1
|
Puan SL, Erriah P, Yahaya NM, Ali MSM, Ahmad SA, Oslan SN, Baharum SN, Salleh AB, Sabri S. Genome-Guided Identification and Characterisation of Broad-Spectrum Antimicrobial Compounds of Bacillus velezensis Strain PD9 Isolated from Stingless Bee Propolis. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10451-3. [PMID: 39815115 DOI: 10.1007/s12602-025-10451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
The emergence of multidrug-resistant pathogens presents a significant global health challenge, which is primarily fuelled by overuse and misuse of antibiotics. Bacteria-derived antimicrobial metabolites offer a promising alternative strategy for combating antimicrobial resistance issues. Bacillus velezensis PD9 (BvPD9), isolated from stingless bee propolis, has been reported to have antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA). This study aimed to characterise and identify the antimicrobial compounds (AMCs) synthesised by BvPD9 through integration of genome mining and liquid chromatography-mass spectrometry (LC-MS) analysis. The whole-genome sequence of BvPD9 contained 4,263,351 base pairs and 4101 protein-coding sequences, with 12 potential AMC biosynthetic gene clusters. Comparative genomic analysis highlighted the unique profile of BvPD9 that possesses the largest number of unknown proteins, indicating significant potential for further exploration. The combined genomics-metabolic profiling uncovered five AMCs in BvPD9 extract, including bacillibactin, bacilysin, surfactin A, fengycin A, and bacillomycin D. The extract exhibited a broad antibacterial spectrum against 25 pathogenic bacteria, including both Gram-positive and Gram-negative bacteria, with the lowest minimum inhibitory concentration (MIC, 0.032 mg/ml) against S. epidermidis ATCC 12228, and the lowest minimum bactericidal concentration (MBC; 0.128 mg/ml) against MRSA ATCC 700699 and Aeromonas hydrophilia. The robust stability of BvPD9 extract was demonstrated at high temperatures, over a wide range of pH conditions (6 to 12) and in the presence of various hydrolytic enzymes. Additionally, the extract showed 50% haemolytic and cytotoxicity activity at 0.158 and 0.250 mg/ml, respectively. These characteristics suggest potential applications of BvPD9 metabolites for tackling antimicrobial resistance and its applicability across diverse industries.
Collapse
Affiliation(s)
- Sheau Ling Puan
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Pirasannah Erriah
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Zhang B, Wang L, Diwu Z, Nie M, Nie H. Mechanism of rhamnolipid promoting the degradation of polycyclic aromatic hydrocarbons by gram-positive bacteria-Enhance transmembrane transport and electron transfer. J Biotechnol 2025; 397:51-60. [PMID: 39586544 DOI: 10.1016/j.jbiotec.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
In this study, the Gram-positive bacterium Bacillus licheniformis T5 was utilized to investigate the impact of rhamnolipid on cell membrane and cell wall, as well as enzyme activity and electron transfer rate within cells. Results indicated that at the optimal concentration of rhamnolipid (200 mg/L), the cell membrane protein and cell wall peptidoglycan content of T5 decreased significantly. Infrared spectrum analysis and ultrastructure observations confirmed these findings, revealing noticeable changes in cell morphology in the presence of rhamnolipid. Specifically, cell folds increased, cell wall texture loosened, thickness decreased sharply, transmembrane channels appeared, and the plasma wall slightly separated. These alterations likely contributed to the increased permeability of the cell membrane. Furthermore, rhamnolipid accelerated the electron transfer rate in T5 cells, enhancing oxidoreductase activity. This study elucidates the mechanism through which rhamnolipid promotes the degradation of polycyclic aromatic hydrocarbons by Gram-positive bacteria, focusing on transmembrane transport and catalytic metabolism.
Collapse
Affiliation(s)
- Bo Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China.
| | - Zhenjun Diwu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China
| | - Maiqian Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China
| | - Hongyun Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China
| |
Collapse
|
3
|
Park H, Lee Y, Balaraju K, Kim J, Jeon Y. Characterization and Biocontrol Efficacy of Bacillus velezensis GYUN-1190 against Apple Bitter Rot. THE PLANT PATHOLOGY JOURNAL 2024; 40:681-695. [PMID: 39639671 PMCID: PMC11626033 DOI: 10.5423/ppj.oa.05.2024.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
The application of synthetic fungicides has resulted in environmental pollution and adverse effects on non-target species. To reduce the use of agrochemicals, crop disease management requires microbial biological control agents. Bacillus-related genera produce secondary metabolites to control fungal pathogens. Bacillus velezensis GYUN-1190, isolated from soil, showed antagonistic activity against Colletotrichum fructicola, the apple anthracnose pathogen. Volatile organic compounds and culture filtrate (CF) from GYUN-1190 inhibited C. fructicola growth in vitro, by 80.9% and 30.25%, respectively. The CF of GYUN-1190 inhibited pathogen spore germination more than cell suspensions at 10 8 cfu/ml. Furthermore, GYUN-1190 CF is effective in inhibiting C. fructicola mycelial growth in vitro, and it suppresses apple fruit bitter rot more effectively than GYUN-1190 cell suspensions and pyraclostrobin in planta. The mycelial growth of C. fructicola was completely inhibited 48 h after immersion into the CF, in compared with positive controls and GYUN-1190 cell suspensions. The genetic mechanism underlying the biocontrol features of GYUN-1190 was defined using its whole-genome sequence, which was closely compared to similar strains. It consisted of 4,240,653 bp with 45.9% GC content, with 4,142 coding sequences, 87 tRNA, and 28 rRNA genes. The genomic investigation found 14 putative secondary metabolite biosynthetic gene clusters. The investigation suggests that B. velezensis GYUN-1190 might be more effective than chemical fungicides and could address its potential as a biological control agent.
Collapse
Affiliation(s)
- Hyeonjin Park
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| | - Younmi Lee
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| | - Kotnala Balaraju
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Korea
| | - Jungyeon Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| | - Yongho Jeon
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| |
Collapse
|
4
|
Malakar C, Ali M, Patowary R, Deka S. Production of Lipopeptide Biosurfactant Using Wastewater from Parboiled Paddy Rice and Evaluation of Antifungal Property of the Biosurfactant Against Two Dermatophyte Fungi. Appl Biochem Biotechnol 2024; 196:9010-9026. [PMID: 39088023 DOI: 10.1007/s12010-024-05000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
A previously isolated lipopeptide biosurfactant-producing bacterium Bacillus licheniformis SCV1 was investigated for the production of the biosurfactant using wastewater from parboiled paddy rice. The biosurfactant thus produced was evaluated for its antifungal property against dermatophyte fungi Trichophyton ajelloi and Microsporum fulvum. Results revealed that the bacterial strain reduced surface tension of the media from 56.16 ± 1 mN/m to 35 ± 0.9 mN/m within 12 h, which further shrank to 29.3 ± 1 mN/m in 24 h of incubation. The yield of the biosurfactant was 3.15 ± 0.25 g/L at 48 h of incubation. The obtained biosurfactant exhibited efficient emulsifying activity against a wide range of hydrophobic substrates such as crude oil, olive oil, engine oil, and kerosene oil used in the study. The critical micelle concentration of the biosurfactant was found to be 80 mg/L. Structural characterization using FT-IR and TLC revealed that the biosurfactant produced by the strain in the wastewater is a lipopeptide consisting of surfactin and iturin. LCMS analysis revealed that the surfactin homologs range from C12 to C17-surfactin while the iturin contains C13 to C17-iturin homologs. It also revealed an in vitro study that the biosurfactant has antifungal properties against dermatophyte fungi Trichophyton ajelloi and Microsporum fulvum. Microscopic observation of the hyphae of the treated dermatophyte revealed disruption and fissure of the mycelia. The chemical composition of the wastewater revealed that it contains adequate nutritional composition and micronutrients to support bacterial growth. This is the first report that the wastewater of parboiled paddy could be used as a low-cost substrate for the production of lipopeptide biosurfactant, and the biosurfactant could be used for preventing dermatophytes fungi.
Collapse
Affiliation(s)
- Chandana Malakar
- Environmental Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Mehjabin Ali
- Environmental Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Rupshikha Patowary
- Department of Biotechnology, The Assam Royal Global University, Betkuchi, Guwahati, 781035, Assam, India
| | - Suresh Deka
- Environmental Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India.
- Faculty of Science, Assam Down Town University, Panikhaiti, Guwahati, 781026, Assam, India.
| |
Collapse
|
5
|
Zhang L, Liu Z, Pu Y, Zhang B, Wang B, Xing L, Li Y, Zhang Y, Gu R, Jia F, Li C, Liu N. Antagonistic Strain Bacillus velezensis JZ Mediates the Biocontrol of Bacillus altitudinis m-1, a Cause of Leaf Spot Disease in Strawberry. Int J Mol Sci 2024; 25:8872. [PMID: 39201557 PMCID: PMC11354301 DOI: 10.3390/ijms25168872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Biofertilizers are environmentally friendly compounds that can enhance plant growth and substitute for chemically synthesized products. In this research, a new strain of the bacterium Bacillus velezensis, designated JZ, was isolated from the roots of strawberry plants and exhibited potent antagonistic properties against Bacillus altitudinis m-1, a pathogen responsible for leaf spot disease in strawberry. The fermentation broth of JZ exerted an inhibition rate of 47.43% against this pathogen. Using an optimized acid precipitation method, crude extracts of lipopeptides from the JZ fermentation broth were obtained. The crude extract of B. velezensis JZ fermentation broth did not significantly disrupt the cell permeability of B. altitudinis m-1, whereas it notably reduced the Ca2+-ATPase activity on the cell membrane and markedly elevated the intracellular reactive oxygen species (ROS) concentration. To identify the active compounds within the crude extract, QTOF-MS/MS was employed, revealing four antimicrobial compounds: fengycin, iturin, surfactin, and a polyene antibiotic known as bacillaene. The strain JZ also produced various plant-growth-promoting substances, such as protease, IAA, and siderophore, which assists plants to survive under pathogen infection. These findings suggest that the JZ strain holds significant potential as a biological control agent against B. altitudinis, providing a promising avenue for the management of plant bacterial disease.
Collapse
Affiliation(s)
- Li Zhang
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China;
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Z.L.); (Y.P.); (B.Z.); (B.W.); (Y.L.); (Y.Z.); (R.G.); (F.J.)
| | - Zirui Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Z.L.); (Y.P.); (B.Z.); (B.W.); (Y.L.); (Y.Z.); (R.G.); (F.J.)
| | - Yilei Pu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Z.L.); (Y.P.); (B.Z.); (B.W.); (Y.L.); (Y.Z.); (R.G.); (F.J.)
| | - Boyuan Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Z.L.); (Y.P.); (B.Z.); (B.W.); (Y.L.); (Y.Z.); (R.G.); (F.J.)
| | - Boshen Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Z.L.); (Y.P.); (B.Z.); (B.W.); (Y.L.); (Y.Z.); (R.G.); (F.J.)
| | - Linman Xing
- School of International Education, Henan University of Technology, Zhengzhou 450001, China;
| | - Yuting Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Z.L.); (Y.P.); (B.Z.); (B.W.); (Y.L.); (Y.Z.); (R.G.); (F.J.)
| | - Yingjun Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Z.L.); (Y.P.); (B.Z.); (B.W.); (Y.L.); (Y.Z.); (R.G.); (F.J.)
| | - Rong Gu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Z.L.); (Y.P.); (B.Z.); (B.W.); (Y.L.); (Y.Z.); (R.G.); (F.J.)
| | - Feng Jia
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Z.L.); (Y.P.); (B.Z.); (B.W.); (Y.L.); (Y.Z.); (R.G.); (F.J.)
| | - Chengwei Li
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China;
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Z.L.); (Y.P.); (B.Z.); (B.W.); (Y.L.); (Y.Z.); (R.G.); (F.J.)
| | - Na Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Z.L.); (Y.P.); (B.Z.); (B.W.); (Y.L.); (Y.Z.); (R.G.); (F.J.)
| |
Collapse
|
6
|
C FC, T K. Advances in stabilization of metallic nanoparticle with biosurfactants- a review on current trends. Heliyon 2024; 10:e29773. [PMID: 38699002 PMCID: PMC11064090 DOI: 10.1016/j.heliyon.2024.e29773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Recently, research based on new biomaterials for stabilizing metallic nanoparticles has increased due to their greater environmental friendliness and lower health risk. Their stability is often a critical factor influencing their performance and shelf life. Nowadays, the use of biosurfactants is gaining interest due to their sustainable advantages. Biosurfactants are used for various commercial and industrial applications such as food processing, therapeutic applications, agriculture, etc. Biosurfactants create stable coatings surrounding nanoparticles to stop agglomeration and provide long-term stability. The present review study describes a collection of important scientific works on stabilization and capping of metallic nanoparticles as biosurfactants. This review also provides a comprehensive overview of the intrinsic properties and environmental aspects of metal nanoparticles coated with biosurfactants. In addition, future methods and potential solutions for biosurfactant-mediated stabilization in nanoparticle synthesis are also highlighted. The objective of this study is to ensure that the stabilized nanoparticles exhibit biocompatible properties, making them suitable for applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Kamalesh T
- Department of Physics, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600 048, India
| |
Collapse
|
7
|
Patowary R, Jain P, Malakar C, Devi A. Biodegradation of carbofuran by Pseudomonas aeruginosa S07: biosurfactant production, plant growth promotion, and metal tolerance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115185-115198. [PMID: 37878173 DOI: 10.1007/s11356-023-30466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Pesticides are an indispensable part of modern farming as it aids in controlling pests and hence increase crop yield. But, unmanaged use of pesticides is a growing concern for safety and conservation of the environment. In the present study, a novel biosurfactant-producing bacterium, Pseudomonas aeruginosa S07, was utilized to degrade carbofuran pesticide, and it was obtained at 150 mg/L concentration; 89.2% degradation was achieved on the 5th day of incubation in in vitro culture condition. GC-MS (gas chromatography and mass spectrometry) and LC-MS (liquid chromatography and mass spectrometry) analyses revealed the presence of several degradation intermediates such as hydroxycarbofurnan, ketocarbofuran, and hydroxybenzofuran, in the degradation process. The bacterium was found to exhibit tolerance towards several heavy metals: Cu, Co, Zn, Ni, and Cd, where maximum and least tolerance were obtained against Co and Ni, respectively. Additionally, the bacterium also possesses plant growth-promoting activity showing positive results in nitrogen fixation, phosphate solubilising, ammonia production, and potassium solubilizing assays. Thus, from the study, it can be assumed that the bacterium can be useful in the production of bioformulation for remediation and rejuvenation of pesticide-contaminated sites in the coming days.
Collapse
Affiliation(s)
- Rupshikha Patowary
- Department of Biotechnology, The Assam Royal Global University, Betkuchi, Guwahati, Assam, 781035, India
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781 035, India
| | - Prerna Jain
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781 035, India
| | - Chandana Malakar
- Microbial Biotechnology and Protein Research Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781 035, India
| | - Arundhuti Devi
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781 035, India.
| |
Collapse
|
8
|
Newberger DR, Minas IS, Manter DK, Vivanco JM. A Microbiological Approach to Alleviate Soil Replant Syndrome in Peaches. Microorganisms 2023; 11:1448. [PMID: 37374950 DOI: 10.3390/microorganisms11061448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Replant syndrome (RS) is a global problem characterized by reduced growth, production life, and yields of tree fruit/nut orchards. RS etiology is unclear, but repeated monoculture plantings are thought to develop a pathogenic soil microbiome. This study aimed to evaluate a biological approach that could reduce RS in peach (Prunus persica) orchards by developing a healthy soil bacteriome. Soil disinfection via autoclave followed by cover cropping and cover crop incorporation was found to distinctly alter the peach soil bacteriome but did not affect the RS etiology of RS-susceptible 'Lovell' peach seedlings. In contrast, non-autoclaved soil followed by cover cropping and incorporation altered the soil bacteriome to a lesser degree than autoclaving but induced significant peach growth. Non-autoclaved and autoclaved soil bacteriomes were compared to highlight bacterial taxa promoted by soil disinfection prior to growing peaches. Differential abundance shows a loss of potentially beneficial bacteria due to soil disinfection. The treatment with the highest peach biomass was non-autoclaved soil with a cover crop history of alfalfa, corn, and tomato. Beneficial bacterial species that were cultivated exclusively in the peach rhizosphere of non-autoclaved soils with a cover crop history were Paenibacillus castaneae and Bellilinea caldifistulae. In summary, the non-autoclaved soils show continuous enhancement of beneficial bacteria at each cropping phase, culminating in an enriched rhizosphere which may help alleviate RS in peaches.
Collapse
Affiliation(s)
- Derek R Newberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Ioannis S Minas
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Daniel K Manter
- Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO 80526, USA
| | - Jorge M Vivanco
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
9
|
Gupta KK, Sharma KK, Chandra H. Utilization of Bacillus cereus strain CGK5 associated with cow feces in the degradation of commercially available high-density polyethylene (HDPE). Arch Microbiol 2023; 205:101. [PMID: 36862211 DOI: 10.1007/s00203-023-03448-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
The accumulation and mismanagement of high-density polyethylene (HDPE) waste in the environment is a complex problem in the present scenario. Biodegradation of this thermoplastic polymer is a promising environmentally sustainable method that offers a significant opportunity to address plastic waste management with minimal negative repercussion on the environment. In this framework, HDPE-degrading bacterium strain CGK5 was isolated from the fecal matter of cow. The biodegradation efficiency of strain was assessed, including percentage reduction in HDPE weight, cell surface hydrophobicity, extracellular biosurfactant production, viability of surface adhered cells, as well as biomass in terms of protein content. Through molecular techniques, strain CGK5 was identified as Bacillus cereus. Significant weight loss of 1.83% was observed in the HDPE film treated with strain CGK5 for 90 days. The FE-SEM analysis revealed the profused bacterial growth which ultimately caused the distortions in HDPE films. Furthermore, EDX study indicated a significant decrease in percentage carbon content at atomic level, whereas FTIR analysis confirmed chemical groups' transformation as well as an increment in the carbonyl index supposedly caused by bacterial biofilm biodegradation. Our findings shed light on the ability of our strain B. cereus CGK5 to colonize and use HDPE as a sole carbon source, demonstrating its applicability for future eco-friendly biodegradation processes.
Collapse
Affiliation(s)
- Kartikey Kumar Gupta
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Uttarakhand, Haridwar, India
| | - Kamal Kant Sharma
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Uttarakhand, Haridwar, India.
| | - Harish Chandra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Uttarakhand, Haridwar, India
| |
Collapse
|
10
|
Genome sequence analysis and characterization of Bacillus altitudinis B12, a polylactic acid- and keratin-degrading bacterium. Mol Genet Genomics 2023; 298:389-398. [PMID: 36585993 DOI: 10.1007/s00438-022-01989-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
Keratin-rich wastes, mainly in the form of feathers, are recalcitrant residues generated in high amounts as by-products in chicken farms and food industry. Polylactic acid (PLA) is the second most common biodegradable polymer found in commercial plastics, which is not easily degraded by microbial activity. This work reports the 3.8-Mb genome of Bacillus altitudinis B12, a highly efficient PLA- and keratin-degrading bacterium, with potential for environmental friendly biotechnological applications in the feed, fertilizer, detergent, leather, and pharmaceutical industries. The whole genome sequence of B. altitudinis B12 revealed that this strain (which had been previously misclassified as Bacillus pumilus B12) is closely related to the B. altitudinis strains ER5, W3, and GR-8. A total of 4056 coding sequences were annotated using the RAST server, of which 2484 are core genes of the pan genome of B. altitudinis and 171 are unique to this strain. According to the sequence analysis, B. pumilus B12 has a predicted secretome of 353 proteins, among which a keratinase and a PLA depolymerase were identified by sequence analysis. The presence of these two enzymes could explain the characterized PLA and keratin biodegradation capability of the strain.
Collapse
|
11
|
Nor FHM, Abdullah S, Ibrahim Z, Nor MHM, Osman MI, Al Farraj DA, AbdelGawwad MR, Kamyab H. Role of extremophilic Bacillus cereus KH1 and its lipopeptide in treatment of organic pollutant in wastewater. Bioprocess Biosyst Eng 2023; 46:381-391. [PMID: 35779113 DOI: 10.1007/s00449-022-02749-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022]
Abstract
An effective biosurfactant producer and extremophiles bacteria, Bacillus cereus KH1, was isolated from textile effluent and the biosurfactant was produced using molasses as the sole carbon source. Growth parameters such as pH, temperature, salinity and concentration of molasses were optimised for decolourising the textile effluent with 24-h incubation. The biosurfactant property of B. cereus KH1 was evaluated based on haemolytic activity, oil displacement technique, drop-collapsing test and emulsification index. The results of the produced biosurfactant showed a positive reaction in haemolytic activity, oil displacement technique, drop-collapsing test and exhibiting a 67% emulsification index. The cell-free broth was stable in 40 °C pH 7, 7% salinity and 7% molasses. Thin-Layer Chromatography and Fourier Transform Infrared Spectroscopy analysis revealed that the biosurfactant was a lipopeptide with a yield 2.98 g L-1. These findings proved the synergistic action of B. cereus KH1 with lipopeptide biosurfactant may accelerated the decolourisation efficiency to 87%.
Collapse
Affiliation(s)
- Farhah Husna Mohd Nor
- Department of Physics and Chemistry, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Education Hub, Pagoh, 84600, Muar, Johor, Malaysia
| | - Shakila Abdullah
- Department of Physics and Chemistry, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Education Hub, Pagoh, 84600, Muar, Johor, Malaysia.
| | - Zaharah Ibrahim
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Muhamad Hanif Md Nor
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Isa Osman
- Setia Impian Development, Peringgit Centre, Taman Peringgit Jaya, 75400, Melaka, Malaysia
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed Ragab AbdelGawwad
- Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71210, Sarajevo, Bosnia and Herzegovina
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Verma R, Sharma S, Kundu LM, Maiti SK, Pandey LM. Enhanced production of biosurfactant by Bacillus subtilis RSL2 in semicontinuous bioreactor utilizing molasses as a sole substrate. J Biotechnol 2023; 362:24-35. [PMID: 36563858 DOI: 10.1016/j.jbiotec.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/25/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The growth-associated metabolites are produced during the exponential phase; however, this phase terminates due to substrate depletion or product inhibition. In the present study, a semicontinuous mode with a fill-and-draw strategy was applied to extend the exponential phase of the biosurfactant production to overcome the product inhibition and in turn, enhance the yield. Bioreactor studies were performed in batch mode, followed by the semicontinuous operation. A potential biosurfactant producer Bacillus subtilis RSL2 was used in this study at the previously optimized conditions of pH 6.6, temperature 41 °C and 5% (w/v) of molasses. A better mass transfer was achieved in the bioreactor as compared to the shake flask study. In the batch bioreactor study, 90% of sugar was utilized with simultaneous 13.7 g L-1 of biosurfactant production. The sugar utilization was further improved to > 98% in the case of semicontinuous operation employing a fill-and-draw strategy. The exponential phase got extended up to 18 days and a total of 13 L of media was fed in the semicontinuous operation of 21 days as compared to 1.5 L of working volume in the batch reactor. The biosurfactant yield was enhanced by 1.5 folds and was found to be 0.97 g g-1. The produced biosurfactant was identified as a lipopeptide. The interfacial properties of the biosurfactant along with colloidal and thermal stability have been investigated. The critical micelle concentration of the produced biosurfactant was 70 mg L-1. The present study highlighted the efficient utilization of molasses for the production of biosurfactant, an alternative metabolite, in a semicontinuous mode of bioreactor.
Collapse
Affiliation(s)
- Rahul Verma
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Swati Sharma
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Lal Mohan Kundu
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; Bioorganic Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Soumen K Maiti
- Integrated Bioprocessing Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Lalit M Pandey
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
13
|
Bacteriobiota of the Cave Church of Sts. Peter and Paul in Serbia-Culturable and Non-Culturable Communities' Assessment in the Bioconservation Potential of a Peculiar Fresco Painting. Int J Mol Sci 2023; 24:ijms24021016. [PMID: 36674536 PMCID: PMC9867463 DOI: 10.3390/ijms24021016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
The principal aim of this study was to determine bacterial diversity within the Cave Church of Sts. Peter and Paul, via culturable and non-culturable approaches, and elucidate the antifungal potential of autochthonous antagonistic bacterial isolates against biodeteriogenic fungi. Furthermore, whole-genome sequencing of selected bacterial antagonists and the analysis of genes included in the synthesis of secondary metabolites were performed. With the highest RA values, determined in metabarcoding analysis, phyla Actinobacteriota (12.08-54.00%) and Proteobacteria (25.34-44.97%) dominated most of the samples. A total of 44 different species, out of 96 obtained isolates, were determined as part of the culturable bacteriobiota, with the predominance of species from the genus Bacillus. Bacillus simplex was the only isolated species simultaneously present in all investigated substrata within the church. The best antagonistic activity against 10 biodeteriogenic fungi was documented for Streptomyces anulatus, followed by Bacillus altitudinis, Chryseobacterium viscerum, and Streptomyces sp. with their highest PGI% values ranging of from 55.9% to 80.9%. These promising results indicate that characterized bacteria are excellent candidates for developing biocontrol strategies for suppressing deteriogenic fungi responsible for the deterioration of investigated fresco painting. Finally, isolate 11-11MM, characterized as Streptomyces sp., represents a new species for science prompting the need for further study.
Collapse
|
14
|
Sinha T, Malakar C, Talukdar NC. Mustard seed–associated endophytes suppress Sclerotinia sclerotiorum causing Sclerotinia rot in mustard crop. Int Microbiol 2022:10.1007/s10123-022-00314-0. [PMID: 36542232 DOI: 10.1007/s10123-022-00314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Mustard-rapeseed cultivation is affected by Sclerotinia sclerotiorum resulting in loss of oil yield and degradation of crop quality. This study adopted an environment friendly biocontrol approach of screening mustard endophytes against the pathogen. Two bacterial isolates, Bacillus safensis (TS46 bac4) and Bacillus australimaris (SM2) showed potential biocontrol activity under both in vitro and in vivo conditions. Dual culture assay reported 90% inhibition of fungal growth. The bacterial cell free supernatant of isolate SM2 showed 52.89% inhibition and the other isolate TS46 bac4 showed 57.97% inhibition. The crude (10 mg/ml) and purified (10 mg/ml) metabolite extract of SM2 showed 100% and 97% inhibition respectively. Both crude (10 mg/ml) and purified (7.5 mg/ml) metabolite extract of TS46 bac4 exhibited 99% inhibition of the pathogen. Antifungal lipopeptides: surfactin, iturin and fengycin were identified in bacterial metabolite extract of the isolates. Both strains promoted healthy germination and prevented the formation of any disease symptoms in seedling. The selected Bacillus strains applied by spray method showed better results against fungal infection on mustard leaf and stem. Microscopic studies revealed degradation of fungal mycelial growth by both isolates. These findings support the employment of the bacterial strains as potential biocontrol agents to reduce the effects of S. sclerotiorum in mustard-rapeseed.
Collapse
|
15
|
Karamchandani BM, Pawar AA, Pawar SS, Syed S, Mone NS, Dalvi SG, Rahman PKSM, Banat IM, Satpute SK. Biosurfactants' multifarious functional potential for sustainable agricultural practices. Front Bioeng Biotechnol 2022; 10:1047279. [PMID: 36578512 PMCID: PMC9792099 DOI: 10.3389/fbioe.2022.1047279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing food demand by the ever-growing population imposes an extra burden on the agricultural and food industries. Chemical-based pesticides, fungicides, fertilizers, and high-breeding crop varieties are typically employed to enhance crop productivity. Overexploitation of chemicals and their persistence in the environment, however, has detrimental effects on soil, water, and air which consequently disturb the food chain and the ecosystem. The lower aqueous solubility and higher hydrophobicity of agrochemicals, pesticides, metals, and hydrocarbons allow them to adhere to soil particles and, therefore, continue in the environment. Chemical pesticides, viz., organophosphate, organochlorine, and carbamate, are used regularly to protect agriculture produce. Hydrophobic pollutants strongly adhered to soil particles can be solubilized or desorbed through the usage of biosurfactant/s (BSs) or BS-producing and pesticide-degrading microorganisms. Among different types of BSs, rhamnolipids (RL), surfactin, mannosylerythritol lipids (MELs), and sophorolipids (SL) have been explored extensively due to their broad-spectrum antimicrobial activities against several phytopathogens. Different isoforms of lipopeptide, viz., iturin, fengycin, and surfactin, have also been reported against phytopathogens. The key role of BSs in designing and developing biopesticide formulations is to protect crops and our environment. Various functional properties such as wetting, spreading, penetration ability, and retention period are improved in surfactant-based formulations. This review emphasizes the use of diverse types of BSs and their source microorganisms to challenge phytopathogens. Extensive efforts seem to be focused on discovering the innovative antimicrobial potential of BSs to combat phytopathogens. We discussed the effectiveness of BSs in solubilizing pesticides to reduce their toxicity and contamination effects in the soil environment. Thus, we have shed some light on the use of BSs as an alternative to chemical pesticides and other agrochemicals as sparse literature discusses their interactions with pesticides. Life cycle assessment (LCA) and life cycle sustainability analysis (LCSA) quantifying their impact on human activities/interventions are also included. Nanoencapsulation of pesticide formulations is an innovative approach in minimizing pesticide doses and ultimately reducing their direct exposures to humans and animals. Some of the established big players and new entrants in the global BS market are providing promising solutions for agricultural practices. In conclusion, a better understanding of the role of BSs in pesticide solubilization and/or degradation by microorganisms represents a valuable approach to reducing their negative impact and maintaining sustainable agricultural practices.
Collapse
Affiliation(s)
| | - Ameya A. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sujit S. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Nishigandha S. Mone
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sunil G. Dalvi
- Tissue Culture Section, Vasantdada Sugar Institute, Pune, India
| | - Pattanathu K. S. M. Rahman
- Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ibrahim M. Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine, United Kingdom,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| |
Collapse
|
16
|
Zhuang X, Wang Y, Wang H, Dong Y, Li X, Wang S, Fan H, Wu S. Comparison of the efficiency and microbial mechanisms of chemical- and bio-surfactants in remediation of petroleum hydrocarbon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120198. [PMID: 36165831 DOI: 10.1016/j.envpol.2022.120198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Surfactant-enhanced remediation (SER) is one of the most effective methods for petroleum hydrocarbon-contaminated sites compared to single physical and chemical methods. However, biosurfactants are not as commonly used as chemical surfactants, and the actual remediation effects and related mechanisms remain undefined. Therefore, to comprehensively compare the remediation effects and biological mechanisms of biosurfactants and chemical surfactants, soil column leaching experiments including two biosurfactants (rhamnolipids and lipopeptide) and three commercially used chemical surfactants (Tween 80, Triton X-100, and Berol 226SA) were conducted. After seven days of leaching, rhamnolipids exhibited the highest petroleum hydrocarbon removal rate of 61.01%, which was superior to that of chemical surfactants (11.73-18.75%) in n-alkanes C10-C30. Meanwhile, rhamnolipids exhibited a great degradation advantage of n-alkanes C13-C28, which was 1.22-30.55 times that of chemical surfactants. Compared to chemical surfactants, biosurfactants significantly upregulated the soil's biological functions, including soil conductivity (80.90-155.56%), and soil enzyme activities of lipase (90.31-497.10%), dehydrogenase (325.00-655.56%), core enzyme activities of petroleum hydrocarbon degradation, and quorum sensing between species. Biosurfactants significantly changed the composition of Pseudomonas, Citrobacter, Acidobacteriota, and Enterobacter at the genus level. Meanwhile, chemical surfactants had less influence on the bacterial community and interactions between species. Moreover, the biosurfactants enhanced the microbial interactions and centrality of petroleum hydrocarbon degraders in the community based on the network. Overall, this work provides a systematic comparison and understanding of the chemical- and bio-surfactants used in bioremediation. In the future, we intend to apply biosurfactants to practical petroleum hydrocarbon-contaminated fields to observe realistic remediation effects and compare their functional mechanisms.
Collapse
Affiliation(s)
- Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaxin Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoyu Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yuzhu Dong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianglong Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haonan Fan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Phulpoto IA, Yu Z, Li J, Ndayisenga F, Hu B, Qazi MA, Yang X. Evaluation of di-rhamnolipid biosurfactants production by a novel Pseudomonas sp. S1WB: Optimization, characterization and effect on petroleum-hydrocarbon degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113892. [PMID: 35863217 DOI: 10.1016/j.ecoenv.2022.113892] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Rhamnolipid biosurfactants are multifunctional compounds that can play an indispensable role in biotechnological, biomedical, and environmental bioremediation-related fields, and have attracted significant attention in recent years. Herein, a novel strain Pseudomonas sp. S1WB was isolated from an oil-contaminated water sample. The biosurfactants produced by this strain have capabilities to reduce surface tension (SFT) at 32.75 ± 1.63 mN/m and emulsified 50.2 ± 1.13 % in liquid media containing 1 % used engine oil (UEO) as the sole carbon source. However, the lowest SFT reduction (28.25 ± 0.21), highest emulsification index (60.15 ± 0.07), and the maximum yields (900 mg/L) were achieved under optimized conditions; where, the glucose/urea and glycerol/urea combinations were found efficient carbon and nitrogen substrates for improved biosurfactants production. Biosurfactants product was characterized using ultra-high performance liquid chromatography-mass spectrometry (UHPLC- MS) and detected various di- rhamnolipids congeners. In addition, the di-rhamnolipids produced by S1WB strain was found highly stable in terms of surface activity and EI indices at different environmental factors i.e. temperature, pH and various NaCl concentrations, where, emulsifying property was found high stable till 30 days of incubation. Moreover, the stain was capable to degrade hydrocarbon at 42.2 ± 0.04 %, and the Gas chromatography- mass spectrometry (GC-MS) profile showed the majority of peak intensities of hydrocarbons have been completely degraded compared to control.
Collapse
Affiliation(s)
- Irfan Ali Phulpoto
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China; Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur Mir's 66020, Sindh, Pakistan
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, PR China.
| | - Jinmei Li
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Bowen Hu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Muneer Ahmed Qazi
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur Mir's 66020, Sindh, Pakistan
| | - Xiaosong Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| |
Collapse
|
18
|
Xu X, Wang Y, Lei T, Sohail MA, Wang J, Wang H. Synergistic Effects of Bacillus amyloliquefaciens SDTB009 and Difenoconazole on Fusarium Wilt of Tomato. PLANT DISEASE 2022; 106:2165-2171. [PMID: 35077231 DOI: 10.1094/pdis-12-21-2650-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fusarium wilt is a destructive and widespread disease of tomatoes in China, and currently, there are no effective and environmentally friendly control measures. Combining biological control agents with fungicides has become an executable method for disease control. Here, Bacillus amyloliquefaciens SDTB009 showed excellent in vitro antagonistic activity against Fusarium oxysporum and tolerance to high concentrations of difenoconazole (200 mg/liter) in vitro. The combination of SDTB009 and difenoconazole exhibited more effectiveness in mycelial growth inhibition than either treatment alone. Compared with that in the SDTB009 bulk solution in vitro (5.22 g/liter), surfactin titer reached 7.15 g/liter in the 100 mg/liter of difenoconazole-containing medium. Interestingly, the upregulation of 20 genes in the surfactin biosynthesis pathway from 2-fold to 4-fold was observed, explaining the synergistic effect. The SDTB009 combined with varying concentrations of difenoconazole (60, 120, and 150 g a.i./ha) showed a synergistic effect in two consecutive years of field trials. These results show that the integration of difenoconazole with the biocontrol agent B. amyloliquefaciens SDTB009 synergistically increases the control efficacy of the fungicide against tomato Fusarium wilt.
Collapse
Affiliation(s)
- Xueming Xu
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
- Lianyungang Technical College, Lianyungang 222006, China
| | - Yongqiang Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ting Lei
- China Tobacco Qiannan Co. Ltd., Qiannan 558000, China
| | - Muhammad Aamir Sohail
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hongyan Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
19
|
Zhao D, Ding Y, Cui Y, Zhang Y, Liu K, Yao L, Han X, Peng Y, Gou J, Du B, Wang C. Isolation and Genome Sequence of a Novel Phosphate-Solubilizing Rhizobacterium Bacillus altitudinis GQYP101 and Its Effects on Rhizosphere Microbial Community Structure and Functional Traits of Corn Seedling. Curr Microbiol 2022; 79:249. [PMID: 35834051 DOI: 10.1007/s00284-022-02944-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Bacillus altitudinis is a widely distributed soil bacterium that has various functional activities, including remediation of contaminated soil, degradation of herbicides, and enhancement of plant growth. B. altitudinis GQYP101 was isolated from the rhizosphere soil of Lycium barbarum L. and demonstrated potential as a plant growth-promoting bacterium. In this work, strain GQYP101 could solubilize phosphorus, and increased the stem diameter, maximum leaf area, and fresh weight of corn in a pot experiment. Nitrogen and phosphorus contents of corn seedlings (aerial part) increased by 100% and 47.9%, respectively, after application of strain GQYP101. Concurrently, nitrogen and phosphorus contents of corn root also increased, by 55.40% and 20.3%, respectively. Furthermore, rhizosphere soil nutrients were altered and the content of available phosphorus increased by 73.2% after application of strain GQYP101. The mechanism by which strain GQYP101 improved plant growth was further investigated by whole genome sequence analysis. Strain GQYP101 comprises a circular chromosome and a linear plasmid. Some key genes of strain GQYP101 were identified that were related to phosphate solubilization, alkaline phosphatase, chemotaxis, and motility. The findings of this study may provide a theoretical basis for strain GQYP101 to enhance crop yield as microbial fertilizer.
Collapse
Affiliation(s)
- Dongying Zhao
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Yanqin Ding
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Yanru Cui
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Yanan Zhang
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Kai Liu
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Liangtong Yao
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Xiaobin Han
- Zunyi Tobacco Monopoly Administration of Guizhou, Zunyi, China
| | - Yulong Peng
- Zunyi Tobacco Monopoly Administration of Guizhou, Zunyi, China
| | - Jianyu Gou
- Zunyi Tobacco Monopoly Administration of Guizhou, Zunyi, China
| | - Binghai Du
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Chengqiang Wang
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China.
| |
Collapse
|
20
|
Sharma P, Rekhi P, Kumari S, Debnath M. Deciphering the molecular diversity of related halophilic
Bacillus
sp.
isolated from
Sambhar Lake
and the functional characterizations of surfactin. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Priyanka Sharma
- Department of Biosciences Manipal University Jaipur Jaipur India
| | - Pavni Rekhi
- Department of Biosciences Manipal University Jaipur Jaipur India
| | - Sapna Kumari
- Department of Biosciences Manipal University Jaipur Jaipur India
| | - Mousumi Debnath
- Department of Biosciences Manipal University Jaipur Jaipur India
| |
Collapse
|
21
|
Optimization of conditions for a surfactant-producing strain and application to petroleum hydrocarbon-contaminated soil bioremediation. Colloids Surf B Biointerfaces 2022; 213:112428. [PMID: 35231686 DOI: 10.1016/j.colsurfb.2022.112428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023]
Abstract
Petroleum hydrocarbon-contaminated sites have been mainly remediated through the surfactant-enhanced soil leaching method. However, the commonly used chemical surfactants have poor biocompatibility and are prone to form residues in fields. Therefore, the purpose of this research is to establish an effective system of biosurfactant remediation in the field and provide instructions for common bioremediation challenges. First, wild-type Bacillus amyloliquefaciens A3, which produced lipopeptide biosurfactant, was used to improve the production of biosurfactant by atmosphere and room temperature plasma (ARTP) mutagenesis. Second, the mutant 1-24 was selected from a total of 174 mutants due to the outstanding yield. Subsequently, 1-24 was applied in the soil column leaching experiments and removed 45.44% of petroleum hydrocarbons by changing the relevant enzyme activities. Biosurfactant addition and 1-24 inoculation effectively activated a portion of the petroleum hydrocarbons in the soil columns, and 1-24 presented potential as a desired candidate for bioremediation. This is the first report of using ARTP mutagenesis to improve the production of biosurfactants. Simultaneously, we first propose a theoretical system in which the yield of biosurfactant was increased using ARTP mutagenesis for strains and applied the mutants in situ soil bioremediation. This research indicated that the theoretical system was useful in soil columns to simulate field remediation conditions, providing practical references for the bioremediation of contaminated soil.
Collapse
|
22
|
Lipopeptide Biosurfactants from Bacillus spp.: Types, Production, Biological Activities, and Applications in Food. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3930112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biosurfactants are a functionally and structurally heterogeneous group of biomolecules produced by multiple filamentous fungi, yeast, and bacteria, and characterized by their distinct surface and emulsifying ability. The genus Bacillus is well studied for biosurfactant production as it produces various types of lipopeptides, for example, lichenysins, bacillomycin, fengycins, and surfactins. Bacillus lipopeptides possess a broad spectrum of biological activities such as antimicrobial, antitumor, immunosuppressant, and antidiabetic, in addition to their use in skincare. Moreover, Bacillus lipopeptides are also involved in various food products to increase the antimicrobial, surfactant, and emulsification impact. From the previously published articles, it can be concluded that biosurfactants have strong potential to be used in food, healthcare, and agriculture. In this review article, we discuss the versatile functions of lipopeptide Bacillus species with particular emphasis on the biological activities and their applications in food.
Collapse
|
23
|
Guo S, Liu X, Wang L, Liu Q, Xia C, Tang J. Ball-milled biochar can act as a preferable biocompatibility material to enhance phenanthrene degradation by stimulating bacterial metabolism. BIORESOURCE TECHNOLOGY 2022; 350:126901. [PMID: 35217154 DOI: 10.1016/j.biortech.2022.126901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 05/22/2023]
Abstract
The aim of this study was to evaluate the impact of different concentrations of ball-milled biochar pyrolyzed at 300-700 °C on the lethality, growth, metabolism, and degradability of gram-negative petroleum-degrading bacteria. BM-biochar was not toxic to Acinetobacter venetianus, only slowing the growth rate and extending the logarithmic phase. The ability of A. venetianus to produce extracellular polymeric substances (EPS) and biosurfactants was positive with ROS level. The highest degradation efficiency of phenanthrene (PHE) was 2.84-fold that of the control. Mechanism analysis revealed that increased EPS stimulated the adsorption of PHE and biosurfactant enhanced PHE solubility. The improved PHE biodegradability of A. venetianus through phthalic acid pathway is mainly owing to the intensify of PHE bioavailability and accessibility. These findings provide new insights into effects of BM-biochar on cellular responses and indicate that BM-biochar can act as a biocompatible material to enhance the degradation of organic pollutants.
Collapse
Affiliation(s)
- Saisai Guo
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaomei Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qinglong Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chunqing Xia
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, China.
| |
Collapse
|
24
|
Jiang L, Zhou H, Qin H, Zheng G, Atakpa EO, Lin X, Lin Y, Zhang C. Rhamnolipids produced under aerobic/anaerobic conditions: Comparative analysis and their promising applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152414. [PMID: 34923009 DOI: 10.1016/j.scitotenv.2021.152414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
This research comprises a comparative study of the properties, rhl genes expression, and structural difference in rhamnolipids produced under different oxygen conditions via Pseudomonas sp. CH1. The critical micelle concentration (CMC) of rhamnolipids produced under aerobic conditions (RAO) was 100 mg/L. In contrast, rhamnolipids produced under anaerobic conditions (RNO) had a low CMC of 40 mg/L. RNO comprised six rhamnolipids homologs, and the proportion of mono-rhamnolipids was up to 87.83%; meanwhile, the percent ratio of di-rhamnolipids and mono-rhamnolipids in RAO was 63.1:36.9. Additionally, diversified applications for solubilization of hydrophobic pollutants and reduction in heavy oil viscosity were investigated. The addition of RNO greatly enhanced the solubility of phenanthrene in water, from 1.29 mg/L to 193.14 mg/L, a 148.7-fold increase. Moreover, the viscosity of heavy oil decreased by over 90% for both kinds of rhamnolipids, whereas RAO effectively reduced the viscosity even at a low temperature (10 °C). The findings of this study provide insights into the versatile potential applications of rhamnolipids produced under different oxygen conditions.
Collapse
Affiliation(s)
- Lijia Jiang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Hanghai Zhou
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Huaitao Qin
- Institute of Ocean Engineering and Technology, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Gang Zheng
- Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Edidiong Okokon Atakpa
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Xiaoyun Lin
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Yuan Lin
- Institute of Ocean Engineering and Technology, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
25
|
de O Caretta T, I Silveira VA, Andrade G, Macedo F, P C Celligoi MA. Antimicrobial activity of sophorolipids produced by Starmerella bombicola against phytopathogens from cherry tomato. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1245-1254. [PMID: 34378222 DOI: 10.1002/jsfa.11462] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Phytopathogenic microorganisms are the main cause of plant diseases, generating significant economic losses for the agricultural and food supply chain. Cherry tomatoes (Solanum lycopersicum var. cerasiforme) are very perishable plants and highly demanding in the use of pesticides; therefore, alternative solutions such as biosurfactants have aroused as a potent substituent. The main objective of the present study was to investigate the antimicrobial activity of sophorolipids against the phytopathogens Botrytis cinerea, Sclerotium rolfsii, Rhizoctonia solani and Pythium ultimum. RESULTS The biosurfactant inhibited the mycelial growth in vitro with a minimum concentration of 2 mg mL-1 . The application of sophorolipids at 1, 2 and 4 mg mL-1 in detached leaves of tomato before the inoculation of the fungus B. cinerea was the best treatment, reducing leaf necrosis by up to 76.90%. The use of sophorolipids for washing tomato fruits before the inoculation of B. cinerea was able to inhibit the development of gray mold by up to 96.27%. CONCLUSION The results for tomato leaves and fruits revealed that the biosurfactant acts more effectively when used preventively. Sophorolipids are stable molecules that show promising action for the potential replacement of pesticides in the field and the post-harvest process against the main tomato phytopathogens. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Talita de O Caretta
- Department of Biochemistry and Biotechnology, State University of Londrina, Londrina, Brazil
| | - Victória A I Silveira
- Department of Biochemistry and Biotechnology, State University of Londrina, Londrina, Brazil
| | - Galdino Andrade
- Department of Microbiology, State University of Londrina, Londrina, Brazil
| | - Fernando Macedo
- Department of Chemistry, State University of Londrina, Londrina, Brazil
| | | |
Collapse
|
26
|
Barale SS, Ghane SG, Sonawane KD. Purification and characterization of antibacterial surfactin isoforms produced by Bacillus velezensis SK. AMB Express 2022; 12:7. [PMID: 35084596 PMCID: PMC8795249 DOI: 10.1186/s13568-022-01348-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 11/10/2022] Open
Abstract
Bacillus velezensis SK having broad-spectrum antimicrobial activity has been isolated from soil. The efficient extraction of antimicrobial compounds produced in various mediums has been done using Diaion HP-20 resin. Further, characterization of an antimicrobial compound by TLC, FTIR, in-situ bioautography analysis revealed the presence of cyclic lipopeptides, which is then purified by the combination of silica gel, size exclusion, dual gradient, and RP-HPLC chromatography techniques. Growth kinetic studies showed that Bacillus velezensis SK produces a mixture of lipopeptides (1.33 gL-1). The lipopeptide exhibits good pH (2-10) and temperature stability up to 80 °C. LC-ESI-MS analysis of partially purified lipopeptide identified variant of surfactin, further analysis of purified chromatographic fractions revealed the occurrence of most abundant C15-surfactin homologues (m/z 1036.72 Da). The isolated surfactin exhibits good antimicrobial activity (1600 AU/ml) against drug-resistant food-born B. cereus and human pathogen Staphylococcus aureus. Hence, identified strain B. velezensis SK and its potent antibacterial surfactin lipopeptide could be used in various food and biomedical applications.
Collapse
|
27
|
Umar A, Zafar A, Wali H, Siddique MP, Qazi MA, Naeem AH, Malik ZA, Ahmed S. Low-cost production and application of lipopeptide for bioremediation and plant growth by Bacillus subtilis SNW3. AMB Express 2021; 11:165. [PMID: 34894306 PMCID: PMC8665955 DOI: 10.1186/s13568-021-01327-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
At present time, every nation is absolutely concern about increasing agricultural production and bioremediation of petroleum-contaminated soil. Hence, with this intention in the current study potent natural surfactants characterized as lipopeptides were evaluated for low-cost production by Bacillus subtilis SNW3, previously isolated from the Fimkessar oil field, Chakwal Pakistan. The significant results were obtained by using substrates in combination (white beans powder (6% w/v) + waste frying oil (1.5% w/v) and (0.1% w/v) urea) with lipopeptides yield of about 1.17 g/L contributing 99% reduction in cost required for medium preparation. To the best of our knowledge, no single report is presently describing lipopeptide production by Bacillus subtilis using white beans powder as a culture medium. Additionally, produced lipopeptides display great physicochemical properties of surface tension reduction value (SFT = 28.8 mN/m), significant oil displacement activity (ODA = 4.9 cm), excessive emulsification ability (E24 = 69.8%), and attains critical micelle concentration (CMC) value at 0.58 mg/mL. Furthermore, biosurfactants produced exhibit excellent stability over an extensive range of pH (1-11), salinity (1-8%), temperature (20-121°C), and even after autoclaving. Subsequently, produced lipopeptides are proved suitable for bioremediation of crude oil (86%) and as potent plant growth-promoting agent that significantly (P < 0.05) increase seed germination and plant growth promotion of chili pepper, lettuce, tomato, and pea maximum at a concentration of (0.7 g/100 mL), showed as a potential agent for agriculture and bioremediation processes by lowering economic and environmental stress.
Collapse
|
28
|
Kumar A, Rabha J, Jha DK. Antagonistic activity of lipopeptide-biosurfactant producing Bacillus subtilis AKP, against Colletotrichum capsici, the causal organism of anthracnose disease of chilli. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Kalami R, Pourbabaee AA. Investigating the potential of bioremediation in aged oil-polluted hypersaline soils in the south oilfields of Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:517. [PMID: 34309727 DOI: 10.1007/s10661-021-09304-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
To date, studies for bioremediation of oil-polluted hypersaline soils have been neglected or limited to specific spots. Hence, in this study, ten samples of oil field soils in the Khuzestan province of Iran were collected to evaluate bioremediation's feasibility. These samples were analyzed for their physicochemical properties as well as the most probable number of total and hydrocarbon-degrading bacteria. Thirty-nine hydrocarbon-degrading bacteria were isolated from these soils over a 1-month incubation in an MSM medium enriched with diesel oil as the sole source of carbon. As revealed by 16S-rRNA analysis, the identified strains belonged to the genera Ochrobactrum, Microbacterium, and Bacillus with a high frequency of Ochrobactrum species. Additionally, by using degenerate primers, the third group of alkB gene was detected in Ochrobactrum and Microbacterium isolates through the touchdown nested PCR method for the first time. Ochrobactrum species possessing the alkB gene showed the highest population, and therefore, the highest adaptation to harsh environmental conditions. Most isolates showed outstanding results in the ability to grow with crude and diesel oil and tolerate high salt percentages, biosurfactant production, and emulsification activity, which are considered the most effective factors in bioremediation of such environments. Considering the soil analysis, limiting factors in bioremediation like available phosphorous, and the abundance of bacteria with remediation traits in these soils, these extremely polluted environments can be refined.
Collapse
Affiliation(s)
- Reyhaneh Kalami
- Department of Soil Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad-Ali Pourbabaee
- Department of Soil Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
30
|
Cortés‐Camargo S, Acuña‐Avila P, Arrieta‐Báez D, Montañez‐Barragán B, Morato A, Sanz‐Martín J, Barragán‐Huerta B. Biosurfactant Production by
Bacillus tequilensis
ZSB10
: Structural Characterization, Physicochemical, and Antifungal Properties. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- S. Cortés‐Camargo
- Universidad Tecnológica de Zinacantepec Av. Libramiento Universidad 106 Col. San Bartolo el Llano Zinacantepec Estado de México 51361 Mexico
| | - P.E. Acuña‐Avila
- Universidad Tecnológica de Zinacantepec Av. Libramiento Universidad 106 Col. San Bartolo el Llano Zinacantepec Estado de México 51361 Mexico
| | - D. Arrieta‐Báez
- Instituto Politécnico Nacional—CNMN Unidad Profesional Adolfo López Mateos Col. Zacatenco Ciudad de México 07738 Mexico
| | - B. Montañez‐Barragán
- Departamento de Ingeniería en Sistemas Ambientales, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Unidad Profesional Adolfo López Mateos Ciudad de México 07738 Mexico
| | - A.I. Morato
- Departamento de Biología Molecular, Facultad de Ciencias Universidad Autónoma de Madrid Edificio de Biológicas C‐014/021. c/ Darwin 2 Madrid 28049 Spain
| | - J.L. Sanz‐Martín
- Departamento de Biología Molecular, Facultad de Ciencias Universidad Autónoma de Madrid Edificio de Biológicas C‐014/021. c/ Darwin 2 Madrid 28049 Spain
| | - B.E. Barragán‐Huerta
- Departamento de Ingeniería en Sistemas Ambientales, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Unidad Profesional Adolfo López Mateos Ciudad de México 07738 Mexico
| |
Collapse
|
31
|
Phulpoto IA, Wang Y, Qazi MA, Hu B, Ndayisenga F, Yu Z. Bioprospecting of rhamnolipids production and optimization by an oil-degrading Pseudomonas sp. S2WE isolated from freshwater lake. BIORESOURCE TECHNOLOGY 2021; 323:124601. [PMID: 33385627 DOI: 10.1016/j.biortech.2020.124601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The present study revealed biosurfactants production by a novel oil-degrading Pseudomonas sp. S2WE isolated from hydrocarbon enriched water sample, where the genus Pseudomonas (48.65%) was dominated amongst several other genera. Biosurfactants produced by this strain showed the great potential for surface tension reduction (SFT) and emulsification. The extracted crude biosurfactants were characterized using ultra-high-performance liquid chromatography-Mass Spectrometry (UHPLC-MS) and identified various mono-and di-rhamnolipids homologs from the mixture. Moreover, the lowest SFT 33.05 ± 0.1 mN/m and highest emulsification of 60.65 ± 0.64% were achieved from rhamnolipids produced from glycerol with urea. Compared to initial screening, almost (>87%) higher emulsification was observed. In addition, the biosurfactants were found highly stable at different environmental factors i.e. temperature (4 °C-121 °C), pH (3-10) and NaCl conc. (1-9%). The high stable rhamnolipids produced by new Pseudomonas sp. S2WE in this study could widely be used in enormous industrial as well as environmental applications.
Collapse
Affiliation(s)
- Irfan Ali Phulpoto
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Yanfen Wang
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, Chinese Academy of Sciences, No. 380 Huaibei Town, Huairou District, Beijing 101408, PR China
| | - Muneer Ahmed Qazi
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur Mir's 66020, Sindh, Pakistan
| | - Bowen Hu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, China.
| |
Collapse
|
32
|
Garousin H, Pourbabaee AA, Alikhani HA, Yazdanfar N. A Combinational Strategy Mitigated Old-Aged Petroleum Contaminants: Ineffectiveness of Biostimulation as a Bioremediation Technique. Front Microbiol 2021; 12:642215. [PMID: 33717040 PMCID: PMC7947215 DOI: 10.3389/fmicb.2021.642215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Hydrocarbon contamination emerging from the crude oil industrial-related activities has led to severe environmental issues. Prolonged contamination with the constant infiltration of crude oil into the soil is a severe problem in remediating contaminated soils. Hence, the current study focuses on comparing various bioremediation strategies, thereby isolating native bacteria competent to reduce TPH in both liquid and microcosm environments in an old-aged petroleum hydrocarbon contaminated soil. Assays in the modified 6SW-Vit medium after 7 days of incubation revealed that Bacillus altitudinis strain HRG-1 was highly hydrophobic and had a suitable ability to decrease surface tension (40.98%) and TPH (73.3%). The results of biodegradation in the microcosm proved that among the designated treatments, including bio-stimulated microcosm (SM), bacterialized microcosm (BM), a combined bio-stimulated microcosm and bacterialized microcosm (SB), and natural attenuation (NA), the SB treatment was the most effective in mitigating TPH (38.2%). However, the SM treatment indicated the lowest TPH biodegradation (18%). Pearson correlation coefficient among microcosm biological indicators under investigation revealed that soil basal respiration had the highest correlation with the amount of residual TPH (r = −0.73915, P < 0.0001), followed by the microbial population (r = −0.65218, P < 0.0001), catalase activity (r = 0.48323, P = 0.0028), polyphenol oxidase activity (r = −0.43842, P = 0.0075), and dehydrogenase activity (r = −0.34990, P = 0.0364), respectively. Nevertheless, considering the capability of strain HRG-1 and the higher efficiency of the combined technique, their use is recommended to diminish the concentration of petroleum hydrocarbons in hot and dry contaminated areas.
Collapse
Affiliation(s)
- Hamidreza Garousin
- Biology and Biotechnology Lab, Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad Ali Pourbabaee
- Biology and Biotechnology Lab, Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hossein Ali Alikhani
- Biology and Biotechnology Lab, Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Najmeh Yazdanfar
- Iranian Institute of R&D in Chemical Industries (IRDCI) (ACECR), Tehran, Iran
| |
Collapse
|
33
|
Phulpoto IA, Hu B, Wang Y, Ndayisenga F, Li J, Yu Z. Effect of natural microbiome and culturable biosurfactants-producing bacterial consortia of freshwater lake on petroleum-hydrocarbon degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141720. [PMID: 32882554 DOI: 10.1016/j.scitotenv.2020.141720] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Freshwater lake ecosystem is a reservior of valuable microbial diversity. It needs to be explored for addressing key environmental issues like petroleum-hydrocarbon contamination. In this work, the microbial communities (pre and post enriched with petroleum-hydrocarbons) from different layers of freshwater lake, i.e. surface water, sediments and deepwater, were explored through metagenomic and culture-dependent approaches. A total of 41 bacterial phyla were retrieved from pre-enriched samples, which were significantly reduced in enriched samples where Proteobacteria were dominant (87% to 100%) followed by Bacteroidetes (7.37%) and Verrucomicrobia (3.06%). The most dominant hydrocarbon-degrading genera were extensively verified as Pseudomonas (48.65%), Acinetobacter (45.38%), Stenotrophomonas (3.16%) and Brevundimonas (2.07%) in surface water (S1WCC); Acinetobacter (62.46%), Aeromonas (10.7%), Sphingobacterium (5.20%) and Pseudomonas (4.23%) in sediment (S2MCC); and Acinetobacter (46.57%), Pseudomonas (13.10%), Comamonas (12.93%), Flavobacterium (12.18%) and Enterobacter (9.62%) in deep water (S4WCC). Additionally, the maximum biodegradation of petroleum-hydrocarbons (i.e. used engine oil or UEO) was achieved by microbiome of S2MCC (67.60 ± 0.08%) followed by S4WCC (59.70 ± 0.12%), whereas only 36.80 ± 0.10% degradation was achieved by S1WCC microbiome. On the other hand, UEO degradation by cultivable biosurfactant-producing single cultures such as Pseudomonas sp. S2WE, Pseudomonas sp. S2WG, Pseudomonas sp. S2MS, Ochrobactrum sp. S1MM and Bacillus nealsonii S2MT showed 31.10 ± 0.08% to 40.50 ± 0.11% biodegradation. Comparatively, the biodegradation efficiency was found higher (i.e. 42.20 ± 0.12% to 56.10 ± 0.12%) in each consortia comprising of two, three, four, and five bacterial cultures. Conclusively, the isolated culturable biosurfactants-producing bacterial consortium of freshwater lake demonstrated >80% contribution in the total petroleum-hydrocarbons degradation by the natural microbiome of the ecosystem.
Collapse
Affiliation(s)
- Irfan Ali Phulpoto
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Bowen Hu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Yanfen Wang
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, Chinese Academy of Sciences, No. 380 Huaibei Town, Huairou District, Beijing 101408, PR China
| | - Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Jinmei Li
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
34
|
Zouari I, Masmoudi F, Medhioub K, Tounsi S, Trigui M. Biocontrol and plant growth-promoting potentiality of bacteria isolated from compost extract. Antonie van Leeuwenhoek 2020; 113:2107-2122. [PMID: 33156472 DOI: 10.1007/s10482-020-01481-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/01/2022]
Abstract
The use of compost extracts is steadily increasing, offering an attractive way for plant growth enhancement and disease management replacing chemical pesticides. In this study, potential mechanisms involved in plant growth promotion and suppressive activity against fungal diseases, of a compost extract produced from poultry manure/olive husk compost, were investigated. Results of physico-chemical and microbiological investigations showed high ability to reduce Fusarium oxysporum, Alternaria alternata, Aspergillus niger and Botrytis cinerea growth. The suppressive ability detected using confrontation test and the phytostimulatory effect tested on tomato seeds were related mainly to its microbial population content. Among 150 bacterial strains, isolated from the compost extract, 13 isolates showed antifungal activity against the four tested plant pathogenic fungi. Their identification based on 16S rRNA gene sequence revealed they belonged to different species of the genus Bacillus, Alcaligenes, Providencia and Ochrobactrum. When tested for their ability to produce cell wall degradation enzymes using specific media, the majority of the 13 isolates were shown to synthesize proteases, lipases and glucanases. Similarly, the best part of them showed positive reaction for plant growth promoting substances liberation, biosurfactant production and biofilm formation. In vivo tests were carried out using tomato seeds and fruits and proved that 92% of strains improved tomato plants vigor indexes when compared to the control and 6 among them were able to reduce decay severity caused by B. cinerea over 50%. Principal component analysis showed an important correlation between in vitro and in vivo potentialities and that Bacillus siamensis CEBZ11 strain was statistically the most effective strain in protecting tomato plants from gray mould disease. This study revealed the selected strains would be useful for plant pathogenic fungi control and plant growth promotion.
Collapse
Affiliation(s)
- Imen Zouari
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, P.B. 1177, 3018, Sfax, Tunisia
| | - Fatma Masmoudi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, P.B. 1177, 3018, Sfax, Tunisia.
| | - Khaled Medhioub
- Laboratory of Environmental Sciences and Sustainable Development (LASED), Sfax Preparatory Engineering Institute, University of Sfax, BP 1172-3018, Sfax, Tunisia
| | - Slim Tounsi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, P.B. 1177, 3018, Sfax, Tunisia
| | - Mohamed Trigui
- Laboratory of Environmental Sciences and Sustainable Development (LASED), Sfax Preparatory Engineering Institute, University of Sfax, BP 1172-3018, Sfax, Tunisia
| |
Collapse
|
35
|
Goswami M, Deka S. Isolation of a novel rhizobacteria having multiple plant growth promoting traits and antifungal activity against certain phytopathogens. Microbiol Res 2020; 240:126516. [DOI: 10.1016/j.micres.2020.126516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
|
36
|
Biosurfactants produced by Pseudomonas syringae pv tabaci: A versatile mixture with interesting emulsifying properties. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Chopra A, Bobate S, Rahi P, Banpurkar A, Mazumder PB, Satpute S. Pseudomonas aeruginosa RTE4: A Tea Rhizobacterium With Potential for Plant Growth Promotion and Biosurfactant Production. Front Bioeng Biotechnol 2020; 8:861. [PMID: 32850725 PMCID: PMC7403194 DOI: 10.3389/fbioe.2020.00861] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/03/2020] [Indexed: 12/04/2022] Open
Abstract
Tea is an ancient non-alcoholic beverage plantation crop cultivated in the most part of Assam, India. Being a long-term monoculture, tea plants are prone to both biotic and abiotic stresses, and requires massive amounts of chemicals as fertilizers and pesticides to achieve worthy crop productivity. The rhizosphere bacteria with the abilities to produce phytohormone, secreting hydrolytic enzyme, biofilm formation, bio-control activity provides induced systemic resistance to plants against pathogens. Thus, plant growth promoting (PGP) rhizobacteria represents as an alternative candidate to chemical inputs for agriculture sector. Further, deciphering the secondary metabolites, including biosurfactant (BS) allow developing a better understanding of rhizobacterial strains. The acidic nature of tea rhizosphere is predominated by Bacillus followed by Pseudomonas that enhances crop biomass and yield through accelerating uptake of nutrients. In the present study, a strain Pseudomonas aeruginosa RTE4 isolated from tea rhizosphere soil collected from Rosekandy Tea Garden, Cachar, Assam was evaluated for various plant-growth promoting attributes. The strain RTE4 produces indole acetic acid (74.54 μg/ml), hydrolytic enzymes, and solubilize tri-calcium phosphate (46 μg/ml). Bio-control activity of RTE4 was recorded against two foliar fungal pathogens of tea (Corticium invisium and Fusarium solani) and a bacterial plant pathogen (Xanthomonas campestris). The strain RTE4 was positive for BS production in the preliminary screening. Detailed analytical characterization through TLC, FTIR, NMR, and LCMS techniques revealed that the strain RTE4 grown in M9 medium with glucose (2% w/v) produce di-rhamnolipid BS. This BS reduced surface tension of phosphate buffer saline from 71 to 31 mN/m with a critical micelle concentration of 80 mg/L. Purified BS of RTE4 showed minimum inhibitory concentration of 5, 10, and 20 mg/ml against X. campestris, F. solani and C. invisium, respectively. Capability of RTE4 BS to be employed as a biofungicide as compared to Carbendazim - commercially available fungicide is also tested. The strain RTE4 exhibits multiple PGP attributes along with production of di-rhamnolipid BS. This gives a possibility to produce di-rhamnolipid BS from RTE4 in large scale and explore its applications in fields as a biological alternative to chemical fertilizer.
Collapse
Affiliation(s)
- Ankita Chopra
- Department of Biotechnology, Assam University, Silchar, India
| | - Shishir Bobate
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Praveen Rahi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Arun Banpurkar
- Department of Physics, Savitribai Phule Pune University, Pune, India
| | | | - Surekha Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
38
|
Phulpoto IA, Yu Z, Hu B, Wang Y, Ndayisenga F, Li J, Liang H, Qazi MA. Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it's potential for oil contaminated soil remediation. Microb Cell Fact 2020; 19:145. [PMID: 32690027 PMCID: PMC7372866 DOI: 10.1186/s12934-020-01402-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biosurfactants, being highly biodegradable, ecofriendly and multifunctional compounds have wide applications in various industrial sectors including environmental bioremediation. Surfactin, a member of lipopeptide family, which is considered as one of the most powerful biosurfactants due to its excellent emulsifying activities as well as environmental and therapeutic applications. Therefore, the aim of this study was to investigate the newly isolated bacterial strain S2MT for production of surfactin-like biosurfactants and their potential applications for oil-contaminated soil remediation. RESULTS In this study, the strain S2MT was isolated from lake sediment and was identified as Bacillus nealsonii based on transmitted electron microscopy (TEM) and 16S rRNA ribo-typing. The strain S2MT produced biosurfactant that reduced the surface tension (34.15 ± 0.6 mN/m) and displayed excellent emulsifying potential for kerosene (55 ± 0.3%). Additionally, the maximum biosurfactant product yield of 1300 mg/L was achieved when the composition of the culture medium was optimized through response surface methodology (RSM). Results showed that 2% glycerol and 0.1% NH4NO3 were the best carbon/nitrogen substrates for biosurfactant production. The parameters such as temperature (30 °C), pH (8), agitation (100 rpm), NH4NO3 (0.1%) and NaCl (0.5%) displayed most significant contribution towards surface tension reduction that resulted in enhanced biosurfactant yield. Moreover, the extracted biosurfactants were found to be highly stable at environmental factors such as salinity, pH and temperature variations. The biosurfactants were characterized as cyclic lipopeptides relating to surfactin-like isoforms (C13-C15) using thin-layer chromatography (TLC), Ultra high performance liquid chromatography and mass spectrometry (UHPLC-MS). The crude biosurfactant product displayed up to 43.6 ± 0.08% and 46.7 ± 0.01% remediation of heavy engine-oil contaminated soil at 10 and 40 mg/L concentrations, respectively. CONCLUSION Present study expands the paradigm of surfactin-like biosurfactants produced by novel isolate Bacillus nealsonii S2MT for achieving efficient and environmentally acceptable soil remediation as compared to synthetic surfactants.
Collapse
Affiliation(s)
- Irfan Ali Phulpoto
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, People's Republic of China.
| | - Bowen Hu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Yanfen Wang
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, Chinese Academy of Sciences, No. 380 Huaibei Town, Huairou District, Beijing, 101408, People's Republic of China
| | - Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Jinmei Li
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Hongxia Liang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Muneer Ahmed Qazi
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur Mirκs-66020, Sindh, Pakistan
| |
Collapse
|