1
|
Shi C, Niu H, Zhao C, Zhou Y, He L, Pan A. Calcium-Based Mineralized Hydrogels for Temporary Reinforcement and Conservation of Ancient Ivory Relics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57946-57953. [PMID: 39380252 DOI: 10.1021/acsami.4c14901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Ancient ivory serves as an important witness of time and historical events, offering highly significant insights into the fields of paleontology, mineralogy, materials science, and geochemistry. However, ancient ivory has undergone groundwater corrosion and has a loose porous structure and reduced mechanical strength due to being buried for a long time. Therefore, the temporary reinforcement and preservation of ancient ivory artifacts are a well-known challenge. A methodology was presented in this article for the synthesis of calcium-based mineralized hydrogels (Ca-gel), which possess controllable adhesive strength, beneficial compatibility, environmentally friendly and noninvasive protection, as well as efficient and rapid adhesion for ancient ivory cultural relics. By manipulating the various components of Ca-gel, it was possible to achieve a controllable gel time and gel state. Additionally, the hydrogel possessing a substantial water content has the potential to establish a humid environment suitable for the preservation of ancient ivory, thereby overcoming the challenges associated with water loss and weathering that may arise during excavation processes. It is noteworthy that Ca-gel possessed universality and temporary adhesive properties that could be employed in the temporary reinforcement of cultural relics from different materials. A method has been proposed in this study to facilitate the temporary reinforcement process while ensuring the protection of authenticity, integrity, and continuity for cultural relics.
Collapse
Affiliation(s)
- Chengyu Shi
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Heqiang Niu
- Gansu Provincial Research Center for Conservation of Dunhuang Cultural Heritage (Dunhuang Academy), Jiuquan 736200, China
| | - Chunyu Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ling He
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Aizhao Pan
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Chen B, He B, Tucker AM, Biluck I, Leung TH, Schaer TP, Yang S. An Environmentally Stable, Biocompatible, and Multilayered Wound Dressing Film with Reversible and Strong Adhesion. Adv Healthc Mater 2024:e2400827. [PMID: 39263787 DOI: 10.1002/adhm.202400827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Reversible adhesives for wound care improve patient experiences by permitting reuse and minimizing further tissue injury. Existing reversible bandages are vulnerable to water and can undergo unwanted deformation during removal and readdressing procedures. Here, a biocompatible, multilayered, reversible wound dressing film that conforms to skin and is waterproof is designed. The inner layer is capable of instant adhesion to various substrates upon activation of the dynamic boronic ester bonds by water; intermediate hydrogel layer and outer silicone backing layer can enhance the dressing's elasticity and load distribution for adhesion, and the silicone outer layer protects the dressing from exposure to water. The adhesive layer is found to be biocompatible with mouse skin. Skin injuries on the mouse skin heal more rapidly with the film compared to no dressing controls. Evaluations of the film on skin of freshly euthanized minipigs corroborate the findings in the mouse model. The film remains attached to skins without delamination despite subjecting to various degrees of deformation. Exposure to water softens the film to allow removal from the skin without pulling any hair off. The multilayered design considers soft mechanics in each layer and will offer new insights to improve wound dressing performance and patient comfort.
Collapse
Affiliation(s)
- Baohong Chen
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Bingzhi He
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Alexander M Tucker
- Department of Surgery, Division of Neurosurgery, Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Ian Biluck
- Department of Surgery, Division of Neurosurgery, Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Thomas H Leung
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Thomas P Schaer
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, 382 West Street Road, Kennett Square, PA, 19348, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Yan Y, Wei L, Shao J, Qiu X, Zhang X, Cui X, Huang J, Ge S. A Near-Infrared Photothermal-Responsive Underwater Adhesive with Tough Adhesion and Antibacterial Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310870. [PMID: 38453669 DOI: 10.1002/smll.202310870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Developing tunable underwater adhesives that possess tough adhesion in service and easy detachment when required remains challenging. Herein, a strategy is proposed to design a near infrared (NIR) photothermal-responsive underwater adhesive by incorporating MXene (Ti3C2Tx)-based nanoparticles within isocyanate-modified polydimethylsiloxane (PDMS) polymer chains. The developed adhesive exhibits long-term and tough adhesion with an underwater adhesion strength reaching 5.478 MPa. Such strong adhesion is mainly attributed to the covalent bonds and hydrogen bonds at the adhesive-substrate interface. By making use of the photothermal-response of MXene-based nanoparticles and the thermal response of PDMS-based chains, the adhesive possesses photothermal-responsive performance, exhibiting sharply diminished adhesion under NIR irradiation. Such NIR-triggered tunable adhesion allows for easy and active detachment of the adhesive when needed. Moreover, the underwater adhesive exhibits photothermal antibacterial property, making it highly desirable for underwater applications. This work enhances the understanding of photothermal-responsive underwater adhesion, enabling the design of tunable underwater adhesives for biomedical and engineering applications.
Collapse
Affiliation(s)
- Yonggan Yan
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, China
| | - Luxing Wei
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Jinlong Shao
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiaolai Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xin Cui
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing, 100071, China
| | - Jun Huang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Shaohua Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
4
|
Yang D, Zhao W, Zhang S, Liu Y, Teng J, Ma Y, Huang R, Wei H, Chen H, Zhang J, Chen J. Dual Self-Assembly of Puerarin and Silk Fibroin into Supramolecular Nanofibrillar Hydrogel for Infected Wound Treatment. Adv Healthc Mater 2024; 13:e2400071. [PMID: 38501563 DOI: 10.1002/adhm.202400071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/04/2024] [Indexed: 03/20/2024]
Abstract
The treatment of infected wounds remains a challenging biomedical problem. Some bioactive small-molecule hydrogelators with unique rigid structures can self-assemble into supramolecular hydrogels for wound healing. However, they are still suffered from low structural stability and bio-functionality. Herein, a supramolecular hydrogel antibacterial dressing with a dual nanofibrillar network structure is proposed. A nanofibrillar network created by a small-molecule hydrogelator, puerarin extracted from the traditional Chinese medicine Pueraria, is interconnected with a secondary macromolecular silk fibroin nanofibrillar network induced by Ga ions via charge-induced supramolecular self-assembly. The resulting hydrogel features adequate mechanical strength for sustainable retention at wounds. Good biocompatibility and efficient bacterial inhibition are obtained when the Ga ion concentration is 0.05%. Otherwise, the substantial release of Ga ions and puerarin endows the hydrogel with excellent hemostatic and antioxidative properties. In vivo, evaluation of a mouse-infected wound model demonstrates that its healing effect outperformed that of a commercially available silver-containing wound dressing. The experimental group successfully achieves a 100% wound closure rate on day 10. This study sheds new light on the design of nanofibrillar hydrogels based on supramolecular self-assembly of naturally derived bioactive molecules as well as their clinical use for treating chronic infected wounds.
Collapse
Affiliation(s)
- Dan Yang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
- Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Wei Zhao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Shengyu Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Yu Liu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
- Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Jingmei Teng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Yuxi Ma
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Rongjian Huang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Hua Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Hailan Chen
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
| | - Jiantao Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Jing Chen
- Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| |
Collapse
|
5
|
Jia Y, Yang Y, Zhang H. Comparative Study on the Lubrication Mechanism and Performance of Two Representative Ionic and Nonionic Self-Adhesive Polymer Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8271-8283. [PMID: 38557053 DOI: 10.1021/acs.langmuir.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Surface modification of lubricating coatings on biomedical devices is a pivotal strategy to improve the overall performance and clinical efficacy, significantly reducing friction between devices and human tissues and mitigating tissue damage during intervention and long-term implantation. Recently, various hydrophilic polymeric materials have been used for achieving surface functionalization, endowing the biomedical device with excellent superlubrication performance. N-Vinylpyrrolidone (NVP) and 2-methacryloyloxyethyl phosphorylcholine (MPC) are two typical representatives of nonionic and zwitterionic materials. However, there is still a research gap in a comparative study of the lubrication mechanisms and properties between them. In this study, a bioinspired and dopamine-assisted codeposition technique was used to fabricate biomimetic hydrophilic coatings, including P(DMA-NVP) and P(DMA-MPC), on polyurethane. To achieve a thorough comparative analysis of the self-adhesive coating performance, 3 M ratios of the copolymers were synthesized and comprehensive material evaluations were conducted. Additionally, surface morphology, hydrophilicity, and lubrication at both the microscale and macroscale were performed. It was found that both hydrophilic coatings exhibited good stability. The P(DMA-MPC) coating, due to the ability to attract and bind a large number of water molecules, demonstrated superior lubrication effects compared to the P(DMA-NVP) coating. The study provides an in-depth understanding of the lubrication behavior of the self-adhesive coatings to enhance the functionality and application in biomedical engineering.
Collapse
Affiliation(s)
- Yiran Jia
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yinuo Yang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongyu Zhang
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Shrivas S, Samaur H, Yadav V, Boda SK. Soft and Hard Tissue Integration around Percutaneous Bone-Anchored Titanium Prostheses: Toward Achieving Holistic Biointegration. ACS Biomater Sci Eng 2024; 10:1966-1987. [PMID: 38530973 DOI: 10.1021/acsbiomaterials.3c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A holistic biointegration of percutaneous bone-anchored metallic prostheses with both hard and soft tissues dictates their longevity in the human body. While titanium (Ti) has nearly solved osseointegration, soft tissue integration of percutaneous metallic prostheses is a perennial problem. Unlike the firm soft tissue sealing in biological percutaneous structures (fingernails and teeth), foreign body response of the skin to titanium (Ti) leads to inflammation, epidermal downgrowth and inferior peri-implant soft tissue sealing. This review discusses various implant surface treatments/texturing and coatings for osseointegration, soft tissue integration, and against bacterial attachment. While surface microroughness by SLA (sandblasting with large grit and acid etched) and porous calcium phosphate (CaP) coatings improve Ti osseointegration, smooth and textured titania nanopores, nanotubes, microgrooves, and biomolecular coatings encourage soft tissue attachment. However, the inferior peri-implant soft tissue sealing compared to natural teeth can lead to peri-implantitis. Toward this end, the application of smart multifunctional bioadhesives with strong adhesion to soft tissues, mechanical resilience, durability, antibacterial, and immunomodulatory properties for soft tissue attachment to metallic prostheses is proposed.
Collapse
Affiliation(s)
- Sangeeta Shrivas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Vinod Yadav
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sunil Kumar Boda
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
7
|
Roppolo I, Caprioli M, Pirri CF, Magdassi S. 3D Printing of Self-Healing Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305537. [PMID: 37877817 DOI: 10.1002/adma.202305537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Indexed: 10/26/2023]
Abstract
This review article presents a comprehensive overview of the latest advances in the field of 3D printable structures with self-healing properties. Three-dimensional printing (3DP) is a versatile technology that enables the rapid manufacturing of complex geometric structures with precision and functionality not previously attainable. However, the application of 3DP technology is still limited by the availability of materials with customizable properties specifically designed for additive manufacturing. The addition of self-healing properties within 3D printed objects is of high interest as it can improve the performance and lifespan of structural components, and even enable the mimicking of living tissues for biomedical applications, such as organs printing. The review will discuss and analyze the most relevant results reported in recent years in the development of self-healing polymeric materials that can be processed via 3D printing. After introducing the chemical and physical self-healing mechanism that can be exploited, the literature review here reported will focus in particular on printability and repairing performances. At last, actual perspective and possible development field will be critically discussed.
Collapse
Affiliation(s)
- Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Matteo Caprioli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| | - Candido F Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Shlomo Magdassi
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| |
Collapse
|
8
|
Maeng SW, Park TY, Park Y, Yoon T, Jung YM, Cha HJ. Self-Healable Adhesive Hydrogel with a Preserved Underwater Adhesive Ability Based on Histidine-Zinc Coordination and a Bioengineered Hybrid Mussel Protein. Biomacromolecules 2024; 25:379-387. [PMID: 38108296 DOI: 10.1021/acs.biomac.3c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mussels are marine organisms that are capable of constructing an underwater adhesion between their bodies and rigid structures. It is well known that mussels achieve underwater adhesion through the presence of mussel adhesive proteins (MAPs) that contain high levels of 3,4-dihydroxyphenylalanine (DOPA). Although the extraordinary underwater adhesive properties of mussels are attributed to DOPA, its capacity to play a dual role in surface adhesion and internal cohesion is inherently limited. However, mussels employ a combination of chemical moieties, not just DOPA, along with anatomical components, such as plaque and byssus, in underwater adhesion. This also involves junction proteins that connect the plaque and byssus. In this study, a novel hybrid MAP was bioengineered via the fusion of the plaque protein (foot protein type 1) and the histidine-rich domain of the junction protein (foot protein type 4). To achieve direct adhesion underwater, the adhesive should maintain surface adhesion without disintegrating. Notably, the histidine-Zn-coordinated hybrid MAP hydrogel maintained a high surface adhesion ability even after cross-linking because of the preservation of its unoxidized and non-cross-linked DOPA moieties. The formulated adhesive hydrogel system based on the bioengineered hybrid MAP exhibited self-healing properties, owing to the reversible metal coordination bonds. The developed adhesive hydrogel exhibits outstanding levels of bulk adhesion in underwater environments, highlighting its potential as an effective adhesive biomaterial. Therefore, the introduction of histidine-rich domains into MAPs may be applied in various studies to formulate mussel-inspired adhesives with self-healing properties and to fully utilize the adhesive ability of DOPA.
Collapse
Affiliation(s)
- Seong-Woo Maeng
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Tae Yoon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Taehee Yoon
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
9
|
Dong Z, Ma F, Wei X, Zhang L, Ding Y, Shi L, Chen C, Ma Y, Ma Y. Injectable, thermo-sensitive and self-adhesive supramolecular hydrogels built from binary herbal small molecules towards reusable antibacterial coatings. RSC Adv 2024; 14:2027-2035. [PMID: 38196913 PMCID: PMC10774861 DOI: 10.1039/d3ra07882e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Herbal hydrogels as a new class of sustainable functional materials have attracted extensive attention. However, the development of herbal hydrogels is significantly hindered due to their poor hydrogel performances and the lack of universal preparation methods. In this study, four herbal hydrogels composed of phytochemical polyphenols and stevioside compounds are prepared through a facile heating-cooling process, where multiple hydrogen bonding interactions between two monomers provide the main driving force for gelation. These herbal hydrogels exhibit thermo-sensitivity and good reversibility (25-90 °C), robust adhesion behaviours on hydrophilic and hydrophobic surfaces (maximum adhesion strength of 591.7 kPa), and outstanding antibacterial properties (100% bacteriostatic ratio). Profiting from these intriguing characteristics, they are demonstrated to show great potential as natural antibacterial coatings by depositing thin hydrogel layers onto diverse substrates. More importantly, the hydrogel coatings could be easily recycled by thermal regelation and reused at least 5 times. This work proposes a simple and universal strategy for preparing functional hydrogels based on binary herbal small molecules, which also sheds light on the development of reusable hydrogel coatings.
Collapse
Affiliation(s)
- Zhibin Dong
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Fengjun Ma
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Xiaocen Wei
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Linlin Zhang
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Yongling Ding
- School of Transportation Civil Engineering, Shandong Jiaotong University Jinan 250357 P.R. China
| | - Lei Shi
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Chen Chen
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Yuxia Ma
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Yuning Ma
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| |
Collapse
|
10
|
Shang L, Yan Y, Li Z, Liu H, Ge S, Ma B. Hydro-Sensitive, In Situ Ultrafast Physical Self-Gelatinizing, and Red Blood Cells Strengthened Hemostatic Adhesive Powder with Antibiosis and Immunoregulation for Wound Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306528. [PMID: 38032128 PMCID: PMC10811473 DOI: 10.1002/advs.202306528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Immediate and effective hemostatic treatments for complex bleeding wounds are an urgent clinical demand. Hemostatic materials with characteristics of adhesion, sealing, anti-infection, and concrescence promotion have drawn growing concerns. However, pure natural multifunctional hemostatic materials with in situ ultrafast self-gelation are rarely reported. In this study, a hydro-sensitive collagen/tannic acid (ColTA) natural hemostatic powder is developed that can in situ self-gel to form adhesive by the non-covalent crosslinking between tannic acid (TA) and collagen (Col) in liquids. The physical interactions endow ColTA adhesive with the characteristics of instantaneous formation and high adhesion at various substrate surfaces. Crucially, ColTA powder adhesive shows an enhanced adhesion performance in the presence of blood due to the electrostatic interactions between ColTA adhesive and red blood cells, conducive to effective in situ sealing and rapid hemostasis. The biocompatible and hemocompatible ColTA adhesive can effectively control bleeding and seal the wounds of the caudal vein, liver, heart, and femoral arteries in rats. Furthermore, the low-cost and ready-to-use ColTA adhesive powder also possesses good antibacterial and inhibiting biofilm formation ability, and can efficiently regulate immune response by the NF-κB pathway to promote wound repair, making it a highly promising hemostatic material with great potential for biomedical applications.
Collapse
Affiliation(s)
- Lingling Shang
- Department of Periodontology & Tissue Engineering and RegenerationSchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinanShandong250012China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinanShandong250012China
- Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandong250012China
| | - Yonggan Yan
- Department of Periodontology & Tissue Engineering and RegenerationSchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinanShandong250012China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinanShandong250012China
- Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandong250012China
| | - Zhao Li
- Department of Periodontology & Tissue Engineering and RegenerationSchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinanShandong250012China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinanShandong250012China
- Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandong250012China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250013China
| | - Shaohua Ge
- Department of Periodontology & Tissue Engineering and RegenerationSchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Baojin Ma
- Department of Periodontology & Tissue Engineering and RegenerationSchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinanShandong250012China
| |
Collapse
|
11
|
Liu C, Peng K, Wu Y, Fu F. Functional adhesive hydrogels for biological interfaces. SMART MEDICINE 2023; 2:e20230024. [PMID: 39188302 PMCID: PMC11235964 DOI: 10.1002/smmd.20230024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/09/2023] [Indexed: 08/28/2024]
Abstract
Hydrogel adhesives are extensively employed in biological interfaces such as epidermal flexible electronics, tissue engineering, and implanted device. The development of functional hydrogel adhesives is a critical, yet challenging task since combining two or more attributes that seem incompatible into one adhesive hydrogel without sacrificing the hydrogel's pristine capabilities. In this Review, we highlight current developments in the fabrication of functional adhesive hydrogels, which are suitable for a variety of application scenarios, particularly those that occur underwater or on tissue/organ surface conditions. The design strategies for a multifunctional adhesive hydrogel with desirable properties including underwater adhesion, self-healing, good biocompatibility, electrical conductivity, and anti-swelling are discussed comprehensively. We then discuss the challenges faced by adhesive hydrogels, as well as their potential applications in biological interfaces. Adhesive hydrogels are the star building blocks of bio-interface materials for individualized healthcare and other bioengineering areas.
Collapse
Affiliation(s)
- Changyi Liu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Kexin Peng
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Yilun Wu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Fanfan Fu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
12
|
Yan Y, Shi Y, Liu C, Shao J, Sun N, Ma B, Li Y, Huang J, Ge S. Cartilage-Inspired Inhomogeneous Salt-Hydrogel for Hydrated Drag-Reducing and Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48632-48644. [PMID: 37788004 DOI: 10.1021/acsami.3c10271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Articular cartilages exhibit load-bearing capacity and durability due to their inhomogeneous structure. Inspired by this unique structure, a tough and inhomogeneous salt-hydrogel was developed by trapping sodium acetate (NaAc) crystals in polyacrylamide (PAM) polymer networks and then partially redissolving the NaAc crystals. The compressive and tensile stresses of the salt-hydrogel increase significantly by more than 20 times when oversaturated Ac- and Na+ are introduced into the gel network. Such an enhancement in mechanical strength is primarily attributed to the formation of NaAc crystals within the gel network. Further investigations reveal that the mechanical strength of the salt-hydrogel is temperature-dependent as the NaAc crystals gradually redissolve in the gel network with increasing temperature. Furthermore, redissolving NaAc crystals in an aqueous solution can yield an inhomogeneous salt-hydrogel. The topmost soft surface of the salt-hydrogel offers hydration lubrication, while the inhomogeneous network confers load-bearing capacity and durability. Compared to regular hydrogels, the inhomogeneous salt-hydrogel surface can realize drag reduction and remain smooth without damage after the friction tests. Moreover, a salt-hydrogel coating is also fabricated to visually demonstrate its drag-reducing property. In addition, this salt-hydrogel possesses conductivity and can be utilized in the development of inhomogeneous salt-hydrogel fibers (diameter = 438 ± 7 μm) for strain detection. The produced salt-hydrogel fiber exhibits excellent durability and reproducibility as a strain sensor, capable of detecting both small strains (e.g., 1%) and large strains (e.g., 40%). This work provides fundamental insights into developing hydrogels with an inhomogeneous network and explores their potential applications (e.g., hydrated drag-reducing, strain sensing).
Collapse
Affiliation(s)
- Yonggan Yan
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan 250012, China
| | - Yanping Shi
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, Jinan 250101, China
| | - Chenghu Liu
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, Jinan 250101, China
| | - Jinlong Shao
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan 250012, China
| | - Nengzhe Sun
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan 250012, China
| | - Baojin Ma
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan 250012, China
| | - Yuan Li
- Sinopec Research Institute of Petroleum Engineering, Fracturing & Acidizing and Natural Gas Production Research Institute, Dongying 257000, China
| | - Jun Huang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China
| | - Shaohua Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan 250012, China
| |
Collapse
|
13
|
Fonseca RG, Kuster A, Fernandes PP, Tavakoli M, Pereira P, Fernandes JR, De Bon F, Serra AC, Fonseca AC, Coelho JFJ. Facile Synthesis of Highly Stretchable, Tough, and Photodegradable Hydrogels. Adv Healthc Mater 2023; 12:e2300918. [PMID: 37133868 DOI: 10.1002/adhm.202300918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Indexed: 05/04/2023]
Abstract
Recently, highly stretchable and tough hydrogels that are photodegradable on-demand have been reported. Unfortunately, the preparation procedure is complex due to the hydrophobic nature of the photocrosslinkers. Herein, a simple method is reported to prepare photodegradable double-network (DN) hydrogels that exhibit high stretchability, toughness, and biocompatibility. Hydrophilic ortho-nitrobenzyl (ONB) crosslinkers incorporating different poly(ethylene glycol) (PEG) backbones (600, 1000, and 2000 g mol-1 ) are synthesized. These photodegradable DN hydrogels are prepared by the irreversible crosslinking of chains by using such ONB crosslinkers, and the reversible ionic crosslinking between sodium alginate and divalent cations (Ca2+ ). Remarkable mechanical properties are obtained by combining ionic and covalent crosslinking and their synergistic effect, and by reducing the length of the PEG backbone. The rapid on-demand degradation of these hydrogels is also demonstrated by using cytocompatible light wavelength (λ = 365 nm) that degrades the photosensitive ONB units. The authors have successfully used these hydrogels as skin-worn sensors for monitoring human respiration and physical activities. A combination of excellent mechanical properties, facile fabrication, and on-demand degradation holds promise for their application as the next generation of substrates or active sensors eco-friendly for bioelectronics, biosensors, wearable computing, and stretchable electronics.
Collapse
Affiliation(s)
- Rita G Fonseca
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Aline Kuster
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Pedro P Fernandes
- Soft and Printed Microelectronics Lab, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-194, Portugal
| | - Mahmoud Tavakoli
- Soft and Printed Microelectronics Lab, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-194, Portugal
| | - Patrícia Pereira
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, Coimbra, 3030-790, Portugal
- IPN - Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - José R Fernandes
- Chemical Centre - Vila Real (CQVR), Physics Department, School of Science and Technology, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
| | - Francesco De Bon
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Arménio C Serra
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Ana C Fonseca
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Jorge F J Coelho
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, Coimbra, 3030-790, Portugal
| |
Collapse
|
14
|
Huang J, Wang Y, Liu P, Li J, Song M, Cui J, Wei L, Yan Y, Liu J. Kneading-Dough-Inspired Quickly Dispersing of Hydrophobic Particles into Aqueous Solutions for Designing Functional Hydrogels. Gels 2023; 9:gels9030242. [PMID: 36975691 PMCID: PMC10048493 DOI: 10.3390/gels9030242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels containing hydrophobic materials have attracted great attention for their potential applications in drug delivery and biosensors. This work presents a kneading-dough-inspired method for dispersing hydrophobic particles (HPs) into water. The kneading process can quickly mix HPs with polyethyleneimine (PEI) polymer solution to form "dough", which facilitates the formation of stable suspensions in aqueous solutions. Combining with photo or thermal curing processes, one type of HPs incorporated PEI-polyacrylamide (PEI/PAM) composite hydrogel exhibiting good self-healing ability, tunable mechanical property is synthesized. The incorporating of HPs into the gel network results in the decrease in the swelling ratio, as well as the enhancement of the compressive modulus by more than five times. Moreover, the stable mechanism of polyethyleneimine-modified particles has been investigated using surface force apparatus, where the pure repulsion during approaching contributes to the good stability of the suspension. The stabilization time of the suspension is dependent on the molecular weight of PEI: the higher the molecular weight is, the better the stability of the suspension will be. Overall, this work demonstrates a useful strategy to introduce HPs into functional hydrogel networks. Future research can be focused on understanding the strengthening mechanism of HPs in the gel networks.
Collapse
Affiliation(s)
- Jun Huang
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 102206, China
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Youqi Wang
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 102206, China
- Research Institute of Petroleum Exploration and Development, Sinopec, Beijing 102206, China
| | - Ping Liu
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 102206, China
- Research Institute of Petroleum Exploration and Development, Sinopec, Beijing 102206, China
| | - Jinzhi Li
- Oil and Gas Development Management Center of Shengli Oilfield Company, Sinopec, Dongying 257000, China
| | - Min Song
- Oil and Gas Development Management Center of Shengli Oilfield Company, Sinopec, Dongying 257000, China
| | - Jiuyu Cui
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Luxing Wei
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yonggan Yan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Jing Liu
- Xinxing Cathay International (Beijing) Institute of Materials Technology Co., Ltd., Beijing 100078, China
| |
Collapse
|
15
|
Arcangeli D, Gualandi I, Mariani F, Tessarolo M, Ceccardi F, Decataldo F, Melandri F, Tonelli D, Fraboni B, Scavetta E. Smart Bandaid Integrated with Fully Textile OECT for Uric Acid Real-Time Monitoring in Wound Exudate. ACS Sens 2023; 8:1593-1608. [PMID: 36929744 PMCID: PMC10152490 DOI: 10.1021/acssensors.2c02728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Hard-to-heal wounds (i.e., severe and/or chronic) are typically associated with particular pathologies or afflictions such as diabetes, immunodeficiencies, compression traumas in bedridden people, skin grafts, or third-degree burns. In this situation, it is critical to constantly monitor the healing stages and the overall wound conditions to allow for better-targeted therapies and faster patient recovery. At the moment, this operation is performed by removing the bandages and visually inspecting the wound, putting the patient at risk of infection and disturbing the healing stages. Recently, new devices have been developed to address these issues by monitoring important biomarkers related to the wound health status, such as pH, moisture, etc. In this contribution, we present a novel textile chemical sensor exploiting an organic electrochemical transistor (OECT) configuration based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) for uric acid (UA)-selective monitoring in wound exudate. The combination of special medical-grade textile materials provides a passive sampling system that enables the real-time and non-invasive analysis of wound fluid: UA was detected as a benchmark analyte to monitor the health status of wounds since it represents a relevant biomarker associated with infections or necrotization processes in human tissues. The sensors proved to reliably and reversibly detect UA concentration in synthetic wound exudate in the biologically relevant range of 220-750 μM, operating in flow conditions for better mimicking the real wound bed. This forerunner device paves the way for smart bandages integrated with real-time monitoring OECT-based sensors for wound-healing evaluation.
Collapse
Affiliation(s)
- Danilo Arcangeli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Isacco Gualandi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Federica Mariani
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Marta Tessarolo
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Francesca Ceccardi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Francesco Decataldo
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Federico Melandri
- Plastod S.p.A., Via Walter Masetti 7, Calderara di Reno, 40012 Bologna, Italy
| | - Domenica Tonelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Beatrice Fraboni
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Erika Scavetta
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
16
|
Ahmed A, Nath J, Baruah K, Rather MA, Mandal M, Dolui SK. Development of mussel mimetic gelatin based adhesive hydrogel for wet surfaces with self-healing and reversible properties. Int J Biol Macromol 2023; 228:68-77. [PMID: 36566806 DOI: 10.1016/j.ijbiomac.2022.12.151] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Gelatin, being a naturally derived biomacromolecule shows good biocompatibility and biodegradability and hence turn out to be a potential biomaterial in synthesizing adhesive hydrogel. However, to achieve significant adhesive strength under wet condition and good mechanical properties, gelatin is functionalised with dopamine and acrylic acid. Here, inspired from nature, we have developed a gelatin based adhesive hydrogel for wet surfaces by incorporating dopamine into gelatin-poly(acrylic acid) chain. The synthesized hydrogel demonstrate good mechanical strength, high stretchability, reversibility, self-healing and dynamic adhesive behaviour along with long term reusability. The adhesive strength of the synthesized hydrogel to tissue surface was found to be 6.5 KPa when applied under submerged condition. Moreover, the swelling behaviour of the hydrogel reveals that hydrogel have limited swellability thereby retaining adhesive property under fully swollen state. Haemolysis results reveals the biocompatible nature of the hydrogel. Thus this hydrogel emerge to be a promising bioadhesive for application in various fields mostly in biomedical devices.
Collapse
Affiliation(s)
- Asfi Ahmed
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Jayashree Nath
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Kankana Baruah
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Muzamil Ahmad Rather
- Department of Molecular biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Swapan K Dolui
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India.
| |
Collapse
|
17
|
Zhu J, Zhou H, Gerhard EM, Zhang S, Parra Rodríguez FI, Pan T, Yang H, Lin Y, Yang J, Cheng H. Smart bioadhesives for wound healing and closure. Bioact Mater 2023; 19:360-375. [PMID: 35574051 PMCID: PMC9062426 DOI: 10.1016/j.bioactmat.2022.04.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022] Open
Abstract
The high demand for rapid wound healing has spurred the development of multifunctional and smart bioadhesives with strong bioadhesion, antibacterial effect, real-time sensing, wireless communication, and on-demand treatment capabilities. Bioadhesives with bio-inspired structures and chemicals have shown unprecedented adhesion strengths, as well as tunable optical, electrical, and bio-dissolvable properties. Accelerated wound healing has been achieved via directly released antibacterial and growth factors, material or drug-induced host immune responses, and delivery of curative cells. Most recently, the integration of biosensing and treatment modules with wireless units in a closed-loop system yielded smart bioadhesives, allowing real-time sensing of the physiological conditions (e.g., pH, temperature, uric acid, glucose, and cytokine) with iterative feedback for drastically enhanced, stage-specific wound healing by triggering drug delivery and treatment to avoid infection or prolonged inflammation. Despite rapid advances in the burgeoning field, challenges still exist in the design and fabrication of integrated systems, particularly for chronic wounds, presenting significant opportunities for the future development of next-generation smart materials and systems.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Honglei Zhou
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Institute of Flexible Electronics Technology of THU, Zhejiang, Jiaxing, 314000, China
| | - Ethan Michael Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Senhao Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215011, PR China
| | - Flor Itzel Parra Rodríguez
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Taisong Pan
- School of Materials and Energy, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215011, PR China
| | - Yuan Lin
- School of Materials and Energy, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
18
|
Investigation of the Time-Dependent Friction Behavior of Polyacrylamide Hydrogels. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Chen K, Liu R, Liu H, Lyu T, Wang Z, Tian Y. Sponge‐inspired multisensory hydrogel. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kun Chen
- College of Medicine and Biological Information Engineering Northeastern University Shenyang China
| | - Ruonan Liu
- College of Medicine and Biological Information Engineering Northeastern University Shenyang China
| | - He Liu
- College of Medicine and Biological Information Engineering Northeastern University Shenyang China
| | - Tong Lyu
- College of Medicine and Biological Information Engineering Northeastern University Shenyang China
| | - Zhaoyang Wang
- College of Medicine and Biological Information Engineering Northeastern University Shenyang China
| | - Ye Tian
- College of Medicine and Biological Information Engineering Northeastern University Shenyang China
- Foshan Graduate School of Innovation Northeastern University Foshan China
| |
Collapse
|
20
|
Wei Y, Chen L, Jiang Y. Self-healing polyacrylamide (PAAm) gels at room temperature based on complementary guanine and cytosine base pairs. SOFT MATTER 2022; 18:7394-7401. [PMID: 36125115 DOI: 10.1039/d2sm00933a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The unique properties of self-healing materials hold great potential in many fields because they can repair themselves automatically and have an improved service time. In this study, polyacrylamide (PAAm) gels with complementary guanine and cytosine base pairs have been prepared. Herein, based on our previous research, cytosine (C) and guanine (G) (triple hydrogen) with biosafety were introduced to endow the PAAm with self-healing properties. Then, their self-healing properties were studied in detail and the results indicate that the optimized PAAm gel sample manifests a healing efficiency of 90% at room temperature. The excellent proportion of methacryloyloxyethyl isocyanate-cytosine/guanine (IEM-C/G) to AAm is 1 : 30, according to which the PAM-CG material exhibits enhanced stretchability and tensile strength. The major healing process occurs within 5 h at room temperature, and the material is completely healed after 20 h. Moreover, the healing time can be shortened at a higher temperature. The mechanical behaviors are tuned by changing the base pairs, and the gels exhibit recoverable mechanical performances. Therefore, this study provides a facile strategy for developing self-healing and biocompatible PAAm gels.
Collapse
Affiliation(s)
- Yingying Wei
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Jiangnan, Nanjing, Jiangsu 211189, P. R. China.
| | - Ling Chen
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Jiangnan, Nanjing, Jiangsu 211189, P. R. China.
| | - Yong Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Jiangnan, Nanjing, Jiangsu 211189, P. R. China.
| |
Collapse
|
21
|
Li Y, Gong Q, Han L, Liu X, Yang Y, Chen C, Qian C, Han Q. Carboxymethyl cellulose assisted polyaniline in conductive hydrogels for high-performance self-powered strain sensors. Carbohydr Polym 2022; 298:120060. [DOI: 10.1016/j.carbpol.2022.120060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 12/01/2022]
|
22
|
Wong JHM, Tan RPT, Chang JJ, Ow V, Yew PYM, Chee PL, Kai D, Loh XJ, Xue K. Dynamic grafting of carboxylates onto poly(vinyl alcohol) polymers for supramolecularly-crosslinked hydrogel formation. Chem Asian J 2022; 17:e202200628. [PMID: 35977910 DOI: 10.1002/asia.202200628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/15/2022] [Indexed: 11/05/2022]
Abstract
Supramolecular hydrogels have attracted considerable interest due to their unique stimuli-responsive and self-healing properties. However, these hydrogel systems are usually achieved by covalent grafting of supramolecular units onto the polymer backbone, which in turn limits their reprocessability. Herein, we prepared a supramolecular hydrogel system by forming dynamic covalent crosslinks between 4-carboxyphenylboronic acid (CPBA) and polyvinyl alcohol (PVA). The system was then further crosslinked with either calcium ions or branched polyethylenimine (PEI) to generate hydrogels with distinctly different properties. Incorporation of calcium ions resulted in the formation of hydrogels with higher storage modulus of 7290 Pa but without self-healing properties. On the other hand, PEI-crosslinked hydrogel (PVA-CPBA-PEI) exhibited >2000% critical strain value, demonstrated high stability over 52 days and showed sustained antibacterial effect. A combination of supramolecular interactions and dynamic covalent crosslinks can be an alternate strategy to fabricate next generation hydrogel materials.
Collapse
Affiliation(s)
- Joey Hui Min Wong
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | | | - Jun Jie Chang
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | - Valerie Ow
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | | | - Pei Lin Chee
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | - Dan Kai
- Institute of Materials Research and Engineering, Strategic Research Initiative, SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | | |
Collapse
|
23
|
Wang J, Liu X, Wang Y, An M, Fan Y. Casein micelles embedded composite organohydrogel as potential wound dressing. Int J Biol Macromol 2022; 211:678-688. [PMID: 35577190 DOI: 10.1016/j.ijbiomac.2022.05.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Excellent mechanical and tissue adhesive properties, long-lasting environmental suitability and reliable biocompatibility are essential factors for the hydrogels to be applied as wound dressing in the clinical fields. Based on the self-assembly micelle structures, a new type of casein micelles (CEs)/polyvinyl alcohol (PVA) GW (glycerol-water) organohydrogel was designed and synthesized by a simple one-pot method. Through a unique "load sharing" effect, the CEs which own suitable adhesion abilities and drug loading capacities simultaneously were embedded into the PVA networks by rich hydrogen bonds, so that to obtain the composite organ hydrogel with not only excellent adhesive abilities, but also enhanced mechanical properties. Benefited from the unique GW binary solvent system, the organohydrogel showed long-lasting moisture lock-in capacity and extreme temperature tolerance (in the range of --20 °C ~ 60 °C). Particularly, after loading the model antibacterial drugs (allicin) within the CEs, the as-developed CEs/PVA GW gel exhibited a prominent long-lasting (>100 h) antibacterial properties (>90%). Furthermore, the organohydrogel was confirmed with prominent biocompatibility to support fibroblast cell proliferation and migration. This work proposed a new strategy to build CEs-based gel system, which have a great potential application in terms of prevent bacterial infection, accelerate tissue proliferation and wound healing.
Collapse
Affiliation(s)
- Jinghui Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China; College of biomedical engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaoyu Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China
| | - Yanqin Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China; College of biomedical engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Meiwen An
- College of biomedical engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
24
|
Tang Z, Zhao M, Li N, Xiao H, Miao Q, Zhang M, Liu K, Huang L, Chen L, Zeng H, Wu H. Self-healing, reusable and conductive cellulose nanocrystals-containing adhesives. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Fonseca RG, De Bon F, Pereira P, Carvalho FM, Freitas M, Tavakoli M, Serra AC, Fonseca AC, Coelho JFJ. Photo-degradable, tough and highly stretchable hydrogels. Mater Today Bio 2022; 15:100325. [PMID: 35757031 PMCID: PMC9218832 DOI: 10.1016/j.mtbio.2022.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
We present for the first time highly stretchable and tough hydrogels with controlled light-triggered photodegradation. A double-network of alginate/polyacrylamide (PAAm) is formed by using covalently and ionically crosslinked subnetworks. The ionic Ca2+ alginate interpenetrates a PAAm network covalently crosslinked by a bifunctional acrylic crosslinker containing the photodegradable o-nitrobenzyl (ONB) core instead of the commonly used methylene bisacrylamide (MBAA). Remarkably, due to the developed protocol, the change of the crosslinker did not affect the hydrogel's mechanical properties. The incorporation of photosensitive components in hydrogels allows external temporal control of their properties and tuneable degradation. Cell viability and cell proliferation assays revealed that hydrogels and their photodegradation products are not cytotoxic to the NIH3T3 cell line. In one example of application, we used these hydrogels for bio-potential acquisition in wearable electrocardiography. Surprisingly, these hydrogels showed a lower skin-electrode impedance, compared to the common medical grade Ag/AgCl electrodes. This work lays the foundation for the next generation of tough and highly stretchable hydrogels that are environmentally friendly and can find applications in a variety of fields such as health, electronics, and energy, as they combine excellent mechanical properties with controlled degradation.
Collapse
Affiliation(s)
- Rita G Fonseca
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| | - Francesco De Bon
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| | - Patrícia Pereira
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal.,IPN - Instituto Pedro Nunes, Rua Pedro Nunes, 3030-199, Coimbra, Portugal
| | - Francisca M Carvalho
- ISR - Institute of Systems and Robotics, University of Coimbra, 3030-194, Coimbra, Portugal
| | - Marta Freitas
- ISR - Institute of Systems and Robotics, University of Coimbra, 3030-194, Coimbra, Portugal
| | - Mahmoud Tavakoli
- ISR - Institute of Systems and Robotics, University of Coimbra, 3030-194, Coimbra, Portugal
| | - Arménio C Serra
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| | - Ana C Fonseca
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| | - Jorge F J Coelho
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| |
Collapse
|
26
|
Liang L, Qin Z, Dong X, He S, Yao M, Yu Q, Yu C, Liu M, Guo B, Zhang H, Yao F, Li J. Bio-inspired Antibacterial Hydrogel Adhesives with High Adhesion Strength. Macromol Rapid Commun 2022; 43:e2200182. [PMID: 35640482 DOI: 10.1002/marc.202200182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/13/2022] [Indexed: 11/10/2022]
Abstract
Traditional adhesives such as cyanoacrylate glue are mostly solvent based. They are facing the problem of insufficient adhesion to some substrates, and also the drawback of volatilization and release of small organic molecules in the process of usage. Therefore, a novel adhesive with non-irritating, high adhesive strength and antibacterial properties is highly required. In this study, a full physically crosslinked zwitterionic poly(betaine sulfonate methacrylate) (PSBMA) hydrogel is proposed. The physical crosslinking interactions endow the hydrogel with good self-healing property. Besides, the pure physical crosslinking hydrogel can form PSBMA powder adhesive after lyophilization and return to the hydrogel state after hydration. The mechanical properties of PSBMA adhesive can be modulated via adjusting the solid content and initiator dosage. Following the cure process similar to that of snail mucus or insect exoskeleton does in nature, adhesion of the PSBMA adhesive is improved at least 100 times than its wet state. In addition, the PSBMA adhesive is easy to be removed due to the dissociation of cross-linked structure in salt water environment. Moreover, PSBMA adhesive with antifouling properties can effectively prevent adhesion of proteins and bacteria, which shows potential applications in assembly of medical devices. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lei Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zhihui Qin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Xiaoru Dong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Shaoshuai He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Mengmeng Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Qingyu Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chaojie Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Min Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
27
|
Tang Z, Zhang M, Xiao H, Liu K, Li X, Du B, Huang L, Chen L, Wu H. A Green Catechol-Containing Cellulose Nanofibrils-Cross-Linked Adhesive. ACS Biomater Sci Eng 2022; 8:1096-1102. [PMID: 35213139 DOI: 10.1021/acsbiomaterials.1c01494] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Traditional adhesives with strong adhesion are widely applied in the fields of wood, building, and electronics. However, the synthesis and usage of commercial adhesives are not eco-friendly, which are harmful to human health and to the environment. In this study, a green cellulose nanofibrils/poly(hydroxyethyl methacrylate-co-dopamine methacrylamide) (CNFs/P(HEMA-co-DMA)) adhesive with excellent biocompatibility and strong bonding strength has been fabricated. P(HEMA-co-DMA) with a catechol content of 7.1 mol % was synthesized using dopamine methacrylamide and hydroxyethyl methacrylate. The CNFs/P(HEMA-co-DMA) adhesive was generated by cross-linking P(HEMA-co-DMA) solution using cellulose nanofibrils (CNFs). Strong adhesion was realized on various substrates, with a maximum lap shear strength of 5.50 MPa on steel. The NIH 3T3 cells test demonstrated that the adhesive possessed excellent biocompatibility. The green catechol-containing CNFs-cross-linked adhesive has promising potential for applications in medicine, electronic, food packaging, and engineering.
Collapse
Affiliation(s)
- Zuwu Tang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, People's Republic of China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, People's Republic of China
| | - He Xiao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, People's Republic of China
| | - Kai Liu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, People's Republic of China
| | - Xiuliang Li
- Yuzhong (Fujian) New Material Technology Co., Ltd., Quanzhou, Fujian 362141, People's Republic of China
| | - Bihui Du
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, People's Republic of China.,Yuzhong (Fujian) New Material Technology Co., Ltd., Quanzhou, Fujian 362141, People's Republic of China
| | - Liulian Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, People's Republic of China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, People's Republic of China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
28
|
Shen J, Zhang H, Zhu J, Ma Y, He H, Zhu F, Jia L, Zheng Q. Simple Preparation of a Waterborne Polyurethane Crosslinked Hydrogel Adhesive With Satisfactory Mechanical Properties and Adhesion Properties. Front Chem 2022; 10:855352. [PMID: 35308786 PMCID: PMC8924036 DOI: 10.3389/fchem.2022.855352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
Waterborne polyurethane has been proven to be an ideal additive for the preparation of hydrogels with excellent mechanical properties. This work reports that a satisfactory adhesion of acrylamide hydrogels can be obtained by introducing a large amount of waterborne polyurethane into system. A series of polyurethane hydrogels was prepared by using one-pot method with acrylamide monomer and 2-hydroxymethyl methacrylate end-modified waterborne polyurethane emulsion. The hydrogels exhibit good strength (greater than 30 KPa), wide range of adjustable strain (200%-800%), and excellent compression fatigue resistance. The performance improvement is attributed to the fact that the polyurethane emulsion containing double bonds provides chemical crosslinking and forms polyurethane microregions due to hydrophilic and hydrophobic interactions. The hydrogel shows extensive and repeatable adhesion on diverse substrates. This simple preparation method through polyurethane crosslinked hydrogels is expected to become a low-cost and efficient preparation strategy for hydrogel adhesives.
Collapse
Affiliation(s)
- Jiahao Shen
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Heng Zhang
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Jingxin Zhu
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yanlong Ma
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Hongwei He
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Fengbo Zhu
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Lan Jia
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Qiang Zheng
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, China
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Cui Y, Yin L, Sun X, Zhang N, Gao N, Zhu G. A Universal and Reversible Wet Adhesive via Straightforward Aqueous Self-Assembly of Polyethylenimine and Polyoxometalate. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47155-47162. [PMID: 34565147 DOI: 10.1021/acsami.1c14231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The excellent adhesion of mussels under wet conditions has inspired the development of numerous catechol-based wet adhesives. Nevertheless, the performance of catechol-based wet adhesive suffers from the sensitivity toward temperature, pH, or oxidation stimuli. Therefore, it is of great significance to develop non-catechol-based wet adhesives to fully recapitulate nature's dynamic function. Herein, a novel type of non-catechol-based wet adhesive is reported, which is readily formed by self-assembly of commercially available branched polyethylenimine and phosphotungstic acid in aqueous solution through the combination of electrostatic interaction and hydrogen bonding. This wet adhesive shows reversible, tunable, and strong adhesion on diverse substrates and further exhibits high efficacy in promoting biological wound healing. During the healing of the wound, the as-prepared wet adhesive also possesses inherent antimicrobial properties, thus avoiding inflammations and infections due to microorganism accumulation.
Collapse
Affiliation(s)
- Yuexin Cui
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Liying Yin
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xiaoya Sun
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Ning Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Nan Gao
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
30
|
Wang Z, Gao S, Zhang W, Gong H, Xu K, Luo C, Zhi W, Chen X, Li J, Weng J. Polyvinyl alcohol/chitosan composite hydrogels with sustained release of traditional Tibetan medicine for promoting chronic diabetic wound healing. Biomater Sci 2021; 9:3821-3829. [PMID: 33881045 DOI: 10.1039/d1bm00346a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Tibetan eighteen flavor dangshen pills (TEP) are composed of 18 traditional Tibetan medicines, which are commonly used in the treatment of skin diseases in the Tibetan medical system. They have anti-inflammatory and analgesic effects, and healing properties. However, TEP contain large doses and have strong side effects and low bioavailability. To improve the utilization rate of TEP in skin treatment, we prepared TEP powder and then introduced it into polyvinyl alcohol/chitosan (PVA/CS) hydrogels to treat diabetic wounds by slowly releasing the active ingredients of TEP. In vitro studies showed that TEP-loaded hydrogels can effectively and continuously release the active ingredients of TEP and have antibacterial and antioxidant properties. In addition, the hydrogel system was not cytotoxic to L929 cells, and significantly promoted the proliferation of HUVECs. Moreover, when the TEP-loaded hydrogel was applied to diabetic wounds in rats, it reduced the inflammatory response and improved collagen deposition, which in turn promoted skin healing. Our results indicate that TEP-loaded hydrogels may be a new formulation for the application of traditional Tibetan medicines for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Zuxin Wang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Shan Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Wanlin Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Hanwen Gong
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Kai Xu
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Chao Luo
- College of Medicine, Tibet Universtiy, Tibet, 850000, China
| | - Wei Zhi
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xingyu Chen
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jie Weng
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China. and Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
31
|
Yu J, Wang K, Fan C, Zhao X, Gao J, Jing W, Zhang X, Li J, Li Y, Yang J, Liu W. An Ultrasoft Self-Fused Supramolecular Polymer Hydrogel for Completely Preventing Postoperative Tissue Adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008395. [PMID: 33734513 DOI: 10.1002/adma.202008395] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The intermolecular H-bonding density heavily influences the gelation and rheological behavior of hydrogen-bonded supramolecular polymer hydrogels, thus offering a delicate pathway to tailor their physicochemical properties for meeting a specific biomedical application. Herein, one methylene spacer between two amides in the side chain of N-acryloyl glycinamide (NAGA) is introduced to generate a variant monomer, N-acryloyl alaninamide (NAAA). Polymerization of NAAA in aqueous solution affords an unprecedented ultrasoft and highly swollen supramolecular polymer hydrogel due to weakened H-bonds caused by an extra methylene spacer, which is verified by variable-temperature Fourier transform infrared (FTIR) spectroscopy and simulation calculation. Intriguingly, poly(N-acryloyl alaninamide) (PNAAA) hydrogel can be tuned to form a transient network with a self-fused and excellent antifouling capability that results from the weakened dual amide H-bonding interactions and enhanced water-amide H-bonding interactions. This self-fused PNAAA hydrogel can completely inhibit postoperative abdominal adhesion and recurrent adhesion after adhesiolysis in vivo. This transient hydrogel network allows for its disintegration and excretion from the body. The molecular mechanism studies reveal the signal pathway of PNAAA hydrogel in inhibiting inflammatory response and regulating fibrinolytic system balance. This self-fused, antifouling ultrasoft supramolecular hydrogel is promising as a barrier biomaterial for completely preventing postoperative tissue adhesion.
Collapse
Affiliation(s)
- Jing Yu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chuanchuan Fan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xiaoye Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jushan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wanghui Jing
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoping Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Jia Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Yuan Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
32
|
Han X, Lv Z, Ran F, Dai L, Li C, Si C. Green and stable piezoresistive pressure sensor based on lignin-silver hybrid nanoparticles/polyvinyl alcohol hydrogel. Int J Biol Macromol 2021; 176:78-86. [PMID: 33577818 DOI: 10.1016/j.ijbiomac.2021.02.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/30/2021] [Accepted: 02/07/2021] [Indexed: 11/25/2022]
Abstract
Hydrogel-based piezoresistive sensors have high practical value in many revolutionary applications, such as intelligent and electronic devices. However, with existing hydrogels, it is very difficult to achieve a combination of good mechanical properties, stable conductivity, and simple/green fabrication method. In this study, hybrid organic-inorganic nanoparticles (lignin-silver hybrid nanoparticles, Lig-Ag NPs) were synthesized by using alkaline lignin as the organic component and silver nanoparticle (Ag NPs) as the inorganic component. Interaction between the lignin and Ag NPs leads to the composite of hybrid nanoparticles that not only decreased the release of Ag NPs but also generated dynamically stable semi-quinone radicals in lignin. After compositing with polyvinyl alcohol (PVA) matrix, Lig-Ag NPs provided strong sacrificial hydrogen bonds and facilitated the delivery of electronic. Benefiting from these structural features and the pore-forming effect of ammonia (from Lig-Ag NPs solution), the PVA/Lig-Ag NPs hydrogel exhibits outstanding compressibility, pressure sensitivity, and stability of signal response. This study provides a green and simple design strategy for piezoresistive pressure sensors based on nanocomposite hydrogel.
Collapse
Affiliation(s)
- Xiao Han
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zilu Lv
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fangli Ran
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Chenyu Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
33
|
Zhao Y, Yan Y, Cui X, Wu X, Wang H, Huang J, Qiu X. A Conductive, Self-Healing Hybrid Hydrogel with Excellent Water-Retention and Thermal Stability by Introducing Ethylene Glycol as a Crystallization Inhibitor. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Yan Y, Huang J, Qiu X, Cui X, Xu S, Wu X, Yao P, Huang C. An ultra-stretchable glycerol-ionic hybrid hydrogel with reversible gelid adhesion. J Colloid Interface Sci 2020; 582:187-200. [PMID: 32818713 DOI: 10.1016/j.jcis.2020.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
Functional hydrogels have attracted enormous interest as wet adhesives for biomedical research and engineering applications. However, reversible hydrogel adhesives that can be used for gelid conditions were rarely reported. In this work, we have developed a freezing-tolerant (freezing temperature < -50 °C), ultra-stretchable (stretch strain > 30000% at 25 °C) glycerol-ionic hydrogel via the ultraviolet curing of acrylamide monomer and hyper-branched polyethylenimine polymer in CaCl2-water-glycerol solution. The fabricated hydrogel exhibited reversible gelid adhesion, rapid self-healing (recover in 3 s) and weight-retaining (>2 weeks) properties. The hydrogel allows two iron substrates to adhere together at -40 °C with the lap-shear adhesion strength as high as ~1 MPa. Such strong adhesion measured was reversible, specifically achieving ~100% of initial adhesion strength at 25 °C and ~36% at -40 °C. Additionally, decreasing the testing temperature significantly improved the tensile strength but decreased the fracture strain of the hydrogel. Interestingly, lap-shear adhesion tests suggested that the gelid adhesion strength was enhanced by 130 times as the testing temperature decreased from 25 °C to -40 °C, which was mainly attributed to the enhanced mechanical strength of the bulk hydrogel as well as the increased surface interaction at gel-substrate interfaces. More importantly, the adhesion failure gradually changed from cohesive failure to adhesive failure as the temperature decreased. This work provides new practical and fundamental insights into developing multifunctional freezing-tolerant hydrogel adhesive for gelid conditions.
Collapse
Affiliation(s)
- Yonggan Yan
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Jun Huang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China; State Key Laboratory of Mineral Processing, Beijing 102628, China; Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China.
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xin Cui
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Shulei Xu
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, 250012, China
| | - Peng Yao
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Chuanzhen Huang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|