1
|
Cai F, Xue S, Zhou Z, Zhang X, Kang Y, Zhang J, Zhang M. Exposure to coal dust exacerbates cognitive impairment by activating the IL6/ERK1/2/SP1 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174202. [PMID: 38925396 DOI: 10.1016/j.scitotenv.2024.174202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Coal dust (CD) is a common pollutant, and epidemiological surveys indicate that long-term exposure to coal dust not only leads to the occurrence of pulmonary diseases but also has certain impacts on cognitive abilities. However, there is little open-published literature on the effects and specific mechanisms of coal dust exposure on the cognition of patients with Mild Cognitive Impairment (MCI) and Alzheimer's Disease (AD). An animal model has been built in this study with clinical population samples to explore the changes in neuroinflammation and cognitive abilities with coal dust exposure. In the animal model, compared to C57BL/6 mice, APP/PS1 mice exposed to coal dust exhibited more severe cognitive impairment, accompanied by significantly elevated levels of neuroinflammatory factors Apolipoprotein E4 (AOPE4) and Interleukin-6 (IL6) in the hippocampus, and more severe neuronal damage. In clinical sample sequencing, it was found that there is significant upregulation of AOPE4, neutrophils, and IL6 expression in the peripheral blood of MCI patients compared to normal individuals. Mechanistically, cell experiments revealed that IL6 could promote the phosphorylation of ERK1/2 and enhance the expression of transcription factor SP1, thereby promoting AOPE4 expression. The results of this study suggest that coal dust can promote the upregulation of IL6 and AOPE4 in patients, exacerbating cognitive impairment.
Collapse
Affiliation(s)
- Fulin Cai
- The First Affiliated Hospital, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui University of Science and Technology, Huainan 232001, China
| | - Sheng Xue
- Anhui University of Science and Technology, Huainan 232001, China.
| | - Zan Zhou
- Department of Physiology, Shihezi University Medical College, Xinjiang, Shihezi 832000, China
| | - Xin Zhang
- Department of Blood Transfusion, The People's Hospital of Rizhao, Shandong, Rizhao 276800, China
| | - Yingjie Kang
- Department of Physiology, Shihezi University Medical College, Xinjiang, Shihezi 832000, China
| | - Jing Zhang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310000, China
| | - Mei Zhang
- The First Affiliated Hospital, Anhui University of Science and Technology, Huainan, Anhui, China
| |
Collapse
|
2
|
Cubitt CC, Wong P, Dorando HK, Foltz JA, Tran J, Marsala L, Marin ND, Foster M, Schappe T, Fatima H, Becker-Hapak M, Zhou AY, Hwang K, Jacobs MT, Russler-Germain DA, Mace EM, Berrien-Elliott MM, Payton JE, Fehniger TA. Induced CD8α identifies human NK cells with enhanced proliferative fitness and modulates NK cell activation. J Clin Invest 2024; 134:e173602. [PMID: 38805302 PMCID: PMC11291271 DOI: 10.1172/jci173602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
The surface receptor CD8α is present on 20%-80% of human (but not mouse) NK cells, yet its function on NK cells remains poorly understood. CD8α expression on donor NK cells was associated with a lack of therapeutic responses in patients with leukemia in prior studies, thus, we hypothesized that CD8α may affect critical NK cell functions. Here, we discovered that CD8α- NK cells had improved control of leukemia in xenograft models compared with CD8α+ NK cells, likely due to an enhanced capacity for proliferation. Unexpectedly, we found that CD8α expression was induced on approximately 30% of previously CD8α- NK cells following IL-15 stimulation. These induced CD8α+ (iCD8α+) NK cells had the greatest proliferation, responses to IL-15 signaling, and metabolic activity compared with those that sustained existing CD8α expression (sustained CD8α+) or those that remained CD8α- (persistent CD8α-). These iCD8α+ cells originated from an IL-15Rβhi NK cell population, with CD8α expression dependent on the transcription factor RUNX3. Moreover, CD8A CRISPR/Cas9 deletion resulted in enhanced responses through the activating receptor NKp30, possibly by modulating KIR inhibitory function. Thus, CD8α status identified human NK cell capacity for IL-15-induced proliferation and metabolism in a time-dependent fashion, and its presence had a suppressive effect on NK cell-activating receptors.
Collapse
Affiliation(s)
| | - Pamela Wong
- Division of Oncology, Siteman Cancer Center, and
| | - Hannah K. Dorando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | - Mark Foster
- Division of Oncology, Siteman Cancer Center, and
| | | | - Hijab Fatima
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | | | | - Emily M. Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | - Jacqueline E. Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
3
|
Suzuki T, Chéret J, Scala FD, Rajabi-Estarabadi A, Akhundlu A, Demetrius DL, Gherardini J, Keren A, Harries M, Rodriguez-Feliz J, Epstein G, Lee W, Purba T, Gilhar A, Paus R. Interleukin-15 is a hair follicle immune privilege guardian. J Autoimmun 2024; 145:103217. [PMID: 38581915 DOI: 10.1016/j.jaut.2024.103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
The autoimmunity-promoting cytokine, Interleukin-15 (IL-15), is often claimed to be a key pathogenic cytokine in alopecia areata (AA). Yet, rhIL-15 promotes human hair follicle (HF) growth ex vivo. We have asked whether the expression of IL-15 and its receptor (IL-15R) isoforms is altered in human AA and how IL-15 impacts on human HF immune privilege (HF-IP) in the presence/absence of interferon-γ (IFNγ), the well-documented key AA-pathogenic cytokine, as well as on hair regrowth after experimental AA induction in vivo. Quantitative immunohistomorphometry showed the number of perifollicular IL-15+ T cells in AA skin biopsies to be significantly increased compared to healthy control skin, while IL-15, IL-15Rα, and IL-15Rγ protein expression within the hair bulb were significantly down-regulated in AA HFs. In organ-cultured human scalp HFs, rhIL-15 significantly reduced hair bulb expression of MICA, the key "danger" signal in AA pathogenesis, and increased production of the HF-IP guardian, α-MSH. Crucially, ex vivo, rhIL-15 prevented IFNγ-induced HF-IP collapse, restored a collapsed HF-IP by IL-15Rα-dependent signaling (as documented by IL-15Rα-silencing), and protected AA-preventive immunoinhibitory iNKT10 cells from IFNγ-induced apoptosis. rhIL-15 even promoted hair regrowth after experimental AA induction in human scalp skin xenotransplants on SCID/beige mice in vivo. Our data introduce IL-15 as a novel, functionally important HF-IP guardian whose signaling is constitutively defective in scalp HFs of AA patients. Our data suggest that selective stimulation of intrafollicular IL-15Rα signaling could become a novel therapeutic approach in AA management, while blocking it pharmacologically may hinder both HF-IP restoration and hair re-growth and may thus make HFs more vulnerable to AA relapse.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fernanda D Scala
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ali Rajabi-Estarabadi
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Dermatology, Broward Health, Fort Lauderdale, FL, USA
| | - Aysun Akhundlu
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dana-Lee Demetrius
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer Gherardini
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Matthew Harries
- Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M6 8HD, UK
| | | | - Gorana Epstein
- Foundation for Hair Restoration, 33143, Miami, Florida, USA
| | - Wendy Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Talveen Purba
- Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ralf Paus
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; CUTANEON - Skin & Hair Innovations, Hamburg, Germany.
| |
Collapse
|
4
|
Zannikou M, Fish EN, Platanias LC. Signaling by Type I Interferons in Immune Cells: Disease Consequences. Cancers (Basel) 2024; 16:1600. [PMID: 38672681 PMCID: PMC11049350 DOI: 10.3390/cancers16081600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review addresses interferon (IFN) signaling in immune cells and the tumor microenvironment (TME) and examines how this affects cancer progression. The data reveal that IFNs exert dual roles in cancers, dependent on the TME, exhibiting both anti-tumor activity and promoting cancer progression. We discuss the abnormal IFN signaling induced by cancerous cells that alters immune responses to permit their survival and proliferation.
Collapse
Affiliation(s)
- Markella Zannikou
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada;
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA
| |
Collapse
|
5
|
Nuszkiewicz J, Wróblewska J, Budek M, Czuczejko J, Woźniak A, Maruszak-Parda M, Szewczyk-Golec K. Exploring the Link between Inflammatory Biomarkers and Head and Neck Cancer: Understanding the Impact of Smoking as a Cancer-Predisposing Factor. Biomedicines 2024; 12:748. [PMID: 38672104 PMCID: PMC11048483 DOI: 10.3390/biomedicines12040748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Head and neck cancer (HNC) is associated with significant morbidity globally, with smoking recognized as a key risk factor. This study investigates the interplay between smoking and inflammatory biomarkers in HNC development. The study involved 50 HNC patients, divided into smoking and non-smoking groups, and a control group of 30 healthy individuals. Serum levels of 48 cytokines, chemokines, growth factors, and other inflammatory markers were meticulously assessed. Significant differences in the levels of an extensive panel of inflammatory markers were observed between the patient groups and healthy controls. Elevated macrophage colony-stimulating factor (M-CSF) in both HNC groups implicated increased activity in pathways known for immunomodulation, proliferation, and angiogenesis during HNC cancerogenesis. In contrast, non-smokers with HNC demonstrated higher levels of interleukin 10 (IL-10) and interleukin 15 (IL-15), suggesting a more robust immune response. Platelet-derived growth factor BB (PDGF-BB) levels were particularly high in smokers with HNC. Smoking seems to alter the levels of crucial biomarkers in HNC, potentially affecting disease progression and responses to treatment. The data indicate that smokers may experience a more aggressive cancer phenotype, while non-smokers maintain a profile suggestive of a more active and effective immune response against HNC.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.W.); (M.B.); (A.W.); (K.S.-G.)
| | - Joanna Wróblewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.W.); (M.B.); (A.W.); (K.S.-G.)
| | - Marlena Budek
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.W.); (M.B.); (A.W.); (K.S.-G.)
| | - Jolanta Czuczejko
- Department of Psychiatry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Curie Skłodowskiej St., 85-094 Bydgoszcz, Poland;
- Department of Nuclear Medicine, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, 2 Dr I. Romanowskiej St., 85-796 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.W.); (M.B.); (A.W.); (K.S.-G.)
| | - Marta Maruszak-Parda
- Department of Nuclear Medicine, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, 2 Dr I. Romanowskiej St., 85-796 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.W.); (M.B.); (A.W.); (K.S.-G.)
| |
Collapse
|
6
|
Xu L, Pan F, Guo Z. TIPE2: A Candidate for Targeting Antitumor Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:755-763. [PMID: 38377476 DOI: 10.4049/jimmunol.2300433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/18/2023] [Indexed: 02/22/2024]
Abstract
TNF-α-induced protein 8-like 2 (TIPE2 or TNFAIP8L2) is a recently discovered negative regulator of innate and adaptive immunity. TIPE2 is expressed in a wide range of tissues, both immune and nonimmune, and is implicated in the maintenance of immune homeostasis within the immune system. Furthermore, TIPE2 has been shown to play a pivotal role in the regulation of inflammation and the development of tumor. This review focuses on the structural characteristics, expression patterns, and functional roles of TIPE proteins, with a particular emphasis on the role and underlying mechanisms of TIPE2 in immune regulation and its involvement in different diseases. However, the current body of evidence is still limited in providing a comprehensive understanding of the complex role of TIPE2 in the human body, warranting further investigation to elucidate the possible mechanisms and functions of TIPE2 in diverse disease contexts.
Collapse
Affiliation(s)
- Luxia Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
7
|
Goh W, Sudholz H, Foroutan M, Scheer S, Pfefferle A, Delconte RB, Meng X, Shen Z, Hennessey R, Kong IY, Schuster IS, Andoniou CE, Davis MJ, Hediyeh-Zadeh S, Souza-Fonseca-Guimaraes F, Parish IA, Beavis P, Thiele D, Chopin M, Degli-Esposti MA, Cursons J, Kallies A, Rautela J, Nutt SL, Huntington ND. IKAROS and AIOLOS directly regulate AP-1 transcriptional complexes and are essential for NK cell development. Nat Immunol 2024; 25:240-255. [PMID: 38182668 DOI: 10.1038/s41590-023-01718-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/22/2023] [Indexed: 01/07/2024]
Abstract
Ikaros transcription factors are essential for adaptive lymphocyte function, yet their role in innate lymphopoiesis is unknown. Using conditional genetic inactivation, we show that Ikzf1/Ikaros is essential for normal natural killer (NK) cell lymphopoiesis and IKZF1 directly represses Cish, a negative regulator of interleukin-15 receptor resulting in impaired interleukin-15 receptor signaling. Both Bcl2l11 and BIM levels, and intrinsic apoptosis were increased in Ikzf1-null NK cells, which in part accounts for NK lymphopenia as both were restored to normal levels when Ikzf1 and Bcl2l11 were co-deleted. Ikzf1-null NK cells presented extensive transcriptional alterations with reduced AP-1 transcriptional complex expression and increased expression of Ikzf2/Helios and Ikzf3/Aiolos. IKZF1 and IKZF3 directly bound AP-1 family members and deletion of both Ikzf1 and Ikzf3 in NK cells resulted in further reductions in Jun/Fos expression and complete loss of peripheral NK cells. Collectively, we show that Ikaros family members are important regulators of apoptosis, cytokine responsiveness and AP-1 transcriptional activity.
Collapse
Affiliation(s)
- Wilford Goh
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Harrison Sudholz
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Momeneh Foroutan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia
| | - Sebastian Scheer
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Aline Pfefferle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia
| | - Rebecca B Delconte
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiangpeng Meng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Zihan Shen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Robert Hennessey
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Isabella Y Kong
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Iona S Schuster
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Christopher E Andoniou
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Melissa J Davis
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
- The South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Soroor Hediyeh-Zadeh
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel Thiele
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Michael Chopin
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Joe Cursons
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia
| | - Axel Kallies
- Department of Microbiology & Immunology, Faculty of Medicine, Dentistry and Health Sciences & Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jai Rautela
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas D Huntington
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Shao D, Bai T, Zhu B, Guo X, Dong K, Shi J, Huang Q, Kong J. Construction and Mechanism of IL-15-Based Coactivated Polymeric Micelles for NK Cell Immunotherapy. Adv Healthc Mater 2024; 13:e2302589. [PMID: 37897328 DOI: 10.1002/adhm.202302589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Natural killer (NK) cells are an important contributor to cancer immunotherapy, but their antitumor efficacy remains suboptimal. While cytokine-based priming shows promise in enhancing NK-cell activity, its clinical translation faces many challenges, including coactivation of multiple cytokines, poor pharmacokinetics, and limited mechanistic understanding. Here, this work develops a polymeric micelle-based IL-15/IL-2 codelivery system (IL-15/2-PEG-PTMC) for NK-cell activation. In vivo studies demonstrate that half-life of IL-15 and IL-2 and the recruitment of NK cell within tumor tissue are significantly increased after PEG-PTMC loading. Coupled with the coactivation effect of IL-15 and IL-2 conferred by this system, it noticeably delays the growth of tumors compared to conventional NK-cell activation approach, that is free IL-15 and IL-2. It is also surprisingly found that cholesterol metabolism is highly involved in the NK cell activation by IL-15/2-PEG-PTMC. Following stimulation with IL-15/2-PEG-PTMC or IL-15, NK cells undergo a series of cholesterol metabolism reprogramming, which elevates the cholesterol levels on NK cell membrane. This in turn promotes the formation of lipid rafts and activates immune synapses, effectively contributing to the enhancement of NK cell's antitumor activity. It is believed that it will open a new avenue for improving the efficacy of NK cell immunotherapy by regulating cholesterol metabolism.
Collapse
Affiliation(s)
- Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ting Bai
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Bobo Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaojia Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kai Dong
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
9
|
Lee J, Keam B, Park HR, Park JE, Kim S, Kim M, Kim TM, Kim DW, Heo DS. Monalizumab efficacy correlates with HLA-E surface expression and NK cell activity in head and neck squamous carcinoma cell lines. J Cancer Res Clin Oncol 2023; 149:5705-5715. [PMID: 36547689 DOI: 10.1007/s00432-022-04532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE NKG2A, an inhibitory receptor expressed on NK cells and T cells, leads to immune evasion by binding to HLA-E expressed on cancer cells. Here, we investigated the relationship between HLA-E surface expression on head and neck squamous cell carcinoma (HNSCC) cell lines and the efficacy of monalizumab, an NKG2A inhibitor, in promoting NK cell activity. METHODS Six HNSCC cell lines were used as target cells. After exposure to IFN- γ, HLA-E surface expression on HNSCC cell lines was measured by flow cytometry. Peripheral blood mononuclear cells (PBMCs) from healthy donors and isolated NK cells were used as effector cells. NK cells were stimulated by treatment with IL-2 and IL-15 for 5 days, and NK cell-induced cytotoxicity was analyzed by CD107a degranulation and 51Cr release assays. RESULTS We confirmed that HLA-E expression was increased by IFN-γ secreted by NK cells and that HLA-E expression was different for each cell line upon exposure to IFN-γ. Cell lines with high HLA-E expression showed stronger inhibition of NK cell cytotoxicity, and efficacy of monalizumab was high. Combination with cetuximab increased the efficacy of monalizumab. In addition, stimulation of isolated NK cells with IL-2 and IL-15 increased the efficacy of monalizumab, even in the HLA-E low groups. CONCLUSION Monalizumab efficacy was correlated with HLA-E surface expression and was enhanced when NK cell activity was increased by cetuximab or cytokines. These results suggest that monalizumab may be potent against HLA-E-positive tumors and that monalizumab efficacy could be improved by promoting NK cell activity.
Collapse
Affiliation(s)
- Jeongjae Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Ha-Ram Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Eun Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soyeon Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Miso Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong-Wan Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dae Seog Heo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
10
|
Piper M, Hoen M, Darragh LB, Knitz MW, Nguyen D, Gadwa J, Durini G, Karakoc I, Grier A, Neupert B, Van Court B, Abdelazeem KNM, Yu J, Olimpo NA, Corbo S, Ross RB, Pham TT, Joshi M, Kedl RM, Saviola AJ, Amann M, Umaña P, Codarri Deak L, Klein C, D'Alessandro A, Karam SD. Simultaneous targeting of PD-1 and IL-2Rβγ with radiation therapy inhibits pancreatic cancer growth and metastasis. Cancer Cell 2023; 41:950-969.e6. [PMID: 37116489 PMCID: PMC10246400 DOI: 10.1016/j.ccell.2023.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/05/2023] [Accepted: 03/31/2023] [Indexed: 04/30/2023]
Abstract
In pancreatic ductal adenocarcinoma (PDAC) patients, we show that response to radiation therapy (RT) is characterized by increased IL-2Rβ and IL-2Rγ along with decreased IL-2Rα expression. The bispecific PD1-IL2v is a PD-1-targeted IL-2 variant (IL-2v) immunocytokine with engineered IL-2 cis targeted to PD-1 and abolished IL-2Rα binding, which enhances tumor-antigen-specific T cell activation while reducing regulatory T cell (Treg) suppression. Using PD1-IL2v in orthotopic PDAC KPC-driven tumor models, we show marked improvement in local and metastatic survival, along with a profound increase in tumor-infiltrating CD8+ T cell subsets with a transcriptionally and metabolically active phenotype and preferential activation of antigen-specific CD8+ T cells. In combination with single-dose RT, PD1-IL2v treatment results in a robust, durable expansion of polyfunctional CD8+ T cells, T cell stemness, tumor-specific memory immune response, natural killer (NK) cell activation, and decreased Tregs. These data show that PD1-IL2v leads to profound local and distant response in PDAC.
Collapse
Affiliation(s)
- Miles Piper
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Maureen Hoen
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Greta Durini
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Idil Karakoc
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Abby Grier
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Khalid N M Abdelazeem
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin Yu
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas A Olimpo
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Blake Ross
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tiffany T Pham
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ross M Kedl
- Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Pablo Umaña
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Laura Codarri Deak
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
11
|
Park MD, Reyes-Torres I, LeBerichel J, Hamon P, LaMarche NM, Hegde S, Belabed M, Troncoso L, Grout JA, Magen A, Humblin E, Nair A, Molgora M, Hou J, Newman JH, Farkas AM, Leader AM, Dawson T, D'Souza D, Hamel S, Sanchez-Paulete AR, Maier B, Bhardwaj N, Martin JC, Kamphorst AO, Kenigsberg E, Casanova-Acebes M, Horowitz A, Brown BD, De Andrade LF, Colonna M, Marron TU, Merad M. TREM2 macrophages drive NK cell paucity and dysfunction in lung cancer. Nat Immunol 2023; 24:792-801. [PMID: 37081148 PMCID: PMC11088947 DOI: 10.1038/s41590-023-01475-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/23/2023] [Indexed: 04/22/2023]
Abstract
Natural killer (NK) cells are commonly reduced in human tumors, enabling many to evade surveillance. Here, we sought to identify cues that alter NK cell activity in tumors. We found that, in human lung cancer, the presence of NK cells inversely correlated with that of monocyte-derived macrophages (mo-macs). In a murine model of lung adenocarcinoma, we show that engulfment of tumor debris by mo-macs triggers a pro-tumorigenic program governed by triggering receptor expressed on myeloid cells 2 (TREM2). Genetic deletion of Trem2 rescued NK cell accumulation and enabled an NK cell-mediated regression of lung tumors. TREM2+ mo-macs reduced NK cell activity by modulating interleukin (IL)-18/IL-18BP decoy interactions and IL-15 production. Notably, TREM2 blockade synergized with an NK cell-activating agent to further inhibit tumor growth. Altogether, our findings identify a new axis, in which TREM2+ mo-macs suppress NK cell accumulation and cytolytic activity. Dual targeting of macrophages and NK cells represents a new strategy to boost antitumor immunity.
Collapse
Affiliation(s)
- Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Reyes-Torres
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica LeBerichel
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pauline Hamon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelson M LaMarche
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samarth Hegde
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leanna Troncoso
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Grout
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Assaf Magen
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Etienne Humblin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Achuth Nair
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna H Newman
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam M Farkas
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew M Leader
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Travis Dawson
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'Souza
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven Hamel
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alfonso Rodriguez Sanchez-Paulete
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara Maier
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nina Bhardwaj
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerome C Martin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- CHU Nantes, Laboratoire d'Immunologie, Center for ImmunoMonitoring Nantes-Atlantique (CIMNA), Nantes, France
| | - Alice O Kamphorst
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ephraim Kenigsberg
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Casanova-Acebes
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Center (CNIO), Madrid, Spain
| | - Amir Horowitz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lucas Ferrari De Andrade
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas U Marron
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Zhang Y, Tan W, Sultonova RD, Nguyen DH, Zheng JH, You SH, Rhee JH, Kim SY, Khim K, Hong Y, Min JJ. Synergistic cancer immunotherapy utilizing programmed Salmonella typhimurium secreting heterologous flagellin B conjugated to interleukin-15 proteins. Biomaterials 2023; 298:122135. [PMID: 37148758 DOI: 10.1016/j.biomaterials.2023.122135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
The use of appropriately designed immunotherapeutic bacteria is an appealing approach to tumor therapy because the bacteria specifically target tumor tissue and deliver therapeutic payloads. The present study describes the engineering of an attenuated strain of Salmonella typhimurium deficient in ppGpp biosynthesis (SAM) that could secrete Vibrio vulnificus flagellin B (FlaB) conjugated to human (hIL15/FlaB) and mouse (mIL15/FlaB) interleukin-15 proteins in the presence of L-arabinose (L-ara). These strains, named SAMphIF and SAMpmIF, respectively, secreted fusion proteins that retained bioactivity of both FlaB and IL15. SAMphIF and SAMpmIF inhibited the growth of MC38 and CT26 subcutaneous (sc) tumors in mice and increased mouse survival rate more efficiently than SAM expressing FlaB alone (SAMpFlaB) or IL15 alone (SAMpmIL15 and SAMphIL15), although SAMpmIF had slightly greater antitumor activity than SAMphIF. The mice treated with these bacteria showed enhanced macrophage phenotype shift, from M2-like to M1-like, as well as greater proliferation and activation of CD4+ T, CD8+ T, NK, and NKT cells in tumor tissues. After tumor eradication by these bacteria, ≥50% of the mice show no evidence of tumor recurrence upon rechallenge with the same tumor cells, indicating that they had acquired long-term immune memory. Treatment of mice of 4T1 and B16F10 highly malignant sc tumors with a combination of these bacteria and an immune checkpoint inhibitor, anti-PD-L1 antibody, significantly suppressed tumor metastasis and increased mouse survival rate. Taken together, these findings suggest that SAM secreting IL15/FlaB is a novel therapeutic candidate for bacterial-mediated cancer immunotherapy and that its antitumor activity is enhanced by combination with anti-PD-L1 antibody.
Collapse
Affiliation(s)
- Ying Zhang
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Wenzhi Tan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, China
| | - Rukhsora D Sultonova
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Jin Hai Zheng
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | | | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - So-Young Kim
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Koemchhoy Khim
- Department of Microbiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea; Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, Republic of Korea.
| |
Collapse
|
13
|
Kourko O, Hawke LG, Ormiston ML, Gee K. IFN-β activates cytotoxic function of human natural killer cells toward IL-27 and poly(I:C) stimulated PC3 and DU145 cells. Cell Immunol 2023; 387:104718. [PMID: 37068442 DOI: 10.1016/j.cellimm.2023.104718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023]
Abstract
Natural killer (NK) cell phenotype and function are altered in patients with prostate cancer, and increased NK cell activity is associated with a better prognosis in patients with disease. For patients with advanced stage prostate cancer, immunotherapies are a promising approach when standard treatment options have been exhausted. With the rapid emergence of NK cell-based therapies, it is important to understand the mechanisms by which NK cells can be triggered to kill cancer cells that have developed immune-evasive strategies. Altering the cytokine profiles of advanced prostate cancer cells may be an area to explore when considering ways in which NK cell activation can be modulated. We have previously demonstrated that combining the cytokine, IL-27, with TLR3 agonist, poly(I:C), changes cytokine secretion in the advanced prostate cancer models, PC3 and DU145 cells. Herein, we extend our previous work to study the effect of primary human NK cells on prostate cancer cell death in an in vitro co-culture model. Stimulating PC3 and DU145 cells with IL-27 and poly(I:C) induced IFN-β secretion, which was required for activation of primary human NK cells to kill these stimulated prostate cancer cells. PC3 cells were more sensitized to NK cell-mediated killing when compared to DU145 cells, which was attributed to differential levels of IFN-β produced in response to stimulation with IL-27 and poly(I:C). IFN-β increased granzyme B secretion and membrane-bound TRAIL expression by co-cultured NK cells. We further demonstrated that these NK cells killed PC3 cells in a partially TRAIL-dependent manner. This work provides mechanistic insight into how the cytotoxic function of NK cells can be improved to target cancer cells.
Collapse
Affiliation(s)
- Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Lindsey G Hawke
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Mark L Ormiston
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
14
|
Improving NK cell function in multiple myeloma with NKTR-255, a novel polymer-conjugated human IL-15. Blood Adv 2023; 7:9-19. [PMID: 35882498 DOI: 10.1182/bloodadvances.2022007985] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 01/18/2023] Open
Abstract
Multiple myeloma (MM) is characterized by an immunosuppressive microenvironment that enables tumor development. One of the mechanisms of immune evasion used by MM cells is the inhibition of natural killer (NK) cell effector functions; thus, the restoration of NK cell antitumor activity represents a key goal to increase tumor cell recognition, avoid tumor escape and potentially enhancing the effect of other drugs. In this study, we evaluated the ability of the investigational medicine NKTR-255, an IL-15 receptor agonist, to engage the IL-15 pathway and stimulate NK cells against MM cells. We observed that incubation with NKTR-255 was able to tilt the balance toward an activated phenotype in NK cells isolated from peripheral blood mononuclear cells of patients with MM, with increased expression of activating receptors on the surface of treated NK cells. This resulted in an enhanced degranulation, cytokine release, and anti-tumor cytotoxicity when the NK cells were exposed to both MM cell lines and primary MM cells. We further evaluated the in vivo effect of NKTR-255 in fully humanized immunocompetent mice subcutaneously engrafted with H929 MM cells. Compared with placebo, weekly injection of the mice with NKTR-255 increased the number of circulating NK cells in peripheral blood and delayed tumor growth. Finally, we observed that combination of NKTR-255 with the anti-CD38 antibody, daratumumab, was effective against MM cells in vitro and in vivo. Taken together, our data suggest a significant impact of NKTR-255 in inducing NK cell function against MM cells with important translational implications.
Collapse
|
15
|
Barnes SA, Audsley KM, Newnes HV, Fernandez S, de Jong E, Waithman J, Foley B. Type I interferon subtypes differentially activate the anti-leukaemic function of natural killer cells. Front Immunol 2022; 13:1050718. [PMID: 36505400 PMCID: PMC9731670 DOI: 10.3389/fimmu.2022.1050718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Natural killer (NK) cells have an intrinsic ability to detect and eliminate leukaemic cells. Cellular therapies using cytokine-activated NK cells have emerged as promising treatments for patients with advanced leukaemia. However, not all patients respond to current NK cell therapies, and thus improvements in efficacy are required. Type I interferons (IFN-I) are a family of potent immunomodulatory cytokines with a known ability to modulate NK cell responses against cancer. Although the human IFN-I family comprises 16 distinct subtypes, only IFNα2 has been widely explored as an anti-cancer agent. Here, we investigated the individual immunomodulatory effects each IFNα subtype and IFNβ had on NK cell functionality to determine whether a particular subtype confers enhanced effector activity against leukaemia. Importantly, IFNα14 and IFNβ were identified as superior activators of NK cell effector function in vitro. To test the ability of these subtypes to enhance NK cell activity in vivo, IFN-I stimulation was overlaid onto a standard ex vivo expansion protocol to generate NK cells for adoptive cell therapy. Interestingly, infusion of NK cells pre-activated with IFNα14, but not IFNβ, significantly prolonged survival in a preclinical model of leukaemia compared to NK cells expanded without IFN-I. Collectively, these results highlight the diverse immunomodulatory potencies of individual IFN-I subtypes and support further investigation into the use of IFNα14 to favourably modulate NK cells against leukaemia.
Collapse
Affiliation(s)
- Samantha A. Barnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Katherine M. Audsley
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Hannah V. Newnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Sonia Fernandez
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Emma de Jong
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Jason Waithman
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Bree Foley
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia,*Correspondence: Bree Foley,
| |
Collapse
|
16
|
Nanomedicine-Based Gene Delivery for a Truncated Tumor Suppressor RB94 Promotes Lung Cancer Immunity. Cancers (Basel) 2022; 14:cancers14205092. [DOI: 10.3390/cancers14205092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Because lung cancer remains the most common and lethal of cancers, novel therapeutic approaches are urgently needed. RB94 is a truncated form of retinoblastoma tumor suppressor protein with elevated anti-tumor efficacy. Our investigational nanomedicine (termed scL-RB94) is a tumor-targeted liposomal formulation of a plasmid containing the gene encoding RB94. In this research, we studied anti-tumor and immune modulation activities of scL-RB94 nanocomplex in preclinical models of human non-small cell lung cancer (NSCLC). Systemic treatment with scL-RB94 of mice bearing human NSCLC tumors significantly inhibited tumor growth by lowering proliferation and increasing apoptosis of tumor cells in vivo. scL-RB94 treatment also boosted anti-tumor immune responses by upregulating immune recognition molecules and recruiting innate immune cells such as natural killer (NK) cells. Antibody-mediated depletion of NK cells blunted the anti-tumor activity of scL-RB94, suggesting that NK cells were crucial for the observed anti-tumor activity in these xenograft models. Treatment with scL-RB94 also altered the polarization of tumor-associated macrophages by reducing immune-suppressive M2 macrophages to lower immune suppression in the tumor microenvironment. Collectively, our data suggest that the efficacy of scL-RB94 against NSCLC is due to an induction of tumor cell death as well as enhancement of innate anti-tumor immunity.
Collapse
|
17
|
Jeong S, Kim YG, Kim S, Kim K. Enhanced anticancer efficacy of primed natural killer cells via coacervate-mediated exogenous interleukin-15 delivery. Biomater Sci 2022; 10:5968-5979. [PMID: 36048163 DOI: 10.1039/d2bm00876a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Effective exogenous delivery of interleukin (IL)-15 to natural killer (NK) cells with subsequent anticancer efficacy could be a promising immune cell-based cancer immunotherapy. For the protection of encapsulated cargo IL-15 while maintaining its bioactivity under physiological conditions, we utilized a coacervate (Coa) consisting of a cationic methoxy polyethylene glycol-poly(ethylene arginyl aspartate diglyceride) (mPEG-PEAD) polymer, anionic counterpart heparin, and cargo IL-15. mPEGylation into the backbone cation effectively preserved the colloidal stability of Coa in harsh environments and enhanced the protection of cargo IL-15 than normal Coa without mPEGylation. Proliferation and anticancer efficacy of primed NK cells through co-culture with multiple cancer cell lines were enhanced in the mPEG-Coa group due to the maintained bioactivity of cargo IL-15 during the ex vivo expansion of NK cells. These facilitated functions of NK cells were also supported by the increased expression of mRNAs related to anticancer effects of NK cells, including cytotoxic granules, death ligands, anti-apoptotic proteins, and activation receptors. In summary, our Coa-mediated exogenous IL-15 delivery could be an effective ex vivo priming technique for NK cells with sustained immune activation that can effectively facilitate its usage for cancer immunotherapy.
Collapse
Affiliation(s)
- Sehwan Jeong
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Young Guk Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Ma S, Caligiuri MA, Yu J. Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol 2022; 43:833-847. [PMID: 36058806 PMCID: PMC9612852 DOI: 10.1016/j.it.2022.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/14/2022]
Abstract
Natural killer (NK) cells, a crucial component of the innate immune system, have long been of clinical interest for their antitumor properties. Almost every aspect of NK cell immunity is regulated by interleukin-15 (IL-15), a cytokine in the common γ-chain family. Several current clinical trials are using IL-15 or its analogs to treat various cancers. Moreover, NK cells are being genetically modified to produce membrane-bound or secretory IL-15. Here, we discuss the key role of IL-15 signaling in NK cell immunity and provide an up-to-date overview of IL-15 in NK cell therapy.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA.
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA.
| |
Collapse
|
19
|
Aryee K, Burzenski LM, Yao L, Keck JG, Greiner D, Shultz LD, Brehm MA. Enhanced development of functional human NK cells in NOD-scid-IL2rg null mice expressing human IL15. FASEB J 2022; 36:e22476. [PMID: 35959876 PMCID: PMC9383543 DOI: 10.1096/fj.202200045r] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023]
Abstract
Human innate immunity plays a critical role in tumor surveillance and in immunoregulation within the tumor microenvironment. Natural killer (NK) cells are innate lymphoid cells that have opposing roles in the tumor microenvironment, including NK cell subsets that mediate tumor cell cytotoxicity and subsets with regulatory function that contribute to the tumor immune suppressive environment. The balance between effector and regulatory NK cell subsets has been studied extensively in murine models of cancer, but there is a paucity of models to study human NK cell function in tumorigenesis. Humanized mice are a powerful alternative to syngeneic mouse tumor models for the study of human immuno-oncology and have proven effective tools to test immunotherapies targeting T cells. However, human NK cell development and survival in humanized NOD-scid-IL2rgnull (NSG) mice are severely limited. To enhance NK cell development, we have developed NSG mice that constitutively expresses human Interleukin 15 (IL15), NSG-Tg(Hu-IL15). Following hematopoietic stem cell engraftment of NSG-Tg(Hu-IL15) mice, significantly higher levels of functional human CD56+ NK cells are detectable in blood and spleen, as compared to NSG mice. Hematopoietic stem cell (HSC)-engrafted NSG-Tg(Hu-IL15) mice also supported the development of human CD3+ T cells, CD20+ B cells, and CD33+ myeloid cells. Moreover, the growth kinetics of a patient-derived xenograft (PDX) melanoma were significantly delayed in HSC-engrafted NSG-Tg(Hu-IL15) mice as compared to HSC-engrafted NSG mice demonstrating that human NK cells have a key role in limiting the tumor growth. Together, these data demonstrate that HSC-engrafted NSG-Tg(Hu-IL15) mice support enhanced development of functional human NK cells, which limit the growth of PDX tumors.
Collapse
Affiliation(s)
- Ken‐Edwin Aryee
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Li‐Chin Yao
- The Jackson LaboratorySacramentoCaliforniaUSA
| | | | - Dale L. Greiner
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Michael A. Brehm
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
20
|
Boudin L, De Nonneville A, Finetti P, Guittard G, Nunes JA, Birnbaum D, Mamessier E, Bertucci F. CISH Expression Is Associated with Metastasis-Free Interval in Triple-Negative Breast Cancer and Refines the Prognostic Value of PDL1 Expression. Cancers (Basel) 2022; 14:3356. [PMID: 35884417 PMCID: PMC9316839 DOI: 10.3390/cancers14143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Strategies are being explored to increase the efficiency of immune checkpoint inhibitors (ICIs) targeting PD1/PDL1 in triple-negative breast cancer (TNBC), including combination with therapies inhibiting intracellular immune checkpoints such as CISH (Cytokine-induced SH2 protein). Correlation between CISH expression and TNBC features is unknown. We retrospectively analyzed CISH expression in 1936 clinical TNBC samples and searched for correlations with clinical variables, including metastasis-free interval (MFI). Among TNBCs, 44% were identified as "CISH-up" and 56% "CISH-down". High expression was associated with pathological axillary lymph node involvement, more adjuvant chemotherapy, and Lehmann's immunomodulatory and luminal AR subtypes. The "CISH-up" class showed longer 5-year MFI (72%) than the "CISH-down" class (60%; p = 2.8 × 10-2). CISH upregulation was associated with activation of IFNα and IFNγ pathways, antitumor cytotoxic immune response, and signatures predictive for ICI response. When CISH and PDL1 were upregulated together, the 5-year MFI was 81% versus 52% when not upregulated (p = 6.21 × 10-6). The two-gene model provided more prognostic information than each gene alone and maintained its prognostic value in multivariate analysis. CISH expression is associated with longer MFI in TNBC and refines the prognostic value of PDL1 expression. Such observation might reinforce the therapeutic relevance of combining CISH inhibition with an anti-PD1/PDL1 ICI.
Collapse
Affiliation(s)
- Laurys Boudin
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, 13009 Marseille, France; (L.B.); (A.D.N.); (P.F.); (D.B.); (E.M.)
- Department of Medical Oncology, Hôpital d’Instruction des Armées Sainte-Anne, 83000 Toulon, France
| | - Alexandre De Nonneville
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, 13009 Marseille, France; (L.B.); (A.D.N.); (P.F.); (D.B.); (E.M.)
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Pascal Finetti
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, 13009 Marseille, France; (L.B.); (A.D.N.); (P.F.); (D.B.); (E.M.)
| | - Geoffrey Guittard
- Immunity and Cancer Team, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, 13009 Marseille, France; (G.G.); (J.A.N.)
| | - Jacques A. Nunes
- Immunity and Cancer Team, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, 13009 Marseille, France; (G.G.); (J.A.N.)
| | - Daniel Birnbaum
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, 13009 Marseille, France; (L.B.); (A.D.N.); (P.F.); (D.B.); (E.M.)
| | - Emilie Mamessier
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, 13009 Marseille, France; (L.B.); (A.D.N.); (P.F.); (D.B.); (E.M.)
| | - François Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, 13009 Marseille, France; (L.B.); (A.D.N.); (P.F.); (D.B.); (E.M.)
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France
| |
Collapse
|
21
|
Peng Y, Fu S, Zhao Q. 2022 update on the scientific premise and clinical trials for IL-15 agonists as cancer immunotherapy. J Leukoc Biol 2022; 112:823-834. [PMID: 35616357 DOI: 10.1002/jlb.5mr0422-506r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
Diverse cytokines and their receptors on immune cells constitute a highly complex network in the immune system. Some therapeutic cytokines and their derivatives have been approved for cancer treatment. IL-15 is an immune-regulating cytokine with multiple functions, among which the function of activating the immunity of cancer patients has great potential in cancer immunotherapy. In this review, we introduce the functions of IL-15 and discuss its role in regulating the immune system in different immune cells. Meanwhile, we will address the applications of IL-15 agonists in cancer immunotherapy and provide prospects for the next generation of therapeutic designs. Although many challenges remain, IL-15 agonists offer a new therapeutic option in the future direction of cancer immunotherapy.
Collapse
Affiliation(s)
- Yingjun Peng
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Shengyu Fu
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
22
|
Rah B, Rather RA, Bhat GR, Baba AB, Mushtaq I, Farooq M, Yousuf T, Dar SB, Parveen S, Hassan R, Mohammad F, Qassim I, Bhat A, Ali S, Zargar MH, Afroze D. JAK/STAT Signaling: Molecular Targets, Therapeutic Opportunities, and Limitations of Targeted Inhibitions in Solid Malignancies. Front Pharmacol 2022; 13:821344. [PMID: 35401182 PMCID: PMC8987160 DOI: 10.3389/fphar.2022.821344] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
JAK/STAT signaling pathway is one of the important regulatory signaling cascades for the myriad of cellular processes initiated by various types of ligands such as growth factors, hormones, and cytokines. The physiological processes regulated by JAK/STAT signaling are immune regulation, cell proliferation, cell survival, apoptosis and hematopoiesis of myeloid and non-myeloid cells. Dysregulation of JAK/STAT signaling is reported in various immunological disorders, hematological and other solid malignancies through various oncogenic activation mutations in receptors, downstream mediators, and associated transcriptional factors such as STATs. STATs typically have a dual role when explored in the context of cancer. While several members of the STAT family are involved in malignancies, however, a few members which include STAT3 and STAT5 are linked to tumor initiation and progression. Other STAT members such as STAT1 and STAT2 are pivotal for antitumor defense and maintenance of an effective and long-term immune response through evolutionarily conserved programs. The effects of JAK/STAT signaling and the persistent activation of STATs in tumor cell survival; proliferation and invasion have made the JAK/STAT pathway an ideal target for drug development and cancer therapy. Therefore, understanding the intricate JAK/STAT signaling in the pathogenesis of solid malignancies needs extensive research. A better understanding of the functionally redundant roles of JAKs and STATs may provide a rationale for improving existing cancer therapies which have deleterious effects on normal cells and to identifying novel targets for therapeutic intervention in solid malignancies.
Collapse
|
23
|
Chaturvedi P, George V, Shrestha N, Wang M, Dee MJ, Zhu X, Liu B, Egan J, D'Eramo F, Spanoudis C, Gallo V, Echeverri C, You L, Kong L, Fang B, Jeng EK, Rhode PR, Wong HC. Immunotherapeutic HCW9218 augments anti-tumor activity of chemotherapy via NK cell-mediated reduction of therapy-induced senescent cells. Mol Ther 2022; 30:1171-1187. [PMID: 35051615 PMCID: PMC8899672 DOI: 10.1016/j.ymthe.2022.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/26/2022] Open
Abstract
Therapy induced senescence (TIS) in tumors and TIS cancer cells secrete proinflammatory senescence-associated secretory phenotype (SASP) factors. SASP factors promote TIS cancer cells to re-enter the growth cycle with stemness characteristics, resulting in chemo-resistance and disease relapse. Herein, we show that the immunotherapeutic HCW9218, comprising transforming growth factor-β (TGF-β) receptor II and interleukin (IL)-15/IL-15 receptor α domains, enhances metabolic and cytotoxic activities of immune cells and reduces TIS tumor cells in vivo to improve the efficacy of docetaxel and gemcitabine plus nab-paclitaxel against B16F10 melanoma and SW1990 pancreatic tumors, respectively. Mechanistically, HCW9218 treatment reduces the immunosuppressive tumor microenvironment and enhances immune cell infiltration and cytotoxicity in the tumors to eliminate TIS cancer cells. Immuno-depletion analysis suggests that HCW9218-activated natural killer cells play a pivotal role in TIS cancer cell removal. HCW9218 treatment following docetaxel chemotherapy further enhances efficacy of tumor antigen-specific and anti-programmed death-ligand 1 (PD-L1) antibodies in B16F10 tumor-bearing mice. We also show that HCW9218 treatment decreases TIS cells and lowers SASP factors in off-target tissues caused by chemotherapy of tumor-bearing mice. Collectively, HCW9218 has the potential to significantly enhance anti-tumor efficacy of chemotherapy, therapeutic antibodies, and checkpoint blockade by eliminating TIS cancer cells while reducing TIS-mediated proinflammatory side effects in normal tissues.
Collapse
Affiliation(s)
| | | | | | - Meng Wang
- HCW Biologics Inc., Miramar, FL 33025, USA
| | | | | | - Bai Liu
- HCW Biologics Inc., Miramar, FL 33025, USA
| | - Jack Egan
- HCW Biologics Inc., Miramar, FL 33025, USA
| | | | | | | | | | - Lijing You
- HCW Biologics Inc., Miramar, FL 33025, USA
| | - Lin Kong
- HCW Biologics Inc., Miramar, FL 33025, USA
| | - Byron Fang
- HCW Biologics Inc., Miramar, FL 33025, USA
| | | | | | - Hing C. Wong
- HCW Biologics Inc., Miramar, FL 33025, USA,Corresponding author: Hing C. Wong, PhD, HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL 33025, USA.
| |
Collapse
|
24
|
Rubio-Azpeitia E, Pérez-Corral AM, Dorado-Herrero N, Monsalvo S, Pérez-Balsera G, Fernández-Santos ME, Kwon M, Oarbeascoa G, Bastos-Oreiro M, Falero C, Pascual Izquierdo C, Muñoz-Martínez C, Pérez-Martínez A, Diez-Martin JL, Anguita J. Clinical grade production of IL-15 stimulated NK cells for early infusion in adult AML patients undergoing haploidentical stem cell transplantation with post-transplant cyclophosphamide. Transfusion 2022; 62:374-385. [PMID: 35023148 DOI: 10.1111/trf.16790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Allogeneic stem cell transplantation is the treatment of choice for acute myeloid leukemia (AML) patients. Unmanipulated haploidentical transplantation (Haplo-HSCT) is commonly used for those AML patients who need a timely transplant and do not have a suitable matched donor, but relapse rates are still high, and improvements are needed. Adoptive immunotherapy using natural killer cells (NK cells) could be a promising tool to improved Haplo-HSCT but, to date, no optimal infusion and manufacturing protocols have been developed. STUDY DESIGN AND METHODS In this study, we describe a quick and reproducible protocol for clinical-grade production of haploidentical donor NK cells using double immunomagnetic depletion and enrichment protocol and overnight IL-15 stimulation. RESULTS Thus, we have obtained 8 viable and functional NK cell products that have been safely infused to five AML patients undergoing unmanipulated Haplo-HSCT. DISCUSSION Our results demonstrate the safety and feasibility of manufactured NK IL15 cells obtained from an adult allogeneic donor in the setting of haploidentical transplantation for AML patients.
Collapse
Affiliation(s)
- Eva Rubio-Azpeitia
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Ana Maria Pérez-Corral
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Nieves Dorado-Herrero
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Silvia Monsalvo
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Gonzalo Pérez-Balsera
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Maria Eugenia Fernández-Santos
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,ATMPs Production Unit-GMP Facility, IISGM, Madrid, Spain
| | - Mi Kwon
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Gillen Oarbeascoa
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Mariana Bastos-Oreiro
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Carmen Falero
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Cristina Pascual Izquierdo
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Cristina Muñoz-Martínez
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Antonio Pérez-Martínez
- Paediatric Haemato-Oncology Department, La Paz University Hospital, La Paz Health Research Institute (idiPaz), Madrid, Spain.,Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Luis Diez-Martin
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Anguita
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
25
|
Bou-Tayeh B, Laletin V, Salem N, Just-Landi S, Fares J, Leblanc R, Balzano M, Kerdiles YM, Bidaut G, Hérault O, Olive D, Aurrand-Lions M, Walzer T, Nunès JA, Fauriat C. Chronic IL-15 Stimulation and Impaired mTOR Signaling and Metabolism in Natural Killer Cells During Acute Myeloid Leukemia. Front Immunol 2021; 12:730970. [PMID: 34975835 PMCID: PMC8718679 DOI: 10.3389/fimmu.2021.730970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022] Open
Abstract
Natural Killer (NK) cells are potent anti-leukemic immune effectors. However, they display multiple defects in acute myeloid leukemia (AML) patients leading to reduced anti-tumor potential. Our limited understanding of the mechanisms underlying these defects hampers the development of strategies to restore NK cell potential. Here, we have used a mouse model of AML to gain insight into these mechanisms. We found that leukemia progression resulted in NK cell maturation defects and functional alterations. Next, we assessed NK cell cytokine signaling governing their behavior. We showed that NK cells from leukemic mice exhibit constitutive IL-15/mTOR signaling and type I IFN signaling. However, these cells failed to respond to IL-15 stimulation in vitro as illustrated by reduced activation of the mTOR pathway. Moreover, our data suggest that mTOR-mediated metabolic responses were reduced in NK cells from AML-bearing mice. Noteworthy, the reduction of mTOR-mediated activation of NK cells during AML development partially rescued NK cell metabolic and functional defects. Altogether, our data strongly suggest that NK cells from leukemic mice are metabolically and functionally exhausted as a result of a chronic cytokine activation, at least partially IL-15/mTOR signaling. NK cells from AML patients also displayed reduced IL-2/15Rβ expression and showed cues of reduced metabolic response to IL-15 stimulation in vitro, suggesting that a similar mechanism might occur in AML patients. Our study pinpoints the dysregulation of cytokine stimulation pathways as a new mechanism leading to NK cell defects in AML.
Collapse
Affiliation(s)
- Berna Bou-Tayeh
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Vladimir Laletin
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Nassim Salem
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Sylvaine Just-Landi
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
- IBiSA Immunomonitoring Platform, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Joanna Fares
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Raphael Leblanc
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Marielle Balzano
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Yann M. Kerdiles
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Ghislain Bidaut
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
- Cibi Technological Platform, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Olivier Hérault
- Centre National de la Recherche Scientifique (CNRS) UMR 7292, LNOx Team, François Rabelais University, Tours, France
| | - Daniel Olive
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
- IBiSA Immunomonitoring Platform, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Michel Aurrand-Lions
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Jacques A. Nunès
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Cyril Fauriat
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
- *Correspondence: Cyril Fauriat,
| |
Collapse
|
26
|
Gordon SM. Interleukin-15 in Outcomes of Pregnancy. Int J Mol Sci 2021; 22:11094. [PMID: 34681751 PMCID: PMC8541205 DOI: 10.3390/ijms222011094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 01/15/2023] Open
Abstract
Interleukin-15 (IL-15) is a pleiotropic cytokine that classically acts to support the development, maintenance, and function of killer lymphocytes. IL-15 is abundant in the uterus prior to and during pregnancy, but it is subject to tight spatial and temporal regulation. Both mouse models and human studies suggest that homeostasis of IL-15 is essential for healthy pregnancy. Dysregulation of IL-15 is associated with adverse outcomes of pregnancy. Herein, we review producers of IL-15 and responders to IL-15, including non-traditional responders in the maternal uterus and fetal placenta. We also review regulation of IL-15 at the maternal-fetal interface and propose mechanisms of action of IL-15 to facilitate additional study of this critical cytokine in the context of pregnancy.
Collapse
Affiliation(s)
- Scott M. Gordon
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Lee YS, Kim HS, Cho Y, Lee IJ, Kim HJ, Lee DE, Kang HW, Park JS. Intraoperative radiation therapy induces immune response activity after pancreatic surgery. BMC Cancer 2021; 21:1097. [PMID: 34641806 PMCID: PMC8507125 DOI: 10.1186/s12885-021-08807-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Pancreatic cancer has highly aggressive features, such as local recurrence that leads to significantly high morbidity and mortality and recurrence after successful tumour resection. Intraoperative radiation therapy (IORT), which delivers targeted radiation to a tumour bed, is known to reduce local recurrence by directly killing tumour cells and modifying the tumour microenvironment. Methods Among 30 patients diagnosed with pancreatic cancer, 17 patients received IORT immediately after surgical resection. We investigated changes in the immune response induced by IORT by analysing the peritoneal fluid (PF) and blood of patients with and without IORT treatment after pancreatic cancer surgery. Further, we treated three pancreatic cell lines with PF to observe proliferation and activity changes. Results Levels of cytokines involved in the PI3K/SMAD pathway were increased in the PF of IORT-treated patients. Moreover, IORT-treated PF inhibited the growth, migration, and invasiveness of pancreatic cancer cells. Changes in lymphocyte populations in the blood of IORT-treated patients indicated an increased immune response. Conclusions Based on the characterisation and quantification of immune cells in the blood and cytokine levels in the PF, we conclude that IORT induced an anti-tumour effect by activating the immune response, which may prevent pancreatic cancer recurrence. Clinical trial registration NCT03273374. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08807-3.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 20, Eonju-ro 63 gil, Gangnam-gu, Seoul, 06229, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Hyung Sun Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 20, Eonju-ro 63 gil, Gangnam-gu, Seoul, 06229, South Korea
| | - Yeona Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ik Jae Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Jung Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 20, Eonju-ro 63 gil, Gangnam-gu, Seoul, 06229, South Korea
| | - Da Eun Lee
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 20, Eonju-ro 63 gil, Gangnam-gu, Seoul, 06229, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Hyeon Woong Kang
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 20, Eonju-ro 63 gil, Gangnam-gu, Seoul, 06229, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Joon Seong Park
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 20, Eonju-ro 63 gil, Gangnam-gu, Seoul, 06229, South Korea.
| |
Collapse
|
28
|
Bi J, Cheng C, Zheng C, Huang C, Zheng X, Wan X, Chen YH, Tian Z, Sun H. TIPE2 is a checkpoint of natural killer cell maturation and antitumor immunity. SCIENCE ADVANCES 2021; 7:eabi6515. [PMID: 34524845 PMCID: PMC8443187 DOI: 10.1126/sciadv.abi6515] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The maturation process of NK cells determines their functionality during which IL-15 plays a critical role. However, very few checkpoints specifically targeting this process have been discovered. Here, we report that TIPE2 expression gradually increased during NK cell ontogenesis correlating to their maturation stages in both mice and humans. NK-specific TIPE2 deficiency increased mature NK cells in mice, and these TIPE2-deficient NK cells exhibited enhanced activation, cytotoxicity, and IFN-γ production upon stimulation and enhanced response to IL-15 for maturation. Moreover, TIPE2 suppressed IL-15–triggered mTOR activity in both human and murine NK cells. Consequently, blocking mTOR constrained the effect of TIPE2 deficiency on NK cell maturation in response to IL-15. Last, NK-specific TIPE2-deficient mice were resistant to tumor growth in vivo. Our results uncover a potent checkpoint in NK cell maturation and antitumor immunity in both mice and humans, suggesting a promising approach of targeting TIPE2 for NK cell–based immunotherapies.
Collapse
Affiliation(s)
- Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author. (J.B.); (H.S.)
| | - Chen Cheng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chaoyue Zheng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chen Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaohu Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Youhai H. Chen
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhigang Tian
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Beijing 100864, China
| | - Haoyu Sun
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
- Corresponding author. (J.B.); (H.S.)
| |
Collapse
|
29
|
Chimeric antigen receptor- and natural killer cell receptor-engineered innate killer cells in cancer immunotherapy. Cell Mol Immunol 2021; 18:2083-2100. [PMID: 34267335 PMCID: PMC8429625 DOI: 10.1038/s41423-021-00732-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T-cell (CAR-T) therapy has demonstrated impressive therapeutic efficacy against hematological malignancies, but multiple challenges have hindered its application, particularly for the eradication of solid tumors. Innate killer cells (IKCs), particularly NK cells, NKT cells, and γδ T cells, employ specific antigen-independent innate tumor recognition and cytotoxic mechanisms that simultaneously display high antitumor efficacy and prevent tumor escape caused by antigen loss or modulation. IKCs are associated with a low risk of developing GVHD, thus offering new opportunities for allogeneic "off-the-shelf" cellular therapeutic products. The unique innate features, wide tumor recognition range, and potent antitumor functions of IKCs make them potentially excellent candidates for cancer immunotherapy, particularly serving as platforms for CAR development. In this review, we first provide a brief summary of the challenges hampering CAR-T-cell therapy applications and then discuss the latest CAR-NK-cell research, covering the advantages, applications, and clinical translation of CAR- and NK-cell receptor (NKR)-engineered IKCs. Advances in synthetic biology and the development of novel genetic engineering techniques, such as gene-editing and cellular reprogramming, will enable the further optimization of IKC-based anticancer therapies.
Collapse
|
30
|
Zhao Y, Bilal M, Qindeel M, Khan MI, Dhama K, Iqbal HMN. Nanotechnology-based immunotherapies to combat cancer metastasis. Mol Biol Rep 2021; 48:6563-6580. [PMID: 34424444 DOI: 10.1007/s11033-021-06660-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023]
Abstract
Emerging concepts in nanotechnology have gained particular attention for their clinical translation of immunotherapies of cancer, autoimmune and infectious diseases. Several nanoconstructs have been engineered with unique structural, physicochemical, and functional features as robust alternatives for conventional chemotherapies. Traditional cancer therapies like chemotherapy, radiotherapy, and ultimately surgery are the most widely practiced in biomedical settings. Biomaterials and nanotechnology have introduced vehicles for drug delivery and have revolutionized the concept of the modern immunotherapeutic paradigm. Various types of nanomaterials, such as nanoparticles and, more specifically, drug-loaded nanoparticles are becoming famous for drug delivery applications because of safety, patient compliance, and smart action. Such therapeutic modalities have acknowledged regulatory endorsement and are being used in twenty-first-century clinical settings. Considering the emerging concepts and landscaping potentialities, herein, we spotlight and discuss nanoparticle-based immunotherapies as a smart and sophisticated drug delivery approach to combat cancer metastasis. The introductory part of this manuscript discusses a broad overview of cancer immunotherapy to understand better the tumor microenvironment and nanotechnology-oriented immunomodulatory strategies to cope with advanced-stage cancers. Following that, most addressable problems allied with conventional immunotherapies are given in comparison to nanoparticle-based immunotherapies. The later half of this work comprehensively highlights the requisite delivery of various bioactive entities with particular cases and examples. Finally, this review also encompasses a comprehensive concluding overview and future standpoints to strengthen a successful clinical translation of nanoparticle-based immunotherapies as a smart and sophisticated drug delivery approach.
Collapse
Affiliation(s)
- Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University Islamabad Campus, Islamabad, Pakistan
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
31
|
Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. Int J Mol Sci 2021; 22:ijms22169044. [PMID: 34445750 PMCID: PMC8396475 DOI: 10.3390/ijms22169044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) are specific innate lymphoid cell subsets that are key for the detection and elimination of pathogens and cancer cells. In liver, while they share a number of characteristics, they differ in many features. These include their developmental pathways, tissue distribution, phenotype and functions. NK cells and ILC1 contribute to organ homeostasis through the production of key cytokines and chemokines and the elimination of potential harmful bacteria and viruses. In addition, they are equipped with a wide range of receptors, allowing them to detect “stressed cells’ such as cancer cells. Our understanding of the role of innate lymphoid cells in hepatocellular carcinoma (HCC) is growing owing to the development of mouse models, the progress in immunotherapeutic treatment and the recent use of scRNA sequencing analyses. In this review, we summarize the current understanding of NK cells and ILC1 in hepatocellular carcinoma and discuss future strategies to take advantage of these innate immune cells in anti-tumor immunity. Immunotherapies hold great promise in HCC, and a better understanding of the role and function of NK cells and ILC1 in liver cancer could pave the way for new NK cell and/or ILC1-targeted treatment.
Collapse
|
32
|
Warricker F, Khakoo SI, Blunt MD. The role of NK cells in oncolytic viral therapy: a focus on hepatocellular carcinoma. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:304-322. [PMID: 34888493 PMCID: PMC7612080 DOI: 10.20517/jtgg.2021.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Natural killer (NK) cells have a key role in host anti-tumour immune responses via direct killing of tumour cells and promotion of adaptive immune responses. They are therefore attractive targets to promote the anti-tumour efficacy of oncolytic viral therapies. However, NK cells are also potent components of the host anti-viral immune response, and therefore have the potential for detrimental anti-viral responses, limiting the spread and persistence of oncolytic viruses. Oncolytic viruses are currently being investigated for the treatment of hepatocellular carcinoma (HCC), a leading cause of cancer-related death with a high unmet clinical need. In this review, we highlight the role of NK cells in oncolytic virus therapy, their potential for improving treatment options for patients with HCC, and discuss current and potential strategies targeting NK cells in combination with oncolytic viral therapies.
Collapse
Affiliation(s)
- Frazer Warricker
- Clinical and Experimental Sciences Unit, University of Southampton, Southampton SO16 6YD, UK
| | - Salim I Khakoo
- Clinical and Experimental Sciences Unit, University of Southampton, Southampton SO16 6YD, UK
| | - Matthew D Blunt
- Clinical and Experimental Sciences Unit, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
33
|
Castleman MJ, Dillon SM, Thompson TA, Santiago ML, McCarter MD, Barker E, Wilson CC. Gut Bacteria Induce Granzyme B Expression in Human Colonic ILC3s In Vitro in an IL-15-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2021; 206:3043-3052. [PMID: 34117105 DOI: 10.4049/jimmunol.2000239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) in the gut mucosa have long been thought to be noncytotoxic lymphocytes that are critical for homeostasis of intestinal epithelial cells through secretion of IL-22. Recent work using human tonsillar cells demonstrated that ILC3s exposed to exogenous inflammatory cytokines for a long period of time acquired expression of granzyme B, suggesting that under pathological conditions ILC3s may become cytotoxic. We hypothesized that inflammation associated with bacterial exposure might trigger granzyme B expression in gut ILC3s. To test this, we exposed human colon lamina propria mononuclear cells to a panel of enteric bacteria. We found that the Gram-negative commensal and pathogenic bacteria induced granzyme B expression in a subset of ILC3s that were distinct from IL-22-producing ILC3s. A fraction of granzyme B+ ILC3s coexpressed the cytolytic protein perforin. Granzyme B expression was mediated, in part, by IL-15 produced upon exposure to bacteria. ILC3s coexpressing all three IL-15R subunits (IL15Rα/β/γ) increased following bacterial stimulation, potentially allowing for cis presentation of IL-15 during bacterial exposure. Additionally, a large frequency of colonic myeloid dendritic cells expressed IL-15Rα, implicating myeloid dendritic cells in trans presentation of IL-15 to ILC3s. Tonsillar ILC3s minimally expressed granzyme B when exposed to the same bacteria or to rIL-15. Overall, these data establish the novel, to our knowledge, finding that human colonic ILC3s can express granzyme B in response to a subset of enteric bacteria through a process mediated by IL-15. These observations raise new questions about the multifunctional role of human gut ILC3s.
Collapse
Affiliation(s)
- Moriah J Castleman
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Stephanie M Dillon
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tezha A Thompson
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Mario L Santiago
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Martin D McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO; and
| | - Edward Barker
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL
| | - Cara C Wilson
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO;
| |
Collapse
|
34
|
Anvari S, Foroughi F, Azad M, Maali A, Alizadeh S, Ahmadi MH. Cloning and expressing of interleukine 2 in amniotic membrane-derived mesenchymal stem cells, as a potent feeder layer. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2021; 10:63-71. [PMID: 34316493 PMCID: PMC8310657 DOI: 10.22099/mbrc.2021.38845.1566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The application of mesenchymal stem cells (MSCs) is rapidly expanding due to their unique properties in cell therapy, especially as the feeder layer in the ex-vivo expansion of immune cells. Also, Interleukin 2 (IL-2) is an essential human cytokine in the expansion of hematopoietic precursors and progenitors, i.e., NK cells and T cells, while there is no endogenous expression of IL-2 in MSCs. This study aimed to examine the potency of amniotic membrane (AM)-MSCs as the IL-2 secretory cells. IL-2-containing pCMV3-C-GFPspark shuttle vector was transformed in E.coli DH5-alpha. After cloning, the plasmid DNA was extracted and transfected in isolated AM-MSCs, by lipofectamine-2000. Then, the RNA and protein expression levels of exogenous IL-2 were evaluated 3 to 15 days after transfection, using ELISA and qRT-PCR. Fluorescent microscopy and flowcytometry assays were used for evaluating the GFP-positivity of transfected AM-MSCs, as IL-2 expression control. There was a significant increase in RNA expression of exogenous IL-2 in transfected AM-MSCs in 3 to 15 days after transfection. (p<0.001) Also, IL-2 concentration released in the medium was increased in 3rd day after transfection (611 pg/ml). However, the RNA and protein expression of IL-2 was reduced through passing the time. The results show AM-MSC is a suitable host for the expression and secretion of IL-2 as a critical cytokine in the ex-vivo expansion of hematopoietic precursors and progenitors, i.e., NK cells and T cells. Also, the survival time of IL-2 expression in AM-MSCs was long enough for use as a feeder layer.
Collapse
Affiliation(s)
- Saeid Anvari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farshad Foroughi
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhosein Maali
- Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - SafarAli Alizadeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Hossein Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
35
|
Hess JB, Sutherland KD, Best SA. Exploring natural killer cell immunology as a therapeutic strategy in lung cancer. Transl Lung Cancer Res 2021; 10:2788-2805. [PMID: 34295678 PMCID: PMC8264324 DOI: 10.21037/tlcr-20-765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/19/2020] [Indexed: 11/06/2022]
Abstract
Cytotoxic immune cells are key in the control of tumor development and progression. Natural killer (NK) cells are the cytotoxic arm of the innate immune system with the capability to kill tumor cells and surveil tumor cell dissemination. As such, the interest in harnessing NK cells in tumor control is increasing in many solid tumor types, including lung cancer. Here, we review the pre-clinical models used to unveil the role of NK cells in immunosurveillance of solid tumors and highlight measures to enhance NK cell activity. Importantly, the development of NK immunotherapy is rapidly evolving. Enhancing the NK cell response can be achieved using two broad modalities: enhancing endogenous NK cell activity, or performing adoptive transfer of pre-activated NK cells to patients. Numerous clinical trials are evaluating the efficacy of NK cell immunotherapy in isolation or in combination with standard treatments, with encouraging initial results. Pre-clinical studies and early phase clinical trials suggest that patients with solid tumors, including lung cancer, have the potential to benefit from recent developments in NK cell immunotherapy.
Collapse
Affiliation(s)
- Jonas B Hess
- ACRF Cancer Biology and Stem Cell Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cell Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah A Best
- ACRF Cancer Biology and Stem Cell Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
36
|
Islam R, Pupovac A, Evtimov V, Boyd N, Shu R, Boyd R, Trounson A. Enhancing a Natural Killer: Modification of NK Cells for Cancer Immunotherapy. Cells 2021; 10:cells10051058. [PMID: 33946954 PMCID: PMC8146003 DOI: 10.3390/cells10051058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are potent innate immune system effector lymphocytes armed with multiple mechanisms for killing cancer cells. Given the dynamic roles of NK cells in tumor surveillance, they are fast becoming a next-generation tool for adoptive immunotherapy. Many strategies are being employed to increase their number and improve their ability to overcome cancer resistance and the immunosuppressive tumor microenvironment. These include the use of cytokines and synthetic compounds to bolster propagation and killing capacity, targeting immune-function checkpoints, addition of chimeric antigen receptors (CARs) to provide cancer specificity and genetic ablation of inhibitory molecules. The next generation of NK cell products will ideally be readily available as an “off-the-shelf” product and stem cell derived to enable potentially unlimited supply. However, several considerations regarding NK cell source, genetic modification and scale up first need addressing. Understanding NK cell biology and interaction within specific tumor contexts will help identify necessary NK cell modifications and relevant choice of NK cell source. Further enhancement of manufacturing processes will allow for off-the-shelf NK cell immunotherapies to become key components of multifaceted therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Rasa Islam
- Cartherics Pty Ltd., Clayton 3168, Australia; (R.I.); (A.P.); (V.E.); (N.B.); (R.S.); (R.B.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Aleta Pupovac
- Cartherics Pty Ltd., Clayton 3168, Australia; (R.I.); (A.P.); (V.E.); (N.B.); (R.S.); (R.B.)
| | - Vera Evtimov
- Cartherics Pty Ltd., Clayton 3168, Australia; (R.I.); (A.P.); (V.E.); (N.B.); (R.S.); (R.B.)
| | - Nicholas Boyd
- Cartherics Pty Ltd., Clayton 3168, Australia; (R.I.); (A.P.); (V.E.); (N.B.); (R.S.); (R.B.)
| | - Runzhe Shu
- Cartherics Pty Ltd., Clayton 3168, Australia; (R.I.); (A.P.); (V.E.); (N.B.); (R.S.); (R.B.)
| | - Richard Boyd
- Cartherics Pty Ltd., Clayton 3168, Australia; (R.I.); (A.P.); (V.E.); (N.B.); (R.S.); (R.B.)
| | - Alan Trounson
- Cartherics Pty Ltd., Clayton 3168, Australia; (R.I.); (A.P.); (V.E.); (N.B.); (R.S.); (R.B.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
- Correspondence:
| |
Collapse
|
37
|
Wang X, Zhao XY. Transcription Factors Associated With IL-15 Cytokine Signaling During NK Cell Development. Front Immunol 2021; 12:610789. [PMID: 33815365 PMCID: PMC8013977 DOI: 10.3389/fimmu.2021.610789] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes primarily involved in innate immunity and possess important functional properties in anti-viral and anti-tumor responses; thus, these cells have broad potential for clinical utilization. NK cells originate from hematopoietic stem cells (HSCs) through the following two independent and continuous processes: early commitment from HSCs to IL-15-responsive NK cell progenitors (NKPs) and subsequent differentiation into mature NK cells in response to IL-15. IL-15 is the most important cytokine for NK cell development, is produced by both hematopoietic and nonhematopoietic cells, and functions through a distinct delivery process termed transpresentation. Upon being transpresented to NK cells, IL-15 contributes to NK cell development via the activation of several downstream signaling pathways, including the Ras-MEK-MAPK, JAK-STAT5, and PI3K-ATK-mTOR pathways. Nonetheless, the exact role of IL-15 in NK cell development has not been discussed in a consecutive and comprehensive manner. Here, we review current knowledge about the indispensable role of IL-15 in NK cell development and address which cells produce IL-15 to support NK cell development and when IL-15 exerts its function during multiple developmental stages. Specifically, we highlight how IL-15 supports NK cell development by elucidating the distinct transpresentation of IL-15 to NK cells and revealing the downstream target of IL-15 signaling during NK cell development.
Collapse
Affiliation(s)
- Xiang Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Engineering Laboratory for Cellular Therapy, Beijing, China
| |
Collapse
|
38
|
Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 2021; 22:75-95. [PMID: 33328614 PMCID: PMC8344376 DOI: 10.1038/s41580-020-00314-w] [Citation(s) in RCA: 936] [Impact Index Per Article: 312.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Cellular senescence, first described in vitro in 1961, has become a focus for biotech companies that target it to ameliorate a variety of human conditions. Eminently characterized by a permanent proliferation arrest, cellular senescence occurs in response to endogenous and exogenous stresses, including telomere dysfunction, oncogene activation and persistent DNA damage. Cellular senescence can also be a controlled programme occurring in diverse biological processes, including embryonic development. Senescent cell extrinsic activities, broadly related to the activation of a senescence-associated secretory phenotype, amplify the impact of cell-intrinsic proliferative arrest and contribute to impaired tissue regeneration, chronic age-associated diseases and organismal ageing. This Review discusses the mechanisms and modulators of cellular senescence establishment and induction of a senescence-associated secretory phenotype, and provides an overview of cellular senescence as an emerging opportunity to intervene through senolytic and senomorphic therapies in ageing and ageing-associated diseases.
Collapse
Affiliation(s)
- Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Darren Baker
- Department of Pediatrics, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy.
| |
Collapse
|
39
|
Rambaldi B, Kim HT, Reynolds C, Chamling Rai S, Arihara Y, Kubo T, Buon L, Gooptu M, Koreth J, Cutler C, Nikiforow S, Ho VT, Alyea EP, Antin JH, Wu CJ, Soiffer RJ, Ritz J, Romee R. Impaired T- and NK-cell reconstitution after haploidentical HCT with posttransplant cyclophosphamide. Blood Adv 2021; 5:352-364. [PMID: 33496734 PMCID: PMC7839379 DOI: 10.1182/bloodadvances.2020003005] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Administration of posttransplant cyclophosphamide (PTCy) has significantly expanded the number of patients undergoing HLA-haploidentical hematopoietic cell transplantation (haplo-HCT). To examine immune reconstitution in these patients, we monitored T- and natural killer (NK)-cell recovery in 60 patients receiving bone marrow or peripheral blood stem cell (PBSC) grafts after haplo-HCT with PTCy and 35 patients receiving HLA-matched donor PBSC grafts with standard graft-versus-host disease (GVHD) prophylaxis. Compared with HLA-matched recipients, early T-cell recovery was delayed in haplo-HCT patients and skewed toward effector memory T cells with markedly reduced naive T cells. We found higher regulatory T (Treg)-cell/conventional T (Tcon)-cell ratios early after HCT and increased PD-1 expression on memory T cells. Within the haplo-HCT, patients who did not develop chronic GVHD (cGVHD) had higher PD-1 expression on central and effector memory CD4+ Treg cells at 1 month after transplant. These findings suggest an immunologic milieu that promotes immune tolerance in haplo-HCT patients. NK cells were decreased early after haplo-HCT with preferential expansion of immature CD56brightCD16- NK cells compared with matched donor transplants. One month after transplant, mass cytometry revealed enrichment of immature NK-cell metaclusters with high NKG2A, low CD57, and low killer-cell immunoglobulin-like receptor expression after haplo-HCT, which partially recovered 3 months post-HCT. At 2 months, immature NK cells from both groups were functionally impaired, but interleukin-15 priming corrected these defects in vitro. Increased immature/mature NK-cell ratios were associated with cytomegalovirus reactivation and increased incidence of cGVHD after haplo-HCT. These homeostatic imbalances in T- and NK-cell reconstitution after haplo-HCT reveal opportunities for early immune-based interventions to optimize clinical outcomes.
Collapse
Affiliation(s)
- Benedetta Rambaldi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Clinical and Experimental Sciences Department, Bone Marrow Transplant Unit, ASST Spedali Civili, University of Pavia, Brescia, Italy
| | - Haesook T Kim
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA; and
| | - Carol Reynolds
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Sharmila Chamling Rai
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Yohei Arihara
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Tomohiro Kubo
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Leutz Buon
- Department of BioInformatics and Data Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mahasweta Gooptu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - John Koreth
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Corey Cutler
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Sarah Nikiforow
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Vincent T Ho
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Edwin P Alyea
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Joseph H Antin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| |
Collapse
|
40
|
Malchiodi ZX, Weiner LM. Understanding and Targeting Natural Killer Cell-Cancer-Associated Fibroblast Interactions in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13030405. [PMID: 33499238 PMCID: PMC7865209 DOI: 10.3390/cancers13030405] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Pancreatic cancer is an aggressive disease with a 5-year survival rate of less than 10%. Current therapies can be ineffective due to immune suppression and fibrosis (tissue scarring) that prevents cancer cells from being killed. This review article discusses the relevance of examining how natural killer (NK) cells, immune cells involved in the anti-cancer immune response, interact with cancer-associated fibroblasts (CAFs), which cause fibrosis, in pancreatic cancer. Understanding how these cell types interact may provide insights to guide the development of novel targeted therapies to increase immune response and survival in patients with pancreatic cancer. Abstract Interactions between natural killer (NK) cells and cancer-associated fibroblasts (CAFs) comprise a relevant but relatively understudied crosstalk relationship within the tumor microenvironment (TME). This review discusses the relevance of both natural killer cell and cancer-associated fibroblast function and activity in cancers, with an emphasis on pancreatic ductal adenocarcinoma (PDAC), incorporating additional insights from other malignancies to inform future directions for research. We describe what is currently known about NK cell-CAF crosstalk and their molecular interactions, how it is possible to exploit NK cell cytotoxicity in tumors and how to target CAFs to enhance efficacy of cancer therapies and cytotoxic immune cells. Although not previously tested in combination, there is an abundance of evidence demonstrating that targeting tumor-promoting CAFs and exploiting NK cells, separately, are beneficial as therapeutic strategies. This raises the possibility that a novel combination regimen addressing these two cell targets may be even more beneficial to eradicate PDAC and other solid tumors.
Collapse
|
41
|
Wang A, Rahman NT, McGeary MK, Murphy M, McHenry A, Peterson D, Bosenberg M, Flavell RA, King B, Damsky W. Treatment of granuloma annulare and suppression of proinflammatory cytokine activity with tofacitinib. J Allergy Clin Immunol 2020; 147:1795-1809. [PMID: 33317858 DOI: 10.1016/j.jaci.2020.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Granuloma annulare (GA) is a common cutaneous inflammatory disorder characterized by macrophage accumulation and activation in skin. Its pathogenesis is poorly understood, and there are no effective treatments. The potential health implications of severe GA are unknown. OBJECTIVE We sought to better understand GA pathogenesis and evaluate a molecularly targeted treatment approach for this disease. METHODS We used single-cell RNA sequencing to study the immunopathogenesis of GA and also evaluated the efficacy of tofacitinib (a Janus kinase 1/3 inhibitor) in 5 patients with severe, long-standing GA in an open-label clinical trial. RESULTS Using single-cell RNA sequencing, we found that in GA lesions IFN-γ production by CD4+ T cells is upregulated and is associated with inflammatory polarization of macrophages and fibroblasts. In particular, macrophages upregulate oncostatin M, an IL-6 family cytokine, which appears to act on fibroblasts to alter extracellular matrix production, a hallmark of GA. IL-15 and IL-21 production appears to feed back on CD4+ T cells to sustain inflammation. Treatment of 5 patients with recalcitrant GA with tofacitinib inhibited IFN-γ and oncostatin M, as well as IL-15 and IL-21, activity and resulted in clinical and histologic disease remission in 3 patients and marked improvement in the other 2. Inhibition of these effects at the molecular level paralleled the clinical improvement. Evidence of systemic inflammation is also present in some patients with severe GA and is mitigated by tofacitinib. CONCLUSIONS The Janus kinase-signal transducer and activator of transcription pathway is activated in GA, likely in part through the activity of IFN-γ and oncostatin M, and Janus kinase inhibitors appear to be an effective treatment.
Collapse
Affiliation(s)
- Alice Wang
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn
| | - Nur-Taz Rahman
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale University School of Medicine, New Haven, Conn
| | - Meaghan K McGeary
- Department of Pathology, Yale University School of Medicine, New Haven, Conn
| | - Michael Murphy
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn
| | - Austin McHenry
- Department of Pathology, Yale University School of Medicine, New Haven, Conn
| | - Danielle Peterson
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn
| | - Marcus Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn; Department of Pathology, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Conn
| | - Brett King
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn.
| | - William Damsky
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn.
| |
Collapse
|
42
|
Velasco-de Andrés M, Casadó-Llombart S, Català C, Leyton-Pereira A, Lozano F, Aranda F. Soluble CD5 and CD6: Lymphocytic Class I Scavenger Receptors as Immunotherapeutic Agents. Cells 2020; 9:cells9122589. [PMID: 33287301 PMCID: PMC7761703 DOI: 10.3390/cells9122589] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
CD5 and CD6 are closely related signal-transducing class I scavenger receptors mainly expressed on lymphocytes. Both receptors are involved in the modulation of the activation and differentiation cell processes triggered by clonotypic antigen-specific receptors present on T and B cells (TCR and BCR, respectively). To serve such a relevant immunomodulatory function, the extracellular region of CD5 and CD6 interacts with soluble and/or cell-bound endogenous counterreceptors but also microbial-associated molecular patterns (MAMPs). Evidence from genetically-modified mouse models indicates that the absence or blockade of CD5- and CD6-mediated signals results in dysregulated immune responses, which may be deleterious or advantageous in some pathological conditions, such as infection, cancer or autoimmunity. Bench to bedside translation from transgenic data is constrained by ethical concerns which can be overcome by exogenous administration of soluble proteins acting as decoy receptors and leading to transient “functional knockdown”. This review gathers information currently available on the therapeutic efficacy of soluble CD5 and CD6 receptor infusion in different experimental models of disease. The existing proof-of-concept warrants the interest of soluble CD5 and CD6 as safe and efficient immunotherapeutic agents in diverse and relevant pathological conditions.
Collapse
Affiliation(s)
- María Velasco-de Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain; (M.V.-d.A.); (S.C.-L.); (C.C.); (A.L.-P.)
| | - Sergi Casadó-Llombart
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain; (M.V.-d.A.); (S.C.-L.); (C.C.); (A.L.-P.)
| | - Cristina Català
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain; (M.V.-d.A.); (S.C.-L.); (C.C.); (A.L.-P.)
| | - Alejandra Leyton-Pereira
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain; (M.V.-d.A.); (S.C.-L.); (C.C.); (A.L.-P.)
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain; (M.V.-d.A.); (S.C.-L.); (C.C.); (A.L.-P.)
- Servei d’Immunologia, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Immunoregulació de la Resposta Innata i Adaptativa, Department de Biomedicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Correspondence: (F.L.); (F.A.)
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación de Navarra (IDISNA), 31008 Pamplona, Spain
- Correspondence: (F.L.); (F.A.)
| |
Collapse
|
43
|
Chanswangphuwana C, Allan DSJ, Chakraborty M, Reger RN, Childs RW. Augmentation of NK Cell Proliferation and Anti-tumor Immunity by Transgenic Expression of Receptors for EPO or TPO. Mol Ther 2020; 29:47-59. [PMID: 33010232 DOI: 10.1016/j.ymthe.2020.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022] Open
Abstract
Many investigational adoptive immunotherapy regimens utilizing natural killer (NK) cells require the administration of interleukin-2 (IL-2) or IL-15, but these cytokines cause serious dose-dependent toxicities. To reduce or preclude the necessity for IL-2 use, we investigated whether genetic engineering of NK cells to express the erythropoietin (EPO) receptor (EPOR) or thrombopoietin (TPO) receptor (c-MPL) could be used as a method to improve NK cell survival and function. Viral transduction of NK-92 cells to express EPOR or c-MPL receptors conveyed signaling via appropriate pathways, protected cells from apoptosis, augmented cellular proliferation, and increased cell cytotoxic function in response to EPO or TPO ligands in vitro. In the presence of TPO, viral transduction of primary human NK cells to express c-MPL enhanced cellular proliferation and increased degranulation and cytokine production toward target cells in vitro. In contrast, transgenic expression of EPOR did not augment the proliferation of primary NK cells. In immunodeficient mice receiving TPO, in vivo persistence of primary human NK cells genetically modified to express c-MPL was higher compared with control NK cells. These data support the concept that genetic manipulation of NK cells to express hematopoietic growth factor receptors could be used as a strategy to augment NK cell proliferation and antitumor immunity.
Collapse
Affiliation(s)
- Chantiya Chanswangphuwana
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - David S J Allan
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mala Chakraborty
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert N Reger
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard W Childs
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Aehnlich P, Carnaz Simões AM, Skadborg SK, Holmen Olofsson G, thor Straten P. Expansion With IL-15 Increases Cytotoxicity of Vγ9Vδ2 T Cells and Is Associated With Higher Levels of Cytotoxic Molecules and T-bet. Front Immunol 2020; 11:1868. [PMID: 32983105 PMCID: PMC7485111 DOI: 10.3389/fimmu.2020.01868] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022] Open
Abstract
Cancer immunotherapy has shown great advances during recent years, but it has yet to reach its full potential in all cancer types. Adoptive cell therapy (ACT) is now an approved treatment option for certain hematological cancers and has also shown success for some solid cancers. Still, benefit and eligibility do not extend to all patients. ACT with Vγ9Vδ2 T cells is a promising approach to overcome this hurdle. In this study, we aimed to explore the effect of different cytokine conditions on the expansion of Vγ9Vδ2 T cells in vitro. We could show that Vγ9Vδ2 T cell expansion is feasible with two different cytokine conditions: (a) 1,000 U/ml interleukin (IL)-2 and (b) 100 U/ml IL-2 + 100 U/ml IL-15. We did not observe differences in expansion rate or Vγ9Vδ2 T cell purity between the conditions; however, IL-2/IL-15-expanded Vγ9Vδ2 T cells displayed enhanced cytotoxicity against tumor cells, also in hypoxia. While this increase in killing capacity was not reflected in natural killer (NK) cell marker or activation marker expression, we demonstrated that IL-2/IL-15-expanded Vγ9Vδ2 T cells were characterized by an increased expression of perforin, granzyme B, and granulysin compared to IL-2-expanded cells. These cytotoxic molecules were not only increased in a resting state, but also released to a greater extent upon target recognition. In contrast, CD107a and cytokine expression did not differ between expansion conditions. However, IL-2/IL-15-expanded Vγ9Vδ2 T cells showed higher levels of transcription factor T-bet expression, which could indicate that T-bet and cytotoxic molecule levels confer the increased cytotoxicity. These results advocate the inclusion of IL-15 into ex vivo Vγ9Vδ2 T cell expansion protocols in future clinical studies.
Collapse
Affiliation(s)
- Pia Aehnlich
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Ana Micaela Carnaz Simões
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Signe Koggersbøl Skadborg
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Gitte Holmen Olofsson
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Per thor Straten
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Van Audenaerde JR, Marcq E, von Scheidt B, Davey AS, Oliver AJ, De Waele J, Quatannens D, Van Loenhout J, Pauwels P, Roeyen G, Lardon F, Slaney CY, Peeters M, Kershaw MH, Darcy PK, Smits EL. Novel combination immunotherapy for pancreatic cancer: potent anti-tumor effects with CD40 agonist and interleukin-15 treatment. Clin Transl Immunology 2020; 9:e1165. [PMID: 32821382 PMCID: PMC7428816 DOI: 10.1002/cti2.1165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives With the poorest 5‐year survival of all cancers, improving treatment for pancreatic cancer is one of the biggest challenges in cancer research. We sought to explore the potential of combining both priming and activation of the immune system. To achieve this, we combined a CD40 agonist with interleukin‐15 and tested its potential in pancreatic cancer. Methods Response to this combination regimen was assessed in pancreatic ductal adenocarcinoma mouse models, and a thorough analysis of the tumor microenvironment was performed. Results We demonstrated profound reduction in tumor growth and increased survival of mice with the majority of mice being cured when both agents were combined, including an unprecedented 8‐fold dose reduction of CD40 agonist without losing any efficacy. RNAseq analysis showed involvement of natural killer (NK) cell‐ and T‐cell‐mediated anti‐tumor responses and the importance of antigen‐presenting cell pathways. This combination resulted in enhanced infiltration of tumors by both T cells and NK cells, as well as a striking increase in the ratio of CD8+ T cells over Tregs. We also observed a significant increase in numbers of dendritic cells (DCs) in tumor‐draining lymph nodes, particularly CD103+ DCs with cross‐presentation potential. A critical role for CD8+ T cells and involvement of NK cells in the anti‐tumor effect was highlighted. Importantly, strong immune memory was established, with an increase in memory CD8+ T cells only when both interleukin‐15 and the CD40 agonist were combined. Conclusion These novel preclinical data support initiation of a first‐in‐human clinical trial with this combination immunotherapy strategy in pancreatic cancer.
Collapse
Affiliation(s)
- Jonas Rm Van Audenaerde
- Center for Oncological Research (CORE) Integrated Personalized & Precision Oncology Network (IPPON) University of Antwerp Wilrijk Belgium.,Cancer Immunotherapy and Immune Innovation Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Elly Marcq
- Center for Oncological Research (CORE) Integrated Personalized & Precision Oncology Network (IPPON) University of Antwerp Wilrijk Belgium
| | - Bianca von Scheidt
- Cancer Immunotherapy and Immune Innovation Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Ashleigh S Davey
- Cancer Immunotherapy and Immune Innovation Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Amanda J Oliver
- Cancer Immunotherapy and Immune Innovation Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Jorrit De Waele
- Center for Oncological Research (CORE) Integrated Personalized & Precision Oncology Network (IPPON) University of Antwerp Wilrijk Belgium
| | - Delphine Quatannens
- Center for Oncological Research (CORE) Integrated Personalized & Precision Oncology Network (IPPON) University of Antwerp Wilrijk Belgium
| | - Jinthe Van Loenhout
- Center for Oncological Research (CORE) Integrated Personalized & Precision Oncology Network (IPPON) University of Antwerp Wilrijk Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE) Integrated Personalized & Precision Oncology Network (IPPON) University of Antwerp Wilrijk Belgium.,Department of Pathology Antwerp University Hospital Edegem Belgium
| | - Geert Roeyen
- Department of Hepatobiliary, Endocrine and Transplantation Surgery Antwerp University Hospital Edegem Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE) Integrated Personalized & Precision Oncology Network (IPPON) University of Antwerp Wilrijk Belgium
| | - Clare Y Slaney
- Cancer Immunotherapy and Immune Innovation Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Parkville VIC Australia
| | - Marc Peeters
- Center for Oncological Research (CORE) Integrated Personalized & Precision Oncology Network (IPPON) University of Antwerp Wilrijk Belgium.,Department of Oncology and Multidisciplinary Oncological Centre Antwerp Antwerp University Hospital Edegem Belgium
| | - Michael H Kershaw
- Cancer Immunotherapy and Immune Innovation Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Parkville VIC Australia
| | - Phillip K Darcy
- Cancer Immunotherapy and Immune Innovation Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Parkville VIC Australia
| | - Evelien Ljm Smits
- Center for Oncological Research (CORE) Integrated Personalized & Precision Oncology Network (IPPON) University of Antwerp Wilrijk Belgium.,Center for Cell Therapy and Regenerative Medicine Antwerp University Hospital Edegem Belgium
| |
Collapse
|
46
|
Rautela J, Surgenor E, Huntington ND. Drug target validation in primary human natural killer cells using CRISPR RNP. J Leukoc Biol 2020; 108:1397-1408. [PMID: 33463756 DOI: 10.1002/jlb.2ma0620-074r] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022] Open
Abstract
The ability to genetically modify CD8 T cells using viral gene delivery has facilitated the development of next generation of cancer immunotherapies such as chimeric Ag receptor (CAR) T cells engineered to specifically kill tumor cells. Development of immunotherapies targeting NK cells have stalled in part by their resistance to traditional viral gene delivery systems. Here, an efficient approach is described to genetically edit human NK cells by electroporation and CRISPR-Cas9 ribonucleoprotein (RNP) complexes. Electroporation pulse codes and buffer optimization for protein uptake by human NK cells and viability, and the efficiency of this approach over other methods are detailed. To highlight the transformative step this technique will have for NK cell immunotherapy drug discovery, NCR1 and CISH are deleted in primary human NK cells and murine findings are validated on their key roles in regulating NK cell antitumor function.
Collapse
Affiliation(s)
- Jai Rautela
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Elliot Surgenor
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Nicholas D Huntington
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
47
|
Pilones KA, Charpentier M, Garcia-Martinez E, Daviaud C, Kraynak J, Aryankalayil J, Formenti SC, Demaria S. Radiotherapy Cooperates with IL15 to Induce Antitumor Immune Responses. Cancer Immunol Res 2020; 8:1054-1063. [PMID: 32532811 DOI: 10.1158/2326-6066.cir-19-0338] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 04/05/2020] [Accepted: 06/03/2020] [Indexed: 01/22/2023]
Abstract
Focal radiotherapy can promote cross-presentation of tumor antigens to T cells, but by itself, it is insufficient to induce therapeutically effective T-cell responses. The common gamma-chain cytokine IL15 promotes and sustains the proliferation and effector function of CD8+ T cells but has limited activity against poorly immunogenic tumors that do not elicit significant spontaneous T-cell responses. Here, we show that radiotherapy and subcutaneous IL15 had complementary effects and induced CD8+ T-cell-mediated tumor regression and long-term protective memory responses in two mouse carcinoma models unresponsive to IL15 alone. Mechanistically, radiotherapy-induced IFN type I production and Batf3-dependent conventional dendritic cells type 1 (cDC1) were required for priming of tumor-specific CD8+ T cells and for the therapeutic effect of the combination. IL15 cooperated with radiotherapy to activate and recruit cDC1s to the tumor. IL15 alone and in complex with a hybrid molecule containing the IL15α receptor have been tested in early-phase clinical trials in patients with cancer and demonstrated good tolerability, especially when given subcutaneously. Expansion of natural killer (NK) cells and CD8+ T cells was noted, without clear clinical activity, suggesting further testing of IL15 as a component of a combinatorial treatment with other agents. Our results provide the rationale for testing combinations of IL15 with radiotherapy in the clinic.
Collapse
Affiliation(s)
- Karsten A Pilones
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Maud Charpentier
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Elena Garcia-Martinez
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York.,Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Camille Daviaud
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Jeffrey Kraynak
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | | | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York. .,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
48
|
Wang J, Matosevic S. Functional and metabolic targeting of natural killer cells to solid tumors. Cell Oncol (Dordr) 2020; 43:577-600. [DOI: 10.1007/s13402-020-00523-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
|
49
|
Natural Killer Cell Responses in Hepatocellular Carcinoma: Implications for Novel Immunotherapeutic Approaches. Cancers (Basel) 2020; 12:cancers12040926. [PMID: 32283827 PMCID: PMC7226319 DOI: 10.3390/cancers12040926] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) still represents a significant complication of chronic liver disease, particularly when cirrhosis ensues. Current treatment options include surgery, loco-regional procedures and chemotherapy, according to specific clinical practice guidelines. Immunotherapy with check-point inhibitors, aimed at rescuing T-cells from exhaustion, has been applied as second-line therapy with limited and variable success. Natural killer (NK) cells are an essential component of innate immunity against cancer and changes in phenotype and function have been described in patients with HCC, who also show perturbations of NK activating receptor/ligand axes. Here we discuss the current status of NK cell treatment of HCC on the basis of existing evidence and ongoing clinical trials on adoptive transfer of autologous or allogeneic NK cells ex vivo or after activation with cytokines such as IL-15 and use of antibodies to target cell-expressed molecules to promote antibody-dependent cellular cytotoxicity (ADCC). To this end, bi-, tri- and tetra-specific killer cell engagers are being devised to improve NK cell recognition of tumor cells, circumventing tumor immune escape and efficiently targeting NK cells to tumors. Moreover, the exciting technique of chimeric antigen receptor (CAR)-engineered NK cells offers unique opportunities to create CAR-NK with multiple specificities along the experience gained with CAR-T cells with potentially less adverse effects.
Collapse
|
50
|
Ochayon DE, Ali A, Alarcon PC, Krishnamurthy D, Kottyan LC, Borchers MT, Waggoner SN. IL-33 promotes type 1 cytokine expression via p38 MAPK in human NK cells. J Leukoc Biol 2020; 107:663-671. [PMID: 32017227 PMCID: PMC7229703 DOI: 10.1002/jlb.3a0120-379rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 11/06/2022] Open
Abstract
This study tests the hypothesis that activation of MAPK by physiologically relevant concentrations of IL-33 contributes to enhanced cytokine expression by IL-12 stimulated human NK cells. While IL-33 canonically triggers type 2 cytokine responses, this cytokine can also synergize with type 1 cytokines like IL-12 to provoke IFN-γ. We show that picogram concentrations of IL-12 and IL-33 are sufficient to promote robust secretion of IFN-γ by human NK cells that greatly exceeds resposes to either cytokine alone. Nanogram doses of IL-33, potentially consistent with levels in tissue microenvironments, synergize with IL-12 to induce secretion of additional cytokines, including TNF and GM-CSF. IL-33-induced activation of the p38 MAPK pathway in human NK cells is crucial for enhanced release of IFN-γ and TNF in response to IL-12. Mechanistically, IL-33-induced p38 MAPK signaling enhances stability of IFNG transcripts and triggers A disintegrin and metalloproteinase domain 17 (ADAM17) mediated cleavage of TNF from the cell surface. These data support our hypothesis and suggest that altered sensitivity of NK cells to IL-12 in the presence of IL-33 may have important consequences in diseases associated with mixed cytokine milieus, like asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- David E Ochayon
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ayad Ali
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Graduate Program in Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Pablo C Alarcon
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Graduate Program in Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Durga Krishnamurthy
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Graduate Program in Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michael T Borchers
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Graduate Program in Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|