1
|
Elvas LB, Almeida A, Ferreira JC. The Role of AI in Cardiovascular Event Monitoring and Early Detection: Scoping Literature Review. JMIR Med Inform 2025; 13:e64349. [PMID: 40048151 PMCID: PMC11905924 DOI: 10.2196/64349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/08/2024] [Accepted: 12/25/2024] [Indexed: 03/15/2025] Open
Abstract
Background Artificial intelligence (AI) has shown exponential growth and advancements, revolutionizing various fields, including health care. However, domain adaptation remains a significant challenge, as machine learning (ML) models often need to be applied across different health care settings with varying patient demographics and practices. This issue is critical for ensuring effective and equitable AI deployment. Cardiovascular diseases (CVDs), the leading cause of global mortality with 17.9 million annual deaths, encompass conditions like coronary heart disease and hypertension. The increasing availability of medical data, coupled with AI advancements, offers new opportunities for early detection and intervention in cardiovascular events, leveraging AI's capacity to analyze complex datasets and uncover critical patterns. Objective This review aims to examine AI methodologies combined with medical data to advance the intelligent monitoring and detection of CVDs, identifying areas for further research to enhance patient outcomes and support early interventions. Methods This review follows the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology to ensure a rigorous and transparent literature review process. This structured approach facilitated a comprehensive overview of the current state of research in this field. Results Through the methodology used, 64 documents were retrieved, of which 40 documents met the inclusion criteria. The reviewed papers demonstrate advancements in AI and ML for CVD detection, classification, prediction, diagnosis, and patient monitoring. Techniques such as ensemble learning, deep neural networks, and feature selection improve prediction accuracy over traditional methods. ML models predict cardiovascular events and risks, with applications in monitoring via wearable technology. The integration of AI in health care supports early detection, personalized treatment, and risk assessment, possibly improving the management of CVDs. Conclusions The study concludes that AI and ML techniques can improve the accuracy of CVD classification, prediction, diagnosis, and monitoring. The integration of multiple data sources and noninvasive methods supports continuous monitoring and early detection. These advancements help enhance CVD management and patient outcomes, indicating the potential for AI to offer more precise and cost-effective solutions in health care.
Collapse
Affiliation(s)
- Luis B Elvas
- Department of Logistics, Molde University College, Molde, Norway
- INESC INOV Rua Alves Redol, Lisbon, Portugal
| | - Ana Almeida
- Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Lisboa, Portugal
| | - Joao C Ferreira
- Department of Logistics, Molde University College, Molde, Norway
- INESC INOV Rua Alves Redol, Lisbon, Portugal
| |
Collapse
|
2
|
Tiwari E, Shrimankar D, Maindarkar M, Bhagawati M, Kaur J, Singh IM, Mantella L, Johri AM, Khanna NN, Singh R, Chaudhary S, Saba L, Al-Maini M, Anand V, Kitas G, Suri JS. Artificial intelligence-based cardiovascular/stroke risk stratification in women affected by autoimmune disorders: a narrative survey. Rheumatol Int 2025; 45:14. [PMID: 39745536 DOI: 10.1007/s00296-024-05756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/20/2024] [Indexed: 01/25/2025]
Abstract
Women are disproportionately affected by chronic autoimmune diseases (AD) like systemic lupus erythematosus (SLE), scleroderma, rheumatoid arthritis (RA), and Sjögren's syndrome. Traditional evaluations often underestimate the associated cardiovascular disease (CVD) and stroke risk in women having AD. Vitamin D deficiency increases susceptibility to these conditions. CVD risk prediction in AD can benefit from surrogate biomarker for coronary artery disease (CAD), such as carotid ultrasound. Due to non-linearity in the CVD risk stratification, we use artificial intelligence-based system using AD biomarkers and carotid ultrasound. Investigate the relationship between AD and CVD/stroke markers including autoantibody-influenced plaque load. Second, to study the surrogate biomarkers for the CAD and gather radiomics-based features such as carotid intima-media thickness (cIMT), and plaque area (PA). Third and final, explore the automated CVD/stroke risk identification using advanced machine learning (ML) and deep learning (DL) paradigms. Analysed biomarker data from women with AD, including carotid ultrasonography imaging, clinical parameters, autoantibody profiles, and vitamin D levels. Proposed artificial intelligence (AI) models to predict CVD/stroke risk accurately in AD for women. There is a strong association between AD duration and elevated cIMT/PA, with increased CVD risk linked to higher rheumatoid factor (RF) and anti-citrullinated peptide antibodies (ACPAs) levels. AI models outperformed conventional methods by integrating imaging data and disorder-specific factors. Interdisciplinary collaboration is crucial for managing CVD/stroke in women with chronic autoimmune diseases. AI-based assisted risk stratification methods may improve treatment decision-making and cardiovascular outcomes.
Collapse
Affiliation(s)
- Ekta Tiwari
- Vishvswarya National Institute of Technology, Nagpur, India
| | | | - Mahesh Maindarkar
- School of Bioengineering and Sciences and Research, MIT Art Design and Technology University, Pune, 4123018, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Jiah Kaur
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Laura Mantella
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, L4Z 4C4, Canada
| | - Amer M Johri
- Division of Cardiology, Department of Medicine, Queen's University, Kingston, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, 110001, India
| | - Rajesh Singh
- Department of Research and Innovation, UIT, Uttaranchal University, Dehradun, 248007, India
| | - Sumit Chaudhary
- Department of Research and Innovation, UIT, Uttaranchal University, Dehradun, 248007, India
| | - Luca Saba
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124, Cagliari, Italy
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, L4Z 4C4, Canada
| | - Vinod Anand
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - George Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Mancheser, M13 9PL, UK
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India.
- University Centre for Research & Development, Chandigarh University, Mohali, India.
- Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|
3
|
Kenig N, Monton Echeverria J, Muntaner Vives A. Artificial Intelligence in Surgery: A Systematic Review of Use and Validation. J Clin Med 2024; 13:7108. [PMID: 39685566 DOI: 10.3390/jcm13237108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Artificial Intelligence (AI) holds promise for transforming healthcare, with AI models gaining increasing clinical use in surgery. However, new AI models are developed without established standards for their validation and use. Before AI can be widely adopted, it is crucial to ensure these models are both accurate and safe for patients. Without proper validation, there is a risk of integrating AI models into practice without sufficient evidence of their safety and accuracy, potentially leading to suboptimal patient outcomes. In this work, we review the current use and validation methods of AI models in clinical surgical settings and propose a novel classification system. Methods: A systematic review was conducted in PubMed and Cochrane using the keywords "validation", "artificial intelligence", and "surgery", following PRISMA guidelines. Results: The search yielded a total of 7627 articles, of which 102 were included for data extraction, encompassing 2,837,211 patients. A validation classification system named Surgical Validation Score (SURVAS) was developed. The primary applications of models were risk assessment and decision-making in the preoperative setting. Validation methods were ranked as high evidence in only 45% of studies, and only 14% of the studies provided publicly available datasets. Conclusions: AI has significant applications in surgery, but validation quality remains suboptimal, and public data availability is limited. Current AI applications are mainly focused on preoperative risk assessment and are suggested to improve decision-making. Classification systems such as SURVAS can help clinicians confirm the degree of validity of AI models before their application in practice.
Collapse
Affiliation(s)
- Nitzan Kenig
- Department of Plastic Surgery, Quironsalud Palmaplanas Hospital, 07010 Palma, Spain
| | | | - Aina Muntaner Vives
- Department Otolaryngology, Son Llatzer University Hospital, 07198 Palma, Spain
| |
Collapse
|
4
|
Bhagawati M, Paul S, Mantella L, Johri AM, Gupta S, Laird JR, Singh IM, Khanna NN, Al-Maini M, Isenovic ER, Tiwari E, Singh R, Nicolaides A, Saba L, Anand V, Suri JS. Cardiovascular Disease Risk Stratification Using Hybrid Deep Learning Paradigm: First of Its Kind on Canadian Trial Data. Diagnostics (Basel) 2024; 14:1894. [PMID: 39272680 PMCID: PMC11393849 DOI: 10.3390/diagnostics14171894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND The risk of cardiovascular disease (CVD) has traditionally been predicted via the assessment of carotid plaques. In the proposed study, AtheroEdge™ 3.0HDL (AtheroPoint™, Roseville, CA, USA) was designed to demonstrate how well the features obtained from carotid plaques determine the risk of CVD. We hypothesize that hybrid deep learning (HDL) will outperform unidirectional deep learning, bidirectional deep learning, and machine learning (ML) paradigms. METHODOLOGY 500 people who had undergone targeted carotid B-mode ultrasonography and coronary angiography were included in the proposed study. ML feature selection was carried out using three different methods, namely principal component analysis (PCA) pooling, the chi-square test (CST), and the random forest regression (RFR) test. The unidirectional and bidirectional deep learning models were trained, and then six types of novel HDL-based models were designed for CVD risk stratification. The AtheroEdge™ 3.0HDL was scientifically validated using seen and unseen datasets while the reliability and statistical tests were conducted using CST along with p-value significance. The performance of AtheroEdge™ 3.0HDL was evaluated by measuring the p-value and area-under-the-curve for both seen and unseen data. RESULTS The HDL system showed an improvement of 30.20% (0.954 vs. 0.702) over the ML system using the seen datasets. The ML feature extraction analysis showed 70% of common features among all three methods. The generalization of AtheroEdge™ 3.0HDL showed less than 1% (p-value < 0.001) difference between seen and unseen data, complying with regulatory standards. CONCLUSIONS The hypothesis for AtheroEdge™ 3.0HDL was scientifically validated, and the model was tested for reliability and stability and is further adaptable clinically.
Collapse
Affiliation(s)
- Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India
| | - Laura Mantella
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Amer M Johri
- Division of Cardiology, Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Siddharth Gupta
- Department of Computer Science and Engineering, Bharati Vidyapeeth's College of Engineering, New Delhi 110063, India
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA
| | - Inder M Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| | | | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5G 1N8, Canada
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Ekta Tiwari
- Department of Computer Science, Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India
| | - Rajesh Singh
- Division of Research and Innovation, UTI, Uttaranchal University, Dehradun 248007, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia 2417, Cyprus
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Vinod Anand
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Jasjit S Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of CE, Graphic Era Deemed to be University, Dehradun 248002, India
- Department of ECE, Idaho State University, Pocatello, ID 83209, USA
- University Center for Research & Development, Chandigarh University, Mohali 140413, India
- Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune 412115, India
| |
Collapse
|
5
|
Bhagawati M, Paul S, Mantella L, Johri AM, Laird JR, Singh IM, Singh R, Garg D, Fouda MM, Khanna NN, Cau R, Abraham A, Al-Maini M, Isenovic ER, Sharma AM, Fernandes JFE, Chaturvedi S, Karla MK, Nicolaides A, Saba L, Suri JS. Deep learning approach for cardiovascular disease risk stratification and survival analysis on a Canadian cohort. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1283-1303. [PMID: 38678144 DOI: 10.1007/s10554-024-03100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
The quantification of carotid plaque has been routinely used to predict cardiovascular risk in cardiovascular disease (CVD) and coronary artery disease (CAD). To determine how well carotid plaque features predict the likelihood of CAD and cardiovascular (CV) events using deep learning (DL) and compare against the machine learning (ML) paradigm. The participants in this study consisted of 459 individuals who had undergone coronary angiography, contrast-enhanced ultrasonography, and focused carotid B-mode ultrasound. Each patient was tracked for thirty days. The measurements on these patients consisted of maximum plaque height (MPH), total plaque area (TPA), carotid intima-media thickness (cIMT), and intraplaque neovascularization (IPN). CAD risk and CV event stratification were performed by applying eight types of DL-based models. Univariate and multivariate analysis was also conducted to predict the most significant risk predictors. The DL's model effectiveness was evaluated by the area-under-the-curve measurement while the CV event prediction was evaluated using the Cox proportional hazard model (CPHM) and compared against the DL-based concordance index (c-index). IPN showed a substantial ability to predict CV events (p < 0.0001). The best DL system improved by 21% (0.929 vs. 0.762) over the best ML system. DL-based CV event prediction showed a ~ 17% increase in DL-based c-index compared to the CPHM (0.86 vs. 0.73). CAD and CV incidents were linked to IPN and carotid imaging characteristics. For survival analysis and CAD prediction, the DL-based system performs superior to ML-based models.
Collapse
Affiliation(s)
- Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Laura Mantella
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Amer M Johri
- Division of Cardiology, Department of Medicine, Queen's University, Kingston, Canada
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, 94574, USA
| | - Inder M Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Rajesh Singh
- Division of Research and Innovation, UTI, Uttaranchal University, Dehradun, India
| | - Deepak Garg
- School of Cowereter Science and Artificial Intelligence, SR University, Warangal, Telangana, 506371, India
| | - Mostafa M Fouda
- Department of ECE, Idaho State University, Pocatello, ID, 83209, USA
| | | | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138, Cagliari, Italy
| | | | - Mostafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, Canada
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, 22904, USA
| | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD, USA
| | - Mannudeep K Karla
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia, Cyprus
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, 95661, USA.
- Department of ECE, Idaho State University, Pocatello, ID, 83209, USA.
- Department of CE, Graphic Era Deemed to be University, 248002, Dehradun, India.
| |
Collapse
|
6
|
Khalifa M, Albadawy M. Artificial Intelligence for Clinical Prediction: Exploring Key Domains and Essential Functions. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE UPDATE 2024; 5:100148. [DOI: 10.1016/j.cmpbup.2024.100148] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Kumari V, Kumar N, Kumar K S, Kumar A, Skandha SS, Saxena S, Khanna NN, Laird JR, Singh N, Fouda MM, Saba L, Singh R, Suri JS. Deep Learning Paradigm and Its Bias for Coronary Artery Wall Segmentation in Intravascular Ultrasound Scans: A Closer Look. J Cardiovasc Dev Dis 2023; 10:485. [PMID: 38132653 PMCID: PMC10743870 DOI: 10.3390/jcdd10120485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/15/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND AND MOTIVATION Coronary artery disease (CAD) has the highest mortality rate; therefore, its diagnosis is vital. Intravascular ultrasound (IVUS) is a high-resolution imaging solution that can image coronary arteries, but the diagnosis software via wall segmentation and quantification has been evolving. In this study, a deep learning (DL) paradigm was explored along with its bias. METHODS Using a PRISMA model, 145 best UNet-based and non-UNet-based methods for wall segmentation were selected and analyzed for their characteristics and scientific and clinical validation. This study computed the coronary wall thickness by estimating the inner and outer borders of the coronary artery IVUS cross-sectional scans. Further, the review explored the bias in the DL system for the first time when it comes to wall segmentation in IVUS scans. Three bias methods, namely (i) ranking, (ii) radial, and (iii) regional area, were applied and compared using a Venn diagram. Finally, the study presented explainable AI (XAI) paradigms in the DL framework. FINDINGS AND CONCLUSIONS UNet provides a powerful paradigm for the segmentation of coronary walls in IVUS scans due to its ability to extract automated features at different scales in encoders, reconstruct the segmented image using decoders, and embed the variants in skip connections. Most of the research was hampered by a lack of motivation for XAI and pruned AI (PAI) models. None of the UNet models met the criteria for bias-free design. For clinical assessment and settings, it is necessary to move from a paper-to-practice approach.
Collapse
Affiliation(s)
- Vandana Kumari
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India; (V.K.); (S.K.K.)
| | - Naresh Kumar
- Department of Applied Computational Science and Engineering, G L Bajaj Institute of Technology and Management, Greater Noida 201310, India
| | - Sampath Kumar K
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India; (V.K.); (S.K.K.)
| | - Ashish Kumar
- School of CSET, Bennett University, Greater Noida 201310, India;
| | - Sanagala S. Skandha
- Department of CSE, CMR College of Engineering and Technology, Hyderabad 501401, India;
| | - Sanjay Saxena
- Department of Computer Science and Engineering, IIT Bhubaneswar, Bhubaneswar 751003, India;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA;
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era, Deemed to be University, Dehradun 248002, India;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100 Cagliari, Italy;
| | - Rajesh Singh
- Department of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India;
| | - Jasjit S. Suri
- Stroke Diagnostics and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Computer Science & Engineering, Graphic Era, Deemed to be University, Dehradun 248002, India
- Monitoring and Diagnosis Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
8
|
Khanna NN, Singh M, Maindarkar M, Kumar A, Johri AM, Mentella L, Laird JR, Paraskevas KI, Ruzsa Z, Singh N, Kalra MK, Fernandes JFE, Chaturvedi S, Nicolaides A, Rathore V, Singh I, Teji JS, Al-Maini M, Isenovic ER, Viswanathan V, Khanna P, Fouda MM, Saba L, Suri JS. Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review. J Korean Med Sci 2023; 38:e395. [PMID: 38013648 PMCID: PMC10681845 DOI: 10.3346/jkms.2023.38.e395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023] Open
Abstract
Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The relationship between external risk factors and our genetics have not been well established. It is widely acknowledged that environmental influence and individual behaviours play a significant role in CVD vulnerability, leading to the development of polygenic risk scores (PRS). We employed the PRISMA search method to locate pertinent research and literature to extensively review artificial intelligence (AI)-based PRS models for CVD risk prediction. Furthermore, we analyzed and compared conventional vs. AI-based solutions for PRS. We summarized the recent advances in our understanding of the use of AI-based PRS for risk prediction of CVD. Our study proposes three hypotheses: i) Multiple genetic variations and risk factors can be incorporated into AI-based PRS to improve the accuracy of CVD risk predicting. ii) AI-based PRS for CVD circumvents the drawbacks of conventional PRS calculators by incorporating a larger variety of genetic and non-genetic components, allowing for more precise and individualised risk estimations. iii) Using AI approaches, it is possible to significantly reduce the dimensionality of huge genomic datasets, resulting in more accurate and effective disease risk prediction models. Our study highlighted that the AI-PRS model outperformed traditional PRS calculators in predicting CVD risk. Furthermore, using AI-based methods to calculate PRS may increase the precision of risk predictions for CVD and have significant ramifications for individualized prevention and treatment plans.
Collapse
Affiliation(s)
- Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
- Asia Pacific Vascular Society, New Delhi, India
| | - Manasvi Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Bennett University, Greater Noida, India
| | - Mahesh Maindarkar
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- School of Bioengineering Sciences and Research, Maharashtra Institute of Technology's Art, Design and Technology University, Pune, India
| | | | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Canada
| | - Laura Mentella
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Canada
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, USA
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | | | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Inder Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Jagjit S Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Mostafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, Canada
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, Beograd, Serbia
| | | | - Puneet Khanna
- Department of Anaesthesiology, AIIMS, New Delhi, India
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Jasjit S Suri
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun, India.
| |
Collapse
|
9
|
Al-Maini M, Maindarkar M, Kitas GD, Khanna NN, Misra DP, Johri AM, Mantella L, Agarwal V, Sharma A, Singh IM, Tsoulfas G, Laird JR, Faa G, Teji J, Turk M, Viskovic K, Ruzsa Z, Mavrogeni S, Rathore V, Miner M, Kalra MK, Isenovic ER, Saba L, Fouda MM, Suri JS. Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review. Rheumatol Int 2023; 43:1965-1982. [PMID: 37648884 DOI: 10.1007/s00296-023-05415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
The challenges associated with diagnosing and treating cardiovascular disease (CVD)/Stroke in Rheumatoid arthritis (RA) arise from the delayed onset of symptoms. Existing clinical risk scores are inadequate in predicting cardiac events, and conventional risk factors alone do not accurately classify many individuals at risk. Several CVD biomarkers consider the multiple pathways involved in the development of atherosclerosis, which is the primary cause of CVD/Stroke in RA. To enhance the accuracy of CVD/Stroke risk assessment in the RA framework, a proposed approach involves combining genomic-based biomarkers (GBBM) derived from plasma and/or serum samples with innovative non-invasive radiomic-based biomarkers (RBBM), such as measurements of synovial fluid, plaque area, and plaque burden. This review presents two hypotheses: (i) RBBM and GBBM biomarkers exhibit a significant correlation and can precisely detect the severity of CVD/Stroke in RA patients. (ii) Artificial Intelligence (AI)-based preventive, precision, and personalized (aiP3) CVD/Stroke risk AtheroEdge™ model (AtheroPoint™, CA, USA) that utilizes deep learning (DL) to accurately classify the risk of CVD/stroke in RA framework. The authors conducted a comprehensive search using the PRISMA technique, identifying 153 studies that assessed the features/biomarkers of RBBM and GBBM for CVD/Stroke. The study demonstrates how DL models can be integrated into the AtheroEdge™-aiP3 framework to determine the risk of CVD/Stroke in RA patients. The findings of this review suggest that the combination of RBBM with GBBM introduces a new dimension to the assessment of CVD/Stroke risk in the RA framework. Synovial fluid levels that are higher than normal lead to an increase in the plaque burden. Additionally, the review provides recommendations for novel, unbiased, and pruned DL algorithms that can predict CVD/Stroke risk within a RA framework that is preventive, precise, and personalized.
Collapse
Affiliation(s)
- Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, L4Z 4C4, Canada
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
- Asia Pacific Vascular Society, New Delhi, 110001, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, M13 9PL, UK
| | - Narendra N Khanna
- Asia Pacific Vascular Society, New Delhi, 110001, India
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, 110001, India
| | | | - Amer M Johri
- Division of Cardiology, Department of Medicine, Queen's University, Kingston, Canada
| | - Laura Mantella
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Vikas Agarwal
- Department of Immunology, SGPIMS, Lucknow, 226014, India
| | - Aman Sharma
- Department of Immunology, SGPIMS, Lucknow, 226014, India
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124, Thessaloniki, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, 94574, USA
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124, Cagliari, Italy
| | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753, Delmenhorst, Germany
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, UHID, 10 000, Zagreb, Croatia
| | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, 95823, USA
| | - Martin Miner
- Men's Health Centre, Miriam Hospital Providence, Providence, RI, 02906, USA
| | - Manudeep K Kalra
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of the Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138, Cagliari, Italy
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
| |
Collapse
|
10
|
Tomihama RT, Dass S, Chen S, Kiang SC. Machine learning and image analysis in vascular surgery. Semin Vasc Surg 2023; 36:413-418. [PMID: 37863613 DOI: 10.1053/j.semvascsurg.2023.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/22/2023]
Abstract
Deep learning, a subset of machine learning within artificial intelligence, has been successful in medical image analysis in vascular surgery. Unlike traditional computer-based segmentation methods that manually extract features from input images, deep learning methods learn image features and classify data without making prior assumptions. Convolutional neural networks, the main type of deep learning for computer vision processing, are neural networks with multilevel architecture and weighted connections between nodes that can "auto-learn" through repeated exposure to training data without manual input or supervision. These networks have numerous applications in vascular surgery imaging analysis, particularly in disease classification, object identification, semantic segmentation, and instance segmentation. The purpose of this review article was to review the relevant concepts of machine learning image analysis and its application to the field of vascular surgery.
Collapse
Affiliation(s)
- Roger T Tomihama
- Department of Radiology, Section of Vascular and Interventional Radiology, Linda University School of Medicine, 11234 Anderson Street, Suite MC-2605E, Loma Linda, CA 92354.
| | - Saharsh Dass
- Department of Radiology, Section of Vascular and Interventional Radiology, Linda University School of Medicine, 11234 Anderson Street, Suite MC-2605E, Loma Linda, CA 92354
| | - Sally Chen
- Department of Surgery, Division of Vascular Surgery, Linda University School of Medicine, Loma Linda, CA
| | - Sharon C Kiang
- Department of Surgery, Division of Vascular Surgery, Linda University School of Medicine, Loma Linda, CA; Department of Surgery, Division of Vascular Surgery, Veterans Affairs Loma Linda Healthcare System, Loma Linda, CA
| |
Collapse
|
11
|
Lu H, Huang L, Xie Y, Zhou Z, Cui H, Jing S, Yang Z, Zhu D, Wang S, Bao D, Liang G, Cai Z, Chen H, He W. Prediction of fractional flow reserve with enhanced ant lion optimized support vector machine. Heliyon 2023; 9:e18832. [PMID: 37588610 PMCID: PMC10425907 DOI: 10.1016/j.heliyon.2023.e18832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
The evaluation of coronary morphology provides important guidance for the treatment of coronary heart disease (CHD). A chaotic Gaussian mutation antlion optimizer algorithm (CGALO) is proposed in the paper, and it is combined with SVM to construct a classification prediction model for Fractional flow reserve (FFR). To overcome the limitations of the original antlion optimizer (ALO) algorithm, the chaotic Gaussian mutation strategy is introduced, which leads to an improvement in its convergence speed and accuracy. To evaluate the proposed algorithm's performance, comparative experiments were conducted on 23 benchmark functions alongside 12 other cutting-edge optimization algorithms. The experimental outcomes demonstrate that the proposed algorithm achieves superior convergence accuracy and speed compared to the alternative comparison algorithms. Additionally, it is combined with SVM and FS to construct a hierarchical FFR classification model, which is utilized to make effective predictions for 84 patients at the affiliated hospital of medical school, Ningbo university. The experimental results demonstrate that the proposed model achieves an average accuracy of 92%. Moreover, it concludes that smoking history, number of lesion vessels, lesion location, diffuse lesions and ST segment changes, and other factors are the most critical indicators for FFR. Therefore, the model that has been established is a new FFR intelligent classification prediction technology that can effectively assist doctors in making corresponding decisions and evaluation plans.
Collapse
Affiliation(s)
- Haoxuan Lu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Li Huang
- Department of Emergency, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Yanqing Xie
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Zhong Zhou
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Hanbin Cui
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Sheng Jing
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Zhuo Yang
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Decai Zhu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Shiqi Wang
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Donggang Bao
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Guoxi Liang
- Department of Information Technology, Wenzhou Polytechnic, Wenzhou, 325035, China
| | - Zhennao Cai
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China
| | - Wenming He
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| |
Collapse
|
12
|
Bhagawati M, Paul S, Agarwal S, Protogeron A, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Tomazu O, Turk M, Faa G, Tsoulfas G, Laird JR, Rathore V, Johri AM, Viskovic K, Kalra M, Balestrieri A, Nicolaides A, Singh IM, Chaturvedi S, Paraskevas KI, Fouda MM, Saba L, Suri JS. Cardiovascular disease/stroke risk stratification in deep learning framework: a review. Cardiovasc Diagn Ther 2023; 13:557-598. [PMID: 37405023 PMCID: PMC10315429 DOI: 10.21037/cdt-22-438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/17/2023] [Indexed: 07/06/2023]
Abstract
The global mortality rate is known to be the highest due to cardiovascular disease (CVD). Thus, preventive, and early CVD risk identification in a non-invasive manner is vital as healthcare cost is increasing day by day. Conventional methods for risk prediction of CVD lack robustness due to the non-linear relationship between risk factors and cardiovascular events in multi-ethnic cohorts. Few recently proposed machine learning-based risk stratification reviews without deep learning (DL) integration. The proposed study focuses on CVD risk stratification by the use of techniques mainly solo deep learning (SDL) and hybrid deep learning (HDL). Using a PRISMA model, 286 DL-based CVD studies were selected and analyzed. The databases included were Science Direct, IEEE Xplore, PubMed, and Google Scholar. This review is focused on different SDL and HDL architectures, their characteristics, applications, scientific and clinical validation, along with plaque tissue characterization for CVD/stroke risk stratification. Since signal processing methods are also crucial, the study further briefly presented Electrocardiogram (ECG)-based solutions. Finally, the study presented the risk due to bias in AI systems. The risk of bias tools used were (I) ranking method (RBS), (II) region-based map (RBM), (III) radial bias area (RBA), (IV) prediction model risk of bias assessment tool (PROBAST), and (V) risk of bias in non-randomized studies-of interventions (ROBINS-I). The surrogate carotid ultrasound image was mostly used in the UNet-based DL framework for arterial wall segmentation. Ground truth (GT) selection is vital for reducing the risk of bias (RoB) for CVD risk stratification. It was observed that the convolutional neural network (CNN) algorithms were widely used since the feature extraction process was automated. The ensemble-based DL techniques for risk stratification in CVD are likely to supersede the SDL and HDL paradigms. Due to the reliability, high accuracy, and faster execution on dedicated hardware, these DL methods for CVD risk assessment are powerful and promising. The risk of bias in DL methods can be best reduced by considering multicentre data collection and clinical evaluation.
Collapse
Affiliation(s)
- Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA, USA
- Department of Computer Science Engineering, PSIT, Kanpur, India
| | - Athanasios Protogeron
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
| | - George D. Kitas
- Arthritis Research UK Centre for Epidemiology, Manchester University, Manchester, UK
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | | | - Aditya M. Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Omerzu Tomazu
- Department of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | - Gavino Faa
- Department of Pathology, A.O.U., di Cagliari -Polo di Monserrato s.s, Cagliari, Italy
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, Thessaloniki, Greece
| | - John R. Laird
- Cardiology Department, St. Helena Hospital, St. Helena, CA, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, Canada
| | | | - Manudeep Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia, Cyprus
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA
| | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, N. Iraklio, Athens, Greece
| | | | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
13
|
Esmaeili P, Roshanravan N, Mousavi S, Ghaffari S, Mesri Alamdari N, Asghari-Jafarabadi M. Machine learning framework for atherosclerotic cardiovascular disease risk assessment. J Diabetes Metab Disord 2023; 22:423-430. [PMID: 37255822 PMCID: PMC10225383 DOI: 10.1007/s40200-022-01160-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/20/2022] [Indexed: 06/01/2023]
Abstract
Introduction Atherosclerotic cardiovascular disease (ASCVD) is the first leading cause of mortality globally. To identify the individual risk factors of ASCVD utilizing the machine learning (ML) approaches. Materials & methods This cohort-based cross-sectional study was conducted on data of 500 participants with ASCVD among Tabriz University Medical Sciences employees, during 2020. The data with ML methods were developed and validated to predict ASCVD risk with naive Bayes (NB), spurt vesture machines (SVM), regression tree (RT), k-nearest neighbors (KNN), artificial neural networks (ANN), generalized additive models (GAM), and logistic regression (LR). Results Accuracy of the models ranged from 95.7 to 98.1%, with a sensitivity of 50.0 to 97.3%, specificity of 74.3 to 99.1%, positive predictive value (PPV) of 0.0 to 98.0%, negative predictive value (NPV) of 68.4 to 100.0%, positive likelihood ratio (LR +) of 13.8 to 96.4%, negative likelihood ratio (LR-) of 3.6 to 51.9%, and area under ROC curve (AUC) of 62.5 to 99.4%. The ANN fit the data best with an accuracy of 98.1% (95% CI: 96.5-99.1), a specificity of 99.1% (95% CI: 97.7-99.9), a LR + of 96.4% (95% CI: 36.2-258.8), and AUC of 99.4% (95% CI: 85.2-97.0). Based on the optimal model, sex (females), age, smoking, and metabolic syndrome were shown to be the most important risk factors of ASCVD. Conclusion Sex (females), age, smoking, and metabolic syndrome were predictors obtained by ANN. Considering the ANN as the optimal model identified, more accurate prevention planning may be designed.
Collapse
Affiliation(s)
- Parya Esmaeili
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Epidemiology and Biostatistics, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Mousavi
- Department of Epidemiology and Biostatistics, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Asghari-Jafarabadi
- Department of Epidemiology and Biostatistics, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Cabrini Research, Cabrini Health, 154 Wattletree Rd, Malvern, VIC 3144 Australia
- School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800 Australia
| |
Collapse
|
14
|
Adam CA, Marcu DTM, Mitu O, Roca M, Aursulesei Onofrei V, Zabara ML, Tribuș LC, Cumpăt C, Crișan Dabija R, Mitu F. Old and Novel Predictors for Cardiovascular Risk in Diabetic Foot Syndrome—A Narrative Review. APPLIED SCIENCES 2023; 13:5990. [DOI: 10.3390/app13105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Diabetic foot syndrome (DFS) is a complication associated with diabetes that has a strong negative impact, both medically and socio-economically. Recent epidemiological data show that one in six patients with diabetes will develop an ulcer in their lifetime. Vascular complications associated with diabetic foot have multiple prognostic implications in addition to limiting functional status and leading to decreased quality of life for these patients. We searched the electronic databases of PubMed, MEDLINE and EMBASE for studies that evaluated the role of DFS as a cardiovascular risk factor through the pathophysiological mechanisms involved, in particular the inflammatory ones and the associated metabolic changes. In the era of evidence-based medicine, the management of these cases in multidisciplinary teams of “cardio-diabetologists” prevents the occurrence of long-term disabling complications and has prognostic value for cardiovascular morbidity and mortality among diabetic patients. Identifying artificial-intelligence-based cardiovascular risk prediction models or conducting extensive clinical trials on gene therapy or potential therapeutic targets promoted by in vitro studies represent future research directions with a modulating role on the risk of morbidity and mortality in patients with DFS.
Collapse
Affiliation(s)
- Cristina Andreea Adam
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, 700661 Iasi, Romania
| | - Dragos Traian Marius Marcu
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Hospital of Pneumophthisiology Iași, 700115 Iasi, Romania
| | - Ovidiu Mitu
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- “St. Spiridon” Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mihai Roca
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, 700661 Iasi, Romania
| | - Viviana Aursulesei Onofrei
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- “St. Spiridon” Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mihai Lucian Zabara
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Carina Tribuș
- Department of Internal Medicine, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine, Ilfov County Emergency Hospital, 022104 Bucharest, Romania
| | - Carmen Cumpăt
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Management, “Alexandru Ioan Cuza” University, 700506 Iasi, Romania
| | - Radu Crișan Dabija
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Hospital of Pneumophthisiology Iași, 700115 Iasi, Romania
| | - Florin Mitu
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Hospital of Pneumophthisiology Iași, 700115 Iasi, Romania
- Academy of Medical Sciences, 030167 Bucharest, Romania
- Academy of Romanian Scientists, 700050 Iasi, Romania
| |
Collapse
|
15
|
Miceli G, Rizzo G, Basso MG, Cocciola E, Pennacchio AR, Pintus C, Tuttolomondo A. Artificial Intelligence in Symptomatic Carotid Plaque Detection: A Narrative Review. APPLIED SCIENCES 2023; 13:4321. [DOI: 10.3390/app13074321] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Identifying atherosclerotic disease is the mainstay for the correct diagnosis of the large artery atherosclerosis ischemic stroke subtype and for choosing the right therapeutic strategy in acute ischemic stroke. Classification into symptomatic and asymptomatic plaque and estimation of the cardiovascular risk are essential to select patients eligible for pharmacological and/or surgical therapy in order to prevent future cerebral ischemic events. The difficulties in a “vulnerability” definition and the methodical issues concerning its detectability and quantification are still subjects of debate. Non-invasive imaging studies commonly used to detect arterial plaque are computed tomographic angiography, magnetic resonance imaging, and ultrasound. Characterization of a carotid plaque type using the abovementioned imaging modalities represents the basis for carotid atherosclerosis management. Classification into symptomatic and asymptomatic plaque and estimation of the cardiovascular risk are essential to select patients eligible for pharmacological and/or surgical therapy in order to prevent future cerebral ischemic events. In this setting, artificial intelligence (AI) can offer suggestive solutions for tissue characterization and classification concerning carotid artery plaque imaging by analyzing complex data and using automated algorithms to obtain a final output. The aim of this review is to provide overall knowledge about the role of AI models applied to non-invasive imaging studies for the detection of symptomatic and vulnerable carotid plaques.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, Via del Vespro 129, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Giuliana Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, Via del Vespro 129, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Maria Grazia Basso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, Via del Vespro 129, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Elena Cocciola
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, Via del Vespro 129, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Andrea Roberta Pennacchio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, Via del Vespro 129, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Chiara Pintus
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, Via del Vespro 129, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, Via del Vespro 129, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90100 Palermo, Italy
| |
Collapse
|
16
|
Gosnell JM, Finn MT, Marckini DN, Molla AR, Sowinski HA. Identifying Predictors of Psychological Problems Among Adolescents With Congenital Heart Disease for Referral to Psychological Care: A Pilot Study. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:3-11. [PMID: 37970099 PMCID: PMC10642091 DOI: 10.1016/j.cjcpc.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/06/2022] [Indexed: 11/17/2023]
Abstract
Background The lifelong care of patients with congenital heart disease (CHD) typically begins at a young age, giving paediatric cardiologists a unique perspective on the mental health of their patients. Our aim was to describe and predict reported psychological problems among adolescents with CHD. Methods A retrospective review was performed on patients aged 12-17 years who presented to the congenital cardiology clinic during a 1-year timeframe. The presence of psychological problems was collected along with CHD class, clinical history, developmental delay, and patient demographics. We described the prevalence of psychological problems and then, using machine learning algorithms, trained and tested optimal predictive models. Results Of the 397 patients who met inclusion criteria, the lifetime prevalence of any reported psychological problem was 35.5%. The most prevalent reported problems were attention-deficit/hyperactivity disorder (18.9%), anxiety (17.6%), and depression (16.1%). Contrary to our expectations, we could not predict the presence or absence of any psychological problem using routine clinical data. Instead, we found multivariate models predicting depression and attention-deficit/hyperactivity disorder with promising accuracy. Prediction of anxiety was less successful. Conclusions Approximately 1 of 3 adolescents with CHD presented with the lifetime prevalence of 1 or more psychological problems. Congenital cardiac programmes are in a position of influence to respond to these problems and impact their patients' mental health as part of a comprehensive care plan. The discovered models using routine clinical data predicted specific psychological problems with varying accuracy. With further validation, these models could become the tools of routine recommendations for referral to psychological care.
Collapse
Affiliation(s)
- Jordan M. Gosnell
- Betz Congenital Heart Center, Helen DeVos Children’s Hospital of Corewell Health, Grand Rapids, Michigan, USA
- Department of Public Health, Grand Valley State University College of Health Professions, Allendale, Michigan, USA
| | - Michael T.M. Finn
- Betz Congenital Heart Center, Helen DeVos Children’s Hospital of Corewell Health, Grand Rapids, Michigan, USA
- Department of Pediatrics and Human Development, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Darcy N. Marckini
- Office of Research and Education, Corewell Health, Grand Rapids, Michigan, USA
| | - Azizur R. Molla
- Department of Public Health, Grand Valley State University College of Health Professions, Allendale, Michigan, USA
| | - Heather A. Sowinski
- Betz Congenital Heart Center, Helen DeVos Children’s Hospital of Corewell Health, Grand Rapids, Michigan, USA
- Department of Pediatrics and Human Development, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| |
Collapse
|
17
|
Khanna NN, Maindarkar MA, Viswanathan V, Fernandes JFE, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Kolluri R, Singh IM, Laird JR, Fatemi M, Alizad A, Saba L, Agarwal V, Sharma A, Teji JS, Al-Maini M, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Mohanty L, Sobel DW, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Kitas GD, Fouda MM, Chaturvedi S, Kalra MK, Suri JS. Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment. Healthcare (Basel) 2022; 10:2493. [PMID: 36554017 PMCID: PMC9777836 DOI: 10.3390/healthcare10122493] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Motivation: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price. Objective: Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis. This novel study aims to evaluate AI technology in the context of healthcare costs, namely in the areas of diagnosis and treatment, and then compare it to the traditional or non-AI-based approaches. Methodology: PRISMA was used to select the best 200 studies for AI in healthcare with a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that AI plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of different assumptions by integrating AI and then comparing it against conventional costs. Lastly, we dwell on three powerful future concepts of AI, namely, pruning, bias, explainability, and regulatory approvals of AI systems. Conclusions: The model shows tremendous cost savings using AI tools in diagnosis and treatment. The economics of AI can be improved by incorporating pruning, reduction in AI bias, explainability, and regulatory approvals.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | | | | | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Vikas Agarwal
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | | | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - Lopamudra Mohanty
- Department of Computer Science, ABES Engineering College, Ghaziabad 201009, India
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
18
|
Khanna NN, Maindarkar MA, Viswanathan V, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Kolluri R, Krishnan PR, Singh IM, Laird JR, Fatemi M, Alizad A, Dhanjil SK, Saba L, Balestrieri A, Faa G, Paraskevas KI, Misra DP, Agarwal V, Sharma A, Teji JS, Al-Maini M, Nicolaides A, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Sobel DW, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Mavrogeni S, Kitas GD, Fouda MM, Kalra MK, Suri JS. Cardiovascular/Stroke Risk Stratification in Diabetic Foot Infection Patients Using Deep Learning-Based Artificial Intelligence: An Investigative Study. J Clin Med 2022; 11:6844. [PMID: 36431321 PMCID: PMC9693632 DOI: 10.3390/jcm11226844] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained ML paradigms due to comorbidity, sample size limits, and weak scientific and clinical validation methodologies. Deep neural networks (DNN) are potent machines for learning that generalize nonlinear situations. The objective of this article is to propose a novel investigation of deep learning (DL) solutions for predicting CVD/stroke risk in DFI patients. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) search strategy was used for the selection of 207 studies. We hypothesize that a DFI is responsible for increased morbidity and mortality due to the worsening of atherosclerotic disease and affecting coronary artery disease (CAD). Since surrogate biomarkers for CAD, such as carotid artery disease, can be used for monitoring CVD, we can thus use a DL-based model, namely, Long Short-Term Memory (LSTM) and Recurrent Neural Networks (RNN) for CVD/stroke risk prediction in DFI patients, which combines covariates such as office and laboratory-based biomarkers, carotid ultrasound image phenotype (CUSIP) lesions, along with the DFI severity. We confirmed the viability of CVD/stroke risk stratification in the DFI patients. Strong designs were found in the research of the DL architectures for CVD/stroke risk stratification. Finally, we analyzed the AI bias and proposed strategies for the early diagnosis of CVD/stroke in DFI patients. Since DFI patients have an aggressive atherosclerotic disease, leading to prominent CVD/stroke risk, we, therefore, conclude that the DL paradigm is very effective for predicting the risk of CVD/stroke in DFI patients.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | | | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | | | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Antonella Balestrieri
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy
| | | | | | - Vikas Agarwal
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Egkomi 2408, Cyprus
| | | | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | | | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
19
|
Advances in Noninvasive Carotid Wall Imaging with Ultrasound: A Narrative Review. J Clin Med 2022; 11:jcm11206196. [PMID: 36294515 PMCID: PMC9604731 DOI: 10.3390/jcm11206196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Carotid atherosclerosis is a major cause for stroke, with significant associated disease burden morbidity and mortality in Western societies. Diagnosis, grading and follow-up of carotid atherosclerotic disease relies on imaging, specifically ultrasound (US) as the initial modality of choice. Traditionally, the degree of carotid lumen stenosis was considered the sole risk factor to predict brain ischemia. However, modern research has shown that a variety of other imaging biomarkers, such as plaque echogenicity, surface morphology, intraplaque neovascularization and vasa vasorum contribute to the risk for rupture of carotid atheromas with subsequent cerebrovascular events. Furthermore, the majority of embolic strokes of undetermined origin are probably arteriogenic and are associated with nonstenosing atheromas. Therefore, a state-of-the-art US scan of the carotid arteries should take advantage of recent technical developments and should provide detailed information about potential thrombogenic (/) and emboligenic arterial wall features. This manuscript reviews recent advances in ultrasonographic assessment of vulnerable carotid atherosclerotic plaques and highlights the fields of future development in multiparametric arterial wall imaging, in an attempt to convey the most important take-home messages for clinicians performing carotid ultrasound.
Collapse
|
20
|
Suri JS, Maindarkar MA, Paul S, Ahluwalia P, Bhagawati M, Saba L, Faa G, Saxena S, Singh IM, Chadha PS, Turk M, Johri A, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou AD, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji JS, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Omerzu T, Naidu S, Nicolaides A, Paraskevas KI, Kalra M, Ruzsa Z, Fouda MM. Deep Learning Paradigm for Cardiovascular Disease/Stroke Risk Stratification in Parkinson's Disease Affected by COVID-19: A Narrative Review. Diagnostics (Basel) 2022; 12:1543. [PMID: 35885449 PMCID: PMC9324237 DOI: 10.3390/diagnostics12071543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Motivation: Parkinson's disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID-19 causes the ML systems to become severely non-linear and poses challenges in cardiovascular/stroke risk stratification. Further, due to comorbidity, sample size constraints, and poor scientific and clinical validation techniques, there have been no well-explained ML paradigms. Deep neural networks are powerful learning machines that generalize non-linear conditions. This study presents a novel investigation of deep learning (DL) solutions for CVD/stroke risk prediction in PD patients affected by the COVID-19 framework. Method: The PRISMA search strategy was used for the selection of 292 studies closely associated with the effect of PD on CVD risk in the COVID-19 framework. We study the hypothesis that PD in the presence of COVID-19 can cause more harm to the heart and brain than in non-COVID-19 conditions. COVID-19 lung damage severity can be used as a covariate during DL training model designs. We, therefore, propose a DL model for the estimation of, (i) COVID-19 lesions in computed tomography (CT) scans and (ii) combining the covariates of PD, COVID-19 lesions, office and laboratory arterial atherosclerotic image-based biomarkers, and medicine usage for the PD patients for the design of DL point-based models for CVD/stroke risk stratification. Results: We validated the feasibility of CVD/stroke risk stratification in PD patients in the presence of a COVID-19 environment and this was also verified. DL architectures like long short-term memory (LSTM), and recurrent neural network (RNN) were studied for CVD/stroke risk stratification showing powerful designs. Lastly, we examined the artificial intelligence bias and provided recommendations for early detection of CVD/stroke in PD patients in the presence of COVID-19. Conclusion: The DL is a very powerful tool for predicting CVD/stroke risk in PD patients affected by COVID-19.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India;
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Luca Saba
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy; (L.S.); (G.F.)
| | - Gavino Faa
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy; (L.S.); (G.F.)
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751029, India;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Paramjit S. Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.T.); (T.O.)
| | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India; (N.N.K.); (A.S.)
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Sofia Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 176 74 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece; (D.W.S.); (P.P.S.)
| | | | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece; (D.W.S.); (P.P.S.)
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Athanase D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - Durga Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Raghu Kolluri
- OhioHealth Heart and Vascular, Mansfield, OH 44905, USA;
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology, and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India; (N.N.K.); (A.S.)
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22908, USA;
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA;
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.T.); (T.O.)
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Engomi 2408, Cyprus;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, 106 80 Athens, Greece;
| | - Mannudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | - Zoltán Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| |
Collapse
|
21
|
Munjral S, Maindarkar M, Ahluwalia P, Puvvula A, Jamthikar A, Jujaray T, Suri N, Paul S, Pathak R, Saba L, Chalakkal RJ, Gupta S, Faa G, Singh IM, Chadha PS, Turk M, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji J, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Viswanathan V, Krishnan PR, Omerzu T, Naidu S, Nicolaides A, Fouda MM, Suri JS. Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review. Diagnostics (Basel) 2022; 12:1234. [PMID: 35626389 PMCID: PMC9140106 DOI: 10.3390/diagnostics12051234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework.
Collapse
Affiliation(s)
- Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India;
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India;
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Ankush Jamthikar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Tanay Jujaray
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95616, USA
| | - Neha Suri
- Mira Loma High School, Sacramento, CA 95821, USA;
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India;
| | - Rajesh Pathak
- Department of Computer Science Engineering, Rawatpura Sarkar University, Raipur 492015, India;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy; (L.S.); (A.B.)
| | | | - Suneet Gupta
- CSE Department, Bennett University, Greater Noida 201310, India;
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Paramjit S. Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India; (N.N.K.); (A.S.)
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA;
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA;
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece; (D.W.S.); (P.P.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy; (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece; (D.W.S.); (P.P.S.)
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Raghu Kolluri
- OhioHealth Heart and Vascular, Columbus, OH 43214, USA;
| | - Jagjit Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India; (N.N.K.); (A.S.)
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA;
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95119, USA;
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor MVD Research Centre, Chennai 600013, India;
| | | | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 1262 Maribor, Slovenia;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia 2408, Cyprus;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| |
Collapse
|
22
|
Paraskevas KI, Saba L, Suri JS. Applications of Artificial Intelligence in Vascular Diseases. Angiology 2022; 73:597-598. [PMID: 35364002 DOI: 10.1177/00033197221087779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Luca Saba
- Department of Radiology, 97863Azienda Ospedaliera Universitaria Di Cagliari, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Diagnosis and Monitoring Division, AtheroPointTM, Roseville, CA, USA
| |
Collapse
|
23
|
Suri JS, Paul S, Maindarkar MA, Puvvula A, Saxena S, Saba L, Turk M, Laird JR, Khanna NN, Viskovic K, Singh IM, Kalra M, Krishnan PR, Johri A, Paraskevas KI. Cardiovascular/Stroke Risk Stratification in Parkinson's Disease Patients Using Atherosclerosis Pathway and Artificial Intelligence Paradigm: A Systematic Review. Metabolites 2022; 12:metabo12040312. [PMID: 35448500 PMCID: PMC9033076 DOI: 10.3390/metabo12040312] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a severe, incurable, and costly condition leading to heart failure. The link between PD and cardiovascular disease (CVD) is not available, leading to controversies and poor prognosis. Artificial Intelligence (AI) has already shown promise for CVD/stroke risk stratification. However, due to a lack of sample size, comorbidity, insufficient validation, clinical examination, and a lack of big data configuration, there have been no well-explained bias-free AI investigations to establish the CVD/Stroke risk stratification in the PD framework. The study has two objectives: (i) to establish a solid link between PD and CVD/stroke; and (ii) to use the AI paradigm to examine a well-defined CVD/stroke risk stratification in the PD framework. The PRISMA search strategy selected 223 studies for CVD/stroke risk, of which 54 and 44 studies were related to the link between PD-CVD, and PD-stroke, respectively, 59 studies for joint PD-CVD-Stroke framework, and 66 studies were only for the early PD diagnosis without CVD/stroke link. Sequential biological links were used for establishing the hypothesis. For AI design, PD risk factors as covariates along with CVD/stroke as the gold standard were used for predicting the CVD/stroke risk. The most fundamental cause of CVD/stroke damage due to PD is cardiac autonomic dysfunction due to neurodegeneration that leads to heart failure and its edema, and this validated our hypothesis. Finally, we present the novel AI solutions for CVD/stroke risk prediction in the PD framework. The study also recommends strategies for removing the bias in AI for CVD/stroke risk prediction using the PD framework.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
- Correspondence: ; Tel.: +1-(916)-749-5628
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.A.M.)
| | - Maheshrao A. Maindarkar
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.A.M.)
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
- Annu’s Hospitals for Skin & Diabetes, Gudur 524101, India
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751003, India;
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09121 Cagliari, Italy;
| | - Monika Turk
- Deparment of Neurology, University Medical Centre Maribor, 1262 Maribor, Slovenia;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India;
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
| | - Mannudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | | | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, 106 80 Athens, Greece;
| |
Collapse
|
24
|
Suri JS, Bhagawati M, Paul S, Protogerou AD, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Saxena S, Faa G, Laird JR, Johri AM, Kalra MK, Paraskevas KI, Saba L. A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review. Diagnostics (Basel) 2022; 12:722. [PMID: 35328275 PMCID: PMC8947682 DOI: 10.3390/diagnostics12030722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/16/2022] Open
Abstract
Background and Motivation: Cardiovascular disease (CVD) causes the highest mortality globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conventional methods have shown poor performance compared to more recent and fast-evolving Artificial Intelligence (AI) methods. The proposed study reviews the three most recent paradigms for CVD risk assessment, namely multiclass, multi-label, and ensemble-based methods in (i) office-based and (ii) stress-test laboratories. Methods: A total of 265 CVD-based studies were selected using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) model. Due to its popularity and recent development, the study analyzed the above three paradigms using machine learning (ML) frameworks. We review comprehensively these three methods using attributes, such as architecture, applications, pro-and-cons, scientific validation, clinical evaluation, and AI risk-of-bias (RoB) in the CVD framework. These ML techniques were then extended under mobile and cloud-based infrastructure. Findings: Most popular biomarkers used were office-based, laboratory-based, image-based phenotypes, and medication usage. Surrogate carotid scanning for coronary artery risk prediction had shown promising results. Ground truth (GT) selection for AI-based training along with scientific and clinical validation is very important for CVD stratification to avoid RoB. It was observed that the most popular classification paradigm is multiclass followed by the ensemble, and multi-label. The use of deep learning techniques in CVD risk stratification is in a very early stage of development. Mobile and cloud-based AI technologies are more likely to be the future. Conclusions: AI-based methods for CVD risk assessment are most promising and successful. Choice of GT is most vital in AI-based models to prevent the RoB. The amalgamation of image-based strategies with conventional risk factors provides the highest stability when using the three CVD paradigms in non-cloud and cloud-based frameworks.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India; (M.B.); (S.P.)
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India; (M.B.); (S.P.)
| | - Athanasios D. Protogerou
- Research Unit Clinic, Laboratory of Pathophysiology, Department of Cardiovascular Prevention, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 11527 Athens, Greece;
| | - George D. Kitas
- Arthritis Research UK Centre for Epidemiology, Manchester University, Manchester 46962, UK;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110020, India;
| | - Zoltan Ruzsa
- Department of Internal Medicines, Invasive Cardiology Division, University of Szeged, 6720 Szeged, Hungary;
| | - Aditya M. Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhubaneswar 751003, India;
| | - Gavino Faa
- Department of Pathology, A.O.U., di Cagliari-Polo di Monserrato s.s., 09045 Cagliari, Italy;
| | - John R. Laird
- Cardiology Department, St. Helena Hospital, St. Helena, CA 94574, USA;
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Manudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, N. Iraklio, 14122 Athens, Greece;
| | - Luca Saba
- Department of Radiology, A.O.U., di Cagliari-Polo di Monserrato s.s., 09045 Cagliari, Italy;
| |
Collapse
|
25
|
Chen Z, Yang M, Wen Y, Jiang S, Liu W, Huang H. Prediction of atherosclerosis using machine learning based on operations research. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:4892-4910. [PMID: 35430846 DOI: 10.3934/mbe.2022229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Atherosclerosis is one of the major reasons for cardiovascular disease including coronary heart disease, cerebral infarction and peripheral vascular disease. Atherosclerosis has no obvious symptoms in its early stages, so the key to the treatment of atherosclerosis is early intervention of risk factors. Machine learning methods have been used to predict atherosclerosis, but the presence of strong causal relationships between features can lead to extremely high levels of information redundancy, which can affect the effectiveness of prediction systems. OBJECTIVE We aim to combine statistical analysis and machine learning methods to reduce information redundancy and further improve the accuracy of disease diagnosis. METHODS We cleaned and collated the relevant data obtained from the retrospective study at Affiliated Hospital of Nanjing University of Chinese Medicine through data analysis. First, some features that with too many missing values are filtered out of the 34 features, leaving 25 features. 49% of the samples were categorized as the atherosclerosis risk group while the rest 51% as the control group without atherosclerosis risk under the guidance of relevant experts. We compared the prediction results of a single indicator that had been medically proven to be highly correlated with atherosclerosis with the prediction results of multiple features to fully demonstrate the effect of feature information redundancy on the prediction results. Then the features that could distinguish whether have atherosclerosis risk or not were retained by statistical tests, leaving 20 features. To reduce the information redundancy between features, after drawing inspiration from graph theory, machine learning combined with optimal correlation distances was then used to screen out 15 significant features, and the prediction models were evaluated under the 15 features. Finally, the information of the 5 screened-out non-significant features was fully utilized by ensemble learning to improve the prediction superiority for atherosclerosis. RESULTS Area Under the Receiver Operating Characteristic (ROC) Curve (AUC), which is used to measure the predictive performance of the model, was 0.84035 and Kolmogorov-Smirnov (KS) value was 0.646. After feature selection model based on optimal correlation distance, the AUC value was 0.88268 and the KS value was 0.688, both of which were improved by about 0.04. Finally, after ensemble learning, the AUC value of the model was further improved by 0.01369 to 0.89637. CONCLUSIONS The optimal distance feature screening model proposed in this paper improves the performance of atherosclerosis prediction models in terms of both prediction accuracy and AUC metrics. Code and models are available at https://github.com/Cesartwothousands/Prediction-of-Atherosclerosis.
Collapse
Affiliation(s)
- Zihan Chen
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Minhui Yang
- School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yuhang Wen
- School of Teacher Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Songyan Jiang
- School of Teacher Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Wenjun Liu
- School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hui Huang
- Department of Ultrasound, Affiliated Hospital of Nanjing University of CM, Nanjing 210029, China
| |
Collapse
|
26
|
Suri JS, Bhagawati M, Paul S, Protogeron A, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Saxena S, Faa G, Paraskevas KI, Laird JR, Johri AM, Saba L, Kalra M. Understanding the bias in machine learning systems for cardiovascular disease risk assessment: The first of its kind review. Comput Biol Med 2022; 142:105204. [PMID: 35033879 DOI: 10.1016/j.compbiomed.2021.105204] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 02/09/2023]
|
27
|
Feigin VL, Owolabi M, Hankey GJ, Pandian J, Martins SC. Digital Health in Primordial and Primary Stroke Prevention: A Systematic Review. Stroke 2022; 53:1008-1019. [PMID: 35109683 DOI: 10.1161/strokeaha.121.036400] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The stroke burden continues to grow across the globe, disproportionally affecting developing countries. This burden cannot be effectively halted and reversed without effective and widely implemented primordial and primary stroke prevention measures, including those on the individual level. The unprecedented growth of smartphone and other digital technologies with digital solutions are now being used in almost every area of health, offering a unique opportunity to improve primordial and primary stroke prevention on the individual level. However, there are several issues that need to be considered to advance development and use this important digital strategy for primordial and primary stroke prevention. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines we provide a systematic review of the current knowledge, challenges, and opportunities of digital health in primordial and primary stroke prevention.
Collapse
Affiliation(s)
- Valery L Feigin
- National Institute for Stroke and Applied Neurosciences, School of Clinical Sciences, Auckland University of Technology, New Zealand (V.L.F.).,Institute for Health Metrics Evaluation, University of Washington, Seattle (V.L.F.).,Research Centre of Neurology, Moscow, Russia (V.L.F.)
| | - Mayowa Owolabi
- Center for Genomic and Precision Medicine, College of Medicine, University of Ibadan, University College Hospital Ibadan and Blossom Specialist Medical Center, Ibadan, Nigeria (M.O.O.)
| | - Graeme J Hankey
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia. Department of Neurology, Sir Charles Gairdner Hospital, Perth, Australia (G.J.H.)
| | | | - Sheila C Martins
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Hospital Moinhos de Vento & Brazilian Stroke Network (S.M.)
| |
Collapse
|
28
|
A machine learning framework for risk prediction of multi-label cardiovascular events based on focused carotid plaque B-Mode ultrasound: A Canadian study. Comput Biol Med 2022; 140:105102. [PMID: 34973521 DOI: 10.1016/j.compbiomed.2021.105102] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022]
Abstract
MOTIVATION Machine learning (ML) algorithms can provide better cardiovascular event (CVE) prediction. However, ML algorithms are mostly explored for predicting a single CVE at a time. The objective of this study is to design and develop an ML-based system to predict multi-label CVEs, such as (i) coronary artery disease, (ii) acute coronary syndrome, and (iii) a composite CVE-a class of AtheroEdge 3.0 (ML) system. METHODS Focused carotid B-mode ultrasound and coronary angiography are performed on a group of 459 participants consisting of three cardiovascular labels. Initially, 23 risk predictors comprising (i) patients' demographics, (ii) clinical blood-biomarkers, and (iii) carotid ultrasound image-based phenotypes are collected. Six types of classification techniques comprising (a) four problem transformation methods (PTM) and (b) two algorithm adaptation methods (AAM) are used for multi-label CVE prediction. The performance of the proposed system is evaluated for accuracy, sensitivity, specificity, F1-score, and area-under-the-curve (AUC) using 10-fold cross-validation. The proposed system is also verified using another database of 522 participants. RESULTS For the primary database, PTM demonstrated a better multi-label CVE prediction than AAM (mean accuracy: 80.89% vs. 62.83%, mean AUC: 0.89 vs. 0.63), validating our hypothesis. The PTM-based binary relevance (BR) technique provided optimal performance in multi-label CVE prediction. The overall multi-label classification accuracy, sensitivity, specificity, F1-score, and AUC using BR are 81.2 ± 3.01%, 76.5 ± 8.8%, 83.8 ± 3.8%, 75.37 ± 5.8%, and 0.89 ± 0.02 (p < 0.0001), respectively. When used on the second Canadian database with seven cardiovascular events (acute coronary syndrome, myocardial infarction, angina, stroke, transient ischemic attack, heart failure, and death), the proposed system showed an accuracy of 96.36 ± 0.87% (AUC: 0.61 ± 0.06, p < 0.0001). CONCLUSION ML-based multi-label classification algorithms, such as binary relevance, yielded the best predictions for three cardiovascular endpoints.
Collapse
|
29
|
Anyfanti P, Dara A, Angeloudi E, Bekiari E, Dimitroulas T, Kitas GD. Monitoring and Managing Cardiovascular Risk in Immune Mediated Inflammatory Diseases. J Inflamm Res 2021; 14:6893-6906. [PMID: 34934338 PMCID: PMC8684400 DOI: 10.2147/jir.s276986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease (CVD) is common in immune-mediated inflammatory diseases (IMIDs) and it is predominately attributed to the interplay between chronic inflammation and traditional CVD risk factors. CVD has significant impact on the survival of patients with IMIDs as it is associated with increased morbidity and mortality. Despite recommendations for monitoring and managing CVD in patients with IMIDs, the individual CVD risk assessment remains problematic as CVD risk calculators for the general population consistently underestimate the risk in patients with IMIDs. Application of new technologies utilizing artificial intelligence techniques have shown promising potential for tailoring predictive medicine to the individual patient, but further validation of their role in clinical decision-making is warranted. In the meantime, individuals with IMIDs should be encouraged to adopt behavioral interventions targeting at modifiable lifestyle CVD risk factors, whereas rheumatologists need to be well aware of the unfavorable effects of antirheumatic medication on various CVD risk factors and outcomes. In the current paper, we aim to provide an overview of current and emerging strategies for mitigating CVD risk in patients with IMIDs, based on a practical approach.
Collapse
Affiliation(s)
- Panagiota Anyfanti
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasia Dara
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elena Angeloudi
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Bekiari
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Dimitroulas
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George D Kitas
- Department of Rheumatology, Russells Hall Hospital, Dudley Group NHS Foundation Trust, Dudley, UK.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
30
|
Munjral S, Ahluwalia P, Jamthikar AD, Puvvula A, Saba L, Faa G, Singh IM, Chadha PS, Turk M, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra P, Agarwal V, Kitas GD, Kolluri R, Teji J, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Viswanathan V, Krishnan PK, Omerzu T, Naidu S, Nicolaides A, Suri JS. Nutrition, atherosclerosis, arterial imaging, cardiovascular risk stratification, and manifestations in COVID-19 framework: a narrative review. FRONT BIOSCI-LANDMRK 2021; 26:1312-1339. [PMID: 34856770 DOI: 10.52586/5026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
Background: Atherosclerosis is the primary cause of the cardiovascular disease (CVD). Several risk factors lead to atherosclerosis, and altered nutrition is one among those. Nutrition has been ignored quite often in the process of CVD risk assessment. Altered nutrition along with carotid ultrasound imaging-driven atherosclerotic plaque features can help in understanding and banishing the problems associated with the late diagnosis of CVD. Artificial intelligence (AI) is another promisingly adopted technology for CVD risk assessment and management. Therefore, we hypothesize that the risk of atherosclerotic CVD can be accurately monitored using carotid ultrasound imaging, predicted using AI-based algorithms, and reduced with the help of proper nutrition. Layout: The review presents a pathophysiological link between nutrition and atherosclerosis by gaining a deep insight into the processes involved at each stage of plaque development. After targeting the causes and finding out results by low-cost, user-friendly, ultrasound-based arterial imaging, it is important to (i) stratify the risks and (ii) monitor them by measuring plaque burden and computing risk score as part of the preventive framework. Artificial intelligence (AI)-based strategies are used to provide efficient CVD risk assessments. Finally, the review presents the role of AI for CVD risk assessment during COVID-19. Conclusions: By studying the mechanism of low-density lipoprotein formation, saturated and trans fat, and other dietary components that lead to plaque formation, we demonstrate the use of CVD risk assessment due to nutrition and atherosclerosis disease formation during normal and COVID times. Further, nutrition if included, as a part of the associated risk factors can benefit from atherosclerotic disease progression and its management using AI-based CVD risk assessment.
Collapse
Affiliation(s)
- Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Superspeciality Hospital, 110058 New Delhi, India
| | - Ankush D Jamthikar
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
- Visvesvaraya National Institute of Technology, 440001 Nagpur, India
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
- Annu's Hospitals for Skin and Diabetes, 24002 Nellore, AP, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 09125 Cagliari, Italy
| | - Gavino Faa
- Department of Pathology, AOU of Cagliari, 09125 Cagliari, Italy
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Paramjit S Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27749 Delmenhorst, Germany
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, ON K7L, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 106 71 Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02906, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, RI 02903, USA
| | - David W Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02906, USA
| | | | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 106 71 Athens, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, 546 30 Thessaloniki, Greece
| | | | - Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226018 Lucknow, UP, India
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226018 Lucknow, UP, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, DY2 8 Dudley, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, M13 9 Manchester, UK
| | | | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60629, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5H, Canada
| | - Surinder K Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, MN 55441, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, MN 55441, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor MVD Research Centre, 600003 Chennai, India
| | - P K Krishnan
- Neurology Department, Fortis Hospital, 562123 Bangalore, India
| | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, 999058 Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| |
Collapse
|
31
|
Jain PK, Sharma N, Saba L, Paraskevas KI, Kalra MK, Johri A, Nicolaides AN, Suri JS. Automated deep learning-based paradigm for high-risk plaque detection in B-mode common carotid ultrasound scans: an asymptomatic Japanese cohort study. INT ANGIOL 2021; 41:9-23. [PMID: 34825801 DOI: 10.23736/s0392-9590.21.04771-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The death due to stroke is caused by embolism of the arteries which is due to the rupture of the atherosclerotic lesions in carotid arteries. The lesion formation is over time, and thus, early screening is recommended for asymptomatic and moderate-risk patients. The previous techniques adopted conventional methods or semi-automated and, more recently, machine learning solutions. A handful of studies have emerged based on solo deep learning (SDL) models such as UNet architecture. METHODS The proposed research is the first to adopt hybrid deep learning (HDL) artificial intelligence models such as SegNet-UNet. This model is benchmarked against UNet and advanced conventional models using scale-space such as AtheroEdge 2.0 (AtheroPoint, CA, USA). All our resultant statistics of the three systems were in the order of UNet, SegNet-UNet, and AtheroEdge 2.0. RESULTS Using the database of 379 ultrasound scans from a Japanese cohort of 190 patients having moderate risk and implementing the cross-validation deep learning framework, our system performance using area-under-the-curve (AUC) for UNet, SegNet-UNet, and AtheroEdge 2.0 were 0.93, 0.94, and 0.95 (p<0.001), respectively. The coefficient of correlation between the three systems and ground truth (GT) were: 0.82, 0.89, and 0.85 (p<0.001 for all three), respectively. The mean absolute area error for the three systems against manual GT was 4.07±4.70 mm2, 3.11±3.92 mm2, 3.72±4.76 mm2, respectively, proving the superior performance SegNet-UNet against UNet and AtheroEdge 2.0, respectively. Statistical tests were also conducted for their reliability and stability. CONCLUSIONS The proposed study demonstrates a fast, accurate, and reliable solution for early detection and quantification of plaque lesions in common carotid artery ultrasound scans. The system runs on a test US image in < 1 second, proving overall performance to be clinically reliable.
Collapse
Affiliation(s)
- Pankaj K Jain
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Neeraj Sharma
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Luca Saba
- Department of Radiology, Cagliari University Hospital, Cagliari, Italy
| | | | - Mandeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
32
|
Suri JS, Agarwal S, Gupta SK, Puvvula A, Viskovic K, Suri N, Alizad A, El-Baz A, Saba L, Fatemi M, Naidu DS. Systematic Review of Artificial Intelligence in Acute Respiratory Distress Syndrome for COVID-19 Lung Patients: A Biomedical Imaging Perspective. IEEE J Biomed Health Inform 2021; 25:4128-4139. [PMID: 34379599 PMCID: PMC8843049 DOI: 10.1109/jbhi.2021.3103839] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 has infected over ∼165 million people worldwide causing Acute Respiratory Distress Syndrome (ARDS) and has killed ∼3.4 million people. Artificial Intelligence (AI) has shown to benefit in the biomedical image such as X-ray/Computed Tomography in diagnosis of ARDS, but there are limited AI-based systematic reviews (aiSR). The purpose of this study is to understand the Risk-of-Bias (RoB) in a non-randomized AI trial for handling ARDS using novel AtheroPoint-AI-Bias (AP(ai)Bias). Our hypothesis for acceptance of a study to be in low RoB must have a mean score of 80% in a study. Using the PRISMA model, 42 best AI studies were analyzed to understand the RoB. Using the AP(ai)Bias paradigm, the top 19 studies were then chosen using the raw-cutoff of 1.9. This was obtained using the intersection of the cumulative plot of "mean score vs. study" and score distribution. Finally, these studies were benchmarked against ROBINS-I and PROBAST paradigm. Our observation showed that AP(ai)Bias, ROBINS-I, and PROBAST had only 32%, 16%, and 26% studies, respectively in low-moderate RoB (cutoff>2.5), however none of them met the RoB hypothesis. Further, the aiSR analysis recommends six primary and six secondary recommendations for the non-randomized AI for ARDS. The primary recommendations for improvement in AI-based ARDS design inclusive of (i) comorbidity, (ii) inter-and intra-observer variability studies, (iii) large data size, (iv) clinical validation, (v) granularity of COVID-19 risk, and (vi) cross-modality scientific validation. The AI is an important component for diagnosis of ARDS and the recommendations must be followed to lower the RoB.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnosis and Monitoring DivisionAtheroPoint LLCRosevilleCA95661USA
| | - Sushant Agarwal
- Advanced Knowledge Engineering CentreGBTIRosevilleCA95661USA
- Department of Computer Science EngineeringPranveer Singh Institute of Technology (PSIT)Kanpur209305India
| | - Suneet K. Gupta
- Department of Computer Science EngineeringBennett UniversityNoida524101India
| | - Anudeep Puvvula
- Stroke Diagnosis and Monitoring DivisionAtheroPoint LLCRosevilleCA95661USA
- Annu's Hospitals for Skin and DiabetesNellore524101India
| | | | - Neha Suri
- Mira Loma High SchoolSacramentoCA95821USA
| | - Azra Alizad
- Department of RadiologyMayo Clinic College of Medicine and ScienceRochesterMN55905USA
| | - Ayman El-Baz
- Department of BioengineeringUniversity of LouisvilleLouisvilleKY40292USA
| | - Luca Saba
- Department of RadiologyAzienda Ospedaliero Universitaria (AOU)09124CagliariItaly
| | - Mostafa Fatemi
- Department of Physiology and Biomedical EngineeringMayo Clinic College of Medicine and ScienceRochesterMN55905USA
| | - D. Subbaram Naidu
- Electrical Engineering DepartmentUniversity of MinnesotaDuluthMN55812USA
| |
Collapse
|
33
|
Saba L, Sanagala SS, Gupta SK, Koppula VK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Misra DP, Agarwal V, Sharma AM, Viswanathan V, Rathore VS, Turk M, Kolluri R, Viskovic K, Cuadrado-Godia E, Kitas GD, Sharma N, Nicolaides A, Suri JS. Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1206. [PMID: 34430647 PMCID: PMC8350643 DOI: 10.21037/atm-20-7676] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in the United States of America and globally. Carotid arterial plaque, a cause and also a marker of such CVD, can be detected by various non-invasive imaging modalities such as magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound (US). Characterization and classification of carotid plaque-type in these imaging modalities, especially into symptomatic and asymptomatic plaque, helps in the planning of carotid endarterectomy or stenting. It can be challenging to characterize plaque components due to (I) partial volume effect in magnetic resonance imaging (MRI) or (II) varying Hausdorff values in plaque regions in CT, and (III) attenuation of echoes reflected by the plaque during US causing acoustic shadowing. Artificial intelligence (AI) methods have become an indispensable part of healthcare and their applications to the non-invasive imaging technologies such as MRI, CT, and the US. In this narrative review, three main types of AI models (machine learning, deep learning, and transfer learning) are analyzed when applied to MRI, CT, and the US. A link between carotid plaque characteristics and the risk of coronary artery disease is presented. With regard to characterization, we review tools and techniques that use AI models to distinguish carotid plaque types based on signal processing and feature strengths. We conclude that AI-based solutions offer an accurate and robust path for tissue characterization and classification for carotid artery plaque imaging in all three imaging modalities. Due to cost, user-friendliness, and clinical effectiveness, AI in the US has dominated the most.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (AOU), Cagliari, Italy
| | - Skandha S. Sanagala
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Suneet K. Gupta
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Vijaya K. Koppula
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, Ontario, Canada
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA
| | - Martin Miner
- Men’s Health Center, Miriam Hospital Providence, Rhode Island, USA
| | | | - Athanasios Protogerou
- Department of Cardiovascular Prevention, National and Kapodistrian University of Athens, Athens, Greece
| | - Durga P. Misra
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Aditya M. Sharma
- Division of Cardiovascular Medicine, University of Virginia, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes & Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | | | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | | | | | | | - George D. Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Neeraj Sharma
- Department of Biomedical Engineering, IIT-BHU, Banaras, UP, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia, Cyprus
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
34
|
Biswas M, Saba L, Omerzu T, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Balestrieri A, Sfikakis PP, Protogerou A, Misra DP, Agarwal V, Kitas GD, Kolluri R, Sharma A, Viswanathan V, Ruzsa Z, Nicolaides A, Suri JS. A Review on Joint Carotid Intima-Media Thickness and Plaque Area Measurement in Ultrasound for Cardiovascular/Stroke Risk Monitoring: Artificial Intelligence Framework. J Digit Imaging 2021; 34:581-604. [PMID: 34080104 PMCID: PMC8329154 DOI: 10.1007/s10278-021-00461-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the top ten leading causes of death worldwide. Atherosclerosis disease in the arteries is the main cause of the CVD, leading to myocardial infarction and stroke. The two primary image-based phenotypes used for monitoring the atherosclerosis burden is carotid intima-media thickness (cIMT) and plaque area (PA). Earlier segmentation and measurement methods were based on ad hoc conventional and semi-automated digital imaging solutions, which are unreliable, tedious, slow, and not robust. This study reviews the modern and automated methods such as artificial intelligence (AI)-based. Machine learning (ML) and deep learning (DL) can provide automated techniques in the detection and measurement of cIMT and PA from carotid vascular images. Both ML and DL techniques are examples of supervised learning, i.e., learn from "ground truth" images and transformation of test images that are not part of the training. This review summarizes (1) the evolution and impact of the fast-changing AI technology on cIMT/PA measurement, (2) the mathematical representations of ML/DL methods, and (3) segmentation approaches for cIMT/PA regions in carotid scans based for (a) region-of-interest detection and (b) lumen-intima and media-adventitia interface detection using ML/DL frameworks. AI-based methods for cIMT/PA segmentation have emerged for CVD/stroke risk monitoring and may expand to the recommended parameters for atherosclerosis assessment by carotid ultrasound.
Collapse
Affiliation(s)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Tomaž Omerzu
- Department of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, ON, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
| | | | | | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, UP, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, UK
| | | | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Budapest, Hungary
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
| |
Collapse
|
35
|
Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization. Int J Cardiovasc Imaging 2021; 37:3145-3156. [PMID: 34050838 DOI: 10.1007/s10554-021-02294-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to compare machine learning (ML) methods with conventional statistical methods to investigate the predictive ability of carotid plaque characteristics for assessing the risk of coronary artery disease (CAD) and cardiovascular (CV) events. Focused carotid B-mode ultrasound, contrast-enhanced ultrasound, and coronary angiography were performed on 459 participants. These participants were followed for 30 days. Plaque characteristics such as carotid intima-media thickness (cIMT), maximum plaque height (MPH), total plaque area (TPA), and intraplaque neovascularization (IPN) were measured at baseline. Two ML-based algorithms-random forest (RF) and random survival forest (RSF) were used for CAD and CV event prediction. The performance of these algorithms was compared against (i) univariate and multivariate analysis for CAD prediction using the area-under-the-curve (AUC) and (ii) Cox proportional hazard model for CV event prediction using the concordance index (c-index). There was a significant association between CAD and carotid plaque characteristics [cIMT (odds ratio (OR) = 1.49, p = 0.03), MPH (OR = 2.44, p < 0.0001), TPA (OR = 1.61, p < 0.0001), and IPN (OR = 2.78, p < 0.0001)]. IPN alone reported significant CV event prediction (hazard ratio = 1.24, p < 0.0001). CAD prediction using the RF algorithm reported an improvement in AUC by ~ 3% over the univariate analysis with IPN alone (0.97 vs. 0.94, p < 0.0001). Cardiovascular event prediction using RSF demonstrated an improvement in the c-index by ~ 17.8% over the Cox-based model (0.86 vs. 0.73). Carotid imaging phenotypes and IPN were associated with CAD and CV events. The ML-based system is superior to the conventional statistically-derived approaches for CAD prediction and survival analysis.
Collapse
|
36
|
Park S, Oh D, Heo H, Lee G, Kim SM, Ansari A, You YA, Jung YJ, Kim YH, Lee M, Kim YJ. Prediction of preterm birth based on machine learning using bacterial risk score in cervicovaginal fluid. Am J Reprod Immunol 2021; 86:e13435. [PMID: 33905152 DOI: 10.1111/aji.13435] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/04/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
PROBLEM Preterm birth (PTB) is a major cause of increased morbidity and mortality in newborns. The main cause of spontaneous PTB (sPTB) is the activation of an inflammatory response as a result of ascending genital tract infection. Despite various studies on the effects of the vaginal microbiome on PTB, a practical method for its clinical application has yet to be developed. METHOD OF STUDY In this case-control study, 94 Korean pregnant women with PTB (n = 38) and term birth (TB; n = 56) were enrolled. Their cervicovaginal fluid (CVF) was sampled, and a total of 10 bacteria were analyzed using multiplex quantitative real-time PCR (qPCR). The PTB and TB groups were compared, and a PTB prediction model was created using bacterial risk scores using machine learning techniques (decision tree and support vector machine). The predictive performance of the model was validated using random subsampling. RESULTS Bacterial risk scoring model showed significant differences (P < 0.001). The PTB risk was low when the Lactobacillus iners ratio was 0.812 or more. In groups with a ratio under 0.812, moderate and high risk was classified as a U. parvum ratio of 4.6 × 10-3 . The sensitivity and specificity of the PTB prediction model using bacteria risk score were 71% and 59%, respectively, and 77% and 67%, respectively, when white blood cell (WBC) data were included. CONCLUSION Using machine learning, the bacterial risk score in CVF can be used to predict PTB.
Collapse
Affiliation(s)
- Sunwha Park
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | | | - Hanna Heo
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Gain Lee
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea.,System Health & Engineering Major in Graduate School (BK21 Plus Program, Seoul, Korea
| | - Soo Min Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea.,System Health & Engineering Major in Graduate School (BK21 Plus Program, Seoul, Korea
| | - AbuZar Ansari
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Yun Ji Jung
- Department of Obstetrics and Gynecology, College of Medicine, Yonsei University, Seoul, Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, College of Medicine, Yonsei University, Seoul, Korea
| | | | - Young Ju Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea.,System Health & Engineering Major in Graduate School (BK21 Plus Program, Seoul, Korea
| |
Collapse
|
37
|
JAMTHIKAR AD, PUVVULA A, GUPTA D, JOHRI AM, NAMBI V, KHANNA NN, SABA L, MAVROGENI S, LAIRD JR, PAREEK G, MINER M, SFIKAKIS PP, PROTOGEROU A, KITAS GD, NICOLAIDES A, SHARMA AM, VISWANATHAN V, RATHORE VS, KOLLURI R, BHATT DL, SURI JS. Cardiovascular disease and stroke risk assessment in patients with chronic kidney disease using integration of estimated glomerular filtration rate, ultrasonic image phenotypes, and artificial intelligence: a narrative review. INT ANGIOL 2021; 40:150-164. [DOI: 10.23736/s0392-9590.20.04538-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Suri JS, Puvvula A, Majhail M, Biswas M, Jamthikar AD, Saba L, Faa G, Singh IM, Oberleitner R, Turk M, Srivastava S, Chadha PS, Suri HS, Johri AM, Nambi V, Sanches JM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Bit A, Pareek G, Miner M, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji J, Porcu M, Al-Maini M, Agbakoba A, Sockalingam M, Sexena A, Nicolaides A, Sharma A, Rathore V, Viswanathan V, Naidu S, Bhatt DL. Integration of cardiovascular risk assessment with COVID-19 using artificial intelligence. Rev Cardiovasc Med 2020; 21:541-560. [PMID: 33387999 DOI: 10.31083/j.rcm.2020.04.236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 11/06/2022] Open
Abstract
Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring. This perspective narrative shows the powerful methods of AI for tracking cardiovascular risks. We conclude that AI could potentially become an integral part of the COVID-19 disease management system. Countries, large and small, should join hands with the WHO in building biobanks for scientists around the world to build AI-based platforms for tracking the cardiovascular risk assessment during COVID-19 times and long-term follow-up of the survivors.
Collapse
Affiliation(s)
- Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
- Annu's Hospitals for Skin and Diabetes, Nellore, 524001, AP, India
| | - Misha Majhail
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
- Oakmount High School and AtheroPoint™, Roseville, 95747, CA, USA
| | | | - Ankush D Jamthikar
- Department of ECE, Visvesvaraya National Institute of Technology, Nagpur, 440010, MH, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100, Cagliari, Italy
| | - Gavino Faa
- Department of Pathology, 09100, AOU of Cagliari, Italy
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
| | | | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27749, Delmenhorst, Germany
| | - Saurabh Srivastava
- School of Computing Science & Engineering, Galgotias University, 201301, Gr. Noida, India
| | - Paramjit S Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
| | | | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, B0P 1R0, Ontario, Canada
| | - Vijay Nambi
- Department of Cardiology, Baylor College of Medicine, 77001, TX, USA
| | - J Miguel Sanches
- Institute of Systems and Robotics, Instituto Superior Tecnico, 1000-001, Lisboa, Portugal
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001, New Delhi, India
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 104 31, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, 94574, CA, USA
| | - Arindam Bit
- Department of Biomedical Engineering, NIT, Raipur, 783334, CG, India
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, 02901, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, 02901, Rhode Island, USA
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100, Cagliari, Italy
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 104 31, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, 544 53, Thessaloniki, Greece
| | | | - Durga Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226001, UP, India
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226001, UP, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, DY1, Dudley, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, M13, Manchester, UK
| | | | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, 60601, Chicago, USA
| | - Michele Porcu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100, Cagliari, Italy
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, M3H 6A7, Toronto, Canada
| | | | | | - Ajit Sexena
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001, New Delhi, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 999058, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, 22901, VA, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, 94203, CA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, 600001, Chennai, India
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, 55801, MN, USA
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart & Vascular Center, Harvard Medical School, Boston, 02108, MA, USA
| |
Collapse
|