer cells, the importance of innate lymphocytes with tissue residency has gradually become the focus of research. In this review, we address the current knowledge regarding hepatic innate lymphocytes with unique characteristics, including NK cells, ILC1/2/3s, NKT cells, γδ T cells, and MAIT cells, and their potential roles in liver homeostasis maintenance and the progression of liver diseases and cancer. A better understanding of the immunopathogenesis of hepatic innate lymphocytes will be helpful for proposing effective treatments for liver diseases and cancer.
Collapse
|
34
|
Hu WC. A Framework of All Discovered Immunological Pathways and Their Roles for Four Specific Types of Pathogens and Hypersensitivities. Front Immunol 2020; 11:1992. [PMID: 32849663 PMCID: PMC7426516 DOI: 10.3389/fimmu.2020.01992] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/23/2020] [Indexed: 01/05/2023] Open
Affiliation(s)
- Wan-Chung Hu
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
35
|
Park JY, DiPalma DT, Kwon J, Fink J, Park JH. Quantitative Difference in PLZF Protein Expression Determines iNKT Lineage Fate and Controls Innate CD8 T Cell Generation. Cell Rep 2020; 27:2548-2557.e4. [PMID: 31141681 DOI: 10.1016/j.celrep.2019.05.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 02/15/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
Zbtb16 encodes the zinc-finger protein PLZF, which is often used as a lineage marker for innate-like T cells and is specifically required for the generation of invariant natural killer T (iNKT) cells in the thymus. Here, we report that not only PLZF expression itself but also the relative abundance of PLZF proteins plays critical roles in iNKT cell development. Utilizing a Zbtb16 hypomorphic allele, PLZFGFPCre, which produces PLZF proteins at only half of the level of the wild-type allele, we show that decreased PLZF expression results in a significant decrease in iNKT cell numbers, which is further associated with profound alterations in iNKT lineage choices and subset composition. These results document that there is a quantitative aspect of PLZF expression in iNKT cells, demonstrating that the availability of PLZF protein is a critical factor for both effective iNKT cell generation and subset differentiation.
Collapse
Affiliation(s)
- Joo-Young Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1360, USA; Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, 101 Daehakno, Jongno-gu, Seoul 03080, South Korea
| | - Devon T DiPalma
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1360, USA
| | - Juntae Kwon
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1360, USA
| | - Juliet Fink
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1360, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1360, USA.
| |
Collapse
|
36
|
License to Kill: When iNKT Cells Are Granted the Use of Lethal Cytotoxicity. Int J Mol Sci 2020; 21:ijms21113909. [PMID: 32486268 PMCID: PMC7312231 DOI: 10.3390/ijms21113909] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells are a non-conventional, innate-like, T cell population that recognize lipid antigens presented by the cluster of differentiation (CD)1d molecule. Although iNKT cells are mostly known for mediating several immune responses due to their massive and diverse cytokine release, these cells also work as effectors in various contexts thanks to their cytotoxic potential. In this Review, we focused on iNKT cell cytotoxicity; we provide an overview of iNKT cell subsets, their activation cues, the mechanisms of iNKT cell cytotoxicity, the specific roles and outcomes of this activity in various contexts, and how iNKT killing functions are currently activated in cancer immunotherapies. Finally, we discuss the future perspectives for the better understanding and potential uses of iNKT cell killing functions in tumor immunosurveillance.
Collapse
|
37
|
Shissler SC, Singh NJ, Webb TJ. Thymic resident NKT cell subsets show differential requirements for CD28 co-stimulation during antigenic activation. Sci Rep 2020; 10:8218. [PMID: 32427927 PMCID: PMC7237672 DOI: 10.1038/s41598-020-65129-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/28/2020] [Indexed: 12/03/2022] Open
Abstract
Natural killer T (NKT) cells rapidly respond to antigenic stimulation with cytokine production and direct cytotoxicity. These innate-like characteristics arise from their differentiation into mature effector cells during thymic development. A subset of mature NKT cells remain thymic resident, but their activation and function remain poorly understood. We examined the roles of CD28 and CTLA-4 in driving the activation of thymic resident NKT cells. In contrast to studies with peripheral NKT cells, the proliferation of thymic NKT cells was significantly impaired when CD28 engagement was blocked, but unaffected by CTLA-4 activation or blockade. Within NKT subsets, however, stage 3 NKT cells, marked by higher NK1.1 expression, were significantly more sensitive to the loss of CD28 signals compared to NK1.1- stage 2 NKT cells. In good agreement, CD28 blockade suppressed NKT cell cytokine secretion, lowering the ratio of IFN-γ:IL-4 production by NK1.1+ NKT cells. Intriguingly, the activation-dependent upregulation of the master transcription factor PLZF did not require CD28-costimulation in either of the thymic NKT subsets, underlining a dichotomy between requirements for early activation vs subsequent proliferation and effector function by these cells. Collectively, our studies demonstrate the ability of CD28 co-stimulation to fine tune subset-specific responses by thymic resident NKT cells and contextually shape the milieu in this primary lymphoid organ.
Collapse
Affiliation(s)
- Susannah C Shissler
- Department of Microbiology and Immunology and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nevil J Singh
- Department of Microbiology and Immunology and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tonya J Webb
- Department of Microbiology and Immunology and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
38
|
Klibi J, Amable L, Benlagha K. A focus on natural killer T-cell subset characterization and developmental stages. Immunol Cell Biol 2020; 98:358-368. [PMID: 32187747 DOI: 10.1111/imcb.12322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Almost 20 years ago, CD1d tetramers were developed to track invariant natural killer T (NKT) cells based on their specificity, and to define developmental steps during which differentiation markers and functional features are progressively acquired from early NKT cell precursor to fully mature NKT cell subsets. Based on these findings, a linear developmental model was proposed and subsequently used by all studies investigating the specific role of factors that control NKT cell development. More recently, based on intracellular staining patterns of lineage-specific transcription factors such as T-bet, GATA-3, promyelocytic leukemia zinc finger and RORγt, a lineage differentiation model was proposed for NKT cell development. Currently, studies on NKT cells development present lineage differentiation model data in addition to the linear maturation model. In the perspective presented here, we discuss current knowledge relating to NKT cell developmental models and particularly focus on the approaches and strategies, some of which appear nebulous, used to define NKT cell developmental stages and subsets.
Collapse
Affiliation(s)
- Jihene Klibi
- INSERM, UMR-1160, Institut de Recherche St-Louis (IRSL), Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Ludivine Amable
- INSERM, UMR-1160, Institut de Recherche St-Louis (IRSL), Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Kamel Benlagha
- INSERM, UMR-1160, Institut de Recherche St-Louis (IRSL), Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
39
|
Abstract
Recent studies suggest that murine invariant natural killer T (iNKT) cell development culminates in three terminally differentiated iNKT cell subsets denoted as NKT1, 2, and 17 cells. Although these studies corroborate the significance of the subset division model, less is known about the factors driving subset commitment in iNKT cell progenitors. In this review, we discuss the latest findings in iNKT cell development, focusing in particular on how T-cell receptor signal strength steers iNKT cell progenitors toward specific subsets and how early progenitor cells can be identified. In addition, we will discuss the essential factors for their sustenance and functionality. A picture is emerging wherein the majority of thymic iNKT cells are mature effector cells retained in the organ rather than developing precursors.
Collapse
Affiliation(s)
- Kristin Hogquist
- Center for Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hristo Georgiev
- Center for Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
40
|
Riffelmacher T, Kronenberg M. Metabolic Triggers of Invariant Natural Killer T-Cell Activation during Sterile Autoinflammatory Disease. Crit Rev Immunol 2020; 40:367-378. [PMID: 33463949 PMCID: PMC7116673 DOI: 10.1615/critrevimmunol.2020035158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ample evidence exists for activation of invariant natural killer T (iNKT) cells in a sterile manner by endogenous ligands or microbial antigens from the commensal flora, indicating that iNKT cells are not truly self-tolerant. Their controlled autoreactivity state is disturbed in many types of sterile inflammatory disease, resulting in their central role in modulating autoimmune responses. This review focuses on sterile iNKT-cell responses that are initiated by metabolic triggers, such as obesity-associated inflammation and fatty liver disease, as a manifestation of metabolic disease and dyslipidemia, as well as ischemia reperfusion injuries and sickle cell disease, characterized by acute lack of oxygen and oxidative stress response on reperfusion. In the intestine, inflammation and iNKT-cell response type are shaped by the microbiome as an extended "self". Disease- and organ-specific differences in iNKT-cell response type are summarized and help to define common pathways that shape iNKT-cell responses in the absence of exogenous antigen.
Collapse
Affiliation(s)
- Thomas Riffelmacher
- La Jolla Institute for Immunology, La Jolla, CA 92037
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA 92037
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
41
|
Wang J, Li G, Wu X, Liu Q, Yin C, Brown SL, Xu S, Mi QS, Zhou L. miR-183-96-182 Cluster Is Involved in Invariant NKT Cell Development, Maturation, and Effector Function. THE JOURNAL OF IMMUNOLOGY 2019; 203:3256-3267. [PMID: 31748350 DOI: 10.4049/jimmunol.1900695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/06/2019] [Indexed: 12/13/2022]
Abstract
The development, differentiation and function of invariant NKT (iNKT) cells require a well-defined set of transcription factors, but how these factors are integrated to each other and the detailed signaling networks remain poorly understood. Using a Dicer-deletion mouse model, our previous studies have demonstrated the critical involvement of microRNAs (miRNAs) in iNKT cell development and function, but the role played by individual miRNAs in iNKT cell development and function is still not clear. In this study, we show the dynamic changes of miRNA 183 cluster (miR-183C) expression during iNKT cell development. Mice with miR-183C deletion showed a defective iNKT cell development, sublineage differentiation, and cytokine secretion function. miRNA target identification assays indicate the involvement of multiple target molecules. Our study not only confirmed the role of miR-183C in iNKT cell development and function but also demonstrated that miR-183C achieved the regulation of iNKT cells through integrated targeting of multiple signaling molecules and pathways.
Collapse
Affiliation(s)
- Jie Wang
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202
| | - Guihua Li
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202
| | - Xiaojun Wu
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202
| | - Queping Liu
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202
| | - Congcong Yin
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Hospital, Henry Ford Health System, Detroit, MI 48202; and
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Science, Wayne State University School of Medicine, Detroit, MI 48202
| | - Qing-Sheng Mi
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202; .,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202
| | - Li Zhou
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202; .,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202
| |
Collapse
|
42
|
Orola MJ, Tizian C, Zhu C, Andersen L, Gülich AF, Alteneder M, Stojakovic T, Wiedermann U, Trauner M, Ellmeier W, Sakaguchi S. The zinc-finger transcription factor MAZR regulates iNKT cell subset differentiation. Cell Mol Life Sci 2019; 76:4391-4404. [PMID: 31065747 PMCID: PMC6803753 DOI: 10.1007/s00018-019-03119-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 01/06/2023]
Abstract
Invariant natural killer T (iNKT) cells represent a subgroup of innate-like T cells and play an important role in immune responses against certain pathogens. In addition, they have been linked to autoimmunity and antitumor immunity. iNKT cells consist of several subsets with distinct functions; however, the transcriptional networks controlling iNKT subset differentiation are still not fully characterized. Myc-associated zinc-finger-related factor (MAZR, also known as PATZ1) is an essential transcription factor for CD8+ lineage differentiation of conventional T cells. Here, we show that MAZR plays an important role in iNKT cells. T-cell lineage-specific deletion of MAZR resulted in an iNKT cell-intrinsic defect that led to an increase in iNKT2 cell numbers, concurrent with a reduction in iNKT1 and iNKT17 cells. Consistent with the alteration in the subset distribution, deletion of MAZR also resulted in an increase in the percentage of IL-4-producing cells. Moreover, MAZR-deficient iNKT cells displayed an enhanced expression of Erg2 and ThPOK, key factors for iNKT cell generation and subset differentiation, indicating that MAZR controls iNKT cell development through fine-tuning of their expression levels. Taken together, our study identified MAZR as an essential transcription factor regulating iNKT cell subset differentiation and effector function.
Collapse
Affiliation(s)
- Maria Jonah Orola
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Caroline Tizian
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
- Institute of Microbiology and Infectious Diseases and Immunology, Charité-University Medical Centre Berlin (CBF), 12203, Berlin, Germany
| | - Ci Zhu
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Liisa Andersen
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Alexandra Franziska Gülich
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Graz, 8036, Graz, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
43
|
Chen D, Zhao H, Gao X, Chen S, Liu H, Zhang J, Zhang J, Meng M. Subcutaneous administration of α-GalCer activates iNKT10 cells to promote M2 macrophage polarization and ameliorates chronic inflammation of obese adipose tissue. Int Immunopharmacol 2019; 77:105948. [PMID: 31629216 DOI: 10.1016/j.intimp.2019.105948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/13/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The role of iNKT cells was investigated in chronic adipose tissue inflammation in obese mice after administration of α-GalCer in different pathways. METHODS C57BL/6J mice were fed high-fat diet (HFD) for 12 weeks to establish the obese mouse model. The pathology of adipose tissue was observed by H&E staining. The rates of iNKT cells, macrophages and cell subsets in adipose tissue were detected by FCM. Cytokine levels in serum and adipose tissue lymphocyte-stimulated supernatants were assessed with the CBA kit. The expression levels of related transcription factor in adipose tissue were detected by Western blot. RESULTS The proportions of iNKT cells, iNKT10 cells and M2 macrophages were decreased, while those of iNKT1 and M1 macrophages were increased in adipose tissue of HFD-fed mice. The expression levels of the related transcriptional proteins E4BP4 and Arg-1 were decreased while iNOS expression was increased in adipose tissue. Administration of α-GalCer by subcutaneous injection resulted in increased rates of iNKT10 cells and M2 macrophages, and decreased amounts of M1 macrophages in adipose tissue of HFD-fed mice. The expression of E4BP4 and Arg-1 were up-regulated, but iNOS was down-regulated. Meanwhile, infiltration of inflammatory cells into adipose tissue was further reduced. CONCLUSION The imbalance between the proportions of iNKT1 and iNKT10 cells may be involved in the development of chronic inflammation in obese adipose tissue. Administration of α-GalCer by subcutaneous injection in HFD-fed mice activates adipose tissue iNKT10 cells, which promote M2 macrophage polarization and improve chronic inflammation in obese adipose tissue.
Collapse
Affiliation(s)
- Dongzhi Chen
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, Hebei Province, PR China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China
| | - Huijuan Zhao
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, Hebei Province, PR China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China
| | - Xiang Gao
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, Hebei Province, PR China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China
| | - Shengde Chen
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, Hebei Province, PR China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China
| | - Huifang Liu
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, Hebei Province, PR China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China
| | - Jingnan Zhang
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, Hebei Province, PR China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China
| | - Jinku Zhang
- Department of Pathology, The First Centre Hospital of Baoding, Baoding, Hebei Province, PR China
| | - Ming Meng
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, Hebei Province, PR China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China.
| |
Collapse
|
44
|
Abstract
Invariant natural killer T cells (iNKT cells) are an innate-like T cell subset that expresses an invariant T cell receptor (TCR) α-chain and recognizes lipids presented on CD1d. They secrete diverse cytokines and can influence many types of immune responses. Despite having highly similar TCR specificities, iNKT cells differentiate in the thymus into distinct subsets that are analogous to T helper 1 (TH1), TH2 and TH17 cell subsets. Additional iNKT cell subsets that may require peripheral activation have also been described, including one that produces IL-10. In general, iNKT cells are non-circulating, tissue-resident lymphocytes, but the prevalence of different iNKT cell subsets differs markedly between tissues. Here, we summarize the functions of iNKT cells in four tissues in which they are prevalent, namely, the liver, the lungs, adipose tissue and the intestine. Importantly, we explain how local iNKT cell responses at each site contribute to tissue homeostasis and protection from infection but can also contribute to tissue inflammation and damage.
Collapse
|
45
|
Methylation of H3K27 and H3K4 in key gene promoter regions of thymus in RA mice is involved in the abnormal development and differentiation of iNKT cells. Immunogenetics 2019; 71:489-499. [PMID: 31297569 DOI: 10.1007/s00251-019-01124-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Epigenetic modifications have been shown to be important for immune cell differentiation by regulating gene transcription. However, the role and mechanism of histone methylation in the development and differentiation of iNKT cells in rheumatoid arthritis (RA) mice have yet to be deciphered. The DBA/1 mouse RA model was established by using a modified GPI mixed peptide. We demonstrated that total peripheral blood, thymus, and spleen iNKT cells in RA mice decreased significantly, while iNKT1 in the thymus and spleen was increased significantly. PLZF protein and PLZF mRNA levels were significantly decreased in thymus DP T cells, while T-bet protein and mRNA were significantly increased in thymus iNKT cells. We found a marked accumulation in H3K27me3 around the promoter regions of the signature gene Zbtb16 in RA mice thymus DP T cells, and an accumulation of H3K4me3 around the promoters of the Tbx21 gene in iNKT cells. The expression levels of UTX in the thymus of RA mice were significantly reduced. The changes in the above indicators were particularly significant in the progressive phase of inflammation (11 days after modeling) and the peak phase of inflammation (14 days after modeling) in RA mice. Developmental and differentiation defects of iNKT cells in RA mice were associated with abnormal methylation levels (H3K27me3 and H3K4me3) in the promoters of key genes Zbtb16 (encoding PLZF) and Tbx21 (encoding T-bet). Decreased UTX of thymus histone demethylase levels resulted in the accumulation of H3K27me3 modification.
Collapse
|
46
|
Gerth E, Mattner J. The Role of Adaptor Proteins in the Biology of Natural Killer T (NKT) Cells. Front Immunol 2019; 10:1449. [PMID: 31293596 PMCID: PMC6603179 DOI: 10.3389/fimmu.2019.01449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Adaptor proteins contribute to the selection, differentiation and activation of natural killer T (NKT) cells, an innate(-like) lymphocyte population endowed with powerful immunomodulatory properties. Distinct from conventional T lymphocytes NKT cells preferentially home to the liver, undergo a thymic maturation and differentiation process and recognize glycolipid antigens presented by the MHC class I-like molecule CD1d on antigen presenting cells. NKT cells express a semi-invariant T cell receptor (TCR), which combines the Vα14-Jα18 chain with a Vβ2, Vβ7, or Vβ8 chain in mice and the Vα24 chain with the Vβ11 chain in humans. The avidity of interactions between their TCR, the presented glycolipid antigen and CD1d govern the selection and differentiation of NKT cells. Compared to TCR ligation on conventional T cells engagement of the NKT cell TCR delivers substantially stronger signals, which trigger the unique NKT cell developmental program. Furthermore, NKT cells express a panoply of primarily inhibitory NK cell receptors (NKRs) that control their self-reactivity and avoid autoimmune activation. Adaptor proteins influence NKT cell biology through the integration of TCR, NKR and/or SLAM (signaling lymphocyte-activation molecule) receptor signals or the variation of CD1d-restricted antigen presentation. TCR and NKR ligation engage the SH2 domain-containing leukocyte protein of 76kDa slp-76 whereas the SLAM associated protein SAP serves as adaptor for the SLAM receptor family. Indeed, the selection and differentiation of NKT cells selectively requires co-stimulation via SLAM receptors. Furthermore, SAP deficiency causes X-linked lymphoproliferative disease with multiple immune defects including a lack of circulating NKT cells. While a deletion of slp-76 leads to a complete loss of all peripheral T cell populations, mutations in the SH2 domain of slp-76 selectively affect NKT cell biology. Furthermore, adaptor proteins influence the expression and trafficking of CD1d in antigen presenting cells and subsequently selection and activation of NKT cells. Adaptor protein complex 3 (AP-3), for example, is required for the efficient presentation of glycolipid antigens which require internalization and processing. Thus, our review will focus on the complex contribution of adaptor proteins to the delivery of TCR, NKR and SLAM receptor signals in the unique biology of NKT cells and CD1d-restricted antigen presentation.
Collapse
Affiliation(s)
- Evelyn Gerth
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
47
|
Invariant NKT cells as a platform for CAR immunotherapy and prevention of acute Graft-versus-Host Disease. Hemasphere 2019; 3:HEMASPHERE-2019-0021. [PMID: 35309781 PMCID: PMC8925712 DOI: 10.1097/hs9.0000000000000220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 11/25/2022] Open
|
48
|
Joseph C, Klibi J, Amable L, Comba L, Cascioferro A, Delord M, Parietti V, Lenoir C, Latour S, Lucas B, Viret C, Toubert A, Benlagha K. TCR density in early iNKT cell precursors regulates agonist selection and subset differentiation in mice. Eur J Immunol 2019; 49:894-910. [DOI: 10.1002/eji.201848010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/27/2019] [Accepted: 03/21/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Claudine Joseph
- INSERM, UMR‐1160Institut Universitaire d'Hématologie Paris France
- Université Paris DiderotSorbonne Paris Cité Paris France
| | - Jihene Klibi
- INSERM, UMR‐1160Institut Universitaire d'Hématologie Paris France
- Université Paris DiderotSorbonne Paris Cité Paris France
| | - Ludivine Amable
- INSERM, UMR‐1160Institut Universitaire d'Hématologie Paris France
- Université Paris DiderotSorbonne Paris Cité Paris France
| | - Lorenzo Comba
- INSERM, UMR‐1160Institut Universitaire d'Hématologie Paris France
- Université Paris DiderotSorbonne Paris Cité Paris France
| | | | - Marc Delord
- Plateforme de Bio‐informatique et Bio statistiqueInstitut Universitaire d'HématologieUniversité Paris Diderot Sorbonne Paris Cité Paris France
| | - Veronique Parietti
- Département d'Expérimentation AnimaleInstitut Universitaire d'Hématologie Paris France
- Université Paris Diderot Sorbonne Paris Cité Paris France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection Paris France
- Imagine InstitutUniversité Paris Diderot Sorbonne Paris Cité Paris France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection Paris France
- Imagine InstitutUniversité Paris Diderot Sorbonne Paris Cité Paris France
| | - Bruno Lucas
- Institut Cochin, Centre National de la Recherche Scientifique UMR8104, INSERM U1016Université Paris Descartes Paris France
| | - Christophe Viret
- CIRI, International Center for Infectiology ResearchUniversité de Lyon Lyon France
- INSERM U1111 Lyon France
- CNRS UMR5308 Lyon France
| | - Antoine Toubert
- INSERM, UMR‐1160Institut Universitaire d'Hématologie Paris France
- Université Paris DiderotSorbonne Paris Cité Paris France
| | - Kamel Benlagha
- INSERM, UMR‐1160Institut Universitaire d'Hématologie Paris France
- Université Paris DiderotSorbonne Paris Cité Paris France
| |
Collapse
|
49
|
Cruz Tleugabulova M, Zhao M, Lau I, Kuypers M, Wirianto C, Umaña JM, Lin Q, Kronenberg M, Mallevaey T. The Protein Phosphatase Shp1 Regulates Invariant NKT Cell Effector Differentiation Independently of TCR and Slam Signaling. THE JOURNAL OF IMMUNOLOGY 2019; 202:2276-2286. [PMID: 30796181 DOI: 10.4049/jimmunol.1800844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022]
Abstract
Invariant NKT (iNKT) cells are innate lipid-reactive T cells that develop and differentiate in the thymus into iNKT1/2/17 subsets, akin to TH1/2/17 conventional CD4 T cell subsets. The factors driving the central priming of iNKT cells remain obscure, although strong/prolonged TCR signals appear to favor iNKT2 cell development. The Src homology 2 domain-containing phosphatase 1 (Shp1) is a protein tyrosine phosphatase that has been identified as a negative regulator of TCR signaling. In this study, we found that mice with a T cell-specific deletion of Shp1 had normal iNKT cell numbers and peripheral distribution. However, iNKT cell differentiation was biased toward the iNKT2/17 subsets in the thymus but not in peripheral tissues. Shp1-deficient iNKT cells were also functionally biased toward the production of TH2 cytokines, such as IL-4 and IL-13. Surprisingly, we found no evidence that Shp1 regulates the TCR and Slamf6 signaling cascades, which have been suggested to promote iNKT2 differentiation. Rather, Shp1 dampened iNKT cell proliferation in response to IL-2, IL-7, and IL-15 but not following TCR engagement. Our findings suggest that Shp1 controls iNKT cell effector differentiation independently of positive selection through the modulation of cytokine responsiveness.
Collapse
Affiliation(s)
| | - Meng Zhao
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Irene Lau
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Meggie Kuypers
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Clarissa Wirianto
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Juan Mauricio Umaña
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Qiaochu Lin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037; and
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
50
|
Wilharm A, Sandrock I, Marotel M, Demera A, Naumann R, Walzer T, Prinz I. Styk1 is specifically expressed in NK1.1 + lymphocytes including NK, γδ T, and iNKT cells in mice, but is dispensable for their ontogeny and function. Eur J Immunol 2019; 49:686-693. [PMID: 30758858 DOI: 10.1002/eji.201848033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/18/2019] [Accepted: 02/12/2019] [Indexed: 01/03/2023]
Abstract
Innate T cells, NK cells, and innate-like lymphocytes (ILCs) share transcriptional signatures that translate into overlapping developmental and functional programs. A prominent example for genes that are highly expressed in NK cells but not in ILCs is serine-threonine-tyrosine kinase 1 (Styk1 encoded by Styk1). We found Styk1 to be specifically expressed in lymphocytes positive for Killer cell lectin-like receptor subfamily B, member 1, also known as CD161 or NK1.1, i.e. in NK cell, αβ iNKT, and γδ NKT cell lineages. To investigate the role of Styk1 in the development and function of NK1.1+ innate T-cell subsets, we generated and analyzed a novel Styk1null mutant mouse line. Furthermore, we validated Styk1 expression in γδ NKT cells and in thymic, but not in peripheral invariant αβ iNKT cells through ex vivo analysis of a concomitantly generated transgenic Styk1 reporter mouse line. Despite the very specific expression of Styk1 in NK cells, γδ NKT cells, and thymic αβ iNKT, its absence did not alter homeostasis and function of these lineages. Thus, Styk1 expression is specific for NK cells and selected NK-like innate T-cell subsets, but dispensable for their development and function.
Collapse
Affiliation(s)
- Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Marie Marotel
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Abdi Demera
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ronald Naumann
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|