1
|
Biswas M, Saba L, Kalra M, Singh R, Fernandes E Fernandes J, Viswanathan V, Laird JR, Mantella LE, Johri AM, Fouda MM, Suri JS. MultiNet 2.0: A lightweight attention-based deep learning network for stenosis measurement in carotid ultrasound scans and cardiovascular risk assessment. Comput Med Imaging Graph 2024; 117:102437. [PMID: 39378691 DOI: 10.1016/j.compmedimag.2024.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Cardiovascular diseases (CVD) cause 19 million fatalities each year and cost nations billions of dollars. Surrogate biomarkers are established methods for CVD risk stratification; however, manual inspection is costly, cumbersome, and error-prone. The contemporary artificial intelligence (AI) tools for segmentation and risk prediction, including older deep learning (DL) networks employ simple merge connections which may result in semantic loss of information and hence low in accuracy. METHODOLOGY We hypothesize that DL networks enhanced with attention mechanisms can do better segmentation than older DL models. The attention mechanism can concentrate on relevant features aiding the model in better understanding and interpreting images. This study proposes MultiNet 2.0 (AtheroPoint, Roseville, CA, USA), two attention networks have been used to segment the lumen from common carotid artery (CCA) ultrasound images and predict CVD risks. RESULTS The database consisted of 407 ultrasound CCA images of both the left and right sides taken from 204 patients. Two experts were hired to delineate borders on the 407 images, generating two ground truths (GT1 and GT2). The results were far better than contemporary models. The lumen dimension (LD) error for GT1 and GT2 were 0.13±0.08 and 0.16±0.07 mm, respectively, the best in market. The AUC for low, moderate and high-risk patients' detection from stenosis data for GT1 were 0.88, 0.98, and 1.00 respectively. Similarly, for GT2, the AUC values for low, moderate, and high-risk patient detection were 0.93, 0.97, and 1.00, respectively. The system can be fully adopted for clinical practice in AtheroEdge™ model by AtheroPoint, Roseville, CA, USA.
Collapse
Affiliation(s)
- Mainak Biswas
- School of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Monserrato, Italy
| | - Mannudeep Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Rajesh Singh
- Department of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - J Fernandes E Fernandes
- Cardiovascular Institute and the Lisbon University Medical School, Hospital de SantaMaria, Lisbon 1600 190, Portugal
| | | | - John R Laird
- Cardiology Department, St. Helena Hospital, St. Helena, CA, USA
| | - Laura E Mantella
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Amer M Johri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Jasjit S Suri
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA; Department of CS, Graphics Era University, Dehradun, India; University Center for Research & Development, Chandigarh University, Mohali, India; Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune, India; Stroke Monitoring Division, AtheroPoint™ LLC, Roseville, CA, USA.
| |
Collapse
|
2
|
Agarwal S, Saxena S, Carriero A, Chabert GL, Ravindran G, Paul S, Laird JR, Garg D, Fatemi M, Mohanty L, Dubey AK, Singh R, Fouda MM, Singh N, Naidu S, Viskovic K, Kukuljan M, Kalra MK, Saba L, Suri JS. COVLIAS 3.0: cloud-based quantized hybrid UNet3+ deep learning for COVID-19 lesion detection in lung computed tomography. Front Artif Intell 2024; 7:1304483. [PMID: 39006802 PMCID: PMC11240867 DOI: 10.3389/frai.2024.1304483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Background and novelty When RT-PCR is ineffective in early diagnosis and understanding of COVID-19 severity, Computed Tomography (CT) scans are needed for COVID diagnosis, especially in patients having high ground-glass opacities, consolidations, and crazy paving. Radiologists find the manual method for lesion detection in CT very challenging and tedious. Previously solo deep learning (SDL) was tried but they had low to moderate-level performance. This study presents two new cloud-based quantized deep learning UNet3+ hybrid (HDL) models, which incorporated full-scale skip connections to enhance and improve the detections. Methodology Annotations from expert radiologists were used to train one SDL (UNet3+), and two HDL models, namely, VGG-UNet3+ and ResNet-UNet3+. For accuracy, 5-fold cross-validation protocols, training on 3,500 CT scans, and testing on unseen 500 CT scans were adopted in the cloud framework. Two kinds of loss functions were used: Dice Similarity (DS) and binary cross-entropy (BCE). Performance was evaluated using (i) Area error, (ii) DS, (iii) Jaccard Index, (iii) Bland-Altman, and (iv) Correlation plots. Results Among the two HDL models, ResNet-UNet3+ was superior to UNet3+ by 17 and 10% for Dice and BCE loss. The models were further compressed using quantization showing a percentage size reduction of 66.76, 36.64, and 46.23%, respectively, for UNet3+, VGG-UNet3+, and ResNet-UNet3+. Its stability and reliability were proved by statistical tests such as the Mann-Whitney, Paired t-Test, Wilcoxon test, and Friedman test all of which had a p < 0.001. Conclusion Full-scale skip connections of UNet3+ with VGG and ResNet in HDL framework proved the hypothesis showing powerful results improving the detection accuracy of COVID-19.
Collapse
Affiliation(s)
- Sushant Agarwal
- Advanced Knowledge Engineering Center, GBTI, Roseville, CA, United States
- Department of CSE, PSIT, Kanpur, India
| | | | - Alessandro Carriero
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), Novara, Italy
| | | | - Gobinath Ravindran
- Department of Civil Engineering, SR University, Warangal, Telangana, India
| | - Sudip Paul
- Department of Biomedical Engineering, NEHU, Shillong, India
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, United States
| | - Deepak Garg
- School of CS and AI, SR University, Warangal, Telangana, India
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Lopamudra Mohanty
- Department of Computer Science, ABES Engineering College, Ghaziabad, UP, India
- Department of Computer science, Bennett University, Greater Noida, UP, India
| | - Arun K. Dubey
- Bharati Vidyapeeth’s College of Engineering, New Delhi, India
| | - Rajesh Singh
- Division of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | - Mostafa M. Fouda
- Department of ECE, Idaho State University, Pocatello, ID, United States
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, India
| | - Subbaram Naidu
- Department of EE, University of Minnesota, Duluth, MN, United States
| | | | - Melita Kukuljan
- Department of Interventional and Diagnostic Radiology, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Manudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Luca Saba
- Department of Radiology, A.O.U., Cagliari, Italy
| | - Jasjit S. Suri
- Department of ECE, Idaho State University, Pocatello, ID, United States
- Department of Computer Science, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
- Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune, India
- Stroke and Monitoring Division, AtheroPoint LLC, Roseville, CA, United States
| |
Collapse
|
3
|
Sanga P, Singh J, Dubey AK, Khanna NN, Laird JR, Faa G, Singh IM, Tsoulfas G, Kalra MK, Teji JS, Al-Maini M, Rathore V, Agarwal V, Ahluwalia P, Fouda MM, Saba L, Suri JS. DermAI 1.0: A Robust, Generalized, and Novel Attention-Enabled Ensemble-Based Transfer Learning Paradigm for Multiclass Classification of Skin Lesion Images. Diagnostics (Basel) 2023; 13:3159. [PMID: 37835902 PMCID: PMC10573070 DOI: 10.3390/diagnostics13193159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Skin lesion classification plays a crucial role in dermatology, aiding in the early detection, diagnosis, and management of life-threatening malignant lesions. However, standalone transfer learning (TL) models failed to deliver optimal performance. In this study, we present an attention-enabled ensemble-based deep learning technique, a powerful, novel, and generalized method for extracting features for the classification of skin lesions. This technique holds significant promise in enhancing diagnostic accuracy by using seven pre-trained TL models for classification. Six ensemble-based DL (EBDL) models were created using stacking, softmax voting, and weighted average techniques. Furthermore, we investigated the attention mechanism as an effective paradigm and created seven attention-enabled transfer learning (aeTL) models before branching out to construct three attention-enabled ensemble-based DL (aeEBDL) models to create a reliable, adaptive, and generalized paradigm. The mean accuracy of the TL models is 95.30%, and the use of an ensemble-based paradigm increased it by 4.22%, to 99.52%. The aeTL models' performance was superior to the TL models in accuracy by 3.01%, and aeEBDL models outperformed aeTL models by 1.29%. Statistical tests show significant p-value and Kappa coefficient along with a 99.6% reliability index for the aeEBDL models. The approach is highly effective and generalized for the classification of skin lesions.
Collapse
Affiliation(s)
- Prabhav Sanga
- Department of Information Technology, Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India; (P.S.); (A.K.D.)
- Global Biomedical Technologies, Inc., Roseville, CA 95661, USA
| | - Jaskaran Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA (I.M.S.); (V.R.)
| | - Arun Kumar Dubey
- Department of Information Technology, Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India; (P.S.); (A.K.D.)
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha Apollo Hospitals, New Delhi 110076, India;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA (I.M.S.); (V.R.)
| | - Georgios Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Jagjit S. Teji
- Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | - Vijay Rathore
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA (I.M.S.); (V.R.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Puneet Ahluwalia
- Department of Uro Oncology, Medanta the Medicity, Gurugram 122001, India;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy;
| | - Jasjit S. Suri
- Global Biomedical Technologies, Inc., Roseville, CA 95661, USA
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA (I.M.S.); (V.R.)
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
- Department of Computer Science and Engineering, Graphic Era University (G.E.U.), Dehradun 248002, India
| |
Collapse
|
4
|
Singh J, Singh N, Fouda MM, Saba L, Suri JS. Attention-Enabled Ensemble Deep Learning Models and Their Validation for Depression Detection: A Domain Adoption Paradigm. Diagnostics (Basel) 2023; 13:2092. [PMID: 37370987 DOI: 10.3390/diagnostics13122092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Depression is increasingly prevalent, leading to higher suicide risk. Depression detection and sentimental analysis of text inputs in cross-domain frameworks are challenging. Solo deep learning (SDL) and ensemble deep learning (EDL) models are not robust enough. Recently, attention mechanisms have been introduced in SDL. We hypothesize that attention-enabled EDL (aeEDL) architectures are superior compared to attention-not-enabled SDL (aneSDL) or aeSDL models. We designed EDL-based architectures with attention blocks to build eleven kinds of SDL model and five kinds of EDL model on four domain-specific datasets. We scientifically validated our models by comparing "seen" and "unseen" paradigms (SUP). We benchmarked our results against the SemEval (2016) sentimental dataset and established reliability tests. The mean increase in accuracy for EDL over their corresponding SDL components was 4.49%. Regarding the effect of attention block, the increase in the mean accuracy (AUC) of aeSDL over aneSDL was 2.58% (1.73%), and the increase in the mean accuracy (AUC) of aeEDL over aneEDL was 2.76% (2.80%). When comparing EDL vs. SDL for non-attention and attention, the mean aneEDL was greater than aneSDL by 4.82% (3.71%), and the mean aeEDL was greater than aeSDL by 5.06% (4.81%). For the benchmarking dataset (SemEval), the best-performing aeEDL model (ALBERT+BERT-BiLSTM) was superior to the best aeSDL (BERT-BiLSTM) model by 3.86%. Our scientific validation and robust design showed a difference of only 2.7% in SUP, thereby meeting the regulatory constraints. We validated all our hypotheses and further demonstrated that aeEDL is a very effective and generalized method for detecting symptoms of depression in cross-domain settings.
Collapse
Affiliation(s)
- Jaskaran Singh
- Department of Computer Science, Graphic Era, Deemed to be University, Dehradun 248002, India
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era, Deemed to be University, Dehradun 248002, India
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Luca Saba
- Department of Neurology, University of Cagliari, 09124 Cagliari, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 94203, USA
| |
Collapse
|
5
|
Jain PK, Dubey A, Saba L, Khanna NN, Laird JR, Nicolaides A, Fouda MM, Suri JS, Sharma N. Attention-Based UNet Deep Learning Model for Plaque Segmentation in Carotid Ultrasound for Stroke Risk Stratification: An Artificial Intelligence Paradigm. J Cardiovasc Dev Dis 2022; 9:326. [PMID: 36286278 PMCID: PMC9604424 DOI: 10.3390/jcdd9100326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detecting and predicting the severity of CVD and stroke in their early stages are of prime importance. This study proposes an attention-channel-based UNet deep learning (DL) model that identifies the carotid plaques in the internal carotid artery (ICA) and common carotid artery (CCA) images. Our experiments consist of 970 ICA images from the UK, 379 CCA images from diabetic Japanese patients, and 300 CCA images from post-menopausal women from Hong Kong. We combined both CCA images to form an integrated database of 679 images. A rotation transformation technique was applied to 679 CCA images, doubling the database for the experiments. The cross-validation K5 (80% training: 20% testing) protocol was applied for accuracy determination. The results of the Attention-UNet model are benchmarked against UNet, UNet++, and UNet3P models. Visual plaque segmentation showed improvement in the Attention-UNet results compared to the other three models. The correlation coefficient (CC) value for Attention-UNet is 0.96, compared to 0.93, 0.96, and 0.92 for UNet, UNet++, and UNet3P models. Similarly, the AUC value for Attention-UNet is 0.97, compared to 0.964, 0.966, and 0.965 for other models. Conclusively, the Attention-UNet model is beneficial in segmenting very bright and fuzzy plaque images that are hard to diagnose using other methods. Further, we present a multi-ethnic, multi-center, racial bias-free study of stroke risk assessment.
Collapse
Affiliation(s)
- Pankaj K. Jain
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishek Dubey
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
- Department of Electronics and Communication, Shree Mata Vaishno Devi University, Jammu 182301, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100 Cagliari, Italy
| | - Narender N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospital, New Delhi 110076, India
| | - John R. Laird
- Heart and Vascular Institute, Adventist Heath St. Helena, St. Helena, CA 94574, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia 2409, Cyprus
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Neeraj Sharma
- Department of Electronics and Communication, Shree Mata Vaishno Devi University, Jammu 182301, India
| |
Collapse
|
6
|
Segmentation-Based Classification Deep Learning Model Embedded with Explainable AI for COVID-19 Detection in Chest X-ray Scans. Diagnostics (Basel) 2022; 12:diagnostics12092132. [PMID: 36140533 PMCID: PMC9497601 DOI: 10.3390/diagnostics12092132] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/16/2022] Open
Abstract
Background and Motivation: COVID-19 has resulted in a massive loss of life during the last two years. The current imaging-based diagnostic methods for COVID-19 detection in multiclass pneumonia-type chest X-rays are not so successful in clinical practice due to high error rates. Our hypothesis states that if we can have a segmentation-based classification error rate <5%, typically adopted for 510 (K) regulatory purposes, the diagnostic system can be adapted in clinical settings. Method: This study proposes 16 types of segmentation-based classification deep learning-based systems for automatic, rapid, and precise detection of COVID-19. The two deep learning-based segmentation networks, namely UNet and UNet+, along with eight classification models, namely VGG16, VGG19, Xception, InceptionV3, Densenet201, NASNetMobile, Resnet50, and MobileNet, were applied to select the best-suited combination of networks. Using the cross-entropy loss function, the system performance was evaluated by Dice, Jaccard, area-under-the-curve (AUC), and receiver operating characteristics (ROC) and validated using Grad-CAM in explainable AI framework. Results: The best performing segmentation model was UNet, which exhibited the accuracy, loss, Dice, Jaccard, and AUC of 96.35%, 0.15%, 94.88%, 90.38%, and 0.99 (p-value <0.0001), respectively. The best performing segmentation-based classification model was UNet+Xception, which exhibited the accuracy, precision, recall, F1-score, and AUC of 97.45%, 97.46%, 97.45%, 97.43%, and 0.998 (p-value <0.0001), respectively. Our system outperformed existing methods for segmentation-based classification models. The mean improvement of the UNet+Xception system over all the remaining studies was 8.27%. Conclusion: The segmentation-based classification is a viable option as the hypothesis (error rate <5%) holds true and is thus adaptable in clinical practice.
Collapse
|
7
|
Jain PK, Sharma N, Saba L, Paraskevas KI, Kalra MK, Johri A, Laird JR, Nicolaides AN, Suri JS. Unseen Artificial Intelligence-Deep Learning Paradigm for Segmentation of Low Atherosclerotic Plaque in Carotid Ultrasound: A Multicenter Cardiovascular Study. Diagnostics (Basel) 2021; 11:2257. [PMID: 34943494 PMCID: PMC8699942 DOI: 10.3390/diagnostics11122257] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The early detection of carotid wall plaque is recommended in the prevention of cardiovascular disease (CVD) in moderate-risk patients. Previous techniques for B-mode carotid atherosclerotic wall plaque segmentation used artificial intelligence (AI) methods on monoethnic databases, where training and testing are from the "same" ethnic group ("Seen AI"). Therefore, the versatility of the system is questionable. This is the first study of its kind that uses the "Unseen AI" paradigm where training and testing are from "different" ethnic groups. We hypothesized that deep learning (DL) models should perform in 10% proximity between "Unseen AI" and "Seen AI". METHODOLOGY Two cohorts from multi-ethnic groups (330 Japanese and 300 Hong Kong (HK)) were used for the validation of our hypothesis. We used a four-layered UNet architecture for the segmentation of the atherosclerotic wall with low plaque. "Unseen AI" (training: Japanese, testing: HK or vice versa) and "Seen AI" experiments (single ethnicity or mixed ethnicity) were performed. Evaluation was conducted by measuring the wall plaque area. Statistical tests were conducted for its stability and reliability. RESULTS When using the UNet DL architecture, the "Unseen AI" pair one (Training: 330 Japanese and Testing: 300 HK), the mean accuracy, dice-similarity, and correlation-coefficient were 98.55, 78.38, and 0.80 (p < 0.0001), respectively, while for "Unseen AI" pair two (Training: 300 HK and Testing: 330 Japanese), these were 98.67, 82.49, and 0.87 (p < 0.0001), respectively. Using "Seen AI", the same parameters were 99.01, 86.89 and 0.92 (p < 0.0001), respectively. CONCLUSION We demonstrated that "Unseen AI" was in close proximity (<10%) to "Seen AI", validating our DL model for low atherosclerotic wall plaque segmentation. The online system runs < 1 s.
Collapse
Affiliation(s)
- Pankaj K. Jain
- School of Biomedical Engineering, IIT (BHU), Varanasi 221005, India; (P.K.J.); (N.S.)
| | - Neeraj Sharma
- School of Biomedical Engineering, IIT (BHU), Varanasi 221005, India; (P.K.J.); (N.S.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy;
| | | | - Mandeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| | - Amer Johri
- Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Andrew N. Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia 1700, Cyprus;
| | - Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
8
|
Parameter Measurement of Live Animals Based on the Mirror of Multiview Point Cloud. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:9528787. [PMID: 34745254 PMCID: PMC8570883 DOI: 10.1155/2021/9528787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 12/05/2022]
Abstract
Scale and standardization are essential to the prosperity of the breeding industry. During large-scale, standardized breeding, the selective breeding of good livestock breeds hinges on the accurate measurement of body parameters for live animals. However, the complex shooting environment brings several urgent problems, such as the missing of many local data in the point cloud and the difficulty in the automatic acquisition of body data. To solve these problems, this paper proposes a method for parameter measurement of live animals based on the mirror of multiview point cloud. Firstly, the acquisition and stitching principles were given for the multiview point cloud data on body parameters of live animals. Next, the authors presented a way to make up for the data missing areas in the point cloud. Finally, this paper acquires the body mirror data of live animals and scientifically calculates the body parameters. The proposed measurement method was proved effective through experiments.
Collapse
|
9
|
Suri JS, Agarwal S, Elavarthi P, Pathak R, Ketireddy V, Columbu M, Saba L, Gupta SK, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Ferenc N, Ruzsa Z, Gupta A, Naidu S, Kalra MK. Inter-Variability Study of COVLIAS 1.0: Hybrid Deep Learning Models for COVID-19 Lung Segmentation in Computed Tomography. Diagnostics (Basel) 2021; 11:2025. [PMID: 34829372 PMCID: PMC8625039 DOI: 10.3390/diagnostics11112025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background: For COVID-19 lung severity, segmentation of lungs on computed tomography (CT) is the first crucial step. Current deep learning (DL)-based Artificial Intelligence (AI) models have a bias in the training stage of segmentation because only one set of ground truth (GT) annotations are evaluated. We propose a robust and stable inter-variability analysis of CT lung segmentation in COVID-19 to avoid the effect of bias. Methodology: The proposed inter-variability study consists of two GT tracers for lung segmentation on chest CT. Three AI models, PSP Net, VGG-SegNet, and ResNet-SegNet, were trained using GT annotations. We hypothesized that if AI models are trained on the GT tracings from multiple experience levels, and if the AI performance on the test data between these AI models is within the 5% range, one can consider such an AI model robust and unbiased. The K5 protocol (training to testing: 80%:20%) was adapted. Ten kinds of metrics were used for performance evaluation. Results: The database consisted of 5000 CT chest images from 72 COVID-19-infected patients. By computing the coefficient of correlations (CC) between the output of the two AI models trained corresponding to the two GT tracers, computing their differences in their CC, and repeating the process for all three AI-models, we show the differences as 0%, 0.51%, and 2.04% (all < 5%), thereby validating the hypothesis. The performance was comparable; however, it had the following order: ResNet-SegNet > PSP Net > VGG-SegNet. Conclusions: The AI models were clinically robust and stable during the inter-variability analysis on the CT lung segmentation on COVID-19 patients.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA; (S.A.); (P.E.)
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA; (S.A.); (P.E.)
- Department of Computer Science Engineering, PSIT, Kanpur 209305, India
| | - Pranav Elavarthi
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA; (S.A.); (P.E.)
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, USA
| | - Rajesh Pathak
- Department of Computer Science Engineering, Rawatpura Sarkar University, Raipur 492001, India;
| | | | - Marta Columbu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Suneet K. Gupta
- Department of Computer Science, Bennett University, Noida 201310, India;
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 10558 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National & Kapodistrian University of Athens, 10679 Athens, Greece;
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, 54636 Thessaloniki, Greece;
| | | | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PT, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia 2368, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA;
| | - Vijay Rathore
- AtheroPoint LLC, Roseville, CA 95611, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Nagy Ferenc
- Internal Medicine Department, University of Szeged, 6725 Szeged, Hungary;
| | - Zoltan Ruzsa
- Zoltan Invasive Cardiology Division, University of Szeged, 6725 Szeged, Hungary;
| | - Archna Gupta
- Radiology Department, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| |
Collapse
|
10
|
Suri JS, Agarwal S, Pathak R, Ketireddy V, Columbu M, Saba L, Gupta SK, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Frence N, Ruzsa Z, Gupta A, Naidu S, Kalra M. COVLIAS 1.0: Lung Segmentation in COVID-19 Computed Tomography Scans Using Hybrid Deep Learning Artificial Intelligence Models. Diagnostics (Basel) 2021; 11:1405. [PMID: 34441340 PMCID: PMC8392426 DOI: 10.3390/diagnostics11081405] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND COVID-19 lung segmentation using Computed Tomography (CT) scans is important for the diagnosis of lung severity. The process of automated lung segmentation is challenging due to (a) CT radiation dosage and (b) ground-glass opacities caused by COVID-19. The lung segmentation methodologies proposed in 2020 were semi- or automated but not reliable, accurate, and user-friendly. The proposed study presents a COVID Lung Image Analysis System (COVLIAS 1.0, AtheroPoint™, Roseville, CA, USA) consisting of hybrid deep learning (HDL) models for lung segmentation. METHODOLOGY The COVLIAS 1.0 consists of three methods based on solo deep learning (SDL) or hybrid deep learning (HDL). SegNet is proposed in the SDL category while VGG-SegNet and ResNet-SegNet are designed under the HDL paradigm. The three proposed AI approaches were benchmarked against the National Institute of Health (NIH)-based conventional segmentation model using fuzzy-connectedness. A cross-validation protocol with a 40:60 ratio between training and testing was designed, with 10% validation data. The ground truth (GT) was manually traced by a radiologist trained personnel. For performance evaluation, nine different criteria were selected to perform the evaluation of SDL or HDL lung segmentation regions and lungs long axis against GT. RESULTS Using the database of 5000 chest CT images (from 72 patients), COVLIAS 1.0 yielded AUC of ~0.96, ~0.97, ~0.98, and ~0.96 (p-value < 0.001), respectively within 5% range of GT area, for SegNet, VGG-SegNet, ResNet-SegNet, and NIH. The mean Figure of Merit using four models (left and right lung) was above 94%. On benchmarking against the National Institute of Health (NIH) segmentation method, the proposed model demonstrated a 58% and 44% improvement in ResNet-SegNet, 52% and 36% improvement in VGG-SegNet for lung area, and lung long axis, respectively. The PE statistics performance was in the following order: ResNet-SegNet > VGG-SegNet > NIH > SegNet. The HDL runs in <1 s on test data per image. CONCLUSIONS The COVLIAS 1.0 system can be applied in real-time for radiology-based clinical settings.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
- Department of Computer Science Engineering, PSIT, Kanpur 209305, India
| | - Rajesh Pathak
- Department of Computer Science Engineering, Rawatpura Sarkar University, Raipur 492015, India;
| | | | - Marta Columbu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Suneet K. Gupta
- Department of Computer Science, Bennett University, Noida 201310, India;
| | - Gavino Faa
- Department of Pathology—AOU of Cagliari, 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 208011, India;
| | - Klaudija Viskovic
- Department of Radiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 176 74 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence City, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital Providence, Providence, RI 02906, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence City, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - George Tsoulfas
- Department of Transplantation Surgery, Aristoteleion University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia 2408, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA;
| | - Vijay Rathore
- Athero Point LLC, Roseville, CA 95611, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Nagy Frence
- Department of Internal Medicines, Invasive Cardiology Division, University of Szeged, 6720 Szeged, Hungary; (N.F.); (Z.R.)
| | - Zoltan Ruzsa
- Department of Internal Medicines, Invasive Cardiology Division, University of Szeged, 6720 Szeged, Hungary; (N.F.); (Z.R.)
| | - Archna Gupta
- Radiology Department, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55455, USA;
| | - Mannudeep Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| |
Collapse
|
11
|
Corrias G, Mazzotta A, Melis M, Cademartiri F, Yang Q, Suri JS, Saba L. Emerging role of artificial intelligence in stroke imaging. Expert Rev Neurother 2021; 21:745-754. [PMID: 34282975 DOI: 10.1080/14737175.2021.1951234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: The recognition and therapy of patients with stroke is becoming progressively intricate as additional treatment choices become accessible and new associations between disease characteristics and treatment response are incessantly uncovered. Therefore, clinicians must regularly learn new skill, stay up to date with the literature and integrate advances into daily practice. The application of artificial intelligence (AI) to assist clinical decision making could diminish inter-rater variation in routine clinical practice and accelerate the mining of vital data that could expand recognition of patients with stroke, forecast of treatment responses and patient outcomes.Areas covered: In this review, the authors provide an up-to-date review of AI in stroke, analyzing the latest papers on this subject. These have been divided in two main groups: stroke diagnosis and outcome prediction.Expert opinion: The highest value of AI is its capability to merge, select and condense a large amount of clinical and imaging features of a single patient and to associate these with fitted models that have gone through robust assessment and optimization with large cohorts of data to support clinical decision making.
Collapse
Affiliation(s)
- Giuseppe Corrias
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Di Cagliari - Polo Di Monserrato, S.s. 554 Monserrato (Cagliari), Italy
| | - Andrea Mazzotta
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Di Cagliari - Polo Di Monserrato, S.s. 554 Monserrato (Cagliari), Italy
| | - Marta Melis
- Department of Neurology, Azienda Ospedaliero Universitaria (A.O.U.), Di Cagliari - Cagliari, Italy
| | | | - Qi Yang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jasjit S Suri
- Stroke Diagnosis and Monitoring Division, AtheroPoint™, Roseville, CA, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Di Cagliari - Polo Di Monserrato, S.s. 554 Monserrato (Cagliari), Italy
| |
Collapse
|
12
|
JAMTHIKAR AD, PUVVULA A, GUPTA D, JOHRI AM, NAMBI V, KHANNA NN, SABA L, MAVROGENI S, LAIRD JR, PAREEK G, MINER M, SFIKAKIS PP, PROTOGEROU A, KITAS GD, NICOLAIDES A, SHARMA AM, VISWANATHAN V, RATHORE VS, KOLLURI R, BHATT DL, SURI JS. Cardiovascular disease and stroke risk assessment in patients with chronic kidney disease using integration of estimated glomerular filtration rate, ultrasonic image phenotypes, and artificial intelligence: a narrative review. INT ANGIOL 2021; 40:150-164. [DOI: 10.23736/s0392-9590.20.04538-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Suri JS, Puvvula A, Majhail M, Biswas M, Jamthikar AD, Saba L, Faa G, Singh IM, Oberleitner R, Turk M, Srivastava S, Chadha PS, Suri HS, Johri AM, Nambi V, Sanches JM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Bit A, Pareek G, Miner M, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji J, Porcu M, Al-Maini M, Agbakoba A, Sockalingam M, Sexena A, Nicolaides A, Sharma A, Rathore V, Viswanathan V, Naidu S, Bhatt DL. Integration of cardiovascular risk assessment with COVID-19 using artificial intelligence. Rev Cardiovasc Med 2020; 21:541-560. [PMID: 33387999 DOI: 10.31083/j.rcm.2020.04.236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 11/06/2022] Open
Abstract
Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring. This perspective narrative shows the powerful methods of AI for tracking cardiovascular risks. We conclude that AI could potentially become an integral part of the COVID-19 disease management system. Countries, large and small, should join hands with the WHO in building biobanks for scientists around the world to build AI-based platforms for tracking the cardiovascular risk assessment during COVID-19 times and long-term follow-up of the survivors.
Collapse
Affiliation(s)
- Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
- Annu's Hospitals for Skin and Diabetes, Nellore, 524001, AP, India
| | - Misha Majhail
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
- Oakmount High School and AtheroPoint™, Roseville, 95747, CA, USA
| | | | - Ankush D Jamthikar
- Department of ECE, Visvesvaraya National Institute of Technology, Nagpur, 440010, MH, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100, Cagliari, Italy
| | - Gavino Faa
- Department of Pathology, 09100, AOU of Cagliari, Italy
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
| | | | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27749, Delmenhorst, Germany
| | - Saurabh Srivastava
- School of Computing Science & Engineering, Galgotias University, 201301, Gr. Noida, India
| | - Paramjit S Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
| | | | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, B0P 1R0, Ontario, Canada
| | - Vijay Nambi
- Department of Cardiology, Baylor College of Medicine, 77001, TX, USA
| | - J Miguel Sanches
- Institute of Systems and Robotics, Instituto Superior Tecnico, 1000-001, Lisboa, Portugal
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001, New Delhi, India
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 104 31, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, 94574, CA, USA
| | - Arindam Bit
- Department of Biomedical Engineering, NIT, Raipur, 783334, CG, India
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, 02901, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, 02901, Rhode Island, USA
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100, Cagliari, Italy
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 104 31, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, 544 53, Thessaloniki, Greece
| | | | - Durga Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226001, UP, India
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226001, UP, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, DY1, Dudley, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, M13, Manchester, UK
| | | | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, 60601, Chicago, USA
| | - Michele Porcu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100, Cagliari, Italy
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, M3H 6A7, Toronto, Canada
| | | | | | - Ajit Sexena
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001, New Delhi, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 999058, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, 22901, VA, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, 94203, CA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, 600001, Chennai, India
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, 55801, MN, USA
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart & Vascular Center, Harvard Medical School, Boston, 02108, MA, USA
| |
Collapse
|
14
|
Low-Cost Office-Based Cardiovascular Risk Stratification Using Machine Learning and Focused Carotid Ultrasound in an Asian-Indian Cohort. J Med Syst 2020; 44:208. [DOI: 10.1007/s10916-020-01675-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
|
15
|
Viswanathan V, Jamthikar AD, Gupta D, Puvvula A, Khanna NN, Saba L, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Sharma A, Kancharana P, Misra DP, Agarwal V, Kitas GD, Nicolaides A, Suri JS. Does the Carotid Bulb Offer a Better 10-Year CVD/Stroke Risk Assessment Compared to the Common Carotid Artery? A 1516 Ultrasound Scan Study. Angiology 2020; 71:920-933. [PMID: 32696658 DOI: 10.1177/0003319720941730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The objectives of this study are to (1) examine the "10-year cardiovascular risk" in the common carotid artery (CCA) versus carotid bulb using an integrated calculator called "AtheroEdge Composite Risk Score 2.0" (AECRS2.0) and (2) evaluate the performance of AECRS2.0 against "conventional cardiovascular risk calculators." These objectives are met by measuring (1) image-based phenotypes and AECRS2.0 score computation and (2) performance evaluation of AECRS2.0 against 12 conventional cardiovascular risk calculators. The Asian-Indian cohort (n = 379) with type 2 diabetes mellitus (T2DM), chronic kidney disease (CKD), or hypertension were retrospectively analyzed by acquiring the 1516 carotid ultrasound scans (mean age: 55 ± 10.1 years, 67% males, ∼92% with T2DM, ∼83% with CKD [stage 1-5], and 87.5% with hypertension [stage 1-2]). The carotid bulb showed a higher 10-year cardiovascular risk compared to the CCA by 18% (P < .0001). Patients with T2DM and/or CKD also followed a similar trend. The carotid bulb demonstrated a superior risk assessment compared to CCA in patients with T2DM and/or CKD by showing: (1) ∼13% better than CCA (0.93 vs 0.82, P = .0001) and (2) ∼29% better compared with 12 types of risk conventional calculators (0.93 vs 0.72, P = .06).
Collapse
Affiliation(s)
- Vijay Viswanathan
- 58896Moopil Viswanathan Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, Tamil Nadu, India
| | - Ankush D Jamthikar
- Department of Electronics and Communication Engineering, 29583Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of Electronics and Communication Engineering, 29583Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Anudeep Puvvula
- Annu's Hospitals for Skin and Diabetes, Nellore, Andhra Pradesh, India
| | - Narendra N Khanna
- Department of Cardiology, 75911Indraprastha APOLLO Hospitals, New Delhi, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, 6752Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Providence, RI, USA
| | - Petros P Sfikakis
- Rheumatology Unit, 68993National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology, 68993National and Kapodistrian University of Athens, Athens, Greece
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Priyanka Kancharana
- 58896Moopil Viswanathan Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, Tamil Nadu, India
| | | | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - George D Kitas
- R & D Academic Affairs, 7714Dudley Group NHS Foundation Trust, Dudley, UK
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
16
|
Jamthikar A, Gupta D, Saba L, Khanna NN, Araki T, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Viswanathan V, Sharma A, Nicolaides A, Kitas GD, Suri JS. Cardiovascular/stroke risk predictive calculators: a comparison between statistical and machine learning models. Cardiovasc Diagn Ther 2020; 10:919-938. [PMID: 32968651 DOI: 10.21037/cdt.2020.01.07] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Statistically derived cardiovascular risk calculators (CVRC) that use conventional risk factors, generally underestimate or overestimate the risk of cardiovascular disease (CVD) or stroke events primarily due to lack of integration of plaque burden. This study investigates the role of machine learning (ML)-based CVD/stroke risk calculators (CVRCML) and compares against statistically derived CVRC (CVRCStat) based on (I) conventional factors or (II) combined conventional with plaque burden (integrated factors). Methods The proposed study is divided into 3 parts: (I) statistical calculator: initially, the 10-year CVD/stroke risk was computed using 13 types of CVRCStat (without and with plaque burden) and binary risk stratification of the patients was performed using the predefined thresholds and risk classes; (II) ML calculator: using the same risk factors (without and with plaque burden), as adopted in 13 different CVRCStat, the patients were again risk-stratified using CVRCML based on support vector machine (SVM) and finally; (III) both types of calculators were evaluated using AUC based on ROC analysis, which was computed using combination of predicted class and endpoint equivalent to CVD/stroke events. Results An Institutional Review Board approved 202 patients (156 males and 46 females) of Japanese ethnicity were recruited for this study with a mean age of 69±11 years. The AUC for 13 different types of CVRCStat calculators were: AECRS2.0 (AUC 0.83, P<0.001), QRISK3 (AUC 0.72, P<0.001), WHO (AUC 0.70, P<0.001), ASCVD (AUC 0.67, P<0.001), FRScardio (AUC 0.67, P<0.01), FRSstroke (AUC 0.64, P<0.001), MSRC (AUC 0.63, P=0.03), UKPDS56 (AUC 0.63, P<0.001), NIPPON (AUC 0.63, P<0.001), PROCAM (AUC 0.59, P<0.001), RRS (AUC 0.57, P<0.001), UKPDS60 (AUC 0.53, P<0.001), and SCORE (AUC 0.45, P<0.001), while the AUC for the CVRCML with integrated risk factors (AUC 0.88, P<0.001), a 42% increase in performance. The overall risk-stratification accuracy for the CVRCML with integrated risk factors was 92.52% which was higher compared all the other CVRCStat. Conclusions ML-based CVD/stroke risk calculator provided a higher predictive ability of 10-year CVD/stroke compared to the 13 different types of statistically derived risk calculators including integrated model AECRS 2.0.
Collapse
Affiliation(s)
- Ankush Jamthikar
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University, Tokyo, Japan
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia, Cyprus
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
17
|
Jamthikar A, Gupta D, Cuadrado-Godia E, Puvvula A, Khanna NN, Saba L, Viskovic K, Mavrogeni S, Turk M, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Kitas GD, Shankar C, Nicolaides A, Viswanathan V, Sharma A, Suri JS. Ultrasound-based stroke/cardiovascular risk stratification using Framingham Risk Score and ASCVD Risk Score based on "Integrated Vascular Age" instead of "Chronological Age": a multi-ethnic study of Asian Indian, Caucasian, and Japanese cohorts. Cardiovasc Diagn Ther 2020; 10:939-954. [PMID: 32968652 DOI: 10.21037/cdt.2020.01.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Vascular age (VA) has recently emerged for CVD risk assessment and can either be computed using conventional risk factors (CRF) or by using carotid intima-media thickness (cIMT) derived from carotid ultrasound (CUS). This study investigates a novel method of integrating both CRF and cIMT for estimating VA [so-called integrated VA (IVA)]. Further, the study analyzes and compares CVD/stroke risk using the Framingham Risk Score (FRS)-based risk calculator when adapting IVA against VA. Methods The system follows a four-step process: (I) VA using cIMT based using linear-regression (LR) model and its coefficients; (II) VA prediction using ten CRF using a multivariate linear regression (MLR)-based model with gender adjustment; (III) coefficients from the LR-based model and MLR-based model are combined using a linear model to predict the final IVA; (IV) the final step consists of FRS-based risk stratification with IVA as inputs and benchmarked against FRS using conventional method of CA. Area-under-the-curve (AUC) is computed using IVA and benchmarked against CA while taking the response variable as a standardized combination of cIMT and glycated hemoglobin. Results The study recruited 648 patients, 202 were Japanese, 314 were Asian Indian, and 132 were Caucasians. Both left and right common carotid arteries (CCA) of all the population were scanned, thus a total of 1,287 ultrasound scans. The 10-year FRS using IVA reported higher AUC (AUC =0.78) compared with 10-year FRS using CA (AUC =0.66) by ~18%. Conclusions IVA is an efficient biomarker for risk stratifications for patients in routine practice.
Collapse
Affiliation(s)
- Ankush Jamthikar
- Department of Electronics and Communications Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of Electronics and Communications Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | | | - Anudeep Puvvula
- Annu's Hospitals for Skin and Diabetes, Nellore, Andra Pradesh, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology, National and Kapodistrian Univ. of Athens, Athens, Greece
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia, Cyprus
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
18
|
Rodrigues VF, Paim EP, Kunst R, Antunes RS, Costa CAD, Righi RDR. Exploring publish/subscribe, multilevel cloud elasticity, and data compression in telemedicine. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 191:105403. [PMID: 32109684 DOI: 10.1016/j.cmpb.2020.105403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 10/15/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Multiple medical specialties rely on image data, typically following the Digital Imaging and Communications in Medicine (DICOM) ISO 12052 standard, to support diagnosis through telemedicine. Remote analysis by different physicians requires the same image to be transmitted simultaneously to different destinations in real-time. This scenario poses a need for a large number of resources to store and transmit DICOM images in real-time, which has been explored using some cloud-based solutions. However, these solutions lack strategies to improve the performance through the cloud elasticity feature. In this context, this article proposes a cloud-based publish/subscribe (PubSub) model, called PS2DICOM, which employs multilevel resource elasticity to improve the performance of DICOM data transmissions. METHODS A prototype is implemented to evaluate PS2DICOM. A PubSub communication model is adopted, considering the coexistence of two classes of users: (i) image data producers (publishers); and (ii) image data consumers (subscribers). PS2DICOM employs a cloud infrastructure to guarantee service availability and performance through resource elasticity in two levels of the cloud: (i) brokers and (ii) data storage. In addition, images are compressed prior to the transmission to reduce the demand for network resources using one of three different algorithms: (i) DEFLATE, (ii) LZMA, and (iii) BZIP2. PS2DICOM employs dynamic data compression levels at the client side to improve network performance according to the current available network throughput. RESULTS Results indicate that PS2DICOM can improve transmission quality, storage capabilities, querying, and retrieving of DICOM images. The general efficiency gain is approximately 35% in data sending and receiving operations. This gain is resultant from the two levels of elasticity, allowing resources to be scaled up or down automatically in a transparent manner. CONCLUSIONS The contributions of PS2DICOM are twofold: (i) multilevel cloud elasticity to adapt the computing resources on demand; (ii) adaptive data compression to meet the network quality and optimize data transmission. Results suggest that the use of compression in medical image data using PS2DICOM can improve the transmission efficiency, allowing the team of specialists to communicate in real-time, even when they are geographically distant.
Collapse
Affiliation(s)
| | - Euclides Palma Paim
- Universidade do Vale do Rio dos Sinos, Av. Unisinos, 950, São Leopoldo, RS, Brazil.
| | - Rafael Kunst
- Universidade do Vale do Rio dos Sinos, Av. Unisinos, 950, São Leopoldo, RS, Brazil.
| | | | | | | |
Collapse
|
19
|
Biswas M, Saba L, Chakrabartty S, Khanna NN, Song H, Suri HS, Sfikakis PP, Mavrogeni S, Viskovic K, Laird JR, Cuadrado-Godia E, Nicolaides A, Sharma A, Viswanathan V, Protogerou A, Kitas G, Pareek G, Miner M, Suri JS. Two-stage artificial intelligence model for jointly measurement of atherosclerotic wall thickness and plaque burden in carotid ultrasound: A screening tool for cardiovascular/stroke risk assessment. Comput Biol Med 2020; 123:103847. [PMID: 32768040 DOI: 10.1016/j.compbiomed.2020.103847] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
MOTIVATION The early screening of cardiovascular diseases (CVD) can lead to effective treatment. Thus, accurate and reliable atherosclerotic carotid wall detection and plaque measurements are crucial. Current measurement methods are time-consuming and do not utilize the power of knowledge-based paradigms such as artificial intelligence (AI). We present an AI-based methodology for the joint automated detection and measurement of wall thickness and carotid plaque (CP) in the form of carotid intima-media thickness (cIMT) and total plaque area (TPA), a class of AtheroEdge™ system (AtheroPoint™, CA, USA). METHOD The novel system consists of two stages, and each stage comprises an independent deep learning (DL) model. In Stage I, the first DL model segregates the common carotid artery (CCA) patches from ultrasound (US) images into the rectangular wall and non-wall patches. The characterized wall patches are integrated to form the region of interest (ROI), which is then fed into Stage II. In Stage II, the second DL model segments the far wall region. Lumen-intima (LI) and media-adventitial (MA) boundaries are then extracted from the wall region, which is then used for cIMT and PA measurement. RESULTS Using the database of 250 carotid scans, the cIMT error using the AI model is 0.0935±0.0637 mm, which is lower than those of all previous methods. The PA error is found to be 2.7939±2.3702 mm2. The system's correlation coefficient (CC) between AI and ground truth (GT) values for cIMT is 0.99 (p < 0.0001), which is higher compared with the CC of 0.96 (p < 0.0001) shown by the earlier DL method. The CC for PA between AI and GT values is 0.89 (p < 0.0001). CONCLUSION A novel AI-based strategy was applied to carotid US images for the joint detection of carotid wall thickness (cWT) and plaque area (PA), followed by cIMT and PA measurement. This AI-based strategy shows improved performance using the patch technique compared with previous methods using full carotid scans.
Collapse
Affiliation(s)
| | - Luca Saba
- Department of Radiology, A.O.U., Italy
| | | | - Narender N Khanna
- Cardiology Department, Indraprastha Apollo Hospitals, New Delhi, India
| | | | | | | | | | - Klaudija Viskovic
- Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, UK; Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | | | - George Kitas
- Department of Rheumatology, University of Manchester, Dudley, UK
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
20
|
Viswanathan V, Jamthikar AD, Gupta D, Puvvula A, Khanna NN, Saba L, Viskovic K, Mavrogeni S, Turk M, Laird JR, Pareek G, Miner M, Ajuluchukwu J, Sfikakis PP, Protogerou A, Kitas GD, Nicolaides A, Sharma A, Suri JS. Integration of estimated glomerular filtration rate biomarker in image-based cardiovascular disease/stroke risk calculator: a south Asian-Indian diabetes cohort with moderate chronic kidney disease. INT ANGIOL 2020; 39:290-306. [PMID: 32214072 DOI: 10.23736/s0392-9590.20.04338-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recently, a 10-year image-based integrated calculator (called AtheroEdge Composite Risk Score-AECRS1.0) was developed which combines conventional cardiovascular risk factors (CCVRF) with image phenotypes derived from carotid ultrasound (CUS). Such calculators did not include chronic kidney disease (CKD)-based biomarker called estimated glomerular filtration rate (eGFR). The novelty of this study is to design and develop an advanced integrated version called-AECRS2.0 that combines eGFR with image phenotypes to compute the composite risk score. Furthermore, AECRS2.0 was benchmarked against QRISK3 which considers eGFR for risk assessment. METHODS The method consists of three major steps: 1) five, current CUS image phenotypes (CUSIP) measurements using AtheroEdge system (AtheroPoint, CA, USA) consisting of: average carotid intima-media thickness (cIMTave), maximum cIMT (cIMTmax), minimum cIMT (cIMTmin), variability in cIMT (cIMTV), and total plaque area (TPA); 2) five, 10-year CUSIP measurements by combining these current five CUSIP with 11 CCVRF (age, ethnicity, gender, body mass index, systolic blood pressure, smoking, carotid artery type, hemoglobin, low-density lipoprotein cholesterol, total cholesterol, and eGFR); 3) AECRS2.0 risk score computation and its comparison to QRISK3 using area-under-the-curve (AUC). RESULTS South Asian-Indian 339 patients were retrospectively analyzed by acquiring their left/right common carotid arteries (678 CUS, mean age: 54.25±9.84 years; 75.22% males; 93.51% diabetic with HbA1c ≥6.5%; and mean eGFR 73.84±20.91 mL/min/1.73m<sup>2</sup>). The proposed AECRS2.0 reported higher AUC (AUC=0.89, P<0.001) compared to QRISK3 (AUC=0.51, P<0.001) by ~74% in CKD patients. CONCLUSIONS An integrated calculator AECRS2.0 can be used to assess the 10-year CVD/stroke risk in patients suffering from CKD. AECRS2.0 was much superior to QRISK3.
Collapse
Affiliation(s)
- Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Ankush D Jamthikar
- Department of Electronics and Communications, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Deep Gupta
- Department of Electronics and Communications, Visvesvaraya National Institute of Technology, Nagpur, India
| | | | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - Monika Turk
- Department of Neurology, University Medical Center Maribor, Maribor, Slovenia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital, Providence, RI, USA
| | - Jna Ajuluchukwu
- Department of Medicine, LUTH (Lagos University Teaching Hospital), Lagos, Nigeria
| | - Petros P Sfikakis
- Unit of Rheumatology, National Kapodistrian University, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention and, Research Unit Clinic, Laboratory of Pathophysiology, National and Kapodistrian University, Athens, Greece
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Center, University of Nicosia Medical School, Nicosia, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jasjit S Suri
- Division of Stroke Monitoring and Diagnostics, AtheroPoint™, Roseville, CA, USA -
| |
Collapse
|
21
|
Puvvula A, Jamthikar AD, Gupta D, Khanna NN, Porcu M, Saba L, Viskovic K, Ajuluchukwu JNA, Gupta A, Mavrogeni S, Turk M, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Kitas GD, Nicolaides A, Viswanathan V, Suri JS. Morphological Carotid Plaque Area Is Associated With Glomerular Filtration Rate: A Study of South Asian Indian Patients With Diabetes and Chronic Kidney Disease. Angiology 2020; 71:520-535. [PMID: 32180436 DOI: 10.1177/0003319720910660] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We evaluated the association between automatically measured carotid total plaque area (TPA) and the estimated glomerular filtration rate (eGFR), a biomarker of chronic kidney disease (CKD). Automated average carotid intima-media thickness (cIMTave) and TPA measurements in carotid ultrasound (CUS) were performed using AtheroEdge (AtheroPoint). Pearson correlation coefficient (CC) was then computed between the TPA and eGFR for (1) males versus females, (2) diabetic versus nondiabetic patients, and (3) between the left and right carotid artery. Overall, 339 South Asian Indian patients with either type 2 diabetes mellitus (T2DM) or CKD, or hypertension (stage 1 or stage 2) were retrospectively analyzed by acquiring cIMTave and TPA measurements of their left and right common carotid arteries (CCA; total CUS: 678, mean age: 54.2 ± 9.8 years; 75.2% males; 93.5% with T2DM). The CC between TPA and eGFR for different scenarios were (1) for males and females -0.25 (P < .001) and -0.35 (P < .001), respectively; (2) for T2DM and non-T2DM -0.26 (P < .001) and -0.49 (P = .02), respectively, and (3) for left and right CCA -0.25 (P < .001) and -0.23 (P < .001), respectively. Automated TPA is an equally reliable biomarker compared with cIMTave for patients with CKD (with or without T2DM) with subclinical atherosclerosis.
Collapse
Affiliation(s)
- Anudeep Puvvula
- Annu's Hospitals for Skin and Diabetes, Nellore, Andhra Pradesh, India
| | - Ankush D Jamthikar
- Department of Electronics and Communications Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of Electronics and Communications Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha Apollo Hospitals, New Delhi, Delhi, India
| | - Michele Porcu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | | | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York City, NY, USA
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, Slovenia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital, Providence, RI, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention and Research Unit Clinic and Laboratory of Pathophysiology, National and Kapodistrian University of Athens, Greece
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, United Kingdom
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Vijay Viswanathan
- M. V. Hospital for Diabetes and Professor M. Viswanathan Diabetes Research Centre, Chennai, Tamil Nadu, India
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint, Roseville, CA, USA
| |
Collapse
|
22
|
Saba L, Jamthikar A, Gupta D, Khanna NN, Viskovic K, Suri HS, Gupta A, Mavrogeni S, Turk M, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Kitas GD, Viswanathan V, Nicolaides A, Bhatt DL, Suri JS. Global perspective on carotid intima-media thickness and plaque: should the current measurement guidelines be revisited? INT ANGIOL 2019; 38:451-465. [PMID: 31782286 DOI: 10.23736/s0392-9590.19.04267-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carotid intima-media thickness (cIMT) and carotid plaque (CP) currently act as risk predictors for CVD/Stroke risk assessment. Over 2000 articles have been published that cover either use cIMT/CP or alterations of cIMT/CP and additional image-based phenotypes to associate cIMT related markers with CVD/Stroke risk. These articles have shown variable results, which likely reflect a lack of standardization in the tools for measurement, risk stratification, and risk assessment. Guidelines for cIMT/CP measurement are influenced by major factors like the atherosclerosis disease itself, conventional risk factors, 10-year measurement tools, types of CVD/Stroke risk calculators, incomplete validation of measurement tools, and the fast pace of computer technology advancements. This review discusses the following major points: 1) the American Society of Echocardiography and Mannheim guidelines for cIMT/CP measurements; 2) forces that influence the guidelines; and 3) calculators for risk stratification and assessment under the influence of advanced intelligence methods. The review also presents the knowledge-based learning strategies such as machine and deep learning which may play a future role in CVD/stroke risk assessment. We conclude that both machine learning and non-machine learning strategies will flourish for current and 10-year CVD/Stroke risk prediction as long as they integrate image-based phenotypes with conventional risk factors.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Ankush Jamthikar
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Deep Gupta
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | | | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - Monika Turk
- Department of Neurology, University Medical Center Maribor, Maribor, Slovenia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital, Providence, RI, USA
| | - Petros P Sfikakis
- Unit of Rheumatology, National Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention and Research, Clinic and Laboratory of Pathophysiology, National and Kapodistrian, University of Athens, Athens, Greece
| | - George D Kitas
- R and D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Vijay Viswanathan
- MV Hospital for Diabete, Professor M Viswanathan Diabetes Research Center, Chennai, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Center, University of Nicosia Medical School, Nicosia, Cyprus
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart, Vascular Center, Harvard Medical School, Boston, MA, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA -
| |
Collapse
|
23
|
Saba L, Biswas M, Suri HS, Viskovic K, Laird JR, Cuadrado-Godia E, Nicolaides A, Khanna NN, Viswanathan V, Suri JS. Ultrasound-based carotid stenosis measurement and risk stratification in diabetic cohort: a deep learning paradigm. Cardiovasc Diagn Ther 2019; 9:439-461. [PMID: 31737516 PMCID: PMC6837906 DOI: 10.21037/cdt.2019.09.01] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Stroke is in the top three leading causes of death worldwide. Non-invasive monitoring of stroke can be accomplished via stenosis measurements. The current conventional image-based methods for these measurements are not accurate and reliable. They do not incorporate shape and intelligent learning component in their design. METHODS In this study, we propose a deep learning (DL)-based methodology for accurate measurement of stenosis in common carotid artery (CCA) ultrasound (US) scans using a class of AtheroEdge system from AtheroPoint, USA. Three radiologists manually traced the lumen-intima (LI) for the near and the far walls, respectively, which served as a gold standard (GS) for training the DL-based model. Three DL-based systems were developed based on three types of GS. RESULTS IRB approved (Toho University, Japan) 407 US scans from 204 patients were collected. The risk was characterized into three classes: low, moderate, and high-risk. The area-under-curve (AUC) corresponding to three DL systems using receiver operating characteristic (ROC) analysis computed were: 0.90, 0.94 and 0.86, respectively. CONCLUSIONS Novel DL-based strategy showed reliable, accurate and stable stenosis severity index (SSI) measurements.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, A.O.U., Cagliari, Italy
| | - Mainak Biswas
- Department of Computer Science and Engineering, JIS University, Agarpara, Kolkata, India
| | | | - Klaudija Viskovic
- Department of Radiology and Ultrasound University Hospital for Infectious Diseases, Zagreb, Croatia
| | - John R. Laird
- Heart and Vascular Institute, Adventist, St. Helena Hospital, Napa Valley, CA, USA
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, UK
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - N. N. Khanna
- Cardiology Department, Indraprastha Apollo Hospitals, New Delhi, India
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
24
|
Effect of carotid image-based phenotypes on cardiovascular risk calculator: AECRS1.0. Med Biol Eng Comput 2019; 57:1553-1566. [PMID: 30989577 DOI: 10.1007/s11517-019-01975-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/21/2019] [Indexed: 12/11/2022]
Abstract
Today, the 10-year cardiovascular risk largely relies on conventional cardiovascular risk factors (CCVRFs) and suffers from the effect of atherosclerotic wall changes. In this study, we present a novel risk calculator AtheroEdge Composite Risk Score (AECRS1.0), designed by fusing CCVRF with ultrasound image-based phenotypes. Ten-year risk was computed using the Framingham Risk Score (FRS), United Kingdom Prospective Diabetes Study 56 (UKPDS56), UKPDS60, Reynolds Risk Score (RRS), and pooled composite risk (PCR) score. AECRS1.0 was computed by measuring the 10-year five carotid phenotypes such as IMT (ave., max., min.), IMT variability, and total plaque area (TPA) by fusing eight CCVRFs and then compositing them. AECRS1.0 was then benchmarked against the five conventional cardiovascular risk calculators by computing the receiver operating characteristics (ROC) and area under curve (AUC) values with a 95% CI. Two hundred four IRB-approved Japanese patients' left/right common carotid arteries (407 ultrasound scans) were collected with a mean age of 69 ± 11 years. The calculators gave the following AUC: FRS, 0.615; UKPDS56, 0.576; UKPDS60, 0.580; RRS, 0.590; PCRS, 0.613; and AECRS1.0, 0.990. When fusing CCVRF, TPA reported the highest AUC of 0.81. The patients were risk-stratified into low, moderate, and high risk using the standardized thresholds. The AECRS1.0 demonstrated the best performance on a Japanese diabetes cohort when compared with five conventional calculators. Graphical abstract AECRS1.0: Carotid ultrasound image phenotype-based 10-year cardiovascular risk calculator. The figure provides brief overview of the proposed carotid image phenotype-based 10-year cardiovascular risk calculator called AECRS1.0. AECRS1.0 was also benchmarked against five conventional cardiovascular risk calculators (Framingham Risk Score (FRS), United Kingdom Prospective Diabetes Study 56 (UKPDS56), UKPDS60, Reynolds Risk Score (RRS), and pooled composite risk (PCR) score).
Collapse
|
25
|
Khanna NN, Jamthikar AD, Araki T, Gupta D, Piga M, Saba L, Carcassi C, Nicolaides A, Laird JR, Suri HS, Gupta A, Mavrogeni S, Kitas GD, Suri JS. Nonlinear model for the carotid artery disease 10-year risk prediction by fusing conventional cardiovascular factors to carotid ultrasound image phenotypes: A Japanese diabetes cohort study. Echocardiography 2019; 36:345-361. [PMID: 30623485 DOI: 10.1111/echo.14242] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION This study presents a novel nonlinear model which can predict 10-year carotid ultrasound image-based phenotypes by fusing nine traditional cardiovascular risk factors (ethnicity, gender, age, artery type, body mass index, hemoglobin A1c, hypertension, low-density lipoprotein, and smoking) with five types of carotid automated image phenotypes (three types of carotid intima-media thickness (IMT), wall variability, and total plaque area). METHODOLOGY Two-step process was adapted: First, five baseline carotid image-based phenotypes were automatically measured using AtheroEdge™ (AtheroPoint™ , CA, USA) system by two operators (novice and experienced) and an expert. Second, based on the annual progression rates of cIMT due to nine traditional cardiovascular risk factors, a novel nonlinear model was adapted for 10-year predictions of carotid phenotypes. RESULTS Institute review board (IRB) approved 204 Japanese patients' left/right common carotid artery (407 ultrasound scans) was collected with a mean age of 69 ± 11 years. Age and hemoglobin were reported to have a high influence on the 10-year carotid phenotypes. Mean correlation coefficient (CC) between 10-year carotid image-based phenotype and age was improved by 39.35% in males and 25.38% in females. The area under the curves for the 10-year measurements of five phenotypes IMTave10yr , IMTmax10yr , IMTmin10yr , IMTV10yr , and TPA10yr were 0.96, 0.94, 0.90, 1.0, and 1.0. Inter-operator variability between two operators showed significant CC (P < 0.0001). CONCLUSIONS A nonlinear model was developed and validated by fusing nine conventional CV risk factors with current carotid image-based phenotypes for predicting the 10-year carotid ultrasound image-based phenotypes which may be used risk assessment.
Collapse
Affiliation(s)
- Narendra N Khanna
- Department of Cardiology, Indraprastha Apollo Hospitals, New Delhi, India
| | - Ankush D Jamthikar
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Deep Gupta
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Matteo Piga
- Department of Rheumatology, University Clinic and AOU of Cagliari, Cagliari, Italy
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Carlo Carcassi
- Department of Genetics, University of Cagliari, Cagliari, Italy
| | - Andrew Nicolaides
- Department of Vascular Surgery, Imperial College, London, UK.,Vascular Diagnostic Center, University of Cyprus, Nicosia, Cyprus
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, California
| | | | - Ajay Gupta
- Department of Radiology and Feil Family Brain and Mind Research Institute, Weill Cornell Medical Center, New York, New York
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - George D Kitas
- Arthritis Research UK Centre for Epidemiology, Manchester University, Manchester, UK.,Director of Research & Development-Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, California
| |
Collapse
|
26
|
Khanna NN, Jamthikar AD, Gupta D, Nicolaides A, Araki T, Saba L, Cuadrado-Godia E, Sharma A, Omerzu T, Suri HS, Gupta A, Mavrogeni S, Turk M, Laird JR, Protogerou A, Sfikakis PP, Kitas GD, Viswanathan V, Suri JS. Performance evaluation of 10-year ultrasound image-based stroke/cardiovascular (CV) risk calculator by comparing against ten conventional CV risk calculators: A diabetic study. Comput Biol Med 2019; 105:125-143. [PMID: 30641308 DOI: 10.1016/j.compbiomed.2019.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 12/11/2022]
Abstract
MOTIVATION AtheroEdge Composite Risk Score (AECRS1.010yr) is an integrated stroke/cardiovascular risk calculator that was recently developed and computes the 10-year risk of carotid image phenotypes by integrating conventional cardiovascular risk factors (CCVRFs). It is therefore important to understand how closely AECRS1.010yr is associated with the ten other currently available conventional cardiovascular risk calculators (CCVRCs). METHODS The Institutional Review Board of Toho University approved the examination of the left/right common carotid arteries of 202 Japanese patients. Step 1 consists of measurement of AECRS1.010yr, given current image phenotypes and CCVRFs. Step 2 consists of computing the risk score using ten different CCVRCs given CCVR factors: QRISK3, Framingham Risk Score (FRS), United Kingdom Prospective Diabetes Study (UKPDS) 56, UKPDS60, Reynolds Risk Score (RRS), Pooled cohort Risk Score (PCRS or ASCVD), Systematic Coronary Risk Evaluation (SCORE), Prospective Cardiovascular Munster Study (PROCAM) calculator, NIPPON, and World Health Organization (WHO) risk. Step 3 consists of computing the closeness factor between AECRS1.010yr and ten CCVRCs using cumulative ranking index derived using eight different statistically derived metrics. RESULTS AECRS1.010yr reported the highest area-under-the-curve (0.927;P < 0.001) among all the risk calculators. The top three CCVRCs closest to AECRS1.010yr were QRISK3, FRS, and UKPDS60 with cumulative ranking scores of 2.1, 3.0, and 3.8, respectively. CONCLUSION AECRS1.010yr produced the largest AUC due to the integration of image-based phenotypes with CCVR factors, and ranked at first place with the highest AUC. Cumulative ranking of ten CCVRCs demonstrated that QRISK3 was the closest calculator to AECRS1.010yr, which is also consistent with the industry trend.
Collapse
Affiliation(s)
- Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Ankush D Jamthikar
- Department of Electronics and Communication Engineering, VNIT, Nagpur, India
| | - Deep Gupta
- Department of Electronics and Communication Engineering, VNIT, Nagpur, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Cyprus, Nicosia, Cyprus
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University, Tokyo, Japan
| | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | | | - Aditya Sharma
- Cardiovascular Medicine, University of Virginia, VA, USA
| | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, Slovenia
| | | | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, NY, USA
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - Monika Turk
- Neurology Dept., University Medical Centre Maribor, Maribor, Slovenia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology, National and Kapodistrian Univ. of Athens, Greece
| | - Petros P Sfikakis
- Joint Rheumatology Program, National Kapodistrian University of Athens Medical School, Greece
| | - George D Kitas
- Dudley Group NHS Foundation Trust, Dudley, United Kingdom
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
27
|
Cuadrado-Godia E, Srivastava SK, Saba L, Araki T, Suri HS, Giannopolulos A, Omerzu T, Laird J, Khanna NN, Mavrogeni S, Kitas GD, Nicolaides A, Suri JS. Geometric Total Plaque Area Is an Equally Powerful Phenotype Compared With Carotid Intima-Media Thickness for Stroke Risk Assessment: A Deep Learning Approach. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/1544316718806421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, carotid intima-media thickness (cIMT) and geometric total plaque area (gTPA) are computed manually and thus are tedious and prone to interobserver and intraobserver variabilities. This study presents an intelligence-based automated deep learning (DL)–based technique for carotid wall interface detection, cIMT, and lumen diameter (LD) measurements, followed by a 3D cylindrical approach for TPA measurement. The observers were used for manual tracings of which were then used for the design of two DL-based systems. The DL boundaries for inner lumen wall and outer interadventitial borders were used for computing the cIMT and LD. Using cylindrical approach, we computed the gTPA. Furthermore, we compute the 10-year image-based cIMT and gTPA, using the progression rates. A total of 396 B-mode ultrasound right and left common carotid artery images were taken from 203 patients. The mean cIMT and gTPA using DL1 and DL2 is 0.91 mm, 20.52 mm2 and 0.88 mm, 19.44 mm2, respectively. The coefficient of correlation between gTPA and cIMT using DL1 and DL2 is 0.92 ( P < .001) and 0.94 ( P < .001), respectively. The area under the curve (AUC) for gTPA showed an improvement over cIMT by 14.36% and 12.57% for DL1 and DL2, respectively. The corresponding 10-year risk improvements were 9.09% and 6.26%. Our statistical significance tests successfully passed t test, Mann-Whitney, Wilcoxon, Kolmogorov-Smirnov, and Friedman. The study shows gTPA as an equally powerful carotid risk biomarker like cIMT. Given the cIMT and LD, cylindrical fitting is a fast method for gTPA measurements.
Collapse
Affiliation(s)
| | | | - Luca Saba
- Azienda Ospedaliero Universitaria, Cagliari, Italy
| | | | | | | | | | | | | | | | - George D. Kitas
- The University of Manchester, UK
- The Dudley Group NHS Foundation Trust, UK
| | | | | |
Collapse
|
28
|
Kotsis V, Jamthikar AD, Araki T, Gupta D, Laird JR, Giannopoulos AA, Saba L, Suri HS, Mavrogeni S, Kitas GD, Viskovic K, Khanna NN, Gupta A, Nicolaides A, Suri JS. Echolucency-based phenotype in carotid atherosclerosis disease for risk stratification of diabetes patients. Diabetes Res Clin Pract 2018; 143:322-331. [PMID: 30059757 DOI: 10.1016/j.diabres.2018.07.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
AIM The study investigated the association of carotid ultrasound echolucent plaque-based biomarker with HbA1c, measured as age-adjusted grayscale median (AAGSM) as a function of chronological age, total plaque area, and conventional grayscale median (GSMconv). METHODS Two stages were developed: (a) automated measurement of carotid parameters such as total plaque area (TPA); (b) computing the AAGSM as a function of GSMconv, age, and TPA. Intra-operator (novice and experienced) analysis was conducted. RESULTS IRB approved, 204 patients' left/right CCA (408 images) ultrasound scans were collected: mean age: 69 ± 11 years; mean HbA1c: 6.12 ± 1.47%. A moderate inverse correlation was observed between AAGSM and HbA1c (CC of -0.13, P = 0.01), compared to GSM (CC of -0.06, P = 0.24). The RCCA and LCCA showed CC of -0.18, P < 0.01 and -0.08; P < 0.24. Female and males showed CC of -0.29, P < 0.01 and -0.10, P = 0.09. Using the threshold for AAGSM and HbA1c as: low-risk (AAGSM > 100; HbA1c < 5.7%), moderate-risk (40 < AAGSM < 100; 5.7% < HbA1c < 6.5%) and high-risk (AAGSM < 40; HbA1c > 6.5%), the area under the curve showed a better performance of AAGSM over GSMconv. A paired t-test between operators and expert (P < 0.0001); inter-operator CC of 0.85 (P < 0.0001). CONCLUSIONS Echolucent plaque in patients with diabetes can be more accurately characterized for risk stratification using AAGSM compared to GSMconv.
Collapse
Affiliation(s)
- Vasileios Kotsis
- Hypertension Center, Papageorgiou Hospital, Aristotle University of Thessaloniki, Greece
| | - Ankush D Jamthikar
- Department of Electronics and Communication Engineering, VNIT, Nagpur, Maharashtra, India
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Deep Gupta
- Department of Electronics and Communication Engineering, VNIT, Nagpur, Maharashtra, India
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | | | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - George D Kitas
- Arthritis Research UK Centre for Epidemiology, Manchester University, Manchester, UK; Department of Rheumatology, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound University Hospital for Infectious Diseases, Croatia
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha Apollo Hospitals, New Delhi, India
| | - Ajay Gupta
- Department of Radiology and Feil Family Brain and Mind Research Institute, Weill Cornell Medical Center, NY, USA
| | - Andrew Nicolaides
- Department of Vascular Surgery, Imperial College, London, UK; Vascular Diagnostic Center, University of Cyprus, Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint(TM), Roseville, CA, USA.
| |
Collapse
|
29
|
Cuadrado-Godia E, Maniruzzaman M, Araki T, Puvvula A, Jahanur Rahman M, Saba L, Suri HS, Gupta A, Banchhor SK, Teji JS, Omerzu T, Khanna NN, Laird JR, Nicolaides A, Mavrogeni S, Kitas GD, Suri JS. Morphologic TPA (mTPA) and composite risk score for moderate carotid atherosclerotic plaque is strongly associated with HbA1c in diabetes cohort. Comput Biol Med 2018; 101:128-145. [PMID: 30138774 DOI: 10.1016/j.compbiomed.2018.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/05/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study examines the association between six types of carotid artery disease image-based phenotypes and HbA1c in diabetes patients. Six phenotypes (intima-media thickness measurements (cIMT (ave.), cIMT (max.), cIMT (min.)), bidirectional wall variability (cIMTV), morphology-based total plaque area (mTPA), and composite risk score (CRS)) were measured in an automated setting using AtheroEdge™ (AtheroPoint, CA, USA). METHOD Consecutive 199 patients (157 M, age: 68.96 ± 10.98 years), L/R common carotid artery (CCA; 398 US scans) who underwent a carotid ultrasound (L/R) were retrospectively analyzed using AtheroEdge™ system. Two operators (novice and experienced) manually calibrated all the US scans using AtheroEdge™. Logistic regression (LR) and Odds ratio (OR) was computed and phenotypes were ranked. RESULTS The baseline results showed 150 low-risk patients (HbA1c < 6.50 mg/dl) and 49 high-risk patients (HbA1c ≥ 6.50 mg/dl). The fasting blood sugar (FBS) was highly associated with HbA1c (P < 0.001). Except for cIMTV, all phenotypes showed an OR > 1.0 (P < 0.001) for left common carotid artery (LCCA), right carotid artery (RCCA), and mean of left and right common carotid artery (MCCA). After adjusting the FBS, the OR for mTPA showed a higher risk for LCCA, RCCA, and MCCA. The coefficient of correlation (CC) between phenotypes and HbA1c were strong and inter-CC between cIMT and mTPA/CRS was above 0.9 (P < 0.001). The statistical tests showed that phenotypes were significantly associated with diabetes (P-value<0.0001). CONCLUSIONS All phenotypes using AtheroEdge™, except cIMTV, showed a strong association with HbA1c. mTPA and CRS were equally strong phenotypes as cIMT. The CRS phenotype showed the strongest relationship to HbA1c.
Collapse
Affiliation(s)
| | - Md Maniruzzaman
- Department of Statistics, University of Rajshahi and the JiVit A Project of John Hopkins University, Gaibandha, Bangladesh
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Anudeep Puvvula
- Annu's Hospitals for Skin and Diabetes, Nellore, Andra Pradesh, India
| | - Md Jahanur Rahman
- Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Luca Saba
- Department of Radiology, A.O.U., Italy
| | | | - Ajay Gupta
- Brain and Mind Research Institute and Department of Radiology, Weill Cornell Medical College, NY, USA
| | | | - Jagjit S Teji
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine Mercy Hospital, Chicago, IL, USA
| | - Tomaž Omerzu
- Department of Neurology, University Medical Centre Maribor, Slovenia
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha Apollo Hospitals, New Delhi, India
| | - John R Laird
- Heart and Vascular Institute, Adventist Health, St. Helena, CA, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, UK; Vascular Diagnostic Centre, University of Cyprus, Nicosia, Cyprus
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - George D Kitas
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, UK; Department of Rheumatology, Group NHS Foundation Trust, Dudley, UK
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| | | |
Collapse
|
30
|
Deep learning strategy for accurate carotid intima-media thickness measurement: An ultrasound study on Japanese diabetic cohort. Comput Biol Med 2018; 98:100-117. [DOI: 10.1016/j.compbiomed.2018.05.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/06/2023]
|
31
|
Saba L, Banchhor SK, Araki T, Viskovic K, Londhe ND, Laird JR, Suri HS, Suri JS. Intra- and inter-operator reproducibility of automated cloud-based carotid lumen diameter ultrasound measurement. Indian Heart J 2018; 70:649-664. [PMID: 30392503 PMCID: PMC6205023 DOI: 10.1016/j.ihj.2018.01.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/14/2017] [Accepted: 01/14/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Common carotid artery lumen diameter (LD) ultrasound measurement systems are either manual or semi-automated and lack reproducibility and variability studies. This pilot study presents an automated and cloud-based LD measurements software system (AtheroCloud) and evaluates its: (i) intra/inter-operator reproducibility and (ii) intra/inter-observer variability. METHODS 100 patients (83M, mean age: 68±11years), IRB approved, consisted of L/R CCA artery (200 ultrasound images), acquired using a 7.5-MHz linear transducer. The intra/inter-operator reproducibility was verified using three operator's readings. Near-wall and far carotid wall borders were manually traced by two observers for intra/inter-observer variability analysis. RESULTS The mean coefficient of correlation (CC) for intra- and inter-operator reproducibility between all the three automated reading pairs were: 0.99 (P<0.0001) and 0.97 (P<0.0001), respectively. The mean CC for intra- and inter-observer variability between both the manual reading pairs were 0.98 (P<0.0001) and 0.98 (P<0.0001), respectively. The Figure-of-Merit between the mean of the three automated readings against the four manuals were 98.32%, 99.50%, 98.94% and 98.49%, respectively. CONCLUSIONS The AtheroCloud LD measurement system showed high intra/inter-operator reproducibility hence can be adapted for vascular screening mode or pharmaceutical clinical trial mode.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Sumit K Banchhor
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Disease, Zagreb, Croatia
| | - Narendra D Londhe
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India
| | - John R Laird
- UC Davis Vascular Centre, University of California, Davis, CA, USA
| | - Harman S Suri
- Monitoring and Diagnostic Division, AtheroPointÔ, Roseville, CA, USA, USA
| | - Jasjit S Suri
- Monitoring and Diagnostic Division, AtheroPointÔ, Roseville, CA, USA, USA; Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA; Department of Electrical Engineering, University of Idaho (Affl.), ID, USA.
| |
Collapse
|
32
|
Banchhor SK, Londhe ND, Araki T, Saba L, Radeva P, Laird JR, Suri JS. Wall-based measurement features provides an improved IVUS coronary artery risk assessment when fused with plaque texture-based features during machine learning paradigm. Comput Biol Med 2017; 91:198-212. [PMID: 29100114 DOI: 10.1016/j.compbiomed.2017.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Planning of percutaneous interventional procedures involves a pre-screening and risk stratification of the coronary artery disease. Current screening tools use stand-alone plaque texture-based features and therefore lack the ability to stratify the risk. METHOD This IRB approved study presents a novel strategy for coronary artery disease risk stratification using an amalgamation of IVUS plaque texture-based and wall-based measurement features. Due to common genetic plaque makeup, carotid plaque burden was chosen as a gold standard for risk labels during training-phase of machine learning (ML) paradigm. Cross-validation protocol was adopted to compute the accuracy of the ML framework. A set of 59 plaque texture-based features was padded with six wall-based measurement features to show the improvement in stratification accuracy. The ML system was executed using principle component analysis-based framework for dimensionality reduction and uses support vector machine classifier for training and testing-phases. RESULTS The ML system produced a stratification accuracy of 91.28%, demonstrating an improvement of 5.69% when wall-based measurement features were combined with plaque texture-based features. The fused system showed an improvement in mean sensitivity, specificity, positive predictive value, and area under the curve by: 6.39%, 4.59%, 3.31% and 5.48%, respectively when compared to the stand-alone system. While meeting the stability criteria of 5%, the ML system also showed a high average feature retaining power and mean reliability of 89.32% and 98.24%, respectively. CONCLUSIONS The ML system showed an improvement in risk stratification accuracy when the wall-based measurement features were fused with the plaque texture-based features.
Collapse
Affiliation(s)
| | | | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Petia Radeva
- Department of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain
| | | | - Jasjit S Suri
- Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
33
|
Saba L, Banchhor SK, Londhe ND, Araki T, Laird JR, Gupta A, Nicolaides A, Suri JS. Web-based accurate measurements of carotid lumen diameter and stenosis severity: An ultrasound-based clinical tool for stroke risk assessment during multicenter clinical trials. Comput Biol Med 2017; 91:306-317. [PMID: 29107894 DOI: 10.1016/j.compbiomed.2017.10.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND This pilot study presents a completely automated, novel, smart, cloud-based, point-of-care system for (a) carotid lumen diameter (LD); (b) stenosis severity index (SSI) and (c) total lumen area (TLA) measurement using B-mode ultrasound. The proposed system was (i) validated against manual reading taken by the Neurologist and (ii) benchmarked against the commercially available system. METHOD One hundred patients (73 M/27 F, mean age: 68 ± 11 years), institutional review board approved, written informed consent, consisted of left/right common carotid artery (200 ultrasound scans) were acquired using a 7.5-MHz linear transducer. RESULTS The measured mean LD for left and right carotids were (in mm): (i) for proposed system (6.49 ± 1.77, 6.66 ± 1.70); and (ii) for manual (6.29 ± 1.79, 6.45 ± 1.63), respectively and coefficient of correlation between cloud-based automated against manual were 0.98 (P < 0.0001) and 0.99 (P < 0.0001), respectively. The corresponding TLA error, Precision-of-Merit, and Figure-of-Merit when measured against the manual were: 4.56 ± 3.54%, 96.18 ± 3.21%, and 96.85%, respectively. The AUC for the receiving operating characteristics for the cloud-based system was: 1.0. Four statistical tests such as: Two-tailed z-test, Mann-Whitney test, Kolmogorov-Smirnov (KS) and one-way ANOVA were performed to demonstrate consistency and reliability. CONCLUSIONS The proposed system is reliable, accurate, fast, completely automated, anytime-anywhere solution for multi-center clinical trials and routine vascular screening.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Sumit K Banchhor
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India
| | - Narendra D Londhe
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | | | - Ajay Gupta
- Brain and Mind Research Institute, Weill Cornell Medical College, NY, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, England, United Kingdom; Vascular Diagnostic Centre, University of Cyprus, Nicosia, Cyprus
| | - Jasjit S Suri
- Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA; Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA; Department of Electrical Engineering, University of Idaho (Aff.), ID, USA.
| |
Collapse
|
34
|
Patel AK, Suri HS, Singh J, Kumar D, Shafique S, Nicolaides A, Jain SK, Saba L, Gupta A, Laird JR, Giannopoulos A, Suri JS. A Review on Atherosclerotic Biology, Wall Stiffness, Physics of Elasticity, and Its Ultrasound-Based Measurement. Curr Atheroscler Rep 2017; 18:83. [PMID: 27830569 DOI: 10.1007/s11883-016-0635-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional and structural changes in the common carotid artery are biomarkers for cardiovascular risk. Current methods for measuring functional changes include pulse wave velocity, compliance, distensibility, strain, stress, stiffness, and elasticity derived from arterial waveforms. The review is focused on the ultrasound-based carotid artery elasticity and stiffness measurements covering the physics of elasticity and linking it to biological evolution of arterial stiffness. The paper also presents evolution of plaque with a focus on the pathophysiologic cascade leading to arterial hardening. Using the concept of strain, and image-based elasticity, the paper then reviews the lumen diameter and carotid intima-media thickness measurements in combined temporal and spatial domains. Finally, the review presents the factors which influence the understanding of atherosclerotic disease formation and cardiovascular risk including arterial stiffness, tissue morphological characteristics, and image-based elasticity measurement.
Collapse
Affiliation(s)
- Anoop K Patel
- Department of Computer Engineering, NIT, Kurukshetra, India
| | | | - Jaskaran Singh
- Department of Computer Engineering, NIT, Kurukshetra, India
| | - Dinesh Kumar
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | | | | | - Sanjay K Jain
- Department of Computer Engineering, NIT, Kurukshetra, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Ajay Gupta
- Radiology Department, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - John R Laird
- UC Davis Vascular Center, University of California, Davis, CA, USA
| | | | - Jasjit S Suri
- Vascular Diagnostic Center, University of Cyprus, Nicosia, Cyprus. .,Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA. .,Department of Electrical Engineering, University of Idaho (Affl.), Moscow, ID, USA. .,Diagnosis and Stroke Monitoring Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
35
|
|
36
|
Kawel-Boehm N, Bluemke DA. Cardiovascular imaging environment: will the future be cloud-based? Expert Rev Med Devices 2017; 14:521-528. [PMID: 28580809 DOI: 10.1080/17434440.2017.1338134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION In cardiovascular CT and MR imaging large datasets have to be stored, post-processed, analyzed and distributed. Beside basic assessment of volume and function in cardiac magnetic resonance imaging e.g., more sophisticated quantitative analysis is requested requiring specific software. Several institutions cannot afford various types of software and provide expertise to perform sophisticated analysis. Areas covered: Various cloud services exist related to data storage and analysis specifically for cardiovascular CT and MR imaging. Instead of on-site data storage, cloud providers offer flexible storage services on a pay-per-use basis. To avoid purchase and maintenance of specialized software for cardiovascular image analysis, e.g. to assess myocardial iron overload, MR 4D flow and fractional flow reserve, evaluation can be performed with cloud based software by the consumer or complete analysis is performed by the cloud provider. However, challenges to widespread implementation of cloud services include regulatory issues regarding patient privacy and data security. Expert commentary: If patient privacy and data security is guaranteed cloud imaging is a valuable option to cope with storage of large image datasets and offer sophisticated cardiovascular image analysis for institutions of all sizes.
Collapse
Affiliation(s)
- Nadine Kawel-Boehm
- a Radiology and Imaging Sciences , National Institutes of Health , Bethesda , MD , USA.,b Department of Radiology , Kantonsspital Graubuenden , Chur , Switzerland
| | - David A Bluemke
- b Department of Radiology , Kantonsspital Graubuenden , Chur , Switzerland
| |
Collapse
|
37
|
Ikeda N, Dey N, Sharma A, Gupta A, Bose S, Acharjee S, Shafique S, Cuadrado-Godia E, Araki T, Saba L, Laird JR, Nicolaides A, Suri JS. Automated segmental-IMT measurement in thin/thick plaque with bulb presence in carotid ultrasound from multiple scanners: Stroke risk assessment. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 141:73-81. [PMID: 28241970 DOI: 10.1016/j.cmpb.2017.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/20/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Standardization of the carotid IMT requires a reference marker in ultrasound scans. It has been shown previously that manual reference marker and manually created carotid segments are used for measuring IMT in these segments. Manual methods are tedious, time consuming, subjective, and prone to errors. Bulb edge can be considered as a reference marker for measurements of the cIMT. However, bulb edge can be difficult to locate in ultrasound scans due to: (a) low signal to noise ratio in the bulb region as compared to common carotid artery region; (b) uncertainty of bulb location in craniocaudal direction; and (c) variability in carotid bulb shape and size. This paper presents an automated system (a class of AtheroEdge™ system from AtheroPoint™, Roseville, CA, USA) for locating the bulb edge as a reference marker and further develop segmental-IMT (sIMT) which measures IMT in 10mm segments (namely: s1, s2 and s3) proximal to the bulb edge. METHODS The patented methodology uses an integrated approach which combines carotid geometry and pixel-classification paradigms. The system first finds the bulb edge and then measures the sIMT proximal to the bulb edge. The system also estimates IMT in bulb region (bIMT). The 649 image database consists of varying plaque (light, moderate to heavy), image resolutions, shapes, sizes and ethnicity. RESULTS Our results show that the IMT contributions in different carotid segments are as follows: bulb-IMT 34%, s1-IMT 29.46%, s2-IMT 11.48%, and s3-IMT 12.75%, respectively. We compare our automated results against reader's tracings demonstrating the following performance: mean lumen-intima error: 0.01235 ± 0.01224mm, mean media-adventitia error: 0.020933 ± 0.01539mm and mean IMT error: 0.01063 ± 0.0031mm. Our system's Precision of Merit is: 98.23%, coefficient of correlation between automated and Reader's IMT is: 0.998 (p-value < 0.0001). These numbers are improved compared to previous publications by Suri's group which is automated multi-resolution conventional cIMT. CONCLUSIONS Our fully automated bulb detection system reports 92.67% precision against ideal bulb edge locations as marked by the reader in the bulb transition zone.
Collapse
Affiliation(s)
- Nobutaka Ikeda
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-17-6 Ohashi Meguro-ku, Tokyo, Japan
| | - Nilanjan Dey
- Point of Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - Aditya Sharma
- Cardiovascular Medicine, University of Virginia, VA, USA
| | - Ajay Gupta
- Department of Radiology, Brain and Mind Research Institute, Weill Cornell Medical College, NY, USA
| | - Soumyo Bose
- Point of Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - Suvojit Acharjee
- Point of Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - Shoaib Shafique
- CorVasc Vascular Laboratory, 8433 Harcourt Rd #100, Indianapolis, IN, USA
| | | | - Tadashi Araki
- Division of Cardiovascular Medicine, Centre for Global Health and Medicine (NCGM), 1-21-1 Toyama Shinjuku-ku, Tokyo, Japan
| | - Luca Saba
- Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari - Polo di Monserrato, Università di Cagliari, s.s. 554 Monserrato, Cagliari 09045, Italy
| | - John R Laird
- UC Davis Vascular Center, University of California, Davis, CA, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, and Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Jasjit S Suri
- Point of Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA; Diagnostic and Monitoring Division, AtheroPoint™ LLC, Roseville, CA, USA; Electrical Engineering Department (Aff.), Idaho State University, ID, USA.
| |
Collapse
|